

The role of fire in plant conservation in fragmented wheatbelt reserves

Carl Gosper
Research Scientist
Department of Environment and Conservation
and CSIRO Sustainable Ecosystems
22 Sept 2007

SW WA: a global biodiversity hotspot

Southwest Australian Floristic Region

- 1 of 25 global biodiversity hot spots
- Only global hot spot in Australia
- 7000 + taxa of vascular plants
- ~ 50% endemic to floristic region
- Fire-prone landscape
- Fire is a key process driving vegetation composition, health and recruitment
- Many plants possess traits that enable them to persist following fire

Responses to fire - resprouters

Resprouters

- Many adult plant survive fire
- Resprout from above or below-ground organs
- Less dependent on recruitment after fire, so often less vulnerable to changes in fire regimes in the short term

Examples

Mallee Eucalyptus, Xanthorrhoea, many Dryandra

CSIRO. The role of fire in plant conservation in fragmented wheatbelt reserves

Responses to fire – obligate seeders

Obligate seeders

- Adult plants killed by fire
- Recruit from seeds stored on the plant (serotinous), in the soil or colonise the site from unburnt refuges
- Dependent on recruitment after fire for persistence at the site, so often immediately vulnerable to changes in fire regimes

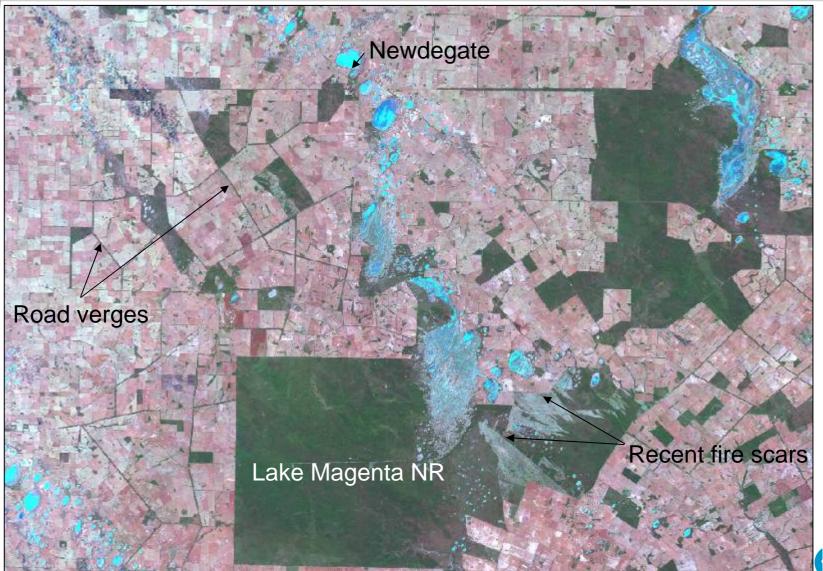
Examples

- Many Banksia and Hakea, mallet Eucalyptus (serotinous)
- Many Acacia, Grevillea and peas (soil seed bank)

CSIRO. The role of fire in plant conservation in fragmented wheatbelt reserves

The WA wheatbelt: a fragmented and threatened landscape

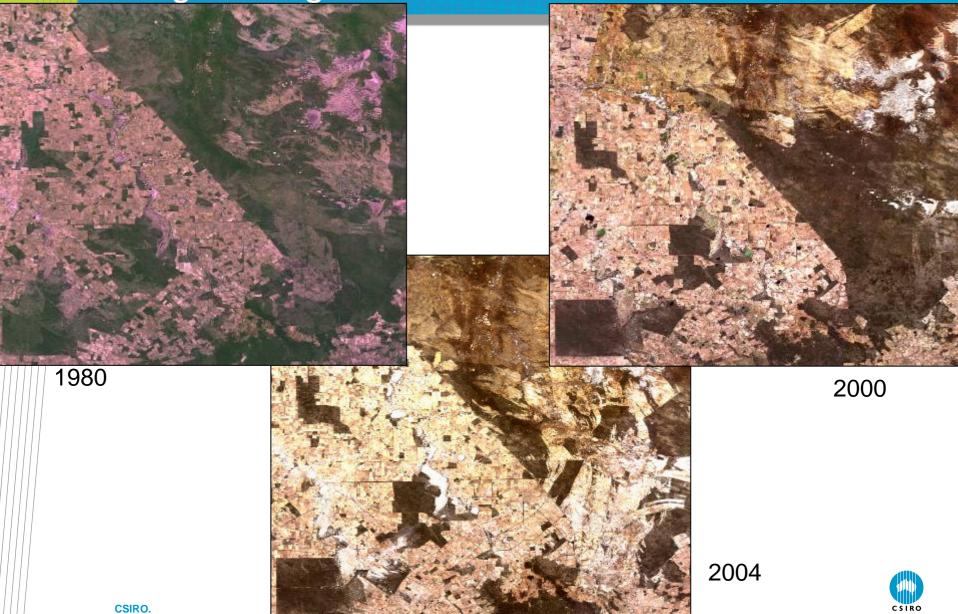
• The degree of fragmentation


- ~10.8% extant native vegetation cover in SW Floristic Region biodiversity hotspot
- Native vegetation cover in IBRA regions of the wheatbelt: Avon-Wheatbelt 14.6%, Mallee 54%
- As little as 2-3% cover in some districts

Fragmentation effects on flora

- Smaller plant population sizes
- Reduced gene flow (through loss of connectivity and dispersal agents)
- Altered disturbance regimes
- Increased edge effects (e.g. nutrient enrichment)
- Altered hydrological processes

The WA wheatbelt: a fragmented landscape


Life on the edge of wheatbelt nature reserves

Fire-related processes affecting plant conservation in remnant vegetation:

- Inappropriate fire regimes
 - Altered frequency, season, extent or intensity of fires
 - Different sources of fire ignition
 - Loss of connectivity (for passage of fire)
- Fire mitigation methods
 - Fire exclusion and suppression
 - Scrub rolling
- Weed invasion

Fragments get fewer and smaller fires

Inappropriate fire regimes - 1

Conservation risks of lower fire frequency

- Lack of recruitment opportunities
 - Period between fires may exceed plant and seed longevity
 - Adult plants senesce
 - Seeds released or seed viability declines with time
 - Obligate seeders (especially serotinous species) and some resprouters affected
- Ecologically dysfunctional abundance of fire-sensitive plant species
 - Competitively exclude other species

Inappropriate fire regimes - 2

Conservation risks of higher fire frequency

- Lack of opportunities for reproduction and recruitment
 - Period between fires may be less than that required for a plant to mature and produce seed
 - Depletion of seed bank or resources for resprouting over time
 - Obligate seeders (especially serotinous species) and some resprouters affected
- Significant issue for fire refugia
 - E.g. granite outcrops

Fire mitigation methods - Scrub rolling

• How?

- Strip of vegetation ~40m in width chained
- Chained vegetation burnt at a later date
- Fires conducted under moderate weather conditions and planned to extinguish a short distance into adjoining vegetation

• Why?

- Used as a planned fuel reduction buffer strip
- Minimise the risk of unplanned wildfires
- Vegetation burns more completely
- Lower flame heights render fire easier to control

Where?

- Usually along remnant boundaries or internal access tracks
- Blocks of vegetation > 5000 ha in size in eastern Wheatbelt
- ~ 550 ha of vegetation affected in study area since 2001 (greater area than 40% of NRs in district)

Scrub rolling

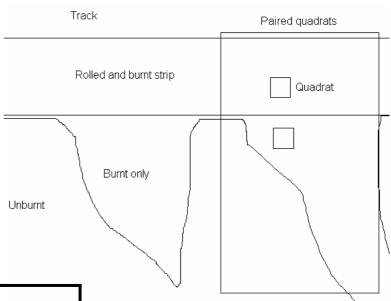
- What are the possible impacts?
 - Combines two disturbance events know to cause plant mortality and stimulate recruitment
 - Potentially different impacts of plants with different fire responses
 - Serotinous, obligate seeders at risk if seed release or germination after chaining occurs prior to burning

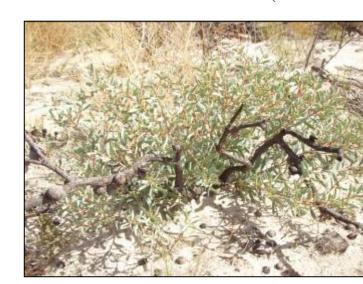
CSIRO. The role of fire in plant conservation in fragmented wheatbelt reserves

Scrub rolling

Rolled and burnt

Burnt only

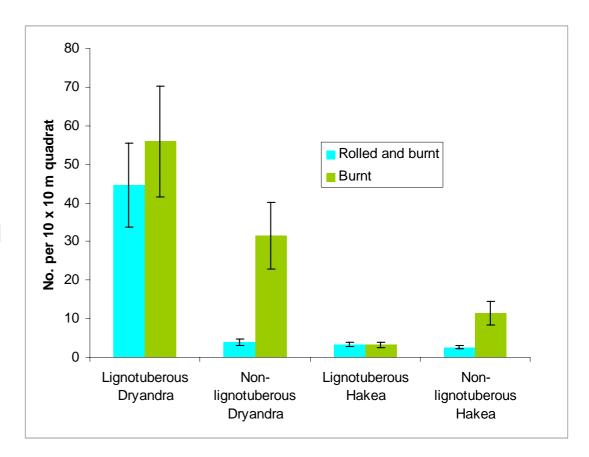



Scrub rolling – study methods

Methods

- Paired 10 by 10 m quadrats in scrub rolled strip and adjacent burnt area
- Number of recruiting or resprouting individuals counted
- Two fire response types, for two genera
- Study species

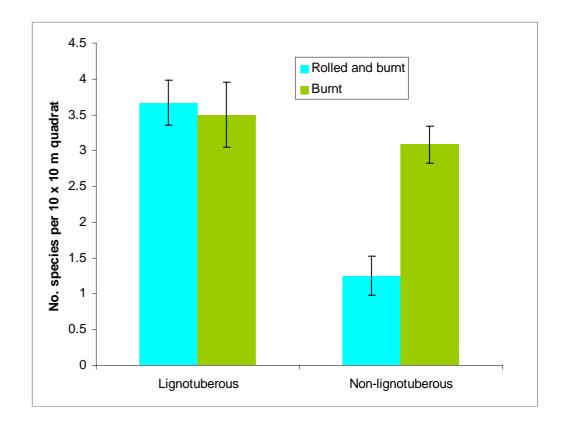
Genus	Dryandra	Hakea
Serotinous, obligate seeder	D. pallida D. cuneata	H. pandanicarpa H. cygna
Resprouter	D. pteridifolia D. erythrocephala D. ferruginea	H. incrassata H. prostrata



Scrub rolling - plant recruitment

Results

- Fewer recruits of serotinous, obligate seeders (nonlignotuberous) in rolled strips
- Little difference in abundance of resprouting taxa (lignotuberous)



Scrub rolling – species richness

Results

Fewer species of serotinous, obligate seeding *Dryandra* and *Hakea* in rolled strips
Little difference in species richness of resprouting *Dryandra* and *Hakea*

Weed invasion

- Increased risk of weed invasion after fire
- Greater opportunities for weed recruitment (germination stimuli of heat, smoke)
- Increased light, water and nutrient availability post-fire
- Edges most vulnerable to invasion

Weed invasion

Key research questions:

Why do some vegetation edges have greater weed invasion after fire than others?

- Increased soil nutrients (fertiliser enrichment)?
- Greater source of weed propagules (paddock management, methods of seed dispersal)?
- Greater vegetation disturbance before and/or after burning (native and stock herbivores, vehicles)?
- Vegetation type burnt?

Are increases in weeds post-fire a temporary or permanent change?

Are the areas affected stable in extent over time?

Conclusion

- Appropriate fire management is essential for conservation
 - Remnants in the wheatbelt appear to be experiencing different fire regimes from uncleared portions of the landscape
 - Unknown consequences for flora susceptible to fire-related decline
- Edges of remnants are especially prone to fire-related degradation
 - Inappropriate planned fire management
 - Evidence that fire management methods consisting of two temporally separated disturbance events adversely affects some species
 - Weed invasion after fire
 - Minimise disturbance to existing edge vegetation (e.g. spray drift of herbicides or fertiliser, wind-blown soil and seeds)
 - Breakdown of effective edge vegetation may lead to increased penetration of disturbance effects into remnants

Carl Gosper, Suzanne Prober and Colin Yates

Department of Environment and Conservation and CSIRO Sustainable Ecosystems

Phone: (08) 9333 6442

Email: carl.gosper@csiro.au

Web: http://www.csiro.au/science/WAFireFragment.html

© CSIRO Australia, 2007 All photos: C. Gosper

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au

