

A report prepared by the Western Australian Department of Conservation and Land Manangement and the Western Australian Conservation Council for the Australian Heritage Commission.

A Floristic Survey of the Southern Swan Coastal Plain

by

N. Gibson¹, B.J. Keighery², G.J. Keighery¹, A.H. Burbidge¹ and M.N. Lyons¹

 Science and Information Division, Department of Conservation and Land Management, P.O. Box 51 Wanneroo, Western Australia 6065

2) 224 Hamersley Rd, Subiaco, Western Australia 6008

© Department of Conservation and Land Management and Conservation Council of Western Australia

July 1994

This report should be quoted in the following way:

 Gibson, N., Keighery, B.J., Keighery, G.J., Burbidge, A.H. and Lyons, M.N. (1994) *A Floristic survey of the southern Swan Coastal Plain*. Unpublished Report for the Australian Heritage Commission prepared by Department of Conservation and Land Management and the Conservation Council of Western Australia (Inc.).

This project was funded under the National Estate Program, a Commonwealth financed grants scheme administered by the Australian Heritage Commission (Federal Government) and the Heritage Council of W. A. (State Government).

ACKNOWLEDGEMENTS

This study was supported by a volunteer participation programme and we thank the participants for their hard work, companionship and encouragement throughout the survey (see the next page for a list of all recorded participants). Participants were predominantly from the Wildflower Society of WA (Inc.) but other groups such as the Busselton Naturalists' Club, Quinns Rocks Environmental Research Group and Friends of Forrestdale Lake participated in their areas of interest and we thank these groups for their participation. Particular thanks to Helen Frederiksen, Pauline Fairall, Diana Corbyn, Margaret Langley and Mike Hislop for regularly leading groups in the field, and to the Murdoch Branch of the Wildflower Society for access to their data on Ken Hurst Park.

The use of aerial photographs in the study was made possible by the generous assistance of Greg Beeston of the Department of Agriculture and the Western Australian Water Authority.

Many colleagues are thanked for assistance with identifications in their particular areas of expertise: Paul Wilson, Barbara Rye, Bruce Maslin, Andrew Brown, Judy Wheeler and Ray Cranfield from the Department of Conservation and Land Management; Stephen Hopper, Kingsley Dixon, Kathy Meeney and Eleanor Bennett from Kings Park and Botanic Garden; Phillip Short, National Botanic Garden, Melbourne; Michael Crisp, Australian National University, Canberra; Lyn Craven, CSIRO, Canberra; Karen Wilson, Royal Botanic Gardens, Sydney; Allen Lowrie, Alex George, Elizabeth George, Ted Griffin and Malcolm Trudgen, Perth. Neville Marchant kindly gave us access to his annotated copy of the Perth Flora.

Mike Choo and Paul Gioia from the Department of Conservation and Land Management provided advice on database management and analysis and provided data entry software while Nich Hall did most of the data entry and data-basing staff at the Western Australian Herbarium assisted with searching the WAHERB database and transfer of information into this database. Matt Williams provided statistical advice. The Department of Planning and Urban Development provided spatial data relating to our sites.

P. Mawson, M. Robinson, M. Stafford and R. McNeish assisted in the location of some plots.

The majority of our work was on public lands and we thank the various managing bodies for their cooperation: Local Government, Agricultural Protection Board, District Offices of the Department of Conservation and Land Management, Kings Park Board and Botanic Garden, Department of Land Administration, Department of Planning and Urban Development, Western Australian Water Authority and the Botany and Zoology Departments of the University of Western Australia. One area of private land was included in this study and we thank Midge Richardson for inviting us to work at her property, Lowlands, and for her generous hospitality during our visits. Volunteers who made a substantial contribution to the floristic survey of the southern Swan Coastal Plain (Keighery 1993).

Barbara Backhouse **Bob Backhouse** Anne Bellman Sue Birney Lorinne Boyce Mary Bremner **Ruth Brookes** Kate Brown Margaret Brims Ann Cochrane Robin Campbell Billie Carter Karen Clarke **Dennis Cooper** Diana Corbyn Ellen Coy Neil Coy Jeanette Della-Bonner Lyn Dunstan Jocelyn Elphick Barbara Evans Meg Evans **Pauline Fairall** Jeff Faulkener Lee Fernie Helen Frederiksen Keld Frederiksen **David Garlick** Sylvia Garlick Dorrie Gibbs Howard Gibbs Rhonda Giraudo John Goldsmith Jan Gordon **Rosemary Graham** Helen Green Vera Green Brian Green Linley Hann **Graham Harris** Jennifer Hawkes Alison Hearne Michael Hislop **Brian Hume David James** Andrew Keighery

Kristin Keighery Sarah Keighery Keren Keys Margaret Langley Deirdre Lebbon Angie Lensik Liz Mason Bernie Masters **Diane Matthews** Gary Matthews Elaine Miller Brian Moyle Norm Moyle Pat Moyle **Bill Muir** Kath Napier **Constance O'Brien Rae Papenfus Rod Papenfus** Dot Parker **Dorothy Perret** Frank Phillips Joy Phillips **Margaret Phillips** Cynthia Playford Midge Richardson Jenny Richardson John Robertson Margaret Robertson Nicky Robinson Jan Rodda Leah Segal Dick Shore Alice Stubber Ron Swetman Kate Tauss Ray Tauss Joan Telfer **Rodney Van Proctor** David Wake **Eve Wignall** Don Wignall Jill Williams Sue Wooller Ron Wooller Jennifer Young

ABSTRACT	vii
RECOMMENDATIONS	ix
INTRODUCTION	1
CLIMATE	1
GEOLOGY AND LANDFORMS	1
SOILS	2
VEGETATION	3
PURPOSE OF THE SURVEY	4
METHODS	4
RESULTS AND DISCUSSION	6
FLORA	6
Endemics	6
Range ends	7
New records for the study area	8
Rare and Priority taxa found during the survey	9
Taxa subject to recommendations for gazettal as Declared Rare Flora	
or for Priority Listing	10
Other unusual and recently delineated taxa	14
Areas of importance for the conservation of Declared Rare Flora and	•••
proposed Declared Rare Flora	24
Comparison with the Flora of the Perth Region	24
VEGETATION	26
Four group classification	26
Thirty group classification	29
Community types of heavy soils	29
Community types of the seasonal wetlands	37
Community types centred on the Bassendean system	42
Community types centred on the Spearwood and Ouindalup systems	43
Maior species groups	46
Distribution of singletons	47
ENVIRONMENTAL CORRELATES	47
Comparison of floristic groups with geology / gemorphology	47
Ordination results	50
CORRELATIONS WITH OTHER CLASSIFICATIONS	51
Correlation with structural units	51
Correlation with Heddle's vegetation complexes	51
COMMUNITY RESERVATION AND CONSERVATION STATUS	57
Presumed destroyed community types	57
A restricted community not sampled in this survey	59
Analysis of reservation and conservation status of the 30 community types	59
Suggested improvements to reservation and conservation of floristic	
community types	60
REFERENCES	64
APPENDICES	73

ABSTRACT

A study was undertaken of the plant communities of remnant bushland on the southern Swan Coastal Plain (between Seabird and the foothills of the Whicher Range). Five hundred and nine sites were established and the floristic data were used to define the major regional community types.

A total of 1485 flowering plant taxa (species, subspecies and varieties) were found in the 509 quadrats or in adjacent areas. Of these taxa 1313 were natives and 172 were weeds. Sixty one taxa appear to be endemic to the study area. Most of the endemics are restricted to the eastern side of the coastal plain (28 taxa) or to areas of ironstone (13 taxa). Seventy seven taxa appear to have their southern range end and 48 taxa to have their northern range end in the study area. Ten species of Declared Rare Flora (DRF) were found during the survey. Two of these taxa (*Schoenus natans* and *Tetraria australiensis*) were previously believed to be extinct. In all, 19 new populations of DRF were recorded and a further 75 priority species were encountered. Eleven species are proposed for listing as Declared Rare Flora (eight of these species are from the very restricted southern ironstone communities) and changes to the priority listing are recommended for another 13 taxa. At least seven taxa appear to have become locally extinct on the southern Swan Coastal Plain.

The floristic analysis defined 30 communities types. It was possible to further subdivide some of these groups and, in all, a total of 43 types and subtypes were recognised. The major environmental correlates with this classification were seasonal moisture regime and geomorphology. Of the 30 major community types, three are found on the heavy soils of the eastern coastal plain, 16 in seasonal wetlands, four are centred on the Bassendean Dunes and seven are largely restricted to Spearwood and Quindalup systems.

The floristic classification showed very poor correlation to vegetation structure and, while geomorphology was a major environmental correlate, floristic community types were poorly correlated to individual mapped units. Similarly the floristic classification was poorly correlated with previously mapped vegetation complexes.

Of the 43 recognised community types or subtypes, ten are unreserved and a further 11 are only known from a single National Park or Nature Reserve. One community type (southern ironstones) is considered critically threatened, two communities are considered endangered, 15 are considered vulnerable and 11 are considered susceptible should any change in management or land use occur. Twelve communities are considered at low risk from any present threat and two communities could not be assessed due to insufficient information. Reserve recommendations are made to protect the three most threatened community types.

RECOMMENDATIONS

This study of the plant communities of the Swan Coastal Plain between Seabird and the foothills of the Whicher Range has lead to the following recommendations:

1) Eleven taxa should be proposed for listing as Declared Rare Flora and the priority listing for 13 taxa should be changed as detailed (Table 6).

2) The three most threatened community types need urgent reservation. The following areas should be declared as A class Nature Reserves for the protection of flora and fauna:

a) the southern ironstone communities from the five small areas of State Forest and the road and rail reserve east of Ruabon Nature Reserve. (This road and rail reserve is also of regional significance as it is one of the last two remaining continuous vegetated transects in the study area showing the catena of original vegetation types on the eastern side of the plain.)

b) the sedgeland in Holocene dune swales in the Point Becher area (M106) and the north west corner of Lake Walyungup (M103).

c) the eastern *Banksia attenuata* woodlands over species rich dense shrublands from Koondoola open space, Landsdale Rd, M12, and M 53.

3) Final selection of areas for reservation of the 10 poorly reserved community types should be made in conjunction with species reservation data currently being collected.

4) The road and drain reserve on the southern side of Mundijong Road be declared as an A class Nature Reserve. (This area is of regional significance being the second catena of vegetation types across the eastern side of the plain).

5) As a consequence of the small amount of remnant vegetation on the eastern side of the plain, all such remnants in the study area with the basic vegetation intact or able to be regenerated are of high conservation value.

6) A further analysis of reservation status is needed since the present definition does not consider the area of communities reserved.

7) A similar analysis needs to be undertaken to determine conservation values of remnants not covered in this study since floristic community types are not well correlated to presently available geomorphological or vegetation mapping.

8) Additional work on the Swan Coastal Plain is required to determine, more precisely, the nature of floristic variation in the seasonal wetlands (because of their high levels of heterogeneity).

INTRODUCTION

The Swan Coastal Plain is a narrow belt of aeolian, alluvial and colluvial deposits generally of Holocene or Pleistocene age on which is found the city of Perth and most of the population of Western Australia. It extends from Dunsborough (33°45"S) north to Jurien (30°06"S). Beard (1980, 1981, 1990) included both the plain and the adjacent Dandaragan Plateau in the Drummond Botanical Subdistrict. Over most of its length the plain itself is less than 30 km wide and bounded on the west by the Indian Ocean and to the east by the faulted Yilgarn block (McArthur and Bettenay 1960). Ninety-seven percent of the alluvial soils on the eastern side of the plain in this area has already been cleared for agriculture or urban developments (A.H. Burbidge and J.K. Rolfe, unpublished data). Over the last 20 years there has also been a rapid expansion of major population centres. It is on the southern Swan Coastal Plain where most of the urban development will occur over the next 20 years (Department of Planning and Urban Development 1990). Despite the proximity of a major urban centre there still remains significant gaps in our knowledge is vital if conservation of our unique flora and plant communities is to be integrated with urban and industrial growth.

CLIMATE

The coastal plain has a warm mediterranean climate with warm dry summers of five to six months and winter precipitation of 700 to 1000 mm (Table 1, Bureau of Meteorology 1988). Most of the plain receives 800 - 900 mm this drops off to 700 mm north of Yanchep and rises to over a 1000 mm at the base of the Scarp south of Pinjarra. There are similar gradients in mean temperatures across the study area (Table 1). The whole coast is under the influence of west to south westerly winds during winter but experiences strong diurnal wind patterns in summer with afternoon sea breezes reaching 20 - 30 knots. These winds occur throughout the summer months except when blocking high pressure systems result in dry hot easterlies.

	Rainfall (mm)	Rain days	Mean Max. Temp (°C)	Mean Min. Temp. (⁰C)
Lancelin	627	112	24.0	13.3
Perth	869	119	23.6	13.5
Mandurah	888	118	23.4	13.4
Dwellingup	1279	131	21.7	9.7
Bunbury	871	119	21.9	12.4

Table 1. Annual rainfall, number of rain days, annual mean maximum temperature, annual mean minimum for five centres. Note Lancelin occurs on the coast just north of the study area. Data from Bureau of Meteorology (1988).

GEOLOGY AND LANDFORMS

The Darling Fault forms the eastern boundary of the study area south to near Dardanup. The coastal plain then swings southwest bounded by the Whicher Range. The plain itself is made up of five major geomorphological elements (McArthur and Bettenay 1960, Churchward and McArthur 1980) (Table 2). These elements lie more or less parallel to the coast with the narrow Ridge Hill Shelf (Pleistocene age) of colluvial and alluvial deposits and old beach sands occurring at the base of the Darling Scarp. The Pinjarra Plain abuts the Ridge Hill Shelf, this alluvial plain is of Pleistocene to Holocene age, originating from the river systems flowing down from the Scarp. This is the most fertile land system and has been extensively cleared for agriculture. Dominating the central section of the plain are the Pleistocene aged Bassendean and Spearwood Dune systems. To the east are the low lying Bassendean dunes, falling from 40-80 m relief in the north of the study area to almost sea level in the south. The younger Spearwood Dunes lie to the west. These have a less leached profile with a similar relief of 50-80 m in both the north and south of the study area (Semeniuk and Glassford 1989). Churchward and McArthur (1980) recognise two subdivisions within the Spearwood Dunes: the Karrakatta unit of deep

yellow sands and the Cottesloe unit of thinner sands on Tamala limestone closer to the coast. The Quindalup Dunes on the western margin of the plain are calcareous coastal Holocene dunes. Overlaying the Quindalup, Spearwood and Bassendean Systems are a series of Holocene swamp and estuarine deposits. The geology of the area is tightly tied to these geomorphological units as is the vegetation (Briggs and Wilde 1980, Heddle *et al.* 1980).

Table 2. Geomorphological classifications of the lower Swan Coastal Plain. The McArthur and Bettenay (1960) classification was further refined by Churchward and McArthur (1980). Land forms are subparallel to coastline. The broader classification is used in the text except where otherwise indicated.

Major geomorphological systems (McArthur and Bettenay 1960)	More detailed geomorphological units (Churchward and McArthur 1980)
Quindalup Dunes	Quindalup unit
Spearwood Dunes	Cottesloe unit Karrakatta unit Herdsman unit
Bassendean Dunes	Bassendean unit Southern Rivers unit Caladenia unit Yoongarillup unit Herdsman unit
Pinjarra Plain	Guildford unit Abba unit Beermullah unit Bootine unit Yanga unit Cannington unit Serpentine unit Swan unit Dardanup unit Vasse unit
Ridge Hill Shelf (and similar units along the flanks of the Dandaragan Plateau and Whicher Scarp)	Forrestfield unit Regan unit (Dandaragan Plateau) Coonambidgee unit (Dandaragan Plateau) Cartis unit (Whicher Scarp)

Recent mapping of the permanent and seasonal wetlands of the coastal plain between Moore River and Mandurah has shown over 3000 wetlands on this section of the plain (Water Authority of Western Australia 1992). Semeniuk (1987) proposed a geomorphological classification of these wetlands based on basin shape and period of inundation. In addition to creeks, rivers and lakes, Semeniuk (1987) recognised the following units:

Sumplands

1. Seasonally inundated basins

2. Seasonally waterlogged basins	Damplands
3. Seasonally inundated flats	Floodplains
4. Seasonally waterlogged flats	Palusplain

All these wetland types are widespread across the study area.

SOILS

Fine scale geomorphological and soils mapping have not used a consistent methodology across the study area. Information on the soils of the study area can be obtained from a series of maps at 1:50 000 scale. These maps have been produced to supply information for planners concerned with aspects of urban, rural, industrial, transport or raw material and water supply development. The

3

Urban Geology and Environmental Geology Series prepared and published by the Geological Survey section of the Department of Minerals and Energy (Anon 1976, 1977a,b, 1978, 1981, 1982; Belford 1987a,b; Gozzard 1982a,b, 1983a,b, 1986, 1987; Jordan 1986a,b; Leonard 1991; Smurthwaite 1986a,b) used comparable mapping units throughout the study area, while the various land resources and land capability studies (King and Wells 1990; McArthur 1986; McArthur and Bartle 1980; Tille and Lantzke 1991; van Gool 1990; Wells and Hesp 1989) produced by various agencies, have generally not used directly comparable mapping units. While both types of maps cover most of the study area, the information available from these maps are not easily integrated, either with each other or with the broader scale mapping units, the Urban Geology and Environmental Geology Series, can be used across the entire study area. Also, the units from this series can be directly compared with the major geomorphological systems (McArthur and Bettenay 1960) and, to a lesser extent, to the units identified by Churchward and McArthur (1980).

The general soil boundaries of Churchward and McArthur (1980), although used widely in vegetation mapping on the Swan Coastal Plain, are often quite different from those of the 1:50 000 maps referred to above. While the detailed mapping of the 1:50 000 maps is a better predictor of vegetation than the general maps, it is not possible to use standard soil maps reliably to predict vegetation patterning. For example, the Cardup Nature Reserve was considered to be an area representative of the Pinjarra Plain vegetation (Department of Conservation and Environment 1983) as on the broad scale maps of Churchward and McArthur (1980) it is entirely located on alluvial soils. However, in more detailed mapping van Gool (1990) maps Bassendean sands of aeolian origin on the sandy valleys and rises. To the west is mapped alluvium of the Pinjarra Plain and to the east colluvium of the Ridge Hill Shelf. Only small intrusions of these soils are mapped as being in the reserve. By contrast Jordan (1986a) maps much greater areas of colluvium and alluvium in the reserve. The rises are mapped as Bassendean sands. Further examples of inconsistencies in soil mapping are discussed by Semeniuk and Glassford (1989) and Semeniuk(1990).

VEGETATION

The early work of Speck (1952, 1958) was the first systematic attempt to map the major plant communities of this area. He described six major associations based on commonly occurring dominants and soil associations. Later more detailed structural mapping was undertaken by Smith (1973, 1974) and Beard (1979a, b), with both authors again recognising the importance of soil type. Beard (1980) used these maps as a basis for defining the Swan Coastal Plain as a subregion of the Darling Botanical District which encompasses the forest regions of south west Western Australia.

Heddle et al. (1980) produced a vegetation map at 1:250 000 scale based on vegetation complexes correlated to the major geomorphological units of Churchward and McArthur (1980). These were broader units than defined by Beard and Smith and were based on the concept of a series of vegetation communities forming regularly repeating vegetation complexes. The basis of this type of mapping was earlier quadrat based studies undertaken by Havel (1968) where he showed floristic site types in the Bassendean and Spearwood Dunes systems north of Perth were largely determined by degree of soil leaching and soil moisture. His work showed that the Banksia woodland of that area was made up of seven different floristic community types. Later work by Cresswell and Bridgewater (1985) suggests that at least 49 floristic community types are found on the dune systems around Perth with additional factors of seasonality of soil moisture, topographic position and historical factors being highlighted as important in determining vegetation pattern. Griffin and Keighery (1989) in a study of the northern sand plain vegetation showed strong geographical patterning and high levels of heterogeneity especially in wet heath communities. A survey of remnant vegetation on the eastern side of the plain from GinGin to Pinjarra found ephemeral wetlands were major centres of endemism on the eastern side of the plain (Keighery and Trudgen 1992). Again the wetlands were found to be highly heterogenous. Recent work by Griffin (1993) has shown significant regional variation in vegetation of Quindalup Dunes between Swan and Irwin Rivers. He suggests that foredune and beach communities are less variable than those found a short distance inland. Landform, proximity to coast, age, geology and soil type had major influence on floristic community types. Reports by Keighery (1990) and Keighery and Keighery (1992) list known endemics and communities believed to be rare in the study area.

PURPOSE OF THE SURVEY

A survey of remnant vegetation of the southern half of the Swan Coastal Plain (as defined by Beard 1980, 1990) was undertaken to provide a more detailed knowledge of the conservation status of species and communities that occur in this area. The study area extended from Seabird 31⁰ 15"S south to Dunsborough and east to include the colluvial deposits of the Darling and Whicher Ranges (Figure 1). The map shows Beard's (1990) boundary of the Swan Coastal Plain; our study included a few colluvial surfaces south of this boundary.

Due to limits on both time and resources the study was restricted to remnant bushland areas on public lands and one area of private property ('Lowlands' property).

Previous ecological studies on the coastal plain have been at local scales and are of limited use in gaining an understanding of the major floristic gradients across the study area. No regional floristic based vegetation survey for the southern Swan Coastal Plain has been published. Given the need to assess conservation significance of vegetation at a finer scale than present data allow, a quadrat based survey was undertaken to delimit floristic community types.

METHODS

Five hundred and nine 10 m x 10 m quadrats (plots, sites) were established in remnant vegetation in the study area (Figure 1). These sites were located on public land and on the 'Lowlands' property. As a result, not all the geographical or geomorphological variation could be covered. In particular the Ridge Hill Shelf, Pinjarra Plain and Quindalup land systems were under sampled. In the case of the former two they have largely been cleared (and hence the chance to study them lost) while few reserves occur on the latter land system. The 509 sites established attempted to cover the major geographical, geomorphological and floristic variation found on Crown lands. Previous studies by Keighery and Trudgen (1992) and Keighery and Keighery (1992) were used to identify areas to be sampled. It was not possible to cover fully the estuarine and riverine vegetation in the time available for this study; these restricted habitat types have been documented elsewhere (Pen 1980, 1993; Siemon *et al.* 1993). Some 190 of the sites were established with the aid of volunteers (See Acknowledgments). These sites were more aggregated but were located in areas containing a high degree of habitat diversity. Replication was somewhat greater in the volunteer sites than elsewhere.

Within each site all vascular plants were recorded. Most sites (>95%) were visited on at least two occasions. The seasonally wet clay pans were visited up to four times to ensure that the extended period of recruitment of annual and geophytic taxa that occurs as these pools dry was fully covered. Data on slope, aspect, vegetation structure and condition were collected from each site. Slope was scored on a one to three scale from flat to steep. Aspect was recorded as one of 16 cardinal directions. Vegetation structure was recorded using Muir's (1977) classification. Vegetation condition was scored on a five point scale with a score of one indicating vegetation in near natural condition and five indicating highly disturbed sites with significant weed invasion (after Trudgen 1991). Cause of disturbance varied but included grazing, disease, logging, high frequency fires, tracks, etc. Geomorphology and vegetation complex were derived from Heddle et al. (1980) and Churchward and McArthur (1980). Soil / geomorphology unit was derived from the Environmental and Urban Geology Series (Gozzard 1982a,b, 1983a,b, 1986, 1987; Smurthwaite 1986a,b; Jordan 1986a,b; Belford 1987a,b; Leonard 1991; Anon 1976, 1977a,b, 1978, 1981, 1982). Equivalent units to the Environmental Geology Series were derived from the Urban Geology Series based on map classification and field notes. The seven sites not covered by these map series were allocated to an appropriate unit based on field observation. It should be noted that as discussed earlier the units defined by these series are at times at variance with other soil / geomorphological classifications. This series was used because it gave the only complete uniform coverage of the study area. All sites were permanently marked with four steel fence droppers and most had their position fixed using a GPS unit. Estimates of mean annual rainfall and mean annual temperature were derived from the BIOCLIM model of Busby (1986).

Figure 1. Location of survey sites in the study area. Conservation reserves include those managed by CALM with conservation in their purpose. The eastern boundary of the area is Beards' (1990) Swan Coastal Plain boundary.

Sites were classified according to similarities in species composition using the Czekanowski coefficient and "unweighted pair-group mean average" fusion method (UPGMA, Sneath and Sokal 1973). Species were classified into groups according to their occurrence at the same sites by using the TWOSTEP similarity algorithm (Austin and Belbin 1982) followed by UPGMA fusion. Alternate classifications were tried using the ALOC algorithm (Belbin 1987) and with replicate volunteer sites removed. The resulting classifications were largely similar and only the former will be discussed in detail.

Semi-strong hybrid (SSH) ordination of the sites data was undertaken to show spatial relationships between groups and to elucidate possible environmental correlates with the classification (Belbin 1991). Statistical relationship between site groups for such factors as species richness, weed frequency, percentage weed frequency, mean annual rainfall and mean annual temperature and slope class were tested using one way analysis of variance (ANOVA) and pairwise comparison of means made using least significant difference (Sneath and Sokal 1973). It was necessary to use square root transformation on weed frequency and square root and arcsine transformation on percentage weed frequency data to ensure normal distribution. Values reported have been back transformed.

Species nomenclature follows Green (1985) and current usage at the Western Australian Herbarium. Selected voucher specimens will be lodged in PERTH. Vegetation nomenclature is highly variable between different studies. In this report we present classifications based solely on floristic composition at two scales, a four group classification ('super groups') which reflect landscape scale pattern, and a finer 30 group classification. These 30 groups are called 'community types'. Finer subdivision of our community types is likely in the future as more detailed data become available. We use 'vegetation type' to refer to structural vegetation units. In south-western Australia it is well established that structural units generally encompass a range of floristic communities (Havel 1968, Griffin *et al.* 1983, Cresswell and Bridgewater 1985, Keighery and Trudgen 1992).

RESULTS AND DISCUSSION

FLORA

A total of 1485 flowering plant taxa (species, subspecies and varieties) were found in the 509 quadrats or in adjacent areas (Appendices 2, 3). Of these taxa 1313 were natives and 172 were weeds. In all 433 genera from 109 families were recorded with the Proteaceae (111 taxa), Papilionaceae (109 taxa), Myrtaceae (107 taxa), Cyperaceae (94 taxa), Orchidaceae (91 taxa), Asteraceae (87 taxa), and Poaceae (74 taxa) being the most common families. Of the 1313 native taxa at least 130 are undescribed representing a significant proportion of the taxa recorded (8.7%) (Appendix 2). Thirty of these taxa are newly recognised, reflecting the lack of previous systematic survey across the study area.

Weeds were most abundant in the Poaceae (34 taxa), Asteraceae (20 taxa), Iridaceae (16 taxa), Papilionaceae (15 taxa), Caryophyllaceae (12 taxa) and Scrophulariaceae (7 taxa). Weed frequency in the 509 quadrats ranged from zero to a maximum of 28 taxa per plot. The highest percentage weed frequencies were encountered in seasonal wetlands and in the Quindalup and Spearwood Dune systems.

Endemics

Of the 1485 taxa 61 appear to be endemic to the study area (Table 3). Most of the endemics are restricted to the eastern side of the coastal plain (28 taxa) or to areas of ironstone (13 taxa). A further five taxa (*Calothamnus* aff. *crassus* (Royce 84), *Dryandra* aff. *nivea* (GJK 6622), *Lepyrodia* aff. *macra* (GJK 9848), *Loxocarya magna* Ms) appear to be endemic to the ironstones of both the Swan and Scott Coastal Plains. None of the ironstone endemics from the Swan Coastal Plain are known from any conservation reserve. A further 13 taxa not encountered during the present survey also appear to be endemic to the study area (Table 4).

Table 3. List of taxa endemic to the southern Swan Coastal Plain and recorded during the present survey.

Coastal Dunes Carpobrotus sp. (Hepburn Heights, GJK 11518) Veronica aff. calycina (BJK & NG 235)

Coastal Limestone Astroloma microcalyx Billardiera aff. ringens (GJK 12977) Hakea aff. undulata (BJK & NG 237) Melaleuca aff. acerosa (GJK 11242)

Pinjarra Plain Acacia lasiocarpa var. bracteolata (long peduncle form) Aponogeton hexatepalus Blennospora aff. drummondii (Golden bracts. BJK & NG 20) Caesia micrantha (Large swamp form, BJK & NG 094) Chamaescilla aff. spiralis (GJK 12501) Conospermum pedunculatum Ms Drosera bulbigena Drosera macrantha (Swan coastal plain form, BJK & NG 228) Drosera tubaestylis Eleocharis sp. Kenwick (GJK 5180) Eryngium pinnatifidum subsp. palustre Ms Eryngium subdecumbens Ms Grevillea brachystylis subsp. brachystylis Hydatella dioica Isotropis cuneifolia subsp. glabra Ms Kunzea littericola Ms Myriocephalus helichrysoides Myriophyllum echinatum Pimelea imbricata var. major Rhodanthe pyrethrum Schoenus aff. tenellus (BJK & NG 110) Schoenus capillifolius Schoenus natans Stylidium mimeticum Trichocline sp. (GJK 6382-glabrous)

Verticordia lindleyi subsp. lindleyi Verticordia plumosa var. pleiobotrya Verticordia plumosa var. vassensis

Foothills

Conospermum undulatum Eremaea asterocarpa subsp. brachyclada Eucalyptus marginata subsp. elegantella

Ironstone Andersonia aff. latifolia (Ironstone, BJK & NG

227) Brachysema sp. (Treeton, BJK & NG 001) Brachysema sp. (Williamson. GJK 12719.) Calothamnus aff. quadrifidus (Ironstone, BJK & NG 230) Chamelaucium roycei Ms Darwinia sp. (Williamson Rd, GJK 12839) Dryandra sp. 30 (aff. squarrosa, ASG 11657) Grevillea elongata Grevillea mccutcheonii Ms Hakea varia (Yellow flowered ironstone form BJK & NG 226) Opercularia vaginata (Ironstone form, BJK & NG 238) Petrophile latericola Ms Synaphea sp. (Ironstone, wedge leaves GJK sn) Coastal Plain Caladenia huegelii Dillwynia dillwynioides Diuris micrantha Dodonaea hackettiana Jacksonia aff. sericea (swamp form) Jacksonia sericea Johnsonia aff. pubescens (GJK 5249) Macarthuria aff. australis (Capel) Tetraria australiensis Tripterococcus sp. Cannington (A.S. George 16201)

The Pinjarra Plain endemics are all restricted to the heavy soils of the eastern side of the plain and the alluvial soils near the Peel-Harvey Estuary. Species such as *Aponogeton hexatepalus, Schoenus capillifolius, Schoenus natans,* and *Eleocharis* sp. Kenwick (GJK 5180) are restricted to clay pans which are seasonally inundated. Others such as *Rhodanthe pyrethrum, Myriocephalus helichrysoides,* and *Blennospora* aff. *drummondii* (Golden bracts, BJK & NG 20) form carpets of colour on the clay flats as they dry.

Range ends

The southern range end of 77 taxa and the northern range end of 48 taxa occur in the study area (Appendix 2). Eight taxa (Acacia littorea, Calothamnus aff. crassus (Royce 84), Lambertia propinqua, Persoonia graminea, Pseudoloxocarya grossa Ms, Restio serialis Ms, Stylidium imbricatum, Stylidium preissii) represent significant northern disjunctions, while a further 16 taxa (Acacia barbinervis subsp. barbinervis, Actinostrobus acuminatus, Banksia incana, Beaufortia squarrosa, Calectasia grandiflora, Calytrix angulata, Calytrix leschenaultii, Conothamnus trinervis, Cryptandra humilis, Dasypogon obliquifolius, Eremaea fimbriata, Haemodorum loratum, Pityrodia

bartlingii, Schoenus aff. obtusifolia (EAG 3841), Schoenus latitans, Scholtzia ciliata) represent significant southern disjunctions (Appendix 2).

Taxon	Priority Listing (02/02/94)
Acacia benthamii	2
Calandrinia sp. Kenwick (aff. composita)	1
Calytrix breviseta subsp. breviseta	R
Chamelaucium sp. GinGin (N. Marchant sn. 4.11.88)	1
[aff. pauciflorum]	
Conostylis aculeata subsp. cygnorum	-
Conostylis pauciflora subsp. pauciflora	4
Cryptandra glabrata	1
Diuris purdiei	R
Drakaea elastica	R
Epiblema grandiflorum var. cyanea Ms	R
Grevillea sp. Yanchep (P. Olde 91/240) [aff.	1
obtusifolia]	
Lasiopetalum membranaceum	2
Lepidosperma rostratum	1

Table 4. Taxa apparently endemic to the southern Swan Coastal Plain but not recorded in the present study.

New records for the study area

In addition to the 30 newly recognised taxa found in the course of this survey another 51 taxa were found that had apparently not previously been recorded for the study area (Table 5). For many of these taxa this represents the first definitive record of Darling Scarp and Plateau species on the coastal plain.

Table 5. New records for the southern Swan Coastal Plain based on Western Australian Herbarium collections and field observation.

Acacia browniana	Hovea elliptica
Acacia dentifera	Hyalosperma demissum
Acacia divergens	Iviolaena viscosa
Assois origination	Vonnodia stirlingii
	Venitoria sur mign
Acacia lateriticola	Lambertia propinqua
Acacia urophylla	Laxmannia grandiflora
Amperea ericoides	Leptomeria ericoides
Amperea volubilis	Leptomeria scrobiculata
Aristida contorta	Lomandra drummondii
Aristida ramosa	Lomandra nutans
Beaufortia sparsa	Lomandra spartea
Callitriche hamulata	Nemcia dilatata
Calothamnus aff. crassus (Royce 84)	Opercularia apiciflora
Calothamnus graniticus subsp. leptophyllus	Patersonia rudis
Calothamnus pallidifolius	Persoonia graminea
Cassytha micrantha	Petrophile shuttleworthiana
Chamaexeros serra	Platysace haplosciadia
Chorizandra cymbaria	Ptilotus humilis subsp. humilis
Conospermum teretifolium	Restio seralis
Conostylis setosa	Scholtzia ciliata
Cyathochaeta clandestina	Stylidium imbricatum
Darwinia thymoides	Stylidium roseonanum
Evandra aristata	Stylidium spathulatum
Gyrostemon subnudus	Xanthorrhoea drummondii
Hakea cristata	

Rare and Priority taxa found during the survey

Ten species of Declared Rare Flora (DRF, Department of Conservation and Land Management 1994) were found during the survey (Table 6). Two of these taxa (*Schoenus natans* and *Tetraria australiensis*) were previously believed to be extinct. Another species *Centrolepis caespitosa* is currently listed as extinct although it has been recently collected from the South Stirlings. In all, 20 new populations of DRF were recorded in the course of the survey. In addition to the DRF a further 75 priority species were encountered (Table 6).

Table 6. List of Declared Rare and Priority Flora encountered during the survey. Recommendations for listing as DRF and other changes to the Priority list (02/02/94) are also shown where relevant.

Taxon	Current	Suggested
	Listina	Listing
	Dating	LASING
Acacia flagelliformis	4	
Acacia lasiocarpa var. bracteolata (Long peduncle form)	1	
Acacia mooreana	2	
Acacia semitrullata	3	
Andersonia aff. latifolia (Ironstone BJK & NG 227)	-	1
Angianthus micropodioides	3	
Anthotium junciforme	4	
Aponogeton hexatepalus	R	
Aristida ramosa	1	-
Baeckea tenuifolia	-	1
Banksia meisneri var. ascendens	4	
Billardiera aff. ringens (GJK 12977)	-	1
Blennospora aff. drummondii (golden bracts BJK & NG 20)	-	3
Brachysema sp. (Treeton BJK & NG 001)	1	R
Brachysema sp. (Williamson GJK 12719)	1	R
Caladenia huegelii	R	
Calothamnus aff. crassus (Royce 84)	1	
Calothamnus aff. quadrifidus (Ironstone BJK & NG 230)	-	1
Calothamnus graniticus subsp. leptophyllus	2	-
Carpobrotus modestus	1	
Centrolepis caespitosa	R	
Chamaescilla aff. spiralis (GJK 12501)		1
Chamelaucium ervthrochlorum Ms	R	
Chamelaucium roycei Ms	R	
Chorizema varium	R	
Conospermum undulatum	к 4	ס
Conostenhium minus		ĸ
Conostylis nauciflora subsn euryrhinis	1	
Darwinia sn (Williamson Rd GIK 12839)	1	в
Dillwynia dillwynioides	1	к 2
Diuris micrantha	- D	4
Dodonaea hackettiana	K 4	
Drosera marchantii subsp. marchantii	4	
Drosera occidentalis subsp. occidentalis	4	
Dryandra aff nives (GIK 6622)	4	D
Dryandra an 30 (aff sources ASG 11657)	-	K D
Eleocharis sn. Kenwick (GIK \$180)	1	к
Fremaes asterocerne subsn. heachudada	1	
Evendue unitional paratesp. oracityclada	-	1
Frengium subdecumbers Me	1	
Fucalumtus armutifalia	1	
Eucalyptus arguinata subsp. elecantella	R I	n
Franklandia triarietata	1	ĸ
Grevillea althoferonim	4	
Grevillee brachvetulis suban brachvetulis	1	
Grevilles alongata	2	. I
Gravillaa magutahaanii Ma	2	к
Haemodorum laratum	1	
Hakes off undulate (BIK & NG 227)	3	.
Hakea all, unuulata (DJK & NO 257)	2	4
Harva myrouges Halvan merio (Vallenn flemmend increations forms DIV & MC 2000)	3	_
Halorazia zaviaslata		R
Haloragis tonuifolia	2	
Halolagis tenuliona	1	
Hudetalla diaica	3	
nyyawia uluwa	2	
(Table 6 continued on next name)		
(radio o contanted on next page)		

Floristic survey of Swan Coastal Plain

lade o continued. Isopogon drummondii Sopogon drummondii Sopogon scaber Isopogon scaber Isopogon scaber Isotopis cuneifolia subop. glabra Ms Ladesonia sericea	Table 6 and formed		
Isopogon durumuondii3Isopogon scaber1Isotopos cucifolia subp. glabra Ms-Racksonia se, Busselton (GJK 4482) PN3Lambettia multiflora2Lepidum puberulum4Lepidum puberulum4Lepidum puberulum4Leptorati a lebecharoides3Loyorosi an lebecharoides3Loyorosi an lebecharoides3Loyorosi an lebecharoides3Loyorosi an lebecharoides3Loyorosi and second (GJK 11242)2Mitrasaeme palastris1Mitrasaeme palastris1Myriophyllum echinatum1Parsonsia diaphanophleba2Petrophile latericola Ms1Restiograciilor3Scheenus penilesis1Scheenus penilesis1Scheenus penilesis3Scheenus penilesis1Stachysteron axillaris1Stylidium inguitbum2Sylidium inguitbum2Sylidium inguitbum1Stylidium inguitbum1Stylidium inguitbum1Stylidium inguitbum3Synaphea acutilosis3Synaphea pinnata4Tripochina submerias3Synaphea pinnata4Tripochina submerias2Tripochina submerias3Synaphea pinnata4Tripochina submerias4Tripochina submerias4Tripochina submerias4Tripochina submerias4<	i adie 6 continued.		
Bolyogin SankerIIsotropis cauber (JK 4482) PN3Jacksonis sericea3Jacksonis sericea3Lambertia multiflora3Lambertia propinqua2Leptomeria ericoides1Leptomeria ericoides3Loyocarya magna Ms3Lysinema elegans2Metaleuca aff. aerosa (GJK 11242)2Mitrasacme palustris1Mitrasacme palustris1Myriocphalus appendiculatus3Myriocphalus appendiculatus3Myriocphalus appendiculatus2Petrophile latericola Ms1Restio gracillor3Rotorapa achilleoides2Putencas achineri4Resto gracillor3Schoenus capilifolius2Schoenus capilifolius2Schoenus sequilifolius2Schoenus sequilifolius3Schoenus sequilifolius3Schoenus sequilifolium1Stylidium ingitubum1Stylidium ingitubum1Stylidium ingitubum1Stylidium ingitubum2Stylidium rightorum1Stylidium rightorum1Stylidium ingitubum1Stylidium ingitubum1Stylidium ingitubum1Stylidium ingitubum1Stylidium ingitubum1Stylidium ingitubum1Stylidium ingitubum1Stylidium ingitubum2Triplochin instanies2	Isonogon drummondii	7	
Incluging searchIIsotropis curvel?3Jacksonia sp. Busselton (GJK 4482) PN3Lambertia multiflora3Lambertia multiflora2Lepidium puberulum4Lepidum puberulum4Leptomeria ericoides1Lepyrodia heleocharoides3Loxocarya magna Ms2Lysinema elegans2Mitrasacme palustris1Mitrasacme palustris1Mitrasacme palustris1Myriocephaliaphanophleba2Petrophile latericola Ms1Pithocarpa achilleoides2Petrophile latericola Ms1Rhodanthe pyrethrum3Schoenus capilifolius2Schoenus pennistis1Schoenus pennistis1Schoenus pennistis1Stylidium num1Schoenus pennistis1Schoenus pennistis1Stylidium num1Stylidium num1Stylidium num1Stylidium num3Schoenus pennistis1Stylidium num1Stylidium num1<	Isonogon scaber	3	
Notopolation andop, guide in DitJacksonia sericea3Jacksonia sericea3Jacksonia sericea3Lambertia propinqua2Lepidium puberulum4Leptomeria reicoides1Leptomeria reicoides2Leptomeria lehmannii2Leptomeria lehmannii2Loxocarya magna Ms3Lysierna elegans2Melaleuca aff. aerosa (GJK 11242)2Mitrasaeme palustris1Mitrasaeme palustris1Myriocephalus appendiculatus3Myriocephalus appendiculatus3Myriophyllum echinatum12Petrophile latericola Ms11Parsonsia diaphanophiba22Pultenaca skinneriRestio gracilior3Schoenus penistis1Schoenus penistis1Stophytem and	Isotronis cuneifalia subsp. glabra Ms	-	R
Jacksonia softeed Jacksonia So	Iacksonia serioea	- 1	ĸ
Jamberia problem (GNC 4462) TN Lamberia propingua Lamberia propingua Leptomeria ericoides Leptomeria elemanni Leptomeria elemanni Leptomeria elemanni Leptomeria elemanni Leptomeria elemanni Loxocarya magna Ms Lysinema elegans Lysinema elegans Lysinema elegans Lysinema elegans Lysinema elegans Lysinema elegans Ms Lysinema elegans Lysinema elegans Schoens aphile latericola Ms Petrophile latericola Ms Petrophile latericola Ms Photampa achilleoides 2 Pultenaea akinneri Restio gracilior Robante pyrethrum Schoenus englilfolius Schoenus pennisetis Schoenus pennisetis Schoenus pennisetis Schoenus pennisetis Stachystemon axillaris Restiouranti Stylidium inteicum 1 Stylidium astraliensis R Thysanotus glaucus 4 Verticordia plumosa var. vassensis 4	Jacksonia sp. Bussalton (GIV 1482) BN	3	
Lambertia propinqua2Lepidium puberulum4Leptomeria ericoides1Leptomeria lehmannii2Leptomeria lehmannii2Leptomeria lehmannii2Leptomeria lehmannii2Loxocarya magna Ms3Lysinema elegans2Melaleuca aff. acerosa (GJK 11242)2Mitrasacme palvatris1Mitrasacme palvatris1Mitrasacme palvatris2Myriophyllum echinatum122Petrophile latericola Ms1Restio gracilior3Rhodante prethrum3Schoenus capillifolius2Schoenus pennisetis1Schoenus pannistis3Schoenus pannistis3Sylidium aff. bubiferum (Ironstone)-22Synaphea acutiloba3Synaphea acutiloba3Synaphea acutiloba3Synaphea pinnata4Tetraria australiensis8Tripeocines pinderul1Synaphea acutiloba3Synaphea pinnata4Tripeocines pinderul1Tripolochus - GJK 6328)-Triplochin stowardii2Triplochin stowardii1Verticordia plumosa var. vassensis4Verticordia plumosa var. vassensis1Verticordia plumosa var. vassensis4	Lambertia multiflora	3	
Lamothe probenulum4Leptidium puberulum4Leptomeria ericoides1Leptoreia ericoides3Leptoreia ericoides3Loxocarya magna Ms3Loxocarya magna Ms3Loxocarya magna Ms3Loxocarya magna Ms3Loxocarya magna Ms2Mitrasacme palustris1Mitrasacme palustris1Mitrasacme palustris3Myriocephalus appendiculatus3Myriocephalus appendiculatus3Myriophyllum echinatum12-Petrophile latericola Ms1Restio gracilior3Robanthe pyrethrum3Schoenus calilloidus2Schoenus pennisetis1Schoenus pennisetis1Stylidium nimeticum1Stylidium nimeticum1Stylidium nimeticum1Stylidium nimeticum1Stylidium nimeticum1Stylidium nimeticus3Synaphea acutiloba3Synaphea sutiloba4Trichocines pineta4Trichocines pineta4Trichocines pineta2Trichocines pineta2Synaphea acutiloba3Synaphea acutiloba3Synaphea pineta4Trichocines pineta4Trichocines pineta4Urigiochin stowardii2Trichocines pineta4Urigiochin stowardii2Trichocines pineta </td <td>Lambertia monimula</td> <td>2</td> <td></td>	Lambertia monimula	2	
Leptomeria lehmannii4Leptomeria lehmannii2Leptomeria lehmannii2Leptomeria lehmannii2Leptomeria lehmannii2Loxocarya magna Ms3Lysinema elegans2Mitrasacme palvatris1Mitrasacme palvatris1Mitrasacme palvatris3Myriophyllum echinatum1Parsonsia diaphanophleba2Petrophile latericola Ms1Pithocarpa achilleoides2Pultenaea skinneri4Restio gracilior3Schoenus benthamii3Schoenus benthamii3Schoenus pensietis1Stohenus capillifolius2Schoenus pensietis1Stylidium finglifolium1Stylidium finglifolium2Stylidium rigidifolium2Stylidium sequences3Synaphea acutiloba3Synaphea acutiloba3Synaphea apinata4Trichocine sp. (Glakrous - GJK 6328)-Triglochin stowardii2Triglochin stowardii2Triglochin stowardii2Triglochin stowardii4Verticordia plumosa var. pleiobotrya4Verticordia plumosa var. vasensis4	Landon a propinqua	2	
InductionImage: state of the second seco	Leptomain proclution	1	
Lepprodia lennanifi2Lepprodia leleocharoides3Lepprodia heleocharoides3Lysinema elegans2Mitrasacme palustris1Mitrasacme palustris1Mitrasacme sp. Southwest (GJK 343)2Myrioephalus appendiculatus3Myriophyllum echinatum1Q2Parsonsia diaphanophleba2Petrophile latericola Ms1R7Pithocarpa achilleoides2Pultenaea skinneri4Restio gracilior3Rhodanthe pyrethrum3Schoenus natansRSchoenus pennisetis1Schoenus pennisetis1Stylidium nimeticum1Stylidium nimeticum1Triphocorus sp. Clabrous - GJK 6328)-Triphocines sp. Clanington (A.S. George 16201) PN1Verticordia lindleyi submersa4Verticordia lindleyi submersa4Verticordia lindleyi submersa4Verticordia submersa4	Lentemeria laboració	1	
Lepyrodia helecharoides3Loxocarya magna Ms3Lysinema elegans2Melaleuca aff, acerosa (GJK 11242)2Mitrasacme palustris1Mitrasacme sp. Southwest (GJK 343)2Myriocephalus appendiculatus3Myriocephalus appendiculatus3Myriocephalus appendiculatus3Myriocephalus appendiculatus1Parsonsia diaphanophleba2Petrophile latericola Ms1Restio gracillor3Robinstown3Schoenus capillifolius2Schoenus natansRSchoenus natans1Schoenus pennisetis1Stylidium nimeticum1Stylidium aff. bulbiferum (Ironstone)-22Stylidium nimeticum1Stylidium nimeticum3Synaphea acutiloba3Synaphea acutiloba3Synaphea acutiloba3Synaphea acutiloba3Synaphea acutiloba2Triglochin stowardii2Triglochin stowardii2Triglochin stowardii2Triglochin stowardii4Verticordia lindleyi subsp. lindleyi4Verticordia lindleyi subsp. lindleyi4Verticordia lindleyi subsp. lindleyi4Verticordia lindles subsp. subsp. subsp.4Verticordia lindles subsp. subsp.4	Leptomeria ienmannii	2	
Loxocarya magna Ms 3 Lysinema elegans 2 Mitrasacme palustris 1 Mitrasacme palustris 1 Mitrasacme sp. Southwest (GJK 343) 2 Myriocephalus appendiculatus 3 Myriophyllum echinatum 1 2 Parsonsia diaphanophleba 2 - Petrophile latericola Ms 1 R Pithocarpa achilleoides 2 Pultenaea skinneri 4 Restio gracilior 3 Rhodanthe pyrethrum 3 Schoenus benthamii 3 Schoenus benthamii 3 Schoenus nethans R Schoenus nethans 1 Schoenus pennisetis 1 Stachystemon axillaris 4 Stylidium nimeticum 1 Stylidium rigidifolium 2 Synaphea acutiloba 3 Synaphea acutiloba 3 Synaphea acutiloba 3 Synaphea acutiloba 4 Trichocline sp. (Glabrous - GJK 6328) - 1 Triglochin stowardii 2 Triglochin stowardii 2 Verticordia lindleyi subsp. lindleyi 4 Verticordia lindleyi subsp. lindleyi 4 Verticordia plumosa var. paisobotya 4 Verticordia plumosa var. paisobotya 4 Verticordia plumosa var. vassensis 1 Villarisa submersa 4	Lepyrodia heleocharoides	3	
Lysineria elegans2Melaleuca aff. acerosa (GJK 11242)2Mitrasacme palustris1Mitrasacme sp. Southwest (GJK 343)2Myrioophyllum echinatum1Qarsonsia diaphanophleba2Parsonsia diaphanophleba2Petrophile latericola Ms1Pithocarpa achilleoides2Pultenaea skinneri4Restio gracilior3Rodanthe pyrethrum3Schoenus capillifolius2Schoenus pennisetis1Stachystem attilaris4Stylidium fibultorum (Ironstone)-22Stylidium rigidifolium1Stylidium rigidifolium2Synaphea painata4Thysanolus glaucus4Triglochin stowardii2Synaphea pinnata4Thysanolus glaucus1Triglochin stowardii2Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. vassensis1Villarsia submersa4Verticordia plumosa var. vassensis1Villarsia submersa4	Loxocarya magna Ms	3	
Metaleuca aff: acerosa (GJK 11242)2Mitrasacme palustris1Mitrasacme sp. Southwest (GJK 343)2Myriocephalus appendiculatus3Myriocephalus appendiculatus3Parsonsia diaphanophleba2Parsonsia diaphanophleba2Petrophile latericola Ms1R1Pithocarpa achilleoides2Pultenaea skinneri4Restio gracilior3Rhodanthe pyrethrum3Schoenus capillifoilius2Schoenus pennisetis1Schoenus pennisetis1Stachystemon axillaris4Stylidium nimeticum1Stylidium nimeticum1Stylidium nimeticum1Stylidium nimeticum1Synaphea acutiloba3Synaphea acutiloba4Triglochin stowardii2Triglochin stowardii2Triglochin stowardii2Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. vassensis1Villarsia submersa4	Lysinema elegans	2	
Mitrasacme palustris1Mitrasacme ps. Southwest (GJK 343)2Myriocephalus appendiculatus3Myriophyllum echinatum12Parsonsia diaphanophleba2-Petrophile latericola Ms1RPithocarpa achilleoides2-Puttenaea skinneri4-Rhodanthe pyrethrum3Schoenus benthamiiSchoenus benthamii3-Schoenus benthamii3-Schoenus pennisetis1-Stachystemon axillaris4-Stylidium aff. bubiferum (Ironstone)-2Stylidium rigidifolium1-Stylidium rigidifolium3-Synaphea acutiloba3-Synaphea acutiloba3-Synaphea subralensisR-Triglochin stowardii2-Triglochin stowardii2-Triglochin stowardii2-Triglochin stowardii2-Verticordia lindleyi subsp. lindleyi4-Verticordia plumosa var, vassensis1-Verticordia plumosa var, vassensis1-Verticordia plumosa var, vassensis4-Verticordia pl	Melaleuca aff. acerosa (GJK 11242)	2	
Mitrasacme sp. Southwest (GJK 343)2Myriophyllum echinatum12Parsonsia diaphanophleba2-Petrophile latericola Ms1RPithocarpa achilleoides2-Pultenaea skinneri4-Restio gracilior3-Rhodanthe pyrethrum3-Schoenus benthamii3-Schoenus natansR-Schoenus natans1-Stylidium affi bulbiferum (Ironstone)-2Stylidium mimeticum1-Stylidium mimeticum1-Stylidium stataliensis3-Synaphea prinnata4-Triglochin stowardii2-Triglochin stowardii2-Triglochin stowardii2-Verticordia lindleyi subsp. lindleyi4-Verticordia plumosa var. vassensis1-Villarsia submersa4-Verticordia plumosa var. vassensis4Verticordia plumosa var. vassensis4Villarsia submersa4	Mitrasacme palustris	1	
Myriocephalus appendiculatus3Myriophyllum echinatum12Parsonsia diaphanophleba2-Petrophile latericola Ms1RPithocarpa achilleoides2-Putlenaea skinneri4-Restio gracilior3-Rhodanthe pyrethrum3-Schoenus benthamii3-Schoenus benthamii3-Schoenus pennisetis1-Stachystemon axillaris4-Stylidium aff. bulbiferum (Ironstone)-2Stylidium nigidifolium1-Stylidium nigidifolium2-Synaphea acutiloba3-Synaphea acutiloba4-Trichocline sp. (Glabrous - GJK 6328)-1Triglochin stowardii2-Tripterococcus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. vassensis1Villarsia submersa4	Mitrasacme sp. Southwest (GJK 343)	2	
Myriophyllum echnatum12Parsonsia diaphanophleba2-Petrophile latericola Ms1RPithocarpa achilleoides2-Pultenaea skinneri4-Restio gracilior3-Rhodanthe pyrethrum3-Schoenus benthamii3-Schoenus capillifolius2-Schoenus pennisetis1-Stachystemon axillaris4-Stylidium aff. bulbiferum (Ironstone)-2Stylidium nimeticum1-Stylidium nimeticum1-Stylidium nimeticum1-Stylidium nimeticum3-Synaphea acutiloba3-Synaphea pinnata4-Triglochin stowardii2-Triglochin stowardii2-Tripterococcus sp. Cannington (A.S. George 16201) PN1-Verticordia lindleyi subsp. lindleyi4-Verticordia submersa1-Villarsia submersa1-Verticordia submersa1-Verticordia submersa1-Verticordia submersa1-Verticordia submersa4Verticordia submersa1Villarsia submersa4	Myriocephalus appendiculatus	3	•
Parsonsia diaphanophleba2-Petrophile latericola Ms1RPithocarpa achilleoides2-Pultenace akinneri4-Restio gracilior3-Rhodanthe pyrethrum3-Schoenus benthamii3-Schoenus natans2-Schoenus natansR-Schoenus pennisetis1-Stachystemon axillaris4-Stylidium aff. bulbiferum (Ironstone)-2Stylidium iongitubum1-Stylidium rigidifolium2-Synaphea acutiloba3-Synaphea pinnata4-Trichocline sp. (Glabrous - GJK 6328)-1Triglochin stowardii2-Triglochin stowardii2-Verticordia lindleyi subsp. lindleyi4-Verticordia plumosa var. vassensis1-Villarsia submersa1-Villarsia submersa4	Myriophyllum echinatum	1	2
Petrophile latericola Ms1RPithocarpa achilleoides2Pultenaea skinneri4Restio gracilior3Rhodanthe pyrethrum3Schoenus benthamii3Schoenus capillifolius2Schoenus capillifolius2Schoenus capillifolius2Schoenus pennisetis1Stachystemon axillaris4Stylidium aff. bulbiferum (Ironstone)-2Stylidium nimeticum1Stylidium rigidifolium2Synaphea acutiloba3Synaphea acutiloba3Synaphea pinnata4Trichocline sp. (Glabrous - GJK 6328)-1Triglochin stowardii2Tripterococcus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. pleiobotrya1Villarsia submersa4Villarsia submersa4	Parsonsia diaphanophleba	2	•
Pithocarpa achillecides2Pultenaca skinneri4Restio gracilior3Rhodanthe pyrethrum3Schoenus benthamii3Schoenus capillifolius2Schoenus capillifolius2Schoenus pennisetis1Stachystemon axillaris4Stylidium aff. butbiferum (Ironstone)-Stylidium nimeticum1Stylidium rigidifolium2Synaphea acutiloba3Synaphea acutiloba3Synaphea junnata4Trichocline sp. (Glabrous - GJK 6328)-Triglochin stowardii2Tripterococcus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia submersa4Villarsia submersa4Villarsia submersa4	Petrophile latericola Ms	1	R
Pultenaea skinneri4Restio gracilior3Rhodanthe pyrethrum3Schoenus benthamii3Schoenus capillifolius2Schoenus natansRSchoenus natans1Stachystemon axillaris4Stylidium aff. bulbiferum (Ironstone)-Stylidium longitubum1Stylidium nimeticum1Stylidium nimeticum1Stylidium siglifolium2Synaphea acutiloba3Synaphea pinnata4Trichocline sp. (Glabrous - GJK 6328)-Triglochin stowardii2Triglochin stowardii2Triptercoccus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. pleiobotrya1Villarsia submersa4	Pithocarpa achilleoides	2	
Restio gracilior3Rhodanthe pyrethrum3Schoenus benthamii3Schoenus capillifolius2Schoenus natansRSchoenus pennisetis1Stachystemon axillaris4Stylidium aff. bulbiferum (Ironstone)-Stylidium longitubum1Stylidium rigidifolium1Stylidium rigidifolium2Synaphea acutiloba3Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Triglochin stowardii2Triglochin stowardii2Triptercoccus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarisi submersa4	Pultenaea skinneri	4	
Rhodanthe pyrethrum3Schoenus benthamii3Schoenus capillifolius2Schoenus natansRSchoenus natans1Schoenus pennisetis1Stachystemon axillaris4Stylidium aff. bulbiferum (Ironstone)-Stylidium longitubum1Stylidium rigidifolium1Stylidium rigidifolium2Synaphea acutiloba3Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-Triglochin stowardii2Triglochin stowardii2Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Villarisi submersa1Villarisi submersa4	Restio gracilior	3	
Schoenus benthamii3Schoenus capillifolius2Schoenus capillifolius2Schoenus natansRSchoenus pennisetis1Stachystemon axillaris4Stylidium aff. bulbiferum (Ironstone)-Stylidium longitubum1Stylidium nimeticum1Stylidium rigidifolium2Synaphea acutiloba3Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-Triglochin stowardii2Triglochin stowardii2Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Villarisi submersa1Villarisi submersa4	Rhodanthe pyrethrum	3	
Schoenus capillifolius2Schoenus natansRSchoenus pennisetis1Stachystemon axillaris4Stylidium aff. bulbiferum (Ironstone)-Stylidium inmeticum1Stylidium rigidifolium1Stylidium rigidifolium2Synaphea acutiloba3Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-Triglochin stowardii2Triglochin stowardii2Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Villarisi submersa4	Schoenus benthamii	3	
Schoenus natansRSchoenus pennisetis1Stachystemon axillaris4Stylidium aff. bulbiferum (Ironstone)-Stylidium longitubum1Stylidium nimeticum1Stylidium rigidifolium2Synaphea acutiloba3Synaphea acutiloba3Synaphea acutiloba4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-Triglochin stowardii2Triglochin stowardii2Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Villarsia submersa4	Schoenus capillifolius	2	
Schoenus pennisetis1Stachystemon axillaris4Stylidium aff. bulbiferum (Ironstone)-2Stylidium longitubum1Stylidium nimeticum1Stylidium nimeticum1Stylidium nimeticum2Synaphea acutiloba3Synaphea acutiloba3Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-1Triglochin stowardii2Triglochin stowardii2Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Schoenus natans	R	
Stachystemon axillaris4Stylidium aff. bulbiferum (Ironstone)-2Stylidium longitubum1Stylidium mimeticum1Stylidium mimeticum1Stylidium rigidifolium2Synaphea acutiloba3Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-Triglochin stowardii2Triglochin stowardii2Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Schoenus pennisetis	1	
Stylidium aff. bulbiferum (Ironstone)-2Stylidium longitubum1Stylidium mimeticum1Stylidium rigidifolium2Synaphea acutiloba3Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-Triglochin stowardii2Triptercocccus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Stachystemon axillaris	4	
Stylidium longitubum1Stylidium mimeticum1Stylidium rigidifolium2Synaphea acutiloba3Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-11Triglochin stowardii2Tripterococcus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Villarsia submersa4	Stylidium aff. bulbiferum (Ironstone)	-	2
Stylidium mimeticum1Stylidium rigidifolium2Synaphea acutiloba3Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-11Triglochin stowardii2Tripterococcus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Stylidium longitubum	1	
Stylidium rigidifolium2Synaphea acutiloba3Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-11Triglochin stowardii2Tripterococcus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Stylidium mimeticum	1	
Synaphea acutiloba3Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-11Triglochin stowardii2Tripterococcus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Stylidium rigidifolium	2	
Synaphea pinnata4Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-Triglochin stowardii2Triglochin stowardii2Tripterococcus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Synaphea acutiloba	3	
Tetraria australiensisRThysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-Triglochin stowardii2Triglochin stowardii2Triptercocccus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Synaphea pinnata	4	
Thysanotus glaucus4Trichocline sp. (Glabrous - GJK 6328)-1Triglochin stowardii2Triptercococus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Tetraria australiensis	R	
Trichocline sp. (Glabrous - GJK 6328)1Triglochin stowardii2Tripterococcus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Thysanotus glaucus	4	
Triglochin stowardii2Tripterococcus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Trichocline sp. (Glabrous - GJK 6328)	-	1
Tripterococcus sp. Cannington (A.S. George 16201) PN1Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Triglochin stowardii	2	
Verticordia lindleyi subsp. lindleyi4Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Tripterococcus sp. Cannington (A.S. George 16201) PN	1	
Verticordia plumosa var. pleiobotrya1Verticordia plumosa var. vassensis1Villarsia submersa4	Verticordia lindleyi subsp. lindleyi	4	
Verticordia plumosa var. vassensis 1 Villarsia submersa 4	Verticordia plumosa var. plejobotrva	1	
Villarsia submersa 4	Verticordia plumosa var. vassensis	1	
	Villarsia submersa	4	

Taxa Subject to Recommendations for Gazettal as Declared Rare Flora or for Priority Listing

Sufficient survey was done in the course of this study and in earlier surveys (Whicher Range - G.J. Keighery, unpublished; the Scott Plain - Keighery and Robinson 1992; eastern Swan Coastal Plain - Keighery and Trudgen 1992; the south coast - N. Gibson and M. Lyons, unpublished; metropolitan region - Kelly *et al.* 1993) to make the following recommendations for changes to the schedule of Declared Rare Flora and to the Priority List. A site record indicates the taxon was found in one or more of the 509 quadrats, an area record indicates the taxon was found in bushland remnants in which the quadrats were located.

Andersonia aff. latifolia (Ironstone BJK & NG 227)

Record type: site records, 4 populations from community type 10b.

Taxonomic status: previously unrecognised taxon.

Related taxa: distinguished from *Andersonia latifolia* by its larger leaves, low dense habit and occurrence on ironstones on the plain rather than on the laterites of the adjacent plateaus.

Comment: from community type 10b ranked as critical (Table 23); probably highly susceptible to *Phytophthora spp.*

Recommendation: Priority 1.

Baeckea tenuifolia

Record type: area record, one population from community type 8. Comment: the only known population of this species in the study area (also occurs at several other localities to Moora in the north), from community type 8 ranked as vulnerable (Table 23). Recommendation: Priority 1.

Billardiera aff. ringens (GJK 12977)

Record type: site record, one population from community type 29a. Taxonomic status: previously unrecognised subspecies (E. Bennett pers. comm.). Related taxa: *Billardiera ringens* which is found in the Geraldton area. Comment: the only currently known population of this taxon, from a community type ranked as susceptible (Table 23). Recommendation: Priority 1.

Blennospora aff. drummondii (golden bracts BJK & NG 20) Record type: site records, eight populations from community types 7, 10a and 18. Taxonomic Status: previously unrecognised taxon. Related taxa: distinguished from Blennospora drummondii by the golden corolla lobes; typical Blennospora drummondii was only found in the north of the study area. Comment: these community types are ranked as vulnerable (Table 23). Recommendation: Priority 3.

Brachysema sp. (Treeton BJK & NG 001)

Record type: area record, one population from the interface between community types 10b and 1a. Taxonomic status: previously unrecognised taxon, being described by M. Crisp (pers. comm.). Related taxa: distinguished from *Brachysema minor* in having cream flowers (sometimes blushed with pink) grouped in diffuse prostrate terminal racemes. Comment: confined to a single locality on the interface between community types 10b and 1a. Recommendation: gazettal as Declared Rare Flora (current listing, Priority 1).

Brachysema sp. (Williamson GJK 12719)

Record type: area record, one population from community type 10b. Taxonomic status: previously unrecognised taxon, being described by M. Crisp (pers. comm.). Related taxa: distinguished from *Brachysema sericea* by its distinctive upright habit, V-shaped apex to the leaves, terminal racemes of smaller cream or pale red flowers. Comment: a reseder confined to a single small population on the southern ironstone shrublands (community type 10b); this community type is ranked as critical (Table 23). Recommendation: gazettal as Declared Rare Flora (current listing, Priority 1).

Calothamnus aff. quadrifidus (Ironstone BJK & NG 230) Record type: site and area records, community type 10b. Taxonomic status: previously unrecognised taxon. Related taxa: distinguished from *C. quadrifidus* in being 2.5 metres tall, with glabrous leaves and brighter, light red flowers, reseder. Comment: confined to community type 10b which is ranked as critical (Table 23). Recommendation: Priority 1.

Chamaescilla aff. spiralis (GJK 12501)

Record type: site records, 3 populations from community type 8. Taxonomic status: previously unrecognised taxon. Related taxa: differs from *C. spiralis* in having straight not spirally twisted leaves, pale blue flowers and plants grow and flower in pools up to 5 cm deep rather than in sands. Comment: confined to community type 8 which is ranked as vulnerable (Table 23). Recommendation: Priority 1.

Conospermum undulatum

Record type: site records, 2 populations from community type 20a.

Comment: this taxon has been well surveyed (Kelly *et al.* 1993, Keighery and Trudgen 1992) and is confined to community type 20a which is ranked as endangered (Table 23); probably highly susceptible to *Phytophthora*.

Recommendation: gazettal as Declared Rare Flora (current listing, Priority 4).

Darwinia sp. (Williamson Rd GJK 12839)

Record type: site record, individual from community type 10b.

Taxonomic status: previously unrecognised taxon.

Related taxa: distinguished from *Darwinia apiculata* in having recurved leaves, fringed floral bracts, which are red-green in colour and fewer flowers in the inflorescence.

Comment: represented currently by a single adult individual, and numerous seedlings, on the southern ironstone shrublands (community type 10b) which is ranked as critical (Table 23), reseder. Recommendation: gazettal as Declared Rare Flora (current listing, Priority 1).

Dillwynia dillwynioides

Comment: an uncommon species found on seasonally inundated flats, generally alongside rivers or deeper swamps, between Harvey and north of Yanchep on the Plain, eight populations were identified in this study and there are eight collections in the WA Herbarium. Recommendation: Priority 2.

Dryandra aff. nivea (GJK 6622)

Record type: site and area records, community type 10b.

Taxonomic status: recently recognised taxon.

Related taxa: one of the many 'mound' forms of *Dryandra nivea*, to be recognised as a distinct species (A.S. George pers. comm.).

Comment: confined to the southern ironstone shrublands (community type 10b) and ironstones in the Scott River area, community type 10b is ranked as critical (Table 23), highly susceptible to *Phytophthora*, reserved.

Recommendation: gazettal as Declared Rare Flora (current listing, Priority 1).

Dryandra sp. 30 (aff. squarrosa ASG 11657)

Record type: site and area records, community type 10b.

Taxonomic status: a recently recognised taxon.

Related taxa: related to Dryandra squarrosa (A.S. George pers. comm.).

Comment: confined to the southern ironstone shrublands (community type 10b), community type 10b is ranked as critical (Table 23), highly susceptible to *Phytophthora*, reseder.

Recommendation: gazettal as Declared Rare Flora (current listing, Priority 1).

Eremaea asterocarpa subsp. brachyclada

Record type: area record, community type 21b. Taxonomic status: a recently recognised taxon. Related taxa: related to *Eremaea asterocarpa* subsp. *asterocarpa*. Comment: A very restricted taxa with very few collections. Recommendation: Priority 1 (Hnatiuk 1993).

Eucalyptus marginata subsp. elegantella

Record type: 2 area records.

Taxonomic status: recently described taxon (Brooker and Hopper 1993).

Comment: confined to the Ridge Hill Shelf between Byford and Coolup, no populations are known from a conservation reserve.

Recommendation: gazettal as Declared Rare Flora.

Grevillea elongata

Record type: single area record, community type 10b.

Comment: all specimens of this species are from a single population on the southern ironstone shrublands (community type 10b), community type 10b is ranked as critical (Table 23).

Recommendation: gazettal as Declared Rare Flora.

Gnephosis angianthoides

Record type: a single large population of this taxon was found in the study growing on a sandy bank beside the Serpentine River.

Comment: the majority of collections in the Herbarium are from the wheatbelt with only three old collections (1910, 1917 and undated) from the plain around Perth. Indumentum patterns on these specimens indicate that can be separated from the wheatbelt populations (E.A. Griffin pers. comm.). Recommendation: Priority 2.

Hakea aff. undulata (BJK & NG 237)

Record type: site and area from a single population on a limestone ridge in Yalgorup National Park, community type 26b and 28.

Taxonomic status: a recently recognised taxon (M. Trudgen pers. comm.).

Related taxa: distinguished from *Hakea undulata* by its generally smaller leaves, flowers and fruit and habitat, *Hakea undulata* being confined to isolated occurrences on the eastern side of the Plain and the Plateau in the study area, researceder.

Recommendation: Priority 4.

Hakea aff. varia (Yellow flowered ironstone form BJK & NG 226)

Record type: site and area records, community type 10b.

Taxonomic status: a previously unrecognised taxon.

Related taxa: distinguished from the widespread *Hakea varia* in being up to 2.5 metres tall with bright lemon yellow flowers, flowering in spring not summer-autumn and terete leaves.

Comment: confined to the southern ironstone shrublands (community type 10b), community type 10b is ranked as critical (Table 23), reseder.

Recommendation: gazettal as Declared Rare Flora.

Isotropis cuneifolia subsp. glabra Ms

Record type: site and area records, community type 7.

Taxonomic status: a previously unrecognised subspecies.

Related taxa: distinguished from the typical subspecies by the absence of hairs, a characteristic crescent shaped apex to the leaves and habitat as it is confined to the seasonally inundated heavy soils of the Pinjarra Plain.

Comment: confined to GinGin area in community type 7, which is ranked as vulnerable (Table 23) Recommendation: gazettal as Declared Rare Flora.

Lambertia propinqua

Record type: area record, community type 10b.

Comment: the single record of this species in the study area represents a disjunct population from the other populations on the south coast east of Albany, community type 10b is ranked as critical (Table 23), highly susceptible to *Phytophthora*, reseder. Recommendation: Priority 2.

Myriophyllum echinatum

Record type: site and area records from eight populations in community types 7, 8, 9 and 10b. Comment: a poorly collected species found on the seasonally inundated heavy soils of the Pinjarra Plain.

Recommendation: Priority 2 (presently Priority 1).

Petrophile latericola Ms

Record type: site and areas records from community type 10b.

Taxonomic status: a previously unrecognised species.

Related taxa: distinguished from the more widespread *Petrophile brevifolia* by its smaller inflorescences, leaves and lack of a lignotuber.

Comment: confined to community type 10b, ranked as critical (Table 23), highly susceptible to *Phytophthora*, reseder.

Recommendation: gazettal as Declared Rare Flora (presently Priority 1).

Stylidium aff. bulbiferum

Record type: site records from community type 10b.

Taxonomic status: a recently recognised taxon (A.H. Burbidge and A. Lowrie unpubl.).

Related taxa: distinguished from *Stylidium bulbiferum* in being associated with community type 10b in the study area (also recorded at Eagle Bay in association with granitic soils) and having single terminal flowers, not a raceme.

Comment: generally confined to community type 10b, ranked as critical (Table 23). Recommendation: Priority 2.

Trichocline sp.

Record type: site and area records from five populations in community types 8 and 10b.

Taxonomic status: a recently recognised species (Keighery and Keighery 1991), currently being investigated and will be described as a distinct species (R. Cranfield pers. comm.).

Related taxa: distinguished from *Trichocline spathulata* in being associated with seasonally inundated heavy soils and having short, linear leaves and shorter inflorescences that are smaller in all measurements.

Comment: not known from any conservation reserve. Recommendation: Priority 1.

Other unusual and recently delineated taxa

Acacia lasiocarpa

Two varieties of this taxon occur in the study area. Acacia lasiocarpa var. lasiocarpa is found in near coastal areas generally on sand over Tamala limestone but is also characteristic of the Beach Ridge Plain at Becher Point. The other variety, Acacia lasiocarpa var. bracteolata (long peduncle) is endemic to the study area and confined to community types 7 and 8, on the seasonally waterlogged and inundated heavy soils of the Pinjarra Plain. This taxa was referred to by Maslin (1975) as a form of A. lasiocarpa var. lasiocarpa where he noted its affinities with var. bracteolata. It is presently a Priority 1 taxon under the name Acacia lasiocarpa var. bracteolata (long peduncle).

Acacia paradoxa

An uncommon taxon in the study area associated with riverine banks of several geomorphological systems. The vegetation of all areas where this taxon was found were so degraded that it is not possible to sample the community in which this taxon occurred in the study area.

Angianthus drummondii - preissianus - micropodioides Group

In this study five taxa were clearly distinguished in this group in the field: A. aff. drummondii, A. drummondii, green prostrate and upright forms of A. preissianus and A. micropodioides. The two forms of A. preissianus were combined for this study. Identifications of specimens in the herbarium are confused and this group needs to be re-examined (P.S. Short, pers. comm.).

Aristida ramosa

There are two known populations of this species in Western Australia (also occurs in eastern Australia), the population recorded in this survey is a new record for the study area. It is presently a Priority 1 taxon and this listing should be maintained.

Boronia alata

Only two records are known for the study area: Rottnest Island and riverine cliffs at Minim Cove.

Boronia denticulata (Single site record)

This taxon was probably more common than study records indicate. Boronia denticulata is very similar to *B. spathulata* (especially around Perth) and flowering material is required to accurately determine the two taxa. A third taxon, *B. fastigiata*, also becomes very similar to *B. spathulata* around Perth and may also have been placed under *B. spathulata* in this study. Herbarium records indicate that *B. denticulata* is found in the south of the study area and replaced by *B. fastigiata* to the north.

Bossiaea eriocarpa (Large flowered form, BJK & NG 229)

Bossiaea eriocarpa is a widespread taxon with poorly understood patterns of variation. Marchant et al. (1987) commented that B. eriocarpa and B. ornata intergrade in the Perth region. However records from this study recognise a large flowered and leaved form of B. eriocarpa that is apparently confined to community type 3b. This taxon should be recognised at the specific level. These two taxa co-occurred in two areas (including one site). This taxon requires further survey, and should be considered for listing as Priority 1.

Calothamnus aff. crassus (Royce 84)

This taxon was previously considered to be confined to the south coast (Scott River and Chester Block) and this is the first record on the Plain. The community in which this taxa was found was confined to a narrow roadside remnant but it would probably group with community type 10b.

Calothamnus graniticus subsp. leptophyllus

This is the first record on the Plain and the second in the Perth Region.

Centrolepis caespitosa

Although listed as presumed extinct (Priority List 2/2/94) there is a recent collection from the South Stirlings (GJK collection). The two populations from the study area are from community types 8 and 10b. The current gazettal of the taxon as Declared Rare Flora is supported.

Chorizema varium

This presumed extinct taxon was rediscovered in 1990 just north of the study area on Tamala limestone. A further four populations have been located in community type 29a. This taxon has a very restricted geographical range and is presently not known from any conservation reserve. The current gazettal of the taxon as Declared Rare Flora is supported.

Craspedia species

Two species of *Craspedia* are recognised. *Craspedia* sp. as delineated by Marchant *et al.* (1987) is yet to be described. This taxon is confined to sandy soils and has a woolly indumentum and pale yellow flowers. *Craspedia* sp. nov. (Waterloo, GJK 13110) is completely glabrous with bright yellow flowers, and was found growing in water on the seasonally inundated heavy soils of the Pinjarra Plain near Waterloo. The community in which it was found was not sampled in the study as all areas located were too disturbed to be sampled. This community is closest to that represented in the study area by community type 8. Further investigation of this taxon is required for a recommendation to be made but it is apparently endemic to the study area.

Drosera macrantha subsp. macrantha (Swan Coastal Plain form, BJK & NG 228)

A tall robust densely glandular hairy form of *Drosera macrantha* from Marri Woodland on the eastern side of the Plain. Further investigation of this taxon is required for a recommendation to be made but it is apparently endemic to the study area.

Elatine gratioloides

A rarely collected aquatic previously known from one other location in the study area near Boyanup. The single collection from near Waroona in this study is a new record for the Perth Region (Marchant *et al.* 1987).

Eryngium subdecumbens Ms

A recently recognised species (Keighery and Keighery 1991) occurring in three populations in community types 7 and 8 between Kenwick and Busselton. The current priority listing (Priority 1) should be maintained.

Gompholobium capitatum, G. preissii and G. tomentosum

Marchant *et al.* (1987) comments on the need for further studies on the species boundaries between these three species. In the study area these three were readily distinguished in the field. *Gompholobium capitatum* has a dense corymb of relatively large bright yellow flowers, narrowly linear to terete pilose leaflets and was only found in sandy clay seasonally inundated areas south of Capel. *Gompholobium preissii* was confined to the Ridge Hill Shelf north of Bullsbrook and has

small orange flowers and narrowly ovate leaflets. *Gompholobium tomentosum* has a variety of forms which have probably been the source of the confusion between the three taxa. All forms have dull yellow flowers but these vary greatly in size.

Gompholobium confertum

An unusual maroon coloured form of this species was found in the study area at three widely separated localities (Burnside Road, State Forest 65 and Koondoola) in three different community types. This taxon requires further investigation to determine its taxonomic status.

Grevillea althoferorum

A newly described species previously known from a single locality (Olde and Marriot 1993), a new population of this species was located in the study area near Bullsbrook. The current coding as Priority 1 should be maintained as this taxon is probably susceptible to *Phytothphora* which is present in the area of the new population. It should be considered for gazettal as Declared Rare Flora.

Hovea trisperma var. grandiflora

A large flowered variety of this widespread species found on the Ridge Hill Shelf in six community types in the study area. It was placed in synonomy under *H. trisperma* in the latest revision of the genus *Hovea*. This distinctive variant co-occurs with *H. trisperma* var *trisperma*, and should be re-instated.

Hydatella dioica

A poorly collected inconspicuous species of inundated clay flats. A new location was found in this study and it is now known from three sites in the study area from community types 7 and 8. This community type needs to be searched at the appropriate time to locate further populations.

Isopogon scaber

This species was found in nine separate sites in a variety of community types on the Ridge Hill Shelf and Pinjarra Plain near Busselton. This species is also known from a single population on the Plateau near Dale.

Johnsonia aff. pubescens (GJK 5249)

This taxon is closely related to *Johnsonia pubescens* and will probably be described as a subspecies of *J. pubescens*. It is known from Cardup, Brickwood and Lowlands, all Bassendean Sands on the eastern side of the Plain. *Johnsonia pubescens* also occurs at Cardup and is here at the southern limit of its distribution.

Kennedia coccinea

A common species of the Plateau and to a lesser extent the Ridge Hill Shelf that also occurs less commonly on the Quindalup sands and the sand over Tamala limestone. Further studies on this species are required to establish if the coastal populations can be distinguished taxonomically.

Lysinema elegans

An uncommon species confined to the Bassendean Sands between Moore River and Jandakot. With the location of a new population in State Forest 65 (site record) the species is now known from two populations in the north of its range but the only other populations in the Jandakot area are threatened. The current priority listing (Priority 2) should be maintained.

Macarthuria aff. australis

A previously unrecognised taxon found between Capel and Jandakot on Bassendean Sands adjacent to seasonally inundated areas. This taxon may be *Macarthuria* sp. Harvey (Priority 1) but no collection was located in PERTH.

Marsilea sp. (BJK & NG 084)

A single collection of this taxon was made from community type 7 in Austin Bay Nature Reserve. Our collection is a poor match for *Marsilea drummondii*. Further studies are required to establish this taxon's taxonomic relationships.

Melaleuca aff. acerosa (GJK 11242)

Previously only recorded on thin sand Tamala limestone at Parrot Ridge, a further population may occur on a similar ridge immediately to the north. This needs to be checked in the appropriate season. The current priority listing (Priority 2) should be maintained.

Myriocephalus species

Four species of *Myriocephalus*; (*M. appendicularis*, *M. helichrysoides*, *M. rhizocephalus* and *M. isoetes*) were found in the study. While these species are common in community types 7 and 8 (single occurrence in community type 9) they are rarely collected. In their vegetative phase two of the species, *M rhizocephalus* and *M. isoetes*, are difficult to distinguish and both are poorly collected.

Nemcia sp. (Cordate leaves, BJK & NG 032)

A recently recognised species (M. Crisp pers. comm.), represented presently by a single specimen in the Herbarium and one site record in this study from Dardanup. This species should be further investigated for possible Priority listing.

Nemcia reticulatum

This species has a distinct broad leaved coastal form which is very common on near-coastal sands and sand over Tamala limestone on the Plain extending from Burns Beach to Northampton. This taxon is not known in any conservation reserves south of Nambung.

Opercularia vaginata (Ironstone form, BJK & NG 238)

A gracile form of this species consistently associated with community type 10b (area and four site records). Further studies on this form are required to establish if this form can be distinguished taxonomically.

Parsonsia diaphanophleba

A creeper confined to areas of relatively intact native vegetation on the riverine banks on the Murray and Serpentine Rivers extending up onto the Darling Plateau. Few intact areas remain along these rivers on the Plain. The current priority listing should be maintained but consideration should be given to gazettal of this species as DRF.

Petrophile serruriae

A pink variant of this species occurs on the sand over Tamala limestone on the Plain from Yalgorup to Geraldton. Further studies on this form are expected to establish this form as a distinct species.

Podolepis gracilis (Swamp form)

A robust glabrous form of this species with large pink or white flowers was consistently distinguished in the field on the seasonally inundated heavy soils of the Pinjarra Plain from GinGin to Busselton. Further studies on this form are required to establish if it can be distinguished taxonomically.

Rhodanthe manglesii and R. spicata

These two species were uncommon in the study area and were associated with the northern ironstones south of GinGin. It was not possible to sample this community as the only areas located in reasonable condition were on private land.

Schoenus natans

Previous to this study this species was considered to be extinct. Five populations were located in the study area in community types 7 and 8 in fresh water pools on clay. The current gazettal as Declared Rare Flora should be maintained.

Schoenus sp 2

A recently recognised species (B. L. Rye pers. comm.) found on the seasonally inundated heavy soils of the Pinjarra Plain from GinGin to Busselton in the study area.

Scholtzia ciliata

An isolated population of this taxon was found near Yarloop on the Ridge Hill Shelf.

Stipa campylachne, S. semibarbata, S. hemipogon and S. mollis

These four species are difficult to distinguish and are grouped in this study. *Stipa campylachne* and *S. semibarbata* are listed by Marchant *et al.* (1987) but all four may occur in the study area. *Stipa hemipogon* is recorded for the Perth Region but is not included in Marchant *et al.* (1987).

Stylidium bulbiferum

A variant of this species occurs on the thin sand over Tamala limestone on the Plain from Yalgorup to Yanchep. Further studies on this form are expected to establish it at the subspecific level and possibly at species level.

Stylidium preissii

Although previously recorded on the Plain it is presently known in the study area from only one locality in the Jandakot area (A. Lowrie, pers. comm.). Otherwise this species is known from the south coast between Esperance and Mt Manypeaks. The Jandakot population is in need of detailed study to establish its relationship to the south coast populations.

Stylidium roseonanum

A large population of this species occurred at Austin Bay in community type 7. This is an inconspicuous and poorly collected species and it should be considered for Priority listing.

Synaphea species

Eight recently recognised undescribed taxa are distinguished in the study area. While each of these taxa are considered to be locally common they are of restricted distribution (A.S. George pers. comm.) and should be considered for Priority listing on completion of the current taxonomic revision.

Tetraria australiensis

Prior to this study this species was considered to be extinct. Two populations were located in the study area on sandy soils associated with heavy soils on the Pinjarra Plain. The current gazettal as Declared Rare Flora should be maintained.

Themeda triandrus

Roadside populations of this species were observed in the study area associated with Wandoo Woodlands from GinGin to Dardanup. It was not possible to sample this community as all locations were in a very disturbed condition, generally being reduced to scattered trees over exotics.

Tribonanthes aff. violacea

A tall robust pale purple flowered form of *Tribonanthes violacea* confined to community type 7 in this study (also found at Alfred Cove in a community which is floristically similar to community type 7). Further studies on this form are expected to establish this form as a distinct species.

Veronica aff. calycina (BJK & NG 235)

This taxon is related to *V. calycina* but is more robust and less densely pubescent and is currently known from less than five records on the Quindalup Dunes at Yalgorup and Alkimos (Trudgen and Keighery 1990). Most of the habitat type that it occurs in between Yalgorup and Yanchep has been cleared or degraded by grazing and it appears to be rare or at least very uncommon. This is probably *V. stolonifera* described from Fremantle.

Wurmbea dioica subsp. aff. alba (GJK 12803)

A robust large flowered form of this taxon found growing in water up to half a metre deep in community types 7,8 and 10b.

Wilsonia humilis

An uncommon species in the study area confined to highly saline communities near Coogee, Mandurah and Rottnest. This species is not listed in Marchant *et al.* (1987).

Figure 2. New populations of Declared Rare Flora in the study area.

Figure 2 (cont.). New populations of Decared Rare Flora in the study area.

Figure 3. Location of proposed Declared Rare Flora in the study area.

Figure 3 (cont.). Location of proposed Declared Rare Flora in the study area.

4

Figure 3 (cont.). Location of proposed Declared Rare Flora in the study area.

Areas of importance for conservation of Declared Rare Flora and proposed Declared Rare Flora

Most of the populations of Declared Rare Flora and proposed Declared Rare Flora encountered in the present survey lie outside the current reserve network. All of these areas are considered of high conservation value. More detailed analysis of the conservation and reservation status of species occurring on the coastal plain will be the subject of a future report. General areas in which DRF and proposed DRF occur are shown in Table 7 and Figures 2 and 3.

Table 7. General areas in which DRF and proposed DRF was located in the present survey and their present vesting.

Area	Current Vesting
Austin Bay Nature Reserve	A-class Nature Reserve
Agriculture Protection Board Reserve	Vested in APB for conservation of flora
Brixton Street Wetlands	Homeswest
C53 (Coolup Reserves)	Local Government and Road Reserve
C58 (Reserve A23172)	Local Government
GinGin Road Reserve	Road Reserve
Ken Hurst Park	Local Government
Lake Bambun (Reserve 22831)	Local Government
Lake Muckenburra (Reserve 25431)	Local Government
M53 (Reserve C29880)	SECWA, Fires Board, Main Roads, WAWA
Meelon Nature Reserve	Proposed A-class Nature Res (vested in CALM)
Mundijong Road	Road and Drain Reserves
Southern Ironstones	State Forest
Talbot Road Reserve	Local Government
VCL South of Seabird (part Red Book 5.24)	Vacant Crown Land
Waterloo School Site	Local Government
Wonnerup Road Reserve	Road and Rail Reserve
Yalgorup National Park	A-class National Park
Yoongarillup Nature Reserve	A-class Nature Reserve

Comparison with the Flora of the Perth Region

The *Flora of the Perth Region* (Marchant *et al.* 1987) records some 2057 species (almost 2200 taxa in all) from an area of 10,500 square kilometres stretching from Guilderton to Boyanup and inland to cover the Darling Scarp and part of the Plateau (see Map 1 in Marchant *et al.* 1987). This area covers 80-90% of our study area and it is useful to compare our data with that of the Flora.

Table 8. Geographic occurrence of 792 taxa recorded in the Flora of the Perth Region but not encountered in the present survey.

Habitat	Number of Taxa
Restricted to Coastal Plain	525
Restricted to Scarp or Plateau	222
Largely restricted to Scarp and Plateau	18
Taxonomic revisions (no longer in FPR area)	27
Total	792

Some 792 taxa recorded in the *Flora of the Perth Region* were not encountered during the current survey (Table 8). Of these taxa 222 are restricted to the Darling Scarp and Plateau (areas not sampled). The present survey may have been expected to encounter the 525 taxa recorded as occurring on the coastal plain. Of these 525 taxa 183 were native and 342 were introduced. The most important

families are the Poaceae, Papilionaceae, Asteraceae, Cyperaceae, Brassicaceae, Orchidaceae, Solanaceae and Iridaceae (Table 9).

The significant number of weed species not encountered in the present survey suggests that either our sampling of vegetation in the best condition missed a large number of weed species or that a large number of agricultural weeds do not invade bushland remnants. Given the large number of species involved it appears there is a suite of weed species poorly adapted to survival in bushland remnants.

Table 9.	Native	and introduc	ed taxa for	r the mos	t important	families	recorded	for the	Swan	Coastal
Plain bu	t not enc	countered in t	he present	survey.	r	<i></i>		<i>yor</i> me	5.747	Cousiai

Family	Native taxa	Introduced taxa	Total
Poaceae	6	81	87
Papilionaceae	7	36	43
Asteraceae	6	34	40
Cyperaceae	16	6	22
Brassicaceae	3	17	20
Orchidaceae	19	-	19
Solanaceae	2	17	19
Iridaceae		17	17

The two families for which significant numbers of non-weed species were missed were the Cyperaceae and the Orchidaceae. The Cyperaceae are common components of riverine and estuarine habitats which were under sampled in the present survey while the Orchidaceae are easily missed ephemeral taxa for which sampling time is critical, because flowers are crucial for identification and many species flower sporadically or only after summer fires.

Given that our total area of sampling was 5.01 ha $(509 \times 100 \text{ m}^2)$ the absence of only 183 native taxa indicates adequate coverage of most habitat types. Some 102 of these taxa have a riverine distribution and this habitat type was not sampled in the present survey. Of the remaining 80 odd taxa some are naturally rare (as indicated by low number of herbarium collections and field knowledge). As discussed above the survey has recorded a further 51 taxa not previously recorded from the plain (approximately 30% of these are new records for the area covered by the Perth Flora).

A synthesis of data from collections of Coastal Plain taxa lodged in the Western Australian Herbarium (PERTH) and taxonomic revisions indicate that there are at least seven or possibly eight taxa that are presumably extinct on the Coastal Plain. These taxa have not been collected for at least 50 years despite thorough searching (Table 10).

Table 10. Taxa likely to be extinct in the study area.

Taxon	Last Collections in the Study Area			
Dampiera triloba	Gnangara Oct. 1945 (49 years ago)			
Empodisma gracillimum	Bunbury 1870. Bayswater 1935			
Euphrasia scabra	Harvey 1860, Fremantle 1874			
Gahnia decomposita	Bayswater 1902			
Glyceria australis	Harvey 1940			
Isopogon attenuatus	Waterloo 1920			
Polygonum hydropiper	Harvey 1940			
Ptilotus divaricatus	Pinjarra 1904			

The contemporary absence of taxa such as *Empodisma gracillimum* and *Gahnia decomposita* from Bayswater and Bunbury strongly suggests that some wetland types originally in these areas have been lost. Both these taxa are very conspicuous and it is unlikely that further searching will rediscover them in these areas.

VEGETATION

For the floristic analysis some species had to be amalgamated into complexes due to difficulty of differentiating between closely related taxa without good flowering material (eg. *Thysanotus patersonii* and *Thysanotus manglesianus*, see Appendix 3) As a result the data were reduced to 1369 taxa. Of these 272 taxa occurred at only one site. Singletons (taxa recorded from only one plot) were recorded in 166 plots at frequency of one to seven singletons per plot. Preliminary analyses of the floristic dataset showed that singletons had no effect (ie. contained little information) on the community classification so they were excluded. The final data set consisted of 1097 taxa in 509 sites. Species richness ranged from seven to 86 per site (100^2 m) , with individual taxa occurring in between two and 306 sites (Figure 4).

Multivariate analysis can assist in sorting both sites and species data such that patterns in species composition are more easily seen. The decision as to the number of site and species groups defined is subjective and related to the scale of pattern of interest (Kent and Coker 1992). In this analysis site groups are discussed at two scales: the four group level ('super groups'), roughly corresponding to major geomorphological patterning and the 30 group level which best reflected the scale of pattern seen in the field. Within some of the 30 groups finer subdivisions could be made and our final classification was of 43 individual groups and subgroups. This classification will not be definitive and as more data becomes available new floristic communities will emerge and a better understanding of inter and intra group relationships will be possible. This will be particularly true for the seasonal wetlands which are our most heterogenous group.

Four group classification

The four group classification ('super groups') broadly reflects the major geomorphological elements with the exception of one group made up of all the seasonal wetlands (Figure 5). Group 1 in this classification comprises sites almost entirely restricted to the Pinjarra Plain and Ridge Hill Shelf. The second major grouping are the almost entirely seasonal wetlands which occur across all geomorphological groups. The third major group is centred on but not exclusive to Bassendean Dunes. There are also significant occurrences on Pinjarra Plain and Spearwood Dunes systems. Group 4 is almost exclusively a Spearwood and Quindalup Dunes group. It can be seen from the dendrogram that group 2 (seasonal wetlands) is the most variable group, having by far the largest number of community types and lowest average number of sites / community type (Figure 6).

At the four group level there are significant differences between species frequency, weed frequency, slope, mean annual rainfall, and mean annual temperature (Table 11). Sites classified into group 1 are concentrated on the eastern side of the plain and the alluvial soils bordering the Peel - Harvey estuary (Figure 5a). The wide spread clearance of this land system is readily apparent (as blank areas) on this map. This group had significantly higher species richness than all other groups except group 3 and a lower number of weed species than any group other than group 3 (centred on Bassendean Dunes) (Table 11). Rainfall was also significantly higher reflecting it position at the base of the Scarp and concentration in the south.

The seasonal wetland group (group 2) are more or less uniformly spread across the plain, except in the north west of the study area where the decrease in rainfall and steeper nature of the Spearwood Dunes exclude them (Figure 5b). These wetlands have significantly lower species richness than all other groups. Weed frequency was also moderately high, with the percentage of weeds as a proportion of total species richness being very high, comparable only with Spearwood / Quindalup Dune groups (group 4) (Table 11). The lack of correlation with major geomorphological elements contrasts markedly with the other three super groups. The high level of heterogeneity within this group is consistent with patterns found by Griffin and Keighery (1990) on the northern sandplain.

Figure 4. Histogram showing percentage of plots with different species richness. Note the group of species poor wetlands at one end and the very high species richness of some woodlands and shrublands at the other.

Figure 5. Distribution of the four major floristic groups across the Plain.

Group 3 is largely centred on the Bassendean Dune but with significant numbers of plots on Spearwood and Pinjarra Plain and in the south on the Whicher Scarp (Figure 5c). The Whicher Scarp plots were generally *Banksia* woodlands on sand sheets occurring up to 110 m altitude. This group had high levels of species richness and low mean weed frequency (Table 11).

Most of the 151 sites in group 4 occur on the Spearwood or Quindalup Dunes (Figure 5d) They have a largely western distribution except for a small group of *Banksia* woodlands sites at Bullsbrook at the base of the Scarp. The number of plots diminishes to the south as does the occurrence of these land systems. This group has moderate levels of species richness, relative high levels of weed invasion and lower annual rainfall than most other groups reflecting the concentration of this community type in the north and west of the study area. Vegetation condition was significantly poorer on the coast relative to all other groups except for the seasonal wetlands (Table 11).

The major environmental correlates with the four group classification are major geomorphological units (McArthur and Bettenay 1960, Churchward and McArthur 1980) and a rainfall gradient running at 90 degrees to the coastline. Temperature, rainfall, geomorphology, and slope were all significantly inter correlated. It should also be noted that while the major variation in the vegetation appears to be primarily controlled by geomorphology, significant departures from this pattern are seen in the floristic data. This aspect will be discussed further below.

Table 11. Means for species frequency, weed frequency, slope (class 1 - flat; to class 3 - steep), annual rainfall, annual temperature and condition rating (class 1 - excellent, to class 5 - very disturbed) at the four super group level. Groups means with the same superscript are not significantly different at P < 0.001.

Super Group.	Mean species richness	Mean weed frequency	Slope	Mean annual rainfall (mm)	Mean annual temp (^o C)	Mean condition rating	Number of quadrats
1	60.4 ^a	3.5 ^a	1.5 <mark>a</mark>	975 ^a	17.1 <mark>a</mark>	2.1 ^a	61
2	36.2 ⁰	6.2 ^b	1.1 ^b	913 ^b	17.5 ^b	2.4 ^{ab}	154
3	54.6 ^a	3.4 ^a	1.7 ^a	902 ^b	17.7 ^{bc}	2.2 ^a	143
4	45.8 ^c	8.8 ^c	2.0 ^c	840 ^c	17.9 ^c	2.6 ^b	151

Thirty group classification

In the more detailed classification 30 community types and 35 species groups have been defined. Some of the 30 communities types have been further subdivided where distinct subunits were recognisable in the sorted two way table (Figure 6, Table 12). The sorted two way table shows only those species that occur at frequency of > 50% in at least one of the site groups. For some of the species groups, no species reached this frequency and these are omitted from the table. Very strong patterning in both site and species groups is evident (Table 12). Distribution maps for each of the community types are shown in Appendix 1.

Community types of heavy soils

Three community types are found on the heavy soils of the eastern coastal plain. These heavy soil communities are defined by the general absence of species in the large species groups A, B, and I. and the presence of species in species groups R and S (Table 12).

Community type 1 is restricted to the area south of Bunbury and has two distinct subgroups. Type 1a occurs along the northern edge of State Forest along the base of the Whicher Range and is composed of *Eucalyptus haematoxylon - E. calophylla - E. marginata* forests and woodlands. The one site of this community type on the plain proper belonged to a fertile soil unit (Abba very fertile), that has been almost entirely cleared (Tille and Lantzke 1990). Community type 1a was characterised by high frequency of species in species group S and moderate frequencies in species group R. Lower frequency species such as *Acacia teretifolia, Acacia varia* var. *varia, Agonis grandiflora,* and *Xanthosia pusilla* are virtually restricted to type 1a.

Figure 6. Dendrogram showing the four super groups and the 30 community types defined from the floristic presence / absence data set.

Community type 1b consists largely of *E. calophylla* forests and woodlands of bushland remnants on the plain south of Capel. Group R species were more common in community type 1b with lower frequencies of group S species compared to the previous group. In addition another low frequency group which includes *Acacia myrtifolia*, *Opercularia spermacocea* and *Acacia mooreana* are largely restricted to type 1b.

Table 12. Sorted two way table showing species frequency by community type. Only species which occur with frequencies of at least 50% in any one community type are shown.

Taxon																					Con	mu	nity	type	;																	
Species among A	t	la 1	Ь 2	30	a 34) 3e	4	5	6	7	8	9	10a	105	11	12	13	14	15	16	171	\$ 1	9 20	∍ - a 20t	> 20c	: 21a	216	21c	22	234	23h	24	75	260	765	77		20 .	201			
Wittenber months																													_			14	-	200	200	61	28	<i>1</i> 998	290	39a	306	30c
Spritchurg maridaum Ma	-	•	-	-	-	-	•	-	٠	-	•	-	•	-	•	-	•	-			- 5	io -	-	-			-	_						~								
A contractor management Ma	-	•	-	-	-	-	-	-	-	-	•	-	•	-	•	-	•	-				· .	-	-	÷.			-	•	-	-	•	•	35	5	-	•	-	8	•	-	-
Rhandia haceste	-	•	-	-	•	-	•	-	•	-	•	-	•	-	-	-	-	-			13 -		-	-				-	:	-	•	-	•	13	5	-	2	-	8	-	•	-
Staticium alobatorum	-	-	-	-	-	-	-	•	-	•	-	-	-	-	•	-	-	-	- 2	5		-	-	-		_		-	-		•	40	19		10	-	2	78	85	71	75	-
Acasin rentriliform	-	•	-	-	•	-	•	-	-	-	-	•	-	•	-	•	-	-					-	-	-				-	-	-	4	7	40	21	-	3	78	TI	57	88	33
* Crassula glomosta	-	-	•	-	-	•	-	-	-	-	-	-	•	-	•	-	•	-				3	3 -	-		-		-	-	-	-	32	,	۰ ۵	16	29	-	/8	40	86	100	100
Olgeria exilleria		-	•	-	-	-	-	-	-	-	•	-	•	-	•	-	-				• •	6	7 -	-	-	-		-	-	-	-	40	-	19	<	-	-		24	29	38	•
Pos porphyrociados		-	-	-	•	-	•	-	-	-	-	-	-	-	-	-	-			•	• •	•	-	-	-	•	-			-		28	9	-	11	14	2	22	40	-		-
* Dischisma aronarium			-	-	•	-	•	-	-	-	-	•	-	•	-	-		•		-		6	7 -	•	-	•	-	-	-		-	24	ó	9		-	3	67	77		13	0/ 67
Sonocio lautus suber, dissoctifolius			-	-	-	-	-	•	-	•	-	-	-	-	-	-				-		33	÷ -	-	•	-	-	-	•	-	-	20		73	21	-		31			15	67
* Galium murale		_				-	•	-		-	2	-	-	-	-	-				•		•	-	-	-	-	•	•	-	•	-	•	18	18	16	14		78	Ϋ́τ		~	-
* Lagurus ovatus	-					-	-	•	-		2	•	-	-	-	-			• •	-		-	-	-	-	-	-	-	•	-	-	20	27	27		-	5	56		71	75	
Calendrima brovipedata	-		-			-	-	-	-	0	-	-	•	-	8	-	-	- ·	• -	· 1	13 -	33	<u>-</u> ا	•	-	-	-		-	•	-	52	18	9	-		3	44	8		39	-
Paristeria debilis		-		-				-	•	-	-	•	-	•	-	•		• •		-	-	-	-	-	-	-	•	-	-	-	-	-	9	27	21	-		22	23		ã	33
Carex proiseii	-			-	-	2	-	-	-		-	-	-	-		-			• -	1	- 13	•	-	-	-	•	-	-	-	-	•	-	36	55	11	-	-	56	8	29	75	33
 Trachyandra divaricata 	-	-	-	-		-	-		-	-				-	۰	-	• •			-	• -	-	-	-	•	-	-	-	-	•	-	12	9	•	5	-	-	22	8		100	
Lepidosperma gladistum		-		-	-		-	-	-	-			:		-	•		• •			-	-	-	-	•	-	-	-	•	-	-	4	9	-	5	-	•	22		57	63	-
Acacia Insiccarpa var. Insiccarpa	-		-	23	•	-		-	11	-	s		13	2	:				• •	1	- 8	33	-	-	-	:	-	•	-	-	-	4	•	-	-	-	-	-	-	-	25	67
Loucopogon parviflorum	-	-	-	-	•	-	-	-	_		-		-		-	-				-		33		-	-	3	•	-	-	-	-	28	-	82	16	57	-	22	85	-	-	67
Lomandra meritima	•	-		-	-	-	-	-	-			-		2						-	. 1	JU 33	14	-	•	5	-	-	•	-	10	48	9	64	37	86	5	67	62	-	50	-
Molelouce acorces	-	•	-	-	•	-	•	-	-	-	-		-		-						-	22	-	-	-	÷	-	•	2	•	-	64	-	45	37	86	8	44	92	14	-	•
Dryandra scenilis	-	-	-	-	-	-	-	•	-	•	-		-		-	-					-	-	-	11	•	2	8	•	9	-	5	S2	-	82	68	100	13	22	92	14	-	-
Grevilles thelemannians subsp. preiseii	•	-	-	-	-	•	-	-	-	-	-	-		-								-	-	-	-	•	-	-	-	-	-	28	•	91	42	29	11	11	•	14	-	67
Melalouca husgola	-	-	-	-	•	-	•	-	•	-	-	-	-	-	-					_				-		•	-	•	-	•	-	40	-	100	32	100	3	22	-	14	-	•
Trymelium albicers	-	•	-	-	•	-	•	-	-	-	-	•	-	•	-	•				_		-		-		-	•	-	•	-	-	12	-	82	11	29	-	44	-	14	-	-
L'oupertoine roune Venimentale bland de la	•	-	•	-	-	•	-	-	-	-	-	-	•	-	•					1	3 -	33	-	-	-	-	-	-	-	-	-	4	•	91	11	71	3	22	8	14	-	•
	-	-	-	-	•	-	•	-	-	-	-	-	•	11	-				. .	ī	3 -	-		_		-				-	-	<i>2</i> 0	-	04	10	86	-	33	8	29	50	67
Without truncing	-	•	-	-	•	-	-	-	-	•	-	•	-	•	-	•				_		-		-	-		2	2		-	•	4	-	73	2	14	•	33	8	•	13	33
Astrolome microsolur	-	-	-	-	-	•	-	-	-	•	-	-	-	-	-					-	-		-	-	-						-	0 17	•	.00	•	80	-	:.	15	-	-	•
Commente confering	-	-	•	-	-	-	-	-	-	-	•	-	•	-	•					-	-	-	-	-	-	-			_		-	12	-	y 26	-	/1	-	11	15	-	-	-
Schoonte lengtus	-	•	-	-	•	-	-	-	-	•	-	•	-	-	-	•				-	-		-	-	-	5	-		_		2	- 2	٠ ٥	0	10	100	•	-	8	•	-	•
* Anneellie grypneie		-	-	-	-		-	•	-	-	-	-	•	-	-		• -	-	· -	-		-	-	-	-	•	-		-	-	-	8	<i>.</i>			57	2		25	:	-	-
* Sonchus oleracous			-	8	-	10	-	-	22	28	14	13	-	.	8		- 5	- 50	- 2	51	3 50) 10	0 -	11	-	23	-	•	-	•	-	92	45	64	68		29	ล	15	43	50	-
Dannella revoluta	-				13	20	-	12	11	33	19	13	•	11	38	-	11 -	. •	- 2	56	3 50	33	-	-	11	21		6	•	21	-	64	64	82	68	-	39	67	8	29	50	67
 Elstierta longiflora 	-		-	8	13	10	6	7	56	6	÷	-	•	-	8		· 5	- 60	· -		50) -	•	-	-	10	-	6	-	-	-	56	27	-	32	14	26	11	8	43		100
* Petrorhagia velutina	-		-	ž			š	<i>.</i>			-	2	-	-	Б			•	2	s .	-	•	-	11	-	5	•	6	•	11	-	44	18	-	-	-	16	44	8	43	25	33
* Bromus diandrus	-	-		-	-	-		-	81	-	2				73		• -	•	-	•	-	•	-	-	•	21	•	-	•	-	-	68	91	9	26	-	34	11	-	•	13	33
 Constium glomeratum 	•	-	•	-	-	-	-	-	-	-		-	-		-			-			- -	- 67	-	•	-	3	-	-	-	-	-	52	64	-	11	-	13	56	69	-	25	•
Caladonia latifolia	-	-	-	-	-	-	-	7	-		-	-		_	8				<u>_</u>	ן כ זי	3 30		-	•	-	3	-	•	-	-	-	68	45	45	63	•	21	56	•	43	50	67
Eucelyptus gamphocophain	-	•	-	-	-	-	-	•	-	•	-	-	•	-	ž.,					1		-	•	-		*	-	-	-	•	-	24	73	9	16	14	3	33	15	14	88	67
Concetylis candicans	•	-	-	-	•	-	•	-	-	-	-	•		-					_				-	-		10	•	-	-	-	-	24	82	-	32	-	11	11	-	29	38	33
Denomia puerta	-	•	-	-	•	-	•	-	11	-	-	•	-	11				-	-	-	-		-		2	10			-	•	-	24		18	37	-	26	22	62	14		33
Mandachanna ann ann ann ann ann ann ann ann an	-	-	•	-	-	-	-	7	-	-	•	-		- 1	8.			-	-	-	.50	33	-		-	26	2	,	-	-	•	46 70	30	13	68	-	18	22	54	-	13	33
Phylipping component	8	•	-	•	13	•	-	•	-	•	-	-	-	-	•		-		-	1	3 -	33	14	-		38	<u>\$</u>	-	2	:	-	40 69	51 51	44 91	20	5/	38 20	78	77	-	38	100
Sine flowerer	-	•	-	-	25	20	•	7	-	•	-	-	-	- :	8.		-	2	55-	-	-	-	-	-	•	10	÷	-		-	2	56	27	45	47	29	19	0/	38	43	100	67
* Orchanche minor		-	-	-	13	10	·	-	-	•	÷.	•		•		• -	-	•	-	-	-	33	-	-	•	15	•	6		-	-	56	< <u>-</u>	01	47	-	21	70	02	43	50	-
* Convan albida	сі -		•	-	38	-	•	-	-		\$	•	- •	•	- •	• -	-	-	-	-	-	•	-	-	•	3	-			-	-	4	ŝŝ	-		-	5	/0 44	15	3/	13	-
* Zantodoschia asthiopica		ê		-	-	-	2	-	•	6	5	-		11	31 2	20 1	1 -	2	5.	13	3-	33	-	-	-	3	-	6	-	5	_	12	18	_	5	_	11		1.5	:	15	- 67
Schoenus grandiflorus	-	-	-	:	-	-	-	-	:	-	:	:			38 ·		:	-	25	5 13 -	3 - -	:	2	:	:	10	2	6	:	-	•		9	-	-	-	-	-		29	63	•
Species group B																											-	•	-	-	-	20	18	•	21	14	11	-	54	14	-	-
Agonis flexuosa	-	8	-		17			_																																		
Goranium retroreum	_	-		:	13	-	0	-	-	•	-	-	• •		• •	• •	-	•	-	13	3 -	-	-	-	•	15	8	-	•	-	•	4	64		5		-		8		88	-
Ozalis perenana		-	-	-		10		-	1		-	-	• •		• •	•	-	•	-	-	-	33	•	-	•	-	•	-	•	-	•	- :	55	27	11	-	-		-		75	-
Dichondra repone		-		-	-	- 10		-			2	13		- 1	•	• -	•	-	•	•	-	-	-	•	-	-	-	•	•	-	•	- :	82	-	11	-	•	-	-	14	88	
Hibbertia cunsiformia	-	-	-		-		-	-			2	-				-	•	-	-	-	-	•	-	•	-	-	-	•	-	-	•	- 1	9	-	-	-	•	-	•	-	63	
* Oxalis pes-capme	-	8	-	-	-	-	•	-	-	-	_						•	-	-	-	-	•	-	•	-	•	-	·	-	-	•	-	18 -	-	-	-	•	-		-	100	-
														- •		• •	-	-	-	•	-	•	-	-	•	•	-	•	•	•	-	•		•	-	•	-	•	-	14		67

	1a	16	2	3a	3ь	3c	4	5	6	7	\$	9	10a	10b	11	12	13	14	15	16	17	18	19	20a	205	20c	2 1a	2 1b	21c	22	23a	23 b	24	25	264	26b	27	28	29a	295	30a	306	30c
* Trifolium glomomtum	-	8	-		-	-	-	-	-	-	-	-	-	-	8		-				-	-	67	-	-	-	-	-	-	-	-	-	4	9	-		_	-					
Callitria presinci	-	-	-	-			•	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		•	-	-	-	-	-	-	-	-	11	-	71	-	-
* Myninhyllum amanapides		-		-	-	10	-	-	-	-	5	-	-	-	-	-	-	•					•	-	-			-			-	-	12	-			-	5	-		71	13	
Emmoniale ciebra	-	-	-		-	-	-	-	-			•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		4	-	-	-	-	-	56	-	29		-
Isolonia nodne	-	-				•	-	-	-	-	-	-	-	-	8	-	-	•	•	-	•		100	-	-			•	-	-	-	-	-	9	-	-	-	-	22		-	-	-
Muchlenbockia adpress	-	-	-	•	-	•	-	-	-	-	·	·	-	•	-	-	-	-	-	-	25	-	100	-	-	•	-	-	-	-	-	-	-	·	•	•	•	3	11	-	-	-	·
Species group C Acacia auromiteus		-	-	-	-	-		•	-	-	-	-	-	-	-	-	•		-	-	-	-	-	-	-	67				-	•		•		-	-	-	-	-	-			-
S. d																																											
Sipa pycnostachya	-	-	-	-	13	50	-	-	-	-	5	-	•	-	-	-	-	-	-	-	-	-	-	-	-	67	-	-	-	-	-	-	-	-	-	•	•	-	-	-	-	-	•
Species group E																																											
Cyschoonnets averages	31	8	20	85	50	80	19	7	33	•	48	63	13	-	-	-	-	-	-	-	-	-	-	-	11	-	-	-	13	-	-	-	-	•	•	•	•	3	-	-	-	•	٠
Nourachno alopecuroidea	•	8	-	69	38	80	6	-	22	-	48	-	-	33	•	•	-	-	-	-	-	-	-	-	11	89	-	17	19	-	-	-	-	-	-	٠	•	3	-	-	-	-	-
Goodenia casculca	23	-	-	62	-	40	-	-	-	-	10	-	-	-	-	-	-	•	•	•	•	-	•	-	-	-	-	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	•
Thelymitre crimits	31	-	60	23	25	40	6	-	-	-	10	-	-	22	•	•	-	50	-	-	-	-	-	-	22	11	-	-	-	-	-	-	-	-	-	-	-	•	•	-	-	-	-
Haissa coratophylla	-	25	80	54	-	-	-	-	-	•	•	-	-	-	-	-	-	•	•	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	٠	-	-	-	-	-	-
Synephes, petiolaris	8	33	80	62	-	•	·	-	-	-	5	13	25	11	•	•	-	-	-	-	-	-	-	-	•	•	•	•	-	-	•	•	-	-	-	-	-	3	-	-	•	•	-
Species group F																																											
Grevilles brachystylis subsp. brachystylis	-	-	60	-	-	•	•	-	-	-	-	-	13	•	•	-	-	-	-	-	-	•	•	•	•	-	-	-	-	-	-	-	-	-	·	•	•	•	-	-	-	-	-
Isopogon acaber Leptocarpus teasu	-	8	80 80	-	-	-	6	-	-	:	-	-	13	22 33	-	-	-	-	-	-	•	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		•	-	
Species group G																																											
Hakza varia (BJK & NG 225)	-	•	-	-	-	-	•	•	-	-	-	13	•	56	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	٠
Loxocarya magna Ma	-	-	•	•	-	-	-	-	-	•	-	13	-	67	-	-	•	-	-	-	-	-	-	-	-	-	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	-	-	-
Opercularia vaginata (BJK & NG 238)	-	•	-	-	-	-	-	•	·	-	-	-	-	56	•	-	-	-	-	-	•	•	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•
Species group H																																											
* Crassula natana	-	•	-	-	-	-	•	-	-	6	10	-	-	•	23	20	11	-	75	25	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	•
Isolopis producta	-	-	-	•	-	•	-	-	-	-	5	-	-	•	-	-	-	•	75	-	-	-	-	-	-	-	-	-	•	•	•	•	•	-	•	•	•	•	•	•	-	-	•
Species group I																							_										••							~~			
Acacia anligua	-	-	-	•	•	30	-	40	44	11	14	13	13	-	31	-	11	50	-	-	20	100	100	-	-	-	3	-	-	-	-		4	-	-	11	-	5		- 23	-	-	-
Baumoa juncea	-	-	20	•	-	-	-	47	-	17	÷	50	25	-	77	100	33	:	:	20	€0 €0	100	13		-	:	à			?	:	2	2	, 0	2	2	- 2		-		-	-	2
Lopidosperme longendinaio	-	-	-	•	-		2	20	11	17	ŝ		2	11	62		22	50		÷.	13	-	-	-	-	-	-		6	-	-	-	-	2		-	-	-	-	-	÷.	-	
Automyptus russs Ourochen decteden	-	-	-	8		-		-	11		-	-			15	-	11		75	25	25	-	-	-	-	-	3	-		-	-			-						-		-	-
Enilchium hTienferienum		-	-	ž		-			-	-	5	-	-	11		60	-	-	-	25	13		33	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	
Gehnie trifide	-	-	-	-	-	-	-	-	-	11	5		13	-	8	-	-	-	•	25	88	100	33	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•
Lobolia alata		-	-	-	-	-	-	-	-	6	5	13	13	11	23	40	11	-	25	-	75	-	33	•	•	-	-		•	-	-	-	•	•	9	•	-	-		•	-	-	-
Molalouca rhephiophylla	•	-	-	-	-	-	-	20	11	22	-	-	-	-	23	40	56	50	75	25	100	-	•	•	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	•	-	-	-
Triglochia procorum	-	-	-	•	-	-	-	-	-	22	29	13	-	-	15	40	78	•	100	-	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Atriplex cinema	-	-	-	•	-	-	-	-	•	•	-	-	-	-	-	-	•	•	-	75	13	-	-	-	-	•	-	•	•	•	•	-	•	-	-	•	•	-	-	-	-	-	-
* Atriplex prostrata	-	-	-	-	•	•	-	-	-	-	•	•	-	-	-	-	-	-	25	75	•	-	-	-	-	•	-	•	-	-	-	-	-	-	-	-	-	-	-	•	-	-	•
Samalus repeas	-	-	-	-	•	•	-	-	-	6	·	•	-	-	-	-	-	-	•	75	25	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	•	-	-	-
Sarcocornia quinquellora	-	-	-	-	-	•	-	-	-	17	•	•	•	-	-	-	-	-	25	100	-	•	-	-	-	·	-	•	-	-	-	•	•	•	•	•	•	•	•	•	-	-	-
Sporobolus virginicus	•	•	-	-	-	-	•	•	-	6	-	-	-	-	8	•	-	-	-	75	25	-	33	-	•	•	•	•	•	•	•	•	-	-	-	-	-	-	11	-	-	-	33
Lomna disporma	-	-	•	•	-	-	-	-	•	-	-	-	-	-	-	-	11	•	13	-	- 29	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	•	•
Molelouce toretifolist	-	-	-	-	•	•	-	-	-	-	•	•	•	-	5	8U ∡0	11	-	30	-	36	100	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		•	•	-	-	-
Baumea articulata	•	•	-	-	-	-	•	•	-	-	-	-	•	•	•	60	-	-	-	-	-	-	-		-		-	•	•	•	•	-	•	-	•	•	-	-	-	-	-		-
Oxylobium lineare	-	•	•	-	-	-	-			-	-	-	-	-	-	60	•	-	2	2	2	-		-	-	2	2		2	-	-	2	2	-		-	-	-	-	-		•	
VIIIICIAN INTOIN	-	-	-	-	-	-	-	-	:		-	-	-	2	8		12	-	-	-	-	100		-		-	-	-	-	-	-	-							-	-	-	1	-
Moniston Infant Leptomoria Infananii	-	:	-	-	-	-	:	-	-	-	-	-	-	-	•	•	-	-	-	-	-	100	•	•	-	•	•	•	-	•	•	•	•	•	•	•	-	•	-	-	-	-	-
Species group J																																											
Brachyscome bellicicides	-	-	-	-	-	•	-	7	-	56	19	•	38	11	-	-	-	•	•	-	•	50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•		-	-	-
Schoenus sp. 2 (GJK 5739)	-	-	-	-	-	-	•	7	-	56	24	38	13	·	-	-	11	-	•	•	•	50	-	-	-	-	-	8	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-

	1:	a 11	> 2	3a	36	3c	4	5	6	7	s 5) I	0a 10	ж 11	12	13	14	15	16	17	18	19	20a	206 2	20c 2	1a 21	b 21	c 22	234	736	24	75	264	205	77		~	401	20.	~~	~
Controlopia striota. Cotula coroarogifolia Apholia striota. Cotula coroarogifolia Apholia striota. Controlopia anistan Drosora metziani subup, menzionii Drosora metziani subup, menzionii Drosora rosulata. Vintinati juncoa. Astantoa eff. fascioularis Buatia vizgata. Hakao varia • Ciccedia filiformia • Monopaia doblia • Parontucolla viscore Molalouca vinimea Loptocaryus congustatus Melalouca lateria • Parontucolia viscore Melalouca lateria • Parontucolia doblifora Kunzoa aff. micrantha (KIK & NG 040) Calotammua lateralia Halana sulota • Briza minor • Romulea rosea Drosora glandiligen Sincorne shumiforus			- - - - - - - - - - - - - - - - - - -			- - - 20 10 - - - 20 - - - - - - - - - - - - - - -	- $ -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		56 2 556 2 576 2 39 39 44 4 439 39 58 9 58 9 58 9 56 1 56 1 57 1 56 1 56 1 57 6 56 1 57 6 58 9 59 11 20 - 56 11 57 6 58 9 59 11 50 5 51 1 52 6 54 9 55 11 50 5 51 1 52 5 54 9 55 1 56 1 57 1 58 9 59	55 430 31 55 6 - 5 - - 2 1 - 1 1 - 1 1 5 5 - 1 2 5 6 - 5 - 2 2 1 <th>1 1 2 2 1</th> <th>3 - 5 5 - 5 5</th> <th>- 465 </th> <th></th> <th>$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$</th> <th></th> <th>- 75</th> <th>25 </th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>aue 2 </th> <th></th> <th>5 21. </th> <th>c 22</th> <th>23e</th> <th>2380</th> <th>24 - - - - - - - - - - - - - - - - - - -</th> <th>25</th> <th>26a</th> <th>26b</th> <th></th> <th>28</th> <th>23%</th> <th>296</th> <th>30a</th> <th>306</th> <th>30e</th>	1 1 2 2 1	3 - 5 5	- 465 		$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $		- 75	25 						aue 2		5 21. 	c 22	23e	2380	24 - - - - - - - - - - - - - - - - - - -	25	26a	26b		28	23%	296	30a	306	30e
Species group K * Labum rigidum	-	•	-		-	-	-	• -	1	15	-		-	15		-			න -		- (57 -	. <u>-</u>	_		-			_		16	_	_	5		_	77		14		
Species group L Bankain ilicifolia Kunza oricifolia Jacksonia furcellata Loptomoria cunsinghamii	- - 8	- - -			- 13 -	- - -	13 19 6 -	20 - 60 - 27 1 -			• • •			- 23 8 -	40 -		- 100 100	- - -				-	-	-	21 33 26 3	25 42 -	38 50 38 -	91 18 9	32 26 21 -	38 - - -	- 4	- - 18 9			- - -	3 5 3	- - -				•
Species group M Adenatics chowaus Melalous preissiana Schooms rodweyenus Hypoolymma engustfolium Perioälymma ellipticum Thysanotus multiflorus Baumoa vaginalia	- 15 15 - 8	50 - 75 33 17 8	40 20 20 60 80 80	8 15 54 8	- 13 - 13	- - 50 -	56 75 63 81 81 44	7 - 27 1 20 - 27 5 67 1 13 - 13 -	-1 - 	- 48 5 5	- 13 13 25 38 -	13 13 50	- 11 - 89 11	- 46 15 15 - 8	- 20 - 40 40 -	- 22 - 11 22 - 33	100	-			50 - 50 - 50 -	-	- - - 4 -	-	3 - 8 3 13	•	31 - 19 19 -	18 27 18 55 36 18 18	5 11 - 16 - 11		- - - 4	-	-		-			-			
Species group N Beaufortia elegans	-	•	-		-		-		-	•	-	-		-		-		-				-	-	-	-			27	11	57	-					3.		- ·		· -	

Consistention I I I <t< th=""><th></th><th>12</th><th>16</th><th>2</th><th>3a</th><th>3Ь</th><th>3c</th><th>4</th><th>5</th><th>6</th><th>7</th><th>8</th><th>9</th><th>10a</th><th>10b</th><th>11</th><th>12</th><th>13</th><th>14</th><th>15</th><th>16</th><th>17</th><th>18</th><th>19</th><th>20a</th><th>206</th><th>20c</th><th>21a</th><th>216</th><th>21e 2</th><th>22 2</th><th>la 23</th><th>b 24</th><th>25</th><th>264</th><th>261</th><th>27</th><th>28</th><th>29</th><th>ı 291</th><th>b 30a</th><th>a 306</th><th>30</th></t<>		12	16	2	3a	3Ь	3c	4	5	6	7	8	9	10a	10b	11	12	13	14	15	16	17	18	19	20a	206	20c	21a	216	21e 2	22 2	la 23	b 24	25	264	261	27	28	29	ı 29 1	b 30a	a 306	30
Specima charded Specima ch	Concetephium minus		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14	-	-	3	-	6.	5	62		-	-	-	-	-	-			-	-
Nature construction	Stylidium diurcides	-	-	-	-	-	•	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	43	-	-	-	-	- :	17 S	71	•	-	-	-	-	3	-	•	•	-	-
Variabilit Variabi	Melalouca aff. trichophylla	-	-	-	-	-	-	-	7	-	-	-	-	-	-		•	•	•		-	-	-	-	-	-	-	•	8	- 9) -	71	-	-	-	-	-	3	-	-	-	-	-
Specie per 9 0	Verticordia nitona	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	rs 5	33	·	-	-	-	-	-	-	-	-	•	-
Antom marketAntom market <td>inacias amun O</td> <td></td>	inacias amun O																																										
Same and series Same and series Same and series Same and series Same and S	Advantion composition	-	-	-	-	-		6	7				-	-	-	-				-	-	-			14		44			19 3	73 S	3 48	-	-	-	-	-	3		-	-	-	-
 Subsering below Sub	Renkris menziosii	-	•	-	-	-	-	6	÷	11	-	-	-		•		-	-	-	-	-	-	-	-	43	44	22	26	-	69	5 9	5 95	4		-	-	-	39	-	-	-	-	-
Subsets and series and	Schonner cuttifolium	-			8	-	-	13	-	11	-	-	-	-		•	-	-	-	-	-	-	-	-	71	-	67	5	17	38 3	6 8	90	4	-	-	5	-	11	-	-	-		-
Index In	Scholtzia inunlucrata	-	-	-	-	-	-	6	-	11		-	-	-	-	-	-	-	-	-	-	-		-	-	33	33	10	8	56	7	9 86	-	-		-	-	8	-	-	-	-	
Conversion Convers	Hibbertia automotosta	8	17	-			•	6	7	-	-	-	13		-	-	-	-	-	-	-	-	-	-	-	-	22	21	17	38 4	5 6	3 86	•	-	-	-	-	11	-	-	-	-	
Terminant inter (19)	Calutrix flavorena	-	-	-	-	-	-	6	-	11	-	-	-	-	-	-	-	•	•	-	-	-	-	-	29	22	-	15	83	19 9) 6	3 95	-	-	-	-	-	11	-	•	-	-	-
Augustantian and augustantian and augustantian and augustantian aug	Loucanosan concetentiaides	15	-	-	-	-	•		-	-	-	-	-			-	-	-	-	-	-	-	-	-	14	-	22	13	75	50 4	15 8	1 71	4		-	-	-	-	-	-	-	-	-
Immember	Alexandrena miteria	-	•		-	-	-	-	-	-		-	-		-	-	-	-	•	•	-	•	-		100	-	•	•	•	6 9) 3	2 81	-	-	-	-	-	32	-	•	•	-	-
Autore Mathematican / Machematican pressure <th< td=""><td>Emman muciflom</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>11</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>•</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>71</td><td>44</td><td>44</td><td>5</td><td>17</td><td>6.</td><td>. 3</td><td>7 95</td><td>-</td><td>-</td><td>-</td><td>5</td><td>-</td><td>8</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Emman muciflom	-	-	-	-	-	-	-	-	11	-	-	-	-			•	-	-	-	-	-	-	-	71	44	44	5	17	6.	. 3	7 95	-	-	-	5	-	8	-	-	-	-	-
Automa bands Automa bands<	Jacksonia donsiflora / floribunda complex			•	-	-	-	-	-	-	•	-	-	-	-	-	-	•	•	-	•	-	-	-	57	-	56	-	-	6 5	4	2 76	-	-	-	-	-	3	-	-	-	-	•
Amerikang pakalation provide and and analysis and analysi	Anigozanthos humilia	-	-	-	8	-	-	-	•	•	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	22	-	3	8		- 2	1 7e	•	9	9	5	14	29	· -	8	-	-	-
Access partiality 11 7 9 8 13 9 13 15 10 11 10	Amocrimum presidui	-	-		•	-	-	-	-	-		•	-	-	-	-	-	-	•	•	-	-	-	-	43	11	56	5	-	13 -	- 2	5 10	-	-	-	5	-	-	-	-	-	-	-
Dame. magnetime between any be	Acacia pulcholla	31	67	20	8	13	50	19	•	٠	-	-	38	13	33	کا	20	-	50	-	-		-	-	-	-	11	28	58	19 -	. 3	2 52	16	27	9	37	-	53	-	-	•	•	-
Basedene spirate Bas	Drosem monzionii subsp. ponicilleris	31	67	-	38	25	50	19	7	-	22	•	13	-	11	-	-	11	•	•	•	-	-	-	86	33	44	26	92	31 ·	- 7	4 52	16	9	18	•	•	34	-	8	-	-	-
Xatabase here Xatabase	Eriostomon spiostus	46	58	20	100	63	-	38	13	•	•	-	13	-	-	-	٠	•	-	-	-	-	-	-	57	56	56	56	75	13 :	27 7	4 95	8	-	-	-	43	11	-	-	-	-	-
Backed mode B B C <thc< th=""> C C C C</thc<>	Xanthosia hungolii	کا	67	20	69	63	-	50	7	-	•	5	13	-	-	8	-	-	•	•	-	-	-	-	57	67	22	56	83	13 :	27 6	370	8	9	9	21	43	32	-	-	•	•	-
Consigning peripheticant 8 0 0 0 0	Banknis attonusta	8	8	-	-	-	-	-	7	11	-	-		-	-	-	•	-	-	-	-	-	-	-	100	78	22	87	92	88 1	32 1	00 10	0 16	36	-	26	-	79	- 1	-	-	-	-
Partople binardia Vision Vision <	Concetephium pondulum	8	•	-	-	•	-	-	7	11	-	-	•	•	-	-	-	-	-	-	-	•	-	-	86	78	22	51	75	6 :	55 6	8 67	4	-	-	11	-	53	-	•	-	•	•
Sylicis minimize Sylicis	Petrophile linearia	46	33	-	-	13	-	-	7	·	-	-	-	-	-	•	-	-	-	-	-	-	-	-	100	78	67	79	92	56 1	52 9	5 10	0 12	9	-	5	-	53	-	-	-	-	-
Bandars instruct Bit I	Stylidium piliforum	23	8	•	•	50	-	-	-	-	-	•	•	-	-	-	-	-	-	•	-	•	-	-	86	67	11	38	58	38 :	55 8	4 67	-	-	-	-	-	18	-	-	-	-	-
Lankards manufalemany barray b	Bossines eriocarpa	31	17	-	-	100	-	б		-	-	-	-	-	•	•	•	-	-	-	-	-	-	-	100	89	89	79	92	25	• 9	5 9X	12	27	18	37	14	47	-	-	-	-	-
Barchesting introduction G2 50 - - - - - - - - 100 80 82 92 80 20	Lomasdra hormaphrodita	62	75	-	23	75	-	25	-	11	-	-	•	•	-	-	-	-	-	-	-	•	•	-	86	78	89	59	83	50	27 9	5 81	4	9	-	5	14	53	-	-	-	-	•
Lgreentportent significant sig	Burchardia umbellata	62	50	-	15	88	80	19	13	11	6	-	-	•	-	-	-	11	50	-	-	-	-	-	100	89	89	82	92	56	8	9 80	28	27	-	5	-	82	-	-	-	-	-
Concerner la constrained and any and any and any and any and any	Lyperanthus nigricans	31	25	-	-	25	10	13	13	-	-	-	-	•	22	-	-	-	50	-	-	-	-	٠	•	56	33	36	67	38	27 4	7 33	4	27	-	-	-	32	-	-	-	-	•
Deerge branching from Light in the series of	Conostylis junces	•	•	-	•	75	-	6	•	•	•	-	-	-	•		-	-	-	•	-	·	-	-	14	67	-	74	-	44 :	27 7	9 71	-	9	-	-	-	5	-	-	-	-	-
Path control 3 - 5 - - - <th< td=""><td>Darypogon bromoliifolius</td><td>23</td><td>33</td><td>40</td><td>38</td><td>13</td><td>-</td><td>81</td><td>13</td><td>22</td><td>-</td><td>-</td><td>-</td><td>-</td><td>11</td><td>15</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>·</td><td>43</td><td>100</td><td>67</td><td>72</td><td>92</td><td>56</td><td>64 0</td><td>3 52</td><td>4</td><td>-</td><td>-</td><td>-</td><td>-</td><td>8</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	Darypogon bromoliifolius	23	33	40	38	13	-	81	13	22	-	-	-	-	11	15	-	-	-	-	-	-	-	·	43	100	67	72	92	56	64 0	3 52	4	-	-	-	-	8	-	-	-	-	-
Drosent plasted 8 -	Phiebocarya ciliata	-	33	-	-	25	-	56	-	-	•	-	-	-	-	-	-	-	•	•	-	-	-	-	29	44	11	69	92	25	54 6	3 42	4	-	-	-	-	8	-	-	-	-	-
Lguine mattem - 8 60 15 13 10 50 40 11 - - 50 10	Drosom paleacea	8	-	-		-	•.	•	13	33	-	5	-	-	•	•	40	-	-	-	-	-	-	-	29	- 26	-	10	33	20	55 2	1 33		-	•	-	-	2	-	-	-	-	-
Sylic B 8 8 8 6 4 1 2 - <td>Lyginia barbata</td> <td>-</td> <td>8</td> <td>60</td> <td>کا</td> <td>13</td> <td>10</td> <td>50</td> <td>40</td> <td>11</td> <td>-</td> <td>•</td> <td>•</td> <td>38</td> <td>22</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>•</td> <td>•</td> <td>-</td> <td>100</td> <td>11</td> <td>89</td> <td>6/</td> <td>92</td> <td>88</td> <td>54 9</td> <td>о <u>у</u></td> <td>15</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>8</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Lyginia barbata	-	8	60	کا	13	10	50	40	11	-	•	•	38	22	-	-	-	-	-	-	•	•	-	100	11	89	6/	92	88	54 9	о <u>у</u>	15	-	-		-	8	-	-	-	-	-
Intervanis 54 7 20 54 30 4 7 <	Stylidium brunomianum	8	8	80	46	13	20	75	47	•	2	÷.	-	-	11	23	-	÷	•	-	-	-	-	-	57	>0	33	33	33	20 m	52 /	4 /i	4		•	10	•	- 50		•	•	•	32
Syldiam reprint 15 17 20 23 10 88 20 53 1 1 1 1 1 2 23 10 88 20 10	Patersonia occidentalia	54	-	20	54	38	30	44	Z/	-	6	14	25	20	- 22	23	-	11	-	-	-	-	100	•	200	-	89	29	83 47	64 I	54 8 20 7	у у <u>.</u> 4 74	4	27	-	2	-	24	-	-	-	-	-
Amplemenda function - 1 - 2 - 1 -	Stylidium repons	15	17	20	23	13	10	12	χU	33	-	-	-			-	20	-	-	•	-	-	-		71	67	100	11	42	13	27 A						-	21		-	-	-	
Lagrand Linguages Linguage	Amphipogon turbinatio	-	17		~	12	10	13 6	-			-				-	-	-			-		-	-		56	67	15	75	31	45 4	7 4					-	13		-	_	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Loporous innones	15	17		20	12	-	š	-	22	-	_	-	13	11	Ē	-	-	-	-	2		-		100	ត	78	31	ลี	19	36 Å	7 5	4			5	-	21	_	-	-	-	-
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Saringa Burota	<u> </u>				15	-	-	ź			-		-			-	-	-	-	-		-		100	78	44	3	25	6	- 2	6 2		-		-	-	26	s _	-	-	-	-
Dynamical interval B - - 15 50 - 6 -	I minama allatara		•			-	_	_	_		-	-			-		-				-	-	-		43	22	22	-	so		36 1	1 2	8	-	-		100	3 5		-	-	-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Animartha mandrai	8	-	-	15	50	-	6	-	-	-	-					-	-	-	-	-	-	-	-	29	11	56	8	25	19	- 1	ī -	4	18	-	5	_	3	-	8			
Weizer answere 1 1 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1 1 8 1	L'armanzia amazzan		-	_	-		20	-	-	-	-	5		-	-	-	-	-	-		-	-	•	-	-	22	-	21	-	13	- 6	35	-	-	-	-	-	11	- 1	-	-	-	-
Casy the flave flave 15 8 $ 8$ 13 $ 7$ $ 7$ $ 13$ $ 14$ $ 10$ $ 18$ 16 38 8 $ 27$ 11 57 3 $ 8$ $ -$	Waitzia survoolone			-	•	-	-	-	-	-		-	-	-	11	8	-	-	-	•	•	•	-	-	14	-	-	5	-	6	- 1	8 -	-	18	-	5	14	26	5 -	-	-	-	-
Non-six reticulation - - 15 - - - - - - - - 5 29 8 56 23 - </td <td>Caseythe flave</td> <td>8</td> <td>-</td> <td>-</td> <td>8</td> <td>13</td> <td>-</td> <td>•</td> <td>7</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>13</td> <td>-</td> <td>-</td> <td>-</td> <td>•</td> <td>•</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>14</td> <td>-</td> <td>•</td> <td>10</td> <td>•</td> <td>•</td> <td>18 1</td> <td>63</td> <td>: 8</td> <td>-</td> <td>27</td> <td>21</td> <td>57</td> <td>3</td> <td>-</td> <td>8</td> <td>-</td> <td>-</td> <td>-</td>	Caseythe flave	8	-	-	8	13	-	•	7	-	-	-	-	13	-	-	-	•	•	-	-	-	-	-	14	-	•	10	•	•	18 1	63	: 8	-	27	21	57	3	-	8	-	-	-
Homianing pungers 15 8 8 1 1 1 1 33 2 5 6 1 4 4 - 5 - 3 11 62 11 33 2 5 6 - 5 - 3 11 62 - 11 33 2 5 6 - 5 - 3 11 62 - 13 42 55 6 - 1 11 13 23 25 6 - 16 14 4 - - 5 - 3 - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - 3 11 33 - 6 1 1 3 1 3 1 3 1 1 3 1 <td>Nomcia reticulata</td> <td>-</td> <td>-</td> <td>-</td> <td>15</td> <td>-</td> <td>•</td> <td>·</td> <td>7</td> <td>-</td> <td>-</td> <td>-</td> <td>٠</td> <td>-</td> <td>•</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>•</td> <td>43</td> <td>11</td> <td>-</td> <td>3</td> <td>-</td> <td>-</td> <td>- 2</td> <td>1 3</td> <td>3 -</td> <td>-</td> <td>•</td> <td>5</td> <td>29</td> <td>8</td> <td>56</td> <td>23</td> <td>· •</td> <td>-</td> <td>•</td>	Nomcia reticulata	-	-	-	15	-	•	·	7	-	-	-	٠	-	•	-	-	-	-	-	-	-	-	•	43	11	-	3	-	-	- 2	1 3	3 -	-	•	5	29	8	56	23	· •	-	•
Accord sevential seventi	Homiandra pungens	15	8	-	8	-	-	-	-	-	•	-	-	-	56	8	-	-	-	•	•	•	-	-	57	11	33	26	25	6	- 1	6 1	4	-	-	5	-	3	11	62		13	-
Restio incouse Ms - - - 6 -	Acacia scenilis	-	-	•	8	-	-	-	-	•	-	-	-	-	-	-	-	-	•	•	-	•	-	-	14	22	56	-	-	6		-	-	-	-	-	-	3	-	-	-	-	-
Consist dision $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Restio sinceus Ma	-	-	-	8	•	-	6	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	٠	:	78	33	-	-	6		-	•	•	•	•	•	3	-	-	-	-	-
Caucita discises 20 20 20 20 20 - 20 - 2	Conostylia auroa	-	-	-	•	•	10	-	-	-	-	•	·	-	-	-	-	-	-	-	-	-	•	•	71	11	78	-	-	-		-	. •	-	-	-	-	- 5	-	-	-	-	-
Colocatais openent 8 - 8	Caustis dicion	-	-	20	-	-	•	-	-	-	-	-	•	-	56	-	-	-	-	-	-	-	-	-	29		22	:	•		• •	1		-	-	-	-	8	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Caloctasia eyanee.	-	8	-	8	-	-	-	•	·	-	-	-	-	•	-	•	•	•	-	-	-	-	-	29	56	11	3	٠	6	• •	1		-	-	-	-	13	5 -	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Devicein sudiflors.	-	•	•	•	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	•	•	•	-	57	-	-	2	-	-		<u> </u>		-	-	-	-	18	s -	•	٠	•	-
Scamples generation reports water reports wa	Deviesis triflora	-	-	-	-	-	-	-	-	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	71	22	33	2	-	-	- 3	i a	/ 8	•		•	•	29	• •	-	-	-	•
Monotoxis grandfilma	Scanvola repons var. repons	-	-	-	-	-	•	•	-	-	-	-	-	•	•	-	•	•	-	-	-	-	-	-	86	11	78	3	-	•	• 1	o i	· 12	-	9	-	-	11		8	-	-	-
Symephone optimilizers asterio expressional costs and the second provided as the second pro	Monotaxis grandiflora	•	•	-	-	-	-	-	•	•	•	-	-	-	-	-	-	-	-	•	•	•	-	-	71	11	22	3	8	•	- :	. 5			-	2	-	33		•	-	-	-
Species group P Access scorpton 31 25 60 15 38 - 19 7 - 19 - 25 56 8 11 - 21 42 - 18 11 8 8 6 Chameseilla corymboan Statis scorpton 54 67 - 38 75 20 31 33 11 11 14 13 13 22 - 11 - 13 - 14 100 67 59 75 44 - 42 - 4 36 - 5 - 13 - 13 Chameseilla corymboan Dempion Innersia 77 92 100 77 38 20 75 27 - 6 24 50 - 56 15 5 - 57 33 - 46 42 19 45 79 38 - 9 9 - 14 3 13	Synaphoa spintilosa Eromesa asterocaroa subeo, autorocaroa	-	:	-	8	-	-	:	-	:	-	-	-	-	-	-	-	-	-	:	2	2	-		- 57		56	8 -	-	2	- :		· ·	-		-	-	13	· ·	-	-	-	
Species group P Access scoretors 31 25 60 15 38 - 19 7 - 19 - 25 56 8 11 - 21 42 - 18 11 8 Champeedia correction conversion 54 67 - 38 75 20 31 33 11 11 14 13 13 22 - 11 - 13 - 14 100 67 59 75 44 - 42 - 4 36 - 5 - 13 13 Dempiser lanearia 77 92 100 77 38 20 75 27 - 6 24 50 - 56 15 57 33 - 46 42 19 45 79 38 - 9 9 - 14 3																																											
Champegella corymbose 54 67 - 38 75 20 31 33 11 11 14 13 13 22 11 13 14 100 67 59 75 44 - 42 - 4 36 - 5 - 13 13 Dempiere linearia 77 92 100 77 38 20 75 27 - 6 24 50 - 56 15 57 33 - 46 42 19 45 79 38 - 9 9 - 14 3	Species group P Acada standates	31	25	60	15	38	-	19	7	-		19	-	x	56	8	-	-	•		-	-	-	-	-	11		21	42	•	18	1 -	-	-	-	-	-	8	-	-	-	-	-
Deuropiera linearia 77 92 100 77 38 20 75 27 - 6 24 50 - 56 15 57 33 - 46 42 19 45 79 38 - 9 9 - 14 3	Chamaoscilla corvinboan	54	ส	-	38	75	20	31	33	11	11	14	13	13	22	-	•	11	-	-	-	13	-	-	14	100	67	59	75	44	•	12 -	4	36	-	5		13	3 -	-	-	13	-
	Dampiera linearia	π	92	100	77	38	20	75	27	-	6	24	50	-	56	15	-	-	-	•	•	•	-	-	57	33	-	46	42	19	45	19 3	8 -	9	9	-	14	3	-	-	-	-	-

Hypolaona ozsulca	36	3 50	60	69	50	10	81	80 3	22 6		25	13	33	8 '	20 -	-		-	. –		71	~	AL (~		•									
Thysenotus thyrecidous	27	s 25	20	31	ഒ	40	25	20	. 6	5	38	50	56	15		-		• -	•	-		44 Z	(49	67	56 4	32	29	•		• -	-	8	•	-	• -
Schoonus brevisetis complex	-	-	20	38	-	-	-	20 -		14	~	13	~	15	_	-	•	- :		•	14		10	17	- 2	21	24	-	• -	· •	-	5	-	•	
Laxmannia sossiliflom subsp. australia	8	•	20	8	-	10	6				-	15	44	1.5 •	• •	-	-	- 1	3 -	•	29	44 78	3	-	6 18	11	38	-		•	-	3	-	•	
Allocasuarina humilia	8	8	20	23	25	10	-			-	-	-		• •		-	-		•	-	14	22 56	ş -	75	6-	11	-	•		· -	•	3	-	-	• •
Haemodorum lagum	15	<u>25</u> ز		85	50	20		7			13	. 12	11	• •	• •	-	-	• •	•	-	57	67 78	\$ 5	33	6 -	\$	5	28		- 11	29	21		-	• -
Thymnotus tmendrus	1.			38	25	-	-	÷ .	-	,	15	15	-		• •	-	•		-	•	100	67 IQ	10 3	-	6-	-	-	4		. S	-	24	-		
Concetylie actigura	54	1 33	20	- .	13	-	_	· ·		-	•	-			• -	-	-		-	•	71	33 11	3	-	- 9	11	10	•			-	8	-		
Halza ruscifolia	21	42			13	-	•		• -	-	-	-	11		• •	•	•		-	•	71	67 11	-	8	13 9	5	24	8	- 1	8 21	-	50	-		
Beockes camphorosmee	8	-	-	46	50	20	-	•		-	•	-	-	• -	• •	-	-		-	-	29	67 44	+ -	8		-	-			26	14	16		-	
Grevilles pilulifers			-	40	~	10	•		- 11	-	•	-	-		• •	-	-		-	•	-	56 -	10	-		-	•				-	3	-		
Proneye fimeori		17	-	40	20	10	-	•		-	-	•	-			•	-		-	-	-	56 •	-	•		-	-				-	ŝ	-		
Eucalyptus calcrivila	36	. 65	~	-	8	-			<u> </u>	-	-	-	-		• •	-	-		-	•	-	44 11	8	8		-	•				-	š			
Tetrarie octandre			20			00	13	• 1	u •	5	13	-	-	ย -	• •	-	-		-	•	-	11 11	36	17	19 -	5			• •	_		13			•
Kingin anatralia	11	92	20		100	70	-	• •	-	5	-	•	-	• •	-	-	-		-	-	\$7	100 56	8	17		-	-	4	·	21	14	22	-		-
I organization francisculare	38		100	J 92	38	10	-		-	-	-	13	11		-	•	-		-	-	14	44 33				-		-			14	32	•		
Managatan Arta and		92	80	100) 100	30	6	• •	•	5	25	38	67		-	-	•		-		86	100 33	23	50	31 .	-	-			•	-	•	-	• •	•
MUSCHIGHT INTERSON	38	83	80	100	38 (70	-	7 1	1 -	19	13	13	11		-		-		-	-	14	78 44	ĩ	~	6	-	•			-	•	-	•		· -
Gompholobium marginatum	31	42	•	46	63	60	-		-	5	-	-			-		-		-		14			¢	- u	•	-	• •	• •	-	-	8	-		· -
Lopidosporma sp. (BJK & NG 232)	15	42	20	31	38	70	-		•	14	-	-	33	8 -		-			-	-			:	-	-	-	•		• -	-	-	8	-	• •	•
Hibbortia, vaginata.	8	8	-	-	13	-	6	7 -	-		-				_	-	_		-	-	-	55 LL		ъ С		-	•		•	-	•	11	•		
Meinlouce thyrnoides	31	. 17	•	-	-	-	13		-	-	13	-	-					-	-	-	-	- 64	21	6/	<u>, 1</u> 3	5	•		-	-	-	-	-	• •	•
Jacksonia sp. Bussekon (G.J.K. 4482) PN	8	8	-		-	•	-		-	-	13		_		-	-	-	- •	-	-	•	11 -	41	100	SK -	37	-	- 9	- (-	•	-	•		-
Eucelyptus merginsta subsp. mergineta	10	0 75	-	8	88	-	6		-	-		_	-	16	•	-	-		-	-			5	92		-	-	• •	•	-	-	-	-		· -
Hypocalymma robustum	62	42	-	_		-	-			_		13	-	<i>w</i> •	-	-	-		-	•	43	× 60	64	33	- 13	11	-	12 1	l 8 -	5	-	34	-	• •	
Lomandra sericea	85	67	-		25		6	- 1			•	13			•	-	-		-	-	43	56 -	28	75	•	21	5	4 9) -	-		21	-		-
Xylomelum occidentale	62	: 33		-	~	_	-	- 1		-	-	•		• •	-	-	-		•	-	43	56 11	51	50	- 18	16	24	- 9) -	-	-	11	-		
Cysthochesta clandestina	15	47	-	_	_	-			-	-	-	-	•		-	-	-		-	-	14	67 -	26	42	•	-	•	- 9) -	-	-	-	-		
Compholobium confortum		17	-		-	-	-	• •	•	-	-	-	-		•	-	-		•	-	57	11 22	-	•	5 -	-	-		-	-	-	-	-		
Lebiches munchate			-	-	-	•	-		-	•	-	•		• •	-	•	-	• -	-	-	43	11 44	5	8 .	. 9	-	14		-	5	-	4	-		
•	~~	•	-	-	13	-	•		-	-	•	-	•		-	-	-		-	-	29	67 -	-	-	-	-	•		-	-		-	-		-
Species group O																																			
Acaria willdownian																																			
Astrology will down	51	20	-	-	50	-	•		-	•	-	-			-	-	•		-	•	29 3	22 67	15	42		21	-		<.		20				
	Z3	25	•	15	25	10	•	- 1	1 -	-	-	-	- 4	8.	-	-	•			-	71	κ	28	-	_		è		O	-	29	11	•		-
Chillionan Linve.	38	-	•	8	63	-	6	60 1	16	-	13	-	11 #	8 2	ο.		-			_		ũ .	~			-	5	° 1	ō -	-	-	26	-		-
Lomandra, cacepitosa,	15	33	-	8	38	•	13	71	1 -		38	13			• .	-				-	4 7	11 22	6		- o	4/	10	12 5	<u> </u>	21	14	37	-	• •	-
Hibbertin hyperiocides	10	0 100	- (38	100	30	-		-	-	•	-	22 .		_	_	_	-	-	-	100 2	11 33	~ ~	50 1	1 18	32	38	8 6	49	37	•	37	-		-
Hovea trisporma var. trisporma	38	58	•	-	38	10	-	7 -		-	-					-	•		•	-	100	/6 59 S	90	100	3 -	68	57	48 8	29	79	57	100	-	• •	•
Droson stolomform	15	-	-	15	75	10	-	7 -	6		-				-	•	-			. •	43 20	<u> </u>	49	- 84	. 9	58	29	16 4	<u>ح</u>	11	14	26	-		-
Isotropis cunsifolia	8	8	-	8	-		6	· .	-	-		13			-	-	-	-	100	-	29 4	4 36	62	-	9 -	-	•	- 4	5 18	8 16	29	8	•		•
Danthonia occidentalia	-	8	-	-	38		6		-	s			11				-	• -	-	•	14 -		31		•	11	14	8 1	89	5	•	32	-	8 -	-
Gompholobium tomontosum	-	8	-	-	25	-	13 .	40 T	1 -	-		-			-	•	-	• •	-	•	5/		51	17 3	5 -	74	19	12 1	8 55	5 42	14	50	22	62 -	-
Lonocarya fienuosa	15	25	-	-		60		. 7	- -	<	_	-	11	-	-	-	-		•	•	2/ 3	xo 07	79	58 (3 27	79	29	36 1	8 55	5 21	29	55	22	54 -	-
Tracitymono pilcas.	15	17	-	8	25	10	25	67 7	 	-	-	-			- -	•	-		-	•	57 -	- 44	69	25 3	8 -	63	48	72 3	6 10	00 79	100	87	44	92 •	-
Hibbertia moomosa	-	8	-	-			-				-	-			• -	-	-	· -	•	-	29 4	100	79	92 8	1 18	79	38	24 8	2 10	DO 95	86	82	67	77 5	7 75
Droson crythrorian		-	-	8	75	30	~	13 7	- - -	è	-	-			•	-	-	• -	-	•	29 -	· -	49	42 3	19	42	14	32 3	6 30	5 53	57	8	-	23 -	-
* Urainia anthomoidea	-	-	-	- 11	20	20	<u>.</u>	0 0	4 11		-	•		• •	-	•	-		-	-	86 1	100 -	64	25 :	69	84	71	20 5	5 36	5 74	43	79			-
* Giadiolus carvozhvilaceus			-	2	20	20	ים	ou o	<i>i</i> 17	19	-	-			-	-	-		•	-	29 5	66 100	56	25 5	0 27	74	38	20 3	69	32	•	71	-		
Stips comproses	-	8		3	-	20	- ;	- •	-	10	•	-	- 1	5 -	•	-	-		•	-	57 -	- 89	•	- 2	5 27	68	43	40 -	9	5	-	68	-		-
Wahloubergia preissii	-	-		14	12	200	-	12 -	-	-	-	•			-	-	•		•	-	- 1	1 78	8	58 1	9 -	58	38		55	5 42	-	26	-		-
* Aira carvophylics/cameriana group	- 9	17	20	12	13	-		13 -		•	-	-	- 8	5 -	-	-	-	• •	-	-	• •	•	13	17 6	-	32	33	8 -	-	58	-	34	11		
* Briza marine	e e	42	20	2	100	100		73 [] 70 []	⊥ 39 ∽ ⊂	57	-	38	44 8	s 80	U 11	-	-	• •	-	-	43 -	11	46	33 3	19	63	19	24 5	5 73	3 100) 14	71	33		4 17
* Hypochagie glabra			20	8	100	100	20 (ou/ 10 ∽o	N 67	86	13	38	33 7	- 17	11	-	-	-	-	-	14 1	1 56	79	58 8	1 -	84	5	72 8	2 19	3.		74	22	-	
Thyanotus manglesisnus/matemanii	<u>د</u>	60	00	02	100	60 1	09 S	93 10	JU 56	52	50	50	78 C	52 40	0 33	50	-	13	3 50	•	29 4	14 56	87	75 8	1 18	89	10	80 9	1 01			80	11	8	2
Conception and generation processing	ð	20	20	54		50	: :	53 33	3 56	48	•	25	22 3	58 -	•	-	-	-	50	-	43 1	1 44	46	42 5	1 -	53	-	48 2	6 01		71	67	33	72 .	• ~
	5 ^~	33	40	15	25	20	6 1	13 -		-	13	50	33 8	3 -	11	-		-	•	-	14 -	78	64	25	8 9	42	19	64 4	a -	0 วา	57	42	22	20 4. 72	, <u>,</u>
relatesheran sufficients	92	75	40	46	75	40	25 -	- 11	1 -	19	38	38	44 -	• •	-	-		-	50	-	29 4	7 33	85	83	a ó	KR.	39	77 O	3 4	14	21	33 60	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		13
V-AL-Land and W	54	92	100	92	100	90	75 2	20 22	2 -	33	-	13	33 1	- کا	-	-	•	-	100	67	43 9	9 72	38	17	- / • ~	≪0	-0 A1	<pre>// / / / / / / / / / / / / / / / / / /</pre>	- 10 	, 74	80	36C	4	92 2	¥ 50
Xexthornos preisei	8	-	-	8	25	10 -	- 4	40 Z	2 11	10	13	50	56 1	15 44	. -				-		14 -		13	40					לי ס	79	57	22	•	- •	-
Xanthorrhone preiseái Controlopis drummondiene.	8	-	-	•	25	10	6 6	57 LÌ	1 33	19	-	13	n -	. 7	з.			_	-	-			13	44 3		23	19	20 I	8 9	63	-	50	•		-
Xenthorrhoen proiseil Controlopis drummondiane Quinstie urvilloi		-	-	15	13	40		. 2	2 22	10	25	13	22 -		11	-			-	-		⊿ 44 ≤ 11	25	0]	· ·	32	2	4 1	R 18	\$ 21	-	26	-	• -	-
Xauthorhoos preseni Controlopis dummondiens. Quinetis urvilloi Drosota macmanta.	-		-	31	38	10	6 1	13 11	6	52	25		33 -		-	-		-	•	-		0 33	25	- 1	5 9	16	5	89	36	55	71	16	-	8 -	-
Xadhachaa peessai Coatrologis drummondena Quinotia uvilloi Drosoya maczanta Hyslosporma octuła	:			8	-		13	53		10	×	-			, ·	-		-	-	-	- 1	1 11	B			•	29	4 -	45	; .	43	13	-	8 -	
Xasthorthor present Costrolepis drammoodiena Quinsta uvilloi Druseta macanatha Hyalosperma cotula Mittuseen persócas	י - זע	-			10		6		20	10	29	- -	- 00 66	• 40	- י	-	•	-	50	-	29 -	- 44	5	25 1	3 27	37	62	• -	82	2 11	29	13	22	• •	13
Xastharthora pressaii Contrologis drammoodiana Quinsis urvilloi Drosora macmanha Hyslogreema octula Mitrusacmo paradoxa Sybidium calconstum	- - 15	25	20	23			~ .			13	26	JU .	- 00	· •	-	-	•	•	-	-	57 -	•	5	- 1	39	11	14	4 -	-	11		37			
Xasthorthor pressai Costrologia dammondian Quinstia urvilloi Drosera maczantha Hyslogreema octula Mitrasacmo paradona Sytikium calconstum Podologia gradita	- - 15 8	25	20	23	36 13	_					1.7	~	-																			~ ~ ~	-		-
Xasthorrhoen preseni Costrolepis drammoodiena Quinstis urvilloi Droseta macantha Hyalosperma cotule Mittuescon persoloxa Sylidium calouratum Podelepis gracilis Homolociadum bomelocurosen	- 15 15 8	25	20 -	23	38 13 63		 x	-	6	14	13	25	- 8	3 -	-	•		-	-	-	- 1	1 100	21	• -	•	-	-	- 9	-	11	-	16	-	8.	
Xasthorthorn pressai Controlopia drammondiana Quinstia urvilloi Drosera macaanha Hyslooperana ootuk Mitrasecano paradona Syhidium calceratum Podolopia gmailia Homalooiadium homelocarpan Konwolia prostina	- 15 15 8	25	20 - -	23	38 13 63	30	 ອັ 4	• -	6 17	14 5	13 -	25 -	- 8 - 8	s -	:	50		:	-	:	- 1	1 100 11	21 33	8 1	3.	- 5	-	- 9 8 4	536	11 5 53	-	16 47	-	8 -	
Xasthorthora proiseii Costrolopia drammoodenn Quinota uavilloi Drosera maczantha Hyslograeme ootuja Mitraseeme optuja Mitraseeme optuja Stytidum calcoratum Podelopia gracilia Homaloeciadium homelocarpum Konsodia prostrata	- 15 15 8 -	25	20 - - -	23 - - 8	58 13 63 50	30 30	 25 4 6 -	 +0 - - 13	6 17	14 5 5	13	25 -	- 8 - 8 - 1	3 - 3 - 15 -	-	50 50		•	-	- - 33	- 1	1 100	21 33 28	8 1	- 3- 39	5	-	- 9 8 4 8 2	5 36 7 9	11 5 53 53	- - 14	16 47 26	11	8 - 8 - 23 -	

	12	16	2	34	36	3c	4	5	6	7	1	9	10a	106	11	12	13	14	15	16	17	1\$	19 2	20a 2	206 20	c 21s	215	21c	22	23a	23Ь	24	25	26a	266	27	28	29a :	296	30a :	30b	30c
Lagonifera husgolii Macrozannia riedioi Laucopogon propinquua Sowerheas kurillera Diskepogon emplippe * Trifelium campetro Cransula coloreta Milotzia tanifolia Waitzia cittine Microliona stipoides Percestylis aff. mana Isolopis margineta. * Vulpia myuros * Ehrharta calycian Loyidosporms sp. (BIAENG 231) Mecomolema peoudostygin Seavola caressoon Petrophie macrostanohye. Opporularia vaginan Halsen triferosta. Hybanthus calycinus Pea drummondiana Casayin gabolla. Dryandra nives, Tricocyno elatior Exicolius elitentus Casayin gabolla.	15 - - - - - - - - - - - - - - - - - - -	58 8 8 25 8 8 8 8 8 8 8	200 60 20 49	- - - - - - - - - - - - - - - - - - -	50 13 25 75 8 - 13 - 13 - - - - - - - - - - - - 88 13 75 25 - - - - - - - - - - - - - - - - - -	20 50 30 10 - - - - - - - - - - - - -	6. - 6 - 13 6 6 - 6 - 6 - 9 - 7 - 6 - 9 - 6 - 9 - 6 - 19 6 - 9 	7 13 7 - 7 33 27 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22 111 112 22 56 11 11 22 23 33 11	111 6 6 6 22 - 17 44 4 17 - - - 111 6 - - - 17 7 -	5 - - 5 - - 5 - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -	8 15 8 15 - - - - - - - - - - - - -	- 200 - 200 - - - - - - - - - - - - - -	11	50				- - - - - - - - - - - - - - - - - - -		1 2 <td< th=""><th>11 - 11 - 12 22 13 - 14 - 15 - 16 - 17 10 18 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 12 - 13 - 14 - 15 - 11 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - <tr td=""></tr></th><th>74 64 33 49 31 23 8 8 8 8 8 8 8 8 8 8 8 8 8</th><th>25 25</th><th>31 25 6 6 - - 13 13 19 19 19 19 6 6 - - - - 13 31 - - - 5 6</th><th>- - - - - - - - - - - - - - - - - - -</th><th>16 21 - - - - - - - - - - - - - - - - - -</th><th></th><th>4 40 4 10 228 44 12 20 28 44 224 224 224 224 224 228 228 228 2</th><th>73 100 73 91 64 73 18 65 9 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 73 91 64 73 91 83 65 97 73 91 83 65 97 73 91 83 65 97 73 91 83 73 91 83 73 91 83 73 97 84 73 73 91 83 73 97 84 73 73 97 84 73 73 97 84 73 73 97 84 73 74 59 74 59 77 74 75 77 77 78 77 77 77 77 77 77 77 77 77 77</th><th>9 9 - 27 64 91 54 700</th><th>89 37 32 5 68 89 45 5 5 7 47 11 - 32 5 11 5 68 89 42 5 5 7 47 11 - 32 5 11 5 68 89 42 5 5 7 47 11 - 32 5 11 5 68 89 42 5 5 7 47 47 11 - 32 5 11 5 68 89 42 5 5 7 47 47 11 - 32 5 25 11 5 68 89 42 5 5 7 47 11 - 32 5 5 7 47 11 - 32 5 5 7 47 11 - 32 5 5 7 47 11 - 32 5 7 12 5 12 5 12 5 12 12 12 12 12 12 12 12 12 12</th><th>43 </th><th>55 37 24 61 8 21 29 5 5 77 21 25 37 21 25 39 39 39 24 5 18 21 26 - 29 13 11 13 3</th><th></th><th></th><th></th><th>38 - 13 - 13 - 13 - 25 - 25 - 13 - - -</th><th></th></td<>	11 - 11 - 12 22 13 - 14 - 15 - 16 - 17 10 18 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 12 - 13 - 14 - 15 - 11 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - <tr td=""></tr>	74 64 33 49 31 23 8 8 8 8 8 8 8 8 8 8 8 8 8	25 25	31 25 6 6 - - 13 13 19 19 19 19 6 6 - - - - 13 31 - - - 5 6	- - - - - - - - - - - - - - - - - - -	16 21 - - - - - - - - - - - - - - - - - -		4 40 4 10 228 44 12 20 28 44 224 224 224 224 224 228 228 228 2	73 100 73 91 64 73 18 65 9 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 59 73 73 91 64 73 91 83 65 97 73 91 83 65 97 73 91 83 65 97 73 91 83 73 91 83 73 91 83 73 97 84 73 73 91 83 73 97 84 73 73 97 84 73 73 97 84 73 73 97 84 73 74 59 74 59 77 74 75 77 77 78 77 77 77 77 77 77 77 77 77 77	9 9 - 27 64 91 54 700	89 37 32 5 68 89 45 5 5 7 47 11 - 32 5 11 5 68 89 42 5 5 7 47 11 - 32 5 11 5 68 89 42 5 5 7 47 11 - 32 5 11 5 68 89 42 5 5 7 47 47 11 - 32 5 11 5 68 89 42 5 5 7 47 47 11 - 32 5 25 11 5 68 89 42 5 5 7 47 11 - 32 5 5 7 47 11 - 32 5 5 7 47 11 - 32 5 5 7 47 11 - 32 5 7 12 5 12 5 12 5 12 12 12 12 12 12 12 12 12 12	43 	55 37 24 61 8 21 29 5 5 77 21 25 37 21 25 39 39 39 24 5 18 21 26 - 29 13 11 13 3				38 - 13 - 13 - 13 - 25 - 25 - 13 - - -	
Species group R Aonie ontonen Billerdiora verifiktie Lomandra perparoe Agrostocrinum sonbrum Comesporma virgatum Siga senibarteata/campylechoo Daviseie proiesii Hibboetia rhadinopoda Xaarbonia esatida Boronia spatbulata	46 54 - 62 8 - 23 38 8 46	83 67 58 67 42 83 33 25 67 17	20 - 60 80 - 60 - 60 - 60	- 8 15 - - - 8	- 13 25 38 38 13 13 - -	- 20 20 - 30 - 30 - 30 -	6 - 6 - - 38	7	-	- - - - - - - - - - - - - - - - - - -		- 13 13 13 - 25	- - 25 -	11 - - 11 - 11 - 11	- 8	- 203		•		• • • • • • • •				14	11 - 22 - 33 - 11 - - -	8 21 5 23 10 3 - 5 -	67 8 33 - - - 50			5						•			-			
Species group S Hales, cycloarpa Eucalygus hasmatoxylon Hibbertia amplexicoulia Iacopose sphaeroophalus Hales amplexicoulia Xanthorthose großla Hows, chreinsmitfölia Peetropkis politigera Gompheidebium knightianum Sylikium amecouum Amphipogen amphipogeneides Paterscein unbrose forms zasthina Sceworka aufligtera Gompheidebium polymorphum Teterstriona lasvia Logania estyrikifölia	54 62 69 69 54 54 54 54 54 54 55 85 85 85 85 85 85 85 85 85 85 85 85	- 33 17 17 25 25 33 67 75 67 8 58			- - - - - - - - - - - - - - - - - - -									11					• • • • • • • • • • • •						111 - -		8 88	6		• • • • • • • • • • • • • • • • • • • •												
Number of plots/type	13	12	5	13	8	10	16	i 15	; 9	18	; 21	8	8	9	13	5	9	2	4	4	8	2	3	7	99	39) 12	16	11	19	21	25	11	11	19	7	38	9	13	7	8	3

These community types have the highest mean species richness recorded (67.6 and 67.8 species / plot; Table 13). Weed frequency is significantly higher in community type 1b reflecting higher human impacts to the remnants to which this community is confined (2.4 weeds/ plot cf. 0.3 weeds/ plot). The community type 1a which occurred along the edge of a large forest block had the lowest disturbance rating of any group (Table 13). Mean rainfall for these groups was high as would be expected from their southern distribution.

Community type 2 are shrublands or open low woodlands restricted to small remnants south of Busselton. These occur on seasonally inundated sandy clay soils. They are shrub rich and thus differ from all other seasonal wetlands which classify into super group 2. They are best characterised by species groups E, M and R and are lacking most species in species group S. This community type has moderate species richness (mean 51 species / plot). Weed frequency is low with a low disturbance rating (Table 13). The wetter nature of these sites is apparent with the occurrence of species such as *Kingia australis, Eutaxia virgata* and *Calothamnus lateralis* being present in all plots. These species are totally lacking in both subgroups of community type 1.

The third community type of the heavy soils occurs further north stretching from Waterloo to Pearce airforce base (Appendix 1). This community type is considered to have been one of the most extensive community on the eastern side of the coastal plain (Keighery and Trudgen 1992) but due to clearing is now regionally rare (Keighery and Keighery 1992). It has three distinct subgroups comprising either *Eucalyptus calophylla*, *E. marginata* or *Eucalyptus wandoo* woodland or *Xanthorrhorea preissii* dominated scrub or heath formations. These three subgroups differ in the relative proportions of species in species groups P, Q and R.

Community type 3a has, in addition, high frequencies of species group E (Table 12). This subgroup occupies the wettest sites with high frequencies of *Eucalyptus calophylla* and *Kingia australis*, and very low frequencies of *E. marginata. Pericalymma elliptica* was present in over half the sites of this subgroup.

By contrast in group 3b most sites are dominated by both *E. calophylla* and *E. marginata*. Species such as *Bossiaea eriocarpa* and *Conostylis juncea* differentiate this subgroup. Type 3b has been recorded from alluvial soils near the Peel - Harvey estuary as well as the better drained sites on the eastern side of the plain.

Group 3c extended further to the north and differed from the other subgroups in terms of frequency of species occurrence rather than having different species groups. *Eucalyptus wandoo* was an occasional dominant and this group lacks species such as *Bossiaea eriocarpa*, *Stylidium piliferum* and *Conostylis juncea* (common in type 3b) and *Acacia drewiana*, *Hakea incrassata*, and *Lepyrodia macra* (common in type 3a). Thirty percent of quadrats included *Acacia saligna*, this species was not recorded in the other subgroups.

There were significant differences in mean species richness between the subgroups. Subgroups 3a (58.9) and 3b (61.2) were significantly higher than subgroup 3c (48.0) (Table 13). Not surprisingly rainfall was also significantly lower in subgroup 3c. There was no significant difference in weed frequency between any of the groups. Average vegetation condition ranged from 2.0 in community type 3a to 2.6 in group 3c which represent more disturbed condition than seen in either community types 1 or 2.

Community types of the seasonal wetlands

Almost all of the quadrats in the second major subdivision of the dataset are seasonal wetlands. These occur across all major geomorphological elements. They are the most heterogenous group, with many more community types discernible than the other major groups (Figure 6). Many of the community types are represented by only a few quadrats with restricted distributions (Appendix 1).

Table 13. Average values for species richness, rainfall, slope (1 - flat to 3 - steep), weed frequency, vegetation condition (1 - excellent to 5 - badly degraded) and number of quadrats in each of the groups and subgroups in the 30 group classification.

Туре	Species	Rainfall	Slope	Weed	Vegetation	Number of
	richness			frequency	condition	quadrats
la	67.6	1001	2.0	0.3	1.7	13
16	67.8	966	1.5	2.4	2.0	12
2	51.0	972	1.0	0,8	1.9	5
3a	58.9	985	1.3	3,9	2.0	13
3b	61.2	1013	1.3	5.7	2.4	8
3c	48.0	907	1.5	6.0	2.6	10
4	36.9	922	1.0	3.3	2.0	16
5	38.4	907	1.1	5.8	2,1	15
6	26.6	885	1.2	7.9	3.6	9
7	46.4	864	1.0	8.0	2.3	18
8	52.0	943	1.0	11.0	2.7	21
9	35.5	972	1.1	2.2	2.0	8
10a	51.8	956	1.0	5,8	2.1	8
10b	53.7	98 7	1.6	4.9	2.2	9
11	27.2	920	1,3	6.9	2.7	13
12	26.4	895	1.0	5,5	2.9	5
13	17.4	918	1.0	1.4	1.8	9
14	16.5	792	1.0	0.7	2.3	2
15	17.5	833	1.0	4.3	2.9	4
16	13,5	893	1.3	3.7	2.9	4
17	13.6	872	1.0	1.7	2.3	8
18	39.5	942	1.0	5.6	2.5	2
19	22.6	829	1.3	6.9	2.7	3
						_
20a	67.4	876	1.7	1.0	1.7	7
20b	62.7	1026	1.6	1.4	2.6	9
20c	64.0	875	1.7	4.0	2.2	9
21a	54.6	938	1.7	4.2	2.5	39
21b	61.3	948	1.8	1.7	2.0	12
21c	40.5	916	1.3	3.6	2.6	16
22	32.5	841	1.0	0.6	2.0	11
23a	62.8	884	1.8	5.2	2.0	19
23b	53.8	810	1.8	0.7	1.8	21
24	41.8	815	2.0	14.2	3.0	25
25	52.8	922	1.6	12.9	3.3	11
26a	50.2	844	2.2	8.0	2.1	11
26b	52.7	852	1.8	8.4	2.5	19
27	39.0	932	2.2	0.0	1.7	7
28	55.2	818	1.8	8.0	2.5	38
292	40.7	700	21	11.2	23	ġ
29h	35.6	834	2.1	3.4	1.9	13
302	21.1	781	2.2	63	3.2	7
30h	21.1	007	10	0.J 77	3.2	, R
300	27.0	875	26	37	3.1 27	3
300	41,3	025	2.0	<u> </u>	4.1	

The first two wetland communities are shrub rich damplands (Semeniuk 1987) centred on the Bassendean land system. These two communities with a diverse and dense shrub grow in soils that are saturated for short periods in winter. Free surface water is rare. Community type 4 is distributed over the length of the coastal plain and was generally found on the Bassendean or Southern River units. This shrub rich community generally has scattered *Melaleuca preissiana* as an overstorey. Where tree species are absent it forms heaths or scrubs. It shares a number of species in species group O and Q with upland Bassendean communities (Table 12). *Pericalymma ellipticum, Hypolaena exsulca, Hypocalymma angustifolium* and *Dasypogon bromeliifolius* were the most constant species in this community type. Average species richness for this group was 36.9.

By contrast, community type 5 has no consistent dominant overstorey. Dominants may include *Banksia ilicifolia, M. preissiana, Actinostrobus pyramidalis* and *Kunzea ericifolia.* While species composition is similar to the previous group this community has a higher frequency of species in species group L and a higher frequency of annual species. It also includes two sites from low dunes ridges in Austin Bay Nature Reserve. It generally has more open ground and a less dense shrub layer than community type 4. It has a mean species richness of 38.4 with an average weed frequency of 5.8. This community was recorded from Bassendean, Vasse, Herdsman and Beermullah land units.

Community type 6 is the first of the seasonal wetlands on the heavy soils, it has been recorded on the Guildford and Yanga units from Cardup to Bullsbrook. Floristically it is transitional between the moderately species rich Bassendean wetland described above and the heavy soil communities described below. Average species richness has dropped to 26.6 species / plot and average weed frequency risen to 7.9 / plot. The rise in weed species is even more dramatic when expressed as a percentage. It had the highest disturbance rating of any community and inspection of air photos indicates that this community type appears to have arisen from major disturbance events. In some cases this may have been clearing or grazing in others it appears to have resulted from major *Phytophthora* infections. It is not clear from the data which community type these sites would have belonged to prior to disturbance. The most faithful species to this group are all weeds except for *Hypocalymma angustifolium* (Appendix 1).

The next four community types are typical clay pan, clay flat and ironstone communities (seasonal wetlands) of the heavy soil of the eastern side of the plain and the heavy soils near the Peel - Harvey estuary. Keighery and Trudgen (1992) describe these communities as a mosaic of structural types. Sites of community type 7 are generally dominated by either *Melaleuca viminea*, *M. uncinata*, *M. cuticularis* or *Casuarina obesa* or a mixture of these species. This community occurs on heavy clay soils that are generally inundated from winter into mid summer. Species composition (*Melaleuca cuticularis*, and *Casuarina obesa*) may indicate some saline influence for at least some part of the year.

High frequencies of species in species group J defines community types 7 to 10. Differences between these groups is primarily on proportions of the species shown in Table 12, and in occurrence of a series of less frequent species restricted to each of these four types.

In community type 7, for example, such species as *Brachycome bellidioides*, *Schoenus* sp 2, *Centrolepis polygyna*, *Pogonolepis strigosa* and *Cotula coronopifolia* (species group J) are more typical of this community. In addition species such as *Angianthus* aff. *drummondii*, *Eryngium pinnatifidum* subsp. *palustre* Ms, and *Blennospora* aff. *drummondii* occur in this community in low frequency (<50%) and are absent from community types 8 to 10.

These four clay pan, clay flat and ironstone communities are the most species rich seasonal wetlands (35.5 - type 9 to 53.7 - type 10b), with type 7 having an average of 46.4 species. Much of the species richness in all four communities types comes from geophytes and an annual flora that germinates, grows and flowers sequentially as these areas dry over summer. While the massive sheet ironstone finds surface expression in community type 10b, ironstone is known to occur at varying depth in the other three communities in this group.

In early spring many of the sites in community type 7 are covered by free water up to 30 cm deep. *Cotula coronopifolia* formed yellow floating mats in some pools while others were dominated by

Villarsia submersa. Aquatic species are common in this community type early in the growing season. As the wetland dries a succession of species such as *Centrolepis* spp. and annual *Stylidium* spp. successively germinate grow and flower, resulting in an extended flowering period of over three months. It is likely that some of these communities would have occurred in the totally altered *Casuarina obesa* woodland south of Serpentine (Keighery and Trudgen 1992). The understorey of these stands have been completely converted to improved pasture. Some sites within community type 7 have significant variation in species composition and it may be that other related communities have been lost due to agricultural development.

Weed frequencies tend to be high in these four communities but given the high species richness the percentage of weeds is low to moderate. Average vegetation condition similarly ranges from 2.1 to 2.7.

Community type 8 are the clay pan communities which can be dominated by Viminaria juncea, Melaleuca viminea, M. lateritia or M. uncinata but also occasionally by Eucalyptus wandoo. They differ in proportions of species from species group E, and occurrence of such species as Hypocalymma angustifolium, Acacia lasiocarpa var. bracteolata (Long peduncle form), and Verticordia huegelii at moderate frequencies (Table 12). Aquatic annuals are again common but pools probably are not inundated to the same depth or for the same length of time as those above. Species richness averages 52 species / plot with weed frequencies of 11 / plot (almost entirely annuals or geophytes). This community had the highest disturbance score of the heavy soil wetland communities (2.7). This community type is distributed from Ellen Brook to Waterloo on small remnants of less than 20 ha (Appendix 1).

Average species richness in community type 9 fell dramatically to 35.5 (significantly lower than other heavy soil wetland communities) (Table 13). This community represents shrublands or open woodlands of clay flats that are inundated for long periods. Sedges are more apparent in this community (moderate frequencies of *Chorizandra enodis, Cyathochaeta avenacea, Lepidosperma longitudinale* and *Leptocarpus coangustatus*) and weed frequencies (2.2 / plot) drop significantly lower than other heavy soil wetlands, presumably because of the long inundation times.

The most rapidly drying of the clay flats form community type 10. These generally have shallower microtopography than the previous three community types or else have thin skeletal soils. Indeed two distinct subgroups are recognisable for this community. Both subgroups are differentiated from the other clay pan community types by the almost complete lack of low frequency species in species group H. This species group includes aquatic annuals and geophytes typical of the other clay pan and flat communities (eg. Schoenus natans, Crassula natans, Eryngium pinnatifidum subsp. palustre Ms, Wurmbea dioica subsp. aff. alba and Amphibromus neesii). Community type 10b occurs on small areas of ironstone with thin skeletal soils in the Busselton area. Much of this land unit has been cleared. These sites have an endemic flora which can be seen in species group G. These endemics include Petrophile latericola Ms, Andersonia aff. latiflora, Dryandra sp 30, Hakea aff. varia (Yellow flowered form with an earlier flowering period), Loxocarya magna, and Lepyrodia aff. macra. These communities are very rich with large numbers of annuals and geophytes.

All of the remaining nine wetland community types have much lower species richness than the preceding groups, except for community type 18 (shrublands on calcareous silts). These groups are largely the deeper wetlands and consequently much of the annual flora drops out (see species group J). These groups are generally but not totally restricted to the aeolian units.

Community type 11 occurs on both Bassendean and heavier soil units. Sites in this community are generally dominated by with *Eucalyptus rudis* and / or *Melaleuca rhaphiophylla*. This community is found from Bullsbrock south to Pinjarra with an outlying site south of Bunbury (Appendix 1). Common species of this community type include *Astartea* aff. *fascicularis, Lepidosperma longitudinale* and *Pericalymma elliptica*. Average species richness is 27.2 (Table 13).

Sites in community type 12 have similar species composition to type 11 but are mostly dominated by *Melaleuca teretifolia* and / or *M. rhaphiophylla*, *Lepidosperma longitudinale* and *Astartea* aff. *fascicularis* also commonly occur in this community type. It is differentiated by high frequencies of

Baumea articulata, Oxylobium linearis and *Villarsia latifolia* and is restricted to the moderately deep seasonal wetlands of the Bassendean and Southern River units between Forrestdale Lake and Capel. Average species richness was 26.4.

Community type 13 represents deeper wetlands (seasonally inundated to 1 m) on clay or humus rich sandy soils and occurs on a variety of land systems (but primarily Bassendean and Pinjarra Plain). Where it occurs on the Bassendean system it occurs low in the landscape with considerable organic matter accumulation. Dominants recorded include *Eucalyptus rudis, Melaleuca rhaphiophylla, M. lateritia* and in one plot *Melaleuca preissiana*. Characteristic species are *Triglochin procera, Melaleuca rhaphiophylla* and *Hakea varia*. This community type occurs south from Serpentine but an outlier was recorded from a deep wetland area in the head waters of GinGin Brook. Average species richness was very low (17.4) as was average weed frequency (1.4), again reflecting the long period of inundation of this wetland type.

The next wet community (type 14) has a similar inundation period to type 13 but occurs on sandy soils. Only two sites were located in this community type: one dominated by *Eucalyptus rudis* and the other by *Banksia littoralis* and *Melaleuca rhaphiophylla*. Common taxa included *Melaleuca preissiana, Baumea vaginalis* (understorey dominant), *Kunzea ericifolia* and *Jacksonia furcellata*. This community was one of the most species poor recorded in our study (mean 16.5 species / plot) but had very few weeds. This community was only recorded in the north of our study area (Appendix 1).

Melaleuca rhaphiophylla or Casuarina obesa dominate community type 15. This group occurs on alluvial sediments and is related to community types 7 and 9. It occurs in site which are inundated for much longer periods and to a greater depth than community type 9 and as a result the annuals of species groups J and Q are absent. More typical aquatic species (species group H) and deep wetland species (group I) are more common (Table 12). It is obviously more saline than community type 9 with species such as Atriplex cinerea, Samolus repens, Sarcocornia quinqueflora and Sporobolus virginicus being more common. Species richness is low (mean 17.5 species / plot). The community was only recorded on the eastern side of the plain north of Perth and adjacent to the Peel-Harvey Estuary (Appendix 1).

Community type 16 is made up of the most saline sites. It is quite heterogenous and includes a saline estuarine site, a site on Tamala limestone in the salt spray zone and two sites from saline flats south of Busselton. These environments were poorly sampled and with further sampling more homogenous communities could be defined. The saline flats south of Busselton are now a very rare community type since most of this soil type has been converted to pasture.

The last three wetland communities are restricted to the Spearwood, Quindalup and Vasse land systems close to the coast. Community type 17 has only been recorded from swales in Quindalup and Spearwood dunes or at interfaces with other systems. This group is generally dominated by *Melaleuca rhaphiophylla* although one swale was dominated by *Eucalyptus gomphocephala*. This is the only record of tuart in a seasonal wetland in this study. Species in species group I were common with *Gahnia trifida* being the usual dominant or subdominant in the understorey. Species diversity was very low (mean 13.6 species / site). This community type was found south from Rockingham (Appendix 1).

Community type 18 was a very species rich (39.5) community found restricted to a calcareous silt flat in Yalgorup National Park. The two sites located in this community were open low scrubs with rich annual flora. Common taxa were *Acacia saligna* (suckering form), *Leptomeria lehmannii*(a taxa apparently restricted to this community type), *Xanthorrhoea preissii, Gahnia trifida* and *Melaleuca teretifolia*. This flat would be classified by Semeniuk (1987) as a dampland.

The final wetland community type (type 19) is a species poor Quindalup swale community found restricted to the linear features in the Becher Point area and adjacent Quindalup swales at the northern end of Lake Walyungup. This community is dominated by *Lepidosperma longitudinale, Isolepis nodosa* and *Muehlenbeckia adpressa*. At the Lake Walyungup site an overstorey of *Banksia littoralis* was present. This community type had an average of 22.6 species / plot had moderate to high frequencies of species in species group A, species typical of the Quindalup and Spearwood systems.

Community types centred on the Bassendean system

The third major grouping (super group 3 in Figure 6) in the analysis is made up of four community types. While over 50% of the sites in this group occur on the Bassendean land system, another 20% of sites are mapped as occurring on Spearwood Dunes and a further 18% of sites are mapped as occurring on Pinjarra Plain. Inspection of the dendrogram and the sorted two way table (Figure 6 and Table 12 - see species group O) shows that despite this variation in geomorphology, all sites in the third major group are much more closely related to each other than any other site. This is despite the fact that most of the upland Pinjarra Plain and Ridge Hill Shelf sites occur in super group 1 and most upland Spearwood sites occur in super group 4 (Figure 5).

Community type 20 occurs from Koondoola south to Yarloop. Sites in this community type were generally *Banksia attenuata* woodlands, *Eucalyptus marginata - Banksia attenuata* woodlands or shrublands. The three subgroups of this community type share high frequencies of species in species group O with community type 28 which encompasses much of the *Banksia* woodland sites on Spearwood Dunes. However this community lacks most species of species group A which are common on the Spearwood system.

Sites in community type 20a were found on sandy soils near Koondoola and also at base of the Scarp at Forrestfield covering two distinct land form units, Southern River unit (part of the Bassendean system, Table 2) and Karrakatta unit (part of the Spearwood system). The environmental geology series (Gozzard 1986) also places the sites north of Perth on the Spearwood Dunes. Structurally this group was either *Banksia attenuata* woodlands or *Eucalyptus marginata - Banksia attenuata* woodlands. This group is the richest of any of the *Banksia* communities recorded with an average species richness of 67.4 species / site. Weed frequency was low and the community was distinctive in having a diverse shrub layer and *Mesomelaena pseudostygia* occurs in all plots. Sites of community type 20a were differentiated from the other two subgroups by occurrence of species such as *Alexgeorgea nitens, Daviesia nudiflora, Synaphea spinulosa, Hibbertia racemosa, Stylidium calcaratum* and a variety of other taxa occurring at low frequency. These unusual *Banksia* woodlands have been previously identified by Keighery and Trudgen (1992) and Keighery and Keighery (1992).

Community type 20b was found on sands at the base of the Scarp between Byford and Yarloop. These sands were mapped as belonging to the Guildford or Forrestfield units (Pinjarra Plain and Ridge Hill Shelf). This community type was again very species rich (mean 62.7) with low weed frequency (Table 13). Most sites in this community type were *Eucalyptus marginata - Banksia attenuata* woodlands but *Banksia* woodlands and heaths were also found. Again *Mesomelaena pseudostygia* was common occurring in 67% of plots. Species that differentiated this subgroup included *Hakea stenocarpa*, *Conostylis setosa* and *Johnsonia* aff. *pubescens* as well as the absence of species restricted to the other subgroups.

Sites in community type 20c were largely scrubs and some *Banksia attenuata* woodlands again on sands of Forrestfield or Guildford units. This community type was only recorded from the Talbot Rd bushland at the base of the Scarp east of Perth. Species in species group C and D were largely restricted to this community type (as well as low frequency taxa not shown in Table 12). Again *Mesomelaena pseudostygia* was a ubiquitous species. This community type contained taxa more common on the Scarp (eg. *Templetonia biloba*) and taxa such as *Neurachne alopecuroides*, a species more typical of the marri - wandoo woodlands of the heavy soils. Species richness was again high in this community type (64.0) with average weed frequency rising to four species / plot.

In the original analysis patterns in sites and species grouping of community type 21 were equivocal. Data from this community type was re-analysed and three clear subgroups emerged. Community type 21a are primarily *Eucalyptus marginata - Banksia attenuata* woodlands, *Eucalyptus marginata - E. calophylla - B. attenuata* woodlands or *B. attenuata* woodlands. This is community type has high frequencies of most species in species groups O and Q and low frequencies of mainly native and weedy annuals from species group A. It also differs from the other two subgroups by presence of taxa such as *Sowerbaea laxiflora, Drosera pallida, Leucopogon propinquus* and *Isotropis cuneifolia. Allocasuarina fraseriana* and *Eucalyptus gomphocephala* are sometimes present as dominant or

Floristic survey of Swan Coastal Plain

codominant. Average species richness in this community type is 54.6 species / plot. This community type commonly occurs in the central part of the coastal plain from Perth to Capel. Two outlying occurrences of this community have been recorded north of Perth, these *Eucalyptus calophylla - B. attenuata* woodlands surround small lakes in the Bassendean Dunes east of state forest 65 (Appendix 1). Just on half of sites in this group occur on Bassendean Dunes, another third occur on Spearwood system and the rest on alluvial soils. The data suggests that some further segregation of the sites between Perth and Woodmans Point may be possible.

The second subgroup (type 21b) is restricted to sand sheets at the base of the Whicher Scarp, the sand sheets on elevated ridges or the sand plain south of Bunbury. Structurally this community type is normally *B. attenuata* or *Eucalyptus marginata* - *B. attenuata* woodlands. It differs from the other subgroups in the relative frequencies of species in species groups O and Q and by occurrence of species such as *Acacia extensa*, *Jacksonia* sp. Busselton, *Laxmannia sessiliflora*, *Lysinema ciliatum* and *Johnsonia acaulis* which are almost totally absent from the other subgroups. Species richness averages 61.3 species / plot.

Community type 21c occurs sporadically between GinGin and Bunbury. This community is significantly less species rich (mean 40.5) than the other subgroups and is largely restricted to the Bassendean systems. This subgroup tends to occupy the more low lying wetter sites and is variously dominated by *Melaleuca preissiana*, *Banksia attenuata*, *B. menziesii*, *Regelia ciliata*, *Eucalyptus marginata* or *E. calophylla* either singly or in combination. Structurally this community type may be either a woodland or occasionally shrubland.

Sites in community type 22 are also low lying and have significantly lower slopes than all other community types in the super group 3 except for community 21c. Sites in community 22 are generally *Banksia ilicifolia - B. attenuata* woodlands but *Melaleuca preissiana* woodlands and scrubs were also recorded. This community type was recorded on Bassendean and Spearwood systems and typically had very open understoreys. This group is likely to be seasonally waterlogged. It was found in the central coastal plain north of Rockingham. Species richness was low (mean 32.5) and the group was characterised by high frequency of species in species group M and a general absence of species in species group Q (compared to other communities in super group 3).

In Banksia attenuata - B. menziesii woodlands of community type 23 Eucalyptus marginata and E. calophylla are rare. This community type is generally restricted to the Bassendean system and can be subdivided into two distinct groups in the north of the study area. Type 23a stretches from Bullsbrook south to the Woodman Point area. Species richness of this group is very high with an average of 62.8 species / plot recorded, weed frequency is still relatively low at about 5.2 per site. This community type is differentiated by moderate frequencies of species in species groups L and M. The other subgroup (type 23b) has a more northern distribution (from Melaleuca Park to GinGin) and is characterised by high frequencies of species in species group N as well as a series of lower frequencies species not shown in Table 12. This group has a lower species richness than the other subgroup (53.8) and a significantly lower mean weed frequency (0.7 species / plot) reflecting the more extensive and intact Banksia woodlands which still occur north of Perth.

Community types centred on the Spearwood and Quindalup systems

The last major group seen in the dendrogram (Figure 6) are sites centred on the Spearwood and Quindalup systems. This group contains seven community types, types 24 to 28 are largely restricted to the Spearwood system while types 29 and 30 occur on Quindalup system. Both the Spearwood and Quindalup types are characterised by high frequency of species in group A. The Spearwood types also have moderate to high frequency of species in group Q, while this group of species are much less common in the Quindalup types. Indeed sites in the Quindalup types lack species from most species groups shown in Table 12.

Community type 24 are heaths or heaths with scattered *Eucalyptus gomphocephala* occurring on deeper soils north from Woodmans Point. All but three sites in this community type occur on the Cottesloe unit of the Spearwood system. This community is closely related to community type 25 which encompasses the *E. gomphocephala* - Agonis flexuosa woodlands south of Woodmans Point.

The former community differs in its virtual lack of species such as Agonis flexuosa, Geranium retrorsum, Oxalis perennans, Lomandra micrantha and Luzula meridionalis. This change in community type may be related to the drop in rainfall at the northern end of the study area. The southern group was recorded from Karrakatta, Cottesloe and Vasse units. Occasionally dominants other than tuart were recorded (eg. E. calophylla at Paganoni block and E. decipiens at Kemerton). In both cases tuart formed the overstorey nearby.

The heathland sites in community type 24 differ in presence of taxa such as *Dryandra sessilis*, *Calothamnus quadrifidus* and *Schoenus grandiflorus*. This may represent a distinct subgroup within type 24. The southern *E. gomphocephala - Agonis flexuosa* woodlands (type 25) are significantly richer than the northern group (52.8 cf. 41.8 species / plot). Weed frequency was very high in both groups (mean values of 14.2 and 12.9).

Community type 26 is restricted to the large limestone ridges north of Perth and those in the Yalgorup area. The two distinct subgroups are related to degree of soil development. On the skeletal soil on ridge slopes and ridge tops heaths dominated by *Melaleuca huegelii*, *M. acerosa*, *M. aff. acerosa* or *Dryandra sessilis* are found (type 26a). On the lower slopes or in pockets were deeper soil is able to develop *Eucalyptus gomphocephala*, *E. foecunda* or *E. petrensis* Ms woodlands or mallee develop over a dense heath (type 26b). Occasionally an overstorey was absent.

Type 26b is virtually restricted to the Cottosloe unit. Taxa typical of the limestone heaths are *Trymalium albicans, Templetonia retusa, Stylidium maritimum, Wurmbea monantha,* and *Acacia lasiocarpa*. While on the deeper soils *Hibbertia hypericoides, Caladenia flava, Lagenifera huegelii, Sowerbaea laxiflora, Schoenus clandestinus* and *Mesomelaena pseudostygia* are common. Species richness is similar in both subgroups (mean 50.2 and 52.7) as was a high mean weed frequency (8.0 and 8.4 species / plot).

Another limestone community was community type 27. This was largely restricted to the Yalgorup area and was either shrubland or mallee heath variously dominated by *E. decipiens, E. foecunda, Melaleuca acerosa* or *Hakea prostrata*. While similar in species composition to type 26 it differs in lacking many of the annual native and weed species and by the occurrence of taxa such as *Acacia truncata, Hibbertia spicata* subsp. *leptotheca,* and *Comesperma conferta.* This community has significantly lower species richness than the other two limestone community types (39.0) and significantly lower average number of weeds (less than 1 species / plot). Most sites in this community type fall in the Yoongarillup unit (as do two sites in community type 26b) with an outlier occurring north of Perth on Shire View Hill. The large limestone ridge on which these sites occur appears little different geomorphologically from other large ridge systems north of Perth (Semeniuk 1990) and species composition is more likely to be controlled by light availability.

The last community in the Spearwood system is community type 28. This community type is largely made up of *Banksia attenuata* woodlands, *Eucalyptus calophylla - B. attenuata* woodlands or *E. marginata - B. attenuata* woodlands. Community type 28 is characterised by high frequencies of species in species groups A, O and Q. It differs from the other Spearwood community types in the occurrence of species from species group O. Community type 28 has been recorded from Thompson's Lake north to Seabird. Species richness averages 55.2 species / plot and average weed frequency is high at 8 species / plot. Sites in this community predominantly fall in the Karrakatta and Cottosloe units except for a group of sites on at the base of the Dandaragan scarp (Appendix 1). These plots are clearly seen as outliers on the distribution map, separated from the main occurrence by Bassendean sands. These sites are atypical in lacking species such as *Daucus glochidiatus* and in the presence of species such as *Lepidosperma* 'eastern terete', *Scaevola phlebopetala* and *Acacia willdenowiana*. The sandy soils at the foot of the Scarp (Ridge Hill Shelf, Table 2) have been variously thought to be derived from weathered laterite (McArthur and Bettenay 1960) or to be a fossil shoreline beach and dune deposits (Woods 1979).

Both the Bullsbrook sites and the more western sites clearly show differences in species composition compared to the *Banksia* woodlands on Bassendean systems. In the Bassendean *Banksia* woodlands species from species group A were largely absent (except in community type 21a which includes unusual Spearwood sites). In addition species such as *Mesomelaena pseudostygia* and *Petrophile*

macrostachya which are common in the Spearwood Banksia woodlands are largely absent from Bassendean communities.

The other eastern *Banksia* woodlands and heaths (community types 20a, 20b, and 20c) are floristically more closely related to typical Bassendean *Banksia* communities (Figure 6, Table 12), although community type 20a also has significant associations with Spearwood communities as discussed earlier. The floristic data could be interpreted to indicate several different origins for these eastern sands or perhaps, more likely, indicate complex interleaving and / or reworking of some of the sand masses.

Community types 29 and 30 are largely restricted to the Quindalup system. Type 29 contains two distinct subgroups. The first subgroup are mostly heaths on shallow sands over limestone close to the coast. These communities do not have a single dominant but important species include, *Spyridium globulosum, Rhagodia baccata,* and *Olearia axillaris.* Average number of species / plot was 40.7 and weed frequency was high (mean 11.2 weeds / plot). This community was found from Seabird to Garden Island with woodland variants at Trigg and Yalgorup. These two anomalous sites, one *Callitris* woodland and the other a *Melaleuca lanceolata* woodland were both degraded with high numbers of annual weed species. As a result these two woodlands were classified with the Quindalup heaths rather than the other *Callitris - Melaleuca* woodland sites (community type 30a) as might have been expected.

Sites of the other subgroup (type 29b) were dominated by *Acacia* shrublands or mixed heaths of the larger dunes. This community type stretched from Seabird to south of Mandurah. Average species richness was 35.6 species / plot and weed frequency was significantly lower at 3.4 species / plot. Again there was no consistent dominant but species such as *Acacia rostellifera*, *Acacia lasiocarpa*, *Melaleuca acerosa* were important.

Community type 30 is typically the forests and woodlands of the Quindalup system. Again several subgroups are recognisable, type 30a are the *Callitris preissii, Melaleuca lanceolata* and (occasionally) *Eucalyptus gomphocephala* forests and woodlands restricted to a small area from Perth to Garden Island (Keighery and Keighery 1992). Typically the *Callitris* and *Melaleuca* forests have a dense overstorey with relatively few understorey taxa. As a result species richness is low (mean 21.1 species / plot, cf. type 29a) significantly lower than all other Quindalup community types except for type 30c. The two tuart plots in this group are likewise both depauperate. Speck (1952) describes this community in some detail and states that it was probably more widespread in the past being restricted by too frequent fires. Certainly the area of this community type has been significantly reduced since his study by both fire and urban development but we can find no reference that this community type are now found on Garden Island were a no burn policy and a native Tammar population have resulted in impressive largely weed free *Callitris* and *Melaleuca* forests and woodlands.

Other Eucalyptus gomphocephala sites of the Quindalup system occur in community type 30b. This group is either dominated by tuart or by Agonis flexuosa. It differs from community types 24 and 25 (tuart / Agonis communities on Spearwood system) by complete absence of many species in species group Q. This community type also has significantly fewer weeds than types 24 and 25 (7.7 cf 14.2 and 12.9). Species richness is similar with a mean richness of 37.6 species / plot. The presence of species such as Hibbertia cuneiformis, Geranium retrorsum and Dichondra repens differentiate this group from other Quindalup community types. This community is found from the Leschenault Peninsular south to Busselton.

The final subgroup (30c) is a small heterogenous group of 3 sites similar to type 30b. This group lacks many of the species from species group A. It is represented by a single plot of *Eucalyptus argutifolia* mallee and two *Dryandra* scrub / thicket plots above the Swan estuary on Spearwood dunes. These sites are depauperate yet contain typical Quindalup taxa such as *Spyridium globulosum*, *Olearia axillaris* and *Poa porphyroclados*. This community type needs further sampling. However, the Swan River sites occur in the only remnant of this community type on the river.

A summary of the community types and the major land system on which they occur is presented in Table 14.

Table 14. Generalised description of the 30 community types and most frequent landforms on which they occur.

Floristic	Generalised description	Predominant landform
community		type (as mapped by
type		Churchward and McArthur
		1980)
1a	E haematorylon - E marginata woodlands on Whicher foothills	Ridge Hill Shelf
1h	Southern F calophulla woodlands on heavy soils	Pinjarra Plain
2	Southern wat shrublands	Pinjarra Plain
3.0	E colonkulla Kingia australia woodlanda on hoose coila	Dinjarra Dlain
21	E. culophylia - Kingia australis woodlands on neavy soils	Dinjarra Dlain
30	E. catophytia - E. marginata woodlands on sandy-clay soils	Pinjana Pian
30	E. calophylla- Xanthorrhoea preissi woodlands and shrublands	Pinjarra Plain
4	Malalawaa majanjawa dominlanda	Decoordeen
	Metaleuca preissiana dampiands	Dassenucan Dassenucan
5	whited shrub dampiands	Bassendean / Pinjarra
0	weed dominated wetlands on heavy soils	Pinjarra Plain
7	Herb rich saline shrublands in clay pans	Pinjarra Plain
8	Herb rich shrublands in clay pans	Pinjarra Plain
9	Dense shrublands on clay flats	Pinjarra Plain
10a	Shrublands on dry clay flats	Pinjarra Plain
10b	Shrublands on southern ironstones	Pinjarra Plain
11	Wet forests and woodlands	Bassendean / Pinjarra
12	M. teretifolia and / or Astartea aff. fascicularis shrublands	Bassendean
13	Deeper wetlands on heavy soils	Bassendean / Piniarra
14	Deeper wetlands on sandy soils	Bassendean / Spearwood
15	Forests and woodlands of deep seasonal wetlands	Piniarra Plain
16	Highly saling seasonal wetlands	i ngana i lan
17	M shaphionhulla Galuia trifida appendi wetlenda	- Ouindalun / Snaamwood
10	M. maphiophytia - Ganna inflaa seasonal wettailus	Laka danagit
10	Shrubiands on calcareous sitts	
19	Sedgelands in Holocene dune swales	Quindalup
20a	Ranksia attenuata woodlands over species rich dense shublands	Spearwood / Piniatra
20 b	Eastern Banksia attenuate and / or E-manajusta woodlands	Didge Hill / Dinjerre
200	Eastern abguhlanda and woodlanda	Didge Hill / Diniema
200	Castern sinuorands and woodlands	Ridge rill / Pinjaria
218	Central Banksia attenuata - E. marginata woodlands	Bassendean /Spearwood
210	Southern Banksia attenuata woodlands	Ridge Hill / Pinjarra
21c	Low lying Banksia attenuata woodlands or shrublands	Bassendean
22	Banksia ilicifolia woodlands	Bassendean
23a	Central Banksia attenuata - B. menziesii woodlands	Bassendean
23Ь	Northern Banksia attenuata - B. menziesii woodlands	Bassendean
		a 1
24	Northern Spearwood shrublands and woodlands	Spearwood
25	Southern E. gomphocephala - Agonis flexuosa woodlands	Spearwood
26a	M. huegelii - M. acerosa shrublands of limestone ridges	Spearwood
26b	Woodlands and mallees on limestone	Spearwood
27	Species poor mallees and shrublands on limestone	Spearwood
28	Spearwood B. attenuata or B. attenuata - Eucalyptus woodlands	Spearwood
29a	Coastal shrublands on shallow sands	Quindalup
29b	Acacia shrublands on taller dunes	Quindalup
30a	Callitris preissii (or M. lanceolata) forests and woodlands	Quindalup
30Ъ	Quindalup E. gomphocephala and / or A. flexuosa woodlands	Quindalup
30c	Other mallees or scrubs	Quindalup - Spearwood

Major species groups

Thirty five species groups were defined in the classification. The 19 groups which had species frequency of at least 50% in one community type are shown in Table 12. The classification, groups

species, based on similar distribution in sites. In the same way the site classification groups sites based on similar species composition. While the 35 species groups will not be discussed detail, the major patterning does warrant some discussion.

Species group A is largely restricted to Spearwood and Quindalup community types (types 19, 21a and 24 to 30). Species group B was also largely restricted to community types with the Spearwood and Quindalup systems to south but had less widespread occurrences within these sites than species in species group A. Species group E are largely restricted to the eastern side of the plain on sandy soils, while those of species group G are typical of the southern ironstone communities.

Group H species are annual aquatic taxa and species in species group I were typical of the seasonal wetlands. Species group J occurred in both the seasonal wetlands and the heavy soils of the eastern side of the plain.

Species in group L were typical of wet *Banksia* woodlands and group M were wet Bassendean species. Northern Bassendean taxa occurred in species group N while species group O typically occur in sites centred on the Bassendean system (types 20 to 23) but many of these species also occur on well drained sites on the east of the plain (types 1 to 3) and in the Spearwood *Banksia* community. Species group Q are the most ubiquitous group but are less common in seasonal wetlands and sites on Quindalup system. Group R were another group of southern taxa and group S were more typical of foothills of the Whicher Scarp.

Distribution of singletons

Given the large number of singletons (i.e. taxa found in only one plot) that were recorded in this survey (272) it was of interest to know if these taxa were distributed randomly across the study area or were aggregated. If all of these species were naturally rare then a random Poisson distributed might be expected. If however some land systems or community types have been massively reduced in area then singletons could be expected to be clustered in small remnants. The distribution pattern of the singletons was tested for randomness by initially calculating expected distribution assuming a random Poisson distribution then testing these results against the observed frequency using a Chi-squared test. This analysis showed that the distribution of singletons was highly non random ($X^2 = 79.05$, P < 0.005) with fewer than expected singletons at frequency two and many more singletons than expected at frequencies greater than or equal to four. All of the quadrats with higher than expected numbers of singletons were from the eastern side of the plain. These patterns are likely to have arisen from the almost total clearance (>95%) of these heavy soils on the eastern side of the plain resulting in some suites of species now having a very localised distribution. It is likely that careful searches of bushland remnants with high singleton frequencies will result in the location of further rare species.

ENVIRONMENTAL CORRELATES

Comparison of floristic groups with geomorphology / geology

The 509 sites were located on 40 different Environmental Geology units (Table 15; Gozzard 1982a,b, 1983a,b, 1986, 1987; Smurthwaite 1986a,b; Jordan 1986a,b; Belford 1987a,b; Leonard 1991; Anon 1976, 1977a,b, 1978, 1981, 1982). Many of these units were only sampled a few times so it was necessary to amalgamate similar units to compare with the floristic community types. In all, 16 amalgamated units are recognised (Table 15 and 16). There is a very close correlation between these amalgamated units and the major geomorphological and geological systems (McArthur and Bettenay 1960) (Table 2).

These data clearly show that while floristic types are broadly correlated with geomorphological / geological units there is generally not a direct one to one correspondence. This was also true when the full 40 geomorphological / geological units were examined. A few community types were found on only one unit (types 18, 27, 29b), but two of these communities were represented by only a few sites. Type 29b (*Acacia* shrubland on taller Quindalup dunes) was found only on the Quindalup system. Another 12 community types were recorded from only two geomorphological / geological units (types 6, 10b, 12, 14, 15, 18, 19, 20a, 20c, 25, 26a, 30c).

No sites in community types 1-3 (super group 1) occurred on Swamp, Vasse, Quindalup or Spearwood units. Similarly no sites from community types 20-23 (super group 3) occurred on Swamp, Vasse or Quindalup units nor did any sites from community types 24-30 (super group 4) occur on Pinjarra Plain, Ridge Hill Shelf or associated units except for 5 sites in community type 28 (Spearwood *Banksia* community) as previously discussed.

Table 15. Environmental geology units (reflecting geomorphology / soils) sampled during the floristic survey of the southern Swan Coastal Plain. Amalgamated units used in the analysis are shown in Table 16.

Amalgamated	Environmental	Amalgamated Unit Nama	Gaalami Cada
Environmental	Geology Code	(maior geometric logical system (Table 2))	Geology Code
Geology Unit	Coology Code	(major geomorphological system (Table 2))	
SWP	cs1	swamp deposits - holocene	qhw
SWP	cps	swamp deposits - holocene	ahw
SWP	cps1	swamp deposits - holocene	ahw
SWP	scp	swamp deposits - holocene	ahw
SWP	spel	swamp deposits - holocene	ahw
SWP	som	swamn denosits - bolocene	ahw
SWP	spl	swamn denosits - holocene	abw
SWP	ms5	swamp deposits - holocene	ahu
[11B5	swamp deposits - notocene	quw
VA	m5	lagoonal and estuarine deposits (vasse)	ahg
VA	sm2	lagoonal and estuarine deposits (vasse)	obe
VA	ls5	lagoonal and estuarine deposits (vasse)	che
			10
Q	s1	safety bay sands (quindalup)	qhs
Q	s2	safety bay sands (quindalup)	qhs
Q	s13	safety bay sands (quindalup)	qhs
Q	ls4	safety bay sands (quindalup)	qhs
6	-		
Ss	s7	sands from tamala limestone (spearwood)	qts
Sit	101	tamala limertone (meanwood)	~t1
Sti	101	tamala limestone (spearwood)	41
	132	tamata ninestone (spearwood)	qu
Bs	s8	bassendean sands	զբԵ
ыл	-0		
סום	\$9	lagoonal deposits - bassendean dunes	qpw
Bs/PP	s10	bassendean sands over guildford formation	qpb/qpa
Pgf	ms2	guildford formation (niniarra plain)	ana
Pgf	mesl	guildford formation (piniarra plain)	-1P# ana
Pef	c2	guildford formation (pinjarra plain)	dba dba
Pof	C\$	guildford formation (pinjarra plain)	qpa
Pof	\$C	guildford formation (pinjarra plain)	чра
	50	Eurorou tornation (pullaria piant)	чра
Pad	ср	alluvial deposits (pinjarra plain)	cha
Pad	s14	alluvial deposits (piniarra plain)	cha
Pad	sm1	alluvial deposits (piniarra plain)	aha
Pad	mscl	alluvial deposits (piniarra plain)	aha
			4
Pa/cd	g1	alluvial/colluvial deposit (pinjarra plain)	qha/qc
P/R	fs3	alluvial/colluvial deposit (pinjarra / ridge hill)	qha/qc
Red	msal	colluvial denosits (ridge hill shelf)	20
Red	10051	colluvial deposits (ridge hill shelf)	qc.
Red		colluvial deposits (ridge hill shelf)	qc
Red	118.5 omo 1	continuital deposits (ridge hill sheft)	qe
Red	singi	colluvial deposits (ridge hill shelf)	qc gô
	5.	contaction apposite (ridge init siten)	ЧC
Rcs	s6	colluvial sand (ridge hill shelf)	qs
Rbs	s12	yoganup form (ridge hill shelf-beach denosit)	apr
		1 0 1 (D and contraction)	Th a .
Sca	g2	scarp - gravels and laterite	ql (czl)
Sca	lal	scarp - gravels and laterite	al (czl)

			Quin	Spean	boow	Basser	ıdcan	<u>ا ا</u>	Pinjan	ra Plain]		Ridge	Hill She	lf	
Community	SWP	VA	Q]	Ss	Sti	Bs	Bld	Bs/	Pgf	Pad	Pa/c	P/R	Red	Rcs	Rbs	Sca
type	L							PP			a					
<u>la</u>									1				1	2		8
1b						6		2		3						Ļ
2						3		1								
3a						2		1	8				2			
3b						1		2					2		2	
3c									6			$ \neg$	2		2	
		ļ			<u> </u>					ļ				ļ	i	
4	<u> </u>	μ		لّ		4		6	3	<u> </u>	i		ļ	ļ	└── ↓	
5	5			آ		4		3	Ļ	2		i		<u> </u>	┞───┤	 _
6		<u> </u>		آ				نَـــــــــــــــــــــــــــــــــــــ	8	<u> </u>			1	[]	├ I	
7	4	4		آ	ļ	Ш		2	6	ļ	2			ļi		
8							آ]	لَـــــــــــــــــــــــــــــــــــــ	18	<u> </u>	ļi		2	<u> </u>	┞—┥	ļ
9		Ļ					لَـــــا		5	ļ	ļ		1	i	i	
10a		\vdash						4	3	ļ			└───	l	└───	ļ
10b							نّ	2				7		 	i	
11	4	2				3	لَـــــــــــــــــــــــــــــــــــــ	2		ļ		i		i		┡──
12	4		\square					1			ļ	<u> </u>			<u> </u>	
13	4	L				تَـــــــــ	لَـــــــــــــــــــــــــــــــــــــ	1	3	1		i		 	i	
		\square	1	آسا			بُـــــا	ļ		Ļ		i	 		 	┠───
15	3	\square		لَـــــــــــــــــــــــــــــــــــــ			ļ	<u> </u>	ļ	<u> </u>	 	<u> </u>	i	├ i		
16		2		لَـــــــــــــــــــــــــــــــــــــ			ļ	ļ	ļ	1	<u> </u>	 		 	 	├
17		4	3	تَــــــــ	ļ			ļ	<u> </u>	ļ	 			 	 	
18	ļ	2	Ļ	لًــــــــــــــــــــــــــــــــــــ	ļ	ļ	 			 	 	 		 	<u> </u>	
19	2		1		1											
20a	1	+	<u>†</u>	4	<u> </u>	3	<u> </u>		<u> </u>		t					
20b	1	1	1		L	7							1		1	L
20c	<u> </u>							Ľ					4		5	
21a	1	1	1	12	2	19	1	3		1			1			
21b	1	1	1			6							2	3	1	
21c	1	1	1	1	[7	1	5	2							
22	1	1	<u> </u>	3		5	1	2					L			
23a	<u> </u>	1	<u> </u>	1		15		3					1			
23b	1	1	1	1	<u> </u>	17	Γ	3	<u> </u>	<u> </u>		<u> </u>				
			6		1.4	1	<u> </u>	 	┨───	┨───		╂───	┨	<u> </u>	 	
24	+	──	+ <u>°</u>	4	<u>+ 14</u>	┢┻╌	<u> </u>	┼──	 	 	†	+	 	┼──	 	1
23	┝┻╌╌		+		10	 	<u> </u>	 	+	+	+	+	 	<u> </u>	+	
208	+		+		10	<u> </u>	<u> </u>	 	 	+	+	 	┨────	<u> </u>	 	1
208	+		+	┝~	17	 	 	+	† 	 	+	<u> </u>	†	 	<u>† </u>	
21	+	+	 	24	6	1	 	+	 	+	+	 	 	5	 	
20	<u> </u>	+	12	20	5	┼┻	 	+	†	+	+	 	t	†	 	
27d 201	+	+	12	+	<u> </u>	 	 	+	+	1	+	†—	<u>†</u>	†	 	
270	+		<u>13</u> <u>1</u>	1	12	 	+	†	†	1	†	+	<u> </u>	†—	<u>† </u>	
308	+		"	1	<u>↓</u> <u></u>	 	┼──	╆	 	+	+	+	†	+	\vdash	1
300	+	<u>+</u>	$\frac{1}{1}$	+	1,	+	 	┼──	+	+	+	+	 	+	+	1
	+		┼┸╶╼	<u>+</u>	<u> </u>	┼──	 	<u> </u>	+	1	<u>†</u>	+	<u>†</u>	1	†	†
U	L	<u> </u>	1	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	1		L	<u>ــــــــــــــــــــــــــــــــــــ</u>	<u> </u>		ــــــــــــــــــــــــــــــــــــــ	<u> </u>		1

Table 16. Floristic community classification compared to amalgamated environmental geology units. Codes used for the amalgamated environmental units as in Table 15.

It is interesting to note that no community type is restricted to Rbs unit (Yoganup formation - an early Pleistocene beach ridge unit at the base of the Ridge Hill Shelf) (Tables 15 and 16). At least seven different communities have been recorded from this unit. Similarly the colluvial sand units of the Shelf (Rcs) are occupied by at least four different communities. The seasonal wetland communities occupy all geology / geomorphological units except the sandy Ridge Hill Shelf units and gravels associated with the Whicher Scarp.

The implication of these results is that while geomorphology is one of the major correlates with community composition, by itself it is not a good predictor of plant community type.

Ordination results

Ordination of the sites data was undertaken to show spatial relationships between groups and to elucidate possible environmental correlates with the classification. A measure of how good the ordination fits the original association matrix is termed the stress values. This value decreases as the number of dimensions in the ordination increases and a compromise between stress values and number of dimensions in the solution has to be reached. In the present analysis stress values decreased from 0.22 in a three dimensional solution, to 0.18 in a four dimensional solution, to 0.17 in a five dimensional solution. Consequently the results of the four dimensional solution are reported below.

The first two axes of the group means of the ordination confirm the major environmental correlates are moisture regime and soil type. Axis 1 is related to site soil moisture regime, with the seasonal wetlands occurring at low values on this axis and upland groups occurring at higher values (Figure 7). The second axis separates dominant geomorphological units within the upland group, with the predominantly Quindalup groups occurring at low scores, Spearwood groups at intermediate scores and Bassendean and Pinjarra Plains groups at high scores. Patterns within the seasonal wetlands are less clear but heavy soil groups also occur at high scores on axis 2 and sandy soils at lower scores. The exception to this trend is the group mean for community type 15 (forests and woodlands of deep seasonal wetlands) which occurs at low value on this axis. Axis 3 shows even clearer separation of land units, while axis 4 was not interpretable (Figure 7).

The correlation between axis 1 and seasonality of soil moisture is clearly seen when average slope score (on a five point scale) is overlain on the ordination. Low slope scores are restricted to the low axis 1 scores and high average slope scores are at high axis 1 values (Figure 8a). As was discussed previously rainfall increases from coast across the coastal plain to the Scarp. In addition there is area of higher rainfall at base of the Whicher Scarp and a general decrease in rainfall north of Wanneroo. The broad pattern of decrease inland from the coast correlates strongly with the geomorphological pattern across the plain. It is no surprise therefore when the high average rainfall groups (on a five point scale) generally high scores on axis 2. (Figure 8b)

Species richness was also strongly correlated with ordination scores. Species poor wetlands were concentrated in lower left quadrant and species poor upland communities in the lower right (Figure 8c). Groups with highest average species richness were confined to Pinjarra Plain and Bassendean groups (super groups 1 and 2) in the upper right quadrant as well as the seasonally wet clay pans which had extended periods of geophyte and annual recruitment as the pools dried. Average percentage weed frequency followed similar trends (Figure 8d). Highest percentage of weeds occurred in species poor wetland and upland sites. In addition the herb rich shrublands in clay pans (community type 8) and community type 6 also had a high percentage of weeds. All community types associated with tuart (types 24, 25 and 30b) have been heavily weed invaded (Table 12). It was rare in this survey to find any tuart sites that had not been significantly invaded. It should also be noted that sites were located least disturbed areas found.

Vegetation condition is a subjective score (from 1 least disturbed to 5 most disturbed) based on weed frequency, weed aggressiveness, site disturbance, fire frequency and disease impact on a five point scale (Figure 8e). The groups with the highest average disturbance were again some of the species poor wetlands (types 6, 12, 15, 16). and the tuart and *Callitris - M. lanceolata* woodlands (types 24, 25, 30a and 30b). The communities in the best condition tended to be the species rich communities of

the Pinjarra Plain and Bassendean systems. Some of the best vegetation includes sites from small remnants. These data suggests that weed invasion of the species rich communities only occurs after major disturbance events.

CORRELATIONS WITH OTHER CLASSIFICATIONS

Correlation with structural units

Structure has been used by various authors to map vegetation types or community complexes. It has been suggested that structural units bear little correlation to plant floristics in a variety of Western Australian ecosystems (Griffin *et al.* 1983, Cresswell and Bridgewater 1985, Keighery and Trudgen 1992, Griffin 1993). At each of the 509 sites a detailed structural description was recorded (Muir 1977). From these descriptions the structure of the dominant layer was compared to the floristic classification (Table 17). In all, 41 units were found in six major formations (Table 18). There appears to be little correlation between floristic group and structural units and only slightly better correlation between floristic group and structural units and only slightly better correlation between floristic group and structural units and only slightly better correlation between floristic group and structural units and only slightly better correlation between floristic group and formations. The mallee formation was entirely restricted to community types centred on the Spearwood system (super group 3) with only one exception from a Quindalup swale (type 30c). The seasonal wetland group were the most heterogenous in terms of structural diversity. The communities centred on the Bassendean system (super group 3) were largely forest and woodland formations as were the communities from uplands on heavy soils (super group 1). Most communities occurred in a variety of formations and vegetation units. The most diverse structurally was community type 24 (Northern Spearwood shrublands and woodlands) which was recorded from 14 structural units in four different formations.

These results are consistent with Cresswell and Bridgewater's (1985) conclusions that in areas of great species or vegetation richness, floristically based classificatory methods appear the most appropriate to describe the full vegetation variation which is an essential prerequisite to the development of adequate conservation planning.

Correlation with vegetation complexes (Heddle et al. 1980)

The vegetation complexes mapped by Heddle *et al.* (1980) are based on the concept of a series of vegetation communities forming regularly repeating vegetation complexes. These authors believed that vegetation was changing continuously and that pattern of vegetation change could only be detected in a localised area. Consequently it was necessary to map broad vegetation complexes. Both Beard (1979a) and Cresswell and Bridgewater (1985) believed that fine scale repeatable patterns were apparent both in structure (Beard 1979a) and floristics (Cresswell and Bridgewater 1985). Our data has shown that repeatable floristic communities do occur across the coastal plain and that these communities appear to be primarily determined by seasonal water regimes and geomorphology. As shown above our 30 floristic groups do not equate to structural units and as a result could not be mapped simply.

Four hundred and seventy-one of our sites occurred in the area mapped by Heddle *et al.* (1980). Our 471 sites occurred in 27 of the 75 vegetation complexes mapped by these authors. Tables 19 and 20 show the correlation between our floristic types and the mapped vegetation complexes. The floristic types occurred in between one (types 10b, 18 and 19) and 10 vegetation complexes (type 21a). Some floristic groups were centred on one or two particular complexes but also occurred at lower frequency in other complexes (eg. type 24, 26a, 29b). There is little indication in our data that groups of floristic communities are restricted to particular vegetation complexes across the coastal plain.

AXIS 1

AXIS 1

Figure 7. Ordination diagram of 43 floristic groups/subgroups. Symbols indicate super groups to which they belong (squares - super group 1; diamonds - super group 2: circles - super group 3: triangles - super group 4). In super group 4 Quindalup sites fall below the dotted line.

Figure 8. Ordination diagrams of 43 floristic groups/subgroups showing slope, rainfall, species richness, weed frequency, and vegetation condition on a five point scale. (Slope - flat to steep; rainfall, species richness, and weed frequency - low to high; vegetation condition - least disturbed to most disturbed).

Figure 8 (cont.). Ordination diagrams of 43 floristic groups/subgroups showing slope, rainfall, species richness, weed frequency, and vegetation condition on a five point scale. (Slope - flat to steep; rainfall, species richness, and weed frequency - low to high; vegetation condition - least disturbed to most disturbed).

-			For	es	t	I		Woo	d]	.ar	nd	I		М	al	le	e		i					sr	ru	bl	ar	da	l							ļ	ł	H	l S	
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 1 2 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3 1	3 2	3 3	3 4	3 5	3 6	3 7	3 8	3 9	4 0	4
1a 1b 2 3a	 			8 4	2		3 4 1	1		1	2	1												1				1		1	1			1 2	1 1	1				
3b 3c	i 1			1	2 2		1	1 1		2	2 3														1						1			1						
4 5 7 8 9 10a 10b	 				1		2 2	1 2 1 1	1	3	4	1 2 6							1	1	1 1 1 1	1	1	1 1 3 1 1	1 2 2 1	1 1 1 2	2 1 1		2 1 3 1 3	1 3 1 1	3	1		1 3 1 3	1	1 1	2	1	1	
11 12 13 14 15 16		2		1	1 1 1 1	1 1 1 1	1	4	1 1 1		1	1							1	1	1		1	2	1	1	1		1	1	1		1							
17 18 19	1 	1		1	4	1		1																										1	1	1				1
20a 20b 20c 21a 21b	 			51	2 1 10 2	•	1 6 3	2 4 12 3	1	2	2 3 2 3	1 2									1						1		1			1		1	1	. 2				
210 22 23a 23b	> >			Ţ	5	, ,	1	8 8 11	23	ı	1 2 3 5	1									_													1						
24 25 26a 26b			1	1	2 2 1	2	3 4 2	4 3	ŀ	4			2	3	1	1	1 3	1	1	2 1	1	1	. 1	1	2	1	1	2	1	4	1			1	-					
27 28 29a 29b 30a	 		L 1 3	1	10	2	3	13	3	נ נ	. 3	3 1				L .	1 4	۷.		L	1	13	. 1	L	2	1	. 1	2	1]	2 2	2 1	L		1				
30) 300) 기	-	1		-	3	2]	-						1		_		L			1	L]	•				_						

Table 17. Comparison of structural units with the floristic community types (H = Herbland, S = Sedgeland)

Structural Formation	Structural Unit	Code
Forest	dense forest	1
	dense low forest A	1
	dense low forest R	2
	forest	3
	low forest A	4
	low forest R	5
	Iow Iorest D	0
Woodland	woodland	7
	low woodland A	8
	low woodland B	9
	open woodland	10
	open low woodland A	11
	open low woodland A	12
	very open low woodland B	13
Mallee	tree mallee	14
	open tree mallee	15
	dense shruh mallee	16
	shrub mallee	10
	open shruh mallee	18
	verv open scrub mallee	19
		.,
Shrubland	dense thicket	20
	dense heath A	21
	dense heath B	22
	dense low heath C	23
	dense low heath D	24
	thicket	25
	heath A	26
	heath B	27
	low heath C	28
	low heath D	29
	scrub	30
	low scrub A	31
	low scrub B	32
	dwarf scrub C	33
	dwarf scrub D	34
	open scrub	35
	open low scrub A	36
	open low scrub B	37
Herbland	herhs	38
	open herbs	30
	open neros	ענ
Sedgeland	dense low sedges	40
	low sedges	41

Table 18. List of formations and structural units recorded for the 509 plots surveyed in the floristic survey of the southern Swan Coastal Plain. Structural units follow Muir (1977). Codes used in Table 17 to compare floristic classification to structural classification.

COMMUNITY RESERVATION AND CONSERVATION STATUS

Presumed destroyed community types

Several community types appear to have been totally destroyed in the study area over the last 100 years. It is difficult to know exactly what has been lost however in several case the remaining native species or early botanical accounts indicate total community loss. For example, Gozzard (1982b) maps a small area of Muchea limestone (Qpm) as occurring in the Bullsbrook area. A careful search found no significant remnant vegetation on public lands. The few native species still occurring on this geology suggests it supported a significantly different community type than anything found on other remnants in this area today. It appears that the community may have been dominated by a suckering form of *Acacia saligna*. All occurrences of this geology on private lands appear to have been mined or converted to pasture or both.

Table 19. The 27 vegetation complexes mapped by Heddle et al. (1980) on the southern Swan Coastal Plain.

Code	Vegetation Complex			
For	Forrestfield Complex			
Abba	Abba Complex			
Guild	Guildford Complex			
Swan	Swan Complex			
Dard	Dardanup Complex			
Serp	Serpentine River Complex			
Beer	Beermullah Complex			
Yang	Yanga Complex			
Cann	Cannington Complex			
Sth R	Southern River Complex			
Bass N	Bassendean Complex - North			
Bass CS	Bassendean Complex - Central and South			
Bass NT	Bassendean Complex - North Transition			
Bass CST	Bassendean Complex - Central and South Transition			
Karr N	Karrakatta Complex - North			
Karr NT	Karrakatta Complex - North Transition			
Karr CS	Karrakatta Complex - Central and South			
Cott N	Cottesloe Complex - North			
Cott CS	Cottesloe Complex - Central and South			
Herd	Herdsman Complex			
Quin	Quindalup Complex			
Yoon	Yoongarillup Complex			
Vass	Vasse Complex			
Reg	Regan Complex			
King	Kingia Complex			
Jarr	Jarrahwood Complex			
Cart	Cartis Complex			

Another example is the extensive alluvial flats between Thomas Rd and the Serpentine River where large areas of the improved pasture are dominated by *Casuarina obesa*. It is likely that this community was related to type 7 but had significantly different species composition. Speck (1952) briefly comments on this community which had been almost totally converted by the time of his study. No extant remnants of these *C. obesa* woodlands are known.

Table 20. Comparison of vegetation complexes recognised by Heddle et al. (1980) with the floristic classification from the present study.

A restricted community not sampled in this survey

An undescribed northern ironstone community is known to occur on private land in the GinGin area. Roadside occurrences of this community type were so badly disturbed as to preclude sampling. Major differences in community composition between this community type and the southern ironstone community (type 10b) were the much greater dominance of annual Asteraceae and absence of the southern endemic ironstone taxa. This community is totally unreserved, apparently very restricted and would be classed as critically threatened. The private land on which this community occurs is grazed. Some of the ironstone soils have been converted to improved pasture.

Analysis of reservation and conservation status of the 30 community types

For the purposes of this analysis a community is considered well reserved if it occurs in two widely separated National Parks and / or Nature Reserves. If a community is known from only one National Park or Nature Reserve it is considered poorly reserved (since it is susceptible to catastrophe) and unreserved if it is not known from any National Park or Nature Reserve. Other land categories are useful additions to conservation estate (such as local government reserves for conservation of flora) but do not carry the legislative protection of National Parks and Nature Reserves in security of tenure and purpose.

The obvious limitation of this approach is that no estimate of the actual area of the community in the National Park or Nature Reserve has been determined. This was beyond the scope of the present study. Furthermore, many of the Nature Reserves on the eastern side of the plain are small remnants. As a result some communities which are classified as well reserved may in fact be represented by only two small remnants. Further detailed analysis of reservation status will be needed for those communities only known from these small Nature Reserves.

In all the floristic analysis recognised 43 community types or subtypes. Ten of these are unreserved, and a further 11 are only known from a single National Park or Nature Reserve (Table 22). Analysis of lands and geomorphological data has shown most Ridge Hill Shelf and Pinjarra Plain (fluviatile deposits) have had more than 90% of their original vegetation cleared. Only two of the 13 units have been less severely impacted (A.H. Burbidge and J.K. Rolfe, unpublished). The most severely impacted units were 99.4% cleared (Guildford and Swan units). These data were used to indicate which of the floristic units are likely to have suffered major range contractions (Table 23). In addition to communities which have been almost totally cleared for agriculture and other purposes there are naturally rare community types. These communities are generally restricted to uncommon geological or geomorphological units. Seven such communities are recognised and a further three may fall into this category.

Using these data and an assessment of future potential threat, communities were allocated to one of seven community conservation status categories (Table 21). Allocation to a category is likely to change in time due to further survey or further alienation in much the same way as CALM's species priority list changes through time as better information becomes available.

The shrublands on southern ironstones (community type 10b) are considered to be critically endangered. This community type is not presently reserved. These ironstones are regionally rare and have been massively impacted by agriculture clearance (Tille and Lantzke 1990). It is also a very species rich community type and has a number of endemic taxa some of which are Declared Rare Flora (DRF) under the Wildlife Conservation Act (*Chamelaucium erythrochlorum* Ms, and *Chamelaucium roycei* Ms) or are proposed for declaration (*Brachysema* sp. (Treeton BJK & NG 001), *Brachysema* sp. (Williamson GJK 12719), *Darwinia* sp. (Williamson Rd GJK 12839), *Dryandra* aff. *nivea* (GJK 6622), *Dryandra* sp. 30 (aff. squarrosa ASG 11657), Grevillea elongata, Hakea varia (Yellow flowered ironstone form BJK & NG 226), and Petrophile latericola Ms) (Tables 3, 6).

Two further community types are considered endangered. These are the sedgelands in Holocene dune swales (community type 19) and *Banksia attenuata* woodlands over species rich dense shrublands (community type 20a). The former community type is very restricted and has only been recorded from

the Becher Point (M106) and Lake Walyungup (M103) areas. Both are in proposed conservation areas but this area has a rapidly expanding urban population and is presently the subject of major planning amendment to the Metropolitan Regional Scheme. The area is also being considered for a Rapid Transport Corridor (Bowman, Bishaw and Gorham, and Department of Planning and Urban Development 1994).

Community type 20a is also regionally rare. It is a very species rich *Banksia* woodland occurring over restricted areas to the north and east of Perth on two different land systems. It was recorded at Koondoola open space, Landsdale Rd, remaining section of M12 (a small reserve near Marangaroo Golf course), M 53 (Reserve C29880, Forrestfield), and the APB complex at Forrestfield.

All of these areas have been proposed as conservation reserves. The APB land has had conservation of flora recognised in its purpose (P. Keppel, pers. comm.) and Koondoola Open Space has been zoned for Regional Open Space. Marangaroo Open Space is recognised as a conservation area by the Wanneroo Council but more than 60% of the original M12 (System 6) recommendation has been developed as a golf course and some remaining parts of this reserve appear badly infected by dieback. There are a variety of development proposals for M53 and some parts of this reserve have been alienated for the Roe highway and other road realignments. Future use of the Landsdale Rd bushland is presently being decided.

A further 15 community types are considered vulnerable (11 because they are the remaining fragments of previously extensive communities) and 11 are considered susceptible should any change in management or land use occur. Twelve communities are considered at low risk from any threat and two communities are not able to be assessed due to insufficient information.

Community conservation status	Definition
Presumed destroyed	A community that is totally destroyed or so extensively modified that it is unlikely to re-establish ecosystem processes in the foreseeable future.
Critical	A community with most or all of its known occurrences facing severe modification or destruction in the immediate future.
Endangered	A community in danger of severe modification or destruction throughout its range, if causal factors continue operating.
Vulnerable	A community likely to move into the endangered category in the near future if the causal factors continue operating.
Susceptible	A community of concern because there is evidence that it can be modified or destroyed by human activities, or would be vulnerable to new threatening process.
Low risk	A community that does not qualify for one of the above categories.
Insufficiently known	A community for which there is inadequate data to assign to one of the above categories

Table 21. Definition of community conservation status (after Department of Conservation and Land Management, unpubl.).

Suggested improvements to reservation and conservation of floristic community types

There is an urgent need to adequately protect the three most threatened community types, all of which are presently unreserved. These three communities are only known from small remnants. To adequately protect these communities these remnants should be declared as A class Nature Reserves for the protection of flora and fauna.

Southern ironstone communities (type 10b): This community type is known from five small areas of State Forest and a road and drain reserve east of Ruabon Nature Reserve (Figure 9c). This road and drain reserve is also of regional significance as it is the last remaining continuous vegetated transect across the lower Swan Coastal Plain showing the catena of original vegetation types. Several species of DRF or proposed DRF are found along this reserve. Immediate steps should be taken to have the vesting and purpose of these areas changed. Our survey has shown that even quite small remnants can maintain themselves in very good condition for long periods of time without disturbance. All forms of disturbance should be excluded from these critical threatened remnants until we have a much better understanding of community function.

Table 22. Present reservation and conservation status of the floristic communities on the southern
Swan Coastal Plain. Numbers refer to the number of plots located in each community - tenure class,
not number of individual reserves.

Туре	Nature Res.	Nat. Park	State Forest	Local Govt	Federal	Crown Land	VCL	Road Res.	Private
la			10	2		1	1	1	
1b	2			5		4	· · · · ·	1	
2	1	1		3		1	···		
3a				7		4		2	
3b	3		2	3					1
3c	1			5	1	3			
4	5		3	4		1	1	1	1
5	6		2			3	1		3
6	8				1				
7	10			3		2		3	
8	9			3		4		5	
9	3			3		1		1	
10a	5			2		1			
10b		ļ	6					3	
11	5					2		1	5
12	5			ļ				<u> </u>	
13	4			1		3	1		
14			1				1		
15	3			1					
16	2		<u> </u>	2					
17	2	1				5			
18	2								
19						1	2		
20a				1		6			
20b	6		1	2					
20c				9					
21a	14		5	4		9	2		5
21b	4		5	1		2			
21c	6			1		2	1		6
22	1		8	1			1		
23a	6		4	4		4			1
23Ъ			13	1			7		
24	1	5		10		9			
25	1		6			4			
26a			8	3					
26b	5	1	12				1		
27	4	2		1					
28	7	7	10	5		7	2		
29a		1		4	1		3		[]
29b		3		1			9		[
30a	2			2	3				
30b	2	5	1						
30c				2			1		

Table 23. Community reservation and conservation status on the southern Swan Coastal Plain. A community is considered well reserved if known from at least two National Parks or Nature Reserves, poorly reserved if known from only one National Park or Nature Reserve and unreserved if it was not recorded from a National Park or Nature Reserve. Communities likely to have been > 90% cleared are indicated as are naturally rare communities.

Туре	Reservation status	Range contraction likely to be > 90%	Regionally rare	Conservation status	
la	Unreserved		Susceptible		
1b	Well reserved	Yes		Vulnerable	
2	Poorly reserved	Yes	? Yes	Vulnerable	
3a	Unreserved	Yes		Vulnerable	
3b	Well reserved	Yes		Vulnerable	
3c	Well reserved	Yes		Vulnerable	
4	Well reserved			Low risk	
5	Well reserved			Low risk	
6	Well reserved			Low risk	
7	Well reserved	Yes		Vulnerable	
8	Well reserved	Yes		Vulnerable	
9	Well reserved	Yes		Vulnerable	
10a	Well reserved	Yes		Vulnerable	
10b	Unreserved	Yes	Yes	Critical	
11	Well reserved			Low risk	
12	Well reserved			Low risk	
13	Well reserved			Low risk	
14	Unreserved	?	?	Insufficiently known	
15	Well reserved	Yes	? Yes	Vulnerable	
16	Poorly reserved	Yes		Vulnerable	
17	Well reserved			Low risk	
18	Poorly reserved		Yes	Vulnerable	
19	Unreserved		Yes	Vulnerable	
20a	Unreserved		Yes	Endangered	
20b	Poorly reserved	Yes	Yes	Vulnerable	
20c	Unreserved		Yes	Vulnerable	
21a	Well reserved			Low risk	
21b	Well reserved	?		Susceptible	
21c	Well reserved	· · · · · · · · · · · · · · · · · · ·		Susceptible	
22	Poorly reserved			Susceptible	
23a	Well reserved			Low risk	
23b	Unreserved			Susceptible	
24	Well reserved			Susceptible	
25	Poorly reserved			Susceptible	
26a	Unreserved			Susceptible	
26b	Well reserved			Low risk	
27	Well reserved		Yes	Lowrisk	
28	Well reserved			Low risk	
29a	Poorly reserved			Susceptible	
29b	Poorly reserved			Susceptible	
30a	Poorly reserved		Yes	Vulnerable	
30b	Well reserved	? yes		Susceptible	
30c	Unreserved			Insufficiently known	

Community type 19 (sedgeland in Holocene dune swales): This community type is only known from small linear wetlands in the Point Becher area (M106) and north west corner of Lake Walyungup (M103) (Figure 9b). Both of these areas are in proposed conservation areas. These reserves should be gazetted as A class Nature Reserves for conservation of flora and fauna. This endangered community type is very restricted and presently at risk from urban and infrastructure developments.

The eastern *Banksia attenuata* woodlands over species rich dense shrublands (type 20a): This community type is also considered endangered. It is also very restricted being recorded in this survey from only seven quadrats. This community is found at Koondoola open space, Landsdale Rd, M12 (a small reserve near Marangaroo Golf Course), M 53 (another System 6 recommendation), and the Agricultural Protection Board (APB) complex at Forrestfield. Koondoola, M12 and M 53 are proposed conservation reserves. The APB reserve has recently had the conservation of flora inserted into its purpose. All the other small remnants should be declared as A class Nature Reserves for the conservation of flora and fauna (Figure 9a). Urgent investigation of areas apparently affected by dieback at M12 need to be undertaken with implementation of any necessary control action.

Another area that should be vested as a Nature Reserve for the conservation of flora and fauna as a matter of priority is the road and drain reserve along Mundijong Rd (Figure 9b). Like the road east of Ruabon Nature Reserve this linear remnant covers the full catena of vegetation types across the alluvial soils of the coastal plain west of Mundijong. These two linear remnants are therefore of both regional and national significance depicting the vegetation sequences that elsewhere have been reduced to fragments or totally cleared. Road verges have long been considered important for conservation. The EPA (1976) has stated that it is of the opinion that all road verges should be protected. The regional importance of these two reserves require formal vesting for conservation purposes.

For the other 16 community types that are unreserved or poorly reserved a range of reservation strategies are possible to improve their reservation status. To locate reserves optimally, both species and community reservation status need to be considered. Species reservation data are presently being gathered in a concurrent project (G.J. Keighery, unpublished data). In a future report these data sets will be combined to allow an optimal reservation strategy to be developed. Table 24 shows possible areas for reservation that would improve the present reservation status of the remaining unreserved or poorly reserved community types.

It should be noted that many of the possible areas are already proposed National Parks, Nature Reserves or EPA red book recommendations or are presently being managed for conservation as one of their primary aims (eg. Garden Island, Ambergate Reserve, Trigg Reserve, Brickwood Reserve, Brixton Street). However their present vesting does not give them maximum protection under WA legislation. This table highlights the very high conservation values of these areas.

It is also of note that while a community type is reserved in two or more National Parks or Nature Reserves it can still be considered vulnerable. This is because of the almost total clearance of these vegetation types and small size of the remaining remnants. Their size makes them particularly vulnerable to disturbance and to invasion by weeds. Our results are consistent with the earlier work of Keighery and Trudgen (1992) who found all remnants on the alluvial soils which had their basic structure intact or were able to regenerate had significant flora conservation values regardless of the remnant's size. Our data strongly supports this conclusion and we would consider any such remnant on the alluvial soils on the Swan Coastal Plain to be of high conservation value.

The results reported above relate to a survey of largely public lands on the coastal plain between Seabird and Dunsborough. Several community types were not sampled in detail due to time or access limitations. More detailed study of the Quindalup system (including foredune and beach communities), estuarine and riverine types are needed before a comprehensive understanding of conservation and reservation of all community types is achieved for this section of the coastal plain (but see Griffin 1993 for assessment of conservation status of Quindalups in the northern half of our study area). How well our sampling covers plant communities on private lands also needs to be assessed.

Туре	Reservation status	Possible areas for conservation reserves.
la	Unreserved	Areas of State Forest along base of Whicher Range, Payne Road Reserve
3a	Unreserved	Brixton Street, Brickwood Reserve, Mundijong Rd, C53, Lambert Lane
14	Unreserved	M5, Proposed Ridges extension to Yanchep N.P. (M4)
20c	Unreserved	Talbot Rd Reserve
23b	Unreserved	M5, Gnangara Water Reserve, Proposed Melaleuca Park NR (M9), Proposed Ridges extension to Yanchep N.P (M4), Lake Muckenburra Reserve, VCL north of M5
26a	Unreserved	Lake Clifton townsite, Proposed Caraban NR (C12), Proposed extensions Yeal Swamp NR (M5), Proposed Ridges extension to Yanchep N.P (M4), Shire View Hill
30c	Unreserved	VCL south of Seabird (part EPA recommendation 5.24), Mt Henry Reserve (M66)
2	Poorly reserved	Ambergate Reserve, Yoongarillup Water Reserve
16	Poorly reserved	No other saline flats known, saline heaths and estuarine vegetation poorly sampled.
18	Poorly reserved	No other remnants on calcareous silts known
20b	Poorly reserved	Burnside Road, extensions to Yarloop NP, Brickwood Reserve
22	Poorly reserved	Proposed extensions Yeal Swamp NR (M5), Proposed Ridges extension to Yanchep N.P (M4), Proposed Melaleuca Park NR (M9), Gnangara Water Reserve
25	Poorly reserved	Paganoni area, C71, Lyons block (C57), Stirling block, Treasure block (C56)
29a	Poorly reserved	VCL south of Seabird (part EPA recommendation 5.24), M91, Trigg reserve (M36), Garden Is (M96), Burns Beach reserve (part M1)
29b	Poorly reserved	VCL south of Seabird (part EPA recommendation 5.24), Port Kennedy (M106), VCL west of Proposed Caraban NR
30a	Poorly reserved	Garden Is (M96), Peppermint Grove Reserve (M54)

Table 24. Possible areas for reservation to improve community conservation status for the 15 non critical or endangered community types on the southern Swan Coastal Plain.

What has been presented in this report is a regional overview of the floristic communities. Communities can be defined at a variety of scales depending on what questions are being asked. Undoubtedly finer subdivisions of our community types will be made in the future as these communities are studied in more detail. As more detailed information becomes available the classification will be refined. Seasonal wetlands are currently the most heterogeneous group and deserve more attention.

REFERENCES

Anon. (1976) GinGin Sheet 2035 II, Urban Geology Series. Geological Survey of Western Australia. Department of Minerals and Energy, Perth.

Anon. (1977a) Moore River - Cape Leschenault Sheet 2035 III and part Sheet 1935, Urban Geology Series. Department of Minerals and Energy, Perth.

Anon. (1977b) Mandurah Sheet 2032 IV, Urban Geology Series. Department of Minerals and Energy, Perth.

Anon. (1978) Pinjarra Sheet 2032 I, Urban Geology Series. Department of Minerals and Energy, Perth.

Figure 9. General areas (circled) containing parcels of land recommended for reservation to protect critically threatened and endangered community types and the Mundijong Road vegetation transect.
Keighery, B.J. (1993) Swan Coastal Plain Survey 1990-1993. Unpublished report from the Wildflower Society of Western Australia Inc. to the Heritage Council of Western Australia.

Keighery, B.J. and Trudgen, M.E. (1992) *The Remnant Vegetation of the Eastern Side of the Swan Coastal Plain*. Unpublished report to the Department of Conservation of Land Management for the National Estate Grants Programme.

Keighery, G.J. (1990) Coastal Limestone Endemics. Unpublished report for the Department of Conservation and Land Management.

Keighery, G.J. and Keighery, B.J. (1991) Floristics of Reserves and Bushland Areas of the Perth Region (System 6). Part II: Brixton Street Wetlands, Kenwick. Wildflower Society of WA Inc., Nedlands.

Keighery, G.J. and Keighery, B.J. (1992) Plant Communities of the Northern Swan Coastal Plain -With Special Reference to Uncommon and Potentially Rare Plant Communities. In: Bushland in Our Backyard. editors N. Gibson and B. J. Keighery. Wildflower Society of W.A Inc., Nedlands.

Keighery, G.J. and Keighery, B.J. 1993 Floristics of Reserves and Bushland Areas of the Perth Region (System 6). Parts V - IX. Wildflower Society of WA Inc., Nedlands.

Keighery G.J. and Robinson C. (1992) A survey of Declared Rare Flora and other plants in need of special protection of the Scott Plains. A report to the ANPWS, Endangered Species Program.

Kelly, A., Taylor, A., Langley, M.A., Spooner, A. and Coates, D.J. (1993) Declared Rare Flora and Other Plants in Need of Special Protection in the Metropolitan Region. Wildlife Management Programme 10. Department of Conservation and Land Management, WA

Kent M. and Coker P. (1992) Vegetation Description and Analysis: A Practical Approach. Belhaven Press, London.

King, P. And Wells, M. (1990) Land Resources of Rural Areas of the Darling Range. Sheets 1, 2 and 3. Western Australian Department of Agriculture.

Leonard, E.L. (1991) Yallingup Sheet 1930 IV and part Sheet 1830 I, Environmental Geology Series. Geological Survey of Western Australia, Department of Minerals and Energy, Perth.

Marchant, N.G., Wheeler, J.R., Rye, B.L., Bennett, E.M., Lander, N.S. and Macfarlane, T.D. (1987) Flora of the Perth Region: Parts One and Two. WA Herbarium, Perth.

Maslin, B.R. (1975) Studies in the genus Acacia (Mimosaceae) - 4. A Revision of the Series Pulchellae, Nuytsia, 5:288-493.

McArthur, W.M. (1986) *The Gnangara Mound Landforms, Soils and Vegetation*. In: W. M. McArthur and E.M. Mattiske 'The Gnangara Mound Groundwater Area Landforms, Soils and Vegetation'. (Water Authority of WA, Gnangara Mound Goundwater Resources Environmental Review and Management Programme).

McArthur, W.M. and Bartle, G.A. (1980) Landforms and Soils as an Aid to Urban Planning in the Perth Metropolitan Northwest Corridor, Western Australia. Maps 1-4. CSIRO Land Resources Management Series No. 5.

McArthur, W.M. and Bettenay, E. (1960) The development and distribution of soils on the Swan Coastal Plain, Western Australia. CSIRO Soil Publication No 16.

Muir, B.G. (1977) Biological Survey of the Western Australian Wheatbelt. Part II. Records of the Western Australian Museum, Supplement No 3.

Olde P.M. and Marriot N.R. (1993) New species and taxonomic changes in *Grevillea* (Proteaceae: Grevilleoideae) from south-west Western Australia. *Nuytsia* 9,237-304.

Pen, L.J. (1980) Peripheral Vegetation of the Swan and Canning Estuary. Bulletin 113. Department of Conservation and Environment and the Swan River Management Authority, Western Australia.

Pen, L.J. (1993) Fringing vegetation of the Canning, Southern and Wungong Rivers. Report No 7. Swan River Trust, Perth.

Semeniuk, C.A. (1987) Wetlands of the Darling System - consanguineous wetlands and their distribution in the Darling System, south Western Australia. *Journal of the Royal Society of Western Australia*, 70: 69-87.

Semeniuk, V. (1990) The geomorphology and soils of the Yoongarillup Plain in the Mandurah -Bunbury coastal zone, south - western Australia: a critical appraisal. *Journal of the Royal Society of Western Australia* 73, 1-7.

Semeniuk, V. and Glassford, D.K. (1989) Bassendean and Spearwood Dunes: their geomorphology, stratigraphy and soils as a basis for habitats of *Banksia* Woodlands. *Journal of the Royal Society of Western Australia*, 71 : 87-88.

Siemon, N., Davis, G., Hubbard, P and Duckworth, A. (1993) Fringing Vegetation of the Serpentine River in the Shire of Serpentine-Jarrahdale and City of Rockingham. Report to the Peel Inlet Management Authority. Report 38. Waterways Commission, Perth.

Smith, F.G. (1973) Vegetation Map of Busselton and Augusta. Western Australian Department of Agriculture, Perth.

Smith, F.G. (1974) Vegetation Map of Collie. Western Australian Department of Agriculture, Perth.

Smurthwaite, A.J. (1986a) *Mundaring Sheet part Sheet 2133 II and 2134 III, Environmental Geology Series.* Geological Survey of Western Australia, Department of Minerals and Energy, Perth.

Smurthwaite, A.J. (1986b) Gleneagle Sheet part Sheet 2134 II and 2133 III, Environmental Geology Series. Geological Survey of Western Australia, Department of Minerals and Energy, Perth.

Speck, N.H. (1952) The Ecology of the Metropolitan Sector of the Swan Coastal Plain. Masters of Science Thesis, University of W.A.

Speck, N.H. (1958) The Vegetation of the Darling-Irwin Botanical Districts, Western Australia. Doctor of Philosophy Thesis, University of W.A.

Sneath P.H.A. and Sokal R.R. (1973) Numerical Taxonomy: The Principals and Practice of Numerical Classification. W.H. Freeman, San Francisco.

Tille, P.J. and Lantzke, N. C. (1990) Land resources of Busselton-Margaret River-Augusta. Busselton Map. Western Australian Department of Agriculture, Perth.

Trudgen, M.E. (1991) Vegetation Condition Scale. In: Urban Bushland Policy. National Trust of Australia (WA), Perth.

Trudgen, M.E. and Keighery, B.J. (1990) A report on the Flora and Vegetation of the Alkimos area and conservation issues affecting it. Unpublished report prepared for Landcorp.

van Gool, D. (1990) Land Resources in the Northern Section of the Peel-Harvey Catchment, Swan Coastal Plain, Western Australia. Western Australian Department of Agriculture, South Perth.

Water Authority of Western Australia (1992) Wetlands of the Perth to Bunbury Region. Wetlands types mapped according to C.A. Semeniuk (1987). A Water Resources Management Program Initiative.

Wells, M. And Hesp, P.A. (1989) Land Resources of the Mandurah-Murray Region, Western Australia. Map Sheets 1 and 2. WA Department of Agriculture. Perth.

Woods, P.J. (1979) An explanation of the dune features of the Swan Coastal Plain. Paper presented to Coastal Management Seminar, held at Bunbury December 6-7, 1979. Department of Conservation and Environment, Perth

Appendix 1

The following maps show the distribution of the community types delineated during the survey. Accompanying each map is a description of each community.

Typical and common taxa

Typical taxa occur with a frequency of >75%, while taxa listed as common occur with frequencies between 50 and 75%.

Reservation status

Well reserved	known from two or more A class National Parks or Nature Reserves
Poorly reserved	known from a single A class National Park or Nature Reserve
Unreserved	not known to occur in any A class National Park or Nature Reserve

Conservation status (CALM unpublished)

A community that is totally destroyed or so extensively modified that it	
is unlikely to re-establish ecosystem processes in the foreseeable future.	
A community with most or all of its known occurrences facing severe	
modification or destruction in the immediate future.	
A community in danger of severe modification or destruction throughout	
its range, if causal factors continue operating.	
A community likely to move into the endangered category in the near	
future if the causal factors continue operating.	
A community of concern because there is evidence that it can be	
modified or destroyed by human activities, or would be vulnerable to new threatening process.	
A community that does not qualify for one of the above categories.	
A community for which there is inadequate data to assign to one of the above categories	

Structural units

Units follow Muir (1977) and indicate the range of structural units these communities are known from.

ς

Eucalyptus haemotoxylon - E. marginata woodlands on Whicher foothills

Reservation Status: Conservation Status:

Unreserved Susceptible

Typical Species:

Trees Eucalyptus marginata **Shrubs** Dryandra nivea Gompholobium knightianum Hibbertia hypericoides Herbs

Amphipogon amphipogonoides Dampiera linearis Lepidosperma angustatum Lomandra sericea Loxocarya fasciculata Patersonia umbrosa forma xanthina Tetraria octandra

Trees	Shrubs	Herbs
Eucalyptus haematoxylon	Billardiera variifolia	Agrostocrinum scabrum
Xylomelum occidentale	Gompholobium confertum	Burchardia umbellata
	Gompholobium polymorphum	Chamaescilla corymbosa
	Hakea amplexicaulis	Conostylis setigera
	Hakea cyclocarpa	Eriochilus dilatatus
	Hibbertia amplexicaulis	Lomandra hermaphrodita
	Hovea chorizemifolia	Patersonia occidentalis
	Hypocalymma robustum	Pentapeltis peltigera
	Isopogon sphaerocephalus	Stylidium amoenum
	Logania serpyllifolia	
	Scaevola calliptera	
	Xanthorrhoea gracilis	
	Xanthorrhoea preissii	

Mean species richness:	67.6	Structural units
Mean weed frequency:	0.3	forest woodland
Mean vegetation condition:	1.7	low woodland A open woodland
Number of quadrats:	13	A

Southern Eucalyptus calophylla woodlands on heavy soils

Reservation St	atus:
Conservation S	Status:

Well reserved Vulnerable

Typical Species:

Trees Eucalyptus calophylla Eucalyptus marginata

Shrubs Acacia extensa Gompholobium polymorphum Hibbertia hypericoides Hypocalymma angustifolium Scaevola calliptera Xanthorrhoea preissii

Herbs

Dampiera linearis * Hypochaeris glabra Lepidosperma angustatum Lomandra hermaphrodita Loxocarya fasciculata Mesomelaena tetragona Stipa semibarbata/campylachne Tetraria octandra

Trees	Shrubs	Herbs
	Acacia pulchella	Agrostocrinum scabrum
	Adenanthos obovatus	Burchardia umbellata
	Billardiera variifolia	Caesia micrantha
	Dryandra nivea	Chamaescilla corymbosa
	Eriostemon spicatus	Drosera menziesii subsp.
	Hovea trisperma	penicillaris
	Kingia australis	Hypolaena exsulca
		Lagenifera huegelii
		Lomandra purpurea
		Lomandra sericea
		Opercularia apiciflora
		Patersonia umbrosa forma xanthina
		Tetrarrhena laevis
		Thysanotus manglesianus
		/patersonii complex
		Xanthosia candida
		Xanthosia huegelii

Mean species richness:	67.8	Structural units	
Mean weed frequency:	2.4	forest low forest A	
Mean vegetation condition:	2	woodland open low woodland A	
Number of quadrats:	12	- -	

Southern wet shrublands

Reservation Status:	Poorly reserved
Conservation Status:	Vulnerable

Typical Species:

Trees

Shrubs Herbs Calothamnus lateralis Comesperma virgatum Eutaxia virgata Dampiera linearis Hakea ceratophylla Leptocarpus tenax Hakea varia Loxocarya fasciculata Isopogon scaber Mesomelaena tetragona Kingia australis Stylidium brunonianum Pericalymma ellipticum Thysanotus multiflorus Synaphea petiolaris Xanthorrhoea preissii

Shrubs	Herbs
Acacia stenoptera	Agrostocrinum scabrum
Astartea aff. fascicularis	Cassytha glabella
Boronia spathulata	Haemodorum sparsiflorum
Daviesia preissii	Hypocalymma angustifolium
Dryandra nivea	*Hypochaeris glabra
Grevillea brachystylis	Hypolaena exsulca
Hakea sulcata	Lyginia barbata
Hibbertia rhadinopoda	Thelymitra crinita
Kunzea aff. micrantha (BJK &	
NG 040)	
Stirlingia latifolia	
	Shrubs Acacia stenoptera Astartea aff. fascicularis Boronia spathulata Daviesia preissii Dryandra nivea Grevillea brachystylis Hakea sulcata Hibbertia rhadinopoda Kunzea aff. micrantha (BJK & NG 040) Stirlingia latifolia

Mean species richness:	51	Structural units
Mean weed frequency:	0.8	open low woodland B thicket
Mean vegetation condition:	1.9	open scrub open low scrub A
Number of quadrats:	5	open low scrub B

Eucalyptus calophylla - Kingia australis woodlands on heavy soils

Reservation Status: Conservation Status:

Unreserved Vulnerable

Typical Species:

Trees Eucalyptus calophylla

Shrubs Dryandra nivea Eriostemon spicatus Kingia australis Xanthorrhoea preissii

Herbs

*Briza maxima Cyathochaeta avenacea Dampiera linearis Haemodorum laxum Loxocarya fasciculata Mesomelaena tetragona Tetraria octandra

Other common species:

Trees

Shrubs Goodenia caerulea Synaphea petiolaris Hakea ceratophylla Pericalymma ellipticum

Herbs

Borya scirpoidea Cassytha glabella Conostylis setigera Drosera menziesii subsp. menziesii *Hypochaeris glabra Hypolaena exsulca Neurachne alopecuroidea Patersonia occidentalis Thysanotus manglesianus /patersonii complex Tricoryne elatior Xanthosia huegelii

Mean species richness:	58.9	Struct
Mean weed frequency:	3,9	woodla
		low wo
Mean vegetation condition:	2	open w
		open lo
Number of quadrats:	13	low hea
		low scr

Structural units

woodland low woodland A open woodland open low woodland A low heath D low scrub A low scrub B open scrub open low scrub A

Eucalyptus calophylla - E. marginata woodlands on sandy clay soils

Reservation Status: V Conservation Status: V

tus: Well reserved tatus: Vulnerable

Typical Species:

Trees Eucalyptus calophylla Eucalyptus marginata Shrubs Bossiaea eriocarpa Dryandra nivea Hibbertia hypericoides Xanthorrhoea preissii Herbs

*Briza maxima *Briza minor Burchardia umbellata Caesia micrantha Chamaescilla corymbosa Conostylis juncea Drosera erythrorhiza Drosera stolonifera *Hypochaeris glabra Lepidosperma angustatum Lomandra hermaphrodita Loxocarya fasciculata Mesomelaena tetragona Sowerbaea laxiflora Tetraria octandra

Trees	Shrubs	Herbs
	Acacia willdenowiana	*Aira caryophyllea
	Baeckea camphorosmae	Anigozanthos manglesii
	Eriostemon spicatus	Caladenia flava
	Gompholobium marginatum	Cyathochaeta avenacea
	Kennedia prostrata	Haemodorum laxum
	Pronaya fraseri	Homalosciadium homalocarpum
		Hypolaena exsulca
		Lagenifera huegelii
		Stylidium piliferum
		Thysanotus thyrsoideus
		Xanthosia huegelii

Mean species richness:	61.2	Structural units
Mean weed frequency:	5.7	low forest A woodland
Mean vegetation condition:	2.4	low woodland A open woodland
Number of quadrats:	8	open low woodland A

Eucalyptus calophylla - Xanthorrhoea preissii woodlands and shrublands

Reservation Status:Well reservedConservation Status:Vulnerable

Typical Species:

Trees Eucalyptus calophylla **Shrubs** Xanthorrhoea preissii

Herbs

* Briza maxima Burchardia umbellata Cyathochaeta avenacea Neurachne alopecuroidea * Romulea rosea

Other common species:

Trees

Shrubs Acacia pulchella Dryandra nivea Gompholobium marginatum Hypocalymma angustifolium

Caesia micrantha Drosera menziesii subsp.

Herbs

penicillaris * Hypochaeris glabra Lepidosperma sp. (eastern terete) Loxocarya flexuosa Mesomelaena tetragona Opercularia vaginata Sowerbaea laxiflora Stipa pycnostachya Tetraria octandra Thysanotus manglesianus/ patersonii complex

Mean species richness:	48	Structural units	
Mean weed frequency:	6	forest	
		low forest A	
Mean vegetation condition:	2,6	heath A	
0		low woodland A	
Number of quadrats:	10	open low woodland A	
• • • •		open scrub	
		low scrub B	

Melaleuca preissiana damplands

Reservation Status:Well reservedConservation Status:Low risk

Typical Species:

TreesShrubsHerbsMelaleuca preissianaHypocalymma angustifolium
Pericalymma ellipticum
Xanthorrhoea preissiiDampiera linearis
Dasypogon bromeliifolius
Hypolaena exsulca
Stylidium brunonianum
Stylidium repens

Other common species:

Trees	Shrubs	Herbs
	Adenanthos obovatus	*Briza maxima
	Astartea aff. fascicularis	*Hypochaeris glabra
	-	Lyginia barbata
		Phlebocarya ciliata
		Schoenus rodwayanus
		Xanthosia huegelii

Mean species richness:	36.9	Structural units	
Mean weed frequency:	3.3	dense low heath C	
• -		low woodland A	
Mean vegetation condition:	2	open woodland	
C		open low woodland A	
Number of quadrats:	16	heath A	
-		heath B	
		low heath C	
		low scrub A	

dense low sedges

Mixed Shrub damplands

Reservation Status:	Well reserved
Conservation Status:	Low risk

Typical Species:

Trees

Shrubs

Herbs *Hypochaeris glabra Hypolaena exsulca Siloxerus humifusus

Other common species:

Trees

Shrubs Kunzea ericifolia Pericalymma ellipticum Herbs *Aira caryophyllea *Briza maxima *Briza minor Caladenia flava Mitrasacme paradoxa Quinetia urvillei Trachymene pilosa *Ursinia anthemoides

Mean species richness:	38.4
Mean weed frequency:	5.8
Mean vegetation condition:	2.1
Number of quadrats:	15

Structural units low forest A low woodland A open woodland open low woodland A dense heath B dense low heath C thicket heath B low heath C scrub

Weed dominated wetlands on heavy soils

Reservation Status:Well reservedConservation Status:Low risk

Typical Species:

Trees

Shrubs

Herbs * Briza maxima * Hypochaeris glabra

Other common species:

Trees

Shrubs Hypocalymma angustifolium Herbs

* Ehrharta calycina

- * Ehrharta longiflora
- * Monadenia bracteata
- * Romulea rosea

* Ursinia anthemoides

Mean species richness:	26.6	Structural units
Mean weed frequency:	7.9	low forest A
		woodland
Mean vegetation condition:	3.6	open low woodland A
8		heath A
Number of quadrats:	9	low heath C
		scrub

Herb rich shrublands in clay pans

Reservation Status:	Well reserved	
Conservation Status:	Vulnerable	

Typical Species:

Trees

Shrubs

Herbs

*Briza maxima *Briza minor Centrolepis aristata *Cicendia filiformis *Cyperus tenellus *Romulea rosea

Other common species:

Trees	Shrubs	Herbs
	Viminaria juncea	*Aira caryophyllea
	·	Chorizandra enodis
		Drosera menziesii subsp.
		menziesii
		Drosera rosulata
		Goodenia micrantha
		Haemodorum simplex
		Hyalosperma cotula
		* Hypochaeris glabra
		* Juncus capitatus
		* Monopsis debilis
		* Parentucellia viscosa
		Schoenus odontocarpus

Mean species richness:	52
Mean weed frequency:	11
Mean vegetation condition:	2.7
Number of quadrats:	21

Structural units

woodland low woodland B dense thicket dense low heath D thicket scrub low scrub A low scrub B open scrub open low scrub B herbs

Dense shrublands on clay flats

Reservation Status:	Well reserved
Conservation Status:	Vulnerable

Common species:

Trees

Shrubs Astartea aff. fascicularis Eutaxia virgata Hakea varia Melaleuca viminea Herbs Burchardia multiflora Cassytha racemosa Chorizandra enodis Cyathochaeta avenacea *Cyperus tenellus Dampiera linearis Drosera gigantea Drosera rosulata * Hypochaeris glabra Lepidosperma longitudinale Leptocarpus coangustatus

Mean species richness:	35.5	Structur
Mean weed frequency:	2.2	low wood
		dense he
Mean vegetation condition:	2	thicket
0		heath A
Number of quadrats:	8	heath B
•		low heath
		scrub

Structural units

low woodland A dense heath B thicket heath A heath B low heath C scrub open scrub

Community type: 10a

Shrublands on dry clay flats

Reservation Status:	Well reserved
Conservation Status:	Vulnerable

Typical Species:

Trees

Shrubs Hakea sulcata Verticordia densiflora Herbs

.

Aphelia cyperoides Centrolepis aristata *Cyperus tenellus Drosera gigantea subsp. gigantea Drosera menziesii subsp. menziesii Schoenolaena juncea Schoenus rigens

Trees	Shrubs	Herbs
	Hakea varia	Burchardia multiflora
	Pericalymma ellipticum	*Briza minor
	Viminaria juncea	Centrolepis drummondiana
	-	*Cicendia filiformis
		Conostylis aculeata
		*Hypochaeris glabra
		*Juncus capitatus
		Patersonia occidentalis
		Polypompholyx multifida
		Schoenus odontocarpus
		Stylidium calcaratum
		Thelymitra antennifera
		Thysanotus thyrsoideus
		Philydrella pygmaea
		Siloxerus humifusus
		v

Mean species richness:	51.8	Structural units
Mean weed frequency:	5.8	dense heath B thicket
Mean vegetation condition:	2.1	heath B scrub
Number of quadrats:	8	dwarf scrub C open scrub open low scrub B

Community type: 10b

Shrublands on southern ironstones

Reservation Status:UnreservedConservation Status:Critical

Typical Species:

Trees

ShrubsHerbsKunzea aff. micrantha (BJK &
NG 040)Aphelia cyperoides
Centrolepis aristata
*Hypochaeris glabra

Trees	Shrubs	Herbs
11005	Acacia stenoptera	Borya scirpoidea
	Hakea varia (Yellow f	lowered Caladenia marginata
	ironstone form)	Caustis dioica
	Hemiandra pungens	Centrolepis drummondiana
	Viminaria juncea	Dampiera linearis
	Ū	Drosera glanduligera
		Drosera rosulata
		Loxocarya fasciculata
		Loxocarya magna Ms
		Mitrasacme paradoxa
		Opercularia vaginata (Ironstone
		form)
		Philydrella pygmaea
		Polypompholyx multifida
		Schoenus odontocarpus
		Stylidium calcaratum
		Thelvmitra antennifera
		Thysanotus thyrsoideus
ean species richness:	53.7 St	ructural units

Mean species richness:	53.7	Structural units
Mean weed frequency:	4.9	dense heath B scrub
Mean vegetation condition:	2.2	low scrub A open scrub
Number of quadrats:	9	open low scrub A

Wet forests and woodlands

Reservation Status:Well reservedConservation Status:Low risk

Typical Species:

Trees

Shrubs

Herbs *Briza maxima Lepidosperma longitudinale

Other common species:

Trees Eucalyptus rudis Shrubs Astartea aff. fascicularis Herbs * Hypochaeris glabra

Mean species richness:	27.2	Structural units
Mean weed frequency:	6.9	dense low forest A
		forest
Mean vegetation condition:	2,7	low forest A
		low forest B
Number of quadrats:	13	low woodland A
•		low woodland B
		open low woodland A
		dense heath B
		low scrub A

Melaleuca teretifolia and/or Astartea aff. fascicularis shrublands

Reservation Status:Well reservedConservation Status:Low risk

Typical Species:

Trees

Shrubs Astartea aff. fascicularis Melaleuca teretifolia Herbs *Aira caryophyllea Cassytha racemosa Lepidosperma longitudinale *Parentucellia viscosa

Waitzia citrina

Trees	Shrubs	Herbs
	Epilobium billardierianum	Baumea articulata
	Öxylobium lineare	Siloxerus humifusus
	·	Villarsia latifolia

Mean species richness:	26.4	Structural units
Mean weed frequency:	5.5	dense thicket thicket
Mean vegetation condition:	2.9	heath A heath B
Number of quadrats:	5	

Deeper wetlands on heavy soils

Reservation Status: Well reserved Conservation Status: Low risk

Typical Species:

Trees

Shrubs

Herbs Triglochin procerum

Other common species:

Trees

Shrubs Hakea varia Melaleuca lateritia Melaleuca rhaphiophylla

dwarf scrub D

Herbs Cassytha racemosa

Mean species richness:	17.4	Structural units
Mean weed frequency:	1.4	dense low forest A
		low forest A
Mean vegetation condition:	1.8	low woodland B
		open low woodland A
Number of quadrats:	9	dense heath A
		scrub
		low scrub A
		low scrub B

Deeper wetlands on sandy soils

Reservation Status:UnreservedConservation Status:Insufficiently known

Typical Species:

Trees

Shrubs Jacksonia furcellata Kunzea ericifolia Melaleuca preissiana Herbs Baumea vaginalis

Other common species:

Trees Eucalyptus rudis Shrubs Acacia pulchella var. pulchella Acacia saligna Kennedia prostrata Melaleuca lateritia Melaleuca rhaphiophylla

Structural units

open low woodland A

woodland

Herbs

*Anagallis arvensis *Briza minor Burchardia umbellata Dianella revoluta Homalosciadium homalocarpum *Hypochaeris glabra Lagenifera huegelii Lyperanthus nigricans Thelymitra crinita

Mean species richness:	16.5
Mean weed frequency:	0.7
Mean vegetation condition:	2.3
Number of quadrats:	2

Forests and woodlands of deep seasonal wetlands

Reservation Status:Well reservedConservation Status:Vulnerable

Typical Species:

Trees	Shrubs	Herbs
Melaleuca rhaphiophylla		Cotula coronopifolia
		Crassula natans
		*Cynodon dactylon
		Isolepis producta
		Lemna disperma
		Triglochin procerum

Trees	Shrubs	Herbs
	Melaleuca teretifolia	

Mean species richness:	17.5	Structural units
Mean weed frequency:	4.3	low forest A
		low forest B
Mean vegetation condition:	2.9	low woodland B
		dense thicket
Number of quadrats:	4	

Highly saline seasonal wetlands

Reservation Status:Poorly reservedConservation Status:Vulnerable

Typical Species:

Trees

Shrubs Atriplex cinerea *Atriplex prostrata Sarcocornia quinqueflora Herbs Samolus repens Sporobolus virginicus

Mean species richness:	13.5	Structural units
Mean weed frequency:	3.7	low forest A
		low forest B
Mean vegetation condition:	2.9	dense low heath D
Ū		low heath C
Number of quadrats:	4	

Melaleuca raphiophylla - Gahnia trifida seasonal wetlands

Reservation Status:Well reservedConservation Status:Low risk

Typical Species:

Trees Melaleuca rhaphiophylla

G

Herbs Gahnia trifida Lobelia alata

Other common species:

Trees	Shrubs	Herbs
		Baumea juncea
		Lepidosperma longitudinale
		*Sonchus oleraceus

Shrubs

Mean species richness:	13.6	Structural units
Mean weed frequency:	1.7	dense forest
		dense low forest A
Mean vegetation condition:	2.3	forest
-		low forest A
Number of quadrats:	8	low forest B

Shrublands on calcareous silts

Reservation Status:	Poorly reserved
Conservation Status:	Vulnerable

Typical Species:

Trees

Shrubs Acacia saligna Hakea varia Leucopogon parviflorus Melaleuca incana Melaleuca teretifolia Melaleuca viminea Xanthorrhoea preissii

Herbs

Drosera stolonifera Gahnia trifida Lepidosperma longitudinale Leptocarpus canus Leptomeria cunninghamii Leptomeria lehmannii Opercularia vaginata * Parentucellia viscosa Patersonia occidentalis

Other common species:

Trees	Shri	bs Herbs
11000	Logania serv	vllifolia * Anagallis arvensis
		Brachyscome bellidioides
		* Briza minor
		Cassytha glabella
		Cassvtha racemosa
		* Cerastium glomeratum
		Daucus glochidiatus
		Dianella revoluta
		* Hypochaeris glabra
		Isolepis marginata
		Lenidosnerma angustatum
		Mitrasacme paradoxa
		Schoenus rodwavanus
		Schoenus sp. 2 (GJK 5739)
		* Sonchus oleraceus
		* Trifolium campestre
		Thysanotus manglesianus/
		patersonii complex
		Thysanotus multiflorus
		Tricorvne elatior
		* Vulpia mvuros
		Wurmbea monantha
Mean species richness:	39.5	Structural units

open low scrub A

open low scrub B

Mean species richness:39.5Mean weed frequency:5.6

Mean vegetation condition: 2.5

Number of quadrats: 2

Community type: 20a

Banksia attenuata woodlands over species rich dense shrublands

Reservation Status:	Unreserved
Conservation Status:	Endangered

Typical Species:

Trees	Shrubs	Herbs	
Banksia attenuata	Bossiaea eriocarpa	Alexgeorgea nitens	;
	Conostephium pendulum	Burchardia umbellata	
	Hibbertia huegelii	Drosera erythrorhiza	
	Hibbertia hypericoides	Drosera menziesii subsp.	
	Petrophile linearis	penicillaris	
	Scaevola repens var. repens	Haemodorum laxum	
	Stirlingia latifolia	Lomandra hermaphrodita	
	6 ,	Loxocarya fasciculata	
		Lyginia barbata	
		Mesomelaena pseudostygia	'a
		Patersonia occidentalis	
		Stylidium piliferum	2

Other common species:

Trees	Shrubs	Herbs
	Astroloma pallidum	Amphipogon turbinatus
	Daviesia nudiflora	Conostylis aurea
	Daviesia triflora	Conostylis setigera
	Eremaea pauciflora	Cyathochaeta clandestina
	Eriostemon spicatus	Dampiera linearis
	Gompholobium tomentosum	Danthonia occidentalis
	Allocasuarina humilis	*Gladiolus caryophyllaceus
	Hemiandra pungens	Hypolaena exsulca
	Jacksonia densiflora / floribunda	Lepidosperma sp. (coastal terete)
	complex	Lomandra caespitosa
	Petrophile macrostachya	Loxocarya flexuosa
	Synaphea spinulosa	Monotaxis grandiflora
	v • •	Schoenus curvifolius
		Stylidium brunonianum
		Stylidium calcaratum
		Tetraria octandra
		Thysanotus triandrus

Xanthosia huegelii

,

Mean species richness:	67.4	Structural units
Mean weed frequency:	1	low forest A low woodland A
Mean vegetation condition:	1.7	low woodland B open low woodland A
Number of quadrats:	7	-

tum

Community type: 20b

Eastern Banksia attenuata and/or Eucalyptus margianta woodlands

Reservation Status:Well reservedConservation Status:Vulnerable

Typical Species:

Trees Banksia attenuata Shrubs Bossiaea eriocarpa Conostephium pendulum Dryandra nivea Hibbertia huegelii Hibbertia hypericoides Petrophile linearis Xanthorrhoea preissii

Herbs

Burchardia umbellata Chamaescilla corymbosa Dasypogon bromeliifolius Drosera erythrorhiza Lomandra hermaphrodita Loxocarya fasciculata Mesomelaena tetragona Restio sinosus Ms Tetraria octandra

Xanthosia huegelii

Trees	Shrubs	Herbs
Eucalyptus marginata	Allocasuarina humilis	Amphipogon turbinatus
Xylomelum occidentale	Astroloma pallidum	Caladenia flava
-	Baeckea camphorosmae	Conostylis juncea
	Calectasia cyanea	Mesomelaena pseudostygia
	Eriostemon spicatus	Conostylis setigera
	Gompholobium tomentosum	Drosera macrantha
	Grevillea pilulifera	Drosera paleacea
	Hakea ruscifolia	Haemodorum laxum
	Hibbertia vaginata	Lepidosperma angustatum
	Hypocalymma robustum	Leporella fimbriata
	Labichea punctata	Lomandra sericea
	Stirlingia latifolia	Lyperanthus nigricans
	0	Stylidium brunonianum
		Stylidium piliferum
		*Ursinia anthemoides

Mean species richness:	62.7	Structural units
Mean weed frequency:	1.4	low forest A low woodland A
Mean vegetation condition:	2.6	open low woodland A
Number of quadrats:	9	

Community type: 20c

Eastern shrublands and woodlands

Reservation Status:Well reservedConservation Status:Low risk

Typical Species:

Trees

Shrubs

.

Allocasuarina humilis Bossiaea eriocarpa Hibbertia hypericoides Scaevola repens vat. repens Stirlingia latifolia Herbs

Amphipogon turbinatus Burchardia umbellata Conostylis aculeata Conostylis aurea *Gladiolus caryophyllaceus Haemodorum laxum Lomandra hermaphrodita Lyginia barbata Mesomelaena pseudostygia Neurachne alopecuroidea Patersonia occidentalis Podolepis gracilis Schoenus aff. brevisetis Stipa compressa Trachymene pilosa *Ursinia anthemoides

Other common species:

Trees		Shrubs	Herbs
	А А Е С Ј С С Ј С С Я С Я С Я	lcacia auronitens lcacia sessilis lcacia willdenowiana Dryandra nivea Eremaea asterocarpa subsp. esterocarpa Eriostemon spicatus Gompholobium tomentosum lacksonia densiflora / floribunda complex Petrophile linearis Ecaevola canescens	Anigozanthos manglesii Arnocrinum preissii *Briza maxima Chamaescilla corymbosa Dasypogon bromeliifolius Drosera stolonifera Hybanthus calycinus *Hypochaeris glabra Isotropis cuneifolia Laxmannia sessiliflora subsp australis Leporella fimbriata Schoenus curvifolius Stipa pycnostachya Tetraria octandra
Mean species richness:	64	Structural u	nits
Mean weed frequency:	4	woodland low woodland	d A

Mean vegetation condition: 2.2

Number of quadrats: 9

low woodland A open low woodland A scrub open scrub open low scrub A open low scrub B

Community type: 21 a

Central Banksia attenuata - Eucalyptus marginata woodlands

Well reserved **Reservation Status:** Conservation Status: Low risk

Typical Species:

Trees Banksia attenuata

Shrubs Bossiaea eriocarpa Gompholobium tomentosum Hibbertia hypericoides Petrophile linearis

Herbs *Briza maxima Burchardia umbellata *Hypochaeris glabra Lepidosperma angustatum Trachymene pilosa

Lomandra caespitosa Lomandra hermaphrodita Lomandra sericea Loxocarya flexuosa Lyginia barbata Patersonia occidentalis Phlebocarya ciliata *Ursinia anthemoides Xanthosia huegelii

Other common species:

Trees	Shrubs	Herbs
Eucalyptus marginata	Conostephium pendulum	Caladenia flava
7 0	Eriostemon spicatus	Chamaescilla corymbosa
	Macrozamia riedlei	Conostylis aculeata
		Conostylis juncea
		Danthonia occidentalis
		Dasypogon bromeliifolius
		Drosera erythrorhiza
		Drosera stolonifera
		Lagenifera huegelii

Mean species richness:	54.6
Mean weed frequency:	4.2
Mean vegetation condition:	2.5
Number of quadrats:	39

dens	se forest	
fore	st	
low	forest A	
w00	dland	
low	woodland A	A

Structural units

open woodland open low woodland A low heath C

Community type: 21b

Southern Banksia attenuata woodlands

Reservation Status:	Well reserved
Conservation Status:	Susceptible

Typical Species:

Trees	Shrubs	Herbs
Banksia attenuata	Bossiaea eriocarpa	Burchardia umbellata
	Calytrix flavescens	Chamaescilla corymbosa
	Conostephium pendulum	Dasypogon bromeliifolius
	Eriostemon spicatus	Drosera menziesii subsp.
	Hibbertia hypericoides	penicillaris
	Hypocalymma robustum	*Hypochaeris glabra
	Jacksonia sp. Busselton (G.J.	Laxmannia sessiliflora subsp.
	Keighery 4482)	australis
	Leucopogon conostephioides	Lepidosperma angustatum
	Melaleuca thymoides	Leporella fimbriata
	Petrophile linearis	Lomandra hermaphrodita
	-	Lyginia barbata
		Patersonia occidentalis
		Phlebocarya ciliata
		Trachymene pilosa
		Xanthosia huegelii

Trees	Shrubs	Herbs
	Acacia extensa	*Briza maxima
	Acacia pulchella var. pulchella	Caladenia flava
	Boronia spathulata	Hypolaena exsulca
	Gompholobium tomentosum	Lomandra caespitosa
	Hibbertia vaginata	Lomandra sericea
	Hovea trisperma	Loxocarya fasciculata
	Lysinema ciliatum	Lyperanthus nigricans
	Stirlingia latifolia	Stipa compressa
		Stylidium piliferum

61.3	Structural units
1.7	forest
	low forest A
2	woodland
	low woodland A
12	open low woodland A
	61.3 1.7 2 12

Community type: 21c

Low lying Banksia attenuata woodlands or shrublands

Reservation Status:Well reservedConservation Status:Low risk

Typical Species:

Trees Banksia attenuata Shrubs

Herbs

*Briza maxima *Hypochaeris glabra Lomandra caespitosa Lyginia barbata Thysanotus manglesianus/ patersonii complex Trachymene pilosa

*Ursinia anthemoides

Other common species:

Trees	Shrubs	Herbs
Banksia menziesii	Gompholobium tomentosum	Burchardia umbellata
	Kunzea ericifolia	Caladenia flava
	Leucopogon conostephioides	Dasypogon bromeliifolius
	Petrophile linearis	Drosera erythrorhiza
	Scholtzia involucrata	Hypolaena exsulca
		Lomandra hermaphrodita
		Patersonia occidentalis
		Stylidium brunonianum
		Stylidium repens

Mean species richness:	40.5
Mean weed frequency:	3.6
Mean vegetation condition:	2.6
Number of quadrats:	16

Structural units

forest low forest A woodland low woodland A open low woodland A dense heath B dwarf scrub C

Banksia ilicifolia woodlands

Reservation Status:Poorly reservedConservation Status:Low risk

Typical Species:

Trees Banksia attenuata Banksia ilicifolia

Shrubs Petrophile linearis **Herbs** Stylidium brunonianum Stylidium repens

Other common species:

TreesShrubsHerbsDasypogon bromeliifoliusDrosera paleaceaLyginia barbataPatersonia occidentalisPhlebocarya ciliataStylidium piliferum

Mean species richness:	32,5
Mean weed frequency:	0.6
Mean vegetation condition:	2
Number of quadrats:	11

Structural units

low woodland A open low woodland A open scrub

.

Community type: 23a

Central Banksia attenuata - B. menziesii woodlands

Reservation Status: Conservation Status: Well reserved Low risk

Typical Species:

Trees Banksia menziesii Banksia attenuata

Shrubs Bossiaea eriocarpa Gompholobium tomentosum Leucopogon conostephioides Petrophile linearis Scholtzia involucrata

Herbs

*Briza maxima Burchardia umbellata Conostylis juncea Dampiera linearis Drosera erythrorhiza *Hypochaeris glabra Lomandra hermaphrodita Lyginia barbata Patersonia occidentalis Schoenus curvifolius Stylidium piliferum Trachymene pilosa

Other common species:

Trees

Shrubs

Adenanthos cygnorum Calytrix flavescens Conostephium pendulum Eriostemon spicatus Hibbertia hypericoides Hibbertia subvaginata Hovea trisperma Xanthorrhoea preissii

Herbs

*Aira caryophyllea Amphipogon turbinatus Centrolepis drummondiana Danthonia occidentalis Dasypogon bromeliifolius Drosera menziesii subsp. penicillaris *Gladiolus caryophyllaceus Laxmannia squarrosa Lepidosperma angustatum Loxocarya flexuosa Phlebocarya ciliata Stipa compressa Stylidium brunonianum Stylidium repens Thysanotus manglesianus/ patersonii complex *Ursinia anthemoides Waitzia suaveolens Xanthosia huegelii

Mean species richness:	62.8	Structural units	
Mean weed frequency:	5.2	low forest A	
		woodland	
Mean vegetation condition:	2	low woodland A	
		low woodland B	
Number of quadrats:	19	open low woodland A	

Community type: 23b

Northern Banksia attenuata - B. menziesii woodlands

Reservation Status:	Unreserved
Conservation Status:	Susceptible

.

Typical Species:

Trees	Shrubs	Herbs
Banksia attenuata	Bossiaea eriocarpa	Alexgeorgea nitens
Banksia menziesii	Calytrix flavescens	Anigozanthos humilis
	Eremaea pauciflora	Burchardia umbellata
	Eriostemon spicatus	Lomandra hermaphrodita
	Hibbertia subvaginata	Lyginia barbata
	Jacksonia densiflora /	Patersonia occidentalis
	floribunda complex	Schoenus curvifolius
	Petrophile linearis	Stylidium repens
	Scholtzia involucrata	Xanthosia huegelii

Trees	Shrubs	Herbs
	Acacia pulchella var. pulchella	Amphipogon turbinatus
	Beaufortia elegans	Conostylis juncea
	Conostephium minus	Dasypogon bromeliifolius
	Conostephium pendulum	Drosera erythrorhiza
	Hibbertia hypericoides	Drosera menziesii subsp.
	Leucopogon conostephioides	penicillaris
	Melaleuca aff. trichophylla	Mitrasacme paradoxa
	Stirlingia latifolia	Stylidium brunonianum
		Stylidium diuroides
		Stylidium piliferum

Mean species richness:	53.8	Structural units
Mean weed frequency:	0.7	low forest A
Mean vegetation condition:	1.8	low woodland A low woodland B
Number of quadrats:	21	open low woodland A

Northern Spearwood shrublands and woodlands

Reservation Status:	Well reserved
Conservation Status:	Susceptible

Typical Species:

Trees

Shrubs

Herbs *Anagallis arvensis *Briza maxima *Hypochaeris glabra Lepidosperma angustatum

Loxocarya flexuosa

*Sonchus oleraceus Stipa flavescens

Other common species:

Trees

Shrubs	Herbs
Hardenbergia comptoniana	*Bromus diandrus
Melaleuca acerosa	*Cerastium glomeratum
Phyllanthus calycinus	Conostylis aculeata
Xanthorrhoea preissii	Dianella revoluta
-	*Lagurus ovatus
	Lomandra maritima
	*Petrorhagia velutina

Mean species richness:	41.8
Mean weed frequency:	14.2
Mean vegetation condition:	3
Number of quadrats:	25

Structural units

dense low forest B low forest A woodland low woodland A dense shrub mallee open shrub mallee thicket dense low heath C dense low heath D heath A low heath C low heath D low scrub A low scrub B

Southern Eucalyptus gomphocephala - Agonis flexuosa woodlands

Reservation Status: Conservation Status:

Poorly reserved Susceptible

Typical Species:

Trees	Shrubs	Herbs
Eucalyptus gomphocephala	Hibbertia hypericoides	*Briza maxima
	Macrozamia riedlei	*Briza minor
	Phyllanthus calycinus	Daucus glochidiatus
		*Hypochaeris glabra
		Oxalis perennans

Other common species:

Trees	Shrubs	Herbs
Agonis flexuosa	Acacia willdenowiana	*Aira caryophyllea
	Hardenbergia comptoniana	*Bromus diandrus
	Leucopogon propinquus	Caladenia flava
		Caladenia latifolia
		Conostylis aculeata

*Bromus diandrus Caladenia flava Caladenia latifolia Conostylis aculeata Dichopogon capillipes Drosera erythrorhiza Geranium retrorsum Lagenifera huegelii Lepidosperma angustatum Lomandra caespitosa Microlaena stipoides *Orobanche minor *Sonchus oleraceus Stipa flavescens *Trifolium campestre

*Petrorhagia velutina Sowerbaea laxiflora Trachymene pilosa

Mean species richness:	52.8	Structural units	
Mean weed frequency:	12.9	low forest A woodland	
Mean vegetation condition:	3.3	open woodland open tree mallee	
Number of quadrats:	11	•	

Community type: 26a

Melaleuca huegelii - M. acerosa shrublands of limestone ridges

Reservation Status:	Unreserved
Conservation Status:	Susceptible

Typical Species:

Trees

Shrubs Acacia lasiocarpa Dryandra sessilis Grevillea thelemanniana subsp. preissii Melaleuca acerosa Melaleuca huegelii Trymalium albicans

Herbs

Daucus glochidiatus Eriochilus dilatatus *Hypochaeris glabra Loxocarya flexuosa Millotia tenuifolia Mitrasacme paradoxa *Sonchus oleraceus Stipa flavescens Thysanotus manglesianus/ patersonii complex Trachymene pilosa *Vulpia myuros

Other common species:

Trees	Shrubs	Herbs
	Dryandra nivea	*Aira caryophyllea
	Gompholobium tomentosum	*Anagallis arvensis
	Hardenbergia comptoniana	Crassula colorata
	Leucopogon parviflorus	Danthonia occidentalis
	Templetonia retusa	*Dischisma arenarium
	-	*Heliophila pusilla
		Hydrocotyle hispidula
		Opercularia vaginata
		Parietaria debilis
		Pterostylis aff. nana
		Stipa compressa
		Stylidium maritimum Ms
		Wurmbea monantha

scrub

Mean species richness:	50.2	Structural units
Mean weed frequency:	8	dense thicket
		dense heath A
Mean vegetation condition:	2.1	dense heath B
0		heath A
Number of quadrats:	11	heath B
•		low heath C
		low scrub B
		open scrub

Community type: 26b

Woodlands and mallees on limestone

Reservation Status:	Well reserved
Conservation Status:	Low risk

Typical Species:

Trees

Shrubs Hibbertia hypericoides Xanthorrhoea preissii

Herbs

*Aira caryophyllea Daucus glochidiatus *Hypochaeris glabra Lagenifera huegelii Loxocarya flexuosa Millotia tenuifolia Trachymene pilosa

Other common species

Trees	Shrubs	Herbs
	Dryandra nivea	*Anagallis arvensis
	Hardenbergia comptoniana	Centrolepis drummondiana
	Hibbertia racemosa	*Cerastium glomeratum
	Kennedia prostrata	Crassula colorata
	Melaleuca acerosa	Drosera erythrorhiza
		*Heliophila pusilla
		Homalosciadium homalocarpum
		Isolepis marginata
		Lepidosperma angustatum
		Microlaena stipoides
		Pterostylis aff. nana
		*Sonchus oleraceus
		Sowerbaea laxiflora
		Thysanotus manglesianus/
		patersonii complex
		Wahlenbergia preissii

Mean species richness:	52. 7	Structural units	
Mean weed frequency:	8.4	forest	
		low forest A	
Mean vegetation condition:	2.5	woodland	
0		low woodland A	
Number of quadrats:	19	tree mallee	
1		open tree mallee	
		shrub mallee	
		very open scrub mallee	
		thicket	

dense heath A dense heath B low scrub A

Community type: 27

Species poor mallees and shrublands on limestone

Reservation Status:	1
Conservation Status:	1

Well reserved Low risk

Typical Species:

Trees

Shrubs Acacia truncata Comes Astroloma microcalyx Lepido Dryandra nivea Loman Grevillea thelemanniana subsp. Loxoca preissii Trachy Leucopogon parviflorus Lysinema ciliatum Melaleuca acerosa Templetonia retusa

Herbs

Comesperma confertum Lepidosperma angustatum Lomandra maritima Loxocarya flexuosa Trachymene pilosa

Other common species:

Trees	Shrubs	Herbs
	Acacia lasiocarpa	Cassytha flava
	Hakea trifurcata	Cassytha glabella
	Hibbertia hypericoides	Conostylis aculeata
	Hibbertia racemosa	Daucus glochidiatus
	Hibbertia spicata subsp.	Drosera macrantha
	leptotheca	Opercularia vaginata
	Trymalium albicans	Poa drummondiana
	Xanthorrhoea preissii	Pterostylis aff. nana
	•	Schoenus lanatus
		Stylidium junceum
		Thysanotus manglesianus/
		patersonii complex
		Tricorvne elatior

		Structural units	
Mean species richness:	39		
-		dense shrub mallee	
Mean weed frequency:	0	low heath C	
		low heath D	
Mean vegetation condition:	1.7	low scrub B	
U U		open shrub mallee	
Number of quadrats:	7	shrub mallee	
-			

Community type: 28

Spearwood Banksia attenuata or Banksia attenuata - Eucalyptus woodlands

Reservation Status: Conservation Status:

Well reserved Low risk

Typical Species:

Trees Banksia attenuata Shrubs Hibbertia hypericoides Xanthorrhoea preissii Herbs

* Hypochaeris glabra Burchardia umbellata Drosera erythrorhiza Loxocarya flexuosa Mesomelaena pseudostygia Trachymene pilosa

Other common species:

Trees	Shrubs	Herbs
	Acacia pulchella var. pulchella	*Aira caryophyllea
	Conostephium pendulum	*Briza maxima
	Gompholobium tomentosum	*Gladiolus caryophyllaceus
	Petrophile linearis	Centrolepis drummondiana
	•	Conostylis aculeata
		Conostylis setigera
		Danthonia occidentalis
		Daucus glochidiatus
		Lagenifera huegelii
		Lepidosperma angustatum
		Lomandra hermaphrodita
		Sowerbaea laxiflora
		Stylidium brunonianum
		Thysanotus manglesianus/ patersonii complex
		*Ursinia anthemoides

Mean species richness:	55.2	Structural units
Mean weed frequency:	8	forest low forest A
Mean vegetation condition:	2.5	low forest B woodland
Number of quadrats:	38	low woodland A open woodland

open woodland open low woodland A dense thicket scrub low scrub B

Community type: 29a

Coastal shrublands on shallow sands

Reservation Status:	Poorly reserved
Conservation Status:	Susceptible

Typical Species:

Trees	Shrubs	Herbs
	Acanthocarpus preissii	Crassula colorata
	Rhagodia baccata	Daucus glochidiatus
	Spyridium globulosum	Senecio lautus
		Stipa flavescens

Other common species:

Trees	Shrubs	Herbs
	Eremophila glabra	*Anagallis arvensis
	Hardenbergia comptoniana	*Bromus diandrus
	Leucopogon parviflorus	*Cerastium glomeratum
	Nemcia reticulata	Crassula glomerata
		*Galium murale
		Parietaria debilis
		Poa porphyroclados
		*Sonchus oleraceus

Trachymene pilosa

Mean species richness:	40.7	Structural units
Mean weed frequency:	11.2	low forest A dense low forest A
Mean vegetation condition:	2.3	dense heath B dense low heath C
Number of quadrats:	9	dense low heath D low heath D

Community type: 29b

Acacia shrublands on taller dunes

Reservation Status:	Poorly reserved
Conservation Status:	Susceptible

Typical Species:

Trees

Shrubs Acacia lasiocarpa Acanthocarpus preissii Melaleuca acerosa Rhagodia baccata

Herbs

Daucus glochidiatus *Dischisma arenarium Lepidosperma angustatum Lomandra maritima Loxocarya flexuosa Poa porphyroclados Senecio lautus Stipa flavescens Trachymene pilosa

Other common species:

Trees	Shrubs	Herbs
	Acacia rostellifera	Bromus diandrus
	Gompholobium tomentosum	Conostylis candicans
	Hemiandra pungens	Danthonia occidentalis
	Leucopogon parviflorus	*Heliophila pusilla
	Olearia axillaris	Opercularia vaginata
	Phyllanthus calycinus	Schoenus grandiflorus

Mean species richness:	35.6	Structural units
Mean weed frequency:	3.4	heath A
		heath B
Mean vegetation condition:	1.8	low heath C
Ū.		low heath D
Number of quadrats:	13	low scrub B
■		dwarf scrub C
		dwarf scrub D
		open low scrub A

Community type: 30a

Callitris preissii (or Melaleuca lanceolata) forests and woodlands

Reservation Status: Conservation Status:

Status: Vulnerable

Poorly reserved

Typical Species:

Trees Callitris preissii Shrubs Spyridium globulosum Herbs

Other common species:

Trees

Shrubs Acanthocarpus preissii Rhagodia baccata Herbs *Galium murale *Myrsiphyllum asparagoides Stipa flavescens *Trachyandra divaricata Trachymene pilosa

Mean species richness:	21.1	Structural units
Mean weed frequency:	6.3	forest
		dense low forest A
Mean vegetation condition:	3.2	dense low forest B
U		low forest A
Number of quadrats:	7	low woodland A
•		open woodland

Community type: 30b

Quinadalup Eucalyptus gomphocephala and / or Agonis flexuosa woodlands

Reservation Status:	
Conservation Status:	

Well reserved Susceptible

Typical Species:

Trees Agonis flexuosa

Shrubs Hardenbergia comptoniana Hibbertia cuneiformis Rhagodia baccata Spyridium globulosum Herbs Caladenia latifolia Carex preissii Galium murale Geranium retrorsum Oxalis perennans Parietaria debilis Trachymene pilosa

*Trachyandra divaricata *Zantedeschia aethiopica

Other common species:

Trees

Shrubs Herbs Acanthocarpus preissii *Anagallis arvensis Leucopogon parviflorus Calandrinia brevipedata Phyllanthus calycinus *Cerastium glomeratum Templetonia retusa Dichondra repens Eriochilus dilatatus Lepidosperma angustatum Microlaena stipoides Pterostylis aff. nana Sonchus oleraceus Stipa flavescens

37.6	Structural units
7.7	low forest A
	dense low forest A
3.1	woodland
	open woodland
8	dense heath A
	37.6 7.7 3.1 8

Community type: 30c

Other mallees or scrubs

Reservation Status:	Unreserved
Conservation Status:	Insufficiently known

Typical Species:

Trees

Shrubs Spyridium globulosum Herbs Daucus glochidiatus Dianella revoluta Thysanotus manglesianus/ patersonii complex

Trachymene pilosa

Other common species:

Trees	Shrubs	Herbs
	Acacia lasiocarpa	Caladenia latifolia
	Dryandra sessilis	*Cerastium glomeratum
	Hardenbergia comptoniana	*Conyza albida
	Olearia axillaris	*Hypochaeris glabra
	Templetonia retusa	Lepidosperma gladiatum
	-	*Oxalis pes-caprae
		Poa porphyroclados
		Pterostylis aff. nana
		* Sonchus oleraceus

Mean species richness:	27.3	Structural units
Mean weed frequency:	3.7	shrub mallee thicket
Mean vegetation condition:	2.7	scrub
Number of quadrats:	3	

Appendix 2.

Flora list for the southern Swan Coastal Plain.

The list includes all taxa recognised in the survey (Appendix 3). When it was not possible to differentiate between species and subspecific ranks at sites both ranks are listed. See Appendix 3 for a list of taxa amalgamated for the purposes of the analysis.

Explanation of column headings and codes

Conservation code

As defined by the Western Australian Department of Conservation and Land Management (2/2/94).

R: Declared Rare Flora - Extant taxa (= Threatened Flora = Endangered + Vulnerable)

Taxa which have been adequately searched for, and are deemed to be in the wild either rare, in danger of extinction, or otherwise in need of special protection, and have been gazetted as such, following approval by the Minister for the Environment, after recommendation by the State's Endangered Flora Consultative Committee.

1: Priority 1 - Poorly Known Taxa

Taxa which are known from one or a few (generally < 5) populations which are under threat, either due to small population size, or being on lands under immediate threat, e.g. road verges, urban areas, farmland, active mineral leases, etc., or the plants are under threat from disease, grazing by feral animals etc. May include taxa with threatened populations on protected lands. Such taxa are under consideration for declaration as 'rare flora', but are in urgent need for further survey.

2: Priority Two - Poorly Known Taxa

Taxa which are currently known from one or a few (generally < 5) populations, at least some of which are believed to be under immediate threat (i.e. not currently endangered). Such taxa are under consideration for declaration as 'rare flora', but are in urgent need of further survey.

3. Priority Three - Poorly Known Taxa

Taxa which are known from several populations, at least some of which are not believed to be under immediate threat (i.e. not currently endangered). Such taxa are under consideration for declaration as 'rare flora', but are in need of further survey.

4. Priority Four - Poorly Known Taxa

Taxa which are considered to have been adequately surveyed and which, whilst being rare (in Australia), are not currently threatened by identifiable factors. These taxa require monitoring every 5 -10 years.

Proposed Conservation Code

Conservation code as recommended by the current survey. Codes as above.

Endemics

Taxa endemic to the study area (the region south of Seabird and west of the Darling and Whicher Scarps including the colluvial soils along their margins). See Figure 1.

- eC Coastal dunes
- eCl Coastal limestone
- eE Pinjarra plain
- ef Foothills
- el Ironstone
- eP Entire study area

Range Ends Taxa for which the study area contains:

- N populations at the northern limit of their known geographic range.
- S populations at the southern limit of their known geographic range.
- ND populations disjunct and north of their known geographic range.
- SD populations disjunct and south of their known geographic range.
- D populations disjunct from their known geographic range.

Geographic limit

Location of range limits as defined above.

Code Codes used in Appendix 3

Fioristic survey of Swan Coastal Fram Family/taxon	Cons. Code	Prop. Cons. Code	End- emic	Range end	Geographic limit	Code
Adiantaceae		Cout				
Adiantum aethiopicum						ADIAET
Cheilanthes austrotenuifolia						CHEAUS
Aizoaceae						
* Carpobrotus edulis						CAREDU
Carpobrotus modestus	1		-			CARMOD
Carpobrotus sp. (Hepburn Heights GJK 11518)			eC			CARPHEP
Carpobrotus virescens						TETDEC
 Tetragonia decumpens Tetragonia tetragonoides 						TETTET
Amaranthacene						IBIIBI
Alternanthera nodiflora						ALTNOD
Ptilotus declinatus						PTIDEC
Ptilotus drummondii						PTIDRU
Ptilotus esquamatus						PTIESQ
Ptilotus humilis subsp. humilis				D		PTIHUMHU
Ptilotus manglesii						PTIMAN
Ptilotus polystachyus						PTIPOL
Ptilotus stirlingii						PTISTI
Anthericaceae						
Agrostocrinum scabrum						AGRSCA
Arnocrinum preissii						ARNPRE
Borya scirpoidea						BORSCI
Borya sphaerocephala						BORSPH
Caesia micrantha						CAEMIC
Caesia micrantha (Blue flowered form GJK 10857)			۹₽			CAEMICSW
Caesia micranina (Large swamp form BJK & NG 094)			ев			CAROCC
Chemoscoille off, spiralis (GIK 12501)		1	٩R			CHAAFFSP
Chamaescilla corumbosa		1	CL			CHACOR
Chamaescilla versicolor						CHAVER
Corvnotheca micrantha						CORMIC
Dichopogon capillipes						DICCAP
Dichopogon preissii						DICPRE
Hensmania turbinata						HENTUR
Hodgsoniola junciformis				N	Capel	HODJUN
Johnsonia acaulis						JOHACA
Johnsonia aff. pubescens (GJK 5249)			eP			JOHAFFPU
Johnsonia lupulina						JOHLUP
Johnsonia pubescens						IAYODA
Laxmannia grandiflora						LANUKA
Laxmannia ramosa Lavenania consilidare suben suutestis						LAXSESAU
L'axmannia sessimora suosp. austrans						LAXSOU
Sowerhees lexiflore						SOWLAX
Thysapotus aff, pauciflora						THY PAU
Thysanotus aff. sparteus						THY SPA
Thysanotus arbuscula						THYARB
Thysanotus arenarius						THYARE
Thysanotus dichotomus						THYDIC
Thysanotus glaucus	4					THYGLA
Thysanotus manglesianus						THYMAN
Thysanotus manglesianus/patersonii complex						THYSPMP
Thysanotus multiflorus						THYMUL
Thysanotus patersonii						TUVDAU
Thysanotus pauciflorus						TUVDER
Thysenotus pseudojunceus						THYSPA
Thysanous spaneus						THYTEN
Thysanotus tenenus Thysanotus thyrsoideus						THYTHY
Thysanotus triandrus						THYTRI
Tricoryne elatior						TRIELA
Tricoryne humilis						TRIHUM
Tricoryne tenella						TRITEN
Apiaceae						
Actinotus glomeratus						ACTGLO
Actinotus leucocephalus						ACTLEU
Apium annuum						APIANN
Apium prostratum						APIPRO
Centella asiatica						CENASI
Centella cordifolia						CENCOR

Floristic survey of Swan Coastal Plain Family/taxon

Family/taxon		Cons. Code	Prop. Cons.	End- emic	Range end	Geographic limit	Code
D			Code				
Daucus glochidiatus							DAUGLO
Bryngium pinnatifidum s	ubsp. palustre Ms	1		еE			ERYPINPA
Eryngium pinnatindum a	ubsp. pinnatifidum			_			ERYPINPI
Lighting and Lighting Lighting	3 Mis	1		еE			ERYSUB
Hydrocotyle alata	carpum						HOMHOM
Hydrocotyle blenbarocer	7 .4						HYDALA
Hydrocotyle callicarna	ра						HYDBLE
Hydrocotyle cambarpa Hydrocotyle camillaria							HYDCAL
Hydrocotyle diantha							HYDCAP
Hydrocotyle hisnidula							HYDDIA
Hydrocotyle medicaginoi	des						HIDHIS
Hydrocotyle pilifera var.	glabrata						HIDMED
Hydrocotyle pilifera var.	pilifera						
Hydrocotyle scutellifera	•						HYDSCU
Hydrocotyle tetragonoca	гра						HYDTET
Pentapeltis peltigera	-						PENPEI
Platysace compressa							PLACOM
Platysace haplosciadia							PLAHAP
Platysace juncea					S	Carduo	PLAIUN
Platysace tenuissima					0	Carbop	PLATEN
Schoenolaena juncea							SCHILIN
Trachymene coerulea							TRACOR
Trachymene pilosa							TDADI
Xanthosia candida							YANGAN
Xanthosia ciliata							XANCAN
Xanthosia huegelii							VANUUT
Xanthosia nusilla							XANHUE
Apocynaceae							XANPUS
Alyxia buxifolia							AT VOLV
Parsonia diaphanophleha		2	Ð	۵D			
Aponogetonaceae		2	ĸ	er			PARDIA
Aponogeton hexatepalus		R		۶G			ADOURY
Araceae		ĸ		er.			AFOREA
* Zantedeschia aethiopica							7 4 51 4 57
Asparagaceae							ZANAEI
* Myrsiphyllum asparagoid	68						MVDAQD
Asphodelaceae							MIKAGI
- Bulbine semibarbata							RHISEM
* Trachyandra divaricata							TDADIV
Asteraceae							
Angianthus aff. drummon	dii (BJK & NG 013)						
Angianthus drummondii	(,						ANGODII
Angianthus micropodioide	8	3					ANGMIC
Angianthus preissianus		2					ANGINE
* Arctotheca calendula							ADCCAL
* Argyranthemum frutescen	8						ARCCAL
* Aster subulatus							ARGENUD
Asteridea pulverulenta							ASISUB
Blennospora aff. drummor	ndij (golden bracts BIK & NG 20)		2	٥Ē			ASTPUL
Blennospora drummondii			5	¢D.			DLEAFFUK
Brachyscome hellidioides							BLEDKU
Brachyscome iberidifolia							DRABEL
* Carduus pycnocephalus							BKAIBE
* Centaurea melitensis							CARPIC
* Cirsium vulgare							CENMEL
* Convza albida							CIRVUL
* Conyza bonariensis							CONDON
Cotula australis							COTATIO
* Cotula bipinnata							COTRUS
Cotula coronopifolia							COTCOD
Cotula cotuloides							COTCOR
* Cotula turbinata							COTCUL
Craspedia sp. (Perth Flora	GJK 13121)						
Craspedia sp. nov. (Water	leo GJK 13110)						CRASPSP
* Dittrichia graveoleda							CKASPNUV
Gnaphalium indutum							
Gnaphalium sobserioum							UNAIND
Gnenhosis angienthoides							GNASPH
Gnephosis drummondii						I	ONEANG
Gnephosis tenuissime - day	ummondii comptex					I	GNEDRU
Fusio seneroomid - dit							GNETENDR

Waitzia suaveolens

Azolla filiculoides

Myosotis australis

* Brassica tournefortii

* Cardamine paucijuga

Lepidium puberulum

Lepidium rotundum

Stenopetalum gracile

Stenopetalum robustum

* Cardamine hirsuta

* Heliophila pusilla

Azollaceae

Boraginaceae

Brassicaceae

Family/taxon	Cons. Code	Prop. Cons. Code	End- emic	Range end	Geographic limit	Code
* Hedvonois chagadioloides		0040				HEDRHA
Helichrysum cordetum						HELCOR
Helinterum corymbosum						HELCORy
Hydrogerma cotula						HYACOT
Hydrosperma demissum						HYADEM
Hydrosperma domasam						HYAPUS
* Hynocheerie glebre						HYPGLAbr
Ivioleene viscore				N	Meelon	IXIVIS
Laganifara huagalij						LAGHUE
						LAWROS
* Leontodon sevetilis						LEOSAX
Lentochunchos scehrus						LEPSCAb
Millatia myosotidifalia						MILMYO
Millotia tenuifolia						MILTEN
Myriocenhalus annendiculatus	3					MYRAPP
Myriocenhalus helichrysoides	-		еE			MYRHEL
Myriocephalus isoetes						MYRISO
Myriocephalus rhizocepalus						MYRRHI
Olearia axillaris						OLEAXI
Olearia elaeophila						OLEELA
Olearia paucidentata						OLEPAU
Olearia rudis						OLERUD
* Osteospermum clandestinum						OSTCLA
Picris squarrosa						PICSQU
Pithocarpa achilleoides	2		e			PITACH
Pithocarpa corymbulosa						PITCOR
Pithocarpa pulchella						PITPUL
Podolepis gracilis						PODGRA
Podolepis gracilis (Swamp form GJK 13126)						PODGRASW
Podolepis lessonii						PODLES
Podotheca angustifolia						PODANG
Podotheca chrysantha						PODCHK
Podotheca gnaphalioides						PODGNA
Pogonolepis stricta						DOUGIK
Pseudognaphalium luteoalbum						OUTIDY
Quinetia urvillei						RHOMAN
Rhodanthe manglesii	2		٩Ē			RHOPYR
Rhodanthe pyrethrum	3		ec			PHOSPI
Rhodanthe spicata						RUTMUL
Rutidosis multiflora						SENHIS
Senecio hispidulus						SENLAUDI
Senecio lautus subsp. dissectifolius						SENLAUMA
Senecio lautus suosp. mantimus						SENOUA
Senecio quauridentatus						SILFIL
Siloverus humifusue						SILHUM
* Sonchus asper						SONASP
Sonchus hydrophilus						SONHYD
* Sonchus Aleraceus						SONOLE
Trichocline sp. (GIK 6382-elabrous)		1	eЕ			TRISP
Trichocline spathulata						TRISPA
* Urospermum picroides						UROPIC
* Ursinia anthemoides						URSANT
* Vellereophyton dealbatum						VELDEA
Waitzia aurea						WAIAUR
Waitzia citrina						WAICIT
Waitzia paniculata						WAIPAN
Waitzia suaveolens						WAISUA

4

AZOFIL

MYOAUS

BRATOU

CARHIR

CARPAU

HELPUS

LEPPUB

LEPROT

STEGRA

STEROB

Cassalniniacaaa				
Labichea punctata				LARPIIN
Callitrichaceae				LABION
Callitriche hamulata				CALHAM
* Callitriche stagnalis				CALSTA
Wahlenbergia preissii				WAHPRE
Caryophyllaceae				
* Arenaria serpyllifolia				ARESER
* Cerastium glomeratum				CERGLO
* Corrigiola litoralis				CORLIT
* Minuartia hybrida				MINHYB
* Petrorhagia velutina				PETVEL
* Sagina apetala				SAGAPE
* Sagina maritima				SAGMAR
* Silene gallica				SILGAL
* Sparaula america				SILNOC
* Spergularia mbro				SPEARV
* Stellaria media				STEMED
Casuarinaceae				STEMED
Allocasuarina fraseriana				ALLERA
Allocasuarina humilis				ALLHUM
Allocasuarina microstachya		D		ALLMIC
Allocasuarina thuyoides		D		ALLTHU
Casuarina obesa				CASOBE
Centrolepidaceae				
Aphelia cyperoides				АРНСҮР
Brizula drummondii		N	Bullsbrook	BRIDRU
Brizula muelleri				BRIMUE
Brizula nutans				BRINUT
Centrolepis alepyroides				CENALE
Centrolepis aristata				CENARI
Centrolepis caespitosa	R			CENCAE
Centrolepis cephaloformis subsp. cephaloformis				CENCEPCE
Centrolepis drummondiana				CENDRU
Centrolepis glabra				CENGLA
Centrolepis numilima				CENHUM
Centrolepis inconspicua				CENINC
Centrolepis nilosa				CENNUI
Centrolenis polygyng				CENFIL
Chenopodiaceae				CENTOL
Atriplex cinerea				ATRCIN
Atriplex hypoleuca				ATRHYP
* Atriplex prostrata				ATRPRO
* Chenopodium ambrosioides				CHEAMB
* Chenopodium macrospermum				CHEMAC
Chenopodium pumilio		Ν	Lowlands	CHEPUM
Halosarcia halocnemoides				HALHAL
Halosarcia indica				HALIND
Halosarcia lepidosperma				HALLEP
Rhagodia baccata subsp. baccata				RHABAC
Rhagodia baccata subsp. dioica				RHABACDI
Sarcocornia quinqueflora				SARQUI
Suaeda australis				SUAAUS
Threlkeldia diffusa				THRDIF
Chloanthaceae				
Pityrodia bartlingii		DS	Busselton Forrestfield	PITBAR
Colonicaceae Developedia toistige		~		
Burchardia Dairdiae		S	Forrestdale Lake	BURBAI
Burchardia umballata				BURMUL
				BURUMB
Wurmbea dioica subsp. aff. alba (GIK 12803)				WURDIO
Wurmbea monantha				WURDIO A
Wurmbea nygmaea				WURDVO
Commelinaceae				WUKFIU
Cartonema philydroides				САРРИ
Convolvulaceae				~
Dichondra repens				DICRED
				DICKEP
Wilsonia backhousei				WILBAC

Isolepis nodosa Isolepis oldfieldiana

Isolepis producta

Isolepis setiformis Isolepis stellata

Lepidosperma aff. angustatum

Lepidosperma gladiatum x angustatum

Lepidosperma sp. (Coastal terete BJK & NG 231)

Lepidosperma sp. (Eastern terete BJK & NG 232)

Mesomelaena aff. graciliceps (BJK & NG 146)

Lepidosperma angustatum

Lepidosperma carphoides

Lepidosperma gladiatum

Lepidosperma leptostachyum

Lepidosperma longitudinale

Lepidosperma scabrum

Lepidosperma sp. E

Lepidosperma squamatum

Mesomelaena graciliceps

Mesomelaena tetragona Schoenus aff. brevisetis

Schoenus aff. laevigatus

Schoenus asperocarpus

Schoenus benthamii

Schoenus bifidus

Schoenus aff. obtusifolia (EAG 3841)

Schoenus aff. tenellus (BJK & NG 110)

Mesomelaena pseudostygia Mesomelaena stygia

Lepidosperma costale

Family/taxon	Cons. Code	Prop. Cons. Code	End- emic	Range end	Geographic limit	Code
Wilsonia humilis						WILHUM
Crassulaceae						
Crassula colorata						CRACOL
* Crassula decumbens						CRADEC
Crassula exserta						CRAEXS
* Crassula glomerata						CRAGLO
* Crassula natans						CRANAT
Crassula pedicellosa						CRAPED
Crassula peduncularis						CRAPEDu
* Crassula thunbergiana						CRATHU
Cupressaceae						
Actinostrobus acuminatus				DS	Forrestfield	ACTACU
Actinostrobus pyramidalis						ACTPYR
Callitris preissii						CALPRE
Cuscutaceae						
* Cuscuta epithymum						CUSEPI
Cyperaceae						
Baumea acuta						BAUACU
Baumea arthrophylla						BAUARTh
Baumea articulata						BAUART
Baumea juncea						BAUJUN
Baumea vaginalis						BAUVAG
Bolboschoenus caldwellii						BOLCAL
Carex preissii						CARPRE
Caustis dioica						CAUDIO
Chorizandra cymbaria						СНОСҮМ
Chorizandra enodis						CHOENO
Cyathochaeta avenacea				Ν	Bullsbrook	CYAAVE
Cyathochaeta clandestina				N	Landsdale	CYACLA
* Cyperus congestus						CYPCON
* Cyperus eragrostis						CYPERA
Cyperus polystachyos						CYPPOL
* Cyperus tenellus						CYPTEN
Eleocharis acuta						ELEACU
Eleocharis sp. Kenwick (GJK 5180)	1		еE			ELEKEN
Evendre aristete	-			N	Pavne	EVAARI
Evandra nauciflora				N	Anstev Rd	EVAPAU
Gaboia trifida						GAHTRI
Isolepis cernua						ISOCER
Isolenis cyneroides						ISOCYP
* Isolenis hystrix						ISOHYS
Isolenis nodosa						ISONOD

168

ISOOLD ISOPRO

ISOSET

ISOSTE

LEP_ANG

LEPANG

LEPCAR LEPCOS

LEPGLA

LEPLEP

LEPLON

LEPSCA

LEPANGCO

LEPETRE

LEPSPE LEPSOU

MES_GR MESGRA

MESPSE

MESSTY MESTET

SCH_BR SCHAFFLA

SCHAFFOB

SCHAFFTE

SCHASP

SCHBEN SCHBIF

LEPGLAN

DS

еE

Melaleuca Park

Floristic survey of Swan Coastal Plain Family/taxon

Family/taxon	Cons.	Prop.	End-	Range	Geographic limit	Code
	Code	Cons.	emic	end		
Schoenus brevisetis		Coue				SCHBRE
Schoenus caespititius						SCHCAE
Schoenus capillifolius	2		еE			SCHCAP
Schoenus clandestinus						SCHCLA
Schoenus cruentus						SCHCRU
Schoenus curvitonus						SCHCUR
Schoenus elegans						SCHDIS
Schoenus grandiflorus						SCHORA
Schoenus humilis						SCHHUM
Schoenus lanatus						SCHLAN
Schoenus latitans				DS	Forrestfield	SCHLAT
Schoenus nanus						SCHNAN
Schoenus natans	R		еE			SCHNAT
Schoenus nitens						SCHNIT
Schoenus odontocarpus						SCHODO
Schoenus peoicentitus	1					SCHPED
Schoenus pleiostemoneus	1					SCHPLE
Schoenus rigens						SCHRIG
Schoenus rodwayanus						SCHROD
Schoenus sculptus						SCHSCU
Schoenus sp. (BJK & NG 233)						SCHSPNT
Schoenus sp. (brown bracts)						SCHSPBB
Schoenus sp. (Hymus/Waroona - BJK & NG 111)						SCHOREEN
Schoenus sp. 2 (GJK 5/39)						SCHOSP2
Schoenus subhathatus						SCH_BRCU
Schoenus subharbatus (Royce 2872)						SCHOUBDO
Schoenus subbulbosus						SCHSUBhu
Schoenus subfascicularis						SCHSUBfa
Schoenus subflavus						SCHSUBfl
Schoenus tenellus						SCHTEN
Schoenus unispiculatus						SCHUNI
Tetraria australiensis	R		eР			TETAUS
Tetraria capillaris						TETCAP
Tricostularia negati von eletion						TETOCT
Tricostularia neesii var, neesii						TRINEEL
Dasypogonaceae						IKINEENE
Acanthocarpus canaliculatus				S	Anstev Rd	ACACAN
Acanthocarpus preissii				N	Capel NR	ACAPRE
Baxteria australis					•	BAXAUS
Calectasia cyanea						CALCYA
Calectasia grandiflora				DS	Mundijong Rd	CALGRAnd
Chamaexeros serra						CHASER
Desypogon brokeri						DASBRO
Dasypogon obliquifolius				DS	Carduo	DASORI
Kingia australis					Saraah	KINAUS
Lomandra brittanii						LOMBRI
Lomandra caespitosa						LOMCAE
Lomandra drummondii						LOMDRU
Lomandra hermaphrodita						LOMHER
Lomandra integra						LOMINT
Lomandra maritima Lomandra migrantha						LOMMAR
Lomandra migranula						LOMMIC
Lomandra nutans				D		
Lomandra odora				<i>u</i>		
Lomandra pauciflora						LOMPATI
Lomandra preissii						LOMPRE
Lomandra purpurea						LOMPUR
Lomandra sericea						LOMSER
Lomandra sonderi						LOMSON
Lomandra spartea				S	Dardanup	LOMSPA
Lomandra suaveolens						Lomsua
Pteridium esculentum						DEBRAA
Dilleniaceae						FIEESC
Hibbertia acerosa						HIBACE

Family/taxon	Cons.	Prop.	End-	Range	Geographic limit	Code
	Code	Cons.	emic	end		
1156 August - Chine Barris and August Aug		Code		•	Foreestfield	UIDARCUE
Hibbertia amplexicaulis				3	Follestlieta	HIBAMP
Hibbertia aurea				S	Fish Rd NR	HIBAUR
Hibbertia commutata				~		HIBCOM
Hibbertia crassifolia Hibbertia curaiformia				S N	Marangaroo M12 Warnbro Sound	HIBCRA
Hibbertia cunninghamii				IN IN	Walloro Doulla	HIBCUNn
Hibbertia enervia						HIBENE
Hibbertia glomerata						HIBGLO
Hibbertia huegelii						HIBHUE
Hibbertia hypericoides Hibbertia nachurrhiza						HIBPAC
Hibbertia quadricolor						HIBQUA
Hibbertia racemosa						HIBRAC
Hibbertia rhadinopoda						HIBRHA
Hibbertia serrata	2			c	Velgonin	HIBSER HIBSPILE
Hibbertia stellaris	3			5	Talgorup	HIBSTE
Hibbertia subvaginata						HIBSUB
Hibbertia vaginata						HIBVAG
Droseraceae						DROBAD
Drosera barbigera			аЙ			DROBUL
Drosera bulbosa			еБ			DROBULos
Drosera erythrorhiza						DROERY
Drosera erythrorhiza subsp. erythrorhiza						DROERYER
Drosera erythrorhiza subsp. squamosa Ms						DROERYSQ
Drosera gigantea subsp. geniculata Ms				N	Lowlands	DROGIGGE
Drosera gigantea subsp. gigantea Drosera glanduligera						DROGLA
Drosera heterophylla						DROHET
Drosera huegelii						DROHUE
Drosera leucoblasta						DROLEU
Drosera macrantha	`		_			DROMACSC
Drosera macrantha (Swan coastal plain form BJK & NG 228)		e			DROMACMA
Drosera marchantii subsp. marchantii	4					DROMARMA
Drosera menziesii subsp. menziesii						DROMENME
Drosera menziesii subsp. penicillaris						DROMENPE
Drosera myriantha				N	Lowlande	DROMTK
Drosera neesii (Pink soumern form bik & NO 090) Drosera neesii subsp. neesii				N	Twin Swamps	DRONEENE
Drosera nitidula				-	· · · · · · ·	DRONIT
Drosera nitidula subsp. nitidula						DRONITNI
Drosera occidentalis subsp. australis Ms						DROOCCAU
Drosera occidentalis subsp. occidentalis	4					DROUCCUC
Drosera paleacea subsp. paleacea						DROPALPA
Drosera pallida						DROPALI
Drosera platystigma						DROPLA
Drosera pulchella						DROPUL
Drosera pychoblasta						DROPIC
Drosera ramenosa Drosera rosulata						DROROS
Drosera stolonifera						DROSTO
Drosera stolonifera subsp. porrecta						DROSTOPO
Drosera stolonifera subsp. stolonifera						DROSTOST
Drosera subhirtella			٥F			DROSUB
Flatingceae			613			DROTOD
Elatine gratioloides						ELAGRA
Epacridaceae						
Acrotriche cordata		•	٥Ī			ACRCOR
Andersonia atř. latifolia (Ironstone BJK & NG 227)		I	ei			ANDAFFLA
Andersonia caerulea						ANDCAE
Andersonia heterophylla						ANDHET
Andersonia involucrata						ANDINV
Andersonia lehmanniana						ANDLEH
Astrolome diliatum						ASTORU

Floristic survey of Swan Coastal Plain Family/ta

ily/taxon	Cons.	Prop.	End-	Range	Geographic limit	Code
	Code	Cons.	emic	end	0	
		Code				
Astroloma microcalyx			eCL			ASTM
Astroloma pallidum						ASTP/
Astroloma stomarrhena						ASTST
Astroloma xerophyllum						ASTX

Arteolome missoale				
		eCL		ASTMIC
Astroloma pallidum				ASTPAL
Astroloma stomarrhena				ASTSTO
Astroloma xerophyllum				ASTXER
Brachyloma preissii				BRAPRE
Conostephium minus	4	9	Lowlande	CONMIN
Conostephium pendulum	•		Lo n Iulius	COMPEN
Conostenhium preissii				CONPEN
Leuconogon eff centellatus (DIV & MC 156)				CONPRE
Leucopogon aff. capitenatus (BJK & NG 150)				LEU_CAP
Leucopogon art. grachina				LEU_GRA
Leucopogon arr. nutans				LEUAFFNU
Leucopogon aff. oliganthus				LEUAFFOL
Leucopogon aff. polymorphus				LEUAFFPO
Leucopogon aff. polymorphus (Southern form BJK &	NG 158)			LEU POLS
Leucopogon aff. revolutus	r			LEUAFFRE
Leucopogon australia				IFUALIS
Leucopogon capitellatus				LEUCAD
Leucopogon conostenhioides				LEUCAF
Leuconogon cymbiformia				LBUCON
				LEUCYM
Leucopogon giadentas				LEUGLA
Leucopogon gracillimus				LEUGRA
Leucopogon kingianus				LEUKIN
Leucopogon leptanthus				LEULEP
Leucopogon nutans				LEUNIT
Leucopogon obovatus				LEUOBO
Leucopogon oldfieldii				LEUOBO
				LEUOLD
Leuconogon neguiflorus				LEUOXY
				LEUPAR
Leucopogon pendulus				LEUPEN
Leucopogon polymorphus				LEUPOL
Leucopogon propinquus				LEUPRO
Leucopogon racemulosus				LEURAC
Leucopogon sprengelioides				LEUSPR
Leucopogon squarrosus				LEUSOU
Leucopogon verticillatus				TEUVER
Lysinems ciliatum				LEGVER
	2	0	T	
Sphenotoma capitatum	2	3	Jandakot	LYSELE
Sphenotoma capitalum				SPHCAP
Sphenotoma gracite				SPHGRAci
Styphelia tenuiflora				STYTEN
Euphorbiaceae				
Adriana quadripartita				ADROUA
Amperea ericoides				AMPERI
Amperea volubilis				AMPYOI
Beveria cinerea				
* Euchorbia penlus				BEYCIN
* Eucharbia Associat				EUPPEP
- Eupnordia terracina				EUPTER
Monotaxis grandiflora				MONGRA
Monotaxis occidentalis				MONOCC
Phyllanthus calycinus				PHYCAL
Poranthera ericoides				PORERI
Poranthera huegelii				PORHUE
Poranthera microphylla				DODMIC
Pseudanthus virgetus				PORMIC
Stachvetemon avillarie	4			PSEVIR
Stachystemon vermicularia	-			STAAXI
				STAVER
Frankeniaceae				
Frankenia paucifiora				FRAPAU
Fumariaceae				
* Fumaria capreolata				FUMCAP
Gentianaceae				
* Centaurium erythraea				CENEDV
* Cicendia filiformis				CENEKI
Geraniaceae				CICFIL
* Eadium haters				
				EROBOT
* Brodium cicutarium				EROCIC
Erodium cygnorum				EROCYG
* Erodium moschatum				EDUMUS
* Geranium molle				GEDMOI
Geranium retrorsum				OEKMUL
* Pelargonium capitatum				GERRET
Boinom capitatum				PELCAP

Family	//taxon
--------	---------

Cons. Prop. End- Range Geographic limit Code

	•	Code	Cons.	emic	end		
	Pelargonium littorale		Code				PELLIT
Good							
0000	Anthotium humile						ANTHUM
	Anthotium junciforme	4					ANTJUN
	Dampiera alata						DAMALA
	Dampiera coronata						DAMCOR
	Dampiera linearis						DAMLIN
	Dampiera trigona						DAMTRI
	Goodenia caerulea						GOOCAE
	Goodenia eatoniana						GOOLAT
	Goodenia micrantha						GOOMIC
	Goodenia pulchella						LECBIL
							LECEXP
	Lechenaultia floribunda						LECFLO
	Lechenaultia linarioides				S	Coogee	LECLIN
	Scaevola anchusifolia					-	SCAANC
	Scaevola calliptera						SCACAL
	Scaevola canescens						SCACAN
	Scaevola crassifolia						SCACRA
	Scaevola glandulifera						SCAGLA
	Scaevola lanceolata						SCALAN
	Scaevola nitida						SCANIT
	Scaevola phlebopetala						SCAPHL
	Scaevola repens var. angustifolia						SCAREPAN
	Scaevola repens var. repens						SCAREFRE
	Scaevola striata						SCASIK
	Scaevola thesioides						VEITE
	Velleia trinervis						VEDDEI
Com	Verreauxia reinwardiii						V LINKLI
Суго	Stemonaceae						GYRSUB
	Tersonia custhiflora						TERCYA
Няеп	ndoraceae						
	Anigozanthos bicolor						ANIBIC
	Anigozanthos flavidus						ANIFLA
	Anigozanthos humilis						ANIHUM
	Anigozanthos manglesii						ANIMAN
	Anigozanthos viridis						ANIVIR
	Blancoa canescens				S	Serpentine R	BLACAN
	Conostylis aculeata						CONACUDU
	Conostylis aculeata subsp. (Dunsborough)						CONACUPR
	Conostylis aculeata suosp. preissii						CONACXCO
	Conostylis acueata x canoicans						CONAUR
	Conostylis candicans						CONCAN
	Conostylis caricina						CONCAR
	Conostylis festucacea subsp. festucacea				S	Anstey Rd	CONFESFE
	Conostylis iuncea					•	CONJUN
	Conostylis laxiflora						CONLAX
	Conostylis pauciflora						CONPAU
	Conostylis pauciflora subsp. euryrhipis	1			S	Yanchep	CONPAUEU
	Conostylis serrulata						CONSER
	Conostylis setigera						CONSET
	Conostylis setosa						CONSETO
	Haemodorum brevisepalum						HAEBRE
	Haemodorum discolor						HAEDIS
	Haemodorum laxum	2			ne	Verloop	HARLOR
	Haemodorum Ioratum	3			03	1 attoop	HAEPAN
	Haemodorum simplex						HAESIM
	Haemodorum soarsiflorum						HAESPA
	Haemodorum spicatum						HAESPI
	Phlebocarya ciliata						PHLCIL
	Phlebocarya filifolia						PHLFIL
	Tribonanthes aff. violacea						TRIAFFVI
	Tribonanthes australis						TRIAUS
	Tribonanthes brachypetala						TRIBRA
	Tribonanthes longipetala						TRILON
	Tribonanthes uniflora						TRIUNI
	Tribonanthes violacea						TRIVIO

Family/taxon	Cons. Code	Prop. Cons.	End- emic	Range end	Geographic limit	Code
Haloragaceae Glischrocaryon aureum Gonocarpus benthammii Gonocarpus hexandrus Gonocarpus paniculatus Gonocarpus pithyoides Haloragis aculeolata Haloragis tenuifolia Myriophyllum drummondii Myriophyllum echinatum	2 1	2	еE			GLIAUR GONBEN GONHEX GONPAN GONPIT HALACU HALTEN MYRDRU MYRCRU
Hyacinthaceae * Lachenalia reflexa	-	-				LACREF
Hydatellaceae Hydatella dioica Trithuria bibracteata Trithuria submersa Hypoxidaceae	2		еE			HYDDIO TRIBIB TRISUB
Hypoxis glabella Hypoxis occidentalis						HYPGLA HYPOCC
Iridaceae * Babiana disticha * Ferraria crispa * Freesia aff. leichtlinii * Oladiolus angustus * Oladiolus caryophyllaceus * Hesperantha falcata * Homeria flaccida Orthrosanthus laxus Patersonia babianoides Patersonia babianoides Patersonia limbata Patersonia occidentalis Patersonia occidentalis Patersonia occidentalis (swamp form) Patersonia rudis Patersonia rudis Patersonia umbrosa forma xanthina * Romulea flava * Romulea rosea * Romulea rosea subsp. rosea * Romulea rosea var. australis * Sisyrinchium exile * Sparaxis bulbilfera * Watsonia marginata * Watsonia meriana				D		BABDIS FERCRI FREAFFLE GLAANG GLACAR HESFAL HOMFLA ORTLAX PATBAB PATJUN PATLIM PATOCC PATOCCSW PATPYG PATRUD PATUMBXA ROMFLA ROMOBS ROMROS ROMROS ROMROSRO ROMROSAU SISEXI SPABUL WATBUL WATMAR WATMER
Isoetes drummondii Isoetes drummondii						ISODRU
 * Juncus articulatus * Juncus bufonius Juncus caespiticius * Juncus capitatus Juncus holoschoenus Juncus kraussii Juncus pallidus * Juncus polyanthemus Luzula meridionalis 						JUNART JUNBUF JUNCAE JUNCAP JUNHOL JUNKRA JUNPAL JUNPOL LUZMER
Juncaginaceae Triglochin calcitrapum Triglochin centrocarpum Triglochin minutissimum Triglochin mucronatum Triglochin muelleri Triglochin procerum Triglochin sp. A (Perth Flora BJK & NG 095) Triglochin stowardii Triglochin striatum Triglochin trichophorum Lamiaceae Hemiandra pungens	2					TRICAL TRICEN TRIMIN TRIMUC TRIMUE TRIPRO TRIGSPA TRISTO TRISTR TRITRI HEMPUN
tionnanara hangana						

	Code	Cons.	emic	end		
Hemigenia barbata Hemigenia incana Hemigenia microphylla Hemigenia ramosissima		Code		S	Mt Brown	HEMBAR HEMINC HEMMIC HEMRAM
Mentha piperata						MENPIP
Westringia dampieri						WESDAM
Cassytha aurea var. hirta Cassytha flava						CASAURHI CASFLA
Cassytha glabella Cassytha micrantha Cassytha pomiformis Cassytha pubescens scps Cassytha racemosa				N	Talbot Rd Midland	CASGLA CASMIC CASPOM CASPUB CASRAC
Lemnaceae						
Lenna disperma Lentibulariaceae						LEMDIS
Polypompholyx multitida Polypompholyx tenella Utricularia dichotoma Utricularia inaequalis Utricularia menziesii Utricularia violacea						POLMUL POLYTEN UTRDIC UTRINA UTRMEN UTRVIO
Linaceae						
Linum marginale * Linum trigynum Lindsaeseese						LINMAR LINTRI
Lindsaea linearis						LINLIN
Isotoma hypocrateriformis						ISOHYP
Isotoma pusilla Isotoma scanigaza				S	Waroona	ISOPUS
Lobelia alata						LOBALA
Lobelia gibbosa						LOBGIB
Lobelia heterophylla						LOBHET
Lobelia rhombifolia						LOBRHO
Lobelia tenuior						LOBTEN
* Monopsis debilis						MONDEB
Loganiaceae						10000
Logania campanolata						LOGSER
Logania serpyllifolia subsp. angustifolia						LOGSERAN
Logania vaginalis						LOGVAG
Mitrasacme palustris	1					MITPAL
Mitrasacme paradoxa						MITPAR
Mitrasacme sp. Southwest (GJK 343)	2			N	Capel	MITSP.
Anvena linenhyllum						
Nuytsia floribunda						NUYFLO
Lycopodiaceae						
Phylloglossum drummondii						PHYDRU
Lythraceae						
* Lythrum hyssopifolia Malvaceae						LYTHYS
Lavatera plebeia var tomentosa						I AVPI ETO
Lawrencia spicata						LAWSPI
Marsileaceae						
Marsilea sp. (BJK & NG 084)						MARDRU
Pilularia novae-hollandiae						PILNOV
Villereie albiflore						VII AT D
Villarsia canitata						VILALB
Villarsia latifolia						VILLAT
Villarsia parnassifolia						VILPAR
Villarsia submersa	4					VILSUB
Villarsia violifolia Mimosocco						VILVIO
Acaria alata						AC 4 4 1 4
Acacia alata van tetrantha Me						
Acacia applanata Ms						ACAAPP
Acacia auronitens						ACAAUR

Family/taxon	Cons. Code	Prop. Cons. Code	End- emic	Range end	Geographic limit	Code
Acacia barbinervis subsp. barbinervis		0000		DS	Burnside Rd	ACABARBA
Acacia barbinervis subsp. borealis						ACABARBO
Acacia browniana						ACACOC
Acacia cochlearis						ACACYC
Acacia dentifera						ACADEN
Acacia divergens						ACADIV
Acacia drewiana				S	Lambert Lane	ACADRE
Acacia ericifolia						ACAERI
Acacia extensa						ACAEAI
Acaçia flagellitormis	4					ACAHUE
Acacia incurva						ACAINC
Acacia lasiocarpa var. bracteolata (Long peduncle form)	1		еË			ACALASBR
Acacia lasiocarpa var. lasiocarpa						ACALASLA
Acacia lateriticola				DM	Datta set	
Acacia littorea	2			DN N	Rounes	ACAMOO
Acacia mooreana	2			14	Doyump	ACAMYR
						ACANER
* Acacia paradoxa						ACAPAR
Acacia pulchella (Eagle Bay)				N	Capel	ACAPULEB
Acacia pulchella var. glaberrima						ACAPUL
Acacia pulchella var. pulchella						ACAPULRE
* Acadia pulchella var. Tenexa ivis						ACAPYC
Acacia rostellifera						ACAROS
Acacia saligna						ACASAL
Acacia semitrullata	3			N	Yarloop	ACASEM
Acacia sessilis						ACASES
Acacia spathulata						ACASTE
Acacia stenoptera						ACATER
Acacia tetragonocarpa						ACATET
Acacia truncata				S	Bunbury	ACATRU
Acacia urophylla						ACAURO
Acacia varia var. varia Ms						ACAVARYA
Acacia willdenowiana				s	Fremantle	ACAXAN
Acacia Xanuina Pereserienthes ionhantha				-		PARLOP
Molluginaceae						
Macarthuria aff. australis (Capel)			eP	_		MACAFFAU
Macarthuria apetala				S	Jandakot	MACAPE
Macarthuria australis						MACAOD
Myoporaceae Researchile clobes						EREGLA
Breinophina glaora Myonophin cantarioidea						MYOCAP
Myoporum insulare						MYOINS
Myrtaceae						LOTOUN.
Actinodium cunninghamii				N	Dold Dark	ACICUN
Agonis flexuosa				IN	Dolu Faik	AGOGRA
Agonis grandifiora						AGOLIN
Agonis narvicens						AGOPAR
Astartea aff. fascicularis						AST_FA
Baeckea camphorosmae						BAECAM
Baeckea robusta				S	North Beach	BAEROB
Baeckea tenuifolia		1		5	Munaijong	REAFLE
Beaufortia elegans						BEAMAC
Beaufortia macrostemon Beaufortia marmurea						BEAPUR
Beaufortia sparsa						BEASPA
Beaufortia squarrosa				DS	Oates Rd	BEASQU
Calothamnus aff. crassus (Royce 84)	1		-	DN	Smith Rd	CAL_CR
Calothamnus aff. quadrifidus (Ironstone BJK & NG 230)	`	1	el			
Calothamnus graniticus subsp. leptophyllus	2					CALURALD
Calothamnus hitsutus Calothamnus lateralia						CALLATe
Calothamnus pallidifolius						CALPALI
Calothamnus quadrifidus						CALQUA
Calothamnus sanguineus						CALSAN

Family/taxon	Cons.	Prop.	End-	Range	Geographic limit Code
	Code	Cons.	emic	end	

		Code	Cons. Code	emic	end		
	Calytrix angulata				DS	Guthrie Block	CALANG
	Calytrix aurea						CALAUR
	Calytrix flavescens						CALFLAve
	Calytrix fraseri						CALFRA
	Calytrix leschenaultii				DS	Capel Williamson Rd	CALLES
	Calytrix sapplimia						CALSAP
	Calytrix variabilis						CALVARia
	Chamelaucium erythrochlorum Ma	R					CHAERY
	Chamelaucium roycei Ms	R		el			CHAROY
	Chamelaucium uncinatum				S	Bold Park	CHAUNC
	Conothamnus trinervis				DS	Forrestfield	CONTRI
	Darwinia citriodora						DARCIT
	Darwinia oederoides		_				DAROED
	Darwinia sp. (williamson Kd, BJK & NG sn)	1	к	el			DARIKON
	Eremaea asterocarna subso asterocarna						FREASTAS
	Eremaea asterocama subsp. brachvelada		1	ef			EREASTBR
	Eremaea fimbriata		•	•.	DS	Forrestfield	EREFIM
	Eremaea pauciflora						EREPAU
	Eremaea pauciflora subsp. pauciflora						EREPAUPA
	Eremaea purpurea				S	Whiteman Park	EREPUR
	Eucalyptus argutifolia	R			S	Yanchep	EUCARG
	Eucalyptus calophylla						EUCCAL
	Eucalyptus decipiens				-		EUCDEC
	Eucalyptus foecunda				S	Yalgorup	EUCFOE
	Eucalyptus gomphocephala				8	Ludlow	EUCGOM
	Eucalyptus haematoxylon						EUCHAE
	Eucalyptus lanepoolei Eucalyptus marginata subsp. alegantalla	1	D	of			FUCMAREI
	Eucalyptus marginata subsp. eleganena Eucalyptus marginata subsp. marginata	1	ĸ	C1			EUCMARMA
	Eucalyptus patens						EUCPAT
	Eucalyptus petrensis Ms				S	Yalgorup	EUCPETRE
	Eucalyptus rudis						EUCRUD
	Eucalyptus todtiana						EUCTOD
	Eucalyptus wandoo						EUCWAN
	Hypocalymma angustifolium						HYPANG
	Hypocalymma ericifolium				N	Lyons block	HTPERI
	Kunzea aff micrantha (BIK & NG 040)						KUNAFFMI
	Kunzea ericifolia						KUNERI
	Kunzea littericola Ms			еE			KUNLIT
	Kunzea micrantha				N	Perth	KUNMIC
	Kunzea recurva						KUNREC
*	Leptospermum erubescens						LEPERU
	Leptospermum spinescens						LEPSPIne
	Melaleuca acerosa						MELACE
	Melaleuca aff. acerosa (GJK 11242)	2		eCL			MELAFFAC
	Melaleuca att. trichophylla						MELAFFIR
	Melaleuca oracieosa Melaleuca condicatavilo				0	Dold Dook	MELBKA
	Melaleuca cuticularia				3	DOIU FAIK	MELCHK
	Melaleuca hamulosa						MELHAM
	Melaleuca huegelii						MELHUE
	Melaleuca incana						MELINC
	Melaleuca lanceolata						MELLAN
	Melaleuca lateriflora var. acutifolia						MELLATAC
	Melaleuca lateritia						MELLAT
	Melaleuca leptoclada						MELLEP
	Melaleuca preissiana Malaleuca abashisabulla						MELPRE
	ivicialeuca maphiophylla Mataleuca soobro						MELKHA
	Melaleuca seriata						MELOCA
	Melaleuca an. B (Perth Flore RIK & NG 054)						MELSER
	Melaleuca teretifolia						MELTER
	Melaleuca thymoides						MELTHY
	Melaleuca trichophylla						MELTRI
	Melaleuca uncinata						MELUNC
	Melaleuca viminea						MELVIM
	Pericalymma ellipticum						PERELLip
	Pericalymma floridum Ms						PERFLO

Floristic survey of Swan Coastal Plain Family/taxon

Cons. Code	Prop. Cons. Code	End- emic	Range end	Geographic limit Code	
---------------	------------------------	--------------	--------------	-----------------------	--

	Regelia ciliata					REGCIL
	Regelia inops					REGINO
	Scholtzia ciliata			DS	Yarloop	SCHCIL
	Scholtzia involucrata					SCHINV
	Verticordia acerosa					VERACE
	Verticordia densiflora					VERDEN
	Verticordia drummondii					VERDRU
	Verticordia habrantha					VERHAB
	Verticordia huegelii					VERHUE
	Verticordia huegelii var. huegelii					VERHUEHU
	Verticordia lindleyi subsp. lindleyi	4	еE			VERLINLI
	Verticordia nitens			-		VERNIT
	Verticordia ovalifolia			S	Ellis brook	VEROVA
	Verticordia pennigera					VERPEN
	Verticordia plumosa		_			VERPLU
	Verticordia plumosa var. pleiobolrya	1	eE			VERPLUPL
~	Verticordia plumosa var. vassensis	1	eE			VERPLUVA
Ulaca						OL ADEN
^	Olax benthamiana					OLABEN
Unag	raceae					EDIDII
	Epilobium billardiceiranum					
	Ephoolum ollardienanum subsp. intermedium					COLUD
A-14	Ephoolum ningerum					EFINIK
Opm	Ochie de company de cience					OBULUS
01-	Opniogiossum iusitanicum					OFFICIS
Oren						CALADU
	Caladenia aphylia					CALAFE
	Caladenia arenicola MB					CALAKE
	Caladenia attingens subsp. attingens					CALATIAL
	Caladenia bicalliata					CALBIC
	Caladenia brownii					CALDEE
	Caladenia deformis					CALDER
	Caladenia denticulata					
	Caladenia discoldea					CALDIS
	Caladenia ferriginea					CALFER
	Caladonia flava					CALFLA
	Caladenia nava suosp. nava					CALGEM
	Caladenia geninata					CALGEM
	Caladenia biza					CALHIR
		D	۵D			CALHUE
	Caladenia Integeni Caladenia latifolia	ĸ	01			CALLAT
	Caladenia Iongicanda					CALLON
	Caladenia longicanda subsp. calcigena					CALLONCA
	Caladenia longicauda subsp. longicauda					CALLONLO
	Caladenia marginata					CALMAR
	Caladenia menziesii					CALMEN
	Caladenia naludosa					CALPAL
	Caladenia radiata					CALRAD
	Caladenia ratiana					CALREP
	Caladenia sericea					CALSER
	Caladenia sneciosa					CALSPEC
	Caladenia speciosa Caladenia variang suben variang					CALVARVA
	Caladenia variano outop, variano Caladenia variagata					CALVAP
	Corvhae recurvie					CORREC
	Curtostylis huggelii					CYRHUE
	Cyrtostylis naugeni					CYRROB
	Diurie aff ampliesime					DILLAFFAM
	Diuris carinata					DIUCAR
	Diuris emerginete					DILIEMA
	Diuris laxiflore					DIULAX
	Diuris longifolia					DIULON
	Diuris micrantha	R	eP			DIUMIC
	Drakaea glyptodon	-				DRAGLY
	Elythranthera brunonis					ELYBRU
	Elythranthera emarginata					ELYEMA
	Epiblema grandiflorum					EPIGRA
	Eriochilus dilatatus					ERIDIL
	Eriochilus dilatatus subsp. dilatatus					ERIDILDI
	Eriochilus dilatatus subsp. multiflorus					ERIDILMU
	Eriochilus helonomos					ERIHEL

178

	Coue	Code	• ennic	ena		
Eriochilus multiflorus		Coue	:			FRIMIII
Leporella fimbriata						LEPEIM
Lyperanthus nigricans						LYPNIG
Lyperanthus serratus						LYPSER
Microtis aff. media						MICAFFME
Microtis atrata						MICATR
Microtis media						MICMED
Microtis media subsp. densiflora						MICMEDDE
Microtis media subsp. media						MICMEDME
Microtis orbicularis						MICORB
* Monadania bractanta						MICUNI
Presonhvilum aff holmsij						MUNBRA
Prasophyllum brownii						PRA_HO
Prasophyllum drummondii				N	GinGin	PRADRU
Prasophyllum elatum						PRAELA
Prasophyllum fimbria						PRAFIM
Prasophyllum macrostachyum						PRAMAC
Prasophyllum parvifolium						PRAPAR
Prasophyllum plumaeforme						PRAPLU
Prasopnyllum pluritera Ms						PRASPLU
Pterostylis aff. nana						PTEAFFNA
Pterostylis aff. sanguines						PTENANLI DTEATESA
Pterostylis aff. vittate						DTDATESA
Pterostylia aspera						PTRASP
Pterostylis barbata						PTERAR
Pterostylis brevisepala Ms						PTEBRE
Pterostylis concava						PTECON
Pterostylis pyramidalis						PTEPYR
Pterostylis recurva						PTEREC
Pterostylis sanguinea						PTESAN
Pterostylis scabra var. robusta						PTESCARO
Pterostylis seratera var. robusta Ms						PTESERRO
Pterostylis sp. nov. (Paganoni)						PTEPAGA
Thelymitte off holmosii						PTEVIT
Thelymitra aff. mecrophyllum						THEAFFHU
Thelymitra aff. pauciflora						ТИБАГГИА
Thelymitra antennifera						THEANT
Thelymitra benthamiana						THEBEN
Thelymitra campanulata						THECAM
Thelymitra canaliculata						THECAN
Thelymitra crinita						THECRI
Thelymitra flexuosa						THEFLE
Thelymstra fuscolutea						THEFUS
Thelymitra macrophylla						THEMAC
Thelymitra mucida Thelymitra mucida						THEMUC
Thelymitte neuciflore						THENUD
Orobanchaceae						INEFAU
* Orobanche minor						OROMIN
Oxalidaceae						onomi
Oxalis corniculata						OXACOR
* Oxalis glabra						OXAGLA
Oxalis perennans						OXAPER
* Oxalis pes-caprae						OXAPES
* Oxalis purpurea						OXAPUR
Papilionaceae						
Actus procumbers						AOTORA
Autor procumpens Rossiaca criocarna						AUTPRO
Bossiaea eriocarna (Large flowered form RIK & NG 220)						BOSERI
Bossiaea ornata						BOSEKILF
Bossiaea pulchella						BOSPUL
Bossiaea rufa						BOSRUF
Brachysema praemorsum						BRAPRA
Brachysema sp. (Treeton BJK & NG 001)	1	R	el			BRAAFFSE
Brachysema sp. (Williamson GJK 12719)	1	R	eI			BRAWIL
Callistachys lanceolata						CALLAN
Chorizema dicksonii						CHODIC

			Couc	•			
Chor	rizema glycinifolium						CHOGLY
Chor	izema nanum						CHONAN
Chu							CHORHO
Cnoi	nzema mombeum	_			-	a	CHOKIO
Choi	rizema varium	R			S	Seabird	CHOVAR
Davi	esia angulata						DAVANG
Davi	esia comutata Ms						DAVCOM
Dut							DAVCOR
Davi	esia coroata						Dividen
Davi	esia costata						DAVCOS
Davi	esia decurrens						DAVDEC
David	ania divanianta						DAVDIV
Davi							DAVILOD
Davi	esia horrida						DAVHOR
Davi	esia incrassata						DAVINC
Davi	esia inflata				N	Fish Rd NR	DAVINF
Davi					-		DAVNUD
Davi	esia nuomora						DAVDUV
Davi	esia physodes						DAVPHY
Davi	esia podophylla						DAVPOD
Davi	esia preissii						DAVPRE
D							DAVOUA
Davi	esia quadriatera						DAVDUO
Davi	esia rhombifolia						DAVRHO
Davi	esia triflora						DAVTRI
Dilly	vynie dillwynioides		2	eP			DILDIL
D.11			-	••			DILCI
Diny	winia cinerascens Ms						DICI IN
Euch	ilopsis linearis						EUCLIN
Euta	xia virgata						EUTVIR
Gom	nholohium eristetum						GOMARI
000					м	Canal	GOMCAP
Gom	pholopium capitatum				IN	Caper	COMON
Gom	pholobium confertum						GOMCON
Gom	nholobium knightianum						GOMKNI
Gom	ahalahium manginatum						GOMMAR
Golie	photoolum marginatum						COMOVA
Gom	pholobium ovatum						GOMOYA
Gom	pholobium polymorphum						GOMPOL
Gom	nholohium nreissii						GOMPRE
0011							GOMSCA
Gom	pholodium scadrum						CONTON
Gom	pholobium tomentosum						GOMTOM
Hard	lenbergia comptoniana						HARCOM
How	es chorizemifolis						HOVCHO
100							NOVELI
Hov	ea elliptica						NUVELL
Hov	ea pungens						HOVPUN
Hove	ea trisperma var, grandiflora						HOVTRIGR
11.000	a triangente ter grandene						HOVTRITR
	ca trisperina var. trisperina						ROCUN
lsotr	opis cuneitolia						ISOCON
Isotr	opis cuneifolia subsp. glabra Ms		R	еE			ISOCUNGL
Jack	sonia aff. floribunda						JACAFFFL
Jave Taala				۵D			LACAFESE
Jack	sonia an. sericea (swamp torm)			er			LICALI
Jack	sonia alata						JACALA
Jack	sonia angulata						JACANG
Inck	sonie condensete						JACCON
7422							1ACDEN
Jack	sonia densiliora						JACOLIN
Jack	sonia densiflora / floribunda complex						JACD/F
Jack	sonia floribunda						JACFLO
Inch	sonia furcellata						JACFUR
Jack							
Jack	sonia ienmannii						
Jack	sonia restioides						JACRES
Jack	sonia sericea	3		eP			JACSER
Lash	ania an Busselton (C I Kaishan (4482) BN	3					IACSP
TACK	some sp. Dussenon (O.J. Reignery 4402) Fiv	5					LACONTR
Jack	sonia sternbergiana						JACOLE
Jack	sonia stricta						JACSTR
Von	nadia carinata						KENCAR
Veiu V	nesia eastas						KENCOC
Keni	nedia coccinea						NEACOC
Ken	nedia prostrata						KENPRO
Ken	nedia stirlingii						KENSTI
Late	bes tenells						LATTEN
1,115 1,110							LOTANO
* Lotu	s angustissimus						LUIANG
							LOTSUA
F Lotu	s suaveolens						LUDGOR
* Lotu * Luni	s suaveolens nus cosentinii						LUPCOS
* Lotu * Lupi * Mod	s suaveolens nus cosentinii iceso polymomba						MEDPOI
* Lotu * Lupi * Med	s suaveolens nus cosentinii icago polymorpha						MEDPOL
 Lotu Lupi Med Meli 	s suaveolens nus cosentinii icago polymorpha lotus indicus						MEDPOL MELIND
 Lotu Lupi Med Meli Mirb 	s suaveolens nus cosentinii icago polymorpha lotus indicus pelia dilatata						MEDPOL MELIND MIRDIL
 Lotu Lupi Med Meli Mirt Mirt 	s suaveolens nus cosentinii icago polymorpha lotus indicus pelia dilatata pelia spinosa						MEDPOL MELIND MIRDIL MIRSPI
 Lotu Lupi Med Meli Mirt Mirt 	s suaveolens nus cosentinii icago polymorpha lotus indicus belia dilatata belia spinosa ioia eff. ospitata						MEDPOL MELIND MIRDIL MIRSPI
 Lotu Lupi Med Meli Mirb Mirb Nem 	s suaveolens nus cosentinii icago polymorpha lotus indicus selia dilatata selia spinosa icia aff. capitata						MEDPOL MELIND MIRDIL MIRSPI NEMAFFCA

i totible but tej of brian coustar i tam				
Family/taxon	Cons.	Prop.	End-	Range
	Code	Cons.	emic	end
		Code		
Nemcia dilatata				
Nomaia actionate				

		Couc			
Nemcia dilatata					NEMDIL
Nemcia reticulata					NEMRET
Nemcia sp. (Cordate leaves BJK & NG 032)					NEMCOR
Nemcia snathulata					NEMSDA
* Ornithanus comorcanus					ODUGOL
* Orniniopus complessus					URNCOM
 Omitriopus pinnatus 					ORNPIN
Oxylobium lineare					OXYLIN
Pultenaea ericifolia				Bullsbrook NR	PULERI
Pultenaea ochreata					PULOCH
Pultenaea reticulata					DUIDET
Pultenses skinneri	x	-F			DULEVI
	4	er.			PULSKI
Sphaerolodium aff. macranihum					SPHAFFMA
Sphaerolobium grandiflorum					SPHGRA
Sphaerolobium linophyllum					SPHLIN
Sphaerolobium medium					SPHMED
Sphaerolobium vimineum					SPHVIM
Templetonia hiloha					TEMBI
Templetonia retuce					TEMDET
* Trifelium annustifelium					TENIKEI
+ Thiolium angustitolium					TRIANG
* Tritolium arvense					TRIARV
 Trifolium campestre 					TRICAM
* Trifolium cernuum					TRICER
* Trifolium dubium					TRIDUB
* Trifolium glomeratum					TRIGLO
* Trifolium subterraneum					TDICIDA
Visio estive					I KISUDIC
					VICSAT
* Vicia sativa subsp. sativa					VICSATSA
Viminaria juncea					VIMJUN
Philydraceae					
Philydrella drummondii					PHIDRU
Philydrella nygmaea					PHIPYG
Phormiaceae					1114 10
					51.5511
Dianella revoluta					DIAREV
Dianella revoluta var. brevicaulis					DIAREVBR
Dianella revoluta var. divaricata					DIAREVDI
Stypandra glauca					STYGLA
Pinaceae					
* Disus radiate					
Pinus raulata					PINKAD
rinosporaceae					
Billardiera aff. ringens (GJK 12977)		1 eCL			BILAFFRI
Billardiera candida					BILCAN
Billardiera parviflora			N	Boyanup	BILPAR
Billardiera variifolia			N	Pickering Brook	BILVAR
Pittosnorum phyllicseoides					PITPHY
Property frageri					DDOEDA
					PROFRA
Sonya neterophyna					SOLHEI
Plantaginaceae					
* Plantago lanceolata					PLALAN
* Plantago major					PLAMAJ
Poaceae					
Agrostis avenacea					AGRAVE
Agrostis nlabaja					ACIDIDIE
A gradia probla					AUKELE
Agrosus preissu					AGRPRE
 Aira caryophyllea 					AIRCAR
* Aira caryophyllea/cupaniana group					AIRASP
* Aira cupaniana					AIRCUP
* Aira praecox					AIRPRA
Amphibromus neesii					AMDNEE
Amphinogon amphina					
Ampulpogon ampnipogonoides					AMPAMP
Amphipogon debilis			N	Beckenham	AMPDEB
Amphipogon laguroides					AMPLAG
Amphipogon turbinatus					AMPTUR
* Anthoxanthum odoratum					ANTODO
Aristida contorta					ADICON
Aristida ramora	1		n		ADDAL
	1		U		AKIKAM
- Aveninia michelii					AVEMIC
Avena barbata					AVEBAR
 Avena barbata/fatua 					AVENASP
* Avena fatua					AVEFAT
* Briza maxima					
					RRIMAY

Geographic limit Code

Floristic survey of Swan Coastal Plain Family/taxon

December and the second second	Code	
Bromus arenarius		REGARE
* Bromus diandrus		PRODUA
* Bromus hordeaceus		BRODIA
* Catapodium rigidum		BROHOR
Cynodon dactylon		CATRIG
* Cynosumus echinetus		CYNDAC
Denthonia agence		CYNECH
Dantiona acerosa	•	DANACE
Danmonia caespitosa		DANCAE
Danthonia occidentalis		DANOCC
Danthonia pilosa		DANOLL
Danthonia setacea		DANPIL
Deveuxia quadriseta		DANSET
Dichelachne crinite		DEYQUA
* Rebinoshine en uti		DICCRI
Echnochioa crus-gain		ECHCRU
+ Ehmarta calycina		EHRCAL
* Ehrharta longiflora		EUDION
* Eragrostis curvula		ERKLON
Eragrostis elongata		ERACUR
* Glyceria maxima		ERAELO
* Hainardia cylindrice		GLYMAX
* Holeye Janatus		HAICYL
		HOLLAN
+ Holcus seliger		HOLSET
 Hordeum leporinum 		HOPLED
* Lagurus ovatus		LACOVA
* Lolium multiflorum		LAGUVA
* Lolium perenne		LOLMUL
* Lolium rigidum		LOLPER
Mierolaana stinaidaa		LOLRIG
Microlacita supoldes		MICSTI
Neurachne alopecuroidea		NEUALO
Neurachne amphipogonoides		NEUAND
* Paspalum dilatatum		DADDI
* Pennisetum clandestinum		PASDIL
* Pentaschistis airoides		PENCLA
* Pentaschistis thunharaii		PENAIR
* Dhalania minera		PENTHU
- rhalaris minor		PHAMIN
* Phleum pratense		PHIDDA
* Poa annua		DOAANN
Poa drummondiana		POAANN
Poa poiformis		POADRU
Poa poiformis/pombyrocledor		POAPOI
Pos pombyroglados		POASP
* Delve agen transmit		POAPOR
Polypogon monspellensis		POLMON
Polypogon tenellus		POLTEN
Sporobolus virginicus		SBOVID
* Stenotaphrum secundatum		STUVIK
Stipa campylachne		STESEC
Stipa compressa		STICAM
Stina elegantissima		STICOM
Stine flavergens		STIELE
Stine1		STIFLA
Supa macaipinei		STIMAC
Stipa pycnostachya		STIPVC
Stipa semibarbata		OTIOPIC
Stipa semibarbata/campylachne		STISEM
Tetrarrhena laevis		STISEMGP
Themeda triandra		TETLAE
* Vulnia bromoider		THETRI
+ Main -		VULBRO
* vulpta myuros		VIEMVI
		V O LIVITO
Podocarpaceae		
Podocarpus drouynianus		
Polygalaceae		PODDRO
Comesperma calvmena		
Comesnerme conferture		COMCAL
Comessarma former		COMCON
Comespering navum		COMFL A
Comesperma integerrimum		COMPLEX
Comesperma virgatum		COMIN
Comesperma volubile		COMVIR
Muehlenbeckia adpressa		COMVOL
Muehlenbeckia polyhotrya	_	MUEADP
Persicaria prostrata	S Caraban	MUEPOL
Persicaria salicifolium		PERPRO

PERSAL

Family/taxon	Cons. Code	Prop. Cons. Code	End- emic	Range end	Geographic limit	Code
* Rumex acetosella		couc				RUMACE
* Rumex brownii						RUMBRO
* Rumex crispus						RUMCRI
* Rumex pulcher						RUMPUL
Portulacaceae						
Calandrinia brevipedata						CALBRE
Calandrinia calyptrata						CALCAL
Calandrinia corrigioloides						CALCOR
Calandrinia granulifera						CALGRA
Calandrinia liniflora						POPOLE
Portulaca oleracea						FOROLB
Primulaceae						ANAARV
• Anagams arvensis						SAMJUN
Semolus junceus						SAMREP
Protegoage						
Adenanthos cygnonim						ADECYG
Adenanthos intermedius						ADEINT
Adenanthos meisneri						ADEMEI
Adenanthos obovatus						ADEOBO
Banksia attenuata						BANATT
Banksia grandis						BANGRA
Banksia ilicifolia						BANILI
Banksia incana				DS	APB Forrestfield	BANINC
Banksia littoralis						BANLII
Banksia meisneri var. ascendens	4					BANMEIAS
Banksia menziesii						BANMEN
Banksia prionotes						CONACE
Conospermum acerosum						CONCAESP
Conospermum caeruleum subsp. spathulatum Ms						CONCAP
Conospermum capitatum				0	Brivton St	CONHUE
Conospermum huegelin				3	DIMON SC	CONINC
Conospermum incurvum			٥Ħ			CONPED
Conospermum stoachadia			QD.			CONSTO
Conospermum stoechadis x triplinervium						CONSXT
Conospermum teretifolium				N	Capel	CONTER
Conospermum undulatum	4	R	ef		•	CONUND
Drvandra aff. nivea (GJK 6622)		R				DRYAFFNI
Dryandra armata						DRYARM
Dryandra bipinnatifida			Е			DRYBIP
Dryandra nivea						DRYNIV
Dryandra sessilis						DRYSES
Dryandra sp. 30 (aff. squarrosa ASG 11657)	1	R	eI			DRYSPIR
Franklandia triaristata	4			_		FRATE
Grevillea althoferorum	1			S	Bullsbrook	GREALI
Grevillea bipinnatifida	•					GREBIP
Grevillea brachystylis subsp. brachystylis	2		еĽ	0	Valaamu	GREDKADK
Grevillea crithmifolia	2	в	না	3	raigorup	GREELO
Grevillea elongata	2	ĸ	eı			GREEND
Grevilles endlicheriana						GREMAN
Grevilles manglestoides	1		ما			GREMCC
Gravillas milulifato			01			GREPIL
Grewilles pulchelle						GREPUL
Grevilles quercifolie						GREQUE

GRETHEOB

GRETHEPR

GRETHETH

GRETRI

GREVES

GREWIL HAK UND

HAKAMP

HAKAUR

HAKCAN

HAKCER

HAKCON

HAKCOS

HAKCRI

HAKCYC

Pinjarra

Yalgorup

Perth

Byford

Forrestfield

S

s

S

S

s

еCL

2

4

Hakea costata Hakea cristata Hakea cyclocarpa

Grevillea quercifolia

Grevillea trifida

Grevillea vestita Grevillea wilsonii

Hakea amplexicaulis

Hakea auriculata

Hakea candolleana

Hakea ceratophylla

Hakea conchifolia

Grevillea thelemanniana subsp. obtusifolia

Grevillea thelemanniana subsp. thelemanniana

Grevillea thelemanniana subsp. preissii

Hakea aff. undulata (BJK & NG 237)

Family/taxon

Hakea erinacea Hakea incrassata Hakea lissocarpha Hakea marginata Hakea myrtoides

Hakea prostrata Hakea ruscifolia Hakea stenocarpa Hakea sulcata

						15
Cons. Code	Prop. Cons. Code	End- emic	Range end	Geographic limit	Code	1.
			S	Perth	HAKERI	
					HAKINC	
					HAKLIS	
					HAKMAR	
3					HAKMYR	
-					HAKPRO	
					HAKRUS	
					HAKSTE	
					HAKSUL	
					HAKTRI	
					HAKUND	
					HAKVAR	
R		el			HAKVARIR	
					ISOASP	
3			S	Forrestfield	ISODRUm	
			S	Forrestfield	ISODUB	
1			S	Ambergate	ISOSCA	
					ISOSPH	
3			S	Dardanup	LAMMUL	
2			DN	Williamson Rd	LAMPRO	
					PERANG	
					PERCOM	
					PERELL	
			DN	Carbanup	PERGRA	

	Hakea trifurcata						HAKTRI
	Hakea undulata						HAKUND
	Hakea varia						HAKVAR
	Hakea varia (Yellow flw ironstone form BJK & NG 226)	R		eI			HAKVARIR
	Isopogon asper						ISOASP
	Isopogon drummondii	3			S	Forrestfield	ISODRUm
	Isopogon dubius				S	Forrestfield	ISODUB
	Isopogon scaber	1			S	Ambergate	ISOSCA
	Isopogon sphaerocephalus						ISOSPH
	Lambertia multiflora	3			S	Dardanup	LAMMUL
	Lambertia propinqua	2			DN	Williamson Rd	LAMPKO
	Persoonia angustiflora						PERANG
	Persoonia comata						PERCOM
	Persoonia elliptica				DN	Cataona	DEDCDA
	Persoonia graminea				DN	Caroanup	DEDION
	Persoonia longitolia						DEDSAC
	Persoonia saccata						DETRI
	Petrophile Diloba						PETRDE
	Petrophile brevitolia	1	ъ	at			PETIAT
	Petrophile latericola Ms	I	ĸ	ei			PETLIN
	Petrophile linearis						PETMAC
	Petrophile macrostachya						PETMEDIII
	Petrophile media var. juncifolius Mis						PETSEM
	Petrophile seminuda						PETSER
	Petrophile serunae						PETSHU
	Petrophile squamete						PETSOU
	Petrophile striate						PETSTR
	Sticlingia latifolia						STILAT
	Strangea stenocamoides						STRSTE
	Synaphea ? gracillima x acutiloba						SYNGXA
	Synaphea acutiloba	3					SYNACU
	Synaphea aff, petiolaris						SYN_PET
	Synaphea gracillima						SYNGRA
	Synaphea petiolaris						SYNPET
	Synaphea petiolaris (trilobe form)						SYNPETTR
	Synaphea pinnata	4		еE			SYNPIN
	Synaphea polymorpha						SYNPOL
	Synaphea sp. (Busselton)						SYNBUS
	Synaphea sp. (Fine leaves BJK & NG 233)						SYNSTE
	Synaphea sp. (Fish Road GJK & BJK sn)						SYNFISH
	Synaphea sp. (Ironstone wedge leaves GJK sn)			e			SYNWEDG
	Synaphea sp. (Oats Road GJK & NG 251)						SYNOATS
	Synaphea sp. (Smith Rd BJK & NG 231)						SYNFLO
	Synaphea sp. (Whicher Range BJK & NG 036)						SYNWICH
	Synaphea spinulosa						SYNSPI
	Xylomelum occidentale						XYLOCC
Ran	inculaceae						~~~~~
	Clematis microphylla						CLEMIC
	Clematis pubescens						DANCOL
	Ranunculus colonorum						RANCUL
	Ranunculus pumilio						DANGEGGE
n	Ranunculus sessilitiorus var. sessilitiorus						KANSESSE
Kest							
	Anexpeorgea miens						ANAGRA
	Anarthria Isavis						ANALAF
	Anarthria nrolifera						ANAPRO
	Anarthria scabra						ANASCA
	Chaetanthus lentocamoides						CHALEP
	Harperia lateriflora						HARLAT
	Hypolaena exsulca						HYPEXS
	4 1						
wistia annual of Swan Coastal Plair

Floristic survey of Swan Coastal Plain						
Family/taxon	Cons. Code	Prop. Cons.	End- emic	Range end	Geographic limit	Code
Hundleene festigiete		Coue				HYPFAS
Hypolaena rabigiata Hypolaena rabigiata						HYPRAM
Lenidoholus preissienus						LEPPRE
Lentocarnus aff. crehriculmis (BIK & NG 236)						LEPAFFCR
L'entocarnus aristatus						LEPARI
Lentocarpus capus						LEPCAN
Lentocarpus coangustatus						LEPCOA
Leptocarpus roycei Ms						LEPROY
Leptocarpus scariosus						LEPSCAr
Leptocarpus sp. (large rhizome - Forrestdale Lake)						LEPTFL
Leptocarpus tenax						LEPTEN
Lepyrodia aff. macra (GJK 9848)						LEPYSP
Lepyrodia drummondiana						LEPDRU
Lepyrodia glauca						LEPGLAu
Lepyrodia heleocharoides	3					LEPHEL
Lepyrodia macra						LEPMAC
Lepyrodia muirii						LEPMUI
Loxocarya cinerea						LOXCIN
Loxocarya fasciculata						LOAFAS
Loxocarya flexuosa	•			N	Waaaaa Dd	LOAFLE
Loxocarya magna Ms	3			N	wonnerup Ka	LOAMAG
Loxocarya pubescens						LUAPOB
Lyginia barbata						MEEDEN
Meeboldina denmarkica				DN	Carbunun Divar	PSUGRO
Pseudoloxocarya grossa Ma				DIN	Cathonich Kiver	DESELE
Restio elegans Ms	2			N	Voorgarilun	RESORA
Resulo gracinor	3			14	Toongamup	RESOLUT
Restio reprocarpoides				s	Melaleuca Park	RESMIC
Restio microcodon Ms				DN	Williamson Rd	RESSER
Restio serians Ms				S	Burnside Rd	RESSIN
Restio enhageletus				•	2011010-11-	RESSPH
Restio sphacelatus Restio stenostechvus				S	Lowlands	RESSTE
Restio tremulus				-		RESTRE
Rhamnaceae						
Cryptandra arbutiflora						CRYARB
Cryptandra humilis				DS	Forrestfield	CRYHUM
Cryptandra mutila				S	Yallingup	CRYMUT
Cryptandra pungens						CRYPUN
* Rhamnus alaternus						RHAALA
Spyridium globulosum						SPYGLO
Spyridium tridentatum						SPYTRI
Trymalium albicans				S	Yalgorup	TRYALB
Trymalium floribundum						TRYFLO
Trymalium ledifolium						TRYLED
Rubiaceae						
* Galium aparine						GALAPA
* Galium divaricatum						GALDIV
* Galium murale						GALMUR
Opercularia apiciflora						OPEAPI
Opercularia hispidula						OPEHIS
Opercularia spermacocea						OPESPE
Opercularia vaginata						OPEVAG
Opercularia vaginata (Ironstone form BJK & NG 238)			el			OPEVAGIK
* Sherardia arvensis						SHEARV
Rutaceae				NI	Battaast Minning Coup	DOD AT A
Boronia alata				IN	Ronnest Minimum Cove	BORALA
Boronia crenulata				N	Canal	BORCKE
Boronia defoliata				14	Caper	BORDEN
Boronia denticulata						BORDEN
Boronia purdicana						BORRAM
Boronia ramosa						BORSPA
Dinioleene engustifolis				s	Yanchen	DIPANG
Diplolaena angustiona				N	Woodsman Point	DIPDAM
Eriotemon enicety:				14	n oousinan I onu	ERISPI
Sontalacooo						
Eventer adoration				N	Fish Rd NP	EXOODO
Exocarpos susteve					A DIL ING INK	EXOSPA
Entomeria cunninghamii						LEPCUN
Leptomeria commignami Leptomeria empetriformia				S	Yalgorup	LEPEMP
Expromenta emperintentili				-	or	

FIORISUC SURVEY OF SWAIL COASTAL FIAID						
Family/taxon	Cons. Code	Prop. Cons. Code	End- emic	Range end	Geographic limit	Code
Leptomeria ericoides Leptomeria lehmannii Leptomeria preissiana Leptomeria scrobiculata Leptomeria spinosa Santalum acuminatum Dodonaea aptera	1 2	Cour		N N N	Yalgorup Bullsbrook Ambergate	LEPERI LEPLEH LEPPREs LEPSCR LEPSPI SANACU DODAPT
Dodonaea hackettiana Dodonaea viscosa	4		e₩			DODHAC DODVIS
Scrophulariaceae * Bellardia trixago * Cymbalaria muralis * Dischisma arenarium * Dischisma capitatum Glossostigma diandrum Glossostigma drummondii Gratiola peruviana * Parentucellia latifolia * Parentucellia latifolia * Parentucellia viscosa Veronica aff. calycina (BJK & NG 235) * Veronica arvensis			eC			BELTRI CYMMUR DISARE DISCAP GLODIA GLODRU GRAPER PARLAT PARVIS VERAFFCA VERAFFCA
Selaginella gracillima						SELGRA
Solanaceae Anthocercis ilicifolia Anthocercis littorea * Solanum americanum * Solanum nigrum Solanum symonii				S	Mandurah	ANTILI ANTLIT SOLAME SOLNIG SOLSYM
Stackhousiaceae Stackhousia monogyna Tripterococcus brunonis Tripterococcus sp. Cannington (A.S.George 16201) PN	1		eP			STAMON TRIBRU TRISP.
Sterculaceae Guichenotia ledifolia Thomasia cognata Thomasia grandiflora Thomasia purpurea Thomasia triphylla						GUILED THOCOG THOGRA THOPUR THOTRI
Stylidiaceae Levenhookia pauciflora Levenhookia sipitata Stylidium adnatum Stylidium adnatum Stylidium adpressum Stylidium affr. bulbiferum (Ironstone) Stylidium affine Stylidium amoenum Stylidium breviscapum Stylidium brunonianum Stylidium brunonianum Stylidium brunonianum Stylidium brunonianum Stylidium brunonianum Stylidium brunonianum Stylidium brunonianum		2				LEVPAU LEVPUS LEVSTI STYADN STYADP STYAFFBUL STYAFF STYAMO STYBRE STYBRU STYBRUMI STYBUL STYCAL
Stylidium canaliculatum Stylidium carnosum				N	Pearce	STYCAN STYCAR
Stylidium crassifolium Stylidium crossocephalum Stylidium dichotomum				N S	Pearce Wanneroo	STYCRA STYCRO STYDIC STYDIU
Stylidium divericatum Stylidium ecorne Stylidium emarginatum Stylidium guttatum				S	Fish Rd NR	STYDIV STYECO STYEMA STYGUT
Stylidium imbricatum Stylidium inundatum Stylidium junceum Stylidium latericola Ms Stylidium lentophyllum				DN	Payne Rd	STYIMB STYINU STYJUN STYLAT STYLEP
Stylidium longitubum Stylidium macrocarpum	1			S	Mundijong Rđ	STYLON STYMAC
Stylidium maritimum Ms				S	White Hill	STYMAR

Far	nily/taxon	Cons. Code	Prop. Cons.	End- emic	Range end	Geographic limit	Code
	Stylidium mimeticum	1	Coue	٩F			STYMIM
	Stylidium obtusatum	•		UL			STYORT
	Stylidium periscelianthum						STYPER
	Stylidium perpusillum						STYPERD
	Stylidium petiolare						STYPET
	Stylidium piliferum						STYPIL
	Stylidium preissii				DN	Ken Hurst Park	STYPRE
	Stylidium pulchellum						STYPUL
	Stylidium repens						STYREP
	Stylidium rigidifolium	2		e			STYRIG
	Stylidium roseo-alatum						STYROSa
	Stylidium roseonanum						STYROS
	Stylidium scandens						STYSCA
	Stylidium schoenoides						STYSCH
	Stylidium spathulatum						STYSPA
	Stylidium striatum						STYSTR
	Stylidium utricularioides						STYUTR
Thyn	nelaeaceae						
	Pimelea argentea						PIMARG
	Pimelea calcicola				S	Yalgorup	PIMCAL
	Pimelea ferruginea						PIMFER
	Pimelea imbricata var. imbricata			_			PIMIMBIM
	Pimelea impricata var. major			еE			PIMIMBMA
	Pimelea impricata var. piligera						PIMIMBPI
	Pimelea jeucanina						PIMLEU
	Pinelea preissi					T 1 D' 1	PIMPKE
	Pinelea rosea				N	Lake Pinjar	PIMROS
	Pimelea suaveoiens						PIMSUA
Trom	rinerea suplicitea						PIMSUL
пęш	Distutions collision						DI LOLI
	Tatashasa hisuta						TETUD
	Tetrathera historia (alabraus)						TETHIK
Listic							TETHIKSC
oruc	Parietaria debilic						DADDED
Valer							FARDED
*	Centrenthus mecrosinhon						CENMAC
Viola	Centralitios macrosiphon						CBINIAC
	Hybanthus calveinus						HYRCAI
	Hybenthus floribundus						HYBELO
Xanti	torrhoeaceae						III DI LO
	Xanthorrhoea acanthostachya				s	Boyanup	XANACA
	Xanthorrhoea brunonis				-	20) 4140	XANBRU
	Xanthorrhoea drummondii						XANDRU
	Xanthorrhoea gracilis						XANGRA
	Xanthorrhoea preissii						XANPRE
Zamia	aceae						
Μ	lacrozamia riedlei						MACRIE
Zygor	Dhyllaceae						
-	Zygophyllum fruticulosum				s	Port Kennedy	ZYGFRU
						•	

Appendix 3.

The full floristic data set of 1410 taxa and 509 sites is listed in Cornell University Condensed Format. The taxa listed below were grouped for the floristic analysis. Species codes follow those in Appendix 2 and site locations follow Apendix 4.

Acacia applanata Ms Acacia willdenowiana

Acacia pulchella var. glaberrima Acacia pulchella var. pulchella Acacia pulchella var. reflexa Ms

* Aira caryophyllea

- Aira caryophyllea/cupaniana group
- Aira cupaniana

* Avena barbata

- Avena barbata/fatua
- Avena fatua

Boronia denticulata Boronia spathulata

Bossiaea eriocarpa Bossiaea eriocarpa (Large flowered form BJK & NG 229)

Caladenia flava Caladenia flava subsp. flava

Caladenia longicauda Caladenia longicauda subsp. longicauda

Conostylis pauciflora Conostylis pauciflora subsp. euryrhipis

Dianella revoluta Dianella revoluta var. divaricata

Drosera erythrorhiza Drosera erythrorhiza subsp. erythrorhiza Drosera erythrorhiza subsp. squamosa Ms

Drosera gigantea subsp. geniculata Ms Drosera gigantea subsp. gigantea

Drosera macrantha Drosera macrantha subsp. macrantha Ms

Drosera nitidula Drosera nitidula subsp. nitidula

Drosera paleacea Drosera paleacea subsp. paleacea

Drosera stolonifera Drosera stolonifera subsp. porrecta Drosera stolonifera subsp. stolonifera

Epilobium billardierianum Epilobium billardierianum subsp. intermedium

Eriochilus dilatatus Eriochilus dilatatus subsp. dilatatus Eriochilus dilatatus subsp. Multiflorus

Jacksonia floribunda Jacksonia densiflora / floribunda complex Jacksonia densiflora

Lepidosperma aff. angustatum Lepidosperma angustatum

Lepidosperma leptostachyum Lepidosperma sp. (Eastern terete, BJK & NG 232)

Logania serpyllifolia Logania serpyllifolia subsp. angustifolia

Microtis media subsp. densiflora Microtis media subsp. media

Pericalymma ellipticum Pericalymma floridum Ms

Poa poiformis Poa poiformis/porphyroclados Poa porphyroclados

Pterostylis aff. nana Pterostylis aff. nana (limestone form) Pterostylis brevisepala Ms

Rhagodia baccata subsp. baccata Rhagodia baccata subsp. dioica

- Romulea rosea
- Romulea rosea subsp. rosea
- Romulea rosea var. australis

Schoenus aff. brevisetis Schoenus aff. laevigatus Schoenus brevisetis Schoenus caespititius

Stipa campylachne Stipa semibarbata Stipa semibarbata/campylachne

Thysanotus manglesianus Thysanotus manglesianus/patersonii complex Thysanotus patersonii

Tricostularia neesii var. elatior Tricostularia neesii var. neesii

Verticordia huegelii Verticordia huegelii var. huegelii

Verticordia plumosa Verticordia plumosa var. pleiobotrya

- * Watsonia bulbillifera
- * Watsonia meriana
- D

Swan Coastal Plain data appendix

1224	1301	1307	1357	1406								
18	33	47	63	144	178	181	210	269	277	308	344	549
655	668	724	809	859	884	901	905	1022	1036	1061	1074	1095
1103	1201	1299	1313	1351	1385	1387						
19	47	63	74	80	93	144	152	159	167	175	181	182
184	216	257	264	276	278	281	297	433	441	539	554	643
653	567	668	681	713	747	763	809	841	884	885	905	916
1240	1029	1201	1032	1036	1049	1074	1132	1144	1145	1161	1169	1232
1240	1244	1301	1313	1323	1346	1360	1383					
264	276	201	207	105	152	175	181	182	184	210	234	260
653	270	669	673	31Z	365	370	433	437	441	442	455	514
875	876	000	0/3	000	/13	/59	763	770	809	842	871	874
11/5	1161	1160	1170	1020	905	906	987	992	1031	1049	1132	1144
21	117	1109	1170	1232	1238	1299	1318	1325	1357	1382		
370	374	380	107	1.10	181	190	194	210	281	305	308	321
703	720	704	920 746	400	467	506	549	615	629	632	665	668
882	957	976	740	1170	826	827	831	835	840	844	850	851
1406	201	910	900	11/8	1204	1210	1249	1273	1296	1300	1313	1405
22	33	63	141	144	1.0.1	100	000	0.5.7				
404	431	441	141	144	101	198	230	257	260	264	365	401
725	7451	9917	400	0.40	5//	643	665	668	6/3	675	681	713
1040	1004	1007	11.00	840	841	847	885	907	917	957	1027	1038
1261	1094	1097	1169	1178	1280	1285	1299	1301	1307	1317	1325	1336
1301	1302		105									
23	28	017	125	130	257	289	341	348	471	673	684	741
041	809	917	991	1235	1333	1336	1376					
24	33	62	141	144	169	181	182	188	216	264	297	344
346	431	433	441	495	577	650	662	668	675	830	841	901
938	951	985	987	992	1027	1029	1074	1138	1147	1161	1179	1235
1242	1280	1285	1324	1351	1382							
25	45	51	67	75	78	104	122	134	136	139	213	269
301	308	321	344	370	380	394	449	505	549	551	637	638
663	665	827	835	840	850	877	905	988	1148	1154	1216	1243
1245	1300	1313	1326	1351	1405							
26	122	145	260	305	452	514	663	765	877	881	969	1279
27	41	48	62	67	78	134	139	170	176	181	190	210
212	269	281	308	328	338	374	428	441	480	490	571	629
649	668	/04	730	736	744	745	756	771	789	810	817	827
845	850	851	858	888	905	976	1018	1022	1064	1130	1137	1179
1201	1204	1207	1216	1245	1301	1313	1343	1351	1389	1405		
28	3	17	36	48	51	67	78	113	134	136	139	162
170	181	190	194	212	281	321	327	370	374	380	428	437
441	490	506	549	551	615	632	649	663	665	668	671	692
734	736	744	756	789	827	830	835	845	877	936	957	976
988	1036	1064	1131	1146	1216	1221	1243	1245	1249	1287	1326	1343
1351	1405	1406										
29	20	26	65	68	80	181	186	222	225	233	286	308
316	344	347	412	414	467	531	549	560	610	612	632	668
681	731	740	745	824	82.9	845	862	92.9	960	984	1109	1111
1120	1134	1168	1178	1203	1313	1326	1351					
30	27	63	65	68	80	96	134	181	182	221	233	308
311	316	328	338	401	442	467	531	560	610	612	632	649
651	668	674	702	740	744	797	829	845	859	862	888	929
936	960	977	984	991	1109	1118	1134	1178	1203	1216	1236	1322
1326	1351	1405										
31	9	20	26	54	80	127	181	182	186	222	250	279
300	308	316	344	383	401	414	468	512	523	607	610	612
731	744	757	797	824	829	845	862	914	929	936	941	960
984	993	1020	1134	1178	1203	1268	1305	1312	1322			
32	26	68	80	181	182	205	279	308	383	401	465	467
501	512	549	566	612	669	681	731	744	797	829	845	859
862	898	929	960	984	991	1134	1168	1174	1178	1203	1268	1299
1350												
33	20	61	105	169	181	182	264	292	297	319	359	365
419	441	539	555	558	577	650	663	668	673	713	726	747
830	890	907	925	936	986	1027	1033	1095	1138	1147	1149	1161
1169	1238	1240	1242	1244	1317	1358	1361	1364	1381	1406		
34	20	96	132	169	181	190	206	210	255	301	370	373
394	442	464	490	495	499	544	552	574	593	629	655	665
668	/20	122	744	756	833	844	890	898	920	925	936	957
1036	1064	1095	1113	1216	1275	1304	1307	1320	1351	1381	1405	1406
35	108	122	169	180	181	182	264	292	297	359	365	441
514	531	555	577	673	683	685	713	726	747	749	907	918
952	986	999	1027	1095	1126	1138	1144	1145	1147	1219	1317	1318
1321	1336	1339	1361	1381								
36	58	59	77	108	122	180	182	297	365	495	554	556
577	650	673	685	747	765	874	907	918	986	999	1027	1029
1032	1092	1095	1138	1219	1226	1248	1318	1336	1339	1345	1376	1396
_			-									
37	20	63	105	132	169	181	182	217	255	264	269	297

												057
657	722	726	735	744	747	844	853	890	905	925	936	957
070	006	1027	1005	1161	1160	1216	1224	1239	1242	1245	1255	1260
570	300	1021	1030	1101	1102	1210	1224	12.50	1212	1210	1200	££.00
1275	1308	1326	1361	1364	1369	1381	1382	1405	1406			
30	3	27	117	170	191	191	309	327	328	330	393	394
- 20	5	21	71.	170	101	1 21	300	321	520	550	555	651
428	464	490	506	531	544	547	574	623	629	648	649	651
720	730	711	755	900	945	888	800	908	920	976	1018	1023
120	130		100	000	010	000				1000	1051	1400
1036	1046	1064	1068	1111	1116	1179	1275	1299	1313	1326	1351	1406
30	27	63	66	68	78	89	95	170	181	190	204	236
59	21	05	00	00				170	101	100	150	100
243	262	269	313	330	332	374	393	394	399	428	450	464
400	621	662	610	629	620	660	724	735	744	755	766	837
499	551	302	015	02.0	02.9	000	154	, 55				
840	888	890	905	941	957	976	1018	1036	1111	1116	1141	11/9
1 2 0 1	1010	1212	1361	1202	1205	1200	1406					
1201	1215	1212	1201	1202	1000	1309	1400					
40	27	- 35	41	66	78	95	134	139	170	190	236	262
260	201	200	207	330	332	370	374	380	399	428	449	531
209	301	200	JZ /	550	222	370	374	300	555	120		0.01
557	628	629	650	696	736	744	755	766	777	827	840	845
000	0.00	000	057	076	001	1022	1111	1116	1132	1137	1141	1201
888	898	905	957	970	301	1022	TTTT	1110	1132	1157	1141	1201
1216	1243	1245	1305	1313	1318	1351	1372					
41	22	102	100	100	1.02	226	261	341	196	509	555	673
41	33	105	102	109	1 72	220	204	241	490	505		
681	688	763	813	877	885	957	1047	1087	1133	1147	1305	1406
10	17	4.1	10	66	70	06	134	130	170	190	236	260
42	17	4⊥	48	00	10	90	1.24	105	170	150	2.30	200
281	321	327	330	370	374	380	399	428	442	483	490	510
5 3 1	Г 4 0	C1 E	C1 0	600	629	620	627	610	665	668	674	697
231	549	613	619	022	620	629	037	045	005	000	0/4	0,,,
709	736	756	789	826	827	845	850	853	888	957	962	976
000	000	1000	1004	1110	1123	1127	1 2 0 1	1004	1216	12/3	1245	1249
988	989	1023	1064	1118	1131	1137	1201	1204	1210	1245	1245	1249
1263	1296	1351	1383	1384	1405							
1200		1001	1000			o.!'	112	1 7 4	1.0.1	100	206	210
43	1	41	63	68	78	95	117	170	181	190	206	210
>26	262	208	227	330	374	303	396	441	449	464	490	506
200	202	300	521	330	574	222	550	441	442	101	100	220
531	544	562	574	594	619	628	629	649	650	651	668	730
7.2.0	740	744	766	760	016	000	901	0.09	920	025	955	957
136	192	/44	/55	156	826	000	901	900	920	32.5	200	
976	981	1000	1018	1022	1036	1046	1064	1085	1111	1130	1179	1208
1010	1042	1045	1000	1076	1200	1212	1261	1 2 0 0	1105	1406		
1216	1243	1245	1263	1215	1299	1212	1221	1309	1400	1400		
44	47	63	82	97	105	144	176	181	182	190	254	260
			6.0		5.05	670	CEE	6.65	660	707	762	950
428	464	490	549	551	565	5/9	655	665	666	121	705	050
885	901	920	987	1114	1158	1169	1208	1216	1224	1313	1351	1405
	201	200	50.			2205						
1406												
45	47	80	105	122	175	181	182	188	264	341	433	437
			400	255		600	211		740	747	966	001
441	539	554	653	655	6/3	683	/11	/14	146	147	000	004
987	1029	1105	1136	1145	1178	1227	1301	1313	1.317	1321	1332	1351
507	1025	1100	1150	1110	11,0	1227	1001	170	1.01	100	100	220
46	47	63	82	93	97	105	144	1/0	191	102	190	200
260	269	276	277	297	428	441	490	549	551	565	650	653
200	202	2.00	2	240	200	020	050	0.64	0/6	006	901	907
657	663	665	142	146	163	830	800	004	000	665	301	507
1030	1032	1087	1114	1145	1147	1169	1201	1216	1224	1313	1321	1339
1030	1032	100,		11.0								
1351	1361	1370										
47	47	122	176	181	182	189	190	191	255	264	341	342
		100		101	107	4 4 1	105	E E 4	711	716	747	965
365	406	428	431	434	437	4 4 I	495	554	(11	746	/4/	000
866	884	885	987	1029	1095	1105	1114	1136	1178	1179	1200	1219
					1010							
1301	1317	1321	1396									
48	27	62	68	78	117	132	170	176	190	214	236	281
40	2,	02				100		E 00		600	5.0.0	C10
359	393	428	442	450	464	499	544	562	5/5	263	230	013
623	629	668	672	736	737	744	810	827	835	888	890	920
02.3	029	000	012					1010	1010	1012	1000	1076
936	955	981	1071	1111	1113	1189	1201	1216	1218	1243	1203	1215
1305	1 21 2	1351	1388	1389	1403							
1000	1.01.0	1.0.01	1500	1507	1							205
49	61	67	109	132	134	170	182	190	191	210	281	305
321	207	370	200	260	129	150	456	4 90	619	629	637	649
321	321	570	300	309	420	450	100	4.50	012	02.5		
668	671	730	744	823	827	831	836	837	844	845	957	976
000	1040	1204	1221	1210	1272	1200	1304	1313	1343	1408		
200	1043	1204	1263	1743	1212		1001	1010	1010		0.01	201
50	36	62	117	134	157	170	181	190	255	269	781	201
305	301	327	370	380	389	428	442	449	506	619	629	638
505	321	561		200			000	0.07	0	0.45	0.0	0
650	665	668	671	736	789	827	831	837	844	845	850	001
850	992	897	901	957	973	976	988	1074	1160	1204	1216	1221
000	002					210	200					
1249	1307	1313	1351	1402	1408							
51	27	63	134	136	181	182	190	210	269	281	344	349
1 U.			101	100		202	220			600	700	0.06
380	430	449	450	638	643	650	656	663	605	608	107	020
827	840	851	877	882	901	905	957	969	976	988	1012	1036
1		1.001		1000	1001	1040	1010	1000	1 3 4 1	1010	1200	1405
1127	1131	1137	1160	1219	1221	1243	1249	т 296	1001	1313	1398	1400
1406												
1400							100	0.01	070	200	211	347
52	10	26	63	80	106	110	186	201	219	208	544	341
383	468	482	527	607	. 611	681	7.31	7 97	829	845	867	872
202	400	402	521	1007	1000	1001	11	1 1 2 2	1100	1101	1000	1000
923	929	950	960	1020	1030	1095	1112	1163	TT 18	1131	1203	1208
1313	1326	1383										
1010	1020	1000		000	0.00	200	~ • • •	0.12	200	122	100	100
53	80	205	233	252	260	308	344	341	383	413	465	468
607	691	692	870	920	960	1112	1174	1190	1191	1197	1203	1313
007	001	002		222			****	1.05		190	100	
54	5	50	68	78	117	119	134	135	148	170	1 A O	210
201	305	321	327	330	332	360	368	374	380	387	389	428
201	202	221	541		332	550	500					
442	464	490	506	543	562	574	594	628	629	649	665	668
671	200	700	727	744	765	827	815	836	837	844	887	888
0/1	100	122	131			4 - 7 -	11.00	1000	10.0	1011	1010	1000
966	976	988	1005	1064	1085	1152	1160	1204	1243	1245	1249	1252
1275	1201	1300	1404	1405	1406	1408						
1210	1204	1362	1404	T401	1400	1400			~~~~		100	
55	5	63	157	171	181	190	281	305	330	374	428	456
		F 0 0	E 4 4	540	E 71 E	C 2 2	600	640	660	720	7 2 7	766
161	100	505	500	5 a 6	~ ~ ~	n / י	n/ 9	047	<u>nno</u>	1.50	1.57	100

827	844	890	922	925	931	941	980	983	1013	1110	1158	1188
1216	1243	1270	1275	1284	1385	1404	1406					
56	105	223	230	260	264	292	365	433	437	455	485	514
530	005	596	599	055	180	711	723	746	149	159	103	876
1304	1306	906	992	1031	1033	1132	1144	1145	1157	1219	1241	1285
1304	1300	51	00	1.03	100	1.60	101	1.00	256	201	370	390
131	155	505	516	663	122	601	600	724	230	950	817	000
1079	1148	1216	1210	1230	1000	1000	1245	1200	1307	1406	077	900
58	58	50	63	109	1233	1299	1245	1500	191	1900	180	1 9 0
192	260	271	281	292	365	120	441	196	514	534	554	591
599	614	668	683	747	842	874	876	886	907	930	936	1030
1031	1138	1142	1145	1157	1171	1178	1220	1233	1336	1381	1390	1396
59	.59	63	80	93	128	175	181	182	184	192	264	276
280	292	297	365	376	404	427	437	488	533	555	599	673
711	713	727	730	763	842	874	876	885	896	906	930	936
952	987	1031	1095	1102	1132	1136	1144	1220	1285	1305	1381	
60	36	47	59	63	100	105	128	144	182	189	228	260
264	269	297	308	365	431	438	441	455	524	555	599	665
673	674	711	713	727	744	746	823	842	844	847	868	884
907	933	957	969	987	992	999	1032	1042	1060	1078	1138	1147
1169	1183	1219	1224	1230	1244	1280	1285	1305	1346	1357	1381	1382
61	27	36	50	61	63	103	117	118	122	138	181	211
230	260	308	370	400	405	506	549	615	636	643	668	699
720	730	738	763	800	810	847	877	898	909	934	957	991
1012	1026	1148	1169	1208	1216	1233	1300	1301	1313	1385	1389	1405
62	16	17	27	54	61	134	136	170	181	190	191	194
264	308	352	374	380	405	428	442	490	506	549	607	615
626	629	632	633	643	649	665	668	674	699	704	720	730
744	756	800	827	835	844	850	851	859	882	898	906	909
933	957	976	988	991	1012	1018	1179	1208	1249	1272	1297	1304
1313	1405	1406	1408	110	104	120	101	100	1.01	010	020	200
220	33	274	202	118	1.34	1/0	181	182	191	210	239	308
330	552	5/4	383	404	405	442	458	490	499	020	049	007
029	040	000	0/4	075	130	799	1026	020	1202	1240	1304	1212
1351	1305	1200	1405	1406	900	991	1020	11/9	1203	1249	1304	1010
1001	1303	1309	1403	1900	162	101	102	196	101	222	270	309
312	20	4. 19.1	280	403	404	467	502	527	529	568	607	610
629	668	744	840	859	929	942	946	973	984	991	1018	1134
1178	1179	1203	1322	1373	525	242	940	275	204	771	1010	1104
65	15	36	41	83	135	168	170	1.81	190	210	212	281
327	380	428	442	487	490	499	506	541	549	615	62.9	632
638	649	665	668	703	730	735	744	787	789	827	835	837
844	845	850	882	909	957	972	973	976	988	1012	1218	1249
1277	1287	1301	1304	1313	1405	1406						
66	27	63	68	78	86	134	136	170	181	190	212	213
281	327	442	449	483	490	541	549	615	629	649	668	703
706	724	730	735	756	789	799	826	827	850	882	957	976
988	1013	1049	1064	1160	1201	1243	1245	1251	1301	1313	1320	1405
67	16	34	36	51	83	122	150	168	181	212	255	370
378	380	431	505	516	549	663	668	708	779	787	837	838
877	896	969	988	1073	1148	1221	1233	1290	1406			
68	100	145	514	599	749	765	871	874	969	1138	1336	1375
69	15	27	78	97	168	170	182	194	206	260	281	306
322	352	370	374	380	396	439	442	455	464	490	499	541
544	555	615	629	632	633	639	649	655	663	665	668	/22
144	1014	1001	826	827	1070	1075	1 2 0 1	955	969	1116	1138	1150
1200	1214	1221	1260	1270	143	12/5	160	100	1307	1313	1405	1406
400	110	51 A	103	724	763	102	162	102	210	260	305	312
400	449	1140	1160	1230	1222	1245	1300	1256	1277	905	949	952
71	15	61	63	118	134	170	1.91	190	213	309	327	371
380	442	485	506	549	607	629	632	649	665	668	720	730
744	809	817	827	838	850	882	909	939	957	976	988	1013
1022	1201	1216	1245	1249	1313	1351	1385	1387	1405	2.0	200	1015
72	58	63	122	142	152	182	260	264	344	349	449	475
514	555	668	673	713	716	724	763	770	809	813	841	878
881	894	905	907	949	952	1047	1074	1169	1300	1313	1336	1356
1377	1383	1387								1010	1000	2000
73	58	63	103	122	142	260	264	269	297	341	348	474
716	749	763	813	841	878	881	907	949	952	1169	1336	1377
1387									-	-		
74	58	124	257	341	348	361	580	605	683	711	715	855
868	878	1030	1108	1336	1376							
75	63	80	93	105	106	109	144	175	182	257	260	264
276	278	297	342	433	524	554	643	657	668	673	681	683
711	713	715	813	868	876	878	884	865	896	905	907	1029
1106	1108	1143	1145	1149	1169	1178	1190	1331	1332	1394		
76	33	80	144	181	182	196	193	229	230	383	468	509

524	531	668	724	755	763	842	859	896	898	934	946	957
1093	1099	1179	1305	1307	1313	1326	1350					
77	12	15	23	24	27	36	49	51	61	67	74	75
94	135	157	172	191	194	260	308	317	322	330	370	381
386	44Z	490	499	506	544	546	564	5/4	581	394	020	029
800	0.34 911	927	928	936	937	000	944	200	903	933	035	955
959	964	969	988	1002	1036	1046	1069	1113	1116	1188	1200	1214
1258	1274	1275	1300	1304	1326	1338	1343	1401	1404	1405	1406	1408
78	7	15	54	114	172	181	182	191	305	370	396	499
506	546	581	629	663	668	671	730	755	800	836	844	890
959	972	1046	1110	1179	1194	1200	1274	1275	1401	1406		
79	15	34	41	49	50	54	67	78	134	174	190	210
212	260	281	327	380	442	490	499	543	549	629	632	665
671	703	708	723	744	755	756	786	826	831	835	843	850
882	909	973	976	988	1064	1073	1204	1221	1249	1299	1313	1405
80	15	25	27	41	49	58	61	63	67	114	117	157
172	177	181	182	189	190	191	281	305	312	330	370	376
388	391	396	441	442	487	490	499	506	544	546	564	581
629	668	671	718	719	730	744	755	809	826	827	836	837
843	845	859	890	903	906	933	934	935	936	941	1200	964
1204	1002	1016	1042	1004	1110	1200	1/01	1238	12/4	1406	1299	1201
1304	1313	1320	1326	1000	1349	1361	1401	1904	274	270	401	465
01 512	607	612	22	92	00 020	945	01/	1020	1/105	1115	1168	1170
1178	1101	1202	1203	1269	1295	1301	1322	1347	1973	1115	1100	11.0
82	17	1202	54	63	67	114	134	136	157	170	181	210
281	308	321	327	328	370	383	458	472	485	490	506	607
629	632	638	643	649	668	671	674	704	730	800	817	826
827	837	845	849	850	859	882	898	901	934	973	976	988
1049	1064	1074	1179	1219	1221	1243	1249	1305	1313	1322	1351	1385
1405												
83	39	63	80	152	176	202	222	279	344	383	413	421
428	450	456	464	465	485	527	537	549	566	597	629	632
635	641	643	651	662	668	681	744	797	817	829	845	862
870	901	905	936	950	991	1020	1028	1036	1049	1074	1076	1103
1178	1179	1201	1203	1233	1305	1313	1322	1344	1347	1383	1387	1397
84	27	63	80	202	216	269	279	344	413	456	464	465
491	527	566	662	668	681	845	870	898	1000	905	950	952
961	1207	1028	1074	1076	1168	1178	1203	1268	1305	1313	1344	1383
1387	1397	90	124	126	170	101	1 9 0	210	212	254	281	308
321	327	370	374	401	120	101	130	450	456	490	549	629
637	643	649	665	668	671	724	730	736	744	799	826	850
862	879	882	923	973	976	988	1060	1074	1203	1216	1243	1296
1313	1405	002	725	515	2.0	500	1000	10/1	2000	1010		
86	54	63	80	102	118	135	152	181	182	186	222	269
281	300	308	383	401	428	456	464	496	502	529	546	607
629	643	649	699	720	730	744	800	826	830	837	845	849
859	898	901	941	946	950	984	991	1074	1178	1179	1197	1275
1311	1313	1321	1322	1326	1351	1383	1406					
87	54	96	117	134	157	170	181	190	210	308	321	370
380	383	404	456	490	499	502	506	607	629	632	668	671
674	704	730	744	800	826	830	831	837	840	845	850	859
898	957	976	984	991	1003	1060	1064	1178	1179	1249	1275	1322
1351	1405											
88	17	118	134	135	170	181	190	194	206	210	281	302
308	321	370	380	383	404	43/	450	456	490	499	506	549
607	015	029	632 04E	649	665 0E0	000	0/1	074	906	744	076	020
1012	1059	1064	1170	1216	1275	1301	1313	1322	1326	1351	1400	1408
80	51	67	78	136	301	328	370	380	490	505	663	734
744	827	837	850	853	862	957	969	976	988	1154	1216	1243
1245	1300	1343	1406	000								
90	17	48	78	96	104	113	118	134	139	170	181	196
212	244	308	344	370	373	380	490	549	632	699	735	739
789	826	850	856	882	957	976	1137	1203	1204	1216	1219	1245
1313	1351	1385										
91	63	134	139	181	190	191	210	279	312	327	401	437
468	499	506	531	549	574	607	628	629	643	668	681	704
730	745	771	800	830	845	851	888	896	898	991	1036	1049
1134	1178	1275	1305	1313	1406							.
92	27	61	68	80	118	134	170	181	190	194	210	241
281	308	317	321	352	314	380	383	404	420	442	450	456
502	549	607	611	629	643	665	000	6/4	699	124	130	144
817	826	827	831	835	836	837	845	820	882	8.48	901	906
988	1178	11/9	1299	1313	1316	1321	1405	370	204	101	404	107
5 E 5 E	10 1 k k	114	100 101	E 4 4	220 131	309 569	200	510	304 704	4 V L 7 2 1	404 01C	4/∠/ p/0
90A	441 006	404	432	044 057	1116	1170	1200	1275	1304	1307	1326	049 1339
0.50	520	273	900	201	***0	****	1200	12/0	1004	1007	1020	+ 0

1406												
94	61	132	167	181	182	190	191	308	370	373	403	427
434	437	464	544	574	623	668	704	737	738	755	809	845
890	899	925	936	957	991	1066	1095	1178	1179	1206	1220	1229
1275	1304	1307	1326	1338	1406	100	1.00	0.00	214	250	365	270
90	427	431	108	141	514	189	192	292	668	683	749	765
826	840	842	885	915	952	958	987	999	1136	1138	1157	1219
1220	1248	1253	1307	1317	202	,						
96	28	50	54	61	62	96	118	170	181	182	190	191
210	264	281	293	305	309	352	357	375	404	450	490	499
506	544	549	607	626	629	643	650	668	699	720	730	744
1003	1026	1026	1046	834	844	849	927	934	941	1243	957	991
1320	1387	1405	1406	1004	1179	1194	1208	1219	1221	1240	1275	1010
97	17	48	66	78	95	113	134	139	147	170	190	210
212	213	321	323	327	374	380	428	449	483	490	510	629
637	698	756	789	796	802	827	835	850	851	864	923	957
976	988	1127	1130	1131	1137	1201	1204	1216	1225	1243	1245	1307
1367	1405	1406	167	191	192	264	276	350	365	419	433	434
441	577	590	642	650	653	668	690	713	727	907	951	952
987	1027	1031	1032	1033	1074	1095	1144	1161	1169	1242	1280	1299
1307	1317	1361	1376	1381	1382	1406						
99	33	63	80	105	167	181	182	264	269	292	297	359
365	431	441	455	509	554	577	588	599	618	642	650	657 051
663 952	067	1031	1074	1077	1136	1147	1178	1238	1242	1305	1317	1361
1381	1396	1406	10/4	1077	1150	1144	11,0	12.50	1614	1000	1017	1001
100	33	58	63	105	167	181	182	264	297	365	370	433
434	441	451	554	556	577	643	653	663	668	669	681	683
713	727	874	907	925	951	952	987	999	1032	1033	1095	1144
1157	1158	1161	1178	1235	1318	1336	1381	1383	1406	265	276	4 4 1
101	58 195	496	577	167 619	181	182	264	690	312 713	365	925	441 952
1027	1031	1095	1136	1144	1280	1345	1352	1364	1396	042	72.5	202
102	62	105	167	176	181	182	189	264	276	292	297	359
365	431	434	441	468	554	555	577	642	650	663	668	681
727	907	987	1027	1031	1033	1074	1095	1144	1161	1179	1238	1242
1280	1301	1317	1351	1361	1376	1381				25.0	2.45	15.0
103	33	63	80	127	181	182	190	191	269	359	365	456
464	468	499	944	991	1095	1168	1201	1203	1208	1342	1351	1361
1381	1382	1406	540		1000	1100	1201	1200	1200	10.0	1001	
104	33	127	181	186	264	359	441	467	468	509	618	623
642	663	668	744	898	925	952	962	1095	1202	1348	1361	
105	144	260	524	749	757	813	878	881	912	1105	1174	1177
106	33	524	93 529	109	152	159	657	182	200	691	34Z 744	303 747
751	761	763	797	871	876	881	885	905	936	952	957	1017
1032	1041	1145	1178	1194	1301	1316	1321	1322	1325	1326	1332	1344
1383	1397	1406										
107	33	260	456	524	599	747	751	761	763	797	819	847
8/1	881	885	912	936	95Z 159	957	180	1148	182	1189	189	278
297	341	365	376	406	431	455	497	524	539	554	604	669
670	673	681	683	687	711	713	723	824	842	861	868	876
916	987	999	1031	1074	1095	1105	1138	1144	1147	1161	1239	1280
1299	1321	1325	1346	1353	1355	1356	1379	1382	1383		.	
109	82	90	122	159	175	181	189	263	264	278	341	3/6
400	419	431 916	435	497	1136	1138	1157	1167	1219	1232	1299	1321
1346	1353	1355	1356	1051	1150	1150	110,	110,	1217	12.52	1277	1921
110	82	105	122	189	254	263	264	276	308	341	365	396
431	441	477	514	555	596	670	683	723	744	861	884	999
1031	1032	1078	1138	1147	1226	1230	1285	1307	1317	1318	1361	1370
1381	63	0.0	1.00	1.05	1 5 0	167	175	100	101	100	220	264
276	297	308	341	365	396	406	431	441	455	162	220 554	204 559
596	599	608	653	656	668	670	683	686	712	713	723	764
813	847	849	850	861	884	907	928	939	952	969	986	987
1026	1027	1031	1068	1078	1138	1144	1147	1154	1157	1161	1169	1204
1219	1230	1232	1241	1242	1244	1280	1299	1306	1321	1325	1335	1346
1336	69 1961	1381	223	262	322	330	370	380	431	441	455	161
485	490	505	514	541	559	578	579	584	596	622	668	670
686	704	722	723	735	744	760	779	844	847	850	861	890
897	928	957	969	982	1068	1078	1088	1152	1204	1216	1221	1226
1244	1245	1260	1335	1363	1406	101	100	364	201	350	270	274
113	21	63	90	103	т/о	101	103	204	271	228	310	314

380	405	444	464	490	579	643	655	663	665	668	692	726
735	745	827	844	847	850	925	957	969	999	1095	1131	1169
1216	1300	1307	1313	1326	1351	1405	1406					
114	62	122	223	260	269	452	474	179	554	710	749	763
842	891	005	052	1000	1161	1200		479	554	110		/05
115	27	200	105	176	100	1300	265	4.23	4.05	400	EEE	606
110	C02	20	700	710	102	204	363	1000	400	400	1144	1147
599	683	692	120	745	847	850	986	1038	10/8	1032	1144	1147
1159	1307	1361	1362									
116	63	122	180	181	182	264	292	365	371	419	428	441
488	495	514	524	551	554	591	663	668	673	713	726	747
780	875	884	899	907	917	952	986	999	1027	1038	1074	1095
1144	1161	1169	1224	1226	1227	1228	1299	1317	1334	1346	1370	1382
117	17	20	61	113	134	139	170	1.81	1 90	194	210	308
321	327	รริต	380	394	401	101	441	167	1 90	199	549	551
640	650	665	660	602	720	204	744	017	920	011	045	947
049	000	000	000	092	120	124	/44	817	1000	1044	1000	1242
850	899	958	969	988	1064	1148	1229	1300	1305	1308	1326	1343
1405												
118	17	27	48	96	134	139	170	178	181	190	213	249
308	380	401	467	490	549	632	668	699	789	826	827	830
845	850	859	925	927	957	976	1064	1131	1179	1204	1216	1245
1296	1305	1409										
119	17	27	65	96	113	134	139	181	190	213	249	308
338	441	467	531	549	632	668	699	789	826	827	845	850
858	850	901	025	057	1023	1074	1134	1137	1245	1305	1313	1351
120	62	100	176	101	100	2014	1101	207	265	2000	660	673
712	0.40	120	170	101	102	209	1000	1007	1020	1005	1167	1020
/13	842	8/4	885	899	907	952	1026	1027	1038	1095	1157	1232
1321	1351	1383										
121	51	62	63	65	105	122	168	181	182	188	264	370
380	444	505	514	663	665	668	669	674	681	842	877	957
969	1078	1137	1144	1148	1169	1216	1245	1307	1405	1409		
122	26	63	80	232	482	527	873	946	950	991	1036	1090
1174	1175	1191	1203	1311	1312	1313	1409					
199	0	26	30	1.011	1017	1010	261	204	216	344	317	373
202	400	20	52	53	43	72	201	304	014	0.05	01.0	1000
383	423	482	527	536	/44	167	191	801	814	905	910	1022
1163	1191	1203	1294	1313	1321	1385	1387	1393				
124	26	60	106	232	279	300	527	768	873	911	950	991
1036	1203	1301	1311	1313								
125	26	80	106	261	279	299	304	527	607	787	824	873
914	1090	1191	1312	1313	1409							
126	97	160	175	182	188	191	264	278	297	342	431	433
441	454	495	539	554	578	657	668	675	681	699	727	763
830	842	878	885	962	987	1026	1074	1096	1102	1136	1138	1144
1150	1161	1227	1242	1200	1314	1317	1321	1323	1324	1336	1361	1357
1261	1206	1221	1745	1200	1314	1317	1521	1525	1521	1000	1001	100.
107	1390	1.00	175	1.0.1	100	104	100	252	0.04	070	242	260
127	93	160	1/5	181	182	184	188	257	264	270	342	358
441	495	539	653	657	668	675	681	687	688	725	8/8	952
987	1022	1027	1029	1074	1095	1102	1105	1133	1138	1161	1169	1227
1280	1299	1317	1336	1346	1382							
128	63	80	93	105	160	181	182	184	257	263	264	269
270	276	277	278	297	342	441	539	653	655	673	687	711
713	824	901	907	952	1029	1030	1094	1095	1108	1133	1136	1145
1147	1169	1178	1227	1321	1332	1382						
129	17	63	66	68	113	117	134	170	1.81	1.90	196	213
300	220	220	274	200	200	120	441	110	506	631	540	551
500	520	530	574	300	222	420	441	447	300	200	007	040
5/4	607	624	628	629	665	000	671	097	139	789	827	640
845	850	853	888	901	905	920	957	976	988	1023	1118	1131
1204	1218	1219	1243	1307	1308	1313	1322	1351				
130	27	51	63	168	182	264	281	344	370	380	431	433
441	490	505	516	537	636	638	643	656	663	665	668	711
713	744	776	827	833	850	851	877	887	909	957	969	984
1074	1160	1168	1169	1216	1233	1245	1297	1304	1313	1351	1383	1387
1405	1406											
131	51	63	65	103	122	144	168	210	269	380	424	472
505	516	617	667	665	669	691	724	810	850	877	905	969
1022	1040	1060	1074	1102	11/0	1160	1033	1200	1200	1212	1351	1300
1307	1400	1000	1014	1103	1140	TT 0 2	1200	1633	1000	1010	TOOT	1002
1307	1400	0.7	5 4	60	0.0		1.24	1.53	170	1 7 0		100
132	15	27	54	62	80	118	134	15/	1/0	1/8	191	1.85
190	196	208	210	281	321	327	328	344	366	380	383	420
430	450	456	490	499	506	549	607	615	629	632	643	668
674	699	730	744	800	826	850	859	882	957	976	984	988
1022	1039	1049	1060	1064	1074	1299	1301	1322	1351	1387	1406	
133	63	65	103	122	162	182	210	260	380	450	468	472
641	663	665	668	681	691	724	773	877	901	905	991	1013
1036	1049	1073	1074	1148	1168	1299	1313	1351	1382	1387		
134		34	36	62	114	118	134	157	170	181	190	191
210	281	202	221	327	360	370	371	380	150	156	100	506
210	201 200	200	243	610		660	601	704	0.0 F	714	000	000
349	029	032	043	049	000	000	001	129	7.30	744	003	020
827	830	831	840	845	849	020	007	002	901	930	957	9/6
988	1012	1013	1049	1179	1216	1249	1299	1313	1322	1351	1385	1405
135	15	17	50	78	134	170	178	190	210	212	213	281

321	327	380	450	456	472	486	490	506	549	615	629	632
6.38	665	668	699	756	789	803	827	831	837	850	851	859
862	882	901	906	927	957	988	1012	1049	1061	1131	1178	1216
1243	1277	1313	1351	1405								
200	20 100	67	134	139	181	182	190	269	281	308	312	374
200	920	408	206	628	629	637	643	650	668	671	745	800
1178	1201	1245	1301	1212	1200	976	1023	1026	1036	1074	1130	1169
137	36	1245	1501	1313	1382	1385	1406	100	100	21.0	200	201
301	308	200	374	300	134	139	181	182	190	210	269	281
668	671	704	720	736	420	437	751	549	293	029	043	650
888	898	920	976	1022	1022	1026	1020	1024	826	827	845	859
1179	1201	1216	1243	1200	1309	1313	1251	1302	1207	1130	1109	1178
138	63	76	129	136	1300	1010	100	1302	1007	1405	1406	637
663	665	668	877	969	1073	1074	1160	1201	1216	1045	1212	1207
139	64	134	136	139	170	191	100	104	212	261	1010	1307
374	380	441	449	549	551	632	649	1 74	669	201	927	810
850	851	865	882	936	957	976	988	1095	1131	1137	1178	1216
1243	1245	1313	1406			3.0	500	1070	1101	110,	11.0	1210
140	63	80	134	181	182	190	210	212	254	269	308	321
327	374	380	428	496	506	549	551	607	629	632	643	649
668	671	704	730	744	800	810	826	827	845	850	859	957
976	988	1026	1074	1137	1179	1204	1216	1243	1313	1351	1382	1389
1406												
141	27	76	122	138	181	222	260	312	400	401	506	509
668	813	859	877	896	958	1012	1121	1127	1178	1189	1305	1307
1409												
142	27	41	54	63	80	95	96	117	118	135	181	182
202	210	222	308	344	356	383	428	456	491	500	529	549
593	607	612	632	643	649	651	668	674	679	681	699	720
730	744	800	810	817	826	830	840	845	859	898	901	941
946	950	957	961	984	991	1168	1178	1179	1197	1203	1249	1263
1275	1297	1305	1313	1322	1326	1338	1350	1351				
143	36	41	114	117	134	135	157	170	181	192	210	260
281	308	321	327	328	338	374	380	389	405	428	450	456
485	490	499	506	542	546	549	629	632	649	650	668	699
730	/44	/51	118	800	803	810	817	819	826	827	830	843
1040	1004	851	859	898	901	934	957	973	976	988	991	1012
1049	1064	1074	11/9	1221	1249	1273	1299	1313	1338	1400	1405	
199 661	54 61 E	00	134	136	166	170	210	281	428	456	499	541
221	015	637	638	64/	665	699	782	789	826	830	850	851
1045	1020	927	969	9/6	988	1012	1036	1064	1131	1216	1233	1243
1245	1272	1277	1299	1313	1400	1405	o / 7					
620	00	190	269	279	308	344	347	401	464	468	568	590
146	032	107	124	101	859	991	1203	1382	1406		-	.
377	200	127	134	181	182	186	190	269	279	308	344	347
632	579	401	404	464	468	502	506	531	590	607	612	629
1036	1095	1179	1406	000	020	845	849	850	859	898	961	976
147	2035	62	1400	80	117	124	101	1.00	101	1.00	0.45	0.00
308	314	328	354	374	383	401	450	190	191	198	240	260
531	540	607	610	629	619	668	671	745	404	400	907	920
862	888	914	920	942	957	976	977	991	1066	1100	1111	1170
1192	1202	1203	1275	1297	1304	1308	1313	1322	1347	1351	1392	1393
1405	1406				1001	2000	1015	1922	134,	1001	1302	1000
148	67	96	134	181	190	210	226	308	327	399	401	456
467	522	531	549	579	607	610	629	668	671	702	758	771
826	831	835	845	850	888	898	908	914	920	976	1095	1111
1118	1134	1178	1179	1204	1216	1297	1299	1313	1326	1350	1351	1406
149	50	103	122	168	260	308	380	448	599	663	665	763
847	850	877	969	1064	1078	1148	1245	1300				
150	27	50	61	63	67	134	136	170	182	190	230	260
308	321	370	374	380	428	450	490	499	549	615	629	632
643	655	663	665	724	730	736	744	789	800	801	817	830
835	837	849	851	859	882	905	973	1003	1012	1219	1273	1300
1313	1405											
151	27	36	51	61	73	117	192	260	305	321	370	374
380	394	404	428	456	490	499	506	549	607	619	629	632
638	663	665	730	744	751	755	826	827	830	837	844	850
851	887	920	934	976	988	1012	1148	1188	1273	1307	1406	
152	27	54	61	63	73	114	117	170	181	182	190	193
281	321	327	370	374	380	383	394	404	405	428	456	490
499	549	615	629	638	650	663	665	668	704	730	782	800
801	830	837	845	850	890	920	934	936	957	976	988	1023
1202	1148	1152	1179	1194	1201	1203	1221	1243	1249	1286	1296	1300
150/	1326	1405	1406									
103	61	63	96	109	117	170	181	182	190	191	210	308
521	401	405	430	456	496	499	506	549	578	629	643	649
000	000	000	1170	1075	1204	1207	836	844	849	887	890	920
204	100	1004	11/ <i>7</i>	12/0	T 2 0 4	1001	TAND					

154	63	105	141	159	167	175	181	182	189	228	230	264
269	297	365	419	431	441	455	555	596	597	653	668	681 1074
1095	1114	1130	1138	1144	1145	95Z 1169	1232	1238	1241	1279	1317	1321
1332	1355	1361	1382	1111	1140	1107	1232	1230	10.11	12.7		
155	18	105	144	167	200	242	255	264	269	281	297	365
431	433	441	485	577	596	597	599	653	663	668	711	726
1139	1144	844	885	957	969	978	979	987	992	1031	1068	1114
1280	1304	1307	1317	1325	1361	1381	1219	1224	1220	12.50	1244	1200
156	63	66	78	96	113	117	134	139	170	190	206	212
236	313	327	330	332	370	374	389	393	399	428	441	483
490	506	531	549	574	615	628	629	632	649	651	665	671
697	704	745	844	845	850	888	908	923	957	973	976	977
1406	1050	1110	1131	1204	1210	1219	1243	1245	1203	1275	1000	1405
157	35	66	78	117	134	139	170	190	194	281	313	327
328	330	370	374	389	393	394	399	428	441	464	483	531
574	593	615	628	629	632	649	651	665	702	745	809	826
827	844	845	850	858	888	908	923	957	976	977	1068	1118
1131	1204	1208	1219	1243	1275	170	190	206	1343	236	269	301
313	327	330	332	360	374	380	389	393	394	399	428	441
449	483	490	531	549	551	574	594	628	629	649	665	668
671	735	777	799	826	827	840	844	845	850	853	888	905
908	923	957	976	988	1023	1131	1204	1216	1218	1219	1243	1249
1282	1308	1313	1326	1351	1405	1406						
159	26	54	80	202	222	250	358	383	407	502	527	529
607	625	653	1101	1107	1211	1212	944	946	950	991	1054	1076
160	26	54	1191	1197	1311	1312	250	279	383	413	468	485
527	528	529	607	612	625	653	681	730	731	797	817	859
898	901	946	950	991	1049	1090	1178	1191	1197	1268	1305	1311
1312	1313	1328	1344	1382	1383	1387	1409					
161	26	32	72	202	222	250	260	308	411	527	570	607
625	744	797	929	946	950	1036	1049	1107	1191	1194	1268	1293
1299	1312	1313	E A	000	000	25.0	260	200	245	411	413	527
162	20	607	54	202	650	250	260	917	343	808	913	991
1036	1049	1090	1191	1202	1203	1268	1311	1312	1313	0.00	500	
163	26	32	54	80	186	202	222	250	265	279	299	300
344	407	491	502	527	529	607	625	653	658	659	662	744
817	898	901	941	946	950	991	1075	1090	1164	1191	1197	1203
1268	1311	1312	1313	1326	1328	1344	1387			~ ~ ~		070
164	58	107	123	268	298	361	681	715	763	813	823	8/8
912	2106	1178	50	1409	76	88	170	189	255	256	281	370
380	430	431	490	505	516	636	663	664	665	668	734	738
744	830	882	906	988	1002	1131	1148	1160	1194	1216	1221	1245
1281	1300	1310	1405	1406								
166	27	54	63	118	128	134	182	190	210	269	281	383
450	456	502	629	632	643	668	671	691	730	800	810	817
826	830	835	849	851	859	882	898	901	941	976	984	991
1036	1049	1074	1163	1178	1179	1197	1313	1351	1382	1383	170	1408
167	41	48	99 930	360	58 370	380	300	456	542	549	574	622
628	629	665	674	697	701	709	744	783	797	826	827	837
844	850	858	888	905	908	927	957	973	976	989	1005	1118
1131	1156	1204	1216	1225	1243	1263	1299	1300	1304	1326	1405	1406
1408												
168	18	27	38	59	75	122	128	168	181	189	191	210
260	281	359	370	394	431	455	490	499	599	0.05	005	668 610
957	744 969	1013	1125	1147	044	1169	1233	1307	1400	1405	900	919
169	2	3	1125	27	50	132	170	181	190	191	210	239
260	352	374	380	394	404	439	450	455	472	490	499	506
549	615	629	632	633	638	665	668	703	720	730	744	801
826	827	831	840	844	850	894	896	898	919	957	976	988
1064	1095	1110	1169	1203	1233	1249	1275	1304	1305	1320	1351	1400
1405	2	1 7	36	63	75	110	134	170	101	192	100	210
212	269	27	307 327	60 344	370	374	380	442	490	506	607	629
632	643	668	703	706	724	730	744	810	826	827	836	844
850	851	859	882	905	927	976	988	1012	1064	1194	1201	1204
1243	1313	1383	1385	1400	1405	1408						
171	63	80	134	181	182	186	328	404	405	437	456	502
529	612	629	643	649	668	681	744	800	801	826	859	898
941	946	957	984	991	1003	1018	1026	1028	1036	1075	11.18	1179
172	1322	26	32	63	80	191	222	247	269	279	304	344
* ' 4	2	20	75	55	~~						~~ .	

366	367	383	402	456	560	607	629	654	668	681	691	744
797	801 1297	817	829	898 1328	946 1387	952 1406	1018	1036	1049	1173	1178	1203
173	59	63	112	181	182	189	191	264	266	269	270	271
292	297	348	351	359	365	372	374	406	433	455	460	485
495	511	527	534	577	650	668	673	677	681	683	684	711
113	744	987	813	1030	1031	842	8/4	885	895	1129	1138	1145
1157	1178	1179	1227	1232	1279	1317	1318	1325	1337	1341	1342	1381
1383	1390											
174	60	61	63	77	108	112	128	152	180	181	182	189
192	264	271	280	292	297	301	342	351	359	365	370	406
45U 691	455	495	511 874	544 905	554 907	555 925	577	590 936	65U 952	957	986	1026
1031	1095	1129	1138	1142	1157	1161	1179	1220	1227	1232	1242	1299
1304	1317	1318	1326	1330	1353	1381	1383	1390	1396			
175	48	122	136	165	380	636	663	665	724	763	877	906
927	969	1049	1060	1073	1078	1079	1216	1224	1225	1245	669	756
789	40 796	799	850	851	880	957	976	988	1049	1083	1127	1148
1160	1204	1216	1225	1236	1245	1367	1405	1406	10.0	1000		
177	48	66	87	95	121	134	136	139	147	166	170	190
212	269	321	323	327	363	370	428	483	484	490	531	551
620 957	622 976	1022	632 1079	650 1131	681 1137	1225	827	845	850	1351	1385	923
178	48	87	95	1131	121	134	136	139	147	165	170	190
212	237	254	321	323	327	370	380	428	441	449	450	483
484	490	531	617	620	622	629	637	697	734	756	789	796
799	826	827	845	850 1216	853	864	927	957	976	1405	1083	1118
179	48	63	1204	1216	212	327	370	380	428	449	484	531
637	663	681	724	756	789	826	831	835	840	853	880	905
957	976	988	1131	1137	1216	1245	1249	1313	1326	1351	1367	1406
180	48	63	66	78	87	121	134	139	147	165	170	190
196	212	254	399 799	428	441 826	44Z 827	450	483	490	551 957	976	1131
1137	1204	1216	1225	1236	1245	1351	1405	001	205	50.	3.0	
181	27	48	66	78	87	95	121	134	139	147	190	212
237	321	323	357	399	428	441	449	483	490	531	551	620
622	637	697	734	744	1040	789	796	799	827	850	864	905
908	920	927	957	976	1049	1131	1137	1204	1210	1220	12.50	1245
182	27	66	78	87	95	121	134	139	147	165	166	170
190	191	212	237	254	320	321	344	374	428	441	450	483
484	490	531	549	551	615	620	622	629	637	650	698	734
739	796	799	826	850	851	853	864	905	957	976	1351	1385
1405	1157	1195	1201	12.04	1210	1225	1250	1240	1245	1313	1001	1000
183	17	27	66	95	134	136	139	166	170	190	196	210
212	269	321	323	327	380	428	442	450	483	490	531	637
650	668	698	736	756	789	826	837	845	1216	864	1243	905
1313	1351	1356	1385	1405	1406	TTÓT		1201	1210	1217	1245	1645
184	20	222	279	312	383	401	422	465	468	485	502	607
668	757	929	947	1020	1049	1178	1191	1268	1301	1313		
185	10	20	63	181	279	312	316	383	401	428	465	467
01Z	029	1191	1216	1268	1301	1313	1351	323	247	504	1020	1043
186	48	63	138	140	144	181	196	210	264	327	383	449
597	643	665	668	850	851	901	905	927	969	976	979	1022
1074	1169	1178	1201	1204	1216	1245	1308	1313	1351	1382	1384	1385
187	56	144	312	130	556	157	170	878	212	237	254	323
441	449	450	483	490	531	637	698	756	789	803	827	845
850	859	905	923	957	976	988	1064	1131	1137	1201	1204	1216
1225	1236	1245	1405									
189	17	27	36	63	66	78	89	95	134	139	147	170
190 510	206	212	236	269	594	321 628	321	33U 637	574	428	480	483
704	730	744	745	756	777	826	827	835	837	840	845	850
851	853	864	888	905	923	957	976	977	988	1005	1018	1064
1127	1131	1137	1201	1204	1219	1225	1243	1245	1260	1304	1313	1383
1384	1385	1405	1406	207	400	470	613	600	204	051	074	677
190 878	1064	1078	145	207	409	4 (Z	043	033	124	001	8/4	8//
191	27	134	136	139	166	170	190	321	327	370	374	380
428	450	485	499	551	629	637	649	699	730	744	756	827
831	859	957	967	976	1049	1307	1313	1343	1406	170	21.2	301
323	327	370	380	441	449	483	490	579	617	622	629	637

C 0 7	7.24	200	706	002	0.07	0.2 E		052	961	905	923	957
697	/34	189	796	803	827	835	850	635	004	305	925	537
976	988	1083	1127	1131	1137	1204	1225	1243	1245	1405		
193	48	66	87	134	136	139	147	165	170	237	321	323
380	437	490	549	551	637	697	756	789	796	803	827	850
054	0.00	0.22	057	076	000	1127	1131	1137	1225	1243	1245	1249
004	000	923	907	370	900	1127	TTOT	1107	1220	1210	1210	1017
1367	1405	1406										
194	41	54	80	126	181	186	211	222	279	308	383	404
407	468	502	506	527	528	529	607	625	629	668	682	731
707	020	010	0.00	030	0/1	042	946	984	1075	1090	1166	1168
191	830	049	0.09	333	941	942	240	1000	1070	1400	1100	
1178	1179	1191	1203	1312	1313	1322	1324	1360	1373	1409		
195	41	54	63	118	126	134	170	181	182	186	211	222
239	250	279	308	340	383	404	502	506	527	528	607	625
620	615	657	669	681	730	731	800	826	840	859	898	934
02.5	040	0.07	000	001	0.04	001	1040	1064	1005	1163	1168	1178
941	942	946	950	951	984	991	1049	1004	1095	1105	1100	11,0
1179	1208	1305	1313	1322	1324	1327	1360	1389				
196	63	114	118	134	181	182	186	190	192	211	226	281
352	374	383	404	405	428	442	472	496	502	607	629	649
657	660	730	711	000	926	830	840	849	851	859	898	942
05/	000	/30	744	000	1010	1000	1170	1000	1200	1006	1301	1313
950	951	984	991	993	1049	1064	11/9	1203	1200	1200	1001	1010
1322	1389	1406										
197	36	51	63	105	122	181	182	256	264	370	380	431
100	516	663	665	744	776	840	850	957	969	988	1085	1148
4 20	1100	1010	1000	1045	1200	1220	1405	1406				
1154	1109	1216	1238	1245	1300	1326	1405	1400			107	5.05
198	63	134	136	170	181	210	321	374	437	449	467	505
549	637	643	663	665	668	692	699	720	724	789	850	851
977	088	1036	1049	1051	1201	1243	1245	1351	1406			
	900	1050	1045	1051	210	270	500	601	720	724	763	877
199	103	122	181	260	312	370	209	001	120	124	705	077
1148	1216	1226	1277									
200	48	63	78	103	134	136	139	170	181	190	212	269
309	321	327	370	374	380	428	441	490	617	629	632	637
100	121	521	5,0	514	300	320	0.07	021	027	940	945	850
665	668	724	736	/44	156	189	827	031	03/	040	1040	1010
851	882	957	973	976	988	1050	1060	1131	1137	1201	1216	1243
1245	1249	1282	1296	1298	1300	1313	1343	1351	1389	1405		
201	41	1201.	67	113	134	136	139	170	1 90	194	210	212
201	41	48	07	113	104	130	107	470	100	617	632	630
213	281	321	370	374	380	428	437	912	490	617	632	010
649	665	692	724	744	827	831	835	837	850	851	882	927
957	976	988	1060	1131	1221	1243	1343	1389	1406			
202	62	122	191	223	256	301	370	433	505	516	641	643
202	02	122	101	223	230	0501	077	0.00	000	1110	1169	1216
663	665	668	690	124	176	850	877	969	900	1140	1105	1210
1245	1300	1405										
203	17	27	64	66	73	134	136	166	170	190	212	269
301	321	327	328	380	399	483	490	551	620	629	632	649
201	021	221	700	707	017	0.06	027	035	850	864	905	920
650	665	134	183	191	817	826	027	0.00	1000	1013	1045	1207
957	960	976	988	1023	1131	1137	1216	1225	1236	1243	1243	1307
1343	1351	1385	1405	1406								
204			40	70	75	1.2.4	100	139	327	370	380	490
204	17	45	46		4.2.5	1.34	1.16					
	17	45	40	724	700	134	136	964	905	957	976	1128
201	17 632	45 663	665	734	789	826	850	864	905	957	976	1128
1216	17 632 1233	45 663 1245	665 1249	734 1304	789 1307	826 1351	136 850 1367	864 1406	905	957	976	1128
1216 205	17 632 1233 27	45 663 1245 48	46 665 1249 64	734 1304 66	789 1307 75	134 826 1351 134	136 850 1367 136	864 1406 139	905 165	957 181	976 190	1128 212
1216 205	17 632 1233 27 321	45 663 1245 48 327	665 1249 64 380	734 1304 66 483	789 1307 75 490	134 826 1351 134 531	136 850 1367 136 549	864 1406 139 632	905 165 637	957 181 650	976 190 668	1128 212 671
1216 205 301	17 632 1233 27 321	45 663 1245 48 327	46 665 1249 64 380	734 1304 66 483	789 1307 75 490	134 826 1351 134 531	136 850 1367 136 549	864 1406 139 632	905 165 637 920	957 181 650 957	976 190 668 976	1128 212 671 1013
1216 205 301 676	17 632 1233 27 321 704	45 663 1245 48 327 734	48 665 1249 64 380 744	734 1304 66 483 789	789 1307 75 490 797	134 826 1351 134 531 826	136 850 1367 136 549 827	864 1406 139 632 850	905 165 637 920	957 181 650 957	976 190 668 976	1128 212 671 1013
1216 205 301 676 1023	17 632 1233 27 321 704 1137	45 663 1245 48 327 734 1205	46 665 1249 64 380 744 1216	734 1304 66 483 789 1233	789 1307 75 490 797 1236	134 826 1351 134 531 826 1243	136 850 1367 136 549 827 1245	864 1406 139 632 850 1304	905 165 637 920 1307	957 181 650 957 1313	976 190 668 976 1343	1128 212 671 1013 1351
1216 205 301 676 1023 1384	17 632 1233 27 321 704 1137 1385	45 663 1245 48 327 734 1205 1405	46 665 1249 64 380 744 1216 1406	734 1304 66 483 789 1233	789 1307 75 490 797 1236	134 826 1351 134 531 826 1243	136 850 1367 136 549 827 1245	864 1406 139 632 850 1304	905 165 637 920 1307	957 181 650 957 1313	976 190 668 976 1343	1128 212 671 1013 1351
1216 205 301 676 1023 1384 206	17 632 1233 27 321 704 1137 1385 63	45 663 1245 48 327 734 1205 1405 80	48 665 1249 64 380 744 1216 1406 110	73 734 1304 66 483 789 1233	789 1307 75 490 797 1236	134 826 1351 134 531 826 1243	136 850 1367 136 549 827 1245	864 1406 139 632 850 1304	905 165 637 920 1307 190	957 181 650 957 1313 210	976 190 668 976 1343 269	1128 212 671 1013 1351 279
1216 205 301 676 1023 1384 206	17 632 1233 27 321 704 1137 1385 63	45 663 1245 48 327 734 1205 1405 80	48 665 1249 64 380 744 1216 1406 110	734 734 1304 66 483 789 1233 127	789 1307 75 490 797 1236 134	134 826 1351 134 531 826 1243 181	136 850 1367 136 549 827 1245 182 450	864 1406 139 632 850 1304 186 464	905 165 637 920 1307 190 468	957 181 650 957 1313 210 506	976 190 668 976 1343 269 527	1128 212 671 1013 1351 279 607
1216 205 301 676 1023 1384 206 281	17 632 1233 27 321 704 1137 1385 63 308	45 663 1245 48 327 734 1205 1405 80 344	48 665 1249 64 380 744 1216 1406 110 347	734 734 1304 66 483 789 1233 127 399	789 1307 75 490 797 1236 134 404	134 826 1351 134 531 826 1243 181 428	136 850 1367 136 549 827 1245 182 450	864 1406 139 632 850 1304 186 464	905 165 637 920 1307 190 468	957 181 650 957 1313 210 506	976 190 668 976 1343 269 527	1128 212 671 1013 1351 279 607
1216 205 301 676 1023 1384 206 281 629	17 632 1233 27 321 704 1137 1385 63 308 632	45 663 1245 48 327 734 1205 1405 80 344 643	48 665 1249 64 380 744 1216 1406 110 347 668	734 1304 66 483 789 1233 127 399 673	789 1307 75 490 797 1236 134 404 744	134 826 1351 134 531 826 1243 181 428 850	136 850 1367 136 549 827 1245 182 450 859	864 1406 139 632 850 1304 186 464 898	905 165 637 920 1307 190 468 920	957 181 650 957 1313 210 506 976	976 190 668 976 1343 269 527 984	1128 212 671 1013 1351 279 607 1017
1216 205 301 676 1023 1384 206 281 629 1103	17 632 1233 27 321 704 1137 1385 63 308 632 1104	45 663 1245 48 327 734 1205 1405 80 344 643 1178	48 665 1249 64 380 744 1216 1406 110 347 668 1179	734 734 1304 66 483 789 1233 127 399 673 1204	73 789 1307 75 490 797 1236 134 404 744 1275	134 826 1351 134 531 826 1243 181 428 850 1301	136 850 1367 136 549 827 1245 182 450 859 1322	864 1406 139 632 850 1304 186 464 898 1324	905 165 637 920 1307 190 468 920 1356	957 181 650 957 1313 210 506 976 1383	976 190 668 976 1343 269 527 984 1385	1128 212 671 1013 1351 279 607 1017 1406
1216 205 301 676 1023 1384 206 281 629 1103 207	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20	45 663 1245 48 327 734 1205 1405 1405 344 643 1178 80	465 665 1249 64 380 744 1216 1406 110 347 668 1179 110	73 734 1304 66 483 789 1233 1233 127 399 673 1204 128	73 789 1307 75 490 797 1236 134 404 744 1275 186	134 826 1351 134 531 826 1243 181 428 850 1301 254	136 850 1367 136 549 827 1245 182 450 859 1322 261	864 1406 139 632 850 1304 186 464 898 1324 279	905 165 637 920 1307 190 468 920 1356 312	957 181 650 957 1313 210 506 976 1383 316	976 190 668 976 1343 269 527 984 1385 347	1128 212 671 1013 1351 279 607 1017 1406 383
331 1216 205 301 676 1023 1384 206 281 629 1103 207	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527	465 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566	73 734 1304 66 483 789 1233 1233 127 399 673 1204 128 607	73 789 1307 75 490 797 1236 134 404 744 1275 186 612	134 826 1351 531 826 1243 181 428 850 1301 254 668	136 850 1367 136 549 827 1245 182 450 859 1322 261	130 1406 139 632 850 1304 186 464 898 1324 279 731	905 165 637 920 1307 190 468 920 1356 312 744	957 181 650 957 1313 210 506 976 1383 316 829	976 190 668 976 1343 269 527 984 1385 347 845	1128 212 671 1013 1351 279 607 1017 1406 383 862
331 1216 205 301 676 1023 1384 206 281 629 1103 207 413	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527	48 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566	73 734 1304 66 483 789 1233 127 399 673 1204 128 607	789 1307 75 490 797 1236 134 404 744 1275 186 612	134 826 1351 134 531 826 1243 181 428 850 1301 254 668	136 850 1367 136 549 827 1245 182 450 859 1322 261 673	864 1406 139 632 850 1304 186 464 898 1324 279 731	905 165 637 920 1307 190 468 920 1356 312 744	957 181 650 957 1313 210 506 976 1383 316 829	976 190 668 976 1343 269 527 984 1385 347 845 347 845	1128 212 671 1013 1351 279 607 1017 1406 383 862
331 1216 205 301 676 1023 1384 206 281 629 1103 207 413 901	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902	45 663 1245 327 734 1205 1405 80 344 643 1178 80 527 929	46 665 1249 64 380 744 1216 1406 110 347 68 1179 110 566 936	734 1304 66 483 789 1233 127 399 673 1204 128 607 984	789 1307 75 490 797 1236 134 404 744 1275 186 612 991	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197	905 165 637 920 1307 190 468 920 1356 312 744 1305	957 181 650 957 1313 210 506 976 1383 316 829 1313	976 190 668 976 1343 269 527 984 1385 347 845 1322	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383
331 1216 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387	17 632 1233 27 704 1137 1385 63 308 632 1104 20 450 902	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527 929	46 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936	734 1304 66 483 789 1233 127 399 673 1204 128 607 984	789 1307 75 490 797 1236 134 404 744 1275 186 612 991	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197	905 165 637 920 1307 190 468 920 1356 312 744 1305	957 181 650 957 1313 210 506 976 1383 316 829 1313	976 190 668 976 1343 269 527 984 1385 347 845 1322	1128 212 671 1013 1351 279 607 1017 1406 383 882 1383
3316 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 9	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527 929 63	465 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181	134 826 1351 826 1243 181 428 850 1301 254 668 1095 186	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222	905 165 637 920 1307 190 468 920 1356 312 744 1305 254	957 181 650 957 1313 210 506 976 1383 316 829 1313 260	976 190 668 976 1343 269 527 984 1385 347 845 1322 279	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344
331 1216 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347	17 632 1233 27 321 704 1137 1385 63 308 63 308 632 1104 20 450 902 9	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527 929 63 428	46 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651
1216 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 902 9 413	45 663 1245 327 734 1205 1405 80 344 643 1178 80 527 929 63 428	465 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450	734 734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464	789 789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468	134 826 1351 134 531 826 1243 181 428 850 1301 254 6685 1095 186 500	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 981	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313
3316 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347 668	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 902 9 413 673	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731	465 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859	134 826 1351 826 1243 181 428 850 1301 254 668 1095 186 500 862	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313
3316 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347 668 1350	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 902 913 673	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731	465 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859	134 826 1351 826 1243 181 428 850 1301 254 668 1095 186 500 862	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313
3316 205 301 676 1023 1384 206 281 829 1103 207 413 901 1387 208 347 208 347 668 1350 209	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 902 99 413 673 32	45 663 1245 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33	465 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 936 80 450 744 63	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314
3316 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347 668 1350 209 502	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 902 902 913 673 32 512	45 663 1245 327 734 1205 1405 80 344 643 1178 80 344 643 1178 80 527 929 63 428 731 33 527	465 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80 632	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021	976 190 668 976 1343 269 527 984 1385 347 1385 1322 279 629 991 302 1047	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360
3316 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347 668 1350 209 502	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 902 99 413 673 32 512	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527	465 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607	734 1304 1304 1304 1233 127 399 673 1204 128 607 984 110 464 850 80 632	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642	134 826 1351 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302 1047	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360
3316 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347 668 1350 209 502 1383	17 632 1233 27 321 704 1137 1385 63 308 63 308 63 2104 20 450 902 902 902 913 673 32 512 1406	45 663 1245 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527	46 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80 632	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302 1047	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360
3316 205 301 676 1023 1384 206 281 629 1103 207 413 387 208 347 668 1350 209 502 1383 210	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 902 902 913 673 32 512 1406 144	45 663 1245 327 734 1205 1405 80 344 643 1178 8 643 1178 8 527 929 63 428 731 33 527 524	465 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673	734 734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80 632 749	789 789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302 1047	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360
3316 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347 668 1350 209 502 1383 210 211	17 632 1233 27 704 1137 1385 63 308 632 1104 20 450 902 902 99 413 673 32 512 1406 144 66	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527 524 75	465 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 643 607 673 78	734 1304 1304 1304 1233 127 399 673 1204 128 607 984 110 464 850 80 632 749 81	789 789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 95	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984 170	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021 190	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302 1047 212	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321
3316 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347 668 1350 209 502 1383 210 211 327	17 632 1233 27 321 704 1137 1385 63 308 63 308 63 308 63 202 902 902 902 902 902 913 673 32 512 1406 144 6370	45 663 1245 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527 524 75 380	465 465 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673 78 428	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80 632 749 81 445	789 789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 95 483	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136 505	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984 170 637	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021 190 649	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302 1047 212 665	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321 744
3316 205 301 676 1023 1384 206 281 629 1103 207 413 207 413 307 413 387 208 347 668 1350 209 502 1383 210 211 327 566	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 902 902 913 673 32 512 1406 144 66 370	45 663 1245 48 327 734 1205 1405 80 527 929 63 428 731 33 527 524 75 380 827	465 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673 78 428 850	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80 632 749 81 445 864	789 789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 95 483 887	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134 490 957	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136 506 969	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961 270 961	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984 170 637 979	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021 190 649 988	976 190 668 976 1343 269 527 984 1385 345 1322 279 629 991 302 1047 212 665 1023	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321 744 1124
3316 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347 668 1350 209 502 209 502 21383 210 211 327 756	17 632 1233 27 704 1137 1385 63 308 632 1104 20 450 902 902 902 913 673 32 512 1406 144 66 370 799	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527 524 75 380 827	465 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673 78 428 850	734 1304 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80 632 749 81 445 864	789 789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 95 483 887	134 826 1351 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134 490 957	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136 505 969	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961 139 629 976	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984 170 637 979	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021 190 649 988	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302 1047 212 665 1023	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321 744 1124
3316 1216 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347 668 1350 209 502 1383 211 327 756 1160	17 632 1233 321 704 1137 1385 63 308 632 1104 20 902 902 902 913 673 32 512 1406 144 6370 799 1225	45 663 1245 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527 524 75 380 827 1245	465 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673 78 428 850 1351	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80 632 749 81 445 864 1405	789 1307 75490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 95 483 887 1406	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134 490 957	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136 505 969	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961 270 961	905 165 637 920 1307 190 468 920 1305 312 744 1305 254 566 902 279 984 170 637 979	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021 190 649 988 016	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302 1047 212 665 1023 201	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321 744 1124
3316 1216 205 301 676 1023 1384 206 281 629 1103 207 413 387 208 347 668 1350 502 1383 210 211 327 756 1160 212	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 902 9 413 673 32 512 1406 144 66 370 91225 59	45 663 1245 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527 524 75 380 827 1245 63	465 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673 78 428 637 607 673 78 428 01351 122	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80 632 749 81 445 864 405 141	789 789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 95 483 887 1406 152	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134 490 957 159	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136 505 969 182	864 1406 139 632 850 1304 186 464 898 1324 279 731 197 222 549 901 270 961 270 961 139 629 976 184	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984 170 637 979 207	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021 190 649 988 216	976 190 668 976 1343 269 527 984 1385 345 1322 279 629 991 302 1047 212 665 1023 264	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321 744 1124 276
3316 205 301 676 1023 1384 208 281 629 1103 207 413 901 1387 208 347 668 1350 209 502 1383 210 211 327 756 1160 212 278	17 632 1233 27 704 1137 1385 63 308 632 1104 20 450 902 9 413 673 32 512 1406 144 66 370 799 1225 9 292	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527 524 75 380 827 1245 63 297	465 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673 78 428 850 1351 122 348	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 128 607 984 110 464 850 80 632 749 81 445 864 1455	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 95 483 887 1406 642 878 95 483 887	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134 490 957 159 538	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136 505 969 182 554	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961 139 629 976 184 556	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984 170 637 979 207 577	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021 190 649 988 216 653	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302 1047 212 665 1023 264 668	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321 744 1124 276 711
3316 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347 668 1350 209 502 1383 210 211 327 756 1160 212 278 713	17 632 1233 321 704 1137 1385 63 308 632 1104 20 902 902 902 99 413 673 32 512 1406 144 6 370 799 1225 59 292 292	45 663 1245 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527 524 75 380 827 1245 63 297 4	465 465 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673 78 428 850 1351 122 348 875	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80 632 749 81 445 864 1405 141 455 878	789 1307 75490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 95 483 887 1406 152 53 885	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134 490 957 159 538 901	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136 505 969 182 450 136 505 969 182 182 182 182 182 182 182 182	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961 270 961 139 629 976 184 556 917	905 165 637 920 1307 190 468 920 1305 312 744 1305 254 566 902 279 984 170 637 979 207 577 987	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021 190 649 988 216 653 1017	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302 1047 212 665 1023 264 668 1031	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321 744 1124 276 711 1032
3316 1216 205 301 676 1023 1384 206 281 629 1103 207 413 208 347 668 13509 502 1383 210 211 327 756 1160 212 278 713	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 9 413 673 32 512 1406 144 66 370 799 1225 59 292 817	45 663 1245 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527 524 755 380 827 1245 63 297 874	465 6655 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673 78 428 607 673 78 428 01351 122 348 875	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80 632 749 81 465 864 1405 141 455 878	789 789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 95 483 887 1406 152 533 885	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134 490 957 159 538 901	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136 505 969 182 554 905 1238	864 1406 139 632 850 1304 186 464 898 1324 279 731 197 222 549 901 270 961 270 961 139 629 976 184 556 976	905 165 637 920 1307 190 468 920 135 254 566 902 279 984 170 637 979 207 577 979	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021 190 649 988 216 653 1017 1313	976 190 668 976 1343 269 527 984 1385 345 1322 279 629 991 302 1047 212 665 1023 264 668 1031 1322	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321 744 1124 276 711 1032 1323
3316 1216 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 208 347 668 1350 209 502 1383 210 211 327 7566 212 278 713 1047	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 9 413 673 32 5126 1406 144 66 370 799 1225 9 292 817 1142	45 663 1245 48 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527 524 75 380 827 1245 63 297 874 1144	465 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673 78 428 850 1351 122 348 875 1145	734 1304 1304 1233 127 399 673 1204 128 607 984 110 464 850 80 632 749 81 445 864 1405 878 1169	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 95 483 887 1406 642 878 95 483 887 1422 533 885 1218	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134 490 957 159 538 901 1232	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136 505 969 182 554 905 1238	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961 270 961 139 629 976 184 556 917 1248	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984 170 637 979 207 577 987 1301	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021 190 649 988 216 653 1017 1313	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302 1047 212 665 1023 264 668 1031 1322	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321 744 1124 276 711 1032 1323
3316 1216 205 301 676 1023 1384 206 281 629 1103 207 413 901 1387 668 1350 209 502 1383 210 211 327 756 1160 212 278 713 1047	17 632 1233 321 704 1137 1385 63 308 632 1104 20 450 902 9 9 413 673 32 512 1406 144 66 370 799 1225 59 292 817 1142 1376	45 663 1245 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527 524 75 380 827 1245 63 297 1245 63 297 41144 1383	46 665 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673 78 428 850 1351 122 385 1145	734 1304 66 483 789 1233 127 399 673 1204 128 607 984 110 464 850 80 632 749 81 445 864 1405 141 455 878 1169	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 95 483 887 1406 152 533 885 1218	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134 490 957 159 538 901 1232	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136 505 969 182 554 905 1238	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961 270 961 139 629 976 184 556 517 1248	905 165 637 920 1307 190 468 920 1356 312 744 1305 254 566 902 279 984 170 637 979 207 577 577 1301	957 181 650 957 1313 210 506 976 1363 316 829 1313 260 607 984 300 1021 190 649 988 216 653 1017 1313	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 991 302 1047 212 665 1023 264 668 1031 1322	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321 744 1124 276 711 1032 1323
3316 1216 205 301 676 1023 1384 206 281 629 1103 207 413 207 413 208 347 668 1350 209 502 1383 210 211 327 756 1160 212 278 713 1047 1330 213	17 632 1233 27 321 704 1137 1385 63 308 632 1104 20 450 902 9 413 673 32 512 1406 144 673 32 512 1406 144 6370 799 1225 59 292 817 1142 1376 19	45 663 1245 327 734 1205 1405 80 344 643 1178 80 527 929 63 428 731 33 527 524 75 380 827 1245 63 297 874 1144 1383 181	465 1249 64 380 744 1216 1406 110 347 668 1179 110 566 936 80 450 744 63 607 673 78 428 850 1351 122 348 875 1145 182	73 734 1304 66 483 789 1233 127 399 673 1204 128 607 984 120 464 850 80 632 749 81 445 864 1405 141 455 878 1169 189	789 1307 75 490 797 1236 134 404 744 1275 186 612 991 181 468 859 110 642 878 951 181 468 859 110 642 878 951 1406 152 533 885 1218 191	134 826 1351 134 531 826 1243 181 428 850 1301 254 668 1095 186 500 862 128 668 881 134 490 957 159 538 901 1232 264	136 850 1367 136 549 827 1245 182 450 859 1322 261 673 1176 205 527 888 144 797 1105 136 505 969 182 554 905 1238 292	864 1406 139 632 850 1304 186 464 898 1324 279 731 1197 222 549 901 270 961 270 961 139 629 976 184 556 917 1248 297	905 165 637 9207 190 468 920 1356 312 744 1305 254 566 902 279 984 170 637 979 207 577 987 1301 358	957 181 650 957 1313 210 506 976 1383 316 829 1313 260 607 984 300 1021 190 649 988 216 653 1017 1313 370	976 190 668 976 1343 269 527 984 1385 347 845 1322 279 629 991 302 1047 212 665 1023 264 668 1031 1322 417	1128 212 671 1013 1351 279 607 1017 1406 383 862 1383 344 651 1313 314 1360 321 744 1124 276 711 1032 1323 427

:	875	884	907	925	q	36	016												
1	219 <u>1</u> 214	224 1	234	1301	13	17 1.	945 319		952	9	999	10	95 1	114	11	27	116	0 1	180
3	370	373	36 415	91 419		98	122	1	152	1	.67	1	81	182	1	89	29	2 :	365
	746	749	764	842	4.80	75	441 930	5	514	5	530	5	54	577	5	91	66	3 7	126
12	234 1	298 1	336	1364	13	71 13	381	14	106	2	52	9.	57 1	095	11	14	112	7 12	26
2	281	36 359	69 365	78 394	8	30 1	132	1	67	1	81	11	82 2	200	2	17	22	1 2	55
5	574	579	584	589	4 C 5 S	04 4 39 6	167 31 9	4	68	4	90	49	99 (530	5	56	55	8 5	62
7	26	744	764	766	83	80 a	41	8	44	ь 8	63 74	66	55 (20 d	568 206	71	04	71	17	22
13	26 1:	978 351 1	979 370	1095	115	6 11	80	12	19	12	24	126	54 12	270	12	07 75	923 1301	9 כ גו ו	20
2	16	36	78	97	140	1 2	20	2	54	~	- -					-		. 10	20
4	55 4 68 7	164	490	499	53	1 5	44	5	52		55 62	26	04 2 14 5	:81 .91	35	59 57	361	. 4	41
9	25 g	36	726 957	969	74	7 7	55	7	65	8	44	87	5 8	76	88	34	885	9 6 5 A	63 90
13	04 13	26 1.	361]	381	140	2 IU 6	78	11	14	110	50	122	4 12	66	127	5	1284	13	00
2:	17 97 3	19	36	105	12	2 1	67	18	31	18	32	18	91	91	25	5	264	~	
5	97 5	·99 6	557 557	405	42	7 4	41	46	54	46	57	51	4 5	30	55	2	264	23 50	32 14
89	90 9	05 g	07	925	952	9 / 1 2 9 f	04 62	972	26 79	74	4	74	78	24	83	0	845	87	16
21	30 11 IS	94 12	00 1	220	1232	2 125	53	128	34	129	9	132	5 11- 2 13!	41 51	114	4 1	.145	116	59
29	97 3.	19 59 3	36 65	60 375	74	10	05	16	57	18	1	18	2 10	39	25	4 1 5	264	28	/3 11
65	6 6	63 6	68	683	726	5 74	:/ 19	43	5	44	1	46	1 51	L 4	57	7	591	59	17
138	6 11	27 11 26	58 1	169	1219	122	20	123	8	127	5	900 1280	5 92 5 130	25	93) 132	6 a 1	986	109	5
21	9 1	L9	36	63	74	_	. 1		-				1.50		132	<i>,</i> 1	304	136	Э
18	4 22	20 2	64	272	276	28	1	29	5 2	13	1	152	16	57	175	5	181	18	2
44 74	1 51 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 5	30	554	591	65	5	65	7	66	, B	54Z	. 34 71	.9 વ	365	5	427	43	4
96	9 98	15 81 16 98	37 (341 399	844	87	5	88	4	90	1	906	91	4	925	.	736 936	95:	4 2
118	0 122	6 12	38 12	242	1244	124	ວ 8 ີ	1114 1270	4 ೧	1130	31	141	114	4 1	145	5 1	147	116	9
135.	1 135 0 1	8 136	55 13	370						120.	• 1	.299	131	1	.318	3 1:	335	1340	6
222	2 27	9 30)4)0 3	96 102	114	12	7	152	2	17()	181	18	2	190) 1	91	210	5
428	9 45	0 45	6 4	64	468	502	2	529	2	370)	374	38	3	389	4	01	404	1
934	94	1 66 6 95	86	74 57	720	730	2	744	l	751		827	84.	5 5	612 859	6	029 198	632	<u>}</u>
1275	129	4 130	1 13	37 13 1	960 1326	973 1409	3	984		991	1	049	113	4 1	179	12	03	1249	}
221 878	. 10:	914	42	23	260	555	5	599	,	668		681	716	<u>.</u>	710		1.0		
222	12:	3 34	4 5	20	070	1017							710	,	149	0	13	876	,
223	26	5 8	0 1	06	107	1017	1	106	1	108	1	190	1271	1	295				
261	270	27	9 3	44	347	464		482		512	, L	520	187 527		204	2	44	260	
1021	1090	109	/ 82 5 11/	24 04 1	829 164	845		870		872	S	906	923		941	9	52	- 682 - 984	
224	26	5 32	2 (53	80	1108	1	176	1	178	11	l 97	1203	12	271	12	95	1356	
302	312	356	5 46	55	492	512		525		549	5	566	260		270 535	2	75 50	279	
1203	1218	1291	132	(4) 12 1	829 321	845	1	862		870	9	80	991	ç	996	10	95	1178	
225	80	126	5 12	8	179	181		186		270	2	00	24.4	_					
467	468	525	56	6	593	607	6	629	I	642	5 6	51	314 668	3	44	34	17	464	
1383	500	980	98	4 1	090	1095	11	l74	1:	175	11	76	1177	12	.03	130)5	1350	
226	26	33	8	0 :	26	181	1	82	1	86	2	22	250						
383	401	404	46	8 5	02	506	5	528	5	531	6	07	629	2	51 42	27	9 :o	298	
1090	1095	1176	117	/ t 7 11	326 78	845	8	159	2	02	9	14	984	9	91	104	9 ;	1061	
227	20	27	3.	2	39	80	1	79	14	81	2.	33	266		70				
797	442	464	46	54	68	485	5	31	5	49	56	66	635	∠ 6.	79 58	35	6 1	383	
1064	1095	1118	113)) 11	6∠ 78	870	8	98 69	9 1 2	02	93	36	960	9	91	99	6 1	.036	
228	26	67	8(2 1	26	181	1	86	1	90	131	13 91	1321	132	26	132	7	 .	
629	642	404	43	4	64 04	468	4	96	5	02	53	31	532	56	<u>38</u>	57	ь 4	338	
1020	1036	1090	1095	11	79	1203	14	29 06	8	45	85	i9	888	89	98	94;	2	991	
229 428	62 442	67 495	134	1	39	181	1	90	2	10	26	9	308	33	10	37/	4	202	
744	810	405 845	496 851	5.	31 38	549 89e	62	29	6	42	64	3	651	66	8	674		383 730	
1111	1130	1179	1203	120	04 1	1216	130)5	9: 131	26 13	135	6 1	1049	106	4	1068	31	074	
230	63 308	95 २1 ८	118	1:	34	152	17	0	18	9ī	18	2	186	140 19	0 1	21 🖬		260	
549	612	629	643	34	14 58	374 681	38	13	39	99	42	8	442	46	4	496		209 531	
901	936	977	984	106	58 1	.074	111	1	119	14 10	80) ידו1	0 ค. 1	826	84	5	859	8	988	
231	1320 73	1351	1383	140	6			_		-	±11	u 1	1710	175	9 :	1305	13	313	
383	399	405	428	11 44	1	134 464	17	0	18	1	182	2	190	27	9	316	3	327	
643	668	681	730	74	5	826	49 82	7	50 84	ю 5	549 851	ور ا	590 850	601	7	612	ē	529	
204	1020	1026	1036	106	81	130	121	9	127	5	1313	3 1	322	888 1350	ז 1 (901 1351	9 1 2	976 193	
															-	I	10	.00	

.

1385	1406	80	101	192	190	191	233	269	279	316	374	383
232	63	437	464	496	499	527	629	641	643	655	668	704
730	745	800	826	845	888	898	901	936	941	984	1026	1049
1066	1068	1074	1130	1178	1179	1219	1275	1305	1313	1322	1350	1351
1383	1385	1406										
233	63	80	181	279	281	316	383	428	437	465	496	527
531	629	642	657	668	744	826	827	837	845	888	898	901
984	1049	1095	1178	1179	1275	1313	1322	1350	1383	1406		
234	33	114	117	134	170	181	190	210	308	327	330	383
399	401	404	428	442	467	472	496	506	531	607	629	668
730	744	835	840	845	859	888	920	976	977	991	1049	1064
1074	1130	1179	1299	1322	1351	1406					202	202
235	10	41	117	170	181	190	210	281	308	327	383	393
399	404	420	428	442	472	485	490	496	506	528	531	076
629	649	651	730	744	835	845	888	901	920	961	967	910
991	1054	1064	1111	1179	1216	1320	1322	1351	1373	1406	744	240
236	80	181	182	190	205	210	269	279	31Z	310	244	945
383	401	428	437	502	531	629	643	668	6/3	1203	1305	1313
888	901	962	977	988	991	1036	1064	1178	11/9	1205	1202	1515
1325	1406						202	200	120	112	496	502
237	134	181	190	210	316	344	383	399	420	681	744	827
528	531	549	568	607	612	629	043	001	1026	1036	1068	1074
845	851	859	888	942	960	962	1225	909 1351	1406	1000	1000	
1130	1179	1201	1203	1301	1313	1322	101	192	190	210	225	233
238	20	63	68	100	117	1/0	101	531	549	566	590	597
269	308	330	383	428	464	400	972	845	851	862	888	901
612	622	668	740	/44	197	1170	1179	1199	1203	1219	1300	1301
936	942	980	984	1010	1305	1406	1112	11.70	1200			
1304	1313	1321	1323	1320	1202	400	134	181	182	190	206	210
239	27	260	260	301	308	330	344	374	389	428	442	472
212	230	260	209	501	597	629	641	643	668	756	799	810
231	249	0/5	000 853	888	927	976	977	984	1074	1131	1132	1169
1170	1210	1201	1313	1351	1383	1385	1389	1405	1406			
240	20	32	68	80	170	190	233	260	308	330	356	383
429	442	464	465	467	485	490	531	566	590	597	612	629
420	640	651	668	744	797	829	835	845	853	862	870	888
030	043	984	991	1063	1064	1074	1139	1192	1203	1268	1305	1313
1325	1326	1351	1405	1005	1001							
281	1020	67	134	170	181	190	254	281	308	321	327	370
377	420	438	456	486	490	506	549	607	629	637	668	699
720	744	837	845	851	859	934	976	988	1061	1195	1243	1249
1304	1313	00.	•••									
242	17	27	50	63	78	134	136	139	170	181	190	210
212	254	281	321	327	374	380	428	437	483	490	549	629
643	649	665	668	724	736	744	803	826	827	837	845	850
882	920	927	957	976	988	1012	1049	1137	1201	1245	1299	1300
1313	1405	1406										
243	9	20	26	32	39	80	95	109	186	222	255	316
383	413	549	612	643	651	658	662	679	720	731	744	112
797	817	829	845	862	936	950	991	1018	1022	1036	1103	1104
1191	1203	1233	1297	1313	1321	1359	1387	1397		202	41.2	127
244	20	26	186	233	255	316	347	356	374	383	413	437
607	612	615	632	679	720	744	769	772	829	845	862	930
991	1018	1022	1090	1120	1134	1163	1198	1203	1304	1312	338	344
245	33	63	96	134	202	233	255	269	510	552	705	720
357	374	383	389	401	450	549	607	026	029	984	991	1018
730	744	817	829	845	862	888	1020	1 2 0 5	1213	1351	1383	1010
1025	1066	1120	1134	1192	1201	1203	1230	1303	1313	347	356	374
246	20	26	186	202	233	255	260	015	244	936	991	1018
383	413	607	612	615	/44	1000	1007	1205	1212	1329	1344	1010
1020	1090	1120	1134	1163	11.88	1203	1297	1305	1515	168	170	181
247	15	27	36	50	68	84	202	270	380	391	428	441
190	210	212	236	255	204	209	579	594	629	638	649	666
442	464	472	490	503	506	24L 744	756	789	790	808	809	811
668	671	703	706	121	733	744	944	950	851	882	890	901
827	831	833	835	836	1004	1042	1064	1160	1194	1204	1245	1249
905	925	957	989	1220	1225	1351	1 2 87	1409	** 24	1204		
1259	1275	1307	1313	1326	101	1001	180	191	263	264	281	359
248	33	63	105	1/0	201 101	571	599	636	649	657	665	668
370	431	433	444	D14 0E0	555	024	923	927	957	970	992	1037
711	/24	810	84/	1101	090	110/	1216	1210	1279	1280	1281	1300
1074	1102	1127	1144	1101	1109	11,24	1210	1619	12,7	7800	+	
1317	1383	100	1 4 4	260	500	599	716	759	765	770	878	892
249	1050	1334	144	200	505							
101/	2028	1000	192	222	281	409	446	509	514	555	599	636
200	22	738	763	770	826	877	896	957	970	1027	1049	1148
1161	1169	1224	1245	1285								
TTOT												

2 3	51 28 3	63 70 :	95 374	117 382	134	139	1	.70	181	1	90 1	.91 2	210	281	308
6	65 6 76 10	68 (674	730	599 744	428	4 8	41	506 817	5 5- 1 8:	19 6 26 8	i29 (532	649	651
13	13 13	23 10 51	026 1	049 1	050	L074	11	79 1	194	120	03 12	04 12	216 1	845 243	859 1249
2:	52 53	33 <u>1</u>	.07 :	L44	145	524	7	63	813	87	8 9	12 11	05 1	170	1276
74	14 7	63 8	.38 2 100 8	222 917	308 851	321 859	3	83 00	428	49	6 5	02 6	41 (568	730
129	97 13: 54	11 13	13			002	¢	90	912	93	4 9	46 11	79 11	97	1203
28	31 30	08 3	63 28 3	67 174 ;	80 383	117 399	1:	34 04	139	17	0 1	81 1	82 1	86	191
50 73)2 54 10 74	19 5 14 p	60 6	07	512	629	63	32	405 641	42 64	84 96.	42 4 51 6	50 4 68 6	64 74	496
101	8 102	26 10	1, 8 27 10	74 11	337 11 1	840 168	84	15 79 1	849	85	9 9	36 9	41 9	84	1003
132 25	2 135	51 13: 26	83 14 27	05				ι υ Ι.	1/9	119	/ 12/	43 12	49 12	63	1313
22	2 22	7 2	79 2	80 1 81 3	.09 108 .	117 312	13	85 (14 -	144	17	0 18	81 1	82 1	86	191
49 84	1 49 5 85	16 4!	99 5)n o	28 6 46 0	12	629	63	12 (543	661	4 40 3 73	15 42 10 74	28 4 14 8	67 00	477 826
135	1 138	2 136	33 3	96 y	61	984	99	1 10	003	1019	9 104	9 119	97 13	16	1322
25	6 4 0 38	4 5 1 43		57 1	05	22	14	61	50	163	3 1.8	9 31	7 3	34	370
96	9 98	8 108	0 10	40 4 31 11	76 5 48 12	505 231	51 124	5 6 5 1 2	39	666	5 77	4 78	17 8	61	958
257	7 81 D 964	0 14	4 18	36 2	79 3	347	47	4 6	82	1406) 5 74	5 78	7 81	24	820
258	3 21	0 102	0 109 6 3	95 11 82	00 12 33 2	03	132	7	~~				. 02		029
612 1134	619	5 67	3 69	9 7	44 7	87	25	03 78	08 29	316 845	34	7 38 9 102	3 41	3	549
259	2(L 120	3 131 6 3	3 13	44 13	86				040	72	<i>y</i> 102	1 105	03	1090
744	797	82	9 84	5 86	52 9	08 36	341 961	73 110	56 20	413	51	8 61	2 69	9	720
1203	20) 2	я з	2 10				- 10	20	1090	109	5 110	9 113	4	1164
607	615	74	4 79	2 18 7 82	962 198	25 45	252 862	2 2:	54 29	302	30	3 34	7 38	3	413
261	1203		3 134	7 138	17					<u>, , , , , , , , , , , , , , , , , , , </u>	1020	109	U 113	4 1	.163
797	829	862	2 92	5 IU 9 95	2 9	52 61	347 1020	' 3' 10/	74	383	413	54	9 66	8	744
1313	20	31	2 0.	· · ·			1020	, 104	10	1024	1090	1163	3 119	1 1	203
682	720	731	. 79	0 14 7 81	4 18 3 82	36 21	312	34	7	383	413	528	52	9	673
1176 263	1178	1190) 1194	132	7 140	6	024	04	,	910	936	961	. 102	01	095
668	673	713	845	/ 36 5 92	94(595)1 51	467	51	1	577	590	618	642	2	663
264 441	169	181	264	27	3 26	17	359	36	5	384	1096 388	1229		3	133
744	755	840	845	59 89	0 59 0 92	13 15	618	62	9	663	668	680	725	5	735
1065 1361	1074	1096	1169	117	9 122	4 1	242	126	1 7 :	952 1275	979 1285	987 1299	1000		033
265	1003 54	127	181	186	5 19	1	222	25	^	0.5.4			1000	, T.	501
416	468	485	502	521	52	9	607	62	5	251 720	281	402	404		407
266	72	1090	1178	232) 119) 26	11	203	122	91	1324	1326	1373	1409		214
566	744	870	914	947	108	91	090	34 109	9 51	401	422	468	512	5	523
267	1326	42	72	111	0.0	`					1200	1200	1591	1:	301
821	914	1010	1090	1095	1112	221	401 191	465	5 > 1	482	502	522	523	e	507
268 254	27	66 327	78	87	95	ò	121	134		139	147	1301	1326	13	47
837	850	862	905	449 957	483 976	5	620 988	637	. 1	698	789	792	796	8	02
1245 269	1249	1343	1367					1001	, T	127	11.31	1201	1216	12	23
236	260	323	40 380	428	121) .	134 483	139		147	165	170	190	2	12
637 1083	674 1131	698	756	789	792	-	793	802		549 827	551 845	617 850	620 957	6	29 76
270	36	132	1159	1201 210	1204	12	223	1225	1	245	1249	1367	1368	9	/0
485	490 976	499	506	542	629	ē	537	665	;	370 744	380 826	428 827	450	4	72
271	136	988 139	1127 264	1245	1249	14	06	<u> </u>			020	027	035	8	51
957 272	969	988	1078	1194	1204	12	16	1245	6 13	650 351	745	756	851	8	71
800	63 809	136 927	145	233	264	2	97	433	5	538	599	655	668	72	>4
273	48	134	136	144	228	11 3	ეყ 94	1169 449	13	313 : 172	1351 500	1357	1382		
274	134	139	210	310	300	~	0.7		-	<u>.</u>	599	050	1018	120	14
668	681	699	720	724	730	3.	27 38	374 800	3	83	509	548	549	63	17
275	126 .	1201	1245	1301	1313	13	26	1383	0		077	o 98	967	98	8
872	873	950	1020	202	250 1090	34 111	44 12	383	4	68	527	655	823	82	4
276 413	27 428	32 465	72	109	179	18	81	191	2	97 1 33	.295 304	1383 316	344	40	,
615	629	405 651	467 668	482 674	512 729	51 77	19 10	540 744	5	66	568	593	607	40 61	2
				-			••	144	/	31	82 4	848	862	88	8

960	984	1069	1109	1170	1179	1297	1324	1351	1000			
277	123	125	161	341	348	603	688	1108	1332	617	524	655
278	80	123	125	144	270	279	36L	408	13/0	1409	JET	000
715	878	885	1090	1095	1106	108	162	190	222	250	260	270
279	22	26	54	80	101	520	102	625	655	661	730	731
279	383	407	485	218	523 046	929	961	984	995	1019	1030	1090
/44	157	187	1104	1203	1210	1313	1316	1325	1409			
1166	11/8	1191	106	204	245	250	279	299	339	366	407	485
280	22	54 695	661	204	745	797	946	950	1090	1191	1203	1210
529	607	625	001	131			540					
201	64	270	509	517	524	668	731	749	868	878	1075	1178
1225	1242	1373	505	51,	0	~~~						
202	17	1375	78	89	95	134	139	147	166	170	190	212
254	321	323	327	370	380	428	441	483	490	541	617	620
637	674	698	789	796	827	850	853	864	923	957	976	988
1009	1083	1127	1131	1137	1216	1223	1225	1243	1245	1320	1367	1405
283	27	66	68	78	95	121	134	139	166	170	190	212
308	323	330	332	370	428	441	449	483	490	531	617	628
629	637	698	739	744	756	777	789	799	809	837	845	850
851	864	905	927	976	988	1127	1131	1137	1201	1204	1211	1216
1225	1243	1372	1405									000
284	6	27	78	87	89	95	121	134	139	170	190	206
212	213	254	307	320	321	323	327	330	370	397	428	442
446	483	490	542	620	622	628	629	637	649	665	698	139
744	789	799	827	845	850	851	853	864	888	905	957	967
976	979	988	1005	1036	1118	1131	1137	1204	1211	1225	1243	1265
1304	1307	1405									0.01	200
285	36	54	63	117	134	170	178	181	190	210	201	500
321	327	344	374	380	416	428	438	456	4/2	490	500	756
607	629	632	643	649	665	668	671	6/4	050	124	001	057
778	789	827	831	837	845	849	850	1104	809	1043	1200	1313
973	976	988	1012	1036	1046	1064	1074	1194	1210	1243	1222	1515
1382	1405	1406		_				0.40	040	060		
286	122	223	665	668	746	163	113	042	213	302	321	327
287	27	78	134	136	157	170	190	616	620	649	665	668
380	428	437	449	456	490	506	549	010	946	850	851	859
671	699	724	730	744	797	826	827	1040	1070	1405	0.51	Ç0,
882	957	973	976	988	1060	1204	1221	100	210	212	215	281
288	15	17	63	118	134	170	191	671	703	706	724	735
327	344	380	442	629	637	000	000	950	851	853	882	905
744	756	789	790	826	827	840	1145	1243	1249	1251	1301	1304
957	976	988	1046	1049	1050	1140	1100	1240	1212	1201		
1313	1307	1405	7.0	124	126	170	1.91	1 90	197	212	327	370
289	11	27	100	C20	637	638	649	671	703	724	735	744
380	442	472	490	027	937	850	851	853	882	957	976	988
756	189	1022	1251	1304	1313	1405	1406					
1013	1194	1233	145	260	308	348	514	561	599	741	770	874
230	979	957	1336	1375	1378							
201	0/0	907	102	122	159	175	180	181	182	189	216	264
271	278	297	365	376	406	438	455	497	539	554	591	603
668	669	673	683	723	749	868	884	885	916	917	987	1027
1029	1031	1032	1074	1105	1138	1144	1145	1157	1169	1219	1232	1238
1242	1279	1285	1301	1321	1346	1355	1370					
292	79	92	124	125	257	715	824	1106	1108	1182	1190	1254
293	202	205	222	227	253	299	346	383	401	410	498	500
607	658	681	757	867	950	961	1036	1091	1191	1276	1299	1307
1321												220
294	20	26	176	205	260	286	302	324	344	356	358	312
374	383	607	615	635	662	679	681	744	772	797	829	845
862	867	923	929	936	997	1020	1036	1091	1112	1118	1120	1164
1198	1203	1268	1305	1313	1321	1323	1393	1410				204
295	20	32	42	176	186	205	222	225	252	253	255	324
344	356	372	374	383	413	549	612	615	635	651	. 662	1036
744	801	829	845	862	923	929	936	941	991	1018	1019	1036
1163	1203	1237	1297	1301	1313	1328					050	255
296	10	20	26	63	80	152	185	204	205	222	200	200
260	279	296	302	324	344	358	374	383	401	413	482	049
607	612	635	643	658	681	744	772	797	801	829	040	1100
870	901	923	936	941	950	951	996	1018	1019	1091	1203	1120
1164	1191	1198	1203	1233	1268	1297	1301	1312	1313	1947	1303	344
297	26	80	186	222	250	252	260	2/9	286	290	524	244 622
350	358	374	413	464	492	549	566	007	012	020	002 050	1019
829	845	860	862	870	872	901	1000	923	1001	120F	1301	1304
1019	1091	1104	1120	1163	1178	11.81	1763	1708	1291	1293	1001	1004
1312	1313	1316	1321	1326	1347		117	1 1 2 4	170	204	206	210
298	27	63	68	78	204	כע דרב	311	315	374	383	441	464
222	233	236	254	269	524	521	544 600	, 540 , 643	649	668	674	681
468	4 9 2	537	566	010	0,20	012	V4.3		542	200	.	

/05	730	744	782	826	829	835	845	862	888	923	936	977
980	1018	1022	1036	1064	1066	1091	1111	1131	1197	1216	1219	1245
1275	1307	1313	1320	1325	1351	1385	1406					
299	20	96	90	110	176	100	1100	000	252	255	200	210
222	20	22.4	99	110	1/6	186	225	233	252	255	286	316
332	344	3/4	389	413	442	464	549	607	615	632	651	681
705	740	744	772	829	845	862	901	923	929	932	935	941
977	1018	1019	1070	1091	1111	1120	1134	1164	1203	1269	1297	1313
300	20	26	90	154	100	204	204	247	270	202	100	400
500	20	20	00	104	100	204	324	34/	312	383	468	482
536	607	615	658	662	731	769	797	867	905	913	923	929
936	941	950	1019	1022	1036	1091	1112	1120	1163	1178	1191	1203
1267	1291	1295	1305	1313	1321	1344	1383	1303	1410			
201		63	1000	1010	1021	1544	1000	1393	1410	000		100
301	20	63		205	233	252	269	332	374	383	413	428
464	465	537	566	590	612	629	643	668	705	720	730	744
797	817	835	845	862	888	898	901	906	974	991	1022	1037
1064	1130	1134	1174	1178	1197	1201	1203	1305	1311	1313	1326	1351
1385	1397	1405			117,	1201	1205	1303	1011	1010	1320	1001
1000	1307	1400										
302	27	36	63	66	78	95	134	139	170	181	190	206
212	269	316	327	328	330	338	344	374	383	388	428	480
483	510	537	549	574	594	612	629	613	665	668	671	681
720	720	744	777	707	001	012	025	045	005	000	0/4	001
720	730	/44	///	191	801	827	835	837	845	859	862	888
905	910	957	974	976	977	1005	1018	1023	1068	1111	1130	1137
1179	1204	1216	1219	1223	1245	1305	1307	1313	1320	1383	1385	1405
1406						2000	100.	1010	1020	1000	1000	1.00
202	63	00	110	1.2.4	170				~ ~ ~			
303	63	80	118	134	170	252	269	279	316	332	344	374
401	464	465	537	590	612	629	632	643	651	668	705	720
730	740	766	801	817	840	845	862	888	898	901	967	974
977	1022	1023	1036	1111	1130	1124	1162	1170	1001	1002	1010	1000
1000	1022	1025	1030	1111	1130	1124	1102	11/8	1201	1203	1210	1236
1269	1297	1302	1313	1385	1387	1398	1406					
304	20	63	133	153	202	233	254	279	316	330	344	347
356	374	383	413	428	438	464	465	185	549	566	612	643
650	650	669	674	670	601	017	105	900	001	0.01	1000	1104
1000	0.055	000	0/4	0/9	001	971	845	862	301	331	1090	1194
1201	1305	1313	1347	1383								
305	20	39	153	254	344	347	366	374	383	413	437	465
485	566	607	611	612	650	651	658	668	813	845	862	870
901	905	036	950	961	1036	1040	1062	1000	1163	1170	1202	1007
1000	1205	1010	1200	101	1050	1049	1002	1030	1102	11/0	1203	1237
1208	1305	1313	1326	1347	1383	1387	1397					
306	10	26	63	134	246	279	324	344	383	464	491	502
513	629	632	668	681	730	817	845	859	898	901	927	967
1018	1090	1112	1130	1174	1170	1170	1107	1202	1212	1202	1205	1207
1400	1000	1112	1130	TT (4	11,0	11/9	1191	1203	1313	1303	1202	1307
1406												
307	27	63	66	134	181	190	191	210	308	330	388	403
456	467	506	531	549	568	628	629	668	671	674	702	720
711	027	020	045	000	000	020	020	000	001	1005	1110	1120
/44	021	029	045	000	908	920	960	976	984	1032	1118	1130
1168	1179	1275	1301	1351	1384	1405	1406					
308	27	66	78	95	117	134	139	170	190	212	301	308
321	327	330	338	370	374	390	300	100	400	402	400	600
600	627	550	550	570	374	300	299	420	480	403	490	622
628	637	649	650	665	705	/44	799	826	827	837	845	850
858	864	905	923	957	967	976	1005	1009	1023	1118	1131	1201
1216	1219	1243	1307	1313	1343	1351	1385	1406				
300		63	C 5	06	0.0	105	100	1/77	104	0.00	0.00	0.00
0.00	27	200	0.5	00	20	105	120	101	104	228	262	263
264	276	308	365	370	433	438	441	455	466	472	485	553
578	600	615	655	668	681	713	735	755	798	809	813	844
846	851	901	905	907	936	937	939	957	969	987	992	1031
1074	1088	1116	1132	1167	1160	1212	1214	1016	1007	1020	1041	1001
1045	1000	1010	1152	1107	1109	1215	1214	1210	1221	1239	1241	1242
1245	1280	1313	1346	1322	1383	1406						
310	1	20	63	80	128	152	181	201	219	260	279	366
383	412	464	465	485	527	531	537	566	607	611	612	643
658	668	731	797	829	845	862	970	001	0.05	026	004	0.01
007	1000	1040	1005	1170	1107	1002		1001	305	500	204	991
	1028	1049	1095	11/8	1131	1203	1233	1237	1268	1299	1313	1322
1326	1347	1350	1351	1383								
311	1	20	116	170	302	308	428	450	464	465	508	566
590	597	607	629	632	649	720	730	711	779	707	927	920
845	953	962	990	1050	1054	1124	1100	1104	1000	1000	1027	102.5
1200	1100	002	960	1050	1034	TT24	1103	1194	1233	1268	1275	1313
1326	1406											
312	134	139	170	181	182	190	308	370	401	404	428	437
442	467	549	590	612	629	632	643	649	668	671	730	744
771	800	826	815	850	850	976	001	000	1000	1005	1110	1170
1107	1000	10/0	1000	1000	1000	2/0	204	200	1020	T032	TTT8	TT 18
1181	1203	1263	T533	1313	1322	1321						
313	17	68	117	134	139	170	181	186	190	213	244	269
279	308	327	346	380	401	404	467	468	490	510	5 3 1	510
607	620	627	613	660	671	601	744	200	000	010	0001	050
007	029	0.02	043	1100	07L	1001	194	189	0Z1	845	920	828
957	976	984	988	1131	TT48	1305	1406					
314	20	26	32	80	99	179	202	233	299	316	374	468
549	615	632	845	862	960	991	1021	1090	1107	1124	1170	1202
315	10	0.0	10	63	101	200	7000	1070	TTO1	1134	TT \ D	1203
222	10	20	43	03	101	202	222	232	261	279	316	347
383	502	527	607	731	797	960	1090	1163	1174	1178	1191	1197
316	27	66	80	127	134	170	181	186	190	191	308	327
338	344	374	401	404	467	469	100	100	504	5.21	E X 0	527
607	620	610	661	660	674	704	731	740	300	201 201	J4 9	310
007	029	049	001	008	014	704	131	740	144	797	826	827
829	845	859	888	898	936	942	960	984	991	1003	1026	1050

1066	1069	1118	1130	1134	1168	1203	1305	1313	1316	1351	1405	1406
317	68	50	134	139	170	190	191	299	308	327	338	401
420	407	060	1064	590	593	629	642	649	744	826	827	845
1405	1406	960	1064	1111	1118	1130	11/8	1179	1216	1245	1297	1308
318	27	80	1.9.1	210	233	200	200	346	401	440	4.6.4	107
531	549	566	612	629	642	299	508	340 CP1	401	442	464	46/
829	845	888	934	9/3	960	001	000	1005	1107	131	1111	144
1178	1203	1305	1325	1326	1350	204	1406	1030	1107	1109	1111	1134
319	1200	41	1020	1020	120	101	100	106	300	200	210	220
401	464	468	502	590	607	610	620	200	204	200	731	230
845	859	862	929	960	1020	1000	1110	1174	1170	1100	1272	1406
320	62	105	122	181	191	192	269	133	11/0	555	663	1400
906	1078	1087	1147	1245	1313	1351	209	433	444	555	005	000
321	142	289	361	364	684	741	878	881	952	1160	1336	
322	33	122	181	328	341	348	380	555	663	665	749	763
842	874	881	958	1078	1087	1127	1151	1216	1336	1375		.05
323	33	105	129	176	181	188	191	263	264	359	431	433
441	449	650	663	668	725	865	885	958	1031	1078	1087	1147
1301	1317							,	1001	10.0	100	
324	33	80	105	152	181	188	210	264	269	359	428	431
449	452	464	467	468	642	663	668	673	681	699	711	865
927	970	1049	1078	1082	1131	1136	1169	1178	1204	1224	1245	1305
1313	1317	1351	1361	1382								
325	33	181	230	361	433	441	468	485	612	642	668	681
725	747	749	875	878	885	906	1105	1290	1305	1351		
326	71	288	312	341	348	361	415	470	642	684	716	741
813	865	878	881	1047	1151	1172	1174	1336				
327	144	181	189	269	321	328	359	370	374	380	428	431
442	464	531	549	637	665	692	744	764	826	844	850	865
957	969	976	978	1078	1087	1137	1147	1154	1204	1216	1245	1301
1313	1351	1361	1406									
328	65	66	78	134	139	181	190	210	269	321	328	380
428	468	531	629	632	663	665	668	681	704	730	744	756
826	844	850	865	898	957	976	1023	1078	1131	1216	1301	1313
1326	1383	1404	1406									
329	20	32	255	260	304	306	316	367	383	413	442	465
485	529	549	566	612	650	658	720	744	797	815	845	862
870	901	905	936	950	961	1018	1036	1049	1090	1120	1201	1203
1237	1268	1305	1313	1326	1347	1383	1387	1397				
330	27	63	135	279	316	344	383	401	413	428	464	465
491	500	537	576	593	612	632	643	663	668	681	705	720
730	744	800	827	845	862	898	901	946	961	967	976	977
980	1025	1049	1064	1178	1197	1203	1204	1305	1313	1326	1328	1383
1385	1406											
331	20	27	32	62	202	255	260	269	302	316	344	374
383	401	428	464	465	501	549	566	590	629	632	651	681
720	744	797	845	862	870	888	901	991	1018	1049	1120	1130
1178	1203	1233	1236	1268	1313	1326	1347	1385	1397	1406		
332	27	48	62	66	95	118	134	139	190	269	316	330
332	428	465	549	593	629	632	637	643	651	663	668	674
704	705	720	730	744	745	766	800	827	835	845	888	901
957	974	977	1018	1022	1036	1061	1068	1130	1169	1201	1216	1219
1245	1313	1351	1385	1387	1406							
333	36	48	67	78	134	136	139	170	178	181	190	208
212	308	321	327	370	374	399	428	442	510	531	549	551
617	629	637	649	665	671	699	704	724	734	736	739	744
789	826	827	831	835	845	850	853	957	976	988	1009	1012
1043	1131	1137	1204	1245	1300	1406						
334	17	27	62	66	78	95	113	121	134	139	147	170
181	190	196	210	254	269	321	370	399	428	450	483	490
531	549	551	579	617	629	630	637	647	668	671	697	744
789	792	799	827	850	880	923	957	976	988	1022	1034	1083
1131	1137	1204	1233	1243	1245	1282	1296	1307	1308	1313	1320	1343
1351	1367	1385	1389	1405	1406							
335	48	66	87	134	136	147	254	321	380	394	450	505
551	620	637	663	665	697	739	789	831	837	853	865	957
976	1083	1131	1216	1225	1233	1245	1296	1307	1367	1406	-	
336	27	35	48	63	66	68	78	89	96	121	134	139
147	158	166	170	181	190	196	212	213	254	255	269	321
327	370	380	450	483	490	531	549	628	629	637	668	697
736	753	756	789	792	795	809	810	827	850	859	880	901
905	923	957	973	976	1011	1049	1074	1083	1131	1137	1193	1201
1204	1216	1223	1225	1243	1245	1301	1313	1351	1385	1405		
337	78	89	104	134	136	139	189	254	321	327	380	394
449	505	531	542	617	637	649	663	665	739	756	789	827
850	851	853	857	865	877	957	973	976	988	1011	1078	1083
1131	1216	1243	1245	1249	1296	1307	1308	1367	1405	1406		
338	27	63	66	118	127	134	181	182	186	190	198	208
279	308	314	327	338	344	374	383	389	393	399	401	441

467	468	502	531	549	568	574	607	612	629	632	642	668
671	674	681	702	730	711	745	826	827	845	851	888	920
936	960	974	977	984	0.01	1022	1066	1005	1111	1117	1134	1168
1178	1179	1201	1203	1313	1316	1326	1329	1351	1383	1384	1406	1100
110	63	66	117	134	101	100	220	300	307	1001	374	383
380	303	300	120	134	167	506	531	540	574	607	628	629
632	610	669	671	431	730	744	745	096	927	840	845	859
002	049	000	0/1	074	076	744	1005	1069	1111	1121	1170	1107
1000	1010	1070	1204	1005	976	984	1005	1068	1111	1121	11/9	1197
1203	1219	1275	1304	1305	1313	1326	1351	1382	1406	0.40	074	070
340	108	122	182	260	361	599	668	743	159	642	8/4	8/6
930	953	1138	1336									
341	143	292	714	770	773	874	878	885	1336			
342	18	27	33	114	117	126	181	190	270	359	404	439
441	464	499	544	558	576	590	623	663	668	720	836	842
890	925	952	957	1095	1178	1180	1206	1274	1275	1277	1301	1305
1406												
343	18	33	61	63	80	105	114	131	152	169	181	189
264	276	281	297	359	365	370	375	394	426	433	437	455
499	514	531	552	554	577	578	599	633	650	652	663	668
679	714	720	726	764	830	840	890	925	933	936	945	952
955	987	1027	1031	1095	1102	1126	1138	1144	1145	1161	1169	1178
1180	1187	1206	1220	1232	1260	1279	1285	1300	1305	1318	1338	1381
1382	1390	1405	1406	1404	1200	12/2	1200	1000	1000	1010		
344	10.00	27	63	66	60	103	134	130	170	212	233	269
300	321	307	330	220	244	274	203	100	103	512	5/0	504
500	600	600	230	330	544	279	202	920	405	720	766	700
024	628	629	637	650	665	668	6/4	704	124	730	/36	799
809	827	840	845	850	851	862	888	901	905	923	927	936
957	976	988	1022	1169	1201	1204	1211	1216	1219	1243	1263	1313
1343	1351	1385	1389	1405	1406							
345	63	67	80	134	135	181	182	190	191	216	269	279
281	308	344	428	456	464	467	496	612	629	643	649	668
673	720	730	744	826	845	850	859	888	898	976	984	988
1026	1130	1174	1178	1179	1305	1313	1322	1383	1409			
346	36	63	67	80	134	139	170	181	182	190	281	308
321	327	370	374	380	428	442	467	496	499	506	549	607
612	615	629	632	668	674	679	720	724	736	744	810	817
826	830	831	835	837	840	845	859	888	908	909	957	973
976	984	1026	1036	1111	1168	1169	1179	1204	1216	1243	1262	1263
1297	1305	1313	1351	1383	1405	1406	1408					
347	2000 9	26	32	39	43	116	186	302	31.6	344	356	374
383	113	5/9	612	650	662	671	679	681	744	772	797	829
945	962	020	036	001	002	1019	1022	1026	1164	1101	1203	1219
1033	1212	1220	1344	331	991	1010	1022	1020	1104	1191	1205	1210
1233	1212	1328	1344	100	000	210	207	202	401	744	202	000
348	26	32	54	180	202	316	367	383	401	/44	191	629
845	862	898	929	991	1019	1049	1090	1191			65.0	
349	39	116	254	302	356	3/4	43/	464	566	6.35	650	199
753	845	853	862	870	936	1018	1139	1164	1191	1218	1268	1305
1313	1347											
350	39	116	254	255	302	383	401	428	437	464	465	490
501	566	597	629	635	744	745	797	817	829	845	853	862
870	936	1018	1107	1139	1188	1191	1218	1233	1268	1311	1313	1326
1347	1405	1406										
351	32	54	63	68	80	152	186	202	222	269	279	308
338	344	347	383	401	404	413	464	502	529	537	590	607
612	629	613	657	668	671	681	730	800	817	829	831	845
950	02.5	950	052	000	1015	1049	1000	1103	1163	1168	1179	1179
1101	1204	1313	1344	1406	1010	1017	1000	1105	1100	1100	11/0	11.2
360	12.24	1313	101	134	130	170	101	1 90	196	210	213	236
352	40	200	121	134	122	420	101	120	190	210	Z13 E10	200
209	508	521	544	570	200	420	441	400	404	490	010	007
549	615	628	629	637	000	001	1000	109	1100	189	1004	827
845	850	851	858	901	957	988	1022	1131	1137	1201	1204	1216
1219	1243	1245	1313	1351	1384	1388	1405					
353	36	62	78	109	121	190	264	344	359	380	433	468
499	514	579	599	665	668	744	763	826	850	877	901	969
988	1138	1169	1216	1230	1245	1284	1307	1313	1351	1395	1406	
354	36	105	167	168	195	228	262	264	269	326	370	380
431	441	442	455	472	505	561	596	600	633	663	665	681
686	779	781	844	850	877	969	975	1031	1078	1082	1084	1204
1219	1230	1239	1307	1335								
355	27	65	66	78	95	96	121	134	139	170	181	190
196	236	254	269	321	370	374	380	399	428	441	450	467
483	490	531	549	551	617	620	62.9	637	649	663	668	697
731	776	744	745	756	789	799	810	827	835	845	950 950	851
880	903	057	045	976	1011	1034	1074	1119	1121	1127	1170	1204
1216	1243	1240	1206	1307	1313	13/3	1361	1306	1300	1405	1406	1204
7610	1243	1243	1220	T 201	L 3 1 3	1343	1301	170	101	100	100	010
336	11	27	63	00	07	134	T 3 A	1/0	181	T A O	196	210
269	308	321	327	310	3/4	399	420	428	450	467	483	490
510	531	549	5/9	629	632	668	6/1	697	/30	/34	/44	/56
/89	/99	817	827	845	850	901	923	957	965	976	988	1011
1074	1131	1179	1201	1216	1219	1223	1243	1245	1249	1296	1301	1304

1313	1351	1384	1385	1389	1405	1406						
357	33	122	259	264	269	271	276	417	556	561	600	655
670	723	744	846	876	884	885	916	946	1026	1157	1219	1232
1253	1336										1.01	100
358	27	36	64	93	105	175	181	182	183	184	191	192
195	228	264	269	281	284	308	365	370	3/6	419	460	409
509	554	606	612	615	650	653	668	681	683	123	1020	1021
844	846	847	896	916	936	937	951	958	987	1027	1028	1031
1032	1095	1144	1149	1169	1213	1219	1285	1301	1306	1321	1340	1370
1381						100	105	1.00	101	100	194	223
359	36	50	82	93	102	103	105	167	101	102	133 T04	441
228	255	264	272	276	284	297	343	365	5/0	431	455	441 659
446	455	464	535	561	596	599	022	030	044	020	055	987
665	668	686	706	/13	122	123	135	1122	1144	1161	1167	1169
992	101/	1027	1032	1088	1095	1124	1244	1245	1260	1285	1307	1370
1219	1224	1228	1230	1232	1238	1242	1244	1240	1200	1200	1001	10/0
1381	1383	1389	0.2	1.05	1.07	101	102	194	199	21.0	228	262
360	36	85	93	105	107	101	203	215	102	444	455	461
263	264	206	269	270	201	209	765	210	400	841	844	846
466	615	650	668	723	135	1021	1000	1107	1104	1091	1228	1238
847	896	937	969	975	980	1202	1000	1107	1124	1227	1220	1230
1244	1245	1284	1285	1299	1361	1392	600	E 07	01/	1107	1178	1191
361	32	204	232	300	468	512	523	527	214	110,	1170	11/4
1312					070	000	204	216	401	411	168	502
362	26	32	80	222	279	299	304	210	1124	1170	1101	1202
512	527	607	744	829	862	898	914	331	1124	11/0	11 21	1202
1297	1312	1313					1.01	100	100	100	1 0 1	210
363	63	66	67	80	134	139	181	182	180	190	660	671
279	312	344	383	428	468	502	531	590	1005	1174	1170	1170
729	730	840	845	888	960	984	1036	1066	1095	11/4	11/0	1113
1197	1313	1316	1373	1405	1406				100	100	100	1.01
364	33	63	66	67	80	134	139	181	182	186	130	191
210	308	374	383	389	428	441	46/	496	506	512	004	1026
590	629	642	643	668	674	800	872	888	898	960	904	1030
1068	1168	1178	1179	1305	1316	1351	1406		000	225	250	262
365	9	63	80	99	182	185	202	210	222	220	200	603
279	300	344	383	412	428	456	500	518	528	024	200	950
607	612	629	632	657	668	681	691	130	144	824	029	1170
862	898	901	950	980	991	996	1049	1076	1090	1175	1170	11/2
1191	1268	1297	1301	1311	1312	1313	1328	1405	21.0	254	265	260
366	27	33	63	68	95	118	170	176	210	204	200	566
308	330	344	374	383	412	430	437	430	404	500	669	681
593	594	597	607	612	615	629	632	043	0001	005	000	001
730	744	778	800	817	826	829	830	595	1164	1170	1100	1201
991	1026	1032	1049	1051	1060	1074	1131	1244	1207	1406	11.90	1201
1245	1249	1269	1275	1301	1313	1326	1328	1044	1301	100	519	549
367	20	39	116	254	302	350	202	437	707	900	845	853
566	593	635	650	653	658	1020	1042	1040	1120	1100	1269	1301
862	905	929	936	1018	1022	1039	1042	1049	1135	1105	1200	1001
1313	1347	1389		60	110	000	2 E E	202	309	383	456	464
368	20	39	41	68	116	222	200	202	647	730	744	797
485	490	501	566	597	601	629	1010	1040	1064	1109	1233	1268
829	845	853	862	923	936	980	1018	1049	1004	1109	1233	1200
1299	1313	1326	1405	1406	01.0	055	200	270	202	304	412	128
369	39	41	68	116	210	200	208	510	200	539	730	744
437	456	490	508	566	594	597	000	1010	1040	1064	1233	1200
797	820	829	845	855	862	923	980	1019	1049	1004	1233	1277
1326	1347	1405	1406	1 0 0	110	124	100	100	21.0	242	255	269
370	27	63	200	202	410	100	120	100	467	485	5/9	594
308	338	344	353	383	414	420	430	404	691	601	730	744
607	629	632	643	649	001	004	1010	1032	1049	1064	1074	1134
826	830	845	859	862	1012	1221	1010	1951	1303	1395	1397	1405
1168	1179	1191	1201	1297	1313	1321	1325	1001	1202	1303	1001	1400
1406	~~			110	100	1.01	210	260	270	393	404	428
371	63	80	114	152	182	191	620	630	649	654	669	673
464	502	506	528	546	394	007	025	032	04.5	959	862	898
681	730	744	800	001	1015	1019	1049	1074	1075	1090	1103	1179
901	929	952	973	1207	1406	1010	1042	10/4	10/5	1000	1100	+1.2
TT 97	1275	T 3 Ú 2 U	1325	130/	1100	2 F A	255	302	309	356	437	464
312	20	39	500	20	626	204	255	753	200	797	829	845
485	549	566	593	0.32	1100	1120	1100	1000	1969	1301	1313	1347
853	862	905	936	TOSS	1120	1123	1100	1200	1200	1301	+ - 1	1011
1381	• ~	0.0		36	4.0	73	75	135	156	1.9.1	182	190
3/3	16	23	24	30	360	270	276	200	100	301	441	442
191	264	∠∀I	305	530	200	570	570	500	616	629	645	648
490	499	506	342	040 720	744	040	275 275	826	827	831	835	836
049	668	0/1	719 0E1	130	000	033	020	950	961	1016	1035	1042
83/	843	044	1000	1214	1010	1274	1275	1301	1304	1320	1401	1405
1110	1188	1194	110	1274	760	270	308	316	344	383	401	428
5/4	63	80	113	110	203	212	500	010	~ 1 1	000	• • ±	

464	465	467	494	502	568	574	590	593	612	651	668	681
705	730	744	800	817	826	829	840	845	888	898	901	960
961	977	980	1103	1168	1178	1179	1197	1203	1305	1313	1322	1344
1406											21.6	207
375	10	29	62	80	135	170	248	269	279	312	316	321
330	338	344 691	374	383	428	491	492	502	280	007	901	927
960	000	001	705	120	1026	1029	1103	1179	1179	1275	1305	1313
1351	1395	1406	900	904	1026	1020	1105	11/0	11/9	1275	1000	1919
376	63	1100	135	269	270	279	327	330	344	383	428	500
607	612	668	681	720	730	744	845	862	901	927	942	980
984	1025	1028	1130	1168	1178	1179	1216	1219	1275	1313	1351	1383
1385	1406											
377	20	63	80	116	153	170	176	225	260	279	302	325
356	366	374	383	413	428	437	450	464	465	485	549	566
590	607	612	632	643	650	658	668	769	797	817	829	845
862	863	870	901	936	950	961	1018	1023	1036	1052	1054	1090
1163	11/8	1197	1201	1203	1237	1294	1297	1299	1313	1347	1383	1391
3/8	195	63 527	110	255	311	344	356	383	403	412	450	904
403	400	1049	1178	1203	1237	1269	1294	1305	1313	1347	1383	1395
379	20	63	80	116	133	153	170	233	279	325	374	383
410	41.3	428	464	465	508	566	590	597	607	612	629	632
643	651	668	681	730	744	797	826	845	862	870	901	906
960	961	984	991	1018	1049	1064	1178	1197	1237	1305	1313	1326
1347	1383											
380	20	63	80	116	152	153	170	255	325	330	344	356
366	374	383	413	438	464	485	529	549	566	607	612	650
658	668	769	845	862	870	901	905	950	961	1120	1178	1203
1237	1297	1299	1313	1347	1383	1387	1397					
381	27	63	80	170	176	279	311	325	374	383	428	465
483	500	586	590	594	607	612	629	651	668	705	720	730
744	797	826	835	845	862	898	901	927	960	1018	1036	1049
1073	1074	1179	1201	1305	1313	1326	1343	1383	1385	1406	205	440
382	750	30	48	134	135	130	1003	1121	1204	1210	1225	12/3
1046	1967	920	907	909	910	900	1005	1151	1204	1219	1225	1245
383	1307	76	104	145	327	433	437	441	549	668	699	720
724	851	877	957	967	969	976	1197	1216	1243	1245	1367	
384	48	66	89	95	134	136	139	147	170	190	212	254
262	308	320	321	327	330	338	389	397	428	483	490	542
549	551	615	628	637	649	665	696	739	744	745	756	777
826	827	837	840	845	851	864	920	927	957	976	1005	1118
1127	1128	1131	1137	1204	1211	1216	1243	1245	1263	1308	1313	1326
1385	1405	1406										
385	20	39	62	80	95	176	181	210	254	344	370	374
383	413	428	442	450	465	485	566	590	597	612	622	632
651	658	668	744	797	826	829	845	862	898	901	905	936
980	1000	1018	1049	1052	1090	1242	1202	1191	1198	1201	1203	1218
1237	1268	1305	1313	1322	1326	1347	1383	1406	206	212	262	260
300	327	330	200	374	380	109	428	450	480	483	490	542
5/0	628	629	637	649	665	698	744	753	777	827	835	845
850	851	864	888	905	923	957	967	976	977	1005	1009	1115
1131	1137	1204	1216	1219	1222	1223	1243	1245	1249	1263	1313	1405
1406												
387	33	80	103	135	145	182	190	403	420	509	668	699
720	724	730	877	980	1284							
388	36	48	104	134	136	139	147	327	330	370	441	446
531	549	551	665	756	850	920	967	969	976	988	1049	1083
1204	1216	1243	1320	1367								
389	27	63	116	170	254	255	383	428	464	465	501	537
549	566	590	593	594	611	629	643	654	658	668	720	730
782	797	817	826	862	898	901	905	957	1201	1216	1219	1233
1263	1313	1326	1383	1385	1405	1406	274	202	450	161	465	620
540	20	500	50	607	200	520	632	503	430	404 730	7400	525
049 817	900 920	845	862	870	901	905	936	1018	1120	1169	1178	1201
1203	1233	1237	1268	1297	1313	1326	1347	1383	1395	1405	11/0	1201
391	27	63	134	170	181	269	327	328	330	383	397	428
464	472	480	485	490	506	549	590	628	629	643	668	674
720	730	756	799	809	827	845	851	859	901	976	977	1006
1022	1064	1074	1130	1204	1216	1219	1243	1263	1313	1351	1383	1384
1385	1389	1405	1406									
392	10	17	27	_62	134	139	170	181	316	327	330	383
388	401	428	485	506	531	549	597	607	629	649	668	674
720	730	744	800	827	835	840	845	851	859	888	898	936
9/6	1049	1060	1064	1204	1210	1249	101	100	1406	226	260	260
300	21	900 230	95 874	101	133	139 170	101 531	190	233	620	643	665
200	521	530	574	202	720	7/2	1001	547	590	02.3	040	000

681	720	730	745	799	835	845	851	888	927	960	967	976
977	984	1025	1064	1168	1179	1194	1203	1204	1216	1219	1245	1305
1344	1351	1383	1389	1406								
394	26	63	80	128	134	190	225	252	281	316	330	332
383	428	464	502	531	590	607	612	629	643	668	681	705
720	730	766	845	859	888	901	967	984	1050	1103	1130	1141
1169	1178	1179	1201	1313	1344	1351	1383	1385	1387	1389	1406	
395	26	67	134	135	139	190	269	316	330	338	344	428
472	549	590	593	629	668	681	704	720	730	800	827	859
888	898	967	977	1036	1057	1060	1064	1178	1179	1216	1219	1275
1301	1304	1326	1385	1389	1406							
396	26	27	63	95	134	176	190	233	260	269	325	330
332	357	383	428	441	465	540	594	612	615	629	643	649
668	705	796	799	809	845	851	859	862	888	901	927	977
980	1025	1036	1074	1130	1141	1169	1178	1216	1233	1236	1313	1389
1406	1020	1000	10/4	1100	1141	1105	11,0	1210	1200	1200	1010	1007
307	27	63	117	124	170	1.00	222	260	325	330	367	393
429	442	161	500	521	110	E03	200	200	220	600	720	766
920	992	904	0.00	050	000	1010	1005	1020	1000	1120	1100	1170
190	199	833	845	859	967	1018	1025	1036	1064	1150	1109	11/9
1216	1219	1263	1313	1323	1351	1383	1385	1406			0.5.5	
398	27	61	114	155	157	172	177	181	189	191	255	282
294	308	368	370	464	499	507	544	546	564	574	590	626
629	633	640	645	646	663	668	744	755	800	804	843	844
845	933	959	1014	1056	1110	1194	1200	1222	1260	1270	1274	1326
1349	1373	1401	1406									
399	27	36	61	82	105	122	181	189	191	223	258	305
365	370	396	440	464	514	599	663	668	670	673	683	722
723	755	843	844	871	877	951	987	1031	1045	1105	1110	1153
1222	1300	1301	1318	1326	1378	1406			- · ·			
400	1000	102	105	159	176	181	182	258	278	297	341	441
656	670	673	683	711	731	841	884	885	901	906	987	1030
1031	1032	1105	1139	1144	1145	1157	1167	1232	13/6	200	201	1000
1051	1032	1100	1130	1144	124	130	170	101	100	210	212	261
401	207	40	220	10	1.34	139	170	101	190	210	212	6204
521	521	544	210	420	442	407	400	403	003	010	001	950
632	649	668	681	697	109	135	/36	189	803	110	1001	1010
851	865	901	905	957	976	1022	1036	1131	1137	1169	1201	1210
1245	1305	1313	1351	1382						~		
402	48	63	78	134	139	170	181	190	196	210	212	269
321	327	344	370	374	380	428	441	467	483	531	550	551
629	632	649	668	697	709	724	735	736	756	789	810	827
831	837	845	850	865	905	927	957	976	1022	1064	1131	1201
1204	1216	1243	1245	1305	1313							
403	35	62	68	81	166	181	190	206	212	269	281	330
332	333	360	370	374	428	441	456	464	483	531	574	583
628	668	698	745	756	810	826	827	844	850	865	888	890
905	925	957	966	978	1022	1085	1132	1137	1146	1169	1305	1313
1326	1351	1388	200	2.0	1022	1000	1456	110,	1110	1100	1000	1010
1020	1001	1000	26	47	07	105	1 2 2	190	200	220	264	260
909	433	20	00	(1)	(7)	710	724	100	200	220	204	205
365	433	441	668	671	6/3	113	/ 34	/40	/84	850	865	937
992	1027	1088	1114	1136	114/	1154	1169	1219	1230	1232	1285	1317
1361	1366	1370										
405	105	216	225	264	269	341	419	428	431	441	554	603
657	663	668	683	746	987	1029	1031	1032	1044	1095	1105	1136
1144	1169	1219	1226	1230	1317	1323	1353					
406	15	17	36	41	50	68	78	83	96	134	135	157
168	170	190	212	255	269	281	285	308	380	442	449	485
490	549	628	629	638	648	665	668	671	703	739	744	756
789	810	827	831	835	837	844	850	851	853	859	882	901
905	908	925	927	957	976	988	989	1003	1131	1160	1201	1204
1216	1221	1243	1245	1257	1275	1297	1306	1313	1320	1343	1351	1405
1408												
407	٦	40	49	55	61	73	117	156	164	172	173	330
370	463	464	503	506	543	546	547	552	553	581	587	590
595	621	622	629	633	671	689	708	719	722	737	744	788
700	021	022	029	000	071	0033	0/1	067	422 050	070	076	1012
109	1110	1100	1040	1050	1050	1070	1074	1075	1070	1204	1225	1300
1400	1404	1400	1400	1230	1737	1616	12/4	12/3	T710	1304	1000	T 3 3 3
1405	1404	1406	1408			1.05		100	0.5.5		0.7.0	
408	13	30	61	/4	97	105	181	193	255	359	370	375
380	388	431	441	455	464	485	490	499	544	552	555	574
579	584	650	653	665	668	669	672	674	722	738	809	830
833	844	890	927	958	969	1095	1127	1138	1141	1144	1148	1169
1224	1227	1238	1260	1275	1284	1299	1301	1308	1326	1329	1330	1405
1406												
409	68	78	80	113	132	134	139	170	190	206	281	301
321	327	332	380	428	441	449	456	459	464	480	549	574
594	619	628	629	650	668	671	704	722	728	735	756	762
809	810	817	844	851	853	888	989	1036	1074	1085	1127	1154
1169	1179	1195	1201	1216	1243	1275	1308	1313	1329	1357	1388	1405
1406	11,2		1201	1210	1210		1000	÷910	1323	1007	1000	1400
410	60	76	105	1 67	100	1 0 1	200	217	261	201	320	350
аŤО	60	10	100	TO/	102	121	200	Z1/	204	201	530	209

370	380	431	441	455	464	480	485	490	499	540	552	574
EQA	650	657	660	665	668	722	726	744	764	809	827	836
044	000	007	000	000	000	057	060	097	1127	1144	1153	1158
894	889	890	920	920	927	907	303	1204	1212	1 21 7	1320	1326
1169	1204	1224	1238	1242	1244	1260	1301	1304	1212	1317	1520	1.520
1381	1385	1405	1406									
411	80	120	141	144	182	189	193	292	359	365	478	479
669	691	711	714	749	763	841	875	885	963	990	1032	1038
000	1001	1001	1200	1200	105	041	0.0	000				
1176	1178	1381	1390	1392						604	606	500
412	132	181	191	255	359	368	370	490	544	584	596	299
665	668	704	727	744	749	809	844	890	957	969	1127	1158
1165	1204	1260	1275	1301	1326	1351	1381	1395	1405	1406		
1105	1204	1200	1275	2001	1020	2501	270	120	441	450	455	464
413	167	181	191	308	330	339	570	420	111	665	669	672
490	499	540	552	558	562	574	593	597	599	665	1000	1107
722	727	744	844	890	920	925	958	969	978	979	1082	1127
1156	1204	1260	1275	1299	1301	1304	1335	1357	1370	1405	1406	
1100	13	60	117	167	1.81	182	255	281	330	359	370	373
414	1.5	00	111	100	101	540	550	562	574	584	665	722
380	388	441	464	490	499	540	550	002	000	0.05	007	062
726	727	737	755	764	835	844	820	890	923	925	921	1002
987	1095	1127	1156	1204	1260	1301	1326	1335	1361	1369	1382	1383
1390	1405											
1330	1405	20	25	06	105	167	191	194	255	281	308	330
415	13	20		90	105	107	101	456	161	490	199	540
359	370	379	380	388	394	433	4 4 L	400	404	490	755	010
562	573	574	589	593	650	665	668	704	122	750	/55	810
825	827	844	850	890	920	923	927	1113	1169	1204	1207	1216
1004	1070	1201	1304	3 3 07	1308	1326	1335	1405	1406			
1224	12/5	1301	1304	1007	1000	1220	1500	100	170	212	281	308
416	15	27	68	86	96	1.54	100	100	170	212	C 1 0	665
370	380	428	442	490	549	550	628	629	632	638	649	000
668	671	735	744	756	785	789	809	826	840	850	851	853
000	027	967	076	099	1003	1201	1204	1216	1243	1313	1343	1402
002	921	501	570	200	1005	1201		1040				
1405									055	201	201	327
417	35	68	117	132	170	190	206	210	255	201	521	500
380	428	437	456	464	490	506	543	547	549	562	5/4	590
594	595	628	629	638	671	704	728	735	744	766	827	844
0.5.1	000	020	025	025	055	964	976	1004	1046	1060	1118	1128
821	000	090	300	32.5	1202	1200	1206	1251	1405	1406	1408	
1156	1179	1216	1243	1275	1307	1308	1320	1351	1400	1400	665	660
418	80	104	134	181	344	345	431	449	4/9	499	600	000
673	683	716	749	765	877	906	939	1047	1060	1074	1082	1095
1245	1351	1356	1406									
1245	1001	120	101	1 0 0	327	380	428	437	464	467	468	668
419	11/	139	101	190	050	000	0.06	1046	1005	1137	1351	
720	826	827	837	845	850	888	900	1040	1033	110,	201	321
420	36	41	68	132	170	181	182	190	191	210	281	521
359	370	374	388	420	428	441	464	495	499	506	544	558
671	620	643	650	665	668	720	722	750	755	826	827	841
074	02.5	045	0000	000	1000	1042	1046	1064	1095	1179	1189	1267
844	851	890	906	909	1000	1042	1040	1004	1000		1107	
1275	1284	1307	1308	1326	1351	1406					054	0.0.0
421	36	41	68	96	132	170	181	182	190	191	254	200
281	321	359	388	428	433	439	456	464	468	490	499	544
201 EE0	562	571	620	613	650	665	668	722	737	744	755	756
558	302	007	029	040	050	000	000	906	925	955	1000	1042
809	826	827	836	844	850	601	1015	1007	1075	1200	1200	1361
1046	1179	1189	1204	1206	1219	1224	1245	1267	12/5	1300	1200	1001
1405	1406											
122	61	68	78	89	117	119	132	134	135	139	170	172
422	100	00	200	210	201	205	305	313	327	328	331	380
190	196	206	208	210	201	295	505	515	5.00	520	504	620
394	428	437	456	464	483	490	54Z	549	362	574	594	027
638	649	707	709	728	737	744	819	827	831	835	844	821
853	862	888	890	976	983	1046	1064	1085	1128	1195	1204	1216
1240	1267	1272	1275	1308	1313	1320	1351	1405	1406			
1249	1207	1272	1275	1000	06	192	170	1 9 0	21.0	212	269	281
423	41	50	/8	69	30	152	170	100	402	400	540	629
308	321	331	350	380	428	431	456	404	405	490	000	02.5
665	736	826	827	831	844	845	850	851	888	890	988	989
1036	1046	1064	1074	1204	1216	1299	1301	1313	1351	1405	1406	
121	132	1.81	212	281	344	380	414	437	464	467	468	483
424	1.02	101	665	666	669	704	890	906	1095	1168	1204	1316
491	493	549	665	600	000	704	0.00	,00	1000	1100	100.	
1351	1406										000	010
425	68	78	89	95	117	119	132	134	170	190	206	212
281	321	327	328	330	331	380	382	399	428	437	449	456
161	493	190	506	549	562	574	594	595	619	628	629	638
404	103	3 20	200	776	754	827	877	844	851	888	890	955
671	101	109	128	130	100	1050	1075	1000	1301	1212	1251	1405
976	977	1046	1085	1204	1243	1222	12/5	1733	1201	1010	1001	1400
1406	1408										<i>.</i> -	
426	68	70	78	95	119	132	134	139	170	181	190	196
204	210	225	281	327	330	331	380	382	388	399	428	437
200	212	200	102	521	500	501	505	628	620	707	736	737
449	464	468	483	302	019	0.24	000	020	070	1004	1005	1127
744	755	756	827	831	837	844	888	890	976	1004	1000	1121
1194	1195	1204	1243	1272	1275	1405	1408					
427	41	68	80	113	117	134	135	139	170	181	190	208
010	201	207	200	120	437	456	468	485	629	668	671	744
210	521	321	200	420	1.J/ 0.51	007	070	000	1046	1137	1105	1204
831	837	844	845	850	821	951	970	308	TORD	1131	1130	1204
1304	1313	1406	1408									
428	41	50	235	264	281	330	344	359	370	380	394	428

433	437	449	464	478	499	574	619	628	638	665	668	722
730	744	756	844	850	890	988	989	1026	1074	1085	1127	1130
1137	1169	1216	1275	1313	1351	1406	1408					
429	41	50	134	139	170	190	210	264	281	321	330	370
380	394	428	433	441	449	483	485	506	549	578	638	665
668	671	704	722	728	737	756	826	827	831	837	844	882
890	906	923	927	976	988	989	1085	1137	1204	1216	1245	1275
1351	1406	1408										
430	107	260	312	524	673	715	763	813	878	910	1106	1177
1190										520		
431	26	32	33	80	128	182	186	270	279	308	344	347
403	527	549	607	612	632	651	668	210	744	797	829	845
984	991	1197	1383	1406	VJ2	001	000	, , , , ,	744	,	029	045
432	26	23	1000	196	204	250	270	270	200	200	244	247
413	502	607	668	691	201	200	270	001	1020	1000	1160	1406
433	26	80	144	222	260	201	204	201	1020	1090	1100	1400
878	881	1174	1179	1269	200	201	299	100	502	324	607	813
434	20	26	1110	1200	0.0	107	200	244	247	274		41.5
513	510	607	600	721	744	707	000	344	247	045	401	413
001	1005	1160	1170	1002	1007	191	823	824	829	845	929	960
221	1095	1100	11/0	1203	1297	1304	1326	1383	1406			
435	32	33	53	08	138	144	362	524	593	607	682	719
151	/63	910	1268	1326	1406							
436	33	53	144	145	474	524	658	763	813	878	910	950
1127	1178	1190	1336									
437	25	37	40	45	55	61	73	83	87	96	135	157
166	168	190	236	359	368	370	449	451	462	464	503	506
543	552	587	613	619	621	623	629	633	648	663	671	689
708	722	732	737	744	764	805	809	811	819	825	831	832
839	890	909	921	928	954	955	956	957	95.9	1005	1009	1016
1110	1183	1184	1195	1233	1270	1274	1284	1303	1307	1326	1329	1335
1399	1401	1408		1200	12.0	12.1	1204	1000	100.	1520	1527	1000
438	3	27	34	50	62	70	79	96	95	06	134	170
181	182	1 0 0	100	210	212	260	201	200	207	244	270	274
380	304	110	199	105	C 1 0	209	201	200	527	244	510	279
669	671	447 703	706	400	349	015	628	029	632	638	649	005
627	011	950	706	121	133	756	189	790	806	809	810	826
027	044	1024	1101	853	859	862	864	882	901	906	957	973
976	988	1074	1131	1137	1201	1204	1216	1243	1245	1297	1301	1313
1320	1321	1384	1382									
439	3	40	55	61	73	87	168	170	210	236	260	306
359	370	384	462	463	464	490	503	506	546	564	581	587
590	595	613	621	623	629	633	649	671	689	708	737	744
764	809	819	832	837	839	845	887	928	954	955	957	959
983	1002	1110	1183	1214	1243	1260	1272	1275	1279	1399	1404	1405
440	15	36	50	67	134	135	136	166	168	170	190	269
327	330	380	442	449	485	490	506	521	541	623	629	638
649	665	668	671	703	706	724	735	744	756	785	789	811
827	831	835	837	844	845	882	<u>909</u>	957	976	988	989	1160
1201	1204	1243	1245	1246	1252	1261	1297	1.304	1 307	1313	1335	1387
1405	1408								100.	1010	1000	100,
441	15	49	67	83	157	168	1 90	197	236	291	301	327
329	380	442	450	485	503	506	542	5/3	570	501	610	621
623	620	620	640	400	271	000	700	700	515	301	019	021
023	029	000	049	000	071	059	700	128	744	826	827	831
1000	031	838	844	882	909	959	972	976	989	1012	1016	1049
1060	1116	1160	1246	1252	1304	1335	1407	1408				
442	27	63	104	118	134	170	181	182	212	244	264	281
301	321	344	374	380	429	437	449	467	490	531	549	551
637	643	663	668	699	734	744	789	810	826	827	831	833
835	845	850	877	880	882	901	957	960	976	1012	1022	1025
1036	1074	1078	1127	1137	1169	1178	1201	1243	1307	1313	1351	1387
1405	1406											
443	27	63	67	78	113	118	126	134	139	170	182	244
321	327	344	370	374	380	441	468	490	531	549	551	609
617	628	632	637	668	681	744	826	827	835	850	859	882
901	905	927	957	960	976	988	989	1012	1064	1127	1131	1137
1169	1174	1178	1216	1243	1249	1299	1308	1313	1315	1351	1359	1383
1385	1389	1406						1010	1010	1001	1000	1000
444	63	67	78	95	134	130	166	170	1.9.1	190	205	210
212	309	321	327	344	374	100	100	442	101	190	205	210
549	628	620	677	669	600	734	711	790	90/	490	010	001
012 836	816	950	007 051	000	022	100	144	109	000	020	021	1071
1110	1121	1127	1201	1010	300	1040	202	9/0 1000	988	1036	1064	10/4
1200	1131	113/	1201	1710	1243	1245	1249	1588	1307	1313	1351	1383
1303	1405	1406	~~									
445	17	63	67	134	139	170	181	190	205	212	221	269
281	308	327	370	428	441	449	490	531	549	637	649	668
699	736	789	796	801	810	833	850	859	882	901	905	927
957	960	976	988	1012	1025	1064	1131	1137	1243	1245	1299	1313
1351	1389	1406										
446	122	181	499	509	530	663	668	724	842	877	896	898
934	1087	1095	1178	1277	1325	1342	1382	1409				
447	58	102	105	122	181	182	271	341	509	530	673	681
										-	-	· · ·

683	763	824	842	877	878	907	1087	1095	1167	1253	1356	
448	64	134	139	178	181	190	269	308	428	438	668	724
744	789	826	827	845	850	851	859	976	1023	1074	1131	1137
1201	1216	1245	1313	1351								
449	134	136	139	178	181	308	380	632	638	665	668	724
730	736	744	827	845	851	898	906	927	1245	1301	1304	1313
1343				0.0	001	0.20	200	221	1240	1001	1304	1515
450	58	50	71	102	101	264	260	21.2	227	241	240	361
365	556	660	CO1	102	101	204	269	312	337	196	348	361
1167	1161	1170	1101	111	/13	/63	842	818	907	1049	1038	1135
112/	1101	11/8	1181	1235	1327	1409						
451	58	102	120	122	182	260	264	269	297	337	341	348
365	433	479	636	653	668	673	713	770	824	842	874	878
907	952	1049	1161	1190	1248	1375						
452	62	105	167	182	255	264	269	287	31.2	431	452	474
600	668	723	744	752	841	844	846	893	905	925	937	939
952	957	969	982	987	998	1031	1144	1156	1161	1179	1201	1219
1219	1222	1280	1307	1337	1201	1406	1144	1100	1101	11,0	1201	1210
153	15	2200	105	167	100	1400	0.04	000	220	4.7.5	422	445
507	E E 2	5.00	103	107	109	203	264	269	330	4.51	433	445
307	203	201	600	615	629	668	723	744	809	846	890	905
925	928	937	969	987	998	1144	1156	1161	1219	1222	1280	1326
1406												
454	15	23	25	38	45	61	73	135	155	157	168	172
210	269	329	381	396	463	464	485	503	506	542	543	546
547	550	563	574	581	587	619	621	623	627	629	633	645
648	671	689	719	735	737	744	809	810	819	831	837	844
887	933	941	957	950	972	976	1012	1016	1060	1110	1100	1104
1211	1216	1210	12/3	1060	1272	1075	1202	1010	1400	1110	1102	1400
1214	1210	1219	1243	1252	1272	1275	1302	1313	1402	1404	1406	1408
400	15	1/	25	27	50	67	83	134	168	170	190	197
281	327	380	442	485	542	549	579	629	638	665	671	703
727	735	744	789	794	798	827	831	836	837	838	850	851
853	882	909	927	957	976	988	989	1012	1042	1064	1201	1204
1214	1216	1304	1405	1408								
456	15	27	61	83	135	162	172	260	281	301	317	330
360	370	381	394	442	164	495	503	506	542	643	545	546
547	567	591	504	601	603	607	600	200	54Z	545	243	040
671	600	720	751	774	700	01.0	029	0.01	043	040	0001	000
071	070	1010	1004	1110	198	819	827	831	843	882	933	957
964	976	1016	1024	1110	1148	1194	1209	1274	1308	1326	1402	1404
1407												
457	13	37	64	68	81	89	117	132	167	191	217	238
259	264	267	318	330	370	388	433	434	437	441	462	464
490	506	544	552	554	562	569	574	582	584	589	597	619
629	653	660	722	737	755	809	827	833	835	839	844	889
890	920	925	983	1036	1038	1042	1095	1141	1169	1189	1216	1219
1242	1245	1266	1267	1275	1289	1307	1308	1361	1369	1385	1388	1406
458	13	46	64	68	95	131	132	1/8	167	191	100	216
217	226	260	267	297	319	330	350	200	200	101	1 20	427
156	162	161	207	400	510	5.50	509	560	500	433	434	437
400	402	404	490	499	504	544	55Z	554	569	5/4	589	594
029	650	65Z	122	131	809	833	835	844	889	890	900	906
925	927	931	936	1036	1042	1141	1156	1189	1216	1219	1245	1260
1275	1284	1307	1308	1351	1388	1390	1406					
459	48	134	139	181	190	210	212	281	308	321	380	428
442	449	549	629	638	668	724	736	756	789	826	840	845
850	882	898	957	1049	1064	1131	1137	1216	1243	1296	1299	
460	64	67	134	139	191	190	101	210	201	221	200	404
137	110	467	506	540	600	620	C 2 0	210	201	720	200	404
750	442	9.07	007	049	020	029	636	608	724	730	/36	/44
1040	1000	020	1242	040	009	957	9/6	1026	1060	1066	1179	1204
1243	1299	1313	1343	1351	1388	1406	1408					
461	67	134	135	136	139	162	190	210	235	281	321	359
428	472	506	549	644	665	668	724	744	756	826	827	831
842	844	850	898	957	976	1036	1049	1055	1060	1137	1296	1299
1313	1326	1343	1382	1406								
462	67	134	139	181	210	238	281	301	321	380	449	457
499	506	549	637	638	665	668	704	707	724	730	734	756
782	826	827	844	850	851	877	882	957	1036	1040	1005	1000
1214	1216	1243	1249	1305	1313	1326	1261	1100	1030	1042	1095	1090
163	210	1240	134	130	101	100	700T	1400		0.01	~~~	
300	400	134	130	T 2 A	101	190	210	201	301	321	330	367
380	428	442	499	549	551	637	665	668	681	724	730	826
845	850	859	882	957	976	1036	1049	1060	1137	1243	1299	1313
1321	1383	1406										
464	33	122	181	182	210	269	281	401	409	433	436	472
514	549	638	643	650	668	673	699	724	730	810	842	849
878	905	906	940	970	1049	1074	1095	1169	1194	1201	1313	1351
1383			-	-	-						-915	1001
465	63	102	104	105	175	1.81	182	184	190	210	261	274
409	431	433	441	449	473	551	570	636	202	4 E O	204	570
713	724	770	840	912	950 950	071	010	0.00	043	000	005	000
057	070	007	040	1021	1074	1005	0/0	905	906	939	940	952
1067	970	981	992	1031	10/4	1032	1238	1253	1282	1285	1307	1317
1321	1383											
466	63	105	122	145	181	182	210	264	370	409	431	433
434	441	445	636	643	665	668	699	713	724	763	770	840

874	878	906	940	952	957	970	992	1031	1074	1095	1096	1169
1230	1253	1295	1307	1393	10.00	10 1000	0.00000000					
1250	1200	110	124	101	100	100	210	270	201	300	312	361
407	80	118	134	101	182	190	210	219	201	500	312	301
383	404	428	449	468	502	506	549	579	668	613	120	124
730	736	744	763	800	817	830	840	845	859	898	984	1036
1056	1064	1074	1095	1098	1172	1178	1179	1198	1243	1301	1313	1322
1351	1385	1387	1409									
1001	11	1007	101	102	106	101	250	312	361	168	509	530
400	11	52	101	102	100	191	230	512	1005	1000	1101	1170
682	/1/	763	813	898	945	947	948	1056	1095	10.88	1101	11/2
1176	1178	1197	1374	1409								
469	63	67	118	134	136	178	181	190	208	210	281	301
308	321	380	449	456	506	549	637	668	724	730	744	789
926	030	940	912	915	850	850	808	906	940	976	1049	1064
020	030	040	042	1040	1010	1242	1051	1400	1400	570	1045	1004
1137	11/9	1216	1243	1249	1313	1343	1351	1408	1409			0.00
470	63	67	80	118	134	135	178	181	208	210	249	269
308	404	428	449	457	506	549	607	637	650	668	699	720
730	744	800	810	817	826	840	845	849	859	898	905	1036
1049	1056	1060	1064	1179	1204	1243	1313	1351	1408	1409		
171	233	26	67	70	06	134	130	179	1.81	1 90	208	210
4/1	33	202	200	270	90	107	155	100	E 4 0	574	620	637
212	321	323	328	370	401	431	456	499	549	5/4	629	637
638	649	668	674	720	730	744	797	800	826	831	837	840
845	849	882	898	957	976	1049	1064	1179	1204	1243	1249	1299
1304	1313	1343	1351	1405	1408							
172	17	79	113	134	136	139	178	181	190	208	210	212
972	001	200	201	202	207	274	420	442	110	100	506	549
269	281	308	321	323	321	5/4	428	442	449	499	300	345
629	637	649	651	668	674	692	724	730	736	144	156	189
826	827	830	831	845	849	850	851	859	882	905	976	1036
1074	1095	1131	1137	1179	1201	1204	1216	1243	1249	1299	1313	1387
1200	1405	1101	110.	11.2	1001	1001	1010					
1309	1405				1.0.0	0.00	270	101	120	400	E 1 4	613
473	102	122	181	189	190	260	370	431	432	490	514	043
663	665	668	683	763	776	833	841	877	905	906	957	1017
1087	1095	1169	1214	1216	1245	1280	1285	1317	1326	1383	1406	
474	181	186	191	380	456	499	668	731	763	894	934	1179
1205	1406	1400	171	000	100							
1303	1400	1409	70	100	105	100	101	100	100	1.01	104	210
4/5	51	16	18	102	105	122	181	102	109	1 91	194	210
255	281	370	380	433	442	445	450	413	490	516	663	665
668	822	826	827	842	850	877	905	906	957	969	1087	1095
1148	1161	1216	1245	1300	1307	1313	1326	1343	1383	1405	1406	
476	15	27	36	38	61	73	75	115	157	162	172	190
203	210	201	203	306	330	370	381	396	464	485	490	499
203	210	201	295	500	550	570	607	621	600	627	629	631
506	540	542	543	544	546	547	607	621	622	027	029	0.51
637	645	649	663	668	708	719	722	737	144	148	198	819
827	831	837	838	844	851	890	933	939	959	964	1002	1009
1016	1110	1189	1214	1265	1272	1275	1284	1307	1357	1404	1405	1408
477	25	49	50	67	73	135	170	190	210	.231	281	315
220	200	270	200	201	442	AGA	105	190	503	506	513	546
550	500	570	300	501	442	404	405	4 50	700	720	744	011
54/	581	587	627	629	631	645	648	665	122	120	144	1000
831	837	838	844	851	890	959	964	1042	1060	1183	1204	1209
1272	1275	1284	1304	1307	1326	1335	1404	1406	1408			
478	27	50	63	68	255	262	264	270	370	374	381	433
437	461	553	599	615	629	668	723	735	744	809	823	845
946	051	001	005	025	060	1048	1073	1144	1200	1245	1280	1307
040	0.01	901	905	925	303	1040	10/5	1144	1200	1245	1200	1007
1381	1382											
479	14	27	46	68	78	132	149	167	181	189	190	191
214	236	260	281	287	291	357	373	408	428	437	441	511
531	544	551	552	554	588	589	597	598	629	643	650	660
663	669	603	695	733	744	755	766	799	809	810	818	850
005	000	025	026	060	1000	1060	1005	1156	1158	1169	1201	1206
0.51	0/9	925	930	302	1000	1000	1095	1000	1204	1200	1401	1406
1215	1218	1242	1245	1255	1283	1284	1297	1299	1304	1329	1401	1400
480	4	17	41	68	78	96	113	134	139	170	176	190
208	281	308	313	327	332	360	373	380	399	441	456	464
480	483	490	531	549	574	593	622	628	629	637	651	678
697	727	755	756	791	810	826	827	845	850	851	853	883
000	005	000	025	057	062	976	080	1022	1026	1111	1118	1128
000	905	900	925	307	302	1045	1075	1022	1200	1212	1220	1225
1131	1141	1201	1204	1206	1216	1245	12/5	1299	1300	1212	1320	1333
1351	1387											2,502.1
481	4	41	68	78	134	170	190	281	307	308	313	330
332	360	380	433	441	456	464	480	490	531	549	574	579
651	674	697	756	762	766	826	827	845	850	888	957	973
976	090	1026	1110	1129	1206	1275	1299	1313	1335	1351		
200	202	1020	120	100	101	100	101	2010	2000	2001	201	350
482	29	127	132	169	181	190	191	220	239	201	291	552
354	359	390	404	420	428	441	462	511	531	551	552	588
590	592	618	623	629	643	663	668	669	730	734	736	744
755	835	844	845	852	879	890	924	925	936	955	1011	1018
1053	1071	1095	1158	1179	1206	1212	1216	1218	1255	1275	1284	1307
1212	1215	1200	1330	1351	1401	1406						
1313	1312	1322	1338	1331	1401	1400	007	010	250	100	400	427
483	29	169	181	190	256	259	287	318	359	406	428	431
441	496	499	511	531	552	590	597	598	618	643	660	668
	320	737	744	755	799	839	844	845	879	924	925	936
130	136	131										

484	27	35	41	46	78	96	170	181	182	191	207	221
264	269	281	287	301	308	318	373	388	433	437	456	464
467	499	531	540	542	558	574	583	594	628	629	643	660
060	122	1010	137	744	827	844	850	888	890	906	925	930
957	976	1018	1026	1028	1064	1068	1095	1118	1127	1131	1169	1179
1405	1204	1206	1267	1275	1283	1284	1299	1313	1323	1326	1338	1351
1405	1406	17	10			4.5.5						
480	4 212	220	48	78	113	139	170	181	190	196	208	269
500	213	332	349	380	399	436	441	453	480	572	574	579
010	029	051	070	665	6/4	681	709	744	756	800	810	827
1020	850	851	879	888	905	908	925	957	976	988	1022	1026
1036	1074	1111	1118	1128	1131	1137	1201	1204	1216	1313	1335	1351
486	105	169	181	189	190	191	264	267	281	308	313	359
3/5	433	464	499	554	597	608	657	660	665	668	676	704
1076	122	155	844	890	906	925	1095	1169	1179	1180	1215	1224
12/3	1284	1301	1330	1406								
407	106	200	41	48	68	78	96	113	135	170	176	181
574	570	209	201	308	313	332	3/3	380	480	490	531	540
960	000	029	030	005	668	697	/22	727	735	756	827	833
1120	1121	1127	925	957	962	989	1022	1026	1085	1086	1111	1118
1120	1131	1137	11/9	1130	1201	1245	1313	1335	1351	1361		
239	261	260	300	40	68	18	96	113	170	181	189	190
620	204	209	308	433	464	531	542	549	574	593	594	597
1029	1000	1000	1141	122	135	137	850	888	890	925	962	1018
1020	1014	7002 1002	1.141 0.1	11/8	1201	1204	1206	1313	1323	1351	A · · ·	
ינטוי גור	200	23	40	192	68 501	18	113	170	190	196	242	308
674	500	リキエフマに	400	403	160	549	5/4	5/9	615	629	651	668
1022	1026	1071	1095	1126	02/ 1127	045	1200	1040	925	930	957	989
1022	1020	2014 EQ	1000	00 1170	100	1204	1206	1245	120/	1313	1321	1384
457	456	461	193	100	E31 T30	200	202	201	313	318	395	437
668	674	678	609	700	133	794	795	3/4	394 756	200	628	629
827	833	835	837	945	951	003	133	/44	700	189	791	018
930	957	976	1026	1111	1110	1120	1121	1160	1100	920	925	927
1243	1245	1267	1275	1313	1226	1251	1405	1109	1192	1201	1204	1216
491	1245	1207	1270	1313	1320	1351	1405	1406	100	100	0.00	0.01
301	313	307	320	272	300	205	200	101	182	190	262	281
531	542	540	574	575	200	293	299	437	450	464	483	490
810	927	049	074	594 053	028	629	651	674	709	132	134	/56
010	1026	1044	1064	1074	1111	1110	1100	890	925	927	930	957
1267	1275	1301	1212	1961	1111	1119	1128	1131	1156	1201	1204	1206
1207	1270	1301	1010	1321	1406	117	1 2 0	105	1.00			
1 91	200	20	201	203	205	200	132	135	107	170	181	182
131	433	209	201	291	305	308	321	359	370	376	404	427
578	610	620	442	430	404	490	490	499	506	544	562	5/4
827	944	029	900	040	000	020	/13	120	122	/44	809	825
1095	1116	1144	1170	1076	1202	1207	1201	955	957	987	1038	10/4
493	27	1144	61	64	1292	1307	1201	1405	1406	100	1.00	1.01
194	209	210	269	291	317	201	232	1/1	101	102	190	191
394	404	420	428	133	130	157	332	344	500	509	510	380
629	643	649	660	665	668	694	713	730	727	340	040	D/4 900
810	825	826	827	837	844	859	887	890	920	076	000	009
1046	1074	1077	1116	1179	1219	1243	1275	1307	1313	1330	1261	1202
1405	1406			11.5	1017	1240	12.0	150,	1010	1330	1001	1505
494	59	77	91	93	108	122	175	189	218	240	264	271
292	297	348	365	373	406	469	474	534	554	556	669	673
677	685	688	747	749	876	885	986	999	1026	1032	1092	1129
1138	1142	1157	1161	1226	1336	1341	1345	1379	1381	1396		/
495	77	91	108	122	175	189	191	256	264	280	292	297
365	406	417	427	514	534	556	577	650	669	677	747	841
916	939	986	994	1031	1032	1096	1144	1161	1336	1341	1345	1396
496	105	175	181	182	189	264	278	297	308	359	365	431
441	460	464	554	574	578	589	596	599	655	669	683	688
714	722	726	744	749	764	844	890	894	939	957	969	986
987	1136	1138	1147	1260	1280	1307	1318	1321	1361	1406	202	200
497	61	78	167	168	181	189	194	359	370	376	384	427
431	441	464	490	499	552	574	584	589	615	619	636	665
722	747	764	826	844	890	920	955	957	969	97R	1126	1131
1138	1200	1216	1260	1275	1304	1326	1405	1406		2.0	V	
498	27	122	162	168	189	223	260	359	370	371	455	514
599	663	665	749	763	826	893	958	969	992	1230	1233	1286
1381							•			1200	1600	1400
499	260	263	264	276	292	431	437	442	455	514	614	650
749	759	874	876	885	893	916	930	1041	1145	1157	1232	1241
1288	1341	1355		-	_			*			* E U Z	1691
500	25	36	49	73	83	162	172	190	236	260	281	301
368	370	443	463	464	499	506	543	546	552	564	581	587
621	623	629	645	649	689	728	744	789	811	818	827	837
844	890	954	959	964	1002	1110	1160	1214	1272	1275	1303	1329
1335	1404	1406									1000	1027

501	27	38	50	73	82	134	135	166	170	224	359	370
380	389	396	456	485	499	506	542	567	579	615	621	622
629	665	668	671	674	689	703	708	723	744	798	809	816
819	827	837	844	845	859	882	905	906	955	957	959	964
972	973	976	1012	1072	1110	1148	1214	1245	1252	1265	1266	1275
1279	1304	1320	1402	1406	1408							
502	36	105	223	262	264	276	284	308	365	370	377	427
441	461	514	600	653	665	683	711	723	779	844	850	907
969	975	987	1031	1033	1078	1084	1132	1147	1238	1280	1284	1300
1307	1309	1370	1381	1382								
503	15	25	27	36	49	62	73	105	117	157	163	173
190	236	254	264	329	330	376	381	433	442	450	473	490
503	506	542	543	544	567	574	581	587	615	616	629	633
645	655	730	744	764	809	826	827	837	838	844	890	905
045	030	733	050	064	0000	1000	1026	1074	1141	1153	1160	1194
927	1010	1000	1045	1265	1270	1005	1279	1300	1304	1308	1313	1406
1214	1219	1233	1240	1265	1270	12/3	1270	1500	1304	1000	1010	2100
1407	• -		4.0		C1		76	1 2 2	125	155	157	168
504	15	41	49	50	205	200	217	132	270	201	440	464
1/3	181	190	210	281	305	308	317	530	570	50£	620	649
485	490	499	506	542	543	544	567	594	619	020	02.9	049
665	671	722	728	144	/55	827	837	843	044	1204	1206	1406
889	909	959	976	1204	1214	1274	1275	1282	1292	1304	1320	1400
1408											1.05	1.00
505	15	16	27	36	49	50	51	78	83	105	135	168
170	236	255	260	264	326	349	354	370	381	396	433	441
450	455	460	464	485	490	503	541	561	564	584	594	629
638	649	655	663	668	671	728	744	755	807	809	811	827
837	844	851	882	890	901	920	927	969	976	1007	1110	1132
1169	1185	1188	1201	1219	1221	1245	1272	1275	1282	1285	1292	1300
1304	1307	1326	1402	1405	1406	1408						
506	27	33	181	191	359	499	546	558	649	720	778	836
890	914	920	1116	1200	1274	1275	1298					
507	27	31	105	122	167	189	194	255	260	290	308	358
359	365	368	370	396	431	599	637	650	663	668	744	826
840	844	876	890	920	957	969	987	1132	1144	1145	1152	1200
1260	1307	1329	•••									
508	21	67	171	181	190	191	194	210	321	374	396	428
456	161	490	190	506	543	564	569	575	594	629	648	652
400	700	737	792	819	837	844	890	931	934	941	964	988
1004	1046	1061	1116	1162	1203	12/3	1270	1272	1274	1275	1307	1326
1004	1046	1400	1110	1102	1203	1245	1270	12.2	1211	12.0	100.	1020
1404	1405	1406	~ •	~ 7	70	0.0	117	124	170	171	1 90	208
509	35	36	61	6/	18	96	11/	1.34	200	201	420	200
210	256	281	305	321	327	330	370	380	389	394	420	404
490	506	543	547	569	575	615	619	621	628	629	040	040
665	728	782	827	835	837	844	851	887	890	8.91	955	964
976	988	1004	1042	1046	1064	1110	1200	1204	1229	1243	1249	1270
1274	1275	1284	1338	1406								
0												
ACAAFFA	LACAALA	ACA.	APP	ACAAUR	ACABAF	RBAACA	BARBC	ACABRO	ACACA	N ACA	ACOC 1	ACACYC
ACADEN	ACADIV	ACA	DRE	ACAERI	ACAEXT	r aca	FLA	ACAHUE	ACAIN	C ACA	ALASBR/	ACALASLA
ACALAT	ACALIT	ACA	моо	ACAMYR	ACANER	R ACA	PRE	ACAPUL	ACAPU:	LEBAC	APULGL	ACAPULRE
ACAPYC	ACAROS	ACA	SAL	ACASEM	ACASES	s aca	STE	ACATER	ACATE'	I ACI	ATRU I	ACAVARVA
ACAWIL	ACAXAN	I ACR	COR	ACTCUN	ACTGLO	D ACT	'LEU	ACTPYR	ADECY	g ade	SINT A	ADEMEI
ADEOBO	ADIAET	ADR	QUA	AGOFLE	AGOGRA	A AGC	DLIN	AGOPAR	AGRAV	e agi	RPLE /	AGRPRE
AGRSCA	AIRASP	AIR	CAR	AIRCUP	AIRPRA	۹. ALE	NIT	ALLFRA	ALLHU	M ALI	LMIC A	ALLTHU
ALTNOD	ALYBUX	AMP.	AMP	AMPDEB	AMPERI	e Amp	'LAG	AMPNEE	AMPTU.	R AM:	YLIN J	ANAARV
ANAGRA	ANALAE	: ANA	PRO	ANASCA	ANDAFI	FLAAND	CAE	ANDHET	ANDIN	V ANI	DLEH A	ANGAFFDR
ANGDRU	ANGMIC	: ANG	PRE	ANIFLA	ANIHUM	γ ANΙ	MAN	ANIVIR	ANTHU	M AN:	FILI A	ANTJUN
ANTLIT	ANTODO	TOA (GRA	AOTPRO	APHCYI	P API	ANN	APIPRO	APOHE:	X ARG	CCAL J	ARESER
ARGERU	ARICON	ARN	PRE	ASTCIL	ASTDRU	J AST	MIC	ASTPAL	ASTPU.	L AS'	ISTO A	ASTSUB
ASTXER	AST FA	ATR	CTN	ATRHYP	ATRPRO	D AVE	BAR	AVEFAT	AVEMI	C AVI	ENASP J	AZOFIL
BABDIS	BAECAM	I BAE	ROB	BANATT	BANGRA	A BAN	IILI	BANINC	BANLI	t bai	MEN 1	BANPRI
RAUACU	RAUART	וומים י	ARTh	BAILTUN	BAUVAC	3 BAX	AUS	BEAELE	BEAMA	C BEA	APUR I	BEASPA
DERCON			OTN	BILAFFRI	ACT.CA	V BTT	PAR	BTLVAR	BLACA	N BLI	EAFFDR	BLEDRU
DOLONI	DODCDE		DEE	DIDIEN			RAM	BORSCI	BORSP	A BOI	RSPH	BOSERI
BOLCAL	BUKCKE			DOCULIN	DOVEOI	מסם א		BRAPRA	BBBBB	F BRA	ATOU	BRIDRU
BOSERIL	FBOSORN	I BOS	PUL	BUSKUF	DRADE	L DR/*	105	BRALIA	DIDDD	נוום ד		
BRIMAX	RKIMIN	I BKI	MUE	BRINUT	BRUARI		NG	GALADU	CALAD			
CAEMIC	CAEMIC	BLCAE	MICS	NCAROCC	CALAFI	r QUCAL	- 10 KUNU	CALDER	CALLAR			
CALBIC	CALBRE	CAL	BRO	CALCAL	CALCO	K CAL	ALD	CALDEF	CALUL	a cau	585K 11170	
CALFLAF	LCALFLA	VeCAL	FRA	CALGEM	CALGE	UR CAL	JGKA	CALGRAN	ACALRA	M CA	ьнік і	CALHIKSU
CALHUE	CALLAI	CAL	LATe	CALLES	CALLI	N CAI	LON	CALLONC	ACALMA	K CA	LMEN	CALPAL
CALPAL1	CALPRE	CAL	QUA	CALRAD	CALREI	P CAI	JSAN	CALSAP	CALSE	R CA	LSPEC	CALSTA
CALVAR	CALVAF	VACAL	VARia	ACAREDU	CARHII	r caf	RMOD	CARPAU	CARPH	EP CA	RPHI	CARPRE
CARPYC	CARVIE	R CAS	AURH	ICASFLA	CASGL	A CAS	SMIC	CASOBE	CASPO	M CA	SPUB	CASRAC
CATRIG	CAUDIC) CEN	ALE	CENARI	CENAS	I CEN	ICAE	CENCEPC	ECENCO	R CE	NDRU	CENERY
CENGLA	CENHUN	1 CEN	INC	CENMAC	CENME	L CEM	INUT	CENPIL	CENPO	L CE	RGLO	CHAAFFSP
CHACOR	CHAERY	CHA	LEP	CHAROY	CHASE	R CHA	JUNC	CHAVER	CHEAM	в сн	EMAC	СНОСҮМ
CHODIC	CHOENC	сно	GLY	CHONAN	CHORH	о сно	OVAR	CICFIL	CIRVU	L CL	EMIC	CLEPUB
COMCAL	COMCON	I COM	IFLA	COMINT	COMVI	R CON	IVOL	CONACE	CONAC	U CO	NACUDU	CONACUPR
CONACXC	OCONALE	CON	AUR	CONBON	CONCA	ESPCON	1CAN	CONCAP	CONCA	R CO	NFESFE	CONINC

CONJUN	CONLAX	CONMIN	CONPAU	CONPAUE	EUCONPED	CONPEN	CONPRE	CONSER	CONSET
CONSET	o CONSTO	CONSXT	CONTER	CONTRI	CONUND	CORLIT	CORMIC	CORREC	COTBIP
COTCOR	COTCOT	COTTUR	CRACOL	CRADEC	CRAEXS	CRAGLO	CRANAT	CRAPED	CRAPEDU
CRASPN	OVCRASPSI	P CRATHU	CRYARB	CRYHUM	CRYMUT	CRYPUN	CUSEPI	CYAAVE	CYACLA
CYNDAC	CYNECH	CYPERA	CYPPOL	CYPTEN	CYRHUE	CYRROR	DAMALA	DAMCOR	DAMITN
DAMTRI	DANACE	DANCAE	DANOCC	DANPTL	DANSET	DARTRON	IDARALA	DADTUV	DAGDDO
DASHOO	DASOBL	DAUGLO	DAVANG	DAVCOM	DAVCOR	DAKIKOr	DAROED	DAKINI	DASBRU
DAVINC	DAVINE	DAVNUD	DAVDUV	DAVCON	DAVCOR	DAVCOS	DAVDEC	DAVDIV	DAVHOR
DIAPEV	DINDEVI		DAVENI	DAVPOD	DAVPRE	DAVQUA	DAVRHO	DAVTRI	DEYQUA
DIANEY	DIANGVI	DIGADE	DIDICCAP	DICCRI	DICPRE	DICKES	D1L"C1	DILDIL	DIPANG
DODAD	DIFNUE	DISARE	DISCAP	DITGRA	DIUAFFA	MDIUCAR	DIUEMA	DIULAX	DIULON
DODAPT	DODHAC	DODVIS	DRAGLY	DROBAR	DROBUL	DROBULC	SDROERY	DROERYE	RDROERYSQ
DROGIG	DROGIGO	EDROGLA	DROHET	DROHUE	DROLEU	DROMAC	DROMACM	IADROMACS	CDROMARMA
DROMENN	MEDROMENE	EDROMYR	DRONEEN	NEDRONEES	STDRONIT	DRONITN	II DROOCCA	UDROPALE	ADROPAL1
DROPLA	DROPUL	DROPYC	DRORAM	DROROS	DROSTO	DROSTOR	ODROSTOS	TDROSUB	DROTUB
DRYAFF	NIDRYARM	DRYBIP	DRYNIV	DRYSES	DRYSPIR	EHRCAL	EHRLON	ELAGRA	ELEACU
ELEKEN	ELYBRU	ELYEMA	EPIBIL	EPIBILI	NEPIGRA	EPIHIR	ERACUR	ERAELO	EREASTAS
EREFIM	EREGLA	EREPAU	PAEREPUR	ERIDIL	ERIDILD	IERIDILM	UERIHEL	ERIMUL	ERISPI
EROBOT	EROCIC	EROCYG	EROMOS	ERYPINE	AERYPINE	IERYSUB	EUCARG	EUCCAL	EUCDEC
EUCFOE	EUCGOM	EUCHAE	EUCLAN	EUCLIN	EUCMARM	AEUCPAT	EUCPETR	EEUCRUD	EUCTOD
EUCWAN	EUPPEP	EUPTER	EUTVIR	EVAARI	EVAPAU	EXOODO	EXOSPA	FERCRT	FRAPAU
FRATRI	FREAFFI	EFUMCAP	GAHTRI	GALAPA	GALDIV	GALMUR	GERMOL	GERRET	GLAANG
GLACAR	GLIAUR	GLODIA	GLODRU	GLYMAX	GNAIND	CNACDU	CNEDRU	CNETEND	PCOMART
GOMCAP	GOMCON	GOMKNT	GOMMAR	GOMOVA	COMPOT	COMPRE	COMECA	COMTON	CONDAN
GONPTT	GOOCAE	GOORAT	COOMIC	COOPUL	CRAPER	ODENT	GOMBCA	GOMIOM	GONPAN
GREMAN	CPEDII	CPEDIU	CREQUE	GOOPUL	GRAPER	GREALT	GREBIP	GREBRAB	RGRECRI
CYDELID	UNEDDE	UNEDIO	GREQUE	GRETHEO	BGRETHEPI	RGRETRI	GREVES	GREWIL	GUILED
UNKAND	LACONG	HALDIS	HALLAX	HAELOR	HAEPAN	HAESIM	HAESPA	HAESPI	HAICYL
HAKAMP	HAKAUR	HAKCAN	HAKCER	HAKCON	HAKCOS	HAKCYC	HAKERI	HAKINC	HAKLIS
HAKMAR	HAKMYR	HAKPRO	HAKRUS	HAKSTE	HAKSUL	HAKTRI	HAKUND	HAKVAR	HAKVARIR
HAK_UNE) HALACU	HALHAL	HALIND	HALLEP	HALTEN	HARCOM	HARLAT	HEDRHA	HELCOR
HELCORY	/ HELPUS	HEMINC	HEMMIC	HEMPUN	HEMRAM	HENTUR	HESFAL	HIBACE	HIBAFFHE
HIBAMP	HIBAUR	HIBCOM	HIBCRA	HIBCUN	HIBCUNn	HIBGLO	HIBRUE	HTBHYP	HIBPAC
HIBQUA	HIBRAC	HIBRHA	HIBSER	HIBSPIL	EHTRSTE	HTRSUB	HTBVAG	HODJUN	HOLLAN
HOLSET	HOMFLA	HOMHOM	HORLEP	ноусно	HOVELL	HOVELIN	NUMBIC		
HYBCAL	HYBELO	HYDALA	HYDRIF	HYDCAT	UVDCAD	UVDDIN	UVDUTC		
HYDSCU	HYDTET	UVDANC	HIDDLE	HIDCAL	HIDCAP	HIDDIA	HIDHIS	HIDPILG.	PHIDEIPHI
UVDBOD	TCOACD	TROOPD	TOODUN	TOOGUNG	HIPPAS	HIPGLA	HIPGLAD.	LHI DOCC	HYPRAM
TCOMPR	LONOD	ISUCER	ISOCUN	ISOCUNG	LISOCYP	ISODRU	ISODRUm	ISOHYP	ISOHYS
ISOMAR	ISONOD	ISOOLD	TSOPRO	ISOPUS	ISOSCA	ISOSCAp	ISOSET	ISOSPH	ISOSTE
IXIVIS	JACAFFS	EJACALA	JACANG	JACCON	JACD/F	JACDEN	JACFLO	JACFUR	JACLEH
JACRES	JACSER	JACSP.	JACSTE	JACSTR	JOHACA	JOHAEEP	UJOHLUP	JOHPUB	JUNART
JUNBUF	JUNCAE	JUNCAP	JUNHOL	JUNKRA	JUNPAL	JUNPOL	KENCAR	KENCOC	KENPRO
KENSTI	KINAUS	KUNAFEM	IKUNERI	KUNLIT	KUNMIC	KUNREC	LABPUN	LACREF	LAGHUE
LAGOVA	LAMMUL	LAXGRA	LAXRAM	LAXSESA	ULAXSOU	LECBIL	LECEXP	LECFLO	LECLIN
LEMDIS	LEOSAX	LEPAFFC	RLEPANG	LEPANGC	OLEPARI	LEPCAN	LEPCAR	LEPCOA	LEPCOS
LEPCUN	LEPDRU	LEPEMP	LEPERI	LEPETRE	LEPFIM	LEPGLA	LEPGLAN	LEPGLAU	LEPHEL
LEPLEH	LEPLEP	LEPLON	LEPMAC	LEPMUT	LEPPRE	LEPPRES	LEDDID	TEPROT	ICROV
LEPSCA	LEPSCAD	LEPSCAr	LEPSCR	LEPSPE	LEPSPT	LEPODIA	TEDGOU	LEDTEN	LEONET
LEPYSP	LEP ANG	LEUAFFN	ULEUAFFO	LLEUAFER	OLFUAFFPF	TELOLIN	TELOVD	LEUCON	
LEUGRA	LEUKIN	LEULEP	LEUOBO	LEUOID	LENORA	TEUROS	LEUCAP	LEUCON	LEUGLA
LEURAC	LEUSPR	LEUSON	LEUVED	LEU CAD	LEU CDA	LEUPAR	LEUPEN	LEUPUL	LEUPKO
LTNLTN	LINTOT	TCDATA	LEOVER	LODUD	LEU GRA	LEO_POL	SLEVPAU	LEA5OS	LEVSTI
LOGUDG	LINIKI	LOBALA	TORGIB	LOBHET	LOBKHO	LOBTEN	LOGCAM	LOGSER	LOGSERAN
LOGVAG	LOLMUL	LOLPER	LOTKIC	LOMBRI	LOMCAE	LOMHER	LOMINT	LOMMAR	LOMMIC
LOMNIG	LOMNUT	LOMODO	LOMPAU	LOMPRE	LOMPUR	LOMSER	LOMSON	LOMSPA	LOMSUA
LOTANG	LOTSUA	LOXCIN	LOXFAS	LOXFLE	LOXMAG	LOXPUB	LUPCOS	LUZMER	LYGBAR
LYPNIG	LYPSER	LYSCIL	LYSELE	LYTHYS	MACAFFAU	MACAPE	MACAUS	MACRIE	MEDPOL
MEEDEN	MELACE	MELAFFA	CMELAFFT	RMELASPB	MELBRA	MELCAR	MELCUT	MELHAM	MELHUE
MELINC	MELIND	MELLAN	MELLAT	MELLATA	CMELLEP	MELPRE	MELRHA	MELSCA	MELSER
MELTER	MELTHY	MELTRI	MELUNC	MELVIM	MENPIP	MESGRA	MESPSE	MESSTY	MESTET
MES GR	MICAFEM	MICATR	MICMED	MICMEDDE	MICMEDME	MTCORB	MICSTI	MICUNT	MTIMYO
MILTEN	MINHYB	MTRDTL.	MTRSPT	MITPAR	MONBRA	MONDER	MONCRA	MONOCC	MUEADD
MYOAUS	MYOCAP	MYOTNS	MYRASP	MYRDRI	MVPECU	MYDUET	MYDICO	NEWPERG	MULADP
NEMCOR	NEMDIT	NEMPET	NEMGDA	NEULIO	NEUMO	NUVELO	OI ADDY	ANDRIAT F CA	MILMCAP
OLEDAN	OI FRUD	ODEADT	ODEUTO	ADDALO	ADDWAR	NUIELO	ULABEN	OLEAXI	OLEELA
ODONTN	ODERUD	OPEAP1	OPERIS	OPESPE	OPEVAG	OPEVAGIE	ROPHLUS	ORNCOM	ORNPIN
DROMIN	URTLAX	OSTCLA	OXACOR	OXAGLA	OXAPER	OXAPES	OXAPUR	OXYLIN	PARDEB
PARLAT	PARVIS	PASDIL	PATBAB	PATJUN	PATLIM	PATOCC	PATOCCSW	IPATUMBXA	PELCAP
PELLIT	PENAIR	PENCLA	PENPEL	PENTHU	PERANG	PERCOM	PERELL	PERELLip	PERFLO
PERGRA	PERLON	PERSAC	PETBRE	PETLAT	PETLIN	PETMAC	PETMEDJU	PETSEM	PETSER
PETSHU	PETSQU	PETSTR	PETVEL	PHAMIN	PHIDRU	PHIPYG	PHLCIL	PHLFIL	PHLPRA
PHYCAL	PHYDRU	PICSQU	PILNOV	PIMARG B	PIMCAL P	IMFER F	IMIMBIMF	IMIMBMAF	IMIMBPT
PIMLEU	PIMPRE	PIMROS	PIMSUA	PIMSUL	PINRAD	PITACH	PITBAR	PITCOR	РТТРИУ
PITPUL	PLACOM	PLAGAL	PLALAN	plamaj	PLATEN	POAANN	POADRU	POAPOT	POAPOP
POASP	PODANG	PODCHR	PODDRO	PODGNA	PODGRA	PODGRASS	PODIRG	POGemp	DOT MON
POLMUL	DOLTEN	POLYTEN	PORERT	PORHUE	PORMIC	PRARRO	PRANDU	DDVD1V	
DDAMAG	LOPIPIN							TIVIDIN	r 104 t 101
FRAMAG	PRAPAR	PRAPLI	PRASPLU	PRA HO	PROFRA	PSELUT	DCCVTD	DTEACH	DTTALECT
PTEAFFVI	PRAPAR	PRAPLU	PRASPLU	PRA_HO	PROFRA	PSELUT	PSEVIR	PTEAFFNA	PTEAFFSA
PTEAFEVI PTESAN	PRAPAR PRAPAR IPTEASP PTESCAPC	PRAPLU	PRASPLU	PRA_HO PTECON	PROFRA	PSELUT PTENANLI	PSEVIR	PTEAFFNA PTEPYR	PTEAFFSA PTEREC
PTEAFFVI PTESAN PULSET	PRAPAR PRAPAR IPTEASP PTESCARC	PRAPLU PTEBAR PTESERRO	PRASPLU PTEBRE PTEVIT	PRA_HO PTECON PTIDEC BANCOL	PROFRA PTEESC PTIDRU	PSELUT PTENANLI PTIHUMHU	PSEVIR PTEPAGA PTIMAN	PTEAFFNA PTEPYR PTIPOL	PTEAFFSA PTEREC PTISTI
PTEAFFVI PTESAN PULERI RESCRA	PRAPAR PRAPAR IPTEASP PTESCARC PULOCH	PRAPLU PTEBAR PTESERRO PULRET	PRASPLU PTEBRE PTEVIT QUIURV	PRA_HO PTECON PTIDEC RANCOL	PROFRA PTEESC PTIDRU RANPUM	PSELUT PTENANLI PTIHUMHU RANSESSE	PSEVIR PTEPAGA PTIMAN REGCIL	PTEAFFNA PTEPYR PTIPOL REGINO	PTEAFFSA PTEREC PTISTI RESELE
PTEAFFVI PTESAN PULERI RESGRA	PRAPAR PRAPAR IPTEASP PTESCARC PULOCH RESLEP	PRAPLU PTEBAR PTESERRO PULRET RESMIC	PRASPLU PTEBRE DPTEVIT QUIURV RESSER	PRA_HO PTECON PTIDEC RANCOL RESSIN	PROFRA PTEESC PTIDRU RANPUM RESSPH	PSELUT PTENANLI PTIHUMHU RANSESSE RESSTE	PSEVIR PTEPAGA PTIMAN REGCIL RESTRE	PTEAFFNA PTEPYR PTIPOL REGINO RHAALA	.PTEAFFSA PTEREC PTISTI RESELE RHABAC
PTEAFFVI PTESAN PULERI RESGRA RHABACDI	PRAPAR PRAPAR IPTEASP PTESCARC PULOCH RESLEP IRHOPYR	PRAPLU PTEBAR PTESERRO PULRET RESMIC ROMFLA	PRASPLU PTEBRE PTEVIT QUIURV RESSER ROMOBS	PRA_HO PTECON PTIDEC RANCOL RESSIN ROMROS	PROFRA PTEESC PTIDRU RANPUM RESSPH ROMROSAUI	PSELUT PTENANLI PTIHUMHU RANSESSE RESSTE ROMROSRC	PSEVIR PTEPAGA PTIMAN REGCIL RESTRE RUMACE	PTEAFFNA PTEPYR PTIPOL REGINO RHAALA RUMBRO	PTEAFFSA PTEREC PTISTI RESELE RHABAC RUMCRI
PTEAFFVI PTESAN PULERI RESGRA RHABACDI RUMPUL	PRAPAR PRAPAR IPTEASP PTESCARC PULOCH RESLEP IRHOPYR RUTMUL	PRAPLU PTEBAR PTESERRO PULRET RESMIC ROMFLA SAGAPE	PRASPLU PTEBRE DPTEVIT QUIURV RESSER ROMOBS SAGMAR	PRA_HO PTECON PTIDEC RANCOL RESSIN ROMROS SAMJUN	PROFRA PTEESC PTIDRU RANPUM I RESSPH I ROMROSAUI SAMREP	PSELUT PTENANLI PTIHUMHU RANSESSE RESSTE ROMROSRC SANACU	PSEVIR PTEPAGA PTIMAN REGCIL RESTRE RUMACE SARQUI	PTEAFFNA PTEPYR PTIPOL REGINO RHAALA RUMBRO SCAANC	PTEAFFSA PTEREC PTISTI RESELE RHABAC RUMCRI SCACAL

SCHAFFLA	SCHAFFOE	SCHAFFTE	SCHASP	SCHBEN	SCHBIF	SCHBRE	SCHCAE	SCHCAP	SCHCLA
SCHCUR	SCHDIS	SCHELE	SCHGRA	SCHGREEN	SCHHUM	SCHINV	SCHJUN	SCHLAN	SCHLAT
SCHNAN	SCHNAT	SCHNIT	SCHODO	SCHOSP2	SCHPED	SCHRIG	SCHROD	SCHSCU	SCHSPBB
SCHSPNT	SCHSUBRO	SCHSUBBa	SCHSUBBU	SCHSUBIA	SCHSUBIL	SCHTEN	SCHONI	SCH_BR	SUL BRU
SELGRA	SENHIS	SENLAUDI	SENLAUMA	SENQUA	SHEARV	SILFIL	SILGAL	SILIUM	SPARIII
SISEAL	SOLAME	CDUNCTMA	SOLNIG	SOUSIN	SONASP	SONDID SONDID	SPHMED	SPHVIM	SPOVIR
SPYGLO	SPERUD	STAAYT	STAMON	STAVER	STEGRA	STEMED	STEROB	STESEC	STICAM
STICOM	STILLE	STIFLA	STILAT	STIMAC	STIPYC	STISEM	STISEMGE	STRSTE	STYADN
STYADP	STYAFF	STYAFFBU	ISTYAMO	STYBRE	STYBRU	STYBRUMI	STYBUL	STYCAL	STYCAN
STYCAR	STYCRA	STYCRO	STYDIC	STYDIU	STYDIV	STYECO	STYEMA	STYGLA	STYGUT
STYIMB	STYINU	STYJUN	STYLEP	STYLON	STYMAC	STYMAR	STYMIM	STYOBT	STYPER
STYPERP	STYPET	STYPIL	STYPUL	STYREP	STYRIG	STYROS	STYROSa	STYSCH	STYSPA
STYSTR	STYTEN	STYUTR	SUAAUS	SYNACU	SYNBUS	SYNFLO	SYNGRA	SYNOATS	SYNPET
SYNPETTR	SYNPOL	SYNSPI	SYNSTE	SYNWICH	SYN_PET	TEMBIL	TEMRET	TERCYA	TETCAP
TETDEC	TETHIR	TETHIRSC	TETLAE	TETOCT	TETTET	THEAFFHC	THEAFEMA	THEAFTPA	THEANT
THEBEN	THECAM	THECAN	THECRI	THEFLE	THEFUS	THEMAC	THEMUC	TRENUD	THEPAU
THOCOG	THOGRA	THOPUR	THOTRI	THRDIE	THYARB	THYARE	THIDIC	THIMAN TUV DIL	THIMUL TUY SDA
THYPAT	THYPAU	THYPSE	THISPA	THISPMP	THITEN	THITHI			
TRACOE	TRADIV	TRAPIL	TRIACED		TRIARV	TRIAUS	TRICIO	TRIDRA	TRILON
TRICAL	TRICAM	TRICEN	TRICER	TRIDUC	TRIDER	TRIGLO	TRISPA	TRISTO	TRISTR
TRIPLO	TRIMUC		TRINCELL	TRINCIAL	TRIVIO	TRYALB	TRYFLO	TRYLED	UROPIC
HRSANT	UTRDIC		UTRMEN	UTRVIO	VELDEA	VELTRI	VERACE	VERAFECA	VERARV
VERDEN	VERDRU	VERHAR	VERHUE	VERHUEHU	VERLINLI	VERNIT	VEROVA	VERPEN	VERPLU
VERPLIPI	VERRET	VICSAT	VICSATSA	VILALB	VILCAP	VILLAT	VILPAR	VILSUB	VILVIO
VIMJUN	VULBRO	VULMYU	WAHCAP	WAHPRE	WAIAUR	WAICIT	WAI PAN	WAISUA	WATBUL
WATMAR	WATMER	WESDAM	WILBAC	WURDIO	WURDIO A	WURMON	WURPYG	XANACA	XANBRU
XANCAN	XANCIL	XANDRU	XANGRA	XANHUE	XANPRE	XANPUS	XYLOCC	ZANAET	ZYGFRU
acton-1	ambr-1	ambr-2	ambr-3	ambr-4	ambr-5	ambr-6	ambr-7	ambr-9	ambral-1
apbf-1	apbf-2	austb-1	austb-2	austb-3	austb-4	austb-5	austb-6	austb-7	austb-8
austra-1	bambun-1	bambun-2	bambun-3	ibank-1	bank-la	bank-2	bank-3	bold-1	bold-2
bold-3	bold-4	brix-l	brix-2	brix-3	brix-4	brix-5	bull-1	bull-10	bull-11
bul1-12	bull-3	bull-4	bull-5	bull-6	bull-7	bull-8	bul1-9	buller-1	buller-2
buller-3	burn-1	burn-2	burnrd01	burnrd02	byrd-1	c58-1	c58-2	C58-3	C58-4
c71-1	c71-2	c71-3	c71-4	cape1-1	cape1~2	cape1-3	cape1-4	caper-5	caper-o
capel-7	cape1-8	capel-9	carab-1	carab-2	carab-3	carp-1	carb=z	daionge=	deiongec
chidpt-l	CIII-I	clit-z	Cill-3	coron-1	coron-2	aldo-1	allen+1	uejong∾a allen=2	ellen-3
aepot-1	drain⊷i	auck-1	auck-z	duck-5	uuns-1	e100-1	errent		61-6 0
allan 4	allen-5	allon_6	$a^{1}a^{2}a^{2}a^{2}a^{2}a^{2}a^{2}a^{2}a^{2$	ollig_l	allie=2	allie-3	tich+1	†1.Sh→2	T1SB~3
ellen-4	ellen-5	ellen-6	ellen-7	ellis-l fl_2	ellis-2 fl-3	ellis-3	fish+1 fl-5	fl-6	fl=7
ellen-4 fish-4 fl-9	ellen-5 fish-5 garden-1	ellen-6 fl-1 garden-2	ellen-7 fl-10 Garden-3	ellis-1 fl-2 Marden-4	ellis-2 fl-3 aingin-1	ellis-3 fl-4 aingin-2	fish+1 fl-5 aingin-3	tish-2 fl-6 Baolf - 1	fl-7 guthr-1
ellen-4 fish-4 fl-9 guthr-2	ellen-5 fish-5 garden-1 guthr-3	ellen-6 fl-1 .garden-2 guthr-4	ellen-7 fl-10 garden-3 guthr-5	ellis-1 fl-2 Ggarden~4 guthr~6	ellis-2 fl-3 gingin-1 harrv-1	ellis-3 fl-4 gingin-2 harrv-2	fish-1 fl-5 gingin-3 harry-3	flsh-2 fl-6 golf - 1 harry-4	fl=7 guthr=1 harry=5
ellen-4 fish-4 fl-9 guthr-2 harry-6	ellen-5 fish-5 garden-1 guthr-3 keme-1	ellen-6 fl-1 .garden-2 guthr-4 keme-2	ellen-7 fl-10 garden-3 guthr-5 keme-3	ellis-1 fl-2 garden~4 guthr-6 kero-1	ellis-2 fl-3 gingin-1 harry-1 kero-2	ellis-3 fl-4 .gingin-2 harry-2 king-1	tish+1 fl-5 gingin-3 harry-3 king-2	flsh-2 fl-6 golf - 1 harry-4 koolj-1	flsh-3 fl-7 guthr-1 harry-5 koolj-2
ellen-4 fish-4 fl-9 guthr-2 harry-6 kooli-3	ellen-5 fish-5 garden-1 guthr-3 keme-1 kooli-4	ellen-6 fl-1 .garden-2 guthr-4 keme-2 koolj-5	ellen-7 fl-10 garden-3 guthr-5 keme-3 koolj-6	ellis-1 fl-2 garden-4 guthr-6 kero-1 koolj~7	ellis-2 fl-3 gingin-1 harry-1 kero-2 koon-1	ellis-3 fl-4 .gingin-2 harry-2 king-1 koon-2	fish+1 fl-5 gingin-3 harry-3 king-2 land-1	flsh-2 fl-6 golf-1 harry-4 koolj-1 lesch-1	fl=7 guthr=1 harry=5 koolj=2 lesch=2
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6	ellis-1 fl-2 garden-4 guthr-6 kero-1 koolj~7 lyons-1	ellis-2 fl-3 gingin-1 harry-1 kero-2 koon-1 lyons-2	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53	fish+1 fl-5 gingin-3 harry-3 king-2 land-1 manea-1	flsh-2 fl-6 golf-1 harry-4 koolj-1 lesch-1 manea-2	fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4 meal-2	ellen-6 fl-1 .garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 Imeelon-2	ellis-1 fl-2 garden-4 guthr-6 kero-1 koolj-7 lyons-1 2mela-1	ellis-2 fl-3 gingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10	ellis-3 fl-4 .gingin-2 harry-2 king-1 koon-2 m53 mela-2	fish+1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3	fish-2 fl-6 golf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5	fl=7 guthr=1 harry=5 koolj=2 lesch=2 manea=3 mela=6
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4 meal-2 mela-8	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 Imeelon-2 mhenry-1	ellis-1 fl-2 garden-4 guthr-6 kero-1 koolj~7 lyons-1 2mela-1 .mhenry-2	ellis-2 fl-3 gingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 2milt-1	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2	fish+1 fl-5 2gingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3	fish-2 fl-6 golf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4	fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4 meal-2 mela-8 milt-7	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lmeelon-2 mhenry-1	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 2mela-1 mhenry-2 minn-2	ellis-2 fl-3 lgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1	fish-1 fl-5 gingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3	fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 Rmela-1 mhenry-2 minn-2 mpk03	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2	fish-1 fl-5 ggingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4	fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 Zmela-1 mhenry-2 minn-2 mpk03 mud-4	ellis-2 fl-3 lgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 Cmilt-1 minn-3 mtb-1 mud-5	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6	fish-1 fl-5 ggingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9	fl=7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-J	ellen-5 fish-5 garden-1 guthr-3 keme-1 kcolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj-7 lyons-1 2mela-1 mhenry-2 minn-2 mpk03 mud-4 navb-4	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 neer-21	ellen-5 fish-5 garden-1 guthr-3 keme-1 kcolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 mela-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 neer-4	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 modo-1 mtb-2 mud-6 neer-10 neer-6	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7	flsh-2 fl-6 Jgolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-9
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 neer-21 nine-1	ellen-5 fish-5 garden-1 guthr-3 keme-1 kcolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 nine-2	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 mela-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 neer-4 nwi1-2	ellis-2 fl-3 lgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5 nwil-3	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1	flsh-2 fl-6 3golf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20 neer-9 paga-3
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 neer-21 nine-1 paga-4	ellen-5 fish-5 garden-1 guthr-3 keme-1 kkoolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 mela-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 neer-4 nwi1-2 paga-8	ellis-2 fl-3 lgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 payne-1	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 colina-1	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pbine-2	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20 neer-9 paga-3 pb-4 plipe-3
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-3 neer-21 nine-1 paga-4 pb-5	ellen-5 fish-5 garden-1 guthr-3 keme-1 kcolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 neer-23 npres-1 paga-6 pearce-1	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lmeelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 _pearce-2	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 2mela-1 mhenry-2 mpk03 mud-4 navb-4 neer-4 nwi1-2 paga-8 pepb-1	ellis-2 fl-3 lgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 2 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 payne-1 pepgrv-1	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2	fish-1 fl-5 2gingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 2pline-1	flsh-2 fl-6 Bgolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 neer-21 nine-1 paga-4 pb-5 pline-4	ellen-5 fish-5 garden-1 guthr-3 keme-1 kcolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 neer-23 npres-1 paga-6 pearce-1 pline-6	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lmeelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 lpearce-2 pline-7	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj-7 lyons-1 2mela-1 mhenry-2 mpk03 mud-4 navb-4 neer-4 nwi1-2 paga-8 2pepb-1 pres-1 reel-1	ellis-2 fl-3 /gingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 2milt-1 minn-3 mtb-1 meer-5 nwil-3 payne-1 pepgrv-1 ptwalt-1	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 possum1 rivd-2	fish-1 fl-5 2gingin-3 harry-3 king-2 land-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 2pline-1 possum2	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mod-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 nine-1 paga-4 pb-5 pline-4 possum5	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seeb-1	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lmeelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 lpearce-2 pline-7 raaf-3 seab-2	ellis-1 fl-2 3garden-4 guthr-6 kero-1 koolj~7 lyons-1 2mela-1 mhenry-2 mpk03 mud-4 navb-4 neer-4 nwi1-2 paga-8 2pepb-1 pres-1 red1-1 seab-3	ellis-2 fl-3 gingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 mint-3 mtb-1 meer-5 nwil-3 payne-1 pepgrv-1 ptwalt-1 rivd-1 seab-4	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 _popgrv-2 possum1 rivd-2 seab-5	fish-1 fl-5 2gingin-3 harry-3 king-2 land-1 mela-3 milt-3 modo-2 mtb-3 modo-7 neer-11 neer-7 paga-1 pb-2 2pline-1 possum2 ruab-1 seab-6	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mod-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 nime-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1	ellen-5 fish-5 garden-1 guthr-3 keme-1 keolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 sandon-1	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 .seab-1 she-3	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lmeelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 lpearce-2 pline-7 raaf-3 seab-2 she-4	ellis-1 fl-2 3garden-4 guthr-6 kero-1 koolj~7 lyons-1 2mela-1 mhenry-2 minn~2 mpk03 mud-4 navb-4 neer-4 nwi1-2 paga-8 2pepb-1 pres-1 red1-1 seab-3 she-5	ellis-2 fl-3 gingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 mint-3 mtb-1 mud-5 nwer-1 neer-5 nwil-3 payne-1 pepgrv-1 ptwalt-1 rivd-1 seab-4 she-6	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 mud-6 neer-10 neer-6 oates-1 pb-1 .pepgrv-2 possum1 rivd-2 seab-5 shent-1	fish-1 fl-5 2gingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-7 paga-1 pb-2 2pline-1 possum2 ruab-1 seab-6 sint-1	fish-2 fl-6 Ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 syb-2	ellen-5 fish-5 garden-1 guthr-3 keme-1 keolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 she-2 tam-1	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seab-1 she-3 thom-2	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lesch-6 meelon-2 minn-1 mpk02 mud-3 navb-3 ner-3 nwil-1 paga-7 pparce-2 pline-7 raaf-3 seab-2 she-4 trig-1	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 mhenry-2 mpk03 mud-4 navb-4 navb-4 nwil-2 paga-8 pepb-1 pres-1 redl-1 seab-3 she-5 trig-2	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 2milt-1 mun-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 payne-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 seab-5 shent-1 trig-4	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 cpline-1 possum2 ruab-1 seab-6 sint-1 trig-5	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 sandon-1 she-2 tam-1 twin-11	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 .seab-1 she-3 thom-2 twin-2	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 lpearce-2 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 Zmela-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 navb-4 nwi1-2 paga-8 2pepb-1 pres-1 red1-1 seab-3 she-5 trig-2 twin-4	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 0milt-1 mud-5 neer-1 neer-5 nwil-3 payne-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 possum1 rivd-2 seab-5 shent-1 trig-4 twin-7	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-71 paga-1 pb-2 pline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wab1-1	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wab1-2
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wab1-3	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 nine-2 paga-5 pb-6 pline-5 raaf-1 she-2 tam-1 twin-11 wab1-4	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 .seab-1 she-3 thom-2 twin-2 wand-1	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lesch-6 meelon-2 minn-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 lpearce-2 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj-7 lyons-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 paga-8 2pepb-1 pres-1 redl-1 seab-3 she-5 trig-2 twin-4 warb-2	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 payne-1 pepgrv-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 neer-10 neer-6 oates-1 pb-1 _pepgrv-2 seab-5 shent-1 trig-4 trig-4 twin-7 warb-4	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 cpline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wab1-1 wari-2	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wab1-2 water-1
ellen-4 fish-4 fi-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wabl-3 water-2	ellen-5 fish-5 garden-1 guthr-3 keme-1 kkoolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 sandon-1 she-2 tam-1 twin-11 wabl-4 water-3	ellen-6 fl-1 garden-2 guthr-4 kcme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seab-1 she-3 thom-2 twin-2 twin-2 wand-1 water-4	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpkO2 mud-3 navb-3 neer-3 nwil-1 paga-7 lpearce-2 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 wate-rd3	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj-7 lyons-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 paga-8 2pepb-1 pres-1 red1-1 seab-3 she-5 trig-2 twin-4 warb-2 well-1	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 mint-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 payne-1 pepgrv-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 .pepgrv-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1	fish-1 fl-5 2gingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 2pline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2	flsh-2 fl-6 Jgolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wabl-1 wari-2 whill-3	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wab1-3 water-2 whill-5	ellen-5 fish-5 garden-1 guthr-3 keme-1 kkoolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seab-1 she-3 thom-2 twin-2 wand-1 water-4 white-2	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 watb-1 watb-1	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 mela-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 navb-4 neer-4 nwil-2 paga-8 2pepb-1 pres-1 red1-1 seab-3 she-5 trig-2 twin-4 warb-2 well-1 wirr-1	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 papyre-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 wirr-2	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 wonn-3	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 cpline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4	flsh-2 fl-6 Jgolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pbine-2 possum3 ruab-2 seab-7 smith-1 trig-6 wabl-1 wari-2 whill-3 wonn-5	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4 wonn-6
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wabt-3 water-2 whill-5 woodp-1	ellen-5 fish-5 garden-1 guthr-3 keme-1 kkolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1 woodp-2	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seab-1 she-3 thom-2 twin-2 wand-1 water-4 white-2 woodv-1	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 will-1 woodv-2	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 mela-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 neer-4 nwi1-2 paga-8 2pepb-1 pres-1 redl-1 seab-3 she-5 trig-2 twin-4 warb-2 well-1 wirr-1 yalg-1	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 payne-1 ptwalt-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 wirr-2 yalg-2	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 wonn-3 yalg-3	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 cpline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yalg-4	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wab1-1 wari-2 whill-3 wonn-5 yalg-5	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4 wonn-6 yalg-6
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wab1-3 water-2 whill-5 woodp-1 yalg-7	ellen-5 fish-5 garden-1 guthr-3 keme-1 kkolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1 woodp-2 yalg-8	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seab-1 she-3 thom-2 twin-2 wand-1 white-2 woodv-1 yallin-1	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 wate-1 will-1 twin-3	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 mela-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 neer-4 nwil-2 paga-8 Pepb-1 pres-1 redl-1 seab-3 she-5 trig-2 twin-4 warb-2 twin-4 warb-2 twin-1 yalg-1 yan-10	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 payne-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 wirr-2 yalg-2 yan-11	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 wonn-3 yalg-3 yan-12	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 cpline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yalg-4 yan-3	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wab1-1 wari-2 whil1-3 wonn-5 yalg-5 yan-14	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4 wonn-6 yalg-6 yan-15
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wab1-3 water-2 whill-5 woodp-1 yalg-7 yan-16	ellen-5 fish-5 garden-1 guthr-3 keme-1 kkolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1 woodp-2 yalg-8 yan-17	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seab-1 she-3 thom-2 twin-2 twin-2 wand-1 water-4 white-2 woodv-1 yallin-1 yan-18	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lmeelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 waterrdJ will-1 woodv-2 Lyan-1 yan-19	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 mela-1 mhenry-2 mpk03 mud-4 navb-4 neer-4 nwil-2 paga-8 Pepb-1 pres-1 redl-1 seab-3 she-5 trig-2 twin-4 warb-2 uwell-1 yalg-1 yan-10 yan-2	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 payne-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 wirr-2 yalg-2 yan-11 yan-20	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 possum1 rivd-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 wonn-3 yalg-3 yan-12 yan-21	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 cpline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yalg-4 yan-22	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wab1-1 wari-2 yalg-5 yan-14 yan-23	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4 wonn-6 yalg-6 yan-24
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wab1-3 water-2 whill-5 woodp-1 yalg-7 yan-16 yan-25	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1 yan-3 yan-3	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seab-1 she-3 thom-2 twin-2 wand-1 water-4 white-2 yan-18 yan-4	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lmeelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 waterrdJ will-1 woodv-2 lyan-1 yan-5	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 Pmela-1 minn~2 mpk03 mud-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 paga-8 2pepb-1 pres-1 redl-1 seab-3 she-5 trig-2 twin-4 warb-2 lwell-1 wirr-1 yalg-1 yan-10 yan-6 trig-5	ellis-2 fl-3 gingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 mud-5 neer-1 neer-5 nwil-3 payne-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 yalg-2 yan-11 yan-20 yan-8 boure C	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 possum1 rivd-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 wonn-3 yalg-3 yan-12 yan-9	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 cpline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 woon-4 yalg-4 yan-13 yan-22 yoon-1	fish-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 modo-3 mtb-4 modo-3 mtb-4 modo-3 plesch-2 possum3 ruab-2 seab-7 smith-1 trig-6 wab1-1 wari-2 whill-3 yan-14 yan-23 yoon-2 brick2	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4 wonn-6 yan-15 yan-24 yoon-3 brick3
ellen-4 fish-4 fi-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 neer-21 nine-1 paga-4 pb-5 pline-4 pb-5 pline-4 pb-5 svh-2 twin-10 wabl-3 water-2 whill-5 woodp-1 yalg-7 yan-16 yan-25 yule-1	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1 woodp-2 yalg-8 yan-17 yan-3 yule-2	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seab-1 she-3 thom-2 twin-2 wand-1 water-4 white-2 woodv-1 yan-18 yan-4 yule-3	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lesch-6 meelon-2 minn-1 mpk02 mud-3 navb-3 newr-3 nwil-1 paga-7 pparce-2 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 waterrdJ will-1 woodv-2 lyan-1 yan-5 yule-4	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 Pmela-1 mhenry-2 mpk03 mud-4 navb-4 navb-4 navb-4 navb-4 nwil-2 paga-8 pepb-1 pres-1 redl-1 seab-3 she-5 trig-2 twin-4 warb-2 twin-4 warb-2 twin-4 warb-2 yan-10 yan-2 yan-6 yule-5 bricte	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 2milt-1 mud-5 neer-1 nwil-3 payne-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 yalg-2 yan-11 yan-20 yan-8 boyan 01	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 wonn-3 yalg-3 yan-12 yan-21 yan-9 boyan 02	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 Ppline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yalg-4 yan-13 yan-22 yoon-1 2 brick1	flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wab1-1 wari-2 whill-3 wonn-5 yalg-5 yan-14 yan-23 poon-2 brick2 card11	flsn-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4 wonn-6 yalg-6 yan-15 yan-24 yoon-3 brick3 card12
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 neer-21 nine-1 paga-4 pb-5 pline-4 pb-5 pline-4 pb-5 ruab-4 she-1 svh-2 twin-10 wab1-3 water-2 whill-5 woodp-1 yalg-7 yalg-7 yalg-1 gaga-4 she-1 svh-2 twin-10 wab2 sub5 sub5 sub5 sub5 sub5 sub5 sub5 sub5	ellen-5 fish-5 garden-1 guthr-3 keme-1 kcolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 sandon-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1 woodp-2 yalg-8 yan-17 yan-3 yule-2 brick5	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 .seab-1 she-3 thom-2 twin-2 wand-1 water-4 white-2 woodv-1 yalin-1 yan-18 yan-4 yule-3 brick6	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 ppaga-7 ppaga-7 ppaga-7 ppaga-7 seab-2 she-4 trig-1 twin-3 warb-1 waterrdJ will-1 woodv-2 lyan-1 yan-5 yule-4 brick7	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 Zmela-1 mhenry-2 mpk03 mud-4 navb-4 navb-4 nwil-2 paga-8 Zpepb-1 pres-1 redl-1 seab-3 she-5 trig-2 twin-4 warb-2 Lwell-1 yalg-1 yan-2 yan-6 yule-5 brick8 card5	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 2milt-1 mud-5 neer-1 neer-5 nwil-3 payne-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 wirr-2 yalg-2 yan-11 yan-20 yan-8 boyan 01 buffer01	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 possum1 rivd-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 yan-21 yan-21 yan-9 lboyan 02 card1 card7	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-71 paga-1 pb-2 pline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yan-13 yan-22 yoon-1 2brick1 card0 card0	<pre>flsh-2 fl-6 gqolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wabl-1 wari-2 whill-3 wonn-5 yalg-5 yan-14 yan-23 poon-2 brick2 card11 card9</pre>	flsn-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4 wonn-6 yalg-6 yan-24 yoon-3 brick3 card12 cool 01
ellen-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 mclart-1 neer-21 nine-1 paga-4 pb-5 pline-4 pb-5 pline-4 pb-5 vuab-4 she-1 svh-2 twin-10 wab1-3 water-2 whill-5 yule-1 brick4 card13 card1 02	ellen-5 fish-5 garden-1 guthr-3 keme-1 koolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 nine-2 paga-5 pb-6 pline-5 raaf-1 sandon-1 she-2 tam-1 twin-11 wab1-4 water-3 white-1 yalg-8 yan-17 yan-3 yule-2 brick5 card2 card2	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 .seab-1 she-3 thom-2 twin-2 wand-1 water-4 white-2 woodv-1 yan-18 yan-4 yule-3 brick6 card3 crool 04	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lesch-6 lesch-6 lesch-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 lpearce-2 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 waterrdJ will-1 woodv-2 lyan-1 yan-5 yule-4 brick7 card4 ccol 0 0	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 Pmela-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-1 seab-3 she-5 trig-2 twin-4 warb-2 lwell-1 yan-10 yan-2 yan-6 yule-5 brick8 card5 cool 09	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 0milt-1 mud-5 neer-1 neer-5 nwil-3 payne-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 wirr-2 yalg-2 yan-8 boyan 01 buffer01 card6 ccol 11	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 yan-21 yan-21 yan-9 boyan 02 lcard1 card7 dard01	fish-1 fl-5 2gingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 pline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yan-13 yan-22 yoon-1 2brick1 card8 dard02	<pre>flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wabl-1 wari-2 whill-3 wonn-5 yalg-5 yan-14 yan-23 poon-2 brick2 card11 card9 dard03</pre>	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wab1-2 water-1 whill-4 wonn-6 yalg-6 yan-15 yan-24 yoon-3 brick3 card12 cool 01 gibson01
ellen-4 fish-4 fi-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 neer-21 nine-1 paga-4 pb-5 pline-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wab1-3 water-2 whill-5 yule-1 brick4 card13 cool 02 qibeop0	ellen-5 fish-5 garden-1 guthr-3 keme-1 kcolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 nine-2 paga-5 pb-6 pline-5 raaf-1 sandon-1 she-2 tam-1 twin-11 wab1-4 water-3 white-1 woodp-2 yalg-8 yan-17 yan-3 yule-2 brick5 card2 cool 03 2 buret 0	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 .seab-1 she-3 thom-2 twin-2 wand-1 water-4 white-2 yan-18 yan-4 yule-3 brick6 card3 cool 04 buret02	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 lesch-6 lesch-6 meelon-2 minn-1 mpkO2 mud-3 navb-3 neer-3 nwil-1 paga-7 lpearce-2 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 waterrdJ will-1 woodv-2 lyan-1 yan-5 yule-4 brick7 card4 cool 08 burst03	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj-7 lyons-1 Pmela-1 mhenry-2 mjnn-2 mjk03 mud-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 seab-3 she-5 trig-2 twin-4 warb-2 well-1 wirr-1 yan-10 yan-6 yule-5 brick8 card5 cool 09 burst04	ellis-2 fl-3 dgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 mud-5 neer-1 neer-5 nwil-3 payne-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 wirr-2 yalg-2 yan-11 yan-20 yan-8 boyan 01 buffer01 card6 cool 11 hymus01	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 ppossum1 rivd-2 seab-5 shent-1 trig-4 whill-1 wonn-3 yalg-3 yan-12 yan-9 boyan 02 card1 card7 dard01 hymus02	fish-1 fl-5 2gingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 2pline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yag-13 yan-22 yoon-1 2brick1 card10 card8 dard02 hymus03	<pre>flsh-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wabl-1 wari-2 whill-3 wonn-5 yalg-5 yan-14 yan-23 brick2 card11 card9 dard03 hymus04</pre>	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wab1-2 water-1 whill-4 wonn-6 yan-15 yan-24 yoon-3 brick3 card12 cool 01 gibson01 hymus05
ellen-4 fish-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wabl-3 water-2 whill-5 woodp-1 yalg-7 yan-16 yan-25 yule-1 brick4 card13 cool 02 gibson02	ellen-5 fish-5 garden-1 guthr-3 keme-1 kkoelj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 sandon-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1 woodp-2 yalg-8 yan-17 yan-3 yule-2 brick5 card2 cool 03 2hurst01	ellen-6 fl-1 garden-2 guthr-4 kcme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seab-1 she-3 thom-2 twin-2 wand-1 water-4 white-2 woodv-1 yallin-18 yan-4 yule-3 brick6 card3 cool 04 hurst02	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpkO2 mud-3 navb-3 neer-3 nwil-1 paga-7 lpearce-2 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 wate-1 yan-19 yan-5 yule-4 brick7 card4 cool 08 hurstO3 kellvO1	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj-7 lyons-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 navb-4 neer-4 nwil-2 paga-8 2pepb-1 pres-1 redl-1 seab-3 she-5 trig-2 twin-4 warb-2 warb-2 well-1 wirr-1 yalg-1 yan-6 yule-5 brick8 card5 cool 09 hurst04 kellv02	ellis-2 fl-3 fgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 mud-5 neer-1 neer-5 nwil-3 payne-1 pepgrv-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 wirr-2 yalg-2 yan-11 yan-20 yan-8 boyan 01 buffer01 card6 cool 11 hymus01 kemb01	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 milt-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 wonn-3 yalg-3 yan-21 yan-9 bboyan 02 card1 card7 dard01 hymus02 lamb1	fish-1 fl-5 2gingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 2pline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yalg-4 yan-13 yan-22 plorick1 card10 card8 dard02 hymus03 lamb2	flsh-2 fl-6 Jgolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wabl-1 wari-2 whill-3 wonn-5 yalg-5 yan-14 yan-23 yoon-2 brick2 card11 card9 dard03 hymus04 low01	<pre>flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 whill-4 wonn-6 yalg-6 yan-15 yan-24 yoon-3 brick3 card12 cool 01 gibson01 hymus05 low04</pre>
ellen-4 fish-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wabl-3 water-2 whill-5 woodp-1 yalg-7 yan-16 yan-25 yule-1 brick4 card13 cool 02 gibson02 hymus06	ellen-5 fish-5 garden-1 guthr-3 keme-1 kkoolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 sandon-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1 woodp-2 yalg-8 yan-17 yan-3 yule-2 brick5 card2 cool 03 2hurst01 iron01 low06b	ellen-6 fl-1 garden-2 guthr-4 kcme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seab-1 she-3 thom-2 twin-2 wand-1 water-4 white-2 woodv-1 yallin-1 yan-18 yan-4 yule-3 brick6 card3 cool 04 hurst02 iron02 low07	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpkO2 mud-3 navb-3 neer-3 nwil-1 paga-7 lpearce-2 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 wate-1 yan-19 yan-5 yule-4 brick7 card4 cool 08 hurst03 kellyO1 lowO8	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj-7 lyons-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 navb-4 neer-4 nwil-2 paga-8 2pepb-1 pres-1 red1-1 seab-3 she-5 trig-2 twin-4 warb-2 twin-4 warb-2 twin-4 warb-2 twin-4 yalg-1 yalg-1 yalg-1 yalg-1 yalg-5 brick8 card5 cool 09 hurst04 keliy02 low09a	ellis-2 fl-3 fgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 mud-5 neer-1 neer-5 nwil-3 payne-1 pepgrv-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 wirr-2 yalg-2 yan-11 yan-20 yan-8 boyan 01 buffer01 card6 cool 11 hymus01 kemp01 low09b	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 ppossum1 rivd-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 wonn-3 yalg-3 yan-21 yan-9 Looyan 02 Lcard1 card7 dard01 hymus02 lamb1 low10a	fish-1 fl-5 2gingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 2pline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yalg-4 yan-22 yoon-1 2brick1 card10 card8 dard02 hymus03 lamb2 low10b	flsh-2 fl-6 Jgolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wabl-1 wari-2 whill-3 wonn-5 yalg-5 yalg-5 yalg-5 yalg-2 brick2 card11 card9 dard03 hymus04 low01 low12a	flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 modo-4 mtb-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4 wonn-6 yalg-6 yan-15 yan-24 yoon-3 brick3 card12 cool 01 gibson01 hymus05 low04 low12b
ellen-4 fish-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wab1-3 water-2 whill-5 woodp-1 yalg-7 yan-16 yan-25 yule-1 brick4 card13 cool 02 gibson02 hymus06 low06a low13a	ellen-5 fish-5 garden-1 guthr-3 keme-1 kkolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 sandon-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1 woodp-2 yalg-8 yan-3 yule-2 brick5 card2 cool 03 2hurst01 iron01 low06b low13b	ellen-6 fl-1 garden-2 guthr-4 kcme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 paga-6 pearce-1 pline-6 raaf-2 seab-1 she-3 thom-2 twin-2 twin-2 wand-1 water-4 white-2 woodv-1 yallin-1 yan-18 yan-4 yule-3 brick6 card3 cool 04 hurst02 low07 low14a	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 lpearce-22 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 watb-1 watb-1 watb-1 wate-1 yan-19 yan-5 yule-4 brick7 card4 cool 08 hurst03 kelly01 low08 rowe01	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 mmela-1 mhenry-2 minn~2 mpk03 mud-4 navb-4 navb-4 neer-4 nwil-2 paga-8 2pepb-1 pres-1 red1-1 seab-3 she-5 trig-2 twin-4 warb-2 twin-4 warb-2 lwel1-1 yan-10 yan-2 yan-6 yule-5 brick8 card5 cool 09 hurst04 kel1y02 low09a rowe02	ellis-2 fl-3 fgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 payne-1 pepgrv-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 yan-11 yan-20 yan-8 boyan 01 buffer01 card6 cool 11 hymus01 kemp01 low09b smith02	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 wonn-3 yalg-3 yan-12 yan-9 Looyan 02 lcard1 card7 dard01 hymus02 lamb1 low10a smith03	fish-1 fl-5 2gingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 2pline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yalg-4 yan-13 yan-22 poor 1 2brick1 card10 card8 dard02 hymus03 lamb2 low10b smith04	flsh-2 fl-6 Jgolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wabl-1 wari-2 whill-3 wonn-5 yalg-5 yan-14 yan-23 yoon-2 brick2 card11 card9 dard03 hymus04 low01 low12a talb1	<pre>flsn-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4 wonn-6 yalg-6 yan-15 yan-24 yoon-3 brick3 card12 cool 01 gibson01 hymus05 low04 low12b talb10</pre>
ellen-4 fish-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wab1-3 water-2 whill-5 yule-1 brick4 card13 cool 02 gibson02 hymus06 low06a low13a talb11	ellen-5 fish-5 garden-1 guthr-3 keme-1 kkolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1 woodp-2 yalg-8 yan-17 yan-3 yule-2 brick5 card2 cool 03 churst01 iron01 low06b low13b	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 pline-6 pearce-1 pline-6 reaf-2 seab-1 she-3 thom-2 twin-2 twin-2 wand-1 water-4 white-2 woodv-1 yallin-1 yan-18 yan-4 yule-3 brick6 card3 cool 04 hurst02 low07 low14a talb13	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 warb-1 warb-1 warb-1 warb-1 yan-19 yan-5 yule-4 brick7 card4 cool 08 hurst03 kelly01 low08 rowe01 talb2	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 mela-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 neer-4 nwil-2 paga-8 2pepb-1 pres-1 pres-1 red1-1 seab-3 she-5 trig-2 twin-4 warb-2 twin-4 warb-2 well-1 yan-10 yan-2 yan-6 yule-5 brick8 card5 cool 09 hurst04 kelly02 low09a rowe02 talb3	ellis-2 fl-3 fgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 papgrv-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 wirr-2 yalg-2 yan-11 yan-20 yan-8 boyan 01 buffer01 card6 cool 11 hymus01 kemp01 low09b smith02 talb4	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 yan-9 bebyan 02 card1 card7 dard01 hymus02 lamb1 low10a smith03 talb5	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 cpline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yalg-4 yan-13 yan-22 yoon-1 2brick1 card10 card8 dard02 hymus03 lamb2 low10b smith04 talb6	fish-2 fl-6 Jgolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wab1-1 wari-2 whill-3 wonn-5 yalg-5 yan-14 yan-23 yoon-2 brick2 card11 card9 dard03 hymus04 low01 alb1 talb7	<pre>flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4 wonn-6 yalg-6 yan-15 yan-24 yoon-3 brick3 card12 cool 01 gibson01 hymus05 low04 low12b talb10 talb8</pre>
ellen-4 fish-4 fish-4 fl-9 guthr-2 harry-6 koolj-3 lesch-3 meal-1 mela-7 milt-6 modo-5 muck-1 neer-21 nine-1 paga-4 pb-5 pline-4 possum5 ruab-4 she-1 svh-2 twin-10 wab1-3 water-2 whill-5 woodp-1 yalg-7 yan-16 yan-25 yule-1 brick4 card13 cool 02 gibson02 hymus06 low06a low13a talb1 talb9	ellen-5 fish-5 garden-1 guthr-3 keme-1 kkolj-4 lesch-4 meal-2 mela-8 milt-7 modo-6 muck-2 navb-1 neer-22 paga-5 pb-6 pline-5 raaf-1 she-2 tam-1 twin-11 wabl-4 water-3 white-1 woodp-2 yalg-8 yan-17 yan-3 yule-2 brick5 card2 cool 03 churst01 low06b low13b talb12 waro 01	ellen-6 fl-1 garden-2 guthr-4 keme-2 koolj-5 lesch-5 meelon-1 mela-9 milt-8 mpk01 mud-2 navb-2 neer-23 npres-1 pline-6 pearce-1 pline-6 reaaf-2 seab-1 she-3 thom-2 twin-2 twin-2 wand-1 water-4 white-2 woodv-1 yallin-1 yan-18 yan-4 yule-3 brick6 card3 cool 04 hurst02 low07 low14a tabl3 waro 02	ellen-7 fl-10 2garden-3 guthr-5 keme-3 koolj-6 lesch-6 meelon-2 mhenry-1 minn-1 mpk02 mud-3 navb-3 neer-3 nwil-1 paga-7 pline-7 raaf-3 seab-2 she-4 trig-1 twin-3 warb-1 wate-13 warb-1 waterrdJ will-1 woodv-2 lyan-1 yan-5 yule-4 brick7 card4 cool 08 hurst03 kelly01 low08 rowe01 talb2 waro 03	ellis-1 fl-2 Bgarden-4 guthr-6 kero-1 koolj~7 lyons-1 mela-1 mhenry-2 minn-2 mpk03 mud-4 navb-4 neer-4 nwil-2 paga-8 2pepb-1 pres-1 pres-1 pres-1 red1-1 seab-3 she-5 trig-2 twin-4 warb-2 warb-2 warb-2 yan-6 yule-5 brick8 card5 cool 09 hurst04 kelly02 low09a rowe02 talb3 waro 04	ellis-2 fl-3 fgingin-1 harry-1 kero-2 koon-1 lyons-2 mela-10 milt-1 minn-3 mtb-1 mud-5 neer-1 neer-5 nwil-3 papgrv-1 ptwalt-1 rivd-1 seab-4 she-6 trig-3 twin-5 warb-3 well-2 wirr-2 yalg-2 yan-11 yan-20 yan-8 boyan 01 buffer01 card6 cool 11 hymus01 kemp01 low09b smith02 talb4 waro 05	ellis-3 fl-4 gingin-2 harry-2 king-1 koon-2 m53 mela-2 modo-1 mtb-2 mud-6 neer-10 neer-6 oates-1 pb-1 pepgrv-2 seab-5 shent-1 trig-4 twin-7 warb-4 whill-1 yan-9 bebyan 02 card1 card7 dard01 hymus02 lamb1 low10a smith03 talb5 waro 06	fish-1 fl-5 cgingin-3 harry-3 king-2 land-1 manea-1 mela-3 milt-3 modo-2 mtb-3 mud-7 neer-11 neer-7 paga-1 pb-2 cpline-1 possum2 ruab-1 seab-6 sint-1 trig-5 twin-8 wari-1 whill-2 wonn-4 yalg-4 yan-13 yan-22 yoon-1 2brick1 card10 card8 dard02 hymus03 lamb2 low10b smith04 talb6 welr 01	fish-2 fl-6 ggolf-1 harry-4 koolj-1 lesch-1 manea-2 mela-5 milt-4 modo-3 mtb-4 mud-9 neer-2 neer-8 paga-2 pb-3 pline-2 possum3 ruab-2 seab-7 smith-1 trig-6 wab1-1 wari-2 whill-3 wonn-5 yalg-5 yan-14 yan-23 yoon-2 brick2 card11 card9 dard03 hymus04 low01 alb1 talb7 welr 02	<pre>flsh-3 fl-7 guthr-1 harry-5 koolj-2 lesch-2 manea-3 mela-6 milt-5 myalup-2 neer-20 neer-9 paga-3 pb-4 pline-3 possum4 ruab-3 seab-8 svh-1 twin-1 wabl-2 water-1 whill-4 wonn-6 yalg-6 yan-15 yan-24 yoon-3 brick3 card12 cool 01 gibson01 hymus05 low04 low12b talb10 talb8 wicher01</pre>

Appendix 4.

Plot location, altitude and community type.

SITE	LATITUDE	LONGITUÐE	ALTITUDE	СОММ. ТҮРЕ
			(m)	
ACTON-1	-33.7515	115.2231	40	1a
AMBR-1	-33.7386	115.3208	35	1b
AMBR-2 AMBR-3	-33.7381 -33.7372	115.3236	35	4
AMBR-4	-33.7347	115.3258	35	1b
AMBR-5	-33.7361	115.3350	35	2 1b
AMBR-0 AMBR-7	-33.7408	115.3225	35	2
AMBR-9	-33.7376	115.3214	35	16
AMBRAL-1	-33.7392	115.3231	35 40	16 20a
APBF-2	-31.9806	115.9658	40	20a
AUSTB-1	-32.6156	115.7774	5	7
AUSTB-2 AUSTB-3	-32.6148 -32.6158	115.7779 115.7792	5	11
AUSTB-4	-32.6111	115.7758	5	5
AUSTB-5	-32.6035	115.7806	5	5
AUSTB-6	-32.6018 32.6019	115.7778	5	5
AUSTB-8	-32.6438	115.7811	5	7
AUSTRA-1	-33.2768	115.7345	20	21a
BAMBUN-1	-31.4280	115.8938	20	7
BAMBUN-2 BAMBUN-3	-31.4276	115.8962	20	7
BANK-1	-32.2542	115.8859	20	22
BANK-1A	-32.2563	115.8887	20	13
BANK-2 BANK-3	-32.2554 -32.2545	115.8893	20	23a 23a
BOLD-1	-31.9526	115.7620	20	24
BOLD-2	-31.9533	115.7643	20	24
BOLD-3 BOLD-4	-31.9540	115.7623	20 50	24 24
BOYAN01	-33.4769	115.7607	90	21 b
BOYAN02	-33.4593	115.7835	100	1a 2a
BRICK1 BRICK2	-32.2347	115.9983	40	20b
BRICK3	-32.2320	116.0018	40	3a
BRICK4	-32.2309	116.0019	40	9
BRICKS	-32.2319	115.9992	40	3a 3a
BRICK7	-32.2271	115.9971	40	3a
BRICK8	-32.2286	115.9954	40	3a
BRIX-1	-32.0306	115.9712	15	8 3a
BRIX-3	-32.0318	115.9704	15	8
BRIX-4	-32.0320	115.9695	15	8
BRIX-5	-32,0333	115.9700	15	3a 21b
BULL-1	-31.6294	116.0240	75	28
BULL-10	-31.6262	116.0225	75	28
BULL-11 BULL-12	-31.6243	116.0238	75 60	28
BULL-12 BULL-3	-31.6330	116.0202	75	23a
BULL-4	-31.6320	116.0196	75	28
BULL-5 BULL-6	-31.6283	116.0144	75	5 7
BULL-7	-31.6244	116.0156	75	5
BULL-8	-31.6250	116.0153	75	7
BULL-9 BULLER-1	-31.6282	116.0203	20	28 21a
BULLER-2	-32.8735	115.8277	20	21a
BULLER-3	-32.8785	115.8272	20	21c
BURN-1 BURN-2	-31.7367 -31.7367	115.7297	5	29a 29a
BURNRD01	-32.7223	115.9416	50	20b
BURNRD02	-32.7280	115.9417	50	3b
BYRD-I C58-1	-33.1085 -32.8616	115.8085	20	у 4
C58-2	-32.8634	115.7626	10	13
C58-3	-32.8627	115.7636	10	8
C58-4	-32.8611	115.7690	10 20	10a 11
C71-2	-33,4061	115.6251	20	21a
C71-3	-33.4381	115.6094	20	21a
C71-4	-33.4389	115.6067	20 20	25 21h
CAPEL-2	-33.5791	115.5450	20	21b

SITE	LATITUDE	LONGITUDE	ALTITUDE	СОММ. ТҮРЕ
			(m)	
CAPEL-3	-33.5655	115,5490	20	4
CAPEL-4	-33.5770	115.5458	20	13
CAPEL-5	-33.5773	115.5453	20	15
CAPEL-6	-33.5713	115.5453	20	12
CAPEL-7	-33.5728	115.5465	20	21a 12
CAPEL-8	-33.5724	115.5418	20	12
CARAB-1	-32.6374	115.7190	5	15
CARAB-2	-32.6388	115.7206	5	7
CARAB-3	-32.6394	115.7194	5	11
CARB-1	-33.7059	115.1870	20	Ib 15
CARB-3	-33 7049	115.1830	20	21b
CARB-4	-33,7063	115.1874	20	16
CARD1	-32.2441	115.9881	40	20b
CARD10	-32.2496	115.9838	40	6
CARDII	-32.2480	115.9841	40	6
CARD12	-32.2434	115.9842	40	30 35
CARD2	-32.2450	115.9869	40	20b
CARD3	-32.2468	115.9863	20	21a
CARD4	-32.2469	115.9864	40	6
CARD5	-32.2497	115.9864	40	20b
CARD6	-32.2495	115.9863	40	20b
CARD7	-32.2496	115.9852	40	21a 20h
CARD8	-32.2508	115.9841	40	200 20h
CHIDPT-1	-32.0172	115.7781	10	24
CLIF-1	-32.8190	115.6959	40	21a
CLIF-2	-32.8171	115.6874	35	26a
CLIF-3	-32.8165	115.6877	35	26a
COOL01	-32.2833	115.7878	15	17
COOL02	-32.2833	115.7858	15	24
COOL03	-32.2020	115.7653	5	17
COOL08	-32.3292	115.7671	10	24
COOL09	-32.3294	115.7677	10	19
COOL11	-32.3287	115.7682	10	17
CORON-1	-32.8701	115.7202	35	21a
CORON-2	-32.8706	115.7265	40	25
CRAMPT-1	-33.0232	115.7450	30	21a 21a
DARD01	-33,4361	115.7974	120	1a
DARD02	-33.4079	115.7957	70	21b
DARD03	-33.4317	115.7980	130	1a
DEJONG-A	-32.1656	115.8906	30	22
DEJONG-C	-32.1667	115.8922	30	210
DEPOI-I DRAIN-1	-32,8198	115 7500	10	28 21a
DUCK-1	-32.2917	115.8850	40	3c
DUCK-2	-32.2915	115.8841	40	30
DUCK-3	-32.2915	115.8854	40	9
DUNS-1	-33.6051	115.1003	15	36
ELDO-I	-31.3585	115.7573	20	230
ELLEN-1 ELLEN-2	-31.7550	116.0350	20	8
ELLEN-3	-31.7564	116.0331	20	8
ELLEN-4	-31.7567	116.0306	20	8
ELLEN-5	-31.7564	116.0311	20	8
ELLEN-6	-31.7556	116.0350	20	30
ELLEN-7	+31.7331	115.0371	20	0 17
ELLIS-I FUUS-2	-32.9303	115 7129	5	17
ELLIS-3	-32.9306	115.7153	5	18
FISH-1	-33.7314	115.3884	20	7
FISH-2	-33.7313	115.3890	20	7
FISH-3	-33.7311	115.3882	20	10a
FISH-4	-33.7350	115.3883	20	10a
r1011-3 FL_1	-33,7300	115.5608	20 20	2 A
FL-10	-32.1703	115.9347	20	12
FL-2	-32.1585	115.9511	20	10a
FL-3	-32.1642	115.9496	20	8
FL-4	-32.1663	115.9508	20	21a
FL-5 FL-6	-32.1563	115.9432	20	21c
FL-7	-32.1374 -32.1572	115.9499	20	210
				~

.
SITE	LATITUDE	LONGITUDE	ALTITUDE	СОММ. ТҮРЕ
			(m)	
FL-9	-32.174 1	115.9341	20	4
GARDEN-1	-32,1686	115.6714	5	30a 29a
GARDEN-2	-32.1743	115.6600	5	30a
GARDEN-3 GARDEN-4	-32.2051	115.6812	1	30a
GIBSON01	-33,6291	115.6461	70	21b
GIBSON02	-33.6370	115.6512	90	la
GINGIN-1	-31.4050	115,9114	20	7
GINGIN-2 GINGIN-3	-31.4052	115.9108	20	7
GOLF-1	-31.8292	115.8347	60	20a
GUTHR-1	-33.0807	115.7769	20	4
GUTHR-2	-33.0822	115.7748	20	21a
GUTHR-4	-33.0804	115.7795	20	5
GUTHR-5	-33.1094	115.7417	15	21a
GUTHR-6	-33.0929	115.7825	20	21a 28
HARRY-1	-32.1720	115.8302	20	28
HARRY-3	-32.1741	115.8292	20	5
HARRY-4	-32.1727	115.8403	20	23a 21a
HARRY-5	-32.1702	115.8372	20	11
HURST01	-32.0814	115.8875	30	23a
HURST02	-32.0819	115.8889	30	23a
HURST03	-32.0811	115.8822	30	23a 23a
HURST04	-32.0781	115,8833	30	23a 11
HYMUS02	-32.3483	115.8564	50	11
HYMUS03	-32.3501	115.8578	50	21c
HYMUS04	-32.3496	115.8593	50	21c
HYMUS05	-32.3510	115.8631	50	11
IRON01	-33.8148	115.2203	90	10b
IRON02	-33.8137	115.2212	90	10b
KELLY01	-33.5768	115.6887	70	1a 21h
KELLY02 KEME-1	-33,2157	115.7369	30	25
KEME-2	-33.2160	115.7398	25	21a
KEME-3	-33.2252	115.7404	15	210
KEMPUI KERO-1	-33,7000	115.7999	20	24
KERO-2	-32.2945	115.7983	20	24
KING-1	-31.9691	115.8357	20	28
KING-2	-31.9607	115.8286	20	4
KOOLJ-2	-32.7293	115.7140	5	21a
KOOLJ-3	-32.7268	115.7234	5	21a
KOOLJ-4	-32.7316	115.7234	5	21a 3h
KOOLJ-5	-32,7563	115.7350	5	10a
KOOLJ-0 KOOLJ-7	-32.7554	115.7356	5	10a
KOON-1	-31.8389	115.8675	70	20a
KOON-2	-31.8361	115.8681	30	20a 3a
LAMB1 LAMB2	-32.1815	116.0053	30	3a
LAND-1	-31.8208	115.8503	60	20a
LESCH-1	-33.2423	115.6887	5	30b 30b
LESCH-2 LESCH-3	-33.2212	115.6839	5	30b
LESCH-4	-33.2013	115.6857	5	30b
LESCH-5	-33.2003	115.6897	5	30b
LESCH-6	-33.2003	115.6911	5	210
LOW01 LOW04	-32.3296	115.9033	15	21a
LOW06A	-32.3215	115.9079	15	21c
LOW06B	-32.3214	115.9098	15	21c 21c
LOW07	-32.3220	115.9154	15	5
LOW09A	-32.3263	115.9225	15	5
LOW09B	-32.3269	115.9222	15	5
LOW10A	-32.3371	115.9106	15	21a 11
LOWI0B LOWI2A	-32.3394	115.9037	15	21a
LOW12B	-32.3393	115.9056	15	21a
LOW13A	-32.3489	115.9009	15	21a 23a
LOM13B	-32.3300	112.6990	1.5	2.70

.

SITE	LATITUDE	LONGITUDE	ALTITUDE (m)	СОММ. ТҮРЕ
LOWIAA	20.2601	115 0005		
LYONS-1	-32.3301	115.8927	15	4
LYONS-2	-32.9813	115.7523	20 50	4 25
M53	-31.9775	115.9881	99	20a
MANEA-1	-33.3690	115.6591	30	9
MANEA-2	-33.3681	115.6621	30	21a
MANEA-3	-33.3701	115.6576	30	21b
MEAL-1	-32.0938 -32.6772	115.7054	5	15
MEAL-2	-32.6807	115.6875	20	26h
MEELON-1	-32.6905	115.9349	40	8
MEELON-2	-32.6904	115.9347	40	8
MELA-I	-31.6733	115.8939	60	4
MELA-IV MELA-IV	-31.6721	115.9245	60 70	22
MELA-3	-31.6717	115.8959	80	230 23h
MELA-5	-31.6678	115.8941	70	230
MELA-6	-31.6658	115.8935	75	23b
MELA-7	-31.6900	115.9044	60	23b
MELA-8	-31.6956	115.9056	60	23b
MELA-9 MUENDV 1	-31.6722	115.9276	60	23b
MHENRY-2	-32.0330	115.8589	5	300
MILT-1	-31.4010	115.6949	45	5
MILT-2	-31.3959	115.7992	55	13
MILT-3	-31.3958	115.7962	40	23b
MILT-4	-31.4095	115.6914	60	28
MILT-5	-31.3978	115.7914	60	14
MILT-5 MILT-7	-31,3935	115.7816	60	21a
MILT-8	-31 4001	115.7095	60	230
MINN-1	-33.4738	115.5612	20	250
MINN-2	-33.4733	115.5617	20	25
MINN-3	-33.4789	115.5623	20	25
MODO-1	-32.2377	115.8951	20	4
MODO-2 MODO-3	-32.2280	115.8966	20	210
MODO-4	-32.2304	115.9022	20	239
MODO-5	-32.2246	115.9018	20	23a 23a
MODO-6	-32.2261	115.8984	20	4
MPK01	-31.6636	115.9200	70	23b
MPK02	-31.6767	115.9070	70	22
MPK03 MTB-1	-31.0799	115.8970	70	23b
MTB-2	-32.1713	115.7809	30 20	24 24
MTB-3	-32.1712	115.7777	20	24
MTB-4	-32.1601	115.7811	20	24
MTB-5	-32.1586	115.7824	20	17
MUCK-1	-31.3470	115.7815	50	23b
MUCK-2	-31.3432	115.7798	50	7
MUD-3	-32.2968	115 9488	40	8
MUD-4	-32.2984	115.9636	40	3a
MUD-5	-32.2981	115.9608	40	3a
MUD-6	-32.2961	115.9464	40	8
MUD-7	-32.2969	115.9451	40	8
MUD-9 MYALUP-2	-32.2979	115.9600	40	8
NAVB-1	-32.1645	115.7679	5	16
NAVB-2	-32.1645	115.7681	5	29a
NAVB-3	-32.1715	115.7709	5	24
NAVB-4	-32.1720	115.7711	5	24
NEER-I	-31.6925	115.7548	30	24
NEER-11	-31 6418	115.7351	70	24
NEER-2	-31.6922	115.7429	30	24 28
NEER-20	-31.7110	115.7506	50	28
NEER-21	-31.7118	115.7559	70	28
NEER-22	-31.7108	115.7598	70	28
NEER-23	-31.7108	115.7591	70	28
NEER-4	-31.0830	115.7380	30 20	28
NEER-5	-31.6823	115.7446	30	28 28
NEER-6	-31.7000	115,7448	30	28
NEER-7	-31.6417	115.7188	30	24
NEER-8	-31.6413	115.7189	30	28
NEEK-Y	-31.6541	115.7328	70	24

SITE	LATITUDE	LONGITUDE	ALTITUDE	СОММ. ТҮРЕ
			(Ш)	
NINE-1	-32,7365	115.7775	20	21a
NINE-2	-32.7386	115.7780	10	21a
NPRES-1	-32.8364	115.6427	40	290 29h
NWIL-1	-31.3840	115.5606	40	26b
NWIL-2 NWIL-3	-31.3828	115.5605	50	29b
OATES-1	-33.6869	115.5576	80	21b
PAGA-1	-32.4465	115.8016	10	5
PAGA-2	-32.4547	115.8020	10	13
PAGA-3	-32,4565	115.7998	10	21a
PAGA-4	-32.4304	115.7833	10	17
PAGA-6	-32.4395	115.7839	10	25
PAGA-7	-32.4394	115.7854	20	21a
PAGA-8	-32.4528	115.7825	10	4
PAYNE-1	-33,7542	115.1944	5	19
PB-7	-32.3858	115.7352	5	29b
PB-3	-32.3836	115.7354	5	29b
PB-4	-32.3901	115.7405	5	290 29b
PB-5	-32.3868	115.7315	5	19
PB-6 PEARCE-1	-32.3794	116.0303	20	6
PEARCE-2	-31.6667	116.0294	20	3c
PEPB-1	-33.5402	115.5125	15	30b
PEPGRV-1	-31.9944	115.7714	6	30a 30a
PEPGRV-2	-31.9936	115,7714	50	23b
PLINE-I PLINE-2	-31,3308	115.9135	70	23b
PLINE-2 PLINE-3	-31.5625	115.8625	50	21a
PLINE-4	-31.5600	115.8625	50	4
PLINE-5	-31.5605	115.8437	50	2 22
PLINE-6	-31.5601	115.8425	50	21c
PLINE-7	-31.3365	115 2368	5	16
POSSUM2	-33,6651	115.2355	5	16
POSSUM3	-33.6604	115.2380	10	30b
POSSUM4	-33.6616	115.2377	5	30b 17
POSSUM5	-33.6701	115.2313	20	29a
PRES-I PTWAIT_1	-32.0186	115.7856	20	10
RAAF-1	-31.4782	115.8584	50	23b
RAAF-2	-31.4787	115.8220	70	23b
RAAF-3	-31.4792	115.7906	20	230 21a
REDL-1	-33.0478	115.7805	20	12
RIVD-2	-32.9918	115.7874	25	21a
ROWE01	-32.3504	115.8908	30	11
ROWE02	-32.3505	115.8931	30	4 21h
RUAB-1	-33,6456	115.5061	20	210
RUAD-2 RUAB-3	-33.6423	115.5066	20	13
RUAB-4	-33.6471	115.5083	20	7
SANDON-1	-32.0308	115.8706	10	16
SEAB-1	-31.2858	115.4473	10	29b
SEAB-2 SEAB-3	-31.2879	115.4498	10	29b
SEAB-4	-31.2979	115.4566	10	29a
SEAB-5	-31.2998	115.4574	10	29a
SEAB-6	-31.3018	115.4716	10	28
SEAB-7	-31.3316	115.4936	10	290 29a
SEAB-8 SHE-1	-31.2874	115.6373	60	26b
SHE-2	-31.4291	115.6493	50	28
SHE-3	-31.4277	115.6496	50	26b
SHE-4	-31.4037	115.6145	50	26a 26a
SHE-5	-31.4040	115.6143	30 40	26b
SHE-6 Shent-1	-31.4103	115.7978	20	28
SINT-1	-31.5876	115.7939	50	23b
SMITH-1	-33.7976	115.2921	70	105
SMITH02	-33.7974	115.2895	70	1a 10
SMITH03	-33.8017	112.2961	70 60	10h
5M11H04 SVH-1	-31,6604	115.7744	113	26a
SVH-2	-31.6615	115.7740	90	27
TALB1	-31.8733	116.0469	50	3c

SITE	LATITUDE	LONGITUDE	ALTITUDE	СОММ. ТҮРЕ
			(m)	
TALB10	-31,8736	116 0433	50	200
TALB11	-31.8725	116.0444	50	20c
TALB12	-31.8822	116.0464	50	3c
TALBIS	-31.8819	116.0464	50	30
TALB3	-31.8725	116.0492	50	20c 20c
TALB4	-31.8714	116.0469	50	200 30
TALB5	-31.8719	116.0469	50	20c
TALBO TALB7	-31,8697	116.0469	50	20c
TALB8	-31.8703	116.0439	50	20c
TALB9	-31.8711	116.0425	50	20c
IAM-I THOM-2	-32.3196	115.8075	30	21a
TRIG-1	-31.8794	115.8381	20	24 29b
TRIG-2	-31.8830	115.7570	10	29a
TRIG-3	-31.8714	115.7596	10	28
TRIG-5	-31.8743	115.7619	10	28
TRIG _r 6	-31.8748	115.7586	10	24 24
TWIN-1	-31.7197	116.0098	20	6
TWIN-10 TWIN 11	-31.7270	116.0111	20	15
TWIN-11 TWIN-2	-31.7260	116.0110	20	11
TWIN-3	-31.7245	116.0140	20	6
TWIN-4	-31.7240	116.0146	20	6
TWIN-5 TWIN 7	-31.7251	116.0175	20	15
TWIN-8	-31.7243	116.0138	20	21c
WABL-1	-31.4045	115.6770	20 60	210 26a
WABL-2	-31.4050	115.6764	40	26b
WABL~3 WABL~4	-31.4042	115.6770	40	26b
WAND-1	-32.2010	115.8754	50 30	28 23a
WARB-1	-31.7350	115.9445	70	23a
WARB-2 WARB-3	-31.7342	115.9441	70	22
WARB-4	-31.7569	115.9495	70 60	23a
WARI-1	-31.8369	115.8128	30	28
WARI-2	-31.8447	115.8139	30	28
WARO01 WARO02	-32.7904 -32.7897	115.8948	20	3b 25
WARO03	-32.8122	115.9024	20	8
WARO04	-32.8112	115.9025	20	8
WARO05	-32.8136	115.9045	20	10a
WATER-1	-33.3312	115.7580	20	3a 13
WATER-2	-33.3295	115.7590	20	13
WATER-3	-33.3309	115.7590	20	3c
WATERRD1	-33,3308 -31,4769	115.7578	20 70	8
WELL-1	-32.2818	115,8214	20	28 21a
WELL-2	-32.2773	115.8303	20	21a
WELROI WELRON	-33.0538	115.8131	20	9
WHILL-1	-32.6925	115.8131	20	9 20h
WHILL-2	-32.6918	115.6114	20	29b
WHILL-3	-32.6918	115.6190	20	27
WHILL-5	-32.6915	115.6195	10	27
WHITE-1	-31.8242	115.9394	20	200 23a
WHITE-2	-31.8273	115.9416	30	4
WICHEROI WILL-1	-33.7387	115.4833	60	la
WILLO2	-33.7192	115.5180	50 70	10b
WILL03	-33.7016	115.5326	60	10b
WILLO4	-33.7013	115.5500	70	1a
WIRR-2	-31.7408 -31.7302	115.8722	60 60	23a
WONN-3	-33.6673	115.5804	20	23a 9
WONN-4	-33.6670	115.5701	20	105
WONN-5 WONN-6	-33.6585	115.5405	40	106
WONN01	-33.6678	115.5267	40 20	10b
WONN02	-33.6674	115.5823	20	16
WOODP-1	-32.1310	115.7559	5	30a
wOODP-2	-32.1329	115.7592	5	30a

SITE	LATITUDE	LONGITUDE	ALTITUDE	COMM. TYPE
			(m)	
			(***)	
WOODV-1	-31,7842	115.7817	40	28
WOODV-2	-31.7819	115.7803	40	28
YALG-1	-32.9149	115.6900	20	26b
YALG-2	-32,9155	115,6908	20	26b
YALG-3	-32 91 57	115.6927	40	27
YALG-4	-32,9156	115 6933	40	27
YALG-5	-32 9165	115.6949	30	27
YALG-6	-32 9170	115 6948	30	26b
YALG.7	-32 9179	115 6978	20	26b
YALG-8	-32,9169	115 6983	20	27
YALLINI	-33 6716	115 1343	20	1b
VAN-1	-31 5628	115 6961	20	26b
VAN-10	-31 5471	115 7189	70	26b
VAN 11	-31 \$461	115 7191	70	26b
VAN 12	31 5020	115 7052	70	26a
VAN 12	31 5025	115 7050	70	26a
VAN 14	31,5025	115.7030	70	26h
VANIS	-31 5049	115 7041	70	26a
VAN 16	31 5065	115.7041	65	26h
VAN 17	31.5063	115 7200	40	22
VAN 19	-31.5005	115.7200	40	22
VAN 10	31 5074	115 7204	35	23b
VAN 2	21 5616	115.7201	30	26a
VAN 10	-31.5010	115.0757	45	23h
VAN 21	-31.5072	115.7441	40	14
VAN 22	31 5070	115.7100	40	22
I AIN-22 VAN 12	-31.3070	115.7100	50	26h
I AIN-25 VAN 24	-31.4730	115.7100	50	260
TAIN-24 VAN 25	-31.4330	115.7021	40	28
TAIN-23 VAN 2	-31.4535	115.7101	20	28
I AUN-D MANLA	-31.3394	115.0714	20	28
I AIN-4 VAN 6	-31.5700	115.7110	50	26h
I AIN-5 VAN C	-31.3034	115.7251	60	28
I AIN-O VAN O	-31.3023	115.7255	70	28
I AIN-6 VAN 0	-31.3490	115.7251	70	28
I AIN-9	-31.3478	115.7225	25	30
YARLUI	-32,9333	115.9046	35	0
YARLUZ	-32.9357	115.9040	33	26
YARLUS	-52.9534	115.9182	60 60	205
YARL04	-32.9601	115.9154	20	15
YUUN-1	-33.7228	115.4574	20	10
YUUN-2	-33.7230	115.4331	20	1 7
YOON-3	-33.7247	115.4338	20	120
YULE-I	-32.0239	115.9799	40	438
YULE-2	-32,0230	115.9788	40	23a 310
YULE-3	-32.0210	115.9802	40	210 10a
YULE-4	-32.0221	115.9765	40	104
YULE-3	-32.0229	112.9792	40	1