Action benefits from certainty: What certainty is there species are being lost and how can we improve it?

Stuart Halse and Adrian Pinder
Bennelongia Pty Ltd and Department
of Environment and Conservation

Species extinction (MEA)

- Species extinction is natural phenomenon
 - Only 2-4 % of all species are extant
- Global data suggest about 100 birds/mammals/ amphibians have become extinct over last 100 y
- Estimated extinction rate ≥100 times background rate (other pulses owing to stoneage technology, arrival of people in Australia etc)
 - Affected mostly large taxa?
- But how good is the estimate!

Groups at most risk

Freshwater taxa, ancient lineages and perhaps invertebrates

Western Australian situation

- After survey of WA wheatbelt wetlands, Halse et al. (2003) predicted salinisation would cause loss of 30 % of aquatic invertebrates
- However, no evidence of aquatic invertebrate loss from existing salinity (some plant loss)

Existing information

Extinct

- 4 terrestrial invertebrates (3 snail, 1 bee)
- 13 vertebrates (2 subspp)
- 14 plants (11 in wheatbelt/south coast)

• 'Rare'

- 81 invertebrates (4 aquatic, 15 stygobytic)
- 121 vertebrates
- 378 plants

Information to action

- Conservation planning should be based on facts
 - Legislation exists to protect species known to be at risk
 - Listing of invertebrates(incl troglobytes and stygobytes) on Schedules shows management will incorporate invertebrate information
 - However, most planning based on terrestrial plants and vertebrates because they are only groups with adequate data
 - Unlikely to be strong concordance in vertebrate and invertebrate patterns

Acquiring invertebrate information

- Why so little information available?
 - Taxonomic impediment less important than inability to identify and lack of avenues for making distributional data public
 - Herbariums curate large collections, museums would be swamped by whole-scale lodging of unprocessed material
 - Solution to information needs is organized development and hosting of databases to acquire species information

Databases

Am advocating acting upon existing ideas

 Databases need to offer taxonomic and specimen tracking support and facilities, including keys

Should tie into Museum specimen/voucher

system

GIF provides partial model

Populating database

- Requiring that data from EIS/NRM be lodged would provide large amounts of data from everywhere
 - Should be open to all projects
 - BA Atlas demonstrated there is potential support

Data accuracy

- Data quality may be criticized
 - But are no data better?
- Filter data and assign confidence level
 - Mapping shows outliers
 - Errors can inform future identifications and taxonomic work
 - Voucher material is very important
- Accreditation system for biologists would be useful

Auditing status of biodiversity

- Aim is to provide information about biodiversity
 - Currently predict species loss but have no way of validating prediction
 - Real data provide the certainty that leads to action
- All aquatic invertebrate extinction in WA to date
 - is undocumented
 - Has there been any?

Illustations

- Widespread collecting and collating of data changes our view of biodiversity and its distribution
 - Wheatbelt survey in WA estimated 200 spp of aquatic invertebrates and regional survey revealed 1000 (Pinder et al 2004)
 - AusRivAS spin-off of systematic river surveying was that known distribution of invertebrates changed dramatically

- If you are serious about biodiversity conservation, think about supporting a database
- Think about the development of invertebrate identification skills

