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This thesis details a series of studies on mensurational aspects of plantation grown
E.globulus Labill. plantations in south west Western Australia. The relationships
between extrinsic environmental attributes and site index and the polymorphism

evident within the top height development patterns are also examined,

Chapter two gives the results of a study to derive single tree volume equations. Four
hundred and thirty sample trees, from 60 plantations, were destructively sampled and
their volumes determined. These data were used to parametrize ten functional forms
incorporating diameter at breast height (dbh) and total tree height. The equations were
validated on an independent data set (n=112). Of the candidate equations presented, the
mostaccurate and precise equations for estimating the merchantable volume under bark
of plantation E.globulus are the generalized combined variable functional form and the
logarithmic functional form. The validation statistics of the logarithmic functional form
are significantly improved (p<0.0001) by application of Sprugel’s (1983) corrcétion
factor for logarithmic transformations. If a height measurement is unavailable a second

order polynomial equation using only dbh was found to be the most applicable,

The results of a top height development and site index study are detailed in Chapter 3.
Stem analysis of 87 site trees, from 57 plots yielded 480 sets of observatons of top
height (H), site index (S) and age (A) data. The data were used to derive top height
development curves via the algebraic difference, the parameter prediction and the Ek-
Payandeh methods. Site index equations were also developed. The polymorphism
evidentin the top height development data was examined via hierarchical agglomerative
clusteranalysis using the two dimentional profile association metric, described by Fatih
et al. (1985). This algorithmn takes into account the time series relationships of top
height data. Plots were clustered such that plots within any cluster display anamorphic
top height development patterns while plots of different cluster membership display

polymorphism.
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The Ek-Payandeh modification of the Chapman-Richards functional form adequately
describes the top height growth data while the algebraic difference form of the

Chapman-Richards functional form adeguately describes the site index data.

The relationships between site index and the polymorphism, encapsulated within the
cluster groups, and 74 edaphic physical and chemical, topographic and climatic
environmental attributes, sampled from 56 plots, were explored using the multivariate
data exploration techniques of semi strong hybrid multidimensional scaling and
rotational correlation. Both site index and polymorphism were shown to be related to

the ordinate space defined by the environmental variables.

- Equations which estimate site index from environmental attributes were constructed
using the information derived during data exploration. The derived equation accounted
for ¢.78% of the variation in site index. An equation derived via the application of a
stepwise variable selection algorithm accounted for c.80% of the variation in site index.
Cluster groups, encapsulating the polymorphism inherent in the data, were separated
using environmental variables and discriminant analysis. Groups were also separated
using heuristic rules and logistic regression. For maximum separation of groups

(c.87%) site index is required along with environmental attributes.

The ability of the equations and allocation techniques described were validated on
independent data. All equations recommended validate with acceptable levels of

accuracy and precision.

A noteworthy exception was the equation derived via the stepwise variable selection
algorithm where no relationship exists between observed and predicted site index.
Although this equation yields the most desirable model statistics, it yields the least
desirable validation statistics, casting doubt upon the commion practise of selecting

such attributes by stepwise procedures.




The study presented in the final chapter aimed to develop relationships between yield
and attributes of the stand itself, and to assess the influence of the previous landuse on
such relationships. Relationships developed, using data from 213 plots gained from the
measurement of 7131 trees, showed that yield could be predicted adequately from a
function of stand basal area (B) and top height (H). There was no need to separate the
data into previous landuse categories (i.e. plots on land that was previously pasture and
plots on land that was previously forest). If no measurement of B is available yield is
best predicted from functions of stocking (N), S, H and A, if the plotis located on land
that was previously pasture, and H, N, and A if the plot is located on land that was

previously forest.

All equations recommended in chapter six were validated on independent data and had

acceptable levels of accuracy and precision,
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CHAPTER ONE
General Introduction




1.1 INTRODUCTION

This thesis presents studies on the mensurational aspects of E. globulus Labill. for use in the
hardwood afforestation project of the Department of Conservation and Land Management
(CALM). It is useful to outline the emergence of this project, prior to the presentation of the
studies, o as to place perspective on their possible applications. As the project and this study
are based entirely upon plantations of Eucalyprus globulus Labill. a brief description of the

species is also included.

1.1.1 THE DEVELOPMENT OF CALM’S HARDWQOD AFFORESTATION
PROJECTS IN SOUTH WEST WESTERN AUSTRALIA

- Two main factors were instrumental in conceiving CALM’s hardwood afforestation project.
Firstly, the perceived increase in the demand for hardwood fibre within the Pacific Rim
(PACRIM) countries. Secondly, the environmental problems attributable to the removal of

native vegetation for agricultural purposes had and is, achieving public prominence.
1.1.1.1 HARDWOOD FIBRE TRADE WITHIN THE PACRIM

The Pacific ocean countries trade over 10 000 000 oven dry tonnes (ODT) of wood fibre each
year (Hagler 1991). Currently, 60% of this trade is among the northern hemisphere partners.
particularly Japan and the United States of America (USA). Japan is the largest importer of
hardwood fibre in the world and is the world’s second largest producer of paper and
paperboards (FAO 1990). However, Japan is almost entirely dependent upon the import of raw
material for its paper industry. Only 4% of J apan’s printing and writing papers are imported
(Streeting and Imber 1991). In recent years both Taiwan and South Korea have emerged as
importers of hardwood fibre and together with Japan, account for over 95% of hardwood fibre

imports within the PACRIM countries.

Despite the recent downturn in the demand for pulp and paper products and the emergence of

the recycled paper induswy, the demand for hardwood fibre in the PACRIM is expected
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increase. Estimates of the increase in demand vary from 4% to 25% (c.f. FAO 1986; Gibson

1989; Simons 1990; Hegler 1991; Streeting and Imber 1991).

Currently, Australia supplies 42.7% of imported hardwood fibre to the PACRIM countries.
The USA supplies 29.1% while Chile and South Africa account for about 5% each (Hegler

1991). Practically all of this supply originates from the native forests of the country of origin.

The ability of these traditional suppliers of hardwood fibre to continue to meet the current
demand levels and/or to escalate to meet the future demand, is uncertain (Groome 1989; Hegler
1991). Consequently investments, predominantly from Japanese sources (Anon 1991), are
promoting the establishment of hardwood plantations in such countries as Thailand, Vietnam

-and Chile and are specifically for the supply of hardwood fibre to the PACRIM.

CALM, through the development of its hardwood afforestation project, is attempting to
capture a market share of the perceived deficit in supply and attract investment currently

injected into other countries of the Pacific Rim.

1.1.1.2 ENVIRONMENTAL PROBLEMS CREATED BY THE REMOVAL OF
TREES FROM THE LANDSCAPE

Salinization of waerways and land has emerged as a major environmental and economic
problemin the south west of Western Australia. Currently, only 48% of the divertable surface
water resources remain fresh (<500 mgL** total soluble saits) (Western Australian Water
Resources Council 1986) and about 440 000 ha of once productive farmiand has become salt

affected (Schofield and Bari 1991). *

Salinization is attributable indirectly to the clearing of native vegetation for agricultural
purposes (Wood 1924: Williamson er a/. 1987). The replacement of deep rooted perennial
native vegetation with the shallow rooted annual vegetation used in agriculture, alters the water
balances ofasite to tavour ground water recharge (Peck and Williamson 1987: Schofield er al.

1988). The watertable eventually intercepts the surface and discharges the salt nawrally stored




within the profile (Williamson etal. 1987; Ruprechtand Schofield 1991). Other environmental
problems indirectly attributed to the removal of native vegetation include, wind and water
erosion, waterlogging, deterioration of soil structure and the decline of remnant native

vegetation (Fitzpatrick 1983; Conacher 1990).

Methods to restore degraded land are many and each vary widely in their de gree of acceptance
(Conacher 1990). Most centre on reafforestation (Schofield et al. 1989; Schofield and Bari
1991). Consequently, any commercial scheme which seeks to reafforest cleared agricultural

land receives community and political support.

It was from the background outlined above, with a perceived world deficit in hardwood fibre
- onone hand and ademand for trees to be returned to the rural landscape on the other, that CALM
launched its hardwood afforestation project in 1988. Basically, the project acquires land from
private owners where the landownerenters into an agreement with the State. The land is planted
to E. globulus by the State and the landowner receives an annuity payment for the use of the
land and/or a proportion of the harvestrevenue. About 8 000 haof E. globulus plantationshave
been established up until 1991. The project will escalate its planting programtoc.2 000 haa'!

from 1992 on.
1.1.2 THE SPECIES

Since the first description by Labillardiere in 1800, the taxonomic history of the species
Eucalyptus globulus Labill. has been controversial. Recently three taxa, that were formerly
regarded as species, were reduced to subspecies of £. globuius (Kirkpatrick 1974). This latest
rearrangementis generally accepted (Chippendale 1976). Using the nomenclature of Pryorand
Johnson (1971) the species belongs to the Eucalyprus subgenus symphyomyrmus section

maidenaria. The species E. globuius is comprised of the following four subspecies:
i Eucalyptus globulus Labill. subsp. giobulus.

i Eucalypius globulus Labill. subsp. bicostara (Maiden et al.) Kirkparr.




iii - Eucalyptus globulus Labill. subsp. pseudoglobulus (Naudin ex Maiden) Kirkpatr.
iv  Eucalyptus globulus Labill, subsp. maidenii (F., Muell) Kirkpatr.

Although Turnbull and Pryor (1984) suggest that there is little difference in the wood
characteristics between the four subspecies other authors have shown otherwise. (Turner et al.
1983; Dean et al. 1990). Only Eucalyptus globulus Labill. subsp. globulus is used in the

hardwood afforestation project discussed above.

The natural distribution of this subspecies is along the east coast of Tasmania, usually within
20 km fromthe ocean. Italso occurs on Flinders and King Islands in Bass Straitand on Wilsons
Promontory, Cape Otway and in the Strzelecki Ranges in southern Victoria. The latitudinal
range is from 38°30' to 43°30°S while the altitudinal range is from sea level to ¢. 450 ma.s.l.

(Kirkpatrick 1975).
1.1.3 THE USES OF E. GLOBULUS

E. globulusis nota species from which high quality sawn timber is derived. Its timbercollapses
and is prone to surface checking during drying (Campbell and Hartley 1984). However, the
timber of this species is used for poles, piles, sleepers, fenceposts and mining timbers (Hall ez

al. 1970; Boland et al. 1984; Turnbull and Pryor 1984).

In the developing countries, where it is estimated that over 1000 million people experience
fuelwood shortages (CIRC 1982; FAQ 1983), E. globulus is grown extensively for fuelwood
(Jacobs 1981; Gasana 1983; Pohjonen and Pukkala 1990).

The composition of leaf oils of Eucalypts are of commercial value and vary widely between
species and subspecies (Sharma and Handa 1982). The different oils have three tvpes of uses
in the medicinal, perfumery and industrial markets (Smail 198 1). E. globulus is grown for the
exwraction of leaf oils. The leat oils are present in amounts of up to 3% and contain ¢. 75%
cineole. Usuaily these oils are refined before use in antiseptics, inhalants and embrocants

(Baslasand Saxena 1984: Hillis 1984: Dayaland Ayyar 1986}, Theleaf oils of I£. globulus form




the bases of commercial industries in South Africa, Portugal, Spain, Brazil and China, The

small leaf oils industry in Australia does not use E. globulus (Small 1981).

The major use of E. globulus is for the production of printing and writing papers. It is
noteworthy that the first reported pulping of a Eucalypt was in Portugal in 1906 where
E. globulus was used to produce sulphite pulps. This led to the commercial pulping of the

species in 1919 (Watson and Cohen 1969; Algar 1988).

The wood quality attributes important for the pulp and paper industries include basic density,
fibre length, extrative content and permeability (Hillis 1972; Higgins 1984). These attributes
are expressed very favourably in £. globulus and the species is valued for the high quality of
- pulp and paper yielded (Cromer and Hansen 1972; Farrington et al. 1977; Turner et al. 1983).
Kibblewhite ez al. (1991) notes that of the hardwood pulps traded throughout the world the pulp
of E. globulus combines the mostimportant pulp and sheet qualities in a remarkably favourable
manner. They give good wet and dry strength properties, good formation due to the short stiff
fibres and excellent bulk and optical properties. Likewise, Dean er a/. (1990) note that
E. globulus has good surface properties, density, stiffness, opacity and in particular excellent

sheet formation.

E. globulus exhibits rapid growth and a wide ecological tolerance to site conditions (Beadle
and Inions 1990). This coupled with its ability to produce high quality pulp and paper has
contributed to this species being one of the most extensively planted Eucalypts. The species
forms the bases of the pulp and paper industries of Portugal, Spain and Thailand while being
amajor contributorto the industries in Bf;zil, South Africa, Chile and Argentina (Tumnbull and

Pryor 1984).

The species is particularly successful in countries with a mediterranean-type climate free of

severe frost and prolonged summer drv seasons (Booth er a/. 1988: Booth and Prvor 1991},




1.1.4 THESIS ORGANISATION.

The major objective of the studies, which collectively comprise this thesis, is to study and
quantify mensurational aspects of plantation E. globulus. The relationships between some of

these aspects and the environment are also pursued. As such the thesis is presented as a series

of five related chapters;

Chapter two details a study to derive single tree volume equations. The study tests a number
of functional forms for their suitability to the species andexamines the effect of some parameter

estimation techniques on validation statistics.

Chapter three presents a study which aims to yield top height déveiopment and site index

curves. A number of methods are employed and compared. A method to account for

polymorphism is also pursued.

The use of multivariate data exploration techniques, used to examine the relationships between
the top height development pattern and site index and environmental attributes, is presented
in Chapter four. Quantitative equations which predict site index and top height development

patterns are also developed.

The equations derived and presented in Chapters three and four are validated in Chapter five.

Validation of the equations used in isolation and in concert is undertaken on independent data

sets.

Chapter six presents a study aimed at de"’velopin g stand level yield equations. Mensurational
aspects detailed in other chapters are employed in Chapter six. The resulting equations are

validated on independent data sets.

Each Chapter is preceded by a literature review on the topic pertinent to that chapter,
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2.1 LITERATURE REVIEW
2.1.1 INTRODUCTION

Volumes of individual trees can be estimated from functions which are established between
some of the more easily measured parameters of a tree, such as the height and diameterat breast
height (dbh), and its volume. Such functions are advantageous for forest mensuration and
inventory where direct measurement of tree volume is slow and expensive. Single tree volume

equations are also useful as primary components of growth models (Munro 1974),

To derive single tree volume equations the volumes of trees in a data set must be known. To
derive single tree volumes, stem diameter is measured atre gularintervals along its length. The
tota} stem volume is derived by summing the individual volumes of each section, calculated

via standard formulae.
2.1.2 CALCULATION OF LOG VOLUMES

Two sources of error contribute to the total error in determinin g volumes of sectionally
measured trees. The first source is introduced when the diameters and lengths of logs are not
accurately measured. The second occurs when the mathematical model used to represent the
stem or stem segments assumes the shape of the log to be a particular geometrical solid and
the form of the log departs from this assumption. Forexample, if the shape of alog has the form
of a frusturn of a paraboloid, then the equations of Newton, Huber and Smalian (Husch et ai.
1972} all provide accurate results. However, if the form of the log departs from parabolic, bias

is introduced. Biging (1988} termed this error source model misspecification error.

Studies of the accuracy of model specification compare estimated volumes with “true”
volumes, determined by waterdisplacement (Martin 1984) or the sum of the log volumes when
the interval between measurements is very small (Goulding 1979). The use of cubic spline

functions (o porray siem wper and calculatw stem volume has also been uses (i 198U
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Using the water displacement technique to obtain “true” volume, Youngeral. (1967) examined
the accuracy of Smalian’s and Huber’s formulae when applied to logs of northern hardwoods
and softwoods of the U.S.A. They found that for 2.4 m and 4.9 m long logs the average errors
associated with Huber’s formula (3.5% and -3.7% respectively) were consistently smaller and
statistically differentfromthe average errors obtained with Smalian’s formula (c. 9.0%). Water
displacement was used by Martin (1984) to determine “true” volumes of 243 logs from 75
eastern hardwood trees from West Virginia, U.S.A. Fourteen different equations were then
used to estimate these volumes and the results were compared to the true values in both accuracy
and precision. Martin found that the formulae of Huber and Newton performed the best
followed by that of Smalian. The bias associated with Huber’s, Newton's and Smalian’s

.equations were 2.5, 3.9 and 6.9% respectively.

Using the sum of the log volumes when the interval between measurements is very small
(usually 0.3 m) to obtain “true volume”, Carron and McIntyre (1959) examined the accuracy
of Huber’s formula when applied to Pinus radiata D.Don in the eastern states of Australia.
They found errors of -2% for 3 m long logs. The same technigue was employed by Goulding
(1979) to examine the accuracy of several standard formulae and a spline function when
esumating log volumes for Pinus radiata in New Zealand. Goulding found that a spline curve
had an error that was 60% of the error obtained using Smalian’s method. Newton’s equation
had an error that was 50% of the error associated with Smalian’s method. When the distance

between measurements was less than 2 m all methods tested had smali eors (<2.3%).

Biging (1988) compared the formulae of Smalian. Huber and New:on and a numerical
technique using cubic spiines. The “true” volume of logs was derived r-2m 2 taper equations
for white fir Abies concolor (Gord. & Glend.) Lindl. (Lowiana (Gorc. : derived by Biging
(1984). Thus the technique facilitated the partitioning of the wotal error = volume estimation
into measurement error and error due to model misspecification. Thz =rror due to model
misspecification was less than 5% for measurement lensths of 4.0 =~ - o]l imngdeie oora

Systematic measurement error was estimated at 1 to 4% Thus total error = volume estimation

was less than 9% for all methods tested.




From the literature total errors encounted in estimating volume, assuming a measurement
distance of 2.4 to 4.9 m, are approximately 3-9% for Smalian’s formula, 3-4% for Huber’s
formula, 1-4% for Newton’s formula and 2-5% for cubic splines. However, as the distance
between measurements increases the difference between formulae and the magnitude of the

error increases (Brickell 1985).
2.1.3 FUNCTIONAL FORMS OF SINGLE TREE VOLUME EQUATIONS
2.1.3.1 STANDARD FUNCTIONAL FORMS

Single tree volume is usually considered to be a function of tree diameter, usually at breast
“height, some measure of tree height and an expression of tree form. Less commonly, measures
of tree crown or the age of the tree are included. The functional forms of tree volume equations

are many and varied. Clutter er al. (1983) lists 7 commonly used functional forms as:

1. Constant form factor Y = B, D*H
ii.  Combined variable Y =8 +8 D*H

iii. Generalized combined variable Y = +0 D*+3,H+8,D?H

iv.  Logarithmic Y =3 D*?H*

v.  Generalized logarithmic Y =B +3 DP?H%
vi. Honer transformed variable Y =D(B_+B,H"
vii. Form class Y = +B,DHF
where; Y =volume

D = diameter at breast height
H = seme expression of height
F = an expression of tree form

B:8,.5,.8, = constants to be estimated.
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The cénstant form factor functional form has been used by Gevorkiantz and Olsen (1955) for
prediction of total stem volume of a number of species in the Lake States of the UJ.S.A. and
McNab et al. (1985) for prediction of total tree volume of Choctawhatchee sand pine (Pinus
clausa var. immuginata D.B. Ward) in Florida, U.S.A. Green and Strawderman (1986) used
this functional form for Stein-rule estimation of the parameters of volume equations for 18
eastern U.S.A. hardwoods. The constant form factor functional formis only suitable where the
form of the stem is relatively constant regardless of tree size. As a result this functional form

has not been widely used.

The combined variable volume equation has been used to predict merchantable stem volume
of slash pine (Pinus elliotii Engelm.) in Georgia and Carolina, U.S.A. (Bennett et al. 1959}
and eastern hardwood trees of Virginia, U.S.A. (Martin 1984). The generalized combined
variable functional form has received much attention in the literature and has been used to
predict total stem volume of loblolly pine (Pinus taeda L.) in Georgia, U.S.A. (Romancier

1961) and trees of the Cedrus forests of Morocco (Postaire and M’ Hirit 1983).

Because errors associated with tree volume prediction tend to be heteroscedastic (Furnival
1961; Cunia 1964) many equations make use of logarithmic gansformations. The lo garithmic
functional form has been used to predict total stem volume of Douglas-fir (Pseudotsuga
menziesii (Mirb.) Franco) in British Columbia (Brackett 1973) and lobloily pine in Brazil
(McTague and Bailey 1987). Examples of the use of the generalized logarithmic functional
form can be found for red pine (Pinus resinosa Ait.) in Canada (Newham 1967) and tropical
rainforest species in Brazil (Higuchi ‘and Ramm 1985}, Horner’s transformed variabie
functional form is an alternative to logarithmic transformation and has been used to predict
total stem volume for red pine in Canada (Horner 1965) and forest wees of the Lake States and

of Canada (MacDonald and Forslund 1986).

The final class of functional form includes a measure of tree form as an independent variable.
‘Two common measures of wee formofteninciuded are the Girard rorm class and the ¢ viindrical

form factor. Girard formclass is defined as the diameter (under bars jatthetop ol the first 4.8 m
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log, divided by the diameter at breast height outside bark (dbhob). The cylindrical form factor
is defined as the ratio of total stem volume to the volume of a cylinder with diameter equal to
tree dbh and heightequal to the total height of the tree. Form class functional forms are assumed
to give greater regional applicability with higher precision (Loetsch et al, 1973). On the other
hand, Clutter et al. (1983) lists the following reasons why functional forms which include

measures of tree dbh and height only are preferred:

(i} Measurements of upper-stem diameters are time consuming and expensive;
(ii) Variation in tree form has a much smaller impact on tree volume than height or dbh
variation;

. (iii) With some species, form is relatively constant regardless of tree size:

(iv) With other species, tree form is often correlated with tree size, so that the dbh and
height variables often explain much of the volume variation actually caused by form

differences.

An alternative to traditional measures of form is presented by Forslund (1982) who developed
a volume equation based on the location of the centre of gravity of the bole and estimated the
true volume of individual trees to within 10%, using total height and the diameter at a relative
height of 0.3 m. MacDonald and Forslund (1986) modified Forsiund’s (1982) equation and
found it to be more consistently accurate than either the original equation or Horner’s

transformed variable equation.

A subsetof the form class functional form is that of productform, which estimates tree volume
from product form and dbh (Smith 1976). Product form is defined as the product of diameter
(outside bark) midway along the siem above breast height and total height. However, the
optimal height at which a diameter is measured. when calculating product form, varies with

species (Roebbelen and Smith 1984).

Whether or not to inciude a measure of form or product form into volume equations is a matier

for conjecture. It has been shown that no practical advantage in volume estimares could be
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gained from including any measurement of form in addition to the diameter at breast height
and the total height (Kozak er al. 1969). However, the correctness of this statement will depend
on the scale of application of the equation and the nature of the species under study. One
approach to this problemis presented by Postaire and M"Hirit (1985) who used cluster analysis
to stratify their sample prior to fitting standard functional forms to individual clusters. The

clustering criteria was based on measures of tree form.

A variety of functional forms notlisted by Clutter ez al. (1983) have been tabulated by Loetsch
etal. (1973). The large number of functional forms evident in the literature indicates that there

is no functional form which is generally applicable.
$2.1.3.2 MISCELLANEOUS FUNCTIONAL FORMS

One deviation from the use of standard functional forms occurs in a study which advocates the
prediction of tree volume from a function of tree age and diameter (Sadig and Smith 1983).
The technique circumvents the measurement of tree heights through the inclusion of an age
term. The resulting equation predicted the tree volumes of red pine (Pinus resinosa Ait.) in
Ontario, Canada, more accurately than the standard functional forms tested. A disadvantage

of this technique is that the application of the equation is restricted to stands of known age.

Measures of tree crown may also be incorporated into volume equations. Past attempts to
include crown variables have met with varying success. While Lohrey (1983) and Farrar
(1985) found that the inclusion of crown measures significantly modified the intercept and
slope terms of the combined variable functional form, for longleaf pine (Pinus palustris Miil.)
in the U.S.A., they did not substantially reduce residual variance. A result also supported by
Laasasenaho (1982). Crown ratio has been incorporated into four total stem volume equations
tor Douglas-fir (Pseudorsuga menziesii (Mirb.) Franco) as a nonlinear multipiier (Hann er o/,
1987). One functional form of Hann er al. was a “component approach” that divided siem

volume into that above and below breast height. The crow i ratio term was highly significan

in the component functional form. which had the sma




precision of all equations examined. One disadvantage of this approach is the difficulty and

expense involved with obtaining measurements of the crown in the field.
2.1.4 COMPARING FUNCTIONAL FORMS

It is common practice to test a variety of functional forms when fitting a volume equation, A
judgement must then be made as to which functional form best fits the aims of the study.
Furnival’s index (Furnival 1961) is commonly used for comparing equations (Hann et al.
1987). However, Green (1983) demonstrated that the ranking of equations according to the
index may not be the same as ranking them according to their ability to predict an independent
validation data set. Consequently, many studies reserve an independent validation data set to
-compare individual equations. Predicted values are then compared to known values with the
mean of the differences between the actual and predicted values, mean absolute difference and
standard deviation of the differences, common comparison statistics (Martin 1984), The mean
of the differences is a measure of the accuracy of an estimate while standard deviation of the
residuals is a measure of precision. Hann er a/. (1987) used bias and standard deviation of the
residuals as comparison statistics. The mean difference of the residuals was checked with a
t-test for departure from zero. The statistics were then combined by taking the square root of
the sum of the residual squares to give an overall prediction error. Sadiq and Smith (1983) used
Freese’s (Freese 1960) Chi- squared accuracy test for comparing the ability of functional forms

to predict a validation data set. For a more detailed discussion on validation see Section 5.1.

2.1.5 PARAMETER ESTIMATION“

After selection of an appropriate functional form(s), parameter estimation is most commoaly
accomplished with ordinary least squares. This method assumes homogeneity of variance in
the error terms. In most cases this assumption is violated. As previously mentioned logarithmic
transformations often alleviates this problem, alternatively many studies choose to weight the

-
o

equations by VD?H. I/D*H% or 1/D* (West 1980: Jacobs and Monteith 1981 D and
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1/D?H have also been used (Ernst and Hann 1984). Meng and Tsai (1986) define a method for

selecting the exponent for the D term for weights using a maximum likelihood function.

Stein-rule estimation is useful for the simultaneous development of multiple volume equations.
A stein-rule estimator (Burk and Ek 1982), which shrinks least squares estimates of regression
parameters towards their weighted average, was employed to estimate the coefficient in the
constant form factor volume equation for 18 species simultaneously (Green and Strawderman
1986). Tests on an independent validation data set revealed that Stein-rule estimates were

biased, but predicted better than the corresponding least squares estimates.




2.2 SINGLE TREE VOLUME EQUATIONS FOR PLANTATION
E. GLOBULUS IN SOUTH WEST WESTERN AUSTRALIA.

2.2.1 INTRODUCTION

Tree volume is usually considered a function of tree diameter and some measure of tree height
(McClure er al. 1983; Martin 1984; Higuchi and Ramm 1985; Lynch 1988), although crown
ratio (Hann ef al. 1987) and age (Sadig and Smith 1983) have also been found useful.

A wide variety of functional forms appear in the literature, some of which are tabulated by
Clutter eral. (1983) and Loetsch et al. (1973). The two lists are not exhaustive and it is evident
by the large array of functional forms available that no one functional form is generally
applicable. Therefore, itis the aim of this study to, (a) compare a range of the more common
functional forms for their ability to estimate the volume of plantation grown Eucalyprus globulus
Labill. subsp. globulus in south west Western Australia, and (b) examine the variation in
accuracy and precision caused by estimating the parameters of the equations via ordinary and
weighted least squares and, where logarithmic transformations were appropriate, the effect of

applying Sprugal’s (1983) correction factor.
2.2.2 METHODS
2.2.2.1 DATA

Data from trees felled on plotsin £. globulus plantations in south west Western Australia, were
used in this study. Four hundred and thirty single stem, defect free trees were felled in 60
plantations (Figure 1). From each plantation about 7 stems were subjectively chosen for
sampling with anaimof spanning the volume range presentin thatparticularplot. Sample discs
were removed fromeach tree at 0.0 m, 0.3 m. 1.3 m and every metre thereafter along the stem.
to an approximate 4 cm top diameter under bark (ub). The diameter (ub) of each disc was
recorded as the average of the diameters (cm) of the long and short axis. The diameter under
bark was used rather than the diameter over bark, which is the more usual practise. As the bark

thickness was observed to vary with geographic locality, this methodology wiil remove this




Figure1:  Map of south west Western Australia showing the locations of
piantations from which the data were drawn.
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Table 1: Frequency of stems for each height and diameter class. Figures in parenthésis represent stems comprising the validation
data sei.

Height class (m)

Diameterclass (em)  0.0-3.4 3.5-69 7.0-10.4 10.5-13.9 14.0-174 175-20.9 21.0-24 24.5-279 28.0-31.4 3L5. 349  35.0-38.5

0.0-3.4 1 4

3.5-69 19(6) 25(6) i

7.0-10.4 i, 42(16) 32(6) 4(1)

105 13.9 11(4) 25(15) 23(6) 5(1) 5(1)

149-17.4 2 6(3) 21(8) 15(8) 12(5) 3(1) (1)

17.5-20.9 2 7(2) 9(4) 10(7) 4(1) 2

21.0 - 24.4 1(1) 4(4) 3(7) 6 1(1) 1 (1

24.5.27.9 I 2(2) 4 i {1)




unwanted source of variance. The total height of each tree was measured directly from the
felled tree and recorded to the nearest 0.1 m. The frequencies of stems in each of the diameter

and height classes are shown in Table 1.

Tree volumes were determined by summing the volumes of individual sections, determined
via Smalian’s formula {Clutter er al. 1983). Smalian’s formula was chosen for its ease of
application after ascertaining that the mean of the differences between stem volumes calculated

by Smalian’s and Huber’s (Carron 1968) formulae was not significantly (p>0.0001) different

from zero.

About 2 trees from each plantation (n = 112) were selected at random. These trees were

~assumed to represent the population and were withheld for equation validation purposes

(Table 1).
2222 CANDIDATE EQUATIONS

The functional forms of the equations used in this study are listed in Table 2. Where polssible
the terminology of Clutter et al. (1983} is adopted when referring to the functional forms of

the candidate equations.

Variables common to the equations are as follows:-

B,-8,=  Regression parameters particuiar to specific equations.
= Merchantable volume under bark (m®) to a top end diameter limit of 4 cm (ub).
= Diameter under bark at 1.3 m above the ground (cm) (dbhub).
= Total height of the tree from base to tip (m).

in = Natural logarithm.




Table 2: Functionai forms of candidate equations

Equation functional form title citation

1 y=B,D?H constant form

factor (Green and Strawderman 1986)
2 v=8,+ 8 D*H combined variable (Martin 1984)
3 v=8, + B D*+ 8, H+ B,D°H generatized combined

variable (Postaire and M’Hirit 1985)
4 v=D¥(8,+8, H™") Homer’s transformed

variable (Hormer 1965)
5 v=D2EU105“‘f(D+ B8, Opie’s functional

form (Opie 1976)
6 In (v)=8,+B8,In(D) + B,In (1) logarithmic (Higuchi and Ramm 19835)
7 In (v) =B + 8 In(D°H) logarithmic combined

variable (Higuchi and Ramm 1985)
8 In (v)=8,+8In(D) - {Loetsch er al 1973)
9 v= B +B8,D% - (Avery and Burkhart 1983)
10 v= B+ B(D)+ 8,0 - (Loetsch et al 1973)

2223 NUMERICAL TECHNIQUES

It is well established that the ordinary least squares assumnption of homogeneous variance is

inappropriate in the case of volume equation development (Schreuder and Anderson 1984:

Gregoire and Dyer 1989). A number of approaches towards fitting models with heterogeneous
errors recur in the literature. In the first the heterogeneity is defined and its effect nullified by
the assignment of weights to the deviations when the equation parameters are estimated (Cunia
1964). Methodologies for the definition of variance heterogeneity are given by McClure et !,
(1983), Green and Strawderman (1986), Meng and Tsai (1986) and McClure and Czaplewsid
(1987), while the application of these approaches are common (Gibson and Webb 1967

Knoebel et al. 1984; Hann er ¢i. 1987)..




In the second, variance hetero géneity is ignored and coefficients are estimated via techniques
that are resistant to the problem (Efron and Gong 1983; Schreuder and Anderson 1984; Wu
1986). In an examination of the two approaches, Gregoire and Dyer (1989) conclude that the
former methodology offers nonnegligible gains in efficiency, whereas the robust alternatives
provide accurate assessment of ordinary least squares parameters even in the presence of

heteroscedasticity.

A third approach removes heteroscedasticity by logarithmic transformation of the data prior
to the estimation of the parameters, usually by ordinary least squares. The approach is
commonly used as an alternative to weighting (Newnham 1967; Higuchi and Ramm 1985;
McTague and Bailey 1987). ‘Howevcr, a systematic bias is introduced when the unbiased
logarithmic estimates are converted back to standard units. In this situation the mean of the
normally distributed /n(V) for a given /n(D) and/or {n(H) is replaced by the geometric mean
upon conversion with an antilogarithm (Finney 1941) thus introducing a negative bias. The
nature of the bias is discussed in detail by Baskerville (1972). To correct for this bias the final
result is multiplied by a correction factor calculated from the standard error of the estimate of
the regression (Whittaker and Woodwell 1968; Sprugel 1983). With some exceptions
(Higuchi and Ramm 1985; McNab et al. 1985; Clark et al. 1986; Clark and Schroeder 1986}
the application of correction factors to volume equations, involving logarithmic transformations.

is absent from the literature concerned with single tree volume estimation.

In this study the volume equation parameters for Eqs. [11, {21, [3], [9] and [10] (Table 2) were
estimated via ordinary least squares anid again via weighted least squares. Statistics derived via
weighted least squares are identified by the subscript (WT) with the equation identification
number. The variance assumption for weighted least squares was G e mﬁnd was found

to be a reasonable one during the data exploration phase of this study.

Parametersfor Eqs. [6],{7]and [8] were estimated via ordinary least squares after transtormation
of the variables with a natural logarithm gave homogeneous variance. Predictions of volume

were obtained by transtorming the variables back to onginal terms with the exponential
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function. This exercise was repeated while applying the correction factor (CF)recommended
by Sprugel (1983). Hence for Eq. [6], the parameters were estimated when the equation was

of the form,

In(V) =B, + B, /n(D) + B, In(H).
Volume was predicted when the equation was of the form,
V =DM H™. Eq. (6]
where,
¢ = base of the natural logarithm
“In the final step, volume was estimated when the equation was of the form,
V =¢% DM B2 CF Eq. (6] e,

where,

CF =g ((\/ E(fn Vi - fnT//\i}Z/(n - 3))2/2)

after Sprugei (1983).

Equations where the correction factor have been applied are identified via the subscript (CF)
with the equation identification number. Egs. {4] and [5] have homogeneous variance and no
weighting or logarithmic wansformations were applied (Homer 1965; Opie 1976). Where the
intercept term is suppressed the subscript (NI) will accompany the equation identification

5
number.,

2224 VALIDATION CRITERIA

When validating candidate equations two approaches are common. The first uses statistical
hypothesis testing 1o ascerwin if the candidate equations are sufficiently accurate to warrant
acceptance. The levelofaccuracy is prescribed. The methodologies for this approach are given

by Freese (1960) and Revrolds (1984), both of which are demonstrated and discussed by




Gregoire and Reynolds (1988). In the second, statistical estimates are used for comparative
purposes in the absence of any particular standard for accuracy (c.f. Cao et al. 1980; Greenand

Strawman 1986; McTague and Bailey 1987).

The strategy of statistical hypothesis testing is not commensurate with the objectives of this
study. Therefore, for the purposes of validation, the volumes of the trees in the independent

data set were predicted (V,) and compared to the assumed actual volumes (V). The mean of

the deviations (D), the mean of the squared deviations (D%, the standard deviation of the
deviations (D) and the sum of the differences of V,and V, (£D,) were used to compare

the accuracy and precision of the candidate equations. D, and 2D, are assumed to represent

the accuracy of the equations while D, ? and D, represent their precision.

In an attempt to identify any pattern occurring in the results, the equations were clustered on
the basis of theirvalidation statistics in the following manner. A matrix of associations between
equations was calculated via the Gower metric (Gower 1971). The polythetic agglomerative
strategy, the unweighted pair-group method using arithmetic averages (UPGMA) was'u-sed to
impose structure to the association matrix (Gauch and Whittaker 1981). The clustering

intensity coefficient beta was set at -0.1.
2.2.3 RESULTS
22.3.1 CONSTANT FORM FACTOR FUNCTIONAL FORM

The use of the constant form factor functional form assumes that the form of the trees, in the
population of interest, is relatively constant regardless of tree size (Clutter er /. 1983). Totes:
the validity of this functional form’s application to the data set the cylindrical form factor of
all trees. with a merchantable stem length greater than 4.3 m, were calculated. Trees with a
stem length of 4.3 m and less were excluded from the analysis due to the increasing influence
of butt swelling on the value for the cylindrical form factor. Also, trees with a stem length of

4.3 mor less are of little practical importance as they contain very small volumes. The trees
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remaining (n = 2777) were divided into 10 volume classes of approximately equal numbers.
No significant difference was detected (p>0.3956) between the means of the cylindrical form
factors of each volume class (Figure 2). Itistherefore reasonable to assume that the cylindrical

form factor functional form is a legitimate candidate model.
2232 EQUATION PARAMETERS AND MODEL STATISTICS

Estimations of the parameters, the squared multiple correlation coefficient (%) and the residual
mean squared for each equation are given in Table 3. With the exception of Horner’s
transformed variable functional form (Eq. [4]) all equations have large squared multiple

correlation coefficients and small residual mean squares.

Equations containing the D term only (Egs. [8],[9] and {10]) performed well in terms of * and
residual mean square. This would be expected given the relative uniformity of the cylindrical

form factor across volume classes.

" does not include the validation data set,
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Figure 2:  The mean ( S.E.M.) cylindrical form factor for each volume class.
® = mean, - = S.E.M. ANOVA table refers to differences between
means.
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Table 3: Estimations of the parameters,

equation.

. :f_-: B

squared multiple correlation coefficient and residual mean squared for each candidate

Egnition 8, B, 8, 8, I’ RMS
Lo, - 3.280x10° - - 0.9934 0.00036
- 3.274x10° - 0.9941 0.04189
2 0.00156 3.268x10° - - 0.9899 0.00036
2, -0.00181 3.325x10° - - 0.9912 0.04643
3 -0.00658 -6.234% 103 0.001 19 3.374x10* 09904 0.00034
3, -0.00890 -7.814x10% 0.00153 3.396x10° 0.9888 0.03981
B‘N“ - -6.925x10° 6.83x 10 3.440x10° 0.9937 0.00034
3mmww -8.988x10° 9.90x 107 3.468 x 10* 0.9945 0.03988
4 64.974 20451.0 - - 0.8679 2.55x 1Y
5 4,484 5.522x 108 7.591x1(P - 0.9934 3.60x10#
6 -10.379 1.844 1.175 - 0.9936 0.01433
7 -10.289 0.997 - 0.9931 0.01558
8 -8.625 2.767 - - 0.9780 0.04958
9 -0.00189 8.015x16° 2714 - (.9934 0.11340
10 0.0700 -0.0183 0.00144 - 0.9586 0.00184
I(}{Wm 0.119 -0.0243 0.00160 - 0.9606 0.20877

(W1 = parameters estimated via weighted least squares; weighting factor x\}DIH

(ML = 0o nlercept tenm used.



2.2.3.3 EQUATION VALIDATION

As expected, the equations containing the D term only validated with less accuracy and
precision than did equations containing both the D and H term. Of the diameter equations,
Eq.[10]y,, validated with the smallest mean bias while, with the exception of Eq.[8], the

precision of these equations was similar (Table 4).

Classification of the equations on the basis of their validation statistics yielded two distinctive
groups, namely those equations with both the D and H terms and those with the D term only
(Figure 3a). The differences between the two groups were large and masked the subtle
groupings within the classificatdon. The classification was therefore repeated with the
equations containing the D term only excluded. The second classification was arbitrarily
truncated at the four group level (Figure 3b). Group 1 contained Eqgs. [1], [1] o (2w, and
{5] and is comparably inaccurate although relatively precise. Group 2 contains Egs.
[21.[3] (Wn,[3] WD [S}M), [61, [7]and [7] . This group is second in accuracy to group 3 while
being slightly more precise than other groups. Group 3 contains Egs. ES](ND(W'D and [6] (cﬁ and
is the group of highest accuracy. Precision is slightly less than that of the equations in group
2. Group 4 contained Eq [4] only and is less accurate and precise than other groups. Univariate

validation statistics for each of the groups is given in Table 5.

Although parameter estimation via weighted least squares is statistically advantageous. its
benefits in terms of improvements to validation statistics was varied. Forexample, Egs. [1] and
[2] gave deviations that were significantly different (p<0.0001) than the deviations from the
same equations derived via weighted least squares. In this case the deviations were increased
after application of weighted least squares. Alternatively, for Eqs.[3] op And[10] the deviations
were significantly (p<0.0007) decreased by weighted least squares. No significant difference
(p>0.0821) was detected between the deviations from Eq. [3] for weighted or ordinary ieast
squares. The influence on precision is less evident. With the exception of Eg. {1 where ¢
difference was detected (p<0.0306), no significant differerce (p>0.2719) was found between

the squared deviations of the same equations, derived via ordinary or weighted least squares.




Application of Sprugel’s (1983) correction to Egs. [6], {7] and [8] decreased the deviations

significantly (p<0.0001) in all cases. Although an increase in precision resulted from applying
the correction it was not considered to be significant (p>0.0974).
Table 4: Validation statistics for candidate equations. "f)"; = mean deviation, Dv? = the
mean of the squared deviations, Dvsp = standard deviation of the deviations, £ Dv =
sum of the total deviations.
Equations Dv _5:2 Do LD,
L 0.00377 2.23x10¢ 0.0145 0.4222
S 0.00403 2.28x10+ 0.0146 | 0.4521
2 0.00278 223x10* 0.0147 03117
2am 0.00364 2.09x10+* 0.0140 0.4083
3 0.00238 2.05x10* 0.0142 0.2795
£ . 0.00221 2.07x10+ 0.0143 0.2590
3em 0.00218 2.13x10° 0.0145 0.2443
3 paxwn 0.00101 2.17x10+ 0.0147 0.1127
4 0.00548 3.12x10+ 0.0168 0.6138
5 0.00376 2.23x10+ 0.0145 04211
6 0.00221 2.03x10% 0.0141 0.2188
b 0.00117 2.01x10+ 0.0142 0.1017
7 0.00298 2.14x10+ 0.0144 0.3308
Ten 0.00186 2.01x104 0.0141 0.2043
8 0.00%60 2.30x10° 0.0473 1.0696
il 8.cn 0.00621 2,10x10° 0.0457 0.6823
Ty 9 0.00585 2.15%10° 0.0462 0.6576
| 10 0.00593 2.11x10° 0.0458 0.7795
1041, 0.00279 2.14x103 0.0464 0.4531
2 -~ (NI} = no intercept term used. o
{WT) = parameters estimated via weighted least squares; weighting factor VD,
(CF) = Sprugel’s (1983) correction applied.
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Figure 3: Dendrograms resulting from the classification of candidate

(

—

equations based on their validation statistics (metric = Gower;
fusion strategy = UPGMA, beta = 0.01).

(a) Dendrogram resulting from the classification of all
equations.

(b) Dendrogram resu!iing from the classification of equations
containing the D and H terms.
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Table 5: Univariate validation statistics for each of the four cluster groups.

Cluster ‘15: D2 DV'SD D,
x° CV. N x CV. N x CV. N x CV. N

1 0.0038 4.3 4  221x10* 37 4 00144 19 4 04259 4.3 4
2 00024 162 7 3.09xi0* 36 7 0.0143 L5 7 02640 176 7
3 g.0011 104 2 209x10* 54 2 00148 24 2 01072 7.2 2
4 0.0055 - 1 312xio¢ - 1 00168 - 1 0.6138 - 1
Cluster 1 = Egs. [11, [1] g [2] gy [5]

2 = Egs. (2], 3], (Blymy [3og (6, (70, [7]

3 = Egs. [Bonm [Olcn

4 = Eq.{4

C.V. = coefficient of vartation (%)

2.2.4 DISCUSSION AND CONCLUSION

The relative homogeneity of form for plantation grown E. globulus in south west Western
Australia is somewhat surprising given the wide range of environmental conditions spanned
by the study area (seeChapter 4). Given this uniformity it is not surprising that many of the
functional forms fit the data well. The accuracy and precision of most functional forms are

within tolerable limits.

Under such circumstances itis reasonable not to examine those functional forms which include
a measure of form in the equations {Smith 1976; Roebbelen and Smith 1984). Given the
accuracy and precision achieved with the equations examined, any extra effort employed to
gather measures of tree form is unnecessary. Likewise, there is no need to stratify the sample
on the basis of geometnical shape prior to estimation of the equations’ parameters (Postaire and

M Hirit 1985).

The use of weighted least squares to estimate the parameters of the equations, when compared

to ordinary least squares. produced varied infiuences on validation statistics. In the presence




of heterogeneity, the use of this technique is critical for constructing confidence limits around
the estimates. Therefore, in the absence of evidence that the procedure consistently improves
or detracts from the accuracy and precision of the outcome, weighted least squares is the

recommended procedure.

The application of Sprugel’s (1983) correction factor improved the predictive capabilities of
the equations to which it was applied in all cases. Therefore, its application is recommended
as standard practice where logarithmic transformations are used as an alternative to using

weighted least squares.

Itis concluded from this study thateither of the following two equations are the most suitable

for volume estimation for plantation grown E. globulus in south west Western Australia.

V=-8.9880x10~°.D*+9.90x 10 H+3.4687x 10°.D. H

ar

Eq[6]
V=(e-10.3796‘ DI'SMZ. HL1746). 1‘00719
The relationships between volume and dbhub and height, represented by these equations are

given in Figure 4 and Figure 5.
When a height term is unavailable the following equation is recommended.

Eq{10] 4 V=0.11932 - 0.002433.D+0.00160.D?




O

Figure 4.  The relationship between stem volume, diameter at breast height
underbark and tree height, represented by Eq. [3] (NI) (WT).
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Figure 5:  The relationship between stem volume, diameter at breast height
underbark and tree height, represented by Eq. [6KCF).
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3.1 LITERATURE REVIEW: LAND EVALUATION FOR FORESTRY
PURPOSES

3.1.1 INTRODUCTION

The copious literature relevant to land classification and evaluation is categorised into two
conceptual schools. The first is concerned with the identification of land units which are
considered homogeneous for the phytological, physiographical or biophysiographical attributes
used in their definition. The second classifies land units according to their productive capacity.
The two concepts have confused terminology throughout the literature so, for consistency, the
terminology of Kilian (1984) will be adopted. Site classification defines land units with similar
combinations of environmental features of similar ecological effect. Site evaluation classifies
the site according to its productive capacity based on the ability of the area to produce a certain

yield of one or several tree species.

Examples of the site classification approach are given in Smalley (1984), Inions (1990) and
Inions er al. (1990). Site classification has little relevance to this study, consequently the
literature will not be reviewed. Adequate reviews of the topic are given by Daubenmire (1976)

and Havel (1980 a.b).

Site evaluation involves the allocation of a productivity measure or class to the site of interest.
The productivity measure may be derived by measurement of biomass production (Yarie and
Van Cleve 1983} ortimbervolume (Lewis eral. 1976: Mader 1976). Alternatively, indices for
productivity, such as the height of the dominant trees of a stand or the height growth over a
nominated time period are used (Havel 1968; Economou 1990), By far the most common

measure of site productivity is site index.

It1s the aim of this review to summarise the literature pertaining 1o site index. No atteation will

be paid to that literature dealing with other indices for productivity such as height intercepts.
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3.1.2 DEFINITION OF SITE INDEX

Site index is defined as the height of the dominant and/or codominant stratum of a stand ata
nominal reference age, also referred to as index age (Beck and Trousdell 1973), base age
(Bailey and Clutter 1974) or, less commonly, standard age (Carron 1968). The reference age
has been recommended to be two-thirds of the rotation length (Carron 1968) or as close to the

rotation length as possible (Clutter e al. 1983) however, the choice is often arbitrary.

The utility of site index stems from the relationship which exists between site index and the
pattern of top height development. By definition site index gives the top height of a stand at
one point in time. This implies that the pattern of top height development of the stand will
- follow a predetermined pattern unique to that site index. As Clutter er al. (1983) point out, the
fact that the stand of interest has a height of X metres at the reference age is relatively
insignificant in comparison. A second utility results from the correlation which exists between
site index and stand volume, especially when age and density are accounted for. Finally, it is
far easier and less expensive to estimate the site index of a stand than to directly measure
standing volume. In a comparison of some site quality indices site index was as well or better
correlated to site productivity than some of the more difficult to measure productivity indices

(McLeod and Running 1988; Reed and Jones 1989).
3.1.3 DEFINITION OF TOP HEIGHT

Definition of top height, also referred to as dominant or predominant height, is not consistently

made in the literature. One attempt, (Rennolds 1978) classifies top height definitions into:
i) Top height as a mean height of a fixed percentage of occurring trees;
1)  Topheight as a mean heightof a fixed number of largest or tallest trees per unitarea, i.c..
2)  asmean height of a specific number of the largest stems per unit area.
D)  as mean height of a specific number of the tallest stems DET Unit area,

i) Top height as maximum height.




Loetschetal. (1973) listasimilarclassification butinclude a category where size is determined

by crown class.

The definition of top heightis inconsistent between regions and subject species. For example,
top height in coniferous plantations in Australia is the average of the heights of the 20 to 30
tallest trees per 0.4 ha (50 to 75 trees ha™!). For even-aged regrowth eucalypt forest in Tasmania
the mean height of the 12 tallest dominants per 0.4 ha (30 trees ha'') is used (Cromer and
Bowling 1961; West 1982). In Great Britain, top height is defined as the mean of the heights
of 40 trees of largest diameter per 0.4 ha (100 trees ha') (Johnston and Bradley 1963). This
figure corresponds with the IUFRO’s recommendation for 100 trees ha™! which is already in
use in parts of Europe. In North Americathe averages of the heights of dominants, ordominants
and codominants, is commonly used (Spurr 1952; Husch 1963). For example, Curtis er al.
(1974b) used the height of one dominant treeona 0.1 ha plot(10 trees ha!), while Barrett (1978)
defines top height as the height of the tallest tree on a 0.08 ha plot (12.5 trees ha'). Monserud
(1984) defines top height as the heights of the three “best growing” (based on increment cores)
dominants onanapproximately 0.023 ha plot that was representative of the growing cond};tions

in the stand.

This diversity of definition evident in the literature is of some concern and, as demonstrated
by Rennolds (1978), can lead to logical and statistical problems. The problem of inconsistent

of definition rernains a weakness in the site index literature.

3.1.4 METHODS FOR CONSTRUCTING TOP HEIGHT DEVELOPMENT AND
SITE INDEX CURVES.

To date, no adequate system has appeared in the literature which classifies the copious
methodologies for deriving top height development and site index systems. One exception is
Clutter er al. {(1983) who classify equations into three types according to the nature of the top
height developmentcurves they generate. Namely, (a) anamorphic curves which by definiton

are proportional, (b) polymorphic disjoint curves which are not proportional, but the curves




do not intersect within the age range of interest and, (c) polymorphic nondisjoint curves where
there is no constant proportionality and atleast some of the curves intersect within the agerange
ofinterest. Clutteretal. (1983) alsoclassify methodologies for deriving top heightdevelopment

and site index curves as:

i)  the guide curve method;
ii)  the difference equation method; and

iii) the parameter prediction method.

This classification was used by Grey (1989) in his review of the site index literature, although
Smith and Watts (1987) preferred to derive their own classification, grouping the methodologies

under:

i) two equation systems;
il)  one equation systems; and

iti}  the structural method.

No classification clearly categorises the methodologies and in many cases it is mere semantics
as to which category amethod is allocated. Consequently, in this review, methods for deriving
top height development and site index curves will be discussed under five headings. Three of
which are defined by Clutter e al. (1983), a fourth termed the Ek-Payandeh method and a fifth
for miscellaneous methods which have occasionaily appeared in the literature, and are

sufficiently different from mainstream methods to warrant mention.
3.1.4.1 THE GUIDE CURVE METHOD

The guide curve method will produce a setof anamorphic top height developmentcurves, Data
are usually derived from temporary plots such that a single tree or plot has only one top
height/age measurementassociated with it. The method isequally applicable todatarepresenting

atme series derived viaremeasurement of permanent plots or from stem analysis (Curtis 19645
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Seminal works on guide curve construction were graphical, with two procedures common. The
first involved drafting two curves based on the upper and lower limits of the data, A family
of curves intermediate to these, whose shape was determined from the two limitin geurves, was
drawn. The method is referred to as Baur's method, the limiting curve method or the strip
method (Grey 1945). The second involved plotting top height over a range of sites of various
ages and fitting a master curve to these values. A family of curves are located, which are
proportional to the master curve and in the same relative position as they are at the reference
age. This technique is termed the guide curve or direct curve method or the harmonised or

anamorphic site index technique (Bruce 1926).

In the more recent literature top height development curves are graphs of functions derived via
numerical methods, predominandy regression analysis (Strand 1964). The most common

functional form for the guide curve method is that proposed by Schumacher (1939), i.e.,

In(H) =B, + B A"
where,
= top height of the stand;
A = age of the stand or tree:
B, = the intercept constant which varies for each curve;
B, = aconstant with the same value for each curve:

{n = natural logarithm.

Brickell (1968) developed top height development curves for Douglas-fir (Pseudotsuga
menziesii var. glauca (Mirb) Franco) using static point data and the Schumacher functional
form. Brickell then elaborated on the method by using skewness and kurtosis as well as standard
deviations to describe the fractiles of the distributions of heights within age classes when

deriving a family of curves.




In a different approach Newberry and Pienaar (1978) use the more complicated Chapman-

Richards functional form (Chapman 1961; Richards 1959) i.e.,

H=g (1 —~ e—ﬁlA)(l "

where,

H, A are previously defined;
B, B,, 8, = parameters t0 be estimated;

¢ = base of the natural logarithm,

When the reference age was substituted into the equation the site index was obtained for the
guide curve. Curves for other site index values were obtained from the guide curve equation
by holding the shape parameters B8, and 8, constant and varying the asymptote parameter
as necessary to achieve the required H value when A equals the reference age. The result is a
set of anamorphic top height development curves. Other examples of the guide methc;d are

found in Bennett e al. (1959), Heger (1968) and Smith and Watts (1987).

Two assumptions are inherent in the guide curve methodology. The first, that the guide curve
represents the average top height growth on the average site, is false if site index is not constant
forallages. A numberof authors have warned of the bias generated by violating this assumption
(Heger 1968: Carmean 1972; Beck and Trousdeil 1973) while Monserud (1985) and Smith
(1984) examine its magnitude. In Monsg:rud’s (1985) data, ocbserved site index declined from
aheightof 20 matage 50 yrsto aheightof 17 matage 200 yrs, clearly violating the assumption
that age and site index are unrelated. This decline resulted in a bias of more than 12 m at age
200 yrs due to the application of the guide curve method. A method to correct such bias is given

by Curtis (1964).

The second assumption, thata given site index maintains a constant position in the distribution

of heights over time (anamorphism) is also false for most cases. Curve shape 1s knows (o vary




with site index (Monserud 1985), habitat type (Monserud 1984) and soil group (Carmean and
Lenthall 1989). However, the bias introduced by the assumption of anamorphism when
polymorphism s applicable is small in comparison to that introduced by applying guide curve

methodology when site index varies with stand age (Monserud 1985: Monserud 1988).

Mostdata used to derive site index systems, which have appeared in the recent literature, result
from stem analysis or repeated measurement of permanent plots. These data types gave rise

to methodologies which overcame the problems associated with the guide curve method.
3.1.4.2 THE PARAMETER PREDICTION METHOD

The parameter prediction method requires age series data and results in polymorphic disjoint

top height development curves. Basically the method involves:

1) fitting a linear or nonlinear top height by age function to each tree or plot in the data set;
ii)  using each fitted curve to assign a site index value to each plot; and

iii) ~expressing the parameter estimates from (i) as functions of stand characteristcs,
commonly age (King 1966; Barrett 1978; Herman 1978) or site index (Brickell 1968;
Trousdell er al. 1974),

In a variation from this procedure Smith and Waits (1987) fitted the Chapman-Richards
functional form to each plot in their data set. They then expressed the B, parameter estimates

as a function of site index and the B and 8, parameters as functions of the B, parameter.

Heger (1968) observed that the relationship between top height and site index is basically
linear, given thatage is held constant, and regressed top height on site index foreach age class.
These equations were then used to estimate the top heights of plots in each site index class at
respective ages. This procedure vields polymorphic top height development curves. Smith
(1984), using Clutter’s et a/. (1983) classification of methodologies, described Heger s (1968)
method asa parameter prediction method. As no parameters of the final equation are estimaied

fromexurinsic functions, this description is not correct. However, Heger’s method ofien forms
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the basis from which many top height development curves are developed via the parameter

prediction method (Herman et al. 1978; Monserud 1984; Alemdag 1988).

An inverse relationship should exist between an equation which predicts top height from site
index and age and one which predicts site index from top height and age. However, ordinary
least squares regression will not meet this criterion, a point clearly made by Curtis et al.
(1974 a). As a result, Curtis e al. (1974 b) modified Heger’s (1968) method into a true
parameter prediction method, producing a function to estimate site index and a second function
to estimate top height. For example, Curtis’ et al. (1974a) site index equation could be

expressed as,
S=8,+8 H
where,

S = estimated site index

H = the mean top height from the individual regressions of site index and top height foreach

age class (after Heger (1968)).
The esumates for 8 and 8, were then expressed as functions of age.

Separate site index and top height development curves as proposed by Curtis er al. (1974a)
should {a} coincide at the index age only. and (b) diverge in a constant manner. for all ages
(other than index age), as site index diverges from the mean value. However. on application
of the Curtis et al. (1974a) technigue by Curtis er al. (1974b), the resuiting curves only

approximated these conditions.

Dahms (1975) developed a method that derives curves which meet the criceria expected by
Curtis er al. (1974a). The method begins. as does Heger's, by fitting top heightand site index
as linear functions of each other while 2ge is held constant. Age is returned w0 the SYSiEn by

fitting the mean top height, mean site index and the estimuies of the parameiars of ench soe
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class, all as functions of age. This method has been applied successfully (Barrett 1978),
although Monserud (1984) found site index curves developed via this method were far better
behaved than the top height development curves derived in the same manner. Consequently,
Monserud used the logistic functional form (Oliver 1966) to express top height development

and wenton to build habitat type into both the site index and top heightdevelopment functions.

Most parameter prediction methodologies follow the procedures already discussed (Heger
1968; Curtis et al. 1974b; Dahms 1975: Monserud 1984), some with slight modifications (c.f.
Farr 1984; Alemdag 1988). A noteworthy modification is presented by Biging (1985) who
argued that the full information available in time series data sets, such as top height
development, is notexploited. In Biging's study a modified version of the Chapman-Richards
functional form was fitted to a pooled data set. The same functional form was also fitted to each
tree in the data set. Parameters of the functions were estimated via ordinary least squares and
generalized least squares (see Ferguson and Leech (1978)) with significant differances found
between the two sets of estimators. In the example presented, using dominant trees in mixed
conifer forest in California, the varying-parameter method proposed by Biging predicted

higher asymptotic growth than the pooled data and ordinary least squares methods.

Lappiand Bailey (1988} extend Biging’s (1985) argument and propose a statistical model that
explicitly described the major random components in the variation in top heightdevelopment
curves. The average height of dominant and codominant trees in the population was expressed
as a function of age. Then a mode! was developed for the variance-covariance structure of

deviations from this average height curve due to stands and trees within stands.

The parameter prediction method presents a number of areas where concern is warranted.
Firstly, as the parameters for top height development are often expressed as functions of site
index. different choices of reference age will give different patterns of development, even if
the same data set is used (Heger 1973). The second problem occurs where the predicted wop

height at the reference age does not equal site index and therefore mes- he proporionsii

adiusted (Burkhart and Tennent 1977). Thirdlv. it is often diffienl ar smpossible (o solve
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explicitly for site index given top height and age. In this situation site index can only be
determined by graphical interpolation or iterative computations (Clutter ef al. 1983). Finally,
where polymorphism is very evident, application of this method requires a flexible, usually
nonlinear, functional form to be applied to each tree or plotin the data set. Where parameters
are estimated via nonlinear procedures nonconvergence of the iterative procedure is often a

problem, particularly for the asymptotic parameter (Bigin g 1985; Grey 1989).

The problems associated with the parameter prediction method do not exist when the al gebraic

difference method is used.
3.1.43 THE ALGEBRAIC DIFFERENCE METHOD

The algebraic difference method requires time series data and yields either anamorphic or
polymorphic top heightdevelopment and site index curves. This method predicts the top height
of a tree or plot from a function including the top height of the tree or plotatage i-p, ageiand
top height at i-p, where i = time and p = time between remeasurement (Ramirez-Maldgnado

et al. 1988). For example, consider Schumacher’s (1939) functional form:

In(H) =8 + BlA"
where,

all parameters are previously defined.

Successive measurements of the tree or plot will lay on the same curve thus:
n(H) - (H:>,)
- -1 -1
Ai - Ai -p

B,

[n(Ha-) = [n’(Hf—p) + BI (Az‘_l"“A!“—lp)

To obrtain a site index equation the reference age (A,) is substirated for Ay such dhal

H

() = fn (H,_,) ~ By (A7 = A7)
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Bailey and Clutter (1974) demonstrate that the use of the algebraic difference method yields
anamorphic or polymorphic site index and top height development curves which are invariant
to the choice of reference age. Another desirable attribute of this method is thar top height at
the reference age is equivalent to site index. The algebraic difference method using the
Schumacher functional form has been used by Smith and Watts (1987), however the method
isequally applicable to other functional forms (Clutter ez 4. 1983; Cieszewskiand Bella 1989;

Rayner 1991).

In an interesting application of the method the algebraic difference form of Schumacher’s
functionalform, which yielded anamorphic top heightdevelopmentcurves, was fitted to youn g
(<15 yrs) slash pine (Pinus elliotti Engelm). The equation was then joined to an algebraic
| difference functional form (fitted to trees >15 yrs), based on the Clutter and Jones (1980)
polymorphic height increment model, by splinin g (Borders et al. 1984). The resulting system
was thus anamorphic for trees younger than 15 years of age and polymorphic for those older
than 15 years. It also possessed all the desired attributes of a site index system namely, top
height is zero when age is zero, top height at the reference age equals site index, each curve
has a separate upper asymptote and the curves are invariant with respect to the choice of

reference age.

A related approach models height growth directly by fiting top height increment as a
differential function, which on integration over age, yields amodel for total top height growth.
Inherent in this method is the assumption that instantaneous height growth applies at the
average of the two successive ages. An assumption questioned by Borders er a/. (1984). The
differential method has been used to develop polymorphic top height development curves for
loblolly pine (Pinus taeda L) by joining the integrated form of the height increment modeis
by segmented regression techniques (Devan and Burkhar 1982). Garcia (1983) used a
differential form of Richards functional form (Richards 195} for predicting top height growth
of radiata pine (Pinus radiara D. Don) in New Zealand. His model also incorporated

component representative of measurement error,




The differential approach will represent current change in top height in terms of current age.
Extending this approach using integro-differential equations, current chan ge isrepresented in
terms of both current age and the sum of all past top heights from the initial age to present
(Hamlin and Leary 1987). The advantage gained is the ability to identify trees or plots with
similar instantaneous rates of change at a particular age which may have had vastly different

patterns of development (Leary and Hamlin 1988).

Although differential equations are considered under the headin g of algebraic difference, they
are separate entities with conceptual differences (Huseyin 1986). Both methods have received
scant attention in the site index literature in spite of their ability to yield top height growth and

site index systems with desirable attributes.
3144 THE EK-PAYANDEH METHOD

The Ek-Payendeh method yields polymorphic site index curves from time series data. The
method involves estimating the parameters of a function from pooled data comprised of site

index (S), top height (H) and age (A).

Ek’s (1971) expansion of the Chapman-Richards model forms the basis of the methodology,
such that:

Py

"

In this form the equation mayv not be solved for S (Pavandeh 1974a). To overcome this
deficiency Payandeh (1974b) re-arranged the functional form and re-estimated the parameters
such that:
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Although the methodology has been used with success {Carmean and Hahn 1981; Carmean and
Lenthall 1989), Monserud (1984) found the modeis lacked the flexibility to track the

polymorphism in height growth across the range of site indices evident in his data set.

A problem associated with this methodology is that the predicted height will not equal site
index at the reference age. Although this difference is occasionally smallenough to be of little
practical concern (Newnham 1988) it is nevertheless important. The magnitde of the
differences may be decreased by weighted regression (Smith and Watts 1987; Newnham 1987,

Carmean and Lenthall 1989).

This technique has received scant attention in the literature with little variation among the
functional form used. Modification of other functional forms alon g the lines described may

prove useful.
3.1.4.5 MISCELLANEOQOUS METHODS

Some methodologies have appeared in the literature which differ from those classes previously
discussed. Forexample, Stoutand Shumway (1982) recommend the use of both top heightand
diameter for developing top height development and site index curves, but fail to explain how
their model will accommodate differences in taper caused by silvicultural manipulation and
density variations. Zeide (1978) proposed a method where by two height measurements. at
different ages, are required to define a top height development curve. Zeide goes on to claim
thatthe diversity in growth curves of forests throughoutthe world can be reduced to a few curve

types via his method. In both cases no further developments have appeared in the literawre.

Smith and Watts (1987) compare a number of methocologies with a method thev term the
structural method. The structural method takes into accaunt the fact that both top height and
site index contain stochastic error. The method comezred well to the other methodalogics
applied to the same data set. Although the structural m=:=0d performed well for the das see
o which it was applied. it is questionable whether equi success would be achieved if a daw

setof grealer age range or pertaining 1o different species was used (¢.f. Smith 1984: Pavandeh
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1988). The structural method is unlikely to receive much attention because of the disadvantages
associated with linear models, which form the basis of the structural method (Payandeh 1983;

Smith and Kozak 1984).
3.L5 POLYMORPHIC NONDISJOINT TOP HEIGHT DEVELOPMENT

Few workers have constructed polymorphic nondisjoint top height developmentandsite index
curves. In such cases one or more extrinsic attributes are usually required. For example, Zahner
(1962) defined three separate systems for loblolly pine on three separate soil types. To apply
this system not only are S, H and A required but also soil type. A similar system was derived
by Newberry and Pienaar (1978) involving six soil types. Whether these systems are termed
- polymorphic nondisjoint or sets of polymorphic disjoint equations pertaining to a particular
soil type is mere semantics. However, when a continuous, extrinsic attribute, such as stand
density, is included in the equations polymorphic nondisjoint top height development and site

index curves are the result (Alexander et al, 1967).

3.1.6 FUNCTIONAL FORMS

Functional forms which describe top heightdevelopment and site index curves are either linear
or nonlinear in nature. Linear models are less flexible and may require many parameters to
describe the dataadequately (Cieszewski and Bella 1989). They may also yield spuriousresults
when used to extrapolate beyond the bounds of the data from which they were developed (c.f.
Payandeh 1988; Smith 1988). Nonlinear functional forms are generally more flexible and often
have biological bases which provide feasonable estimates upon extrapolation (Plenaar and
Tumbull 1973; Smith and Kozak 1984). Although Smith (1984) and Smith and Watts ( 1987)
question the nonlinearity of top height development. most top height development and site

index equations in the recent literature are of the nonlinear variety.

Cieszewski and Bella (1989) classify nonlinear functional forms as either fractional forms or
modifications of the exponential function. Examples of the fractional class listed by Cieszewski

and Bella {1989} include:




and;

A fractional functional form which has received little attention is that of Morgan et al. (1975):

where;

B
ByBy + BA”
B, + AP

H

when 8 = 0 the model reduces to Hiil’s (1913) model and when B,=0and B,=1 itreduces to the
Michaelis-Menten (1913) rectangular hyperbola. The parameter 8_allows the model to have

a nonzero intercept.

Exponential functions occur more frequently in the literature and examples include the

Gomertz functional form (Yang er a{. 1978):

PP

H=28,¢

Bo— BB,
e




the logistic functional form (Monserud 1984);

Bo

-BA
] + ¢ P

H =

the modified Weibull functional form (Yang et al. 1978);

BZ
H = BO 1 . e“BlA

the Chapman-Richards functional form (Richards 1959);

H=§, (1 —quIAJGWBZ)_l

and Bailey’s (1980) functional form:;

A2 »
H = BO (1_6‘51 J

Many modifications of these functional forms are possible (see Ratkowsky (1983)). For
example Ek’s (1971) modification of the Chapman-Richards function previously discussed

and Monserud’s (1984) modification of the fogistic functonal form, such that:

By

BoS

Py A~ rS
1~:—eBz Py b

H =
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where,
/= a function incorporating forest habitat type.

Although the Chapman-Richards functional form has received prominence in the site index
literature no one equation has been found to be universally applicable. As with site index
methodology there is a lack of agreement as to which functional form should be used with the

choice dependent upon the situation to which it is applied.
3.1.7 PARAMETER ESTIMATION TECHNIQUES

Estimates of parameters for linear functions are obtained by minimising the sums of squares
of the errors; the ordinary least squares method. Parameter estimates for nonlinear functional
forms are obtained through an iterative procedure until some stopping criterion is met. In each
iteration a set of trial coefficients. slightly different from the set in the last iteration, are tested
for their fit against the data. The measure of the success of the fit varies with the fitting
procedure employed, and iteration continues until no significant improvement can be made to
the way the estimates fit the data. Methods for estimation of nonlinear parameters are many
(Bard 1974) and some examples appearing in the site index literature include the Gauss-
Newton (Ratkowsky 1983) method used by Cieszewski and Bella (1989), Marquardt’s (1963)
method as used by Borders et af. (1984) and the secant method (Ralston and Jennrich 1979)
as used by Newnham (1988). Other parameter estimation techniques include maximum
likelihood (Garcia 1983) and generalized least squares (Ferguson and Leech 1978). Some of

the above techniques are compared by Biging (1985) and Borders er al, (1988).

Concern has been expressed about the use of ordinary least squares with repeated measures
(Sullivan and Reynolds 1976; Ferguson and Leech 1978). However, Elston and Grizzle (1962)
and Sullivan and Clutter (19727 both conciude that ordinary least squares estimators are
adequate and it is not necessarv o use more elaborate tuting procedures when faced wih

autocorrelation in a tme series. This view has been supported by Gertner (1985). who found
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that parameter estimates derived via ordinary least squares approximate those derived via

generalized least squares for autocorrelated time series data.

In an examination of the effect of autocorrelation on the parameter estimates for top height
development and site index curves, Monserud ( 1984) used a first order autoregressive
parameter. The parameter was estimated simultaneously along with the functional parameters.
Monserud then forced the autoregressive parameter to equal zero but found the values of the
functional parameters remained practically unaltered. Monserud (1984) concluded that the
problemofautocorrelation could be ignored without biasin g the parameterestimates and found
no evidence to question the traditional practise of ignoring the autocorrelation problem when

developing top height and site index curves.

Most evidence suggests that the effect of autocorrelation may be 1gnored. However, some
studies suggest the effect will vary according to the functional form and the measurement

interval used (Gertner 1985; Borders er al. 1988).

Although ordinary least squares estimates of parameters are seemingly unaffected by
autocorrelation in atime series, itis well established that the variance estimatescan be seriously
biased and confidence intervals consequently incorrect (Sullivan and Reynolds [976). In such
cases where the variance changes are large enough to introduce bias, alternative estimation
procedures such as autoregressive moving average models (Monserud 1986), maximum

likelihood (Garcia 1983) or generalized least squares (Ferguson and Leech 1976) are required.
3.1.8 SITE INDEX AND STOCKING

Siteindex, as anindicator of the productive capabilities of asite, has gzined its popularity partly
from the assumption that the measure is independent of stand densitv. Although some North
American conifers appear to be influenced more by density than most other specics
(Alexander er al. 1967; Barrett 1973 Bennett 1975), the general hypothasis will hold wae wi

top height remaining unaffected bv density until very low or very high densities ure




encountered (Carmean 1975; Haggland 1981; Monserud 1984). Even then, it is not universat
to have dominant height affected as demonstrated by Pienaar and Shiver (1984), who
determined the extent to which the parameter estimates of the Chapman-Richards functional
form were affected by differences in planting densities from 370 to 2950 stems ha'!. Results

indicate no consistent relationship with any of the estimated parameters and stocking.

Distinction between density and stocking is neither clear cut nor consistently made, despite
attempts at definition (Curtis 1970). The estimation of stand density has a variety of purposes,
such as to make ecological distinction between species in mixed species stands (Chisman and
Schumacher 1940), to develop guidelines for stockin gconwol (Gingrich 1967), to define levels
of thinning intensity (Drew and Flewelling 1979) and to predict annual increments (Hall 1979}
to name but a few. Sampling rules for the estimation of stand density fall into two general
categories (i) plot sampling and (ii) distance sampling (Payandeh and Ek 1986). Distance
measures use plots of n trees with the plot size defined as 2 function of the distance from the
plotcentre to a sample tree or some function of its location. Some estimators based ondistance
measures are reviewed by Payandeh and Ek (1986). Density estimators from plot samples can
be divided into five groups. These are, basal area measures. other diameter based measures.
volume based measures, height based measures and crown based measures (Curtis 1970; West
1982). Some of these measures are compared for their suitability to E. grandis (Hill) Maiden

plantations in South Africa by Bredenkamp and Burkhart (1990).

The hypothesis that top height is unaffected by differences in stand density is poorly tested
againsttherange of stand density estimators available. With some exceptions (Alexander er al.
1967; Monserud 1984) the hypothesis is usually tested against stocking (Pienaar and Shiver
1984). There rernains aneed oexamine the universally accepted assumption of the independence

of site index from stand density with the true measures of stand density available.




3.2 TOP HEIGHT DEVELOPMENT AND SITE INDEX EQUATIONS
FOR E. GLOBULUS PLANTATIONS IN SOUTH WEST WESTERN

AUSTRALIA
3.21 INTRODUCTION

Intensive management of a forestestate requires accurate assessment of site quality, Of the two
conceptual schools for site quality assessment, site classification and site evaluation, forest
management practices in south west Western Australia have generally taken the site classification
approach (Havel 1968, 1975a, 1975b, 1980; Strelein 1988; Wardell-Johnson ef al. 1989; Inions
1990; Inions et al, 1990). Until very recently, the site evaluation approach has notbeen applied

to the Western Australian forest estate (Rayner 1991),

The utility of the site evaluation approach has been discussed elsewhere. The historical
development of the approach s described by Tesch (1981)yand Monserud (1988) while reviews
of the topic are provided by Jones (1969), Carmean (1975), Hagglund (1981) and Grey (1989)

and will not be discussed further (see section 3.

Uses of land evaluation techniques, in particular site index, are many. In its simplest use siwe
index is merely alabelassignedtoatractoflandasa symbol of thatland’s productive potential.
Site index more often forms the base for many yield tables (Tesch 1981). For most top heigh:
and site index systems a unique top height development curve is generated for each value of
site index. The top heights may then be used for the explicit prediction of current and fusure
yield (Sullivan and Clutter 1972) or as input variables in more complex growth functions

(e.g; Hahn and Leary 1979; Chang 1988).

It is the aim of this study to develop site index and top height development equations fo-

E. globulus in south west Western Australia.




3.2.2 METHODS
3.2.2.1 DATA

Data forderiving top hei ghtdevelopmentpatterns and plotsiteindices were gathered from trees
felled in 57 plots established in E. globulus plantations inl south west Western Australia
(Figure 1), Trees considered suitable were the tallest, defect free dominants per plot and were
assurned to have been dominants throughout their developments. Height development patterns
of c.8 trees per plot, selected from different strata, were compared to that of the site trees. No
evidence was found to suggest that site trees were other than dominant through their

development.

Eighty seven dominant site trees were felled for stem analysis, procedures for which are
detailed in Chapter two (see section 2.2.2.1). Plots were about 0.04ha in area. Top height is
defined as the average height of the tallest 40 sterns ha'! (i.e., 1 or2 trees (35 = 1.5 trees) were

selected per plot depending upon plot size).
3222 PLOT SITE INDEX AND TOP HEIGHT DEVELOPMENT

In order to establish top height growth from stem analysis, a method for estimating the height
of the tree at a specified age is required, as the true height atthe age corresponding to the ring
count at a crosscut will always be located at some distance above that cut (Dyer and Bailey
1987). There are a range of methods for estimating true heights from stem analysis data
(Carmean 1972; Lenhart 1972). Ina comparison of six such methods, Dyerand Bailey (1987)
conclude that the method of Carmean (1972) gave the most accurate results and yielded

estimates that were not significantyv different from the actual heights.

In this study Carmean’s (1972) method was used to estimate the top height of individual trees
at consecutive ages. The method assumes that, on average, a crosscut will fall in the middle
of a year's height growth. The raw stem analysis data were thus adjusted 0 estimate the wes

height corresponding to the age at exch cross-cue,




For each tree, the top height Ey age co-ordinates where plotted and smoothed by fitting a
continuous second derivative cubic spline to the data (Pizer 1975). Each tree was examined
for erratic growth. In the few cases where erratic growth occurred, errors were detected in the
ring count data and corrected. Site trees from within the same plot displayed similar patterns
of top height development. Consequently, the top height development pattern chosen to
represent a particular plot was taken to be the average of the top heights, at each age, of the

site trees from that plot. Fifty seven such curves were obtained.

In this study the reference age is 5 years. Although a seemingly short space of time it is
nonetheless half the rotation length and prevented the need to extrapolate top height growth
to obtain site index for all but two of the plots, where an extrapolation of one year was required.
Extrapolation was achieved by solving the Chapman-Richards functional form for the
reference age. The parameters of the equation were estimated from plots with similar top height

development patterns, defined via cluster analysis (see section 3.2.3.3.4).

As the expected rotation length is 10 years all top height development data was truncated at
year 12, so as to allow for some extension of the rotation. The data consist of 480 observations
of stand top height (H), age (A) and site index (S). Univariate statistics for top height for each

year and site index are given in Table 6.
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Table 6: Univariate statistics for top height (m) for each year.

Age Mean Top n Std. Dev. Range
Height

1 1.6 57 0.8 0.54.5
2 4.5 57 L7 1.1-8.4
3 7.3 57 2.3 3.3-11.9
4 10.1 57 2.7 5.7-16.0
5 (site index) 12.3 55 2.7 7.3-18.4
6 14.2 43 33 8.8-22.5
7 15.6 35 3.8 9.8-27.6
8 16.5 31 3.2 11.4-24.6
9 17.8 26 34 13.0-26.4
10 19.0 24 3.4 13.4-28.4
11 20.3 19 4.1 13.7-30.2
12 213 19 4.4 14.1-31.6

3223 PLOT DENSITY AND STOCKING

Siteindex has gained its popularity from the assumption that itis independent of stand density.,
To test the validity of this assumptuon, plot site index was examined for any correlation with
density. At each plot about 40 trees were measured for diameter at breast height over bark
(dbhob), bark thickness, total height and crown radius. These data were not applicable for the
calculation of density measures from distance sampling procedures, such as those discussed
and evaluated by Payandeh and Ek (1986). Of the density measures available from plot
sampling (terminology after Payandeh and Ek (1986)) many require additional reference to
previously determined relationships (West 1982). Such relationships do not currently exist for

£. globulus insouth west Western Australia, and the data are too limited for their construction.




Consequently, the density measures used in this study are confined to basal area ha*, stems ha™!

and projected crown cover (PCC). PCCis defined as the sum of the crown cross-sectional areas

per hectare,

3224 NUMERICAL ANALYSIS
32241 PARAMETER ESTIMATION

Estimation of parameters for linear models was by the standard criterion of least squares. In
such cases it is assumed that the errors are independent and identically distributed normal
random variables with 2 mean of zero and a finite variance. The estimates of the unknown

parameters are maximum likelihood estimators of the parameters in the model.

Parameter estimates of the nonlinear functional forms were also derived via the Jeast squares
criterion. However, estimators for nonlinear equations will not have the properties possessed
by those of linear models. The two estimators have properties which are only asymptotically
equal. That is, only as the sample size increases to infinity do the properties of the nonlinear

estimator approach those of the linear estimator.

To estimate the parameters of the nonlinear functional forms, an iteratve process was used
where the initial values of the parameters are altered until the error sums of squares is
minimized, or at least no significant reduction occurs. In ail cases the derivative free secant
method of Ralston and Jennrich (1879) was used.

3.2.24.2 PATTERN RECOGNITION: CLASSIFICATION OF PLOTS BY TOP HEIGHT
DEVELOPMENT PATTERN.

The use of numerical classification procedures has been used often for the analysis of resource
data (Webb et al. 1984; Carleton er al. 1985; Curry and Slater 1986: Callaway and Clebsch
1987; Pojar er al. 1987). In most cases the procedure begins by creating a matrix of pairwise
associations between plots or sites viz some association measure. such as the Gower metric

{Gower 1971) or the Bray-Curtis mewic (Bray and Curtis 1957). As such each atrribute. on
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which the classification is based, is considered to be an independent entity. This assumption
isincorrect when applied to top height development data as the top height of a stand at any one
year is notindependent of the top height in other years. The application of standard association
metrics willnotaccount for the time series inherentin the data. To address this problem a matrix
of associations between plots was calculated using the two-dimensional profile algorithm of

Faith et al. (1985).

The algorithm adds to the usual quantitative dimension of each attribute, a second dimension
of order thereby creating what Faith et a/. (1985) term profile attributes. A profile attribute is
then made up of individual characters, in this case top height, that are explicitly ordered along
a second dimension, in this case time. The measure is related to the general form for measures
of spatial autocorrelation based upon cross products (Hubert ef al. 1981). Application of the
algorithmrequires a parameter P to be specified. This parameter affects the neighbourhood of
influence (terminology after Faith er al. (1985)). As the neighbourhood of influence becomes
broader the metric will produce distance measures which approach measures derived via the
application of standard association metrics. In this study P was set to equal 0.5, thus definin g

a narrow neighbourhood of influence,

The hierarchical agglomerative clustering strategy, the unweighted pair-group arithmetic
averaging (UPGMA) was used to impose structure to the association matrix (Gauch and
Whittaker 1981). Although the method is sometimes prone to minor misclassifications, it has
the advantage of taking more than one plot into account at any fusion. The clustering intensity

coefficient beta was set at 0 (Booth 1978).

Forcomparative purposes, a second association matrix was derived via the Bray-Curtis metric
(Bray-Curtis 1957). As such, the top height at each vear is treated as an independent attribute.
‘The UPGMA fusion strategy was used to impose structure to the association matrix. The
clustering intensity coefficient bera was set at -0.1. Under such conditions the clustering

smategy 1s slightly “space-dilating” and resists the formation of a single large group by

tavouring the formation of a number of even-sized groups (Booth 1978).
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The acceptability of imposed: groups was examined by ordinating the sites with principal
co-ordinate analysis and examining the position of group members in component space

{Gower 1967).

3.2.3 RESULTS
32.3.1 SITE INDEX AND DENSITY

Univariate statistics for three measures of stand density are given in Table 7. No significant
correlation was detected between plot site index and PCC or basal area. The correlation
between site index and stocking was significant (p<0.0 1)(('1‘ able 8). This probably results from
. the practice of planting less stems ha in areas of low rainfall, thus low site index and higher
stockings in areas of high rainfall thus higher site index, Re gressing plot site index on stocking
yieldsanequation which explains only 11.9% of the variance. Itis assumed that the relationship
between plot site index and stocking is an artifact of management history, rather than a
meaningful relationship. Therefore, the assumption of independence between plot site index

and stand density is not seriously violated in this study.

Table 7: Univariate statistics for stocking (stems ha*!), basal area (m’ha) and
projected crown cover (m*ha'l).

Yariable Mean N* Std. Dev Range
Stocking 832 . 53 372 180-2000
Basal area 14.0 53 7.5 2.9-32.7
PCC 3975.2 53 22711 1259.11395

* 4 plots have no density measures associated
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Table 8: Pearson’s correlation coefficients between plot site index and 3 measures of
stand density. Significance levels are given in parenthesis.

Variable Basal area PCC Stocking
Site index 0.0184 0.1796 - 0.3449
{0.0114) (0.1982) (0.0114)

3232 SELECTION OF FUNCTIONAL FORMS

Polymorphism was evident in the graphs of top height development. Therefore, the functional
form selected to explain top height development would need to be flexible in nature and
preferably sigmoidal. Five candidate functional forms were tested for their ability to fit the
data. These were the Schumacherfunctional form (Schumacher 1939), the Chapman-Richards
functional form (Richards 1959; Chapman 1961), the Weibull functional form (Yang et al
1978), the logistic functional form (Monserud 1984) and Hossfald’s fractional functional form

(Zakrzewski 1986). Parameter estimates and model statistics are given in Table 9.

The model statistics pertaining to the Schumacher functonal form are notdirectly comparable
to the other models as they pertain to a different dependent variable, namely /n (H). The
Schumacher functional form also lacked the ability to track the sigrnoidal nature eviden: in
many of the top height development Pattems. The fractional functional form of Hossfald did
not fit the data well and was not considered further. Of the three remaining models the
Chapman-Richards functional form displayed the mostdesirable model statistics and will form

the basis of subsequent model development.
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Table 9: Parameter estimates and model statistics for 5 candidate functional forms.

Functional B, B, 8, A B c 1))
form

Schumacher 3.05 -2.83 - 50.82 0.11 0.00  0.33
Chapman-Richards 23.65 0.21 1.51 3794.97 7.96 -0.02 2.81
Weibull 22.76 -0.92 1.31 3806.05 7.98 029 282
Logistic 6.14 -0.25 - 8745.05 18.29 000 427
Hossfald -18.10 471 =027  31933.65 76.03 5.81 6.46

A = Residual sums of squares

B = Residual mean square

C = Mean residual

D= Standard deviation of the residuals

3.2.33 TOP HEIGHT DEVELOPMENT AND SITE INDEX EQUATIONS
3.2.3.3.1 THE EK-PAYANDEH METHOD

The parameters of Ek's (1971) and Payandeh’s (1978) modifications of the Chapman-Richards

functional form, such that:

By

_ By -B,A BS
H=35" (1-e ~. (1]

B, - _
S = ﬂoH l—¢ b, [12]

were estimated. For each equation a number of starting values were tried durin g the paramster

estimation lterative procedure, to snsure the estimates were not local solugions. The iterative

-1
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procedure used to estimate the parameters of Eq.[12] did not meet the convergence criterion
and the parameters presented are those of the equation with the smallest sum of the squared
errors. In an attempt to meet the convergence criterion the H™ term was dropped from Eq.[12]

such that;

Inthiscase the iterative procedure did meet the convergence criterion. Parameter esimates and
model statistics are given in Table 10, Residual analysis showed that no heteroscedasticity was
evident. The resulting equations Egs.[11] and [13] yield doubly asymptotic, polymorphic top

height development and site index curves (Figure 6).

Table 10: Parameter estimates and model statistics for the Ek-Payandeh models

Equation 8, 8, B, 8, B, A B C D

[11] 4.27 0.76 0.17 3.03 0.27 707.78 149 000  L.10
(12) 10.27 0.06 4753 97561 6328  3779.67 796 075 260
[13] 1.43 0.59 012 -0.86 - 1458.32 306 000 L75

A = Residual sums of squares

B = Residual mean squres

C = Residual mean

D = Standard deviation of the residuals
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3.23.3.2 THE PARAMETER PREDICTION METHOD

Two functional forms were considered for this methodology. Firstly, Schumacher’s functional
form because only two parameters require estimation. Secondly, the Chapman-Richards

functional form because it is considered the most appropriate for this data set.
Schumacher’s functional form.

The 8 and B, parameters of Schumacher’s functional form were estimated for eachplot. These

parameters were then estimated from functions of S such that:

n(H) =B+ B A" [14]
where,

B,=2.4+0.05S (r* = 0.46) [14a]
and,

B, =3.38-3.078, + 0.21S (r*=0.72) [14b}

Analysis of the residual errors from predicted hei ghts showed that although the mean error was
small (X =0.82m) the spread was large (std.dev. =2.2m). A relationship between plot age and
error magnitude was evident. Therefore, an age term was incorporated into Eqs. [14a] and

[14b] such that:

B, = 2.39 - 2.39A° + 0.988 (r=0.68) [l4c]
and,

B =5.80-4.69A + 0.315-3.878, (1*=0.78) [14d]

Although the incorporation of an age term into the parameter prediction equations improved
the r* of the models, no improvement in the residual statistics was detected (X =0.38m:std dev
=4.26m). Use of equations {14c]and { 14d] will also have the undesirable property of yieiding

different values for §_and B, fordifferentages. Eqs. [14c] and [14d) are not considered further.




Chapman-Richards functional form

The Chapman-Richards functional form was fitted to each plot. Nonconvergence of the

iterative procedure occurred in six plots so parameter estimates from these were excluded from

further analysis. The three parameters of the Chapman-Richards functional form were

expressed as functions of S such that:

where,
: Bo = -341.43+15.135 + 8.0 x 10¢ 85+ 2153.98 §*
(r*=0.35)
Bl = 0.84 - 0.10 S - 0.005 Bo + (.005 §°
(r*=0.58)
82 = 1.34 - 0.036 § + 4.20/8!
(r* = 0.66)

[15]

[15a]

[15b]

{15c]

This set of equations has a negative bias and a large spread of errors (X = -2.7 m: std.dev.

= 5.17 m). This may stem from the correlation which exists between parameters (Table 11).

Thus variation in parameter estimates, which are unrelated to variation in site conditions, may

be compensated for by other parameters, reducing the equations ability to explain large

amounts of the variation among parameters.




Table 11: Pearson’s correlation coefficients between the parameter estimates of the
Chapman-Richards functional form fitted to each plot. Significance levels are given
in parenthesis.

BO Bl BZ
8, -
8, -0.60 :
(0.0001)
B, 0.41 0.80
(0.0025) (0.0001)

In an attempt to overcome this problem, the B, parameter was expressed as a function of the -

B, parameter such that:

B, = 0.94 + 3978, [16]
(* = 0.64)

Eqg. [16] was substituted back into the Chapman-Richards functional form such that:
H = BU (1 - B.A) [0.94 +3.97 8] [17]

and the parameters B and B, were estimated for each plot. Inthis case the convergence criterion

of the iterative procedure was met for all but one of the plots.

The sum of the individual residual sums of squares resulting from the fit of Eq. [17] to each
plot was significantly (p<0.05) larger than that yielded by applying the standard three
parameter Chapman-Richards functional form to each plot. Only plots which met the
convergence criterion in both cases :vere used in this comparison. Expressing the individual

parameter estimates from Eq. [17] as functions of S showed no relationship, with the r2 values

for the relationship between B,and B, and S being 0.03 and 0.09 respectively.

As the predictions resulting from Eqs. [15],{15a], [ 15b] and [15¢] contain unacceptable errors
and yield top height development patterns devoid of reality formost values of S JEqgs. [14][14a]
and [14b] will be used to yield top height development curves via the parameter prediction

method. These equations yield polymorphic top height development curves (Figure 7).
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32333  THE ALGEBRAIC DIFFERENCE METHOD

When estimating the parameters of the algebraic difference equation, based on the Chapman-
Richards functional form, non-overlapping increment periods were used. Thatis, the top height

increment from A=1 to A=2 and A=2 to A=3 etc were used, but not A=1 to A=3.

The following equation resulted:

{ 64).15A2 143 |
H,=H 0,154, [18], |
l1-e ]

where,

H, = top height at age 4,
H, =top heightatage A
A, = age at measurement 2

A, = age at measurement 1

Residual sums of squares = 333.85m
Residual mean squares =  (.79m
Residual mean .= 012m
Standard deviation of residuals = 0.88m
N = 422

Residuals resulting from Eq. {18] displayed desirable qualities with no evidence of

heteroscedasticity.




Substitution of the reference age for A, and S for H, yields the site index equation;

15 143
[—e™

S = H1 ~0.154, [19]
l—e - -

Application of Eqs. [18] and [19] yields doubly asymptotic top height development and site

index curves (Figure 8).
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3.2.3.34

CLASSIFICATION OF PLOTS BY TOP HEIGHT DEVELOPMENT PATTERN

The classification using standard cluster analysis techniques (i.e., metric = Bray-Curtis; fusion

strategy = UPGMA, betqa = -0.1) was arbitrarily truncated at the seven group level (Figure 9).

In this case each attribute of the plot (i.e., top height at each year) is considered independent.

Group A:

Group B:

| Group C:

Group D:

Group E:

Group F:

Group G:

contains 2 plots of low site index & =9.9m; Std. dev. = 0.2my). These plots show

very slow top height development after age 4.

contains 11 plots of low site index & =9.8 m; Std. dev. = 0.5m). Group B does

not show the marked slowing of growth as does group A.
contains 5 plots with very low site index values (7( = 7.8 m; Std. dev. = 0.5 m).

contains 8 plots of medium site index (X = 13.0 m; Std. dev. = 1.3 m). This group

displays the greatest within group variability for site index.
contains 10 plots of high site index (?( = 14.9 m; Std.dev. = .8 m).
contains 15 plots of medium site index & =11.9 m; Std. dev. = 0.6 m).

contains 6 piots of the highest site index (3_( =18.4 m; Std. dev. = 0.8 m).

Although this classification minimized the within-group variance while maximizing the

between group variance for top height, some within group polymorphism was evident.

Consider the top height development curves for the 10 plots which comprise group E

(Figure 10). Although ali plots in this group have similar values for site index, some

polymorphism exists, particularly for ages greater than the reference age.
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Figure 9:  Dendrogram resuiting from the classification of plots based on
Lop heigh; {metric = Bray-Curtis; fusion strategy = UPGMA,
eta = -0.1),
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Figure 10: ;‘;)é)ugegght development curves of plots which comprise cluster
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The classification of plots when the top height development pattern was considered as a two-

dimensional profile attribute, after Faith er a/. (1985), was arbitrarily truncated at the eight

group level (Figure 11). Group membership was examined in component space as a guide to

the success of the classification and its level of truncation (Fi gure 12). Good separation of group

members was achieved along principal axis 1, which explained 95.5% of the variance

accounted for.

Group 1:

Group 2:

Group 3:

Group 4:

Group 5:

Group 6:

Group 7:

contains the same 2 plots of group A, defined via standard clustering techniques.

contains 13 plots of medium site index (—}“( = 13.7 m; Std. dev. = 1.1 m). Plots in
this group are characterized by rapid initial top height growth, with a sharp decline

in the rate of top height development after the reference age.

contains 14 plots of low to medium site index &z 11.9m; Std. dev, =0.6 m). Plots
in this group are characterized by slow initial growth followed by a minimum of

curvature in top height development pattern after age three.

contains 5 plots of medium to high site index (X = 14.6; Std. dev. =0 5 m). Plots
in this group are characterized by slow initial top height development becoming

rapid after the third vear,

contains 5 plots of very low site index (X =7.8 m: Std. dev. = 0.5 m). Plots in this
group are characterized by very stow top height development at young ages and

a linear top height development pattern after age 3.

contains |1 plots of low site index &-—- 9.9m: Std. dev. =0.6 m). Plots in this group
are characterized by slow early top height development with a sharp decline in top

height growth after the reference age.

vttty O PLOTS Of Ingr st tidex Ua = 18, L Sudodev, = 1 U, Flots in s areup
are characterized by rapid top height developmens throughout the roration,

particularly for ages 1 10 7.




Group 8:  contains I plotonly withasite index of 19.3 m. The top height developmentpattern

forthis plotis similar tothat of group 7 and will be treated as a member of that group

for subsequent analysis and discussion.

Treating top height development as a two dimensional profile attribute allowed the formation
of groups of similar top height development pattern. The witﬁin group polymorphism evident
in Figure 10 does notoccur when the methodology was applied. For example, group E, defined
via standard clustering methods, is split with five members allocated to other groups. The

remaining members form group 4. No evidence of within group polymorphism exists for this

group (Figure 13).
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Figure 11: Dendrogram resulting from the classification of plots based on
top height development pattern (metric = two dimensionai profile
algorithm; fusion strateqy = UPGMA, beta = 0}.
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Figure 12: Position in component space of group members, defined via
cluster analysis based on top height deveiopment patterns.
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' '-"I'n:'an'attempt totrack the polymorphismevidentin the data, the parameters of the Ek-Payandeh
fﬁnctional form were estimated for each cluster group. In all cases difficulty was experienced
meeting the convergence criterion of the iterative procedure for other than local solutions. As
much of the polymorphism had now been confined to that which exists between groups, the

standard form of the Ek-Payandeh functional form was pfobably over-parameterised. The

functional form was thus medified to:
B B, ( B zA)ﬁ3
H=;5"(1-¢ [20]

Parameter estimates and model statistics resulting from the application of Eq. {20} to each
cluster group are given in Table 12. The resulting set of equations yields doubly asymptotic
polymorphic nondisjoint top height development curves (Figure 14). To derive Figure 14, the

mean value of § for each cluster was used when applying Eq. (20].

Using the method of Ratkowsky ( 1983), the hypothesis, that the data for cluster groups could

be combined and explained by a single equation, was tested for all pairs. The hypothesis was

rejected (p>0.0001) in each case,

Parameters of algebraic difference form of the Chapman-Richards functional form were

estimated for each of the cluster groups. Theresulting setofequations yieldsdoubly asymptotic
&

polymorphic nondisjoint top heightdevelopmentcurves (Figure 15). This system of equations

also yield site index equations when the reference age is substituted for the A,termand S s

substituted for the H, term.

The hypothesis that the data for cluster groups could be combined was again tested. The
hypothesis was again rejected for all combinations (p>0.0001). The parameter estimates anc
model statistics resulting from fitting the algebraic difference form of the Chapman-Richards

tunctional form to each cluster group are given in Table 13.




Table 12: Parameter estimates and model statistics derived from fitting the modified
Ek-Payandeh functional form (Eq. [20]) to each cluster group.

Cluster group B, B, B, B, A B C D
1 2.88 0.71 0.24 03 1,40 0.09 -0.01 0.28
2 547 0.67 0.14 1.21 68.43 0.76 0.02 0.85
3 2.29 1.02 0.17 1.65 75.58 0.64 -0.01 0.70
4 11.12 0.49 0.17 1.89 26.93 1.00 0.02 0.94
5 7.80 0.71 0.09 1.47 Jo.64 0.72 -0.03 0.75
6 19.12 0.08 0.20 1.87 129.52 1.17 0.01 0.92
7 1.56 115 0.17 1.49 33.61 0.86 0.03 0.9t

A = Residual sums of squares

B = Residual mean square

C = Mean residual

D = Standard deviation of the residuals

Table 13: Parameter estimates and model statistics derived from fitting an algebraic
difference equation to each cluster group.

N

Claster group B, B, A B C D
1 0.36 1.37 3.30 0.21 0.08 0.43
2 0.21 1.35 51.12 0.67 0.07 0.81
3 0.20 £.78 40.12 0.38 0.06 0.61
4 0.24 218 35.71 1.49 0.15 1.18
0.06 1.29 20.25 0.42 0.06 0.64
6 0.16 .58 37.30 0.36 0.03 0.60
7 0.15 140 64.26 1.89 0.18 1.34

A = Residual sums of squares

B = Residual mean square

C = Mean residual

D = Standard deviation of the residuals
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3234 RESIDUAL ANALYSIS OF CANDIDATE TOP HEIGHT DEVELOPMENT
AND SITE INDEX EQUATIONS

3.2.34.1 TOP HEIGHT DEVELOPMENT EQUATIONS

The residuals of candidate top height development equations were compared. The two
equations derived via the parameter prediction method (Egs. {14] and {15]) yielded the worst
residual statistics. Egs. [14] and [15] displayed large mean residuals with large variances. The
Ek-Payandeh equation (Eq. [11]) yielded the smallest mean residual but suffered from a wide
spread of errors. The algebraic difference equation (Eq. [18]) and the modified Ek-Payandeh
equation fitted to each cluster group (Eq. [20]) both exhibited small mean residuals and the

smallest spread.

It should be pointed out that the residuals generated by application of Eq. {18] will appear more
favourable than is warranted. At each prediction it is assumed that A,, A, and K, are known
where, in reality H will also be a prediction and contain error. Equations [18], [20] and

Eq. [18] applied to each cluster group, yield the most favourable residual statistics (Tablé 14).

Table 14: Univariate statistics for the residuals generated from individual top height
development equations.

Equation Mean Std. Dev Range Skewness Kurtosis
(11} 0.06 1._;2 -5.77 - 4.84 0.01 3.68
[14] 0.66 3.39 -11.61-991 -1.10 1.67
{15] -1.69 4,63 -23.57 - 8.11 167 331
[18] 0.12 (.88 -2.58 - 3.58 0.9 1.73
(20] 0.15 0.90 -3.50 - 4.48 0.40 2.57
{18 0.07 0.79 236 - 3.63 0.72 244

" Eq. {18] applied to each cluster group
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In the presence of autocorrelation estimates of the parameters of an equation will remain
theoretically unbiased, but the estimation procedure will become less efficient (Gertner 19835),
However, the estimates of variance will be biased, resulting in confidence intervals that are too
narrow (Draper and Smith 1981). As a guide to the magnitude to which the residuals are
correlated, aresidual correlation matrix was calculated foreach equation (Table 15 a,b,c,d,e,).
Residuals from all top height development equations show si gnificant correlation between
years. However, the autocorrelation for Egs. [11], [14] and [15] were particularly prominent.
The autocorrelation between residuals for Eqs. [18], [20] and Eq. {18] applied to each cluster
group are generally confined to the first order lag intervals (i.e., between years 1 and 2,2 and
3, 3 and 4 etc) making these two equations more attractive than the other candidates. OF all
equations Eq. [18] applied to each cluster group displays less correlation among residuals than

other equations.

Y3
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‘Table 15: Correlation matrix between residuals derived via the following methods (a) Ek-Payandeh Eq. [11], (b) parameter
prediction Eq. [14], Schumacher’s functional form, (c) parameter prediction Eq. [15] Chapman-Richards functional form, {d) the
difference equation Eq. (18], (e) the modified Ek-Payandeh equation Eq. {20] applied to each cluster and (f) the difference
equation Eq. [18] applied to each cluster. The significance levels of the correlation, where significant are given in parenthesis,

{A)
Year 1 2 3 4 5 6 7 8 9 10 11
H -
2 0,71
(0.0001)
3 0.52 0.88 -
(0.0001)  (0.0001)
0.29 0.69 0.83 -
(0.03) {0.0001) (0.0001)
5 -0.10 0,13 -0,01 0.27 -
- - (0.09) -
& -0.42 -{(3.48 -0.33 -0.25 -0.09 -
{0.004) (0.001) (.03} - -
7 -0.53 -0.63 -0.43 -0.44 0.01 0.90 -
{0.000%) (0.0001) ((.00% (0.008) - (0.0001)
-0.46 -0.59 -0.43 -0.39 -0.09 0.78 0.94 -
0.0 (0.0004) {0.01) {0.03) - {0.0001) (0.0001)
8 -0.24 -0.20 -0.06 -0.20 -0.21 D.54 0.77 0.92 -
- - . - - {0.004) (0.0001) (0.0001)
i (324 -(.18 -0.04 (.21 -0.18 0.49 0.73 .87 0.98 -
- - - - - 0.0 {0.0001) (0.0001) (0.0001)
-0.28 -0.25 -0.17 -0.38 -0.22 047 0.75 .0.84 0.94 0.98 -
- - - - - {0.04) (0.0002) (0.0001) (0.0001) {0.0001)

i £330 -0.27 -0.19 -0.39 -0.22 0.44 0.75 w . 0.82 0.92 0.96 0.99 -
- - - . - {0.0002) (0.0001) (0.0001) (0.0001)  (©.000D
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()

Year 1 2 3 4 5 6 7 8 9 10 11
i -
2 0.29 -
(0.02)
3 0.06 0.87 -
- (0.0001)
4 -0.12 0.67 0.83 - '
- (0.0001)  (0.0001)
5 -0.49 0.15 0.26 0.55 -
(0.0002) . (0.05) (0.0001)
6 -0.63 -0.27 -0.10 0.12 0.55 -
(0.0001) - - - (0.0001)
7 -0.69 -0.51 -0.28 0.12 0.33 0.87 -
(0.0001)  (0.001) - - (0.05) (0.0001)
B) .55 -0.50 -0.31 -0.08 0.29 0.75 0.94 -
(0.001) (0.004) - - - (0.0001)  (0.000D
9 -0.41 -0.12 0.01 0.02 0.18 0.54 0.76 0.92 -
(0.04) - - - - (0.005) (0.0001) (0.0001)
14 -0.27 0.14 -0.04 -0.12 -0.01 0.36 0.64 0.83 0.97 -
. . . - - - (0.0007) (0.0001)
1 -3.24 -0.22 0.14 0.24 -0.07 0.33 0.65 0.79 0.92 0.97 -
- - . - - - (0.0003) (0.0001) (0.0001 (0.0001)
-0.23 -0.24 -0.17 -0.27 -0.09 0.29 0.63 0.76 0.89 0.95 0.99

- - - (0.063) (0.0001) (0.0001) (0.0001)  (0.0001)
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Year 1 2 3 4 5 6 7 8 9 10 11
1 -
2 0.71 .
(0.0001)
3 0.51 0.92 ;
(0.0001)  (0.0001)
4 0.40 0.85 0.97 .
(0.002) (0.0001)  (0.0001)
5 0.45 0.73 0.89 0.98 -
(0.0006)  (0.0001)  (0.0001)  (0.0001)
§ 0.33 072~ 086 0.96 0.99 .
(0.03) (0.0001)  (0.0001)  (0.0001)  (0.0001)
i (3.19 ().55 (.71 .89 0.96 0.98
{(.00006) (0.0001) (0.0001) (0.0001) (6.0001)
4 .16 0.49 0.66 0.88 0.96 0.98 0.99 -
. (©.0005)  (0.0001)  (0.0001)  (0.0001) (0.0001)  (0.0001)
9 0.23 0.64 0.74 0.90 0.96 0.98 0.99 0.99 .
- (0.0004)  (0.0001)  (0.0001)  (0.0001) (0.0001)  (0.000)  (0.0001)
18 0.24 0.64 0.74 0.88 0.94 0.97 0.97 0.99 0.99 .
; ©.0008)  (0.0001)  (0.0001)  (0.0001) (0.0001)  (0.0001)  (0.0001)  (0.0001)
13 0.19 0.68 0.74 0.86 0.91 0.95 0.96 0.97 0.99 0.99 .
- {0.001) (©.0003)  (0.0001)  (0.0001) 0.0001)  (0.0001)  (0.0001)  (0.0001)  (0.0001)
12 0.20 0.67 0.72 0.84 0.89 0.93 0.95 0.96 0.98 0.99 0.99
: (0.002) 0.0004)  (0.0001)  (0.0001) (0.0001)  (0.O001)  (0.0001)  (0.0001)  (0.0001)  (0.0001)




60

{n)
Year

2 3 4 5 6 7 8 9 10 11
0.18 -
-0.01 0.48 -
- (0.0002)
-0.34 0.41 0.59 -
(0.01) (0.002)  (0.0001)
0.06 0.37 0.23 0.35
- ©.01) - (0.02)
-0.03 0.51 0.25 0.43 0.53 -
- (0.001) - (0.008) (0.001)
0.08 0.27 -0.09 0.23 0.33 0.47 -
- - - - - (0.006)
0.17 -0.04 -0.44 -0.04 -0.06 0.19 0.52 -
- - (0.02) - - - (0.005)
0.03 0.09 -0.22 0.13 0.01 0.46 0.43 0.75 -
- - - - . (0.02) (0.03) (0.0001)
-0.12 0.24 0.24 0.49 0.22 0.66 0.19 0.36 0.69 -
- - - (0.02) - (0.001) . - (0.0006)
0.02 0.31 0.11 0.34 0.19 0.74 0.29 0.37 0.73 0.83
- - - - - (0.0003) - - (0.0004)  (0.0001)




Q01

(1)

Year 1 2 3 4 5 6 7 8 9 14 11
1
2 0.34 -
(0.0:08})

3 0.02 0.75 -

- (0.0001)
1 (18 (.44 0.70 -

- {0.0007) (0.0001)
5 .02 (017 -0.07 0.41 -

. - - (0.001)
& 012 -0.30 -0.18 0,18 0.46 -

- {0.04) - - (0.002)
7 -00.13 -0.30 -0.23 -0.10 0.21 0.80 -

- (0.002) - - (0.0001y
b 004 -0.32 -(0.15 0.01 0.29 0.74 0.92 -

3 . - - - {0.0001) (0.06001)
8 -0.25 0.07 0.25 011 0.08 0.36 0.63 0.87 -

- - - - - (0.06) (0.0005) (0.0001)
it .07 0.13 0.23 -0.04 -0.09 0.05 0.41 0.70 0.95 -

. . - - - - (0.04) (0.0001) (G.0001)

0.0 .12 .08 -0.23 -0.15 0.01 041 .63 0.86 0.95 -
- - - . - (0.07) (0.003) (0.0001) (0.0001)

iz -1 0.10 0.03 -0.26 -0.17 -0.01 0.42 0.61 0.82 0.92 0.99

- - - - - - (0.07) {0.005) (0.0001D {0.0001) (0.000D
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{9
Year i 2

3 4 5 6 7 8 9 10 1
1
2 -
3 0.01 ]
4 0.23 0.26 :
- {0.04)
5 055 . 047 0.46 .
©.0001) - (0.0004)
6 001 0.20 0.02 001 ;
5 0.05 0.44 -0.006 0.09 0.48 ;
- (0.008) ) . (0.004)
7 0.29 013 .0.53 034 0.19 0.16 .
N - (0.002)y - - -
9 0.48 -0.08 057 027 0.04 0.02 0.54 ;
(0.01) A (0.002) ] ) ) (0.004)
i .38 -0.03 -(0.34 0.12 0.15 0.26 0.35 0.73 -
i ) . ) . i . (0.0001)
i1 0.09 0.01 0.11 0.19 0.21 0.51 0.12 023 0.62 ;
} B} . - - (0.002) - - (0.004)
12 0.31 -0.15 011 0.16 0.11 0.57 0.15 0.32 0.72 0.68
] ) i i - ©.01) i i (0.0005)  (0.001)




32342 SITE INDEX EQUATIONS

To estimate plot site index from A and H, two site index equations are available, the site index
equation from the Ek-Payandeh method (Eq. [12}) and the modified difference equation
(Eg. [19]). As the parameters of the algebraic difference equation were estimated for each

cluster group, a specific site index equation was also available for each cluster group.

When predicting S most of the error incurred stemmed from stands of young age. Predicting
S from stands of three years or less produced errors which were unacceptably high. When
stands of three or less years were excluded Eqs. [12], [19] and Eq. [19] fitted to each cluster
group, yielded acceptable residuals. Equation [19] fitted to each cluster group displayed the

most acceptable residuals (Table 16).

Tabie 16: Univariate statistics for the residuals generated from individual site index
equations.

Eguation Mean Std. Dev. Range Skewness  Kurtosis
Eq. (12] -0.07 1.74 -6.78 - 8.69 0.51 2.66
Eq. [12] -0.20 1.26 344 -3.16 0.25 -1.10
Eq. [19) 0.13 2.24 21092 - i1.44 - 0.35 5.12
Eq. [19]* -0.10 1.10 4.87-3.58 0.11 2.25
Eq. {19]* 0.10 1.77 -10.09 - 8.07 0.18 4.87
Eq. [19]** -0.08 0.96 4.87-3.17 042 3.45

*  Eq. [19] fitted to each cluster group
A only stands older than 3 vears considered.

i02




3.2.4 DISCUSSION AND CONCLUSION

3241 TOP HEIGHT AND SITE INDEX

The reference age in this study was arbitrarily selected to be 5 years, 50% of the rotation. In
most published accounts the reference age varies between 50 and 100 years with 50 years at
breast height a common reference age for the slower growing North American species
(Carmean 1972; Monserud 1984, 1985; Smith 1984; Biging 1985). For fast growing pine
species a reference age of 20 years is common (Garcia 1983; Grey 1989). For the more
productive eucalypt species reference ages are younger still. For example, 10 years for
E. globulus in Portugal (Tome 1988) and seven years for £. globulus in Rwana (Gasana and

Loewenstein 1984).

Inthis study the variation intop height for any one year had stabilized by year five. Forexample,
the coefficient of variation foryears 1 to 12 was 49.3%, 37.6%, 30.9%, 26.5%, 22.3%,23.3%,
24.4%, 19.6%, 19.1%, 18.2%, 19.9% and 20.6% respectively. Therefore, shonening the
reference age to five years should not detract from the explanatory value of the index \#hen
predicting top height development. The logistic advantage gained by being able to assign a

measured site index to a stand early in the rotation is also attractive,
3242 PLOT SITE INDEX AND STAND DENSITY

The data used in this study were too few to adequately test the hypothesis that top height is
unaffected by differences in stand density using the range of stand density estimators available

(West 1982). This remains a weakness of this study.

Only stocking showed a relationship with site index and this was considered an artifact of
management history. The scarcity of plantations with high stocking levels on poor sites
prevented the use of a sampling strategy which may remove this relationship. The correlation
between stocking and site index was assumed to be of little consequence given that PCC oo

basal area show no such relationship. Basal area and density measures based on basal area huve




been shown to be more valid density estimators by West (1982), although Bredenkamp and

Burkhart (1990) found relative spacing useful.

3243 TOP HEIGHT DEVELOPMENT EQUATIONS
3.24.3.1 THE EK-PAYANDEH METHOD

Although Eq. [11] yields acceptable model statistics, the predicted top height at the reference
agedid notcoincide with the corresponding site index values (Table 17). Such results have been
reported in other studies where this functional form has been applied (Kabzen 1971, Hahn and
Carmean 1982). Hahn and Carmean (1982) lessened the magnitude of the differences by
weighting during the parameter estimation procedure while Newnham (1988) presents a
~method where the equation is constrained to pass through the appropriate height at the index
age. However, Newnham (1988) reported a loss of accuracy compared with the unconstrained
method. In this study the magnitude of the differences are small enou ghto be of little practical

significance and therefore remain uncorrected.

A further disadvantage of this methodology stems from the fact that Eq.[11] uses S to modify
the Chapman-Richards functional form and therefore the methodology will not be invariant
tothe choice of reference age (Heger 1973). How the top height developmentcurves generated

by Eq. [11] differ with different choices of reference age was not determined in this study.

Table 17: Site index and the estimated top heights at age 5 years.

Site Index (m) Estimated Top Height At Age 5 (m)
Eq. [11] N Eq. [14]
8 7.9 2.0
10 9.8 10.1
12 11.8 14
14 13.3 12.9
16 15.7 146
18 17,7 A5

20 19.5 17
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3.24.3.2 THE PARAMETER PREDICTION METHOD

The failure of the Chapman-Richards functional form to form the base of the parameter
prediction method was unexpected. This functional form has performed well in other
methodologies and has been used successfully by other authors.with this method (Trousdell
et al. 1974; Biging 1985; Smith and Watts 1987; Kerr and Bowling 1991). Even wheﬁ the
method of Smith and Watts (1987), where only the B parameter is predicted from a function

of S, was applied to this data set, no success was attained.

The failure of this method is particularly surprising given the success of the Ek-Payandeh
functional form. The Ek-Payandeh functional form is merely a modification of the Chapman-
Richards functional form where the 8_ and 8, parameters of the Chapman-Richard functional

form are allowed to vary with different values of S, i.e.:

Bo = WS
Bz = ¥,S

where,

Be By = parameters of the Chapman — Richards  functional form,

YoV W, ¥, = parameters of the Ek - Payandeh Sunctional  form.




This suggests that the parameters of the Chapman-Richards functional form may be expressed
as functions of S using the parameter prediction method, Although this was shown to be true
the resulting predictions were unrealistic and the functions of S used to predict the B8, and B,

parameters of the Chapman-Richards functional form did not resemble what might be

reasonably expected.

One possible explanation for the failure of this method is that the functional form lacked the
flexibility to track the marked polymorphismevident in the data. Monserud (1984) also consid-

ered that the Chapman-Richards functional form lacked the flexibility to track polymorphism.

The correlation between the three parameters of the function made biolo gical interpretation
of the parameter values difficult. The individual parameter values derived from each plot,
could vary markedly without this variance being associated with shifts in site conditions.

Attempts to predict parameter values from site index are hampered by such multicollinearity.

Schumacher’s functional form was more successful as a base function to this methodology.
However, theresulting top hei ghtdevelopmentequations suffer froma number of disadvantages.
Firstly, the top height development curves are unrealistically asymptotic. Secondly, the
predicted top height at the reference age does not equal site index (Table 17), with top height
over estimated for small values of S and under estimated for larger values. These errors are of
higher magnitude than those resulting from the application of Eq. [11] and are large enough
to be of practical importance. A procedure for eliminating this problem has been described

by Burkhart and Tennent (1977) but was not applied to Eqs. [14], {14a] and {14b].

Thirdly, theequations are notinvariant to the choice of reference age, whichhasbeen discussed
previously. A final disadvantage with this method is that given H and A, S must be estimated

implicitly by an iterative procedure which is tedious and logisticaily unappealing.

Finally, the use of this method may vield equations which are over parametenized. Such would
seem to be the case for Egs. [14] and [15]. The problems resulting from multicollinearity and

over parameterizavon are well documented (Hocking 1976; Verbvla 1986).




3.2.4.3.3 THE ALGEBRAIC DIFFERENCE METHOD

Top heightdevelopmentcurvesderived viaalgebraic differences (Eq. [ 18]) are less asymptotic
than other sets of curves. The equation has the desirable properties of (a) the top height at the
reference age equals site index, (b) each curve has a separate upper asymptote, (c) the curves
are invariant with respect to the choice of reference age and (d) site index may be estimated

from Eq. [18].

3.24.3.4 THE CLASSIFICATION OF PLOTS BY TOP HEIGHT DEVELOPMENT PATTERN

Numerical classification is atechnique rich in forestry applications (Turner 1974) yetis mainly
confined to that area of forestry science concerned with the grouping of lands with similar
extrinsic attributes (Spies and Barnes 1985; Wardell-Johnson et a/. 1989; Inions 1990: Inions
etal. 1990). Although some examples of numerical classification techniques existin the forest
science literature for volume table construction (Postaire and M'Hirit 1985) and deriving
productivity indices (Harding er a/. 1985) most examples are confined to the ﬁqld of

community ecology (Orloci 1988).

Classifying plots on the basis of their top height development patterns may be viewed as a
stratification strategy. Stratification yields more efficient, and therefore more precise,
estimators of the model’s parameters where the variables are homogeneous within a stratum
but heterogeneous between strata (Golder and Yeoman 1973). To date stratification for
deriving top height development curves has been on the basis of site index class {Carmean
1972) or some extrinsic environmental variable such as soil type (Carmean and Lenthall 1989).
No system of top height development and site index equations has been developed where plots

have first been stratified via cluster analysis on the basis of their top height development

patterns.

Methods of cluster analysis are many (c.;. Booth 1978:; Green 1980: Gauch and Whittaker
1981; Faitheral. 1987). The choice of associaton metric and fusion srate gv is usually arbitrar

and subject to the objective of the classification. In this study describing wp heigh:




classification which explained more of the polymorphic nature of the data set than did the
standard clustering technique. The two-dimensional profile attribute algorithm of Faith ez al.
(1985) has not been applied for forestry purposes, except for demonstration (Faith er a/. 1985)
and in this study. The success of the classification suggests that the algorithm would be

applicable for stratifying other data sets involving time series data.

Although the technique was able to confine polymorphism to that which exists between groups,
the resulting set of equations suffer from a number of difficulties. Firstly, as with all
polymorphic nondisjoint top height development equations, the equation pertaining to the plot
of interest must be known before the system can be applied. This renders the system described
of little use unless some allocation criterion is available. This criterion will be described and

discussed in Chapter four.

Secondly, where Eq. [20] is used, the predicted top height at the reference age may not equal
site index. This problem does not occur when the algebraic difference equation is applied to

each cluster.

Finally, Eq. [20] is notinvariant with reference age. A gain this problem is overcome when the

algebraic difference equation is applied.

3.2.4.3.5 AUTOCORRELATION AMONG RESIDUALS

The use of ordinary least §quarcs with repeated measures, as was done in this study, resulted
in residuals which were significantly autocorrelated in every exampie. The autocorrelation
was of larger magnitude with some equations than for others. Undersuch situations, hypothesis
tests and variance estimates may be biased. as the standard assumption of independence is
violated (Sullivan and Reynolds 1976; Monserud 1987). Such effects may be removed with
the use of techniques such as fitting appropriate autoregressive moving average (ARMA

models (Monserud 1986: 1987; Yamaguchi 1986: Wigley eral. 1987). With the exception of

Maonserud (1984) these technioues are not haine used for CONSIuCting won ke

and site index equations and were not applied in this study.
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Although variance estimation may be biased in the presence of autocorrelation, there is
evidence to suggest the problem may be ignored when estimating parameters with ordinary
least squares (Elston and Grizzle 1962; Sullivan and Clutter 1972; Monserud 1984). In this
study the problem of autocorrelation was ignored, apart frommerely quantifying its magnitude.

Whether this course of action is justified will be examined during validation.

This study has used a number of methods to derive top height development and site index
equations, however, no recommendations as to which are the most appropriate will be made

until after model validation, which is the topic of Chapter five.
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4.1 LITERATURE REVIEW: EVALUATION OF SITE QUALITY WITH
ENVIRONMENTAL ATTRIBUTES.

4.1.1 INTRODUCTION

Itis the aim of this review to summarise the literature concerned with the relationships between
environmental attributes and some measure of stand productivity. Scant attention is paid to the
body of literature which covers the classification of land, based on soil, climatic, topographical
or floristic attributes, which may or may not be related to some measure of the productive
potential of the classification unit (Inions 1990; Inions et al. 1990). The literature for this
review is derived primarily from the last decade and has a bias toward the Anglo-American

and Western European sources.

Direct measurement of site quality is usually obtained from site index. Where a stand is
degraded, is t00 young or has been heavily cut, few suitable trees will be available for the
required height and age measurements. Consequently, many studies have soughtto predict site

quality from functions of environmental attributes.

Most attempts to relate environmental attributes to forest productivity have relied on
expressing site index as a linear function of soil and topographic variables (Carmean 1975).
Other attributes less commonly used are those pertaining to the climate of the study area.
Climatic variables are usually used in combination with soil and/or topographic variables
(Blyth and MacLeod 1981; White 1982a; Hunter and Gibson 1984) and less commonly in
isolation (Christie and Lines 1979; Farr and Harris 1979). With some exceptions topographic

EX

variables are also rarely used in isolatibn (Stage 1976; Verbyla and Fisher 1989).

“Floristic attributes may be used in functions to express productivity {McLean and Bolsinger
1973; Corns and Pluth 1984). However, the common practice is to identify sites of similar
floristic composition. indicative of a comparatively homogeneous physical environment
(Daubenmire and Daubenmire 1068: Layser 1974: Havel 1975; Pfister and Arno 1980: iniong

et al. 1990). The derived floristic communities mav then be used directly for productivity




ratings (Havel 1968; Inions et al. 1990). Literature pertaining to synecological theory,
methodology and application to forest management has been reviewed by Carmean (1975),

Daubenmire (1976a) and Havel (1981a,b) and will not be dealt with further in this review.

4.1.2 CLASSES OF ENVIRONMENTAL VARIABLES USED FOR SITE QUALITY
EVALUATION ;

4.1.2.1 EDAPHIC VARIABLES

Edaphic variables may be classified as chemical, generally expressing the soil nutrient status
of a site or physical, generally expressing the moisture holdin g status of a site. The two classes
of edaphic variable are usually used in the same function. For example, Brown and
Loewenstein (1978)developed a model to predict site index of mixed conifer stands in northern
Idaho, U.S.A., and found that 70% of the variation in site index was explained by a function
incorporating extractable Ca, exchange acidity, cation exchan ge capacity, organic matter, total
N, soil to rock ratio and clay content of the soils. Likewise, Munn and Vimmerstedt (1980)
found that A horizon thickness, depth to B2 horizon, depth torestriction, pH, kgha™! of available
P and Mn, kgha' of exchangeable Ca, Mg and K, % base saturation and soil organic matter
were significant variables in a function to predict the site index of yellow-poplar (Liriodendron
tulipifera L.) in Ohio, U.S.A. Similar approaches have been reported for black spruce (Picea
mariana Mill. B.S.P.) and balsam fir (Abies basamea L. Mill.) in N ewfoundland, Canada (Page
1976), white pine (Pinus strobus L.) in Massachusetts, U.S.A. (Mader 1976), jack pine (Pinus
banksiana Lamb.) in central Ontario, Canada (Schmit and Carmean 1988), blue gum
{(Eucalyptus globulus Labill.} in Rwanda (Gasana and Loewenstein 1984), forest trees of the
Black Forest, West Germany (Stahr 1979) and Eucalypius camaldulensis Dehnh. plantations

in Nigeria (Buckley 1988).

Soil chemistry is difficult to include in standard forest inventory and consequently, many
studies attempt to exclude variables requiring laboratory analysis, Fralish and Loucks (1975)
found that the precision of an equation to predict the site index of aspen

(Populus remuloides Michx.) in Wisconsin, U.S.A.. originally comprised of variables
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measurable in the field, was only slightly increased by adding soil chemical variables such as
Mg, Ca, K, and P. On the other hand Mader (1976) found that equations comprised of easily
determined soil physical factors gave fair results but the best results required the inclusion of
more complicated physical and chemical parameters. For Pinus radiata D.Don stands in New
South Wales, Australia, 88% of the variation in site index was explained by a function
comprised of total soil P and exchangeable Ca only (Truman et al. 1983). In contrast, Turvey
et al. (1986) concludes that soil physical parameters were predominant in discriminating
between volume production classes while soil chemical parameters were predominant in
discriminating between geological groups for P. radiata also in New South Wales, Australia.
The geological soil groups were then used to separate growth patterns of P. radiata (Ryan
1986). On the other hand Grey (1979) found that edaphic variables have very poor predictive
qualities in functions where the site index of Pinus parula Schlecht and Deppe in South Africa

was the dependent variable.

The depthat which a soil sample is taken has considerable influence on the precision of derived
relationships between forest productivity and soil, as the concenwation of nutrients .varies
vertically through the profile. Powers (1980) found the concentration of mineralizable N
decreased exponentially with soil depth, under planted stands of Pinus ponderosa Laws. in
California and Oregon, USA. Similar results occur in Australian forest soils (Charley 1981;
Inions 1990). Less certain is how the variance of a nutrient concentrations differs with depth
through a profile. While Powers (1980) and Inions (1990) found that the variance of nutrient
concentrations decreases with depth, Shumway and Atkinson (1978) found the coefficient of
variation for mineralizable soil N increased with depth and therefore recommended that

sampling be confined to the top 0 to 15¢m of the profile.

A number of studies have examined the spatial distribution of root svstems. The results are
consistent and show that root concentrations decline sharply with soii depth (Mow and
Bachelard 1969; Roberts 1976: Squires er al. 1978: Powers 1980}, The roots ate most

concentrated in the surface 25cm presumably where nutrient uptake is also # vzhl Thererore the

vertical position from which a soil sampie is taken is of considerabie HNBOITANCE.
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Soil samples are usually taken from a specified horizon (Munn and Vimmerstedt 1980; Hunter
and Gibson 1984} or depth (Saunders er al. 1984; Turvey ez al. 1986). Likewise, multiple
samples from the one site may be from specified horizons or depths. For example, Mader
(1976), Brown and Leowenstein (1978), and Schmidt and Carmean (1988) sampled two, three
and four horizons, respectively. Page (1976) sampled from three set depths confined to the
upper 30c¢m of the soil profile. Powers (1980) took five evenly-spaced samples to a depth of
95cm. Truman et al. (1983) took two samples from set depths from the upper 37.5cm of the

profile, while White (1982a) took two samples from the upper 25cm.

Rarely are explanations offered for selection of horizons ordepths as the samplingcriteria. One
exception is Page (1976) who explains that soil samples were collected from set depths above
30 cm, as below that point profile development was usually minimal and conifer roots were
scarce. Also, fixed depth sampling was used to ensure an equal number of observations from
each plot for statistical expediency. In an attempt to address the problem Monserud et af .
(1990) analysed their soil properties by classifying each profile five ways: (i) by A, Band C
horizons; (ii) by position of the horizon in the profile (ie., uppermost, second, third); (ii-i) by
four soil depth classes; {iv) by plot coverage weighted by horizon thickness: and (v) by plot
average above a potentially limiting depth. The limiting depth was the depth to the horizon

with a bulk density of 1.7g c¢m  and higher.

Most studies, where edaphic auributes are derived from multipie samples from the same
profile, treat the samples as separate independent variables when ceriving relationships with
forest productivity. For example. Schmidt and Carmean (1988) sampled from four horizons
to find only the pH of the BC horizon was significantly related 1o :he site index of jack pine
on glacial Jacustrine soil in Canada. Broadfoot (1969} found t=ct a number of different
sampling depths were influential inequations predicting the site inczx of anumber of different

species.

Few studies were found where the multiple samples were weased == sendently i forms such

as ratios between depths or horizens and this remains a gap e current knowledge, One




notable exception is Fralish-and Loucks (1975) who summed nutrient contents to depths of
30 cm, 60 cm, 90 cm and 150 cm. Another is Monserud ez a!l . (1990) who use plot averages

derived by weighting values by horizon thickness.

Many edaphic attributes are temporally dynamic, a fact rarely addressed in the forest
productivity - soil literature. Most authors imply the variables are invariant with time by not
addressing the unwanted source of variance. However, a wide range of temporal variability
among nutrients, in soils of a variety of forest ecosystems, has been reported (Usher 1970;
Weaver and Forcella 1979; Haines and Cleveland 1981; Vance and Henderson 1984).
Temporal variability may be plant induced (Auten 1945a; Munn and Vimmerstedt 1980),
occur with seasons (Powers 1980), flood induced (Peterson and Rolfe 1985), or occur as a
| result of logging (Albert and Bamnes 1987). Broadfoot (1969) considered that the dynamic
nature of the interrelationships between tree and soil and the possible effects of a tree induced
change in soil characteristics, as possible reasons that equations he developed did not predict
site index of new populations with sufficient precision. On the other hand, Malcolm (1970)
found no cyclical change with age in the depth of litter and fermentation horizons in a study
of site factors affecting Sitka spruce (Picea sirchensis (Bong.) Carr.) growth in Scotland. Will
and Ballard (1976) conciuded that over a range of soil types, changes in soil characteristics
under Pinus radiata are iﬁconsistem in magnitude and direction. A view supported by Hunter

and Gibson (1984).

Where considered, the approaches to dealing with temporal variation of chemical attributes
differ widely. For example, White (1982a) studying Scots pine (Pinus sylvestris L..) in Great
Britain, simply states that all variables used in his study are assurned to be invariant with time.
Munn and Vimmerstedt (1980) studying yellow-poplar (Liriodendron tulipifera ..} in Ohio,
U.S.A. state that because of temporal variation of independent variables the models they
developed are apt 1o underestimate sites not currently supposting yellow poplar. As such they
warn that their models are limited in application. Auten (19452} identified those variables
subjectto temporal variation before developing predictive models { Auten 1945b). Page (1970}

adjusted edaphic attributes to correct for the effect of cover type and of stands at different stages
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of development, on soii properties. Adjustments were based on defined trends in soil properties
through time, under stands of different types, available from previous studies (Page 1974). The
magnitude of temporal variation will differ with each edaphic variable under consideration.
Forexample, samples collected from identical locations at five sites in the autumn of back-to-
back drought years, showed average differences of 89% for KCl1- extractable N and about 29%

for mineralizable N (Munn and Vimmerstedt 1980).

As with temporal variation spatial heterogenity of soils provides an unexplained source of
variance unless it is accounted for when sampling. Many studies have examined the
heterogenity of soil chemical properties (Usher 1970; Blythand MacLeod 1978; Keeney 1980)
which is known to occur laterally and vertically (Charley 1981). For example, Usher (1970)
took 1152 samples of soil under Scots pine forest in Scotland to find that total N was randomly
distributed both horizontally and vertically. However, few soil site studies take quantitative

account of this unwanted source of variation.

The magnitude of within-site variation differs with the atribute bein g sampled for. Inions
(1990) expressed the within-site variance as a proportion of the betwcen—sité variance for 15
soil chemical attributes sampled from karri (Eucalyptus diversicolor F. Muell) forest soils in
Western Australia. The proportion was highest for total N and Olsen extractable P (Watanable
and Olsen 1965) and least for total Pand K. For forestry plots of 0.01 hain Scotland, the number
of samples necessary to obtain mean values to within 10% at p>0.05 was found to be six
samples for total N, nine for total P and 29 for acetic-acid extractable P (Blyth and MacLeod
1978). Gessel et al. (1973) found thatevaluation of the amount of N in forest soils required
more intensive sampling than for other properties in the Douglas-fir (Pseudotsuga menziesii
(Mirb.) Franco) forests they studied: 25 cores were required to obtain <10% difference from
the true mean. Even for the same element, the magnitude of the within-site variance will dier
with the way the elementis extracted from the soil. For example, the number of samples needed
toestimate the population mean for mineralisable N was muzh higher than the numberreguin

to estimate total N (McNabb er al. 1986).

127




Spatial heterogenity may be cofrclated with microsite differences such as the position of
understory plants (Charley 1981) but this is notuniversal (McNabb et al. 1986). The magnitude
of spatial heterogenity also varies with geographic area. For example, McNabb ez g/, (1986)
found the variability of N and C in surface soils was not uniform between six forest types in

the Oregon Cascades, USA.

Few studies have identified the number of samples required to accurately predictsoil chemical
values prior to deriving functions which predict site productivity. One notable exception is
Blyth and MacLeod (1981) who use the sampling intensity recommended by Blyth and
MacLeod (1978) prior to predicting the yield of Sitka spruce (Picea sitchensis (Bong,) Carr.)
in Scotland from environmental attributes. The large number of samples required per plot

limits the practical applicability of this approach,

Many studies choose to avoid the use of soil chemical variables because of the spatial
heterogeneity (Shoulders and Tiarks 1980) while others are prepared to accept the increased
variance and collect one sample only from each site (Fralish and Loucks 1975: Page 1976).
However, the most common strategy is to make a composite sample from two or more sub
samples. Forexample, Hamilton and Krause (1985) pool 12 soil samples to formone composite
sample per plot, Harding et a/. (1985) dug one soil pit per site but formed a composite sample
by pooling soil from the four sides of the pit while Schmoldt et al. (1985) took a single sample
from each of four pits per site to form their composite sample. The precision of estimation of
soil chemical variables is increased using composite samples, however no indication of the

variance is obtained.

A less common strategy 15 to use the mean vatue. from a number of samples within a plot. For
example, Auchmoody and Clay-Smith (1979) use the mean value of three soil samples perplot.
Kabzems and Klinka (1987a) collected 15 samples per site to create three composite samples,
each of 5 samples, and used the mean value of the composites to represent the site valae, The
use ot means is of limited practical applicability because of the restrictive fiscal and ternpora!
cost. however some indication of the variability of the narameters under investi gaton i<

obtalned.
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Analytical procedures normally employed to derive estimates of the nutrient status of soils,
differin theireffectiveness in measuring nutrient quantities available to the plant. For example,
rineralizable soil N has been expressed seven ways in a study to examine the utility of various
indices of mineralizable N for predictin g the response to N fertilisation by loblolly pine
(Pinus taedal..)in the south eastern United States (Leaand BaIIérd 1682). All differed in their
effectiveness. Thedifferent expressions for soil N are reviewed by Keeney (1980) and will not

be discussed further.

Many studies express one elementina variety of ways and treat each expression as independent
variables in subsequentanalysis (Blyth and MacLeod 1981a; White 1982a; Saunderser al. 1984).
Expressions may be in standard analytical nomenclature such as parts per million or percent
{Charley 1981) or as a weight per area or volume of soil (Munn and Vimmerstedt 1980;
Monserud er al. 1990). Whether a particular expression is significantly related to a growth
parameter is dependent on the geographic locality for any one species (Hunter and Gibson
1984; Saunders eral. 1984; Turvey et al. 1986; Schmidt and Carmean 1988) or the tree species

for any one geographic locality (Broadfoot 1969; Carmean 1975).
4.1.2.2 CLIMATIC VARIABLES

Climate and its processes form a continuum in space and time. Within the wide range of
atmospheric conc!izions that occur. an infinite variety and combinations of attributes can be
derived to characterise the climate. or the components thereof, for a geographic locatity. Many
recent studies classify large geographic areas into zones of comparable climate orhomoclimes.
These classifications are based on an array of many climatic attributes (Miller and Auclair
1974; Farr and Hard 1987; Inions 1990). Homoclimes may then be related to the distribution
of forest communrities (Newnham 1968; van Groenewoud 1984) or the productive capability

of a forest community (Inions 1990).

The majordisadvaniage of the classification approachis the difficulty in obiaining the climaric

auributes required. Also. the availability of such du rarely corresponds w forest inventory
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plots from which productivity data are derived, forcing the necessity for extrapolation if yield
and climate are to be compared. Although models (Runnin g et al. 1987) and methodologies
(White 1979; Hutchinson and Bischof 1983) have been developed to enhance extrapolation,
they are usually beyond the practical bounds of forest management. One common approach
to overcoming such problems is to restrict studies to one geographic area or homoclime. This
strategy has been employed by a number of swdies which concentrate on edaphic and
topographic variables (Page 1976; Buckley 1988: Schmidt and Carmean 1988). Other studies
which seek to relate environment and forest quality across two or more homoclimes often

incorporate simple expressions for climate into predictive equations,

One common way of describing climate is through geographic locality, Variables such as
latitude, longitude and elevation have proven effective for predicting forest quality (Evans
1974; Farr and Harris 1979; Grey 1979). Including such variables into equations comprised
of edaphic and topographical variables, often improves the precision of the prediction (Cook

et al. 1977), although this is not a universal result (Fourt et al. 1971).
4.1.2.2.1 PRECIPITATION

Mean annual rainfall is a variable commonly used for predicting forest quality (Cook et al.
1977, Schiller 1982; Hunter and Gibson 1984), Although not always significantly related to
forest quality (Cook er al. 1977) it is easily obrained from maps showing isohytes. Rainfall
distribution is also used, forexample.in a dendroclimatological study of loblolly pine in south
eastern U.S.A., Chang and Aguilar (1980) examined the relationship between monthly,
seasonal and annual precipitation and annual racial growth. Growth was positively related to
the total rainfall during the previous summer. Similarly. the heights of the dominant and
codominant strata of 20 vear old lobloliy, slash { P ellioni Engelm. var. ellionin). longleaf
(Pinus palustris Mill) and shortleaf pines (Pinws 2chinara Mill.) in the Gulf Coastal Plain of
the U.S. A, were related to the rainfail during the warm (April-September) and cool {October-
March) seasons (Shouldars and Tiarks 1980). Flo msidc communities within the b FOresis o

south west Western Australia, which differ in »ro 2uctive potentizl. have been separured alony




rainfall gradients, particularly precipitation during the summer months (December - February)
(Inions er al. 1990). Likewise, Churchill (1968) found a close relationship between the
prehistorical distribution of karri and the rainfall of the wettest and driest months of the year.
Similar results have been obtained in Rwanda, where the rainfall in December was a major

discriminant between site index classes of £. globulus. (Gasana and Loewenstein 1984).

Rainfall distribution is usually expressed as the total for a set of months, usually corresponding
to a particular season. Rarely is the distribution throughout a year taken into account. Jackson
and Gifford (1974) used a range of polynomial coefficients to provide differential weighting
for the rainfall in each month to form a composite variable reflecting annual rainfall

distributions. The analysis found that both mean annual precipitation and some of the
| composite seasonal rainfall distribution variables were significantly refated to the periodic

volume increment of Pinus radiata in New Zealand.

The number of days on which precipitation occurs has been used as an expression of climate.
Chang and Aguilar (1980) accumulate the number of days on which precipitation exceeded
0.25mm on a monthly, seasonal and annual basis. Inions (1990) and Inions et al. (1990) use
the number of days on which precipitation occurred in each quarter, when studying the
productive potential of karri forest. This variable is used less frequently than total annual

rainfall or variables which express rainfall distribution.

Other forms of precipitation are rarely used in site quality studies. One exception is White
(1982a) who used snow depth and rainfall on a quarterly basis in a study of Scots pine in Great

Britain,
4.1.2.2.2 TEMPERATURE

Ambient temperature has been used in site quality studies. It may be expressed on an annual.
seasonal or monthly interval and as a maximum. minimum or mean value (Chang and Aguilar

1980: White 1982a).




Departures from an optima may also be used as an expression for temperature. For example,
Jackson and Gifford ( 1974) use seasonal departures of ambient temperatures from a postulated
optima of 5°C atnight and 20°C during the day for their study of Pinus radiata in New Zealand.
These optima were derived from the studies of Hellmers and Rook (1973). Hunter and Gibson
(1984), also studying Pinus radiata in New Zealand, derive their own optima and use

deviations from 12°C as an independent variable.

Temperature may also be expressed as the number of days durin g which a threshold
temperature was reached. Forexample, Chang and Aguilar (1980) use the number of days with
amaximum temperature equal to or greater than 32.2°C and the number of days with minimum

temperature equal to or less than 0°C.

Total annual growing degree days, where one degree day 1s accumulated for each 1°C rise in
temperature above the daily mean when the daily mean temperature is above the minimum
thresholds of 0.0°C, 5.0°C, 15.6°Cand 21.1°C, was highly correlated with the site index of Sitka
spruce along the North Pacific coast (Farr and Harris 1979). Accumulated temperature has
been used when comparing forestproductivity in Britain and Europe (Christie and Lines 1979).
Soil temperature at 15 and 50cm depths have also been used (Chang and Boyer 1977; Chang
and Aguilar 1980). Although this variable may be considered as edaphic it is classified as

climatic for the purposes of this review.
4.1.2.2.3 RADIATION

The use of variables which describe radiation are more often restricted to mechanistic
physiological studies rather than used in empirical models which predict forest productivity.
Where used however, radiation has been found useful for predicting forest quality. The three
monthly means of total incoming solar-radiation at ground level was a major discriminant
between productivity levels of Scots pine (Pinus sylvestris L..) across Great Britain (White
1982a). Anempirical association between the absorption of radiation by the canopy as a whole

and 1ts utilisation in dry matter productivity was developed by Specht {1981} for Australian




vegetation. Doley (1982) describes a method which uses only latitude and cloud cover for
estimating the daily integral of global radiation at a site. Utilization of the radiation, in the
production of dry matter, is also predicted. The single parameter value is recommended as a

measure of the productive potential of the site.

A study in the Appalachian mountains, West Virginia, U.S.A., developed a relationship
between the radiative index of dryness (i.e. the ratio of yearly sums of net radiation to those
of the latent heat of precipitation) and forest biomass (Tajchman 1984). Similarly, in a
comparative study of the Appalachian mountains site and a site in the Brindabella mountains
of the Australian Capital Territory, this radiative index of dryness was related to forest
productivity with optimum growth potential occurring ata value of 0.75 (Tajchman and Lacey

- 1986).

Although variables derived from measures of radiation have shown a close association with
forest productivity in studies of both broad (White 1982a) and narrow (Tajchman 1984)
geographic ranges, the difficulty inherent in obtaining these measurements prevents their more
frequent use. The study by Doley (1982) provides a method to overcome this problem but has
received little attention in the literature. Similarly, annual total solar radiation may be

calculated from aspect, gradient and latitude from an algorithm developed by Swift (1976).
4.1.2.2.4 MISCELLANEOUS CLIMATIC VARIABLES

Arange of miscellaneous climatic variables have been used in the following forestproductivity
studies, Christie and Lines (1979), Chang and Aguilar (1980) and White (1982b). Thevinciude
the number of days without frost on a monthly, seasonal and annual basis, frost free season.
day length (hr), growing season (days), potential and annual evapouranspiration, annual runoff
(mm), visibility (coded), wind direction (degrees) and wind spead (ms™). Of these variables
only growing season length, frost free season and day length were considered importantin the

study by Christie and Lines (1979).
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4.1.2.3 TOPOGRAPHICAL VARIABLES

With the exception of edaphic attributes, topographic variables are the most common class of
variable used in studies which relate environmental attributes 1o forest productivity. Most
studies use topographic variables in functions also comprised of edaphic and/or climatic
attributes (Mader 1976; Cook et al. 1977; Grey 1979; Blyth and MaéLﬁad 1981; Meeuwig and
Cooper 1981), although some studies have used topographic variables exclusively (Stage
1976; McNab 1985; Verbyla and Fisher 1989). Some studies have found little relationship
between topographic variables and forest productivity (Mader 1976; Page 1976) while others

have found the variables discriminatory (Meeuwig and Cooper 1981; Schmoldt ez al. 1985).

A common expression of topography is slope, which is usually expressed as a percentage. The
variable has been used in studies of site quality for northern hardwoods in Wisconsin and upper
Michigan, U.S.A. (Schmoldt er al. 1985), yellow poplar in Ohio, U.S.A. (Munn and
Vimmerstedt 1980), ibdgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) and white
spruce (Picea glauca (Moench) Voss) in Alberta, Canada (Corns and Pluth 1984) and white
pine in Massachusetts, U.S.A. (Mader 1976). The variable has been significantly related to the
diameter growth of Quercus macrocarpa Michx. in Kansas, U.S.A. (Abrams 1985), basal area
growth of Pinus monophylla Torr. & Frem. and Juniperus osieosperma (Torr.) Little, in
Nevada, U.S.A. (Meeuwig and Cooper 1981), site index and mean annual increment of
Pinus patula schlecht et. Cham. in Transkei (Grey 1979) and the site index of jack pine in
Ontario, Canada (Schmidtand Carmean 1988). White (1982a) expressed slope in degrees from
horizontal, when relating environmental variables o the site quality of Scots pine in Great
Britain and found the variable signiticant. The shape of the siope is a variable which is difficult
t0 obtain in a quantitative measure. Where used. the shape of the slope is usually coded in a

nominal scale (Grey 1979; Munn and Vimmersted: 1980).

Topographic position. defined as the position of the stand in relaticn o the ol length of the
slope, is often used in site quality assessment. Cook eral. (1977 cuced wopographic position

tnto six normunal classes when studving the site quality of Scorspine nporth enst Scotland. The




variable has also been expressed as a percentage of distance from a ridgetop (White 1982a;
McNab 1985). The distance of a plot from aridge top, expressed as a ratio with the total slope
length, has been found to bear a significant relationship with the height of yellow poplar in
Ohio, U.S.A. (Munn and Vimmerstedt 1980). Blyth and MacLeod (1981) express topographic
position as the ratio of the difference in elevation between the sample plot and the ridge crest
to the difference in elevation between the sample plot and the valley floor. The variable was

significantly related to the local yield classes of Sitka spruce in north east Scotland.

Degrees azimuth, asameasure of aspect, is another common topographical variable (Cook et al.
1977, Grey 1979; Munn and Vimmerstedt 1980; Meeuwig and Cooper 1981), Many studies
assume that degrees azimuth may be coded as a cosine function with the minimum in a
- predetermined quadrat. This assumption was first proposed by Gaiser (1951). The use of hi gher
order sine or cosine functions to represent asymmetries was introduced by Carmean (1967).
Significantrelationships have been found when predicting the site index of northern hardwoods
ih the U.S.A. by Séhmoldt et al. (1985), who use the transformation of Lloyd and Lemmon
(1970). Similarly, aspect expressed as 1 + sine (azimuth) was si gnificantly related to the site
index and mean annual increment of lodge pole pine and white spruce in Alberta, Canada

(Corns and Pluth 1984).

Stage (1976) argues that expressions for the effect of aspect should always be considered as
terms involving an interaction with slope. Stage illustrates a method using the relationship
between the site index of western white pine (Pinus monticola Dougl.) and aspect, slope and

habitat type. The methodology has been used successfully by McNab (1985).

Topographic shelter, defined as the sum of the skyline angles in the eight principal compass
directions, was significantly related to the local yield class of Scots pine in Scotland (Cook
et al. 1977). Similar resuits were recorded for Sitka spruce (Blyth and MacLeod 1981).
Microtopex, defined as the sum of the angles formed by the plot centre and points 30 m avay
on the eight principal compass directions, has not been found useful. Exposure, the amount of
skyline at or below (°, given as a percentage, was si gnificantly related to the height of young

Lucalyptus delegarensis R.T. Baker in Tasmania. Australia (Keenan and Candy 1983).




Drainage class, codedona nominal scale, isrelated to the site index of lodgepole pine and white
spruce in Alberta, Canada (Corns and Pluth 1984) but not to the site index of white pine in

Massachusetts U.S.A, (Mader 1976).

Geomorphic shape of the land surface is a topographic vim'able that accounts for the
concentration or dilution of surface water and nutrient, but has seldom been included in studies
| of site quality. Surface shape was included in a site quality study of yellow poplar in Ohio,
U.S.A. but was not found to be significant (Munn and Vimmerstedt 1980). However, McNab
(1985) studying yellow poplar in Georgia and Central Virginia U.S.A., describes a method to
rate the surface shape of landforms, and found the variable significantly related to tree height

at age 50 years.

Other topographic variables used less commonly are distance to a bog margin. This variable
was used in a site quality study of black spruce in northern Minnesota, U.S.A. by Heinselman
(1963) and Watt and Heinselman (1965). Distance to the sea was included in a study of the site
quality of balsam fir and black spruce in western Newfoundland Canada, but was not found

to be significant (Page 1976).

The advantage of topographic variables is the ease with which the data are derived. Many
variables can be obtained from maps, while others are obtained in situ with simple measurement.
One study was able to successfully discriminate between productivity classes with topographical

data derived from satellite imagery (Fox et al. 1985).

4.1.2.4 MISCELLANEQUS VARIABLES

Arange of variables, used in studies of site quality, do not fit neatly into the edaphic. climatic
or topographical classes of attributes. These variables are presented under the collective

heading of miscelianeous attributes.

Foliar nutrient values have been successfully related to site quality in a number of studies. I
the Douglas-fir ecosystems on Vancouver Island Canada. foliar properties were highls

correlated with soil properties and site index. Increases in soil nutrient availability were
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correlated with increased foliar N concentrations of the current year foliage. A consistent
correlation was shown to exist between increased soil nutrient availability, particularly for N,
Mg and Ca and decreased foliar Mn and Al and site index was significantly greater on sites with
greater quantities of nuirient (Kabzems and Klinka 1987b). Growth intercepts were positively
correlated with foliar concentrations of N, P and K in jack pine stands in New Brunswick,
Canada (Hamilton and Krause 1985). The site index of loblolly pine was also significantly
correlated to foliar N concentrations (Lea and Ballard 1982). A significant relationship was
found to exist between foliar P and Ca and site index for Pinus radiata at Mullions Range State
Forest, Australia. Although site index could be predicted via foliar P and Ca, direct calculation
fromsoil parameters was preferred (Truman eral. 1983). However, Saunders eral. (1984), also
- working on the site quality of Pinus radiatain Australia, conclude that the individual measure

most closely associated with site index was seedling foliar P.

White (1982a) used the amount of monoterpenes in the terminal shoot of Scots pine when

studying site quality in Great Britain. This approach has received no further attention.

Shrub competition has been shown to significantly affect stand growth (Brand and Janas 198 8)
but has received scant attention in the literature concerned with. the prediction of site
productivity. This is probably due to the fact that shrub competition is not an inherent site factor
and is capable of being manipulated with silvicultural practice. However, White (1982a) does
incorporate a visual estimate of the mean height of ground flora, as a measure of interspecies
competition in a site quality study in Great Britain. During a similar study White (1982b)
included in a model to predict site quality from environmental attributes, variables which
express the degree of intraspecific competition. The severity of grazing by large herbivores was

afso included in the same study.

Depth to an impenetrable layer has been used by Schimoldt er al. (1985) but was found to have
lirtle relationship with site quality, Blyth and MacLeod (1981) use a similar variable rited
effective depth, which is calculated as total rootable depin X 0.01 X (100-51006 contwn . whsrs

stone content is exprassed on a percentage of volume Hosis.
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The site index of longleaf pine was related to the thickness of the sand layer and the buried
topography of a compacted formation (Oliver 1978). In Oliver’s study the subsurface
compacted formation was mapped ona 1214 ha watershed in South Carolina, U.S.A. Thedepth
to water table is a variable used often in site quality studies in east European countries. It has
an inverse relationship with the height growth of plantations in south east European Russia
(Malan’in 1985). Similarly, models are developed to predict the height of plantation grown

species at 100 y in relation to the water table in west Siberian lowland (Grigor’ev 1986).
4.1.3 MEASURES OF SITE QUALITY

The measure chosen to represent site quality is of considerable importance. If the measure is
more an artifact of silvicultural history than site quality, equations comprised of environmental
attributes used to predict the parameter, are unlikely to be successful. Another consideration
is the practical application of the measure. For example, site index requires the measurement
of stand top heightand stand age and is usually unaffected by stocking and intermediate cutting
(except thinning from above). On the other hand volume production requires the calculation
of stand volume (see Clutter et al. (1983) for methodologies) and age and is affected by stand
density and intermediate cutting. Consequently, site index is applicable where stands vary in
stocking density and silvicultural history, while volume production is applicable where stands
have equivalent stocking dcnsity and sitvicultural history and where the extra effort required

to measure stand volume is logisticaily and fiscally feasible.

4.1.3.1 SITE INDEX

The most common measure of site quality used as the dependent variable, in equations
comprised of environmental variables is, site index. Successful correfations between
environmenial variables and site index have been obtained for Pinus radiata in New Zealand

(Hunter and Gibson 1984), aspen in Wisconsin, U.S.A. (Fralish and Loucks 1975), white pine

4

1n Massachuses, U.S. A, (Mader | 976}, mixed conirerous stands in Idaho. U.S. A (Brown and

~

Loewensicin 1978), loblolly, siash. longleaf and shortear pine in the Gulf Coasr Plain of the
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U.S.A. (Shoulders and Tiarks 1980), balsam fir and black spruce in Newfoundland, Canada
(Page 1976), lodgepole pine and white spruce in Alberta, Canada (Corns and Pluth 1984), jack
pine in Ontario, Canada (Schmidt and Carmean 1988), Sitka spruce along the Pacific coast of
North America (Farr and Harris 1979) and Eucalyptus globulus in Rwana (Gasana and

Loewenstein 1984). A more comprehensive list of earlier work is given in Carmean (1975).

The success of using site index as the dependent variable is not universal. For example,
Schmoldt er al. (1985) found that after Chapman-Richards functions were fitted to yield data,
for northern hardwoods in the U.S.A., significant correlations were derived between the upper
asymptote and maximum growth rate of each fitted curve and the concentrations of extractable

Ca, Mg and aspect. No significant correlations were detected between site index and these site

factors.
4.1.3.2 AVERAGE STAND HEIGHT

The average height of a stand has been used as the dependent variable in a study to predict site
quality of mixed conifer stands in Idaho, U.S.A. from soil and topographic variables (Brown
and Loewenstein 1978). Soil and topographic variables explained 70% of the variation in site
index and 94% in the average height of the stand. Although a seemingly high proportion of the
variation in average height was explained. a major portion of the explanation (71%) is
attributable to the inclusion of stand age into the equation. Similarresults are reported by Munn

and Vimmerstedt (1980).

The average heightofastand hasalso been used inasite quality study of Eucalvpius delegatensis
R.T. Baker in Tasmania, Australia. The average heights were standardised for age prior to

correlation with environmental attributes (Keenan and Candy 1983),

Average height is not a common measure of site qualitv. Although successfullv used in the

small number of studies mentioned the variable is noticeably absent from anv major review

v e

onthe topicof forest site quality (Carmean 1973 Hagglund 193 1), Because the varasle is more




difficult to quantify than site index and is prone to variation bought about by silvicultural

manipulation, I do not consider it a useful parameter if used in isolation.

4.1.3.3 HEIGHT GROWTH INTERCEPTS

Height growth intercepts are a common measure of site quality (Thrower 1987), This method
was developed for conifer species that have distinct internodes marking annual hei ght growth.
Height growth intercepts use information on height growth for some relatively short period as
an index to site productivity. Few studies use the measure as the dependent variable when
relating environmental variables to site quality. One exception is Hamilton and Krause (1985)
who founda significantrelationship between ericaceous plantcover, drainage class, extractable
" P,exchan geable K and Ae horizon developmentand the two, three and four year height growth

intercepts of jack pine in New Brunswick, Canada.

4.1.3.4 VOLUME

An alternative to obtaining site quality information from height measures is to estimafe site
quality from volume-age relationships. However, the volume attained by a stand at any given
age can be greatly affected by factors other than site quality. Unless these factors are controlled
or adjustments are made to reflect their influence, volume production differences between
stands will have little relationship with site quality, Asaresuittotal volume productionis rarely

used as the dependent variable in studies which relate site quality to the environment.

Some exceptions include Brown and Logwenstein (1 978) who found that 86% of the varation
in total volume production of mixed conifer stands in Idaho, U.S.A. was explained by soil and
topographical properties and age. Age alone accounted for 42% of the vanation. Likewise,
Mader (1976) found that total board and cubic volume of white pine in Massachusetts, U.S. A,
were related to age and soil factors. However, the standard errors associatsd with the derived
equations were large and the use of equations predicting site index rather than voiume was

recommended.
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Mean annual volume increment (MAI) has been used as the dependent variable by Grey (1979)
while predicting the site quality of Pinus patula in South Africa. Although a significant
relationship was derived, the use of site index as the dependent variable, gave higherr?values.
Similarresults are reported by Corns and Pluth (1984), who predicted the site quality of mixed

wood forests in Alberta, Canada.

Mean annual increment is a time dependent statistic and its success as a measure of site quality
may welldepend on the age at which MATis calculated. Aninterestingapproach to this problem
was contrived by Buckley (1988) who used the maximum MAI increment of
Eucalyptus camaldulensis in Nigeria as the dependent variable. Significant equations were
derived explaining between 47.8 and 71.4% of the variation in maximum MAI increment,

| depending on the independent variables selected.
4.1.3.5 BASAL AREA AND TREE DIAMETER

Measures of basal area or diameters are rarely used as statistics for site quality. The most
successful study of this type is that of Meeuwig and Cooper (1981) who used potential basal
area growth as a site quality index for pinyon-juniper (Pinus monophylla Torr. & Frem. and
Juniperus osteosperma (Torr.) Little) woodlands in Nevada. Potential basal area growth was
successtully determined by a function comprised of slope gradient, exposure, landform and

parent material.

The relationship between soil, topographic variabies, the age and diameter distributions of
Quercus macrocarpa Michx. and Quercus muenlenbergiiin Kansas U.S.A. has been studied
by Abrams (1985). High growth rates were correlated with low topographic slope, low

available NH, and NO, and high K values.

Studies in which basal area or diameter are successfully related to enviroamental variables are
the exception rather than the rule. Other studies have shown that other measures. such as site

FR SR

index or MAI provide better estimates of site quality (Mader 1976: Schmoldt er ¢i. 1985,




4.1.3.6 BIOMASS

Site quality is occasionally measured by biomass production. The measure is difficult to obtain
and therefore, is rarely used as a practical measure of forest site quality. However, it has been
used as the dependent variable in a study in the Appalachian mountains, U.S.A. (Tajchman
1984) and the Brindabella mountains, Australia (Tajchman and Lacey 1986). In both studies
biomass was successfully predicted by the radiative index of dryness (see Section 4.1.2.2.3),
The effort required to obtain measures for both the dependent and independent variables of this

function severely limits the practical application of such measures and functions.
4.1.3.7 MISCELLANEQUS PRODUCTIVITY MEASURES

In a study of the site quality of white spruce in Minnesota, U.S.A., Harding er al. (1985) used
cluster analysis to define “growth groups” based on combinations of site index, MAl and basal
area. Environmental variables were then used in adiscriminant analysis toallocate independent
plots to a “growth group”. Except for the effort involved with the collection of MAI, basal area
and site index for each plot, this approach has wide practical application but has received scant

attention in the literature.

Four indices of site quality were compared with the volume growth of ponderosa pine
(Pinus ponderosa Laws.) stands in Western Montana, U.S.A. {McLeod and Running 1988).
Indices based on quantifying the biophysical factors or physiological processes that conrol
productivity (available moisture index; the sumof annual precipitation and soil available water
capacity and a relative index of seasonat photosynthesis from computer simuiations {Running
et al. 1987)) worked as well as those based on tree or stand measurements (i.e., site index and

leaf area index). However, site index was by far the simplest measure to obtain.

4.1.4 CONCLUSION

The literature pertining 1o evaluating site productivity from environmental atiribuies i v

By far the rnost common measure of site productivity used ir such sudies is site index




The environmental variables used to predict site productivity are many and varied. The most
common are those edaphic and topographic variables which are easily measured. There are no
universally accepted set of variables which have proven predictive value for all studies.

Whether an environmental variable will be related to site productivity will depend on;

(1)  the measure of site productivity used;
(if) the tree species involved;
(iii) the geographic locality of the study; and

(iv) the scale of the study (i.e. does the study area cover 100 ha or 100 km?),




4.2 RELATIONSHIPS BETWEEN SITE PRODUCTIVITY AND
ENVIRONMENTALATTRIBUTES FOR E.GLOBULUS IN SOUTH
WEST WESTERN AUSTRALIA. I. DATA EXPLORATION, A
MULTIVARIATE APPROACH.

4.2.1 INTRODUCTION

Knowledge of the productive capabilities of the land comprising a plantation estate, yields
economic advantages through the avoidance of unprofitable sites. Knowledge of productive
capability also provides an improved basis for managerial decision making and prediction of
wood volume over the estate, stratified on a productivity basis. The most frequently used

measure of productivity is site index. However, under certain criteria site index 1S unattainable,

The situation exists in south west Western Australia where the productive capabilities of land
must be assessed at year zero of the rotation. This is because the land base for the E. globulus
plantation estate is acquired from private landowners who may receive an annuity beginning
at year zero of the rotation. Secondly, under this scheme, land is being acquired in areas where
there is limited knowledge of plantation forestry asaland use. Thus, a method which is capable

of assessing the productive capabilities of a tract of land at year zero of the rotation is required.

The usual approach to such a situation is to develop a linear regression equation to predict a
measure for productivity such as site index, from environmental attributes. Although some
successes have been attained with this approach many studies are limited in (i) their success
in accounting for a significant proportion of the productivity variation (Corns and Pluth 1984;
Monserud er al.1990), (ii) their appii;ability being restricted by the need to derive variables
which require laboratory analysis (Daubenmire 1976), and (iii) the synergistic and nonlinear
nature of many environmental attributes are often not accounted for by linear combinations
of single environmental atributes. thus the predictive capabilites of the equation are reduced
(Mc Quilkin 1976). One approach used nonlinear regression to overcome some of these
problems (Czarnowski ez ¢l 1971) while some others do inciude interactive terms in their

equations (Jackson and Gifford 1974; Corns 1983,




The use of multivariate techniques to explore patterns within data, prior to formal hypothesis
testing and equation construction may be one way some of these deficiencies may be overcome
but the practice is absent from the literature concerned with predicting productivity from
environmental attributes. Where multivariate techniques are used, their purpose is usually to
reduce the numberof independent variables (Page 1976, White 1982a) orto summarise the data
set into a few dimensions which are subsequently used as the independent attributes (Keenan
and Candy 1983; Green et a/. 1989). Other uses of multivariate techniques include the use of
cluster analysis, used by Harding er al. (1985) to group sites into “growth response groups”
based on site index, basal area and mean annual biomass increment. A discriminant function
was then developed to allocate plots to a growth response group on the basis of environmentat
attributes. A study by Kabzems et al. (1987a) used principal components and discriminant
analysis to examine the relationship between subjectively defined groups of land and
quantitative environmental attributes. Kabzems et al. (1987b) went on to use detrended
correspondence analysis to summarise floristic data. principal components analysis to
summarise soil data and canonical correlation analysis to examine the relationship between

soils and floristics, all of which were then related to site index.
It is the aim of this study to;

(i) identify the gradientsin the environmental data which account for mostof the information

contained within the data set: and

(11} identify the nature and direction of these environmental gradients through multidimensional

space. derived from top height development data.




4.2.2 METHODS

4.2.2,1 PLOT SELECTION

Seventy four environmental attributes were obtained from 56 plots in E. globulus plantations
in south west Western Australia. These plots also yielded data used to derive the site index and
top height development equations detailed in Chapter 3. None of the plots had been fertilised
exceptatthe ime of planting. Half of the plots were placed in stands established on a gricultural

pasture, while half were placed in stands established on unimproved land (Figure 1).

Plots were located with an aim of obtaining the widest possible distribution along the ecological
gradients of the study area. Placement of plots within stands avoided soil boundaries or any

other factor which may have yieided heterogeneous growth patterns within the plot.

4.2.2.2 PRODUCTIVITY CRITERIA

The stand density, previous land use and the magnitude of the competition exerted by the
understory (where present) varied between plots. As these factors affect stand productivity
(Cromer 1973; Skinnerand Attiwill 1981) the use of many productivity measures, such as totaf

stand volume, basal area or mean annual increment, was not considered reasonable.

The productivity criteria used in this study will be (i) site index, as it is considered to be less
affected by the above influences than other criteria., and (it) cluster groups, defined in Chapter 3
(Section 3.2.2.4.2). Relating environmental atmibutes to the cluster groups will indicate

possible causes for the polymorphic nature of the top height development patterns observed.
4.2.2.3 ENVIRONMENTAL VARIABLES
4.2.2.3.1 CLIMATIC VARIABLES

The climatic data were obtained from the biological prediction system (BPS). This pProgram
interpolates between meteorological stations using the methodologies of Wahba and

Wendelberger (1980) and Hutchinson (1987). The program requires latitude, longitude and
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elevation as input and yields values for a range of climatic variables, as demonstrated by Busby

(1986), Nix (1986) and Booth et a/. (1988).

The twenty one climatic variables obtained for each plotare described in Table 18. Univariate

statistics for each climatic attribute are given in Table 19.

4.2.2.3.2 EDAPHIC VARIABLES

Field Procedures

At the centre of each plot a soil pit was excavated to 2 m or to a restrictive layer. Excavations
were dug with a mini excavator (Plate 1). Each soil pit was considered representative of that
- plotand the soil profile was described (Northcote 1971) and photographed for future reference

(Plate 2),

Fifteen soil samples from a depth of 10 cm were collected from within the plot boundaries.
These samples were combined to form three composites of five samples each. The three
composite samples were used to derive edaphic chemical values and to obtain some indication
of the magnitude of the heterogeneity of derived variables. One composite sample, of five
samples, was collected from within the soil pitatadepth of 30 cm. This sample was also used

to derive edaphic chemical variables.

To determine bulk density, soil cores of 206.2 cm’® were extracted at 10 cm, 30 cm, 50 cm,
100 cmand 150 cm or until a restrictive zone was encounted. Corin g followed the procedure

+

of Blake and Hartge (1986).
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Platel: The machine used to excavate soil pits.
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Plate 2: A range of soil types encountered in this study.
CA)a uniform profile of organically stained sand. Bia vrocsionn
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Laboratory Procedures

Composite soil samples were air-dried and analysed via the following methodolo gies.
Phosphorous content was determined colorimetrically using the method of Murphy and Riley
(1962) at 882 nm. The potassium content was determined using the'same solution with atomic
absorption at 766.5 nm. For determinin g pH and conductivity a solution of soil and water with
a1:5 soil/water ratio was mixed. pH was measured with a pH meter while the conductivity was

measured using a conductivity meter calibrated againsta 0.01 M KCl solution.

The organic carbon content was determined by the Walkley-Black method (Walkley and Black
1934). The soil was treated with 8% dichromate and concentrated sulphuric acid and the
resultant chromous ions were measured colorimetrically at 600 nm. N itrogen, expressed as
ammonium ions was determined by extracting the soil with I M potassium chloride solution.
The ammonjum content of the solution was determined colorimetrically at 630 nm by the
indophenol blue reaction. Nitrogen, expressed as nitrate, was determined after the soil was
extracted with 0.02 M aluminium sulphate solution. The nitrate content of the solution was
determined by a specific ion electrode. Reactive iron was determined after the soil was
cxtracteql with Tamm’s reagent (Ammonium oxalate-oxalic acid at pH3.25). The iron content
of the solution was determined Dy atomnic absorption at 248.3 nm. Edaphic chemical variables

derived in this manner are described in Table 18, while their univariate statistics are given in

Table 19,

Bulk densities of the soil samples were determined after the cored soil samples were dried at
105°C to a constant weight. Bulk density is the oven-dried mass of the sample divided by its
volume. Soil particles greater than 2 mm diameter were separated physically by sieving. After

weighing, the amounts of such particles were expressed as a bulk density.

Percentages by weight of sand, siit and clay of the fine fraction were determined by the
hydrometer method (Gee and Bauder 1986). To enhance separation and dispersion of

aggregates, soils were prewreated with hvdro gen peroxide toremove organic matter, A solution
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of water, hydrogen peroxide and soil was heated at 90°C until reaction ceased. Fifty grams of
treated soil was transferred to a beaker and mixed with 250 ml of distilled water and 100 mi
of sodium-hexametaphosphate solution (50 g/L). The sodium-hexametaphosphate creates
particle repulsion as a result of elevation of the particles zeta potential. This process is
accomplished by saturating the exchange complex with sodium. The resuiting suspension was
mixed for five minutes with an electric mixer then transferred to a sedimentation cylinder and
mixed with distilled water to bring the volume up to 1 L. It should be noted that many chemical
and physical dispersion techniques exist (c.f. Edwards and Bremner 1967; Kubota 1972;
Mikhail and Brimer 1978), howevef, the technique outlined above was found to be most

appropriate given the logistic constraints of this study.

Once in the sedimentation cylinder the suspension was mixed by end-over-end shaking for one
minute and hydrometer readings taken at 30's, 60's, 1.5 h and 24 h. Readings were also taken
froma “blank” solution of 900 mL of distilled water and 100 mL of sodium-hexatetaphosphate
solution. Ambient temperatures at the time of each measurement were also recorded. A
standard hydrometer, ASTM no. 152 H, with Bouyoucos scale in g/l was used. Percentages
by weights of sand, silt and clay were derived from these measurements usin g the formulae

of Gee and Bauder (1986).

Random samples were selected and the sediment and suspension from the sedimentation
cylinder were washed througha 53 umsieve. The separated sand particles were transferred into
weighing dishes and dried at 105°C to a constant weight. The percentage sand derived in this
manner was used as a cross check of that derived by the hydrometer method. In all cases the
two figures did not vary enough to be of concern and the hvdrometer derived values were

accepted.

Particle sizes were expressed as percentages by weights atcach depth, Variables derived in this

manner are described in Table 18 while their univariate sratistics are given in Table 19,




4.2.2.3.3 OTHER VARIABLES

Rooting depth was determined by the depth to restrictin g materials, suchasbedrock or hardpan,
or from observations of the rooting pattern in those soils lackin g restricting materials. Slope
was expressed as a percentage, while topographic position is defined as the percentage of
distance from a ridge top in relation to the total slope length. ;\spect was transformed by 1 +
sine (degrees azimuth) and 1 + cosine (degrees azimuth). These variables and their univariate

statistics are given in Tables 18 and 19.

Other environmental attributes were measured from each plot, but after initial screening, were
not found to possess any relationship with productivity. They also have the undesirable
_ property of containing some subjective elements. As such, the following variables were not
included in subsequent analysis, swoil colour, understorey vegetation height and cover,

topographic shelter and drainage class.




Table 18: Variable codes and descriptions of environmental attributes.

VARIABLE CODE DESCRIPTION UNITS

RAD Mean annual radiation MIMday!

RAD_HM Highest monthly radiation z MM 2day"!

RAD 1M Lowest monthly radiation MIM2day™

RAD R Radiation range (RAD_HM-RAD_IM) -

RAD_S Radiation seasonality

RAD_WQ Radiation in the wettest quarter MIM2day!

RAD DQ Radiation in the driest quarter MIMiday

TEMP Mean annual temperature °C

TEMP_HM Highest monthly temperature ¢

TEMP_LM Lowrest monthly temperature °C

TEMP_R Temperature range (Temp_HM-Temp_LM) -

TEMP_S Temperature seasonality

TEMP_WQ Temperature in the wettest quarter °C .

TEMP_DQ Temperature in the driest quarter °C

RAIN Total annual rainfall mrm

RAIN_BM Rainfall in the wettest month mm

RAIN 1M Rainfall in the driest month mm

RAIN_R Rainfall range (RAIN_HM-RAIN_LM) -

RAIN_S Rainfall seasonality

RAIN_WQ Rainfali in the wettest quarter mm

RAIN_DQ Rainfall in the driest quarter mm

Pi0 Phosphous at 10 cm ppm

NIT10 Nitrate at 10 cm ppm

AMM1IO) Ammonium at 10 cm ppm

K10 Potassiam at [0 cm ppm

CRG_C10 Organic carbon at 10 cm %

FE10 Reactive irop at 10 cm ppm

CON_D10 Conductivity at 10 cm dSm-!

PHI0 pHat 10 cm

C_NITI10 ORG_C10+NITIQ -

C_AMMIQ ORG_C10 +AMMI10

P_NIT10 P10 x NITIO

P_AMMIO PIOx AMMIO -

P30 Phosphous at 30 cm ppm

NIT30 Nitrate at 30 cm Bpm

AMM3Q Ammoenium at 30 cm Dom
(Cont.)
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Table 18 (Cont).

VARIABLE CODE DESCRIPTION UNITS
K30 Potassium at 30 cm ppm
ORG_C30 Organic carbon at 30 cm %
FE30 Reactive iron at 30 cm ppm
CON_D30 Conductivity at 30 cm dSm*!
PH30 pHat30cm
C_NIT30 ORG_C30+NIT30 -
C_AMM30 ORG_C30+AMM30 -
P_NIT30 P30 x NIT30 -
P_AMM30 P30 x AMM?30 -
BD10 Bulk density at 10 ¢m gem?
CLAYID Percentage clay content at 10 cm % (wt)
- SILTI0 Percentage silt content at 10 cm % (wt)
SANDI0 Percentage sand content at 10 cm % {wt)
CBD10 CLAY10 x (BD10/100) -
SABD10 SANDI10 x (BD10/100) .
SIBD1O SILTI10 x (BD30/100) -
GRBD10 % weight of the coarse fraction at [0cm x (BD10/100) -
BD30 Buik density at 30 cm gem?
CLAY30 Percentage clay content at 30 em % (wt)
SILT30 Percentage silt content at 30 cm % (wt)
SAND30 Percentage sand content at 30 cm % (wi)
CBD30 CLAY30 x (BD30/100) -
SABD30 SAND30 x (BD30/100) -
SIBD30 SILT30 x (BD10/100) .
GRBD30 % weight of the coarse fraction at 30cm x (BD30/100) -
BD30 Bulk density at 50 ¢cm g cm?
CLAYS0 Percentage clay content at 50 cm T (w1)
SILTS50 Percentage silt content at 50 cm % (w)
SANDS50 Percentage sand content at 50 ¢m % (wi)
CBDSO CLAYS50 x (BD50/100) -
SABDS50 SANDS0 x (BD30/100) -
SIBDS0 SILTS0 x (BD50/100) -
GRBD30 % weight of the coarse fraction at 50cm x (BDs0/100) -
DEPTH_IP Rooting depth cm
SLOPE_PC Slope percent %
TOP_POS Topographic position %
SHAPE_C Aspect transformed with a cosine function -
SHAPE_S Aspect transformed with a sing function -




Table 19: Univariate statistics for each environmental attribute.

VARIABLE CODE MEAN N STD. DEV. SKEWNESS KURTOSIS
RAD 17.18 56 0.72 0.00 -0.82
RAD_HM 27.64 56 0.86 -0.04 -0.83
RAD_LM 7.58 56 0.51 0.66 -0.39
RAD_R 20.06 56 0.53 -0.81 1.31
RAD_S 1.17 56 0.03 -0.44 -0.37
RAD_WQ 8.99 56 0.48 0.41 -0.57
RAD_DQ 26.45 56 0.84 0.37 -0.97
TEMP 15.61 56 0.50 2.44 10.56
TEMP_HM 28.90 56 1.10 -0.35 -1.00
TEMP_LM 5.99 56 0.98 1.80 3.52
. TEMP_R 22.91 56 1.85 -0.68 0.43
TEMP_S 1.47 56 0.12 -1.43 1.65
TEMP_WQ 11.00 56 0.72 2.07 5.40
TEMP_DQ 20.94 56 0.80 0.18 -1.06
RAIN 1041.79 56 232.23 -0.13 -0.70
RAIN_HM 199.94 56 45.92 -0.09 -0.85
RAIN_LM 14.86 56 4.11 0.46 -0.95
RAIN_R 185.08 56 4491 -0.05 0.78
RAIN_S 2.13 56 0.22 -0.40 0.34
RAIN_WQ 540.38 56 122.20 -0.17 -0.88
RAIN_DQ 55.23 56 55.23 0.69 -0.66
P10 11.78 161 20.37 3.92 17.06
NIT10 241 161 2.38 3.22 12.49
AMMI0 6.74 161 3.23 1.49 2.68
K10 86.63 161 72.51 1.91 4.10
ORG_C10 2.58 161 0.79 -0.56 -0.62
FE10 900.90 161 509.90 1.02 1.61
CON_DI10 0.07 716l 0.24 9.08 89.05
PHI0 5.92 161 0.41 -0.96 2.08
C_NIT10 1.57 161 0.89 0.63 -0.43
C_AMMIO 0.43 161 0.18 116 2.38
P_NIT10 56.84 161 £91.70 5.74 35.57
P_AMMIO 89.39 161 186.78 485 27.72
P30 4.85 56 7.67 5.23 30.50
NIT30 1.73 56 1.18 3.16 12.78
AMM30 4.12 56 2.03 1.86 4.86
K30 60.45 56 66.19 2.65 832

(Cont.)




Table 19(C0nt). |

VARIABLECODE  MEAN N STD. DEV. SKEWNESS  KURTOSIS
ORG_C30 1.24 56 0.74 1.26 0.89
FE30 597.21 56 425.47 1.13 0.89
CON_D30 0.07 56 0.36 7.11 49.05
PH30 6.03 56 0.51 -1.46 2.94
C_NIT30 0.88 56 0.68 1.92 3.48
C_AMM30 0.33 56 0.20 1.69 3.70
P_NIT30 11.41 56 30.42 5.96 37.40
P_AMM30 91.06 56 175.75 3.95 16.86
BDI0 1.20 53 0.31 0.59 -0.43
CLAY10 7.63 55 5.58 3.00 14.49
SILT10 13.54 55 8.38 0.56 -0.28
SAND10 78.83 55 10.47 -0.58 -0.17
CBD10 0.06 53 0.04 2.45 9.63
SABDI10 0.58 53 0.23 0.72 0.22
SIBD10 0.09 53 0.06 0.33 -0.99
GRBD10 0.47 53 0.46 0.63 -1.10
BD30 1.45 55 0.35 0.40 0.77
CLAY30 11.37 55 7.49 0.84 0.40
SILT30 12.08 55 7.86 0.82 0.27
SAND30 76.55 55 13.27 071 -0.19
CBD30 0.09 54 0.06 0.76 0.06
SABD30 0.66 54 0.30 0.81 0.21
SIBD30 0.09 54 0.06 0.86 0.27
GRBD30 0.60 55 0.54 0.50 -1.18
BDS50 1.40 53 0.29 0.74 0.12
CLAY50 22.34 53 2027 1.0 0.20
SILTS0 12.19 53 8.49 0.44 0.87
SANDS0 65.47 53 24.95 0.75 -0.62
CBDS0 0.22 52 0.24 1.17 0.01
SABDS50 0.58 52 0.32 0.82 032
SIBDS0 0.11 52 0.07 0.83 0.50
GRBDS0 0.49 53 0.52 0.77 0.79
DEPTH_IP 76.70 56 31.67 0.56 0.28
SLOPE_PC 6.32 56 4.00 0.66 0.1
TOP_POS 53.00 56 35.24 0.0 -1.54
SHAPE_C 0.00 <5 0.55 0.1 505
SHAPE_§ 0.00 56 0.52 0.2 -0.24
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422.4 NUMERICAL ANALYSIS. |
4,2.2.4.1 CLUSTERING TECHNIQUES

Clustering techniques were used to examine the magnitude of the heterogeneity of the edaphic
chemical variables. Each composite sample, from 10 ¢m depth, was considered independent
during the clustering procedures. If composite samples from the same plotclustertogether, one

would haveno need for concern that the sample was not a reasonable representation of thatplot.

Each observation was range - standardised by subtracting the minimum value and dividing by
the range, so that each attribute attains a maximum value of one, Standardisation of attributes
to equal maxima prevents the domination of the ¢lassification by those attributes with large
scales. Anassociation matrix between composite samples was calculated using the Bray-Curtis
metric(Bray and Curtis 1957). The polythetic agglomerative clustering strategy, the unweighted
pair-group method using arithmetic averages (UPGMA), was used to impose structure to the
association matrix (Gauch and Whittaker 1981). The clustering intensity coefficient beta was

set at -{.2 (Booth 1978).

4.2.2.4.2 ORDINATION TECHNIQUES

The objective of ordination techniques is to summarise continuous variation in complex data
sets (Orloci 1988). The summaries serve two purposes, firstly, to reduce data to dimensions
which are manageable. Secondly, for hypothesis generation concerning the relationship which
may exist between the subject of the ordination, such as vegetation composition, and extrinsic
influences (Austin and Greig-Smith IB68; Clymo 1980; Austin 1985;k Bowman and Minchin
1987; Minchin 1987a).

Since the 1950’s when ordination techniques were first applied to ecological data (Goodall
1954; Bray and Curtis 1957) a copious literature has developed on the topic. Austin (1985)
grouped ordination techniques into three classes. Firstly, those he termed “early ordination

methods™ which includes polar ordination (Bray and Curtis 1957), principal components

n
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analysis (PCoA) (Gower 1966), canonical variate analysis (CVA) and canonical correlation
analysis (CCA)(Gauch and Wentworth 1976). Secondly, those he termed “Cornell techniques”
whichincludes reciprocal averaging (RA) (Hill 1973) and detrended correspondence analysis
(DCA) (Hill and Gauch 1980). Finally, those he termed “multidimensional scaling” (MDS)
(Prentice 1977). '

Some comparative studies of ordination techniques suggest RA should be preferred to PCoA,
as RA s less sensitive to curvilinear distortions (Kendell 1970} inreduced dimensions (Austin
19764, b; Fasham 1977; Gauch et al. 1977; Gauch et al. 1981; Oksanen 1983). Gauch et al.
(1981) suggestthat DCA should be preferred to RA and MDS on the grounds of computational

efficiency. However, Austin (1985) questions these comparisons and argues that such
comparisons, which use simulated data sets (Minchin 1987b), should examine a reasonable
number of data sets and the distribution of samples should be varied rather than using a single
type. Austin (1985) states that neither DCA or MDS can be recommended without reservation
from the above studies, as alteration in the number of replications of data sets and/or
distribution of sample points may lead to different conclusions (Gauch er al. 1977; Minchin
1987a, b). A more recent set of comparative studies, conclude that MDS is more robust to
changes in sampling distribution, data set replication, response curve shape and noise level of

the data, than other ordination techniques (Faith et af. 1987; Minchin 1987a; Belbin in press).

Fundamental to any ordination technique is a measure to describe the association of sites to
other sites on the basis of their attributes. Because response patterns in ecological space do not
conform with any particufar model“"(Austin 1976b) the choice of association measure is
paramount. The importance of this choice has been well emphasized (Austin and Noy-Meir
1971; Gauch 1973; Beals 1984), however, little agreement has been reached as to which
measure 1S most suitable. As argued by Faith er af, (1987) the choice of dissimilarity for
ordination must consider the robusiness of the measures relationship with ecological distance
over therange of response models which may be encountered. Faith et g/, goontosate .., that

the development and evaluation of dissimilarity - based ordination methods must be guided -
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by only those aspects of the relationship between dissimilarity and ecological distance which
are robust”. They also suggest that the poor performance of many ordination techniques results
from those techniques having in-built measures of dissimilarity which are inappropriate to the

underlying response model.

Robustness is defined as the ability to recover an Euclidean ordination space in the presence
of highly skewed and noisy unimodal responses, uneven representation of sites in the
underlying space and different degrees of response in different parts of the space. Once the
robustness of the dissimilarity measure is taken into account comparative studies of ordination

techniques have favoured MDS (Michin 1987a, b; Belbin in press).

MDS yields an ordinate space where the dimensionality is user defined. The procedure starts
with a symmetric dissimilarity matrix of sites. Faith et al. (1987) recommend the use of the
Kulczynski (Hajdu 1981), Bray-Curtis (Bray and Curtis 1957) or the relativized Manhattan
measures (Sokal and Michener 1957) when calculating the dissimilarity matrix due to the
robust nature of these metrics. The ordination space is derived such that the distances between
sites in the reduced dimensions, match the distances represented by the dissimilarity matrix as
much as possible. The success or otherwise of the match is judged by a stress value. The lower
the stress value the better the match. If the dissimilarity measure is assumed to have a linear
relationship with the Euclidean distances in the reduced space, the technique is termed metric
multidimensional scaling (MMDS) (Torgenson 1952). Incontrast, nonmetric multidimensional
scaling (NMDS) assumes only monotonicity where the configuration of sample pairs are in
rank order with the dissimilarities (Kruskal 1964). It is argued that monotonicity should be
preferred in view of our lack of knowledge conceming species response models (Prensice
1980), however, the risk of losing information through simplification is apparent (Shepard

1974).

Faith er al. (1987) developed a muitidimensional scaling technique which combines both
metric and nonmetric MDS. This hyvbrid multidimensional scaling (HMDS) procedure is mors

robust than either MMDS or NMDS (Faith and Nowmis 1989).




Belbin (in press) modified Faith et al. (1987) HMDS procedures by applying ordinal fitting
procedures to values greater than a user defined threshold and using Guttman rank imaging for
the monotone regression (Guttman 1968). Belbin termed this technique semi-strong hybrid
multidimensional scaling (SSH). Belbin compared SSH with other ordination techniques on
3240 simulated data sets which varied in their sampling design, résponse curves and noise and
found that SSH gave significant improvements over HMDS which itself out performed

MMDS, NMDS, DCA, CCA, RA, and PCoA.

SSH was used during the data exploration phase of this study. The technique was used to
ordinate the plots on the basis of the environmental attributes (environmental ordination). The
aim here was to reduce the dimensionality of the data set, with minimum loss of information,
and identify those variables most influential in summarizing the reduced space. The resultant

axes are then used as construct variables and their relationship with productivity explored.

Plots were also ordinated on the basis of the top height at each year (vegetation ordination).
These axes, reflecting growth patterns, were used to explore the relationship between the

reduced space and environmental variables.

To commence the vegetation ordination a matrix of dissimilarities between plots was
calculated via the Bray-Curtis metric (Bray and Curtis 1957) after the recommendations of
Faith er al. (1987). As top height is recorded in metres no standardization was required. To
commence the environmental ordination the dissimilarity matrix was calculated via the Gower

metric (Gower 1971).

MDS procedures sometimes produce local optima in the aigorithms search for the minimum
stress. In this study 10 randomiy assigned starting configurations were used as mputs to the

procedure o overcome this problem,

The choice of the number of dimensions to use is subjective. The pattern of increasing st

b

with decreasing dimensionality can be used o indicate @ dimensionality after which thers o5
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little gain in explanatory value. This choice should not be taken lightly as hi gh correlations with

environmental variables may be lost if too few dimensions are used.

Axes resulting from the ordinations were interpretated in terms of their relationship with site:
index and cluster groups and individual environmenial attributes. The terminolo gyofFaithand
Norris (1989) is adopted where the axes of the ordinations will be referred to collectively as
dimensions. Directions in the ordination space that produce correlations with environmental
or productivity variables will be referred to as vectors and correlates with ordination axes will

be referred to as gradients.

The technique of rotational correlation (Dargie 1984) was used to derive vectors. The -
technique finds the vector in ordination space where the projection of sites onto the vector are
maximally correlated with the values of the extrinsic attribute of concern. The direction of the
fitted vector corresponds to the direction of maximum slope of the hyperplane fitted by

multiple regression.

Rotational correlation is a linear procedure. As such nonlinear relationships in ordinate space
will be underrepresented. To identify such relationships all extrinsic attributes were plotted

against the ordination axis and examined for nonlinear behaviour.

4.2.3 RESULTS

42.3.1 SOIL HETEROGENEITY

The classification of samples was ar.’bitrarily truncated at the 16 group level (Figure 16). Most
of the samples collected from the same plot were classified within the same cluster group. As
such, the assumption that a composite will yield a reasonable approximation of the edaphic
chemical variables of a plot is not unreasonable. As some heterogeneity is obvious the mean

value of the three composites will be used in further numerical analysis.

The value of most edaphic variables will differ betwesn sampling depths. Edaphic chemical

variables have values which are generaily significantiv less. when sampled at 30 cmrather than
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10 ¢m depth (Table 20). Edaphic physical attributes representing clay content increased
 significantly withincreasing sampling depth, while those representing sand contentsignificantly
decreased. Attributes representing silt content did not differ significantly with sampling depth

(Table 20).

As the depth at which a sample was taken affects the value of edaphic attributes, edaphic

attributes derived from different depths will be treated as independent in subsequent analysis.

Table 20: Mean values of edaphic variables at different sampling depths.
Significance levels pertain to differences between means.

VARIABLE DEPTH {cv) SIGNIFICANCE LEVEL
10 30 50 100 P>F
P 11.53 4.85 0.0156
NIT 2.23 .73 0.0389
AMM 6.62 4.12 0.0041
K 87.04 60.45 0.0365
ORG_C 2.63 1.24 0.0001
FE 892.16 597.21 0.0012
CON_D 0.07 0.07 0.9396
PH 5.89 6.03 0.0976
C_NIT 1.59 0.88 0.0001
C_AMM 0.44 0.33 _ 0.0025
P_NIT 56.92 11.41 0.0531
BD 1.20 1.45 1.40 1.43 0.0003
CLAY 7.63 11.37 22.34 24.71 0.0001
SILT 13.54 12.08 12,19 12.43 (.7932
SAND 78.83 76.55 65.47 62.80 2.0001
CBD 0.06 0.09 0.22 0.25 £.0001
SABD 0.58 0.66 0.58 0.57 34221
SIBD 0.09 0.09 0.l £ BCH
GRBED 0.47 .60 (.49 $3.48 .543%1




6: Dendrogram--resulting from the classification of replicate
compaosite soil samples based on soil chemical values {metric =
Bray-Curtis; tusion strategy = UPGMA, beta = -0.1).
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4.2.3.2 ENVIRONMENTAL ORDINATION

Choosing the number of dimensions required to adequately reflect the information contained
within the data was approached in two ways. Firstly, six separate SSH ordinations, in one to
six dimensions, were performed and the stress value corresponding to each was examined
graphically. The stress value decreased rapidly with increased Aimcnsionality with minimal
reduction occurring after the fourth dimension (Figure 17). Secondly, vector correlation
coefficients, determined by rotational correlation, were examined in each dimension. If too few
dimensions were chosen, important environmental vectors may become obscured . All vectors
with large correlation coefficients which existed in six dimensions were also prominentin four
dimensions. As such an SSH ordination of four dimensions was accepted. Individual axes

. resulting from this ordination will be referred to as SSHE1, SSHE?2, SSHE3 and SSHE4

respectively.

A maximum of 50 iterations were used to determine the final configuration of plots inreduced
dimensional space. Ten randomly selected configurations were submitted as starting values for
the iterative procedure, to guard against focal optimia solutions, The dissimnilarity value, used
as a cut off point for hybrid multidimensional scaling, was 0.2859 which is also the value of
the third quartile of all dissimilarity values. The final stress value was 0.097 which is in
accordance with Kruskal’s (1964) recommendations. The directions of vectors along which
the projection of plots have the greatest correlation with individual environmental variables
were determined for each variable. Vectors with high correlation coefficients (r>0.5) are given
in Table 21. The most prominent vectors are those of climatic attributes. particularly those
expressed as the wettest and driest quarters or months. Vectors of edaphic physical attributes
vield the next highest correlation coefficients. Vectors of edaphic chemical variables did not
display as high correlation coetficients as the edaphic physical or climatic variables. Vectors

ot TOP_POS and DEPTH_IP have comparatively low correlation coefficients (Table 213,
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Table 21: Correlations for major environmental vectors in four dimensional space
defined by environmental ordination.

VARIABLE CORRELATION VARIABLE CORRELATION
NIT10 , 0.6652 RAD R 0.9464
AMMI0 0.5057 RADS 09237
K10 0.6267 RAD DQ 0.9629
FE10 0.7971 RAD_DQ 0.9782
PH10 05795 TEMP 0.6699
C_NIT10 0.6146 TEMP_HM 0.9643
NIT30 0.7590 TEMP_LM 0.7423
K30 0.6255 TEMP_R 0.9014
' FE30 0.7806 TEMP_S 0.7886
PH30 06159 TEMP_WQ 0.6746
SANDI0 05139 TEMP_DQ 0.9457
SILT10 0.8225 RAIN 0.9413
CLAY30 07712 RAIN_HM 0.9072
SAND30 0.7806 RAIN_LM 0.9384
SILT30 0.8518 RAIN_R 0.8990
CLAY50 0.7259 RAIN_S 0.8932
SANDS0 0.8161 RAIN_WQ 0.9203
SILT50 0.8450 RAIN_DQ 0.9505
RAD 09780 DEPTH_IP 0.5777
RAD_HM 09718 TOP_POS 0.5807

RAD_IM (0.9372 SITE INDEX 0.6380
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4.2.3.2.1 THE RELATIONSHIP BETWEEN ENVIRONMENTAL ORDINA"I'E SPACE AND
PRODUCTIVITY

It should be noted that there is no requirement that productivity measures are related to the

environmental ordinate space as this space merely represents the relationship between plots,

based on environmental similarity, that are arbitrary references for plotting points in

multidimensional space. However, productivity may be considered a function of the environment,

and as such, one would expect productivity to have some relationship to this ordinate space.

The correlation between site index and its vector was 0.638. However, if site index is correlated
witheachindividual axis of the ordinate space only SSHE2 and SSHE3 yield significantresults
(Table 22). Plotting site index against individual axes showed that where a relationship was

evident it was linear in form.

Table 22: Pearson’s correlation coefficients and their significance between the four
axis of the environmental ordination and site index.

AXBS PEARSON’S CORRELATION COEFFICIENT SIGNIFICANCE
P>X
SSHE1 0.2235 0.0978
SSHE2 -0.4829 0.0002
SSHE3 -0.5217 0.0001
SSHE4 -0.1109 0.4157

The position of plots in two dimensions (SSHE2, SSHE3) and the direction of some major
vectors is given in Figure 18. Site index is seen to increase in value towards the lower left hand
section of Figure 18. This is also the general direction of the SILT and CILAY vectors. some
edaphic chemical vectors such as NIT and summer rainfail vectors such as RAIN_IDQ. The
TEMP_DQ, RAD and RAD_DQ vectors increase :oward the top rght hand sccuon of the

figure in an opposite direction 1o that of the site index,




Axes SSHE2 and SSHE3 were correlated with individual environmental variables to identify
significant linear gradients (Table 23). The strongest gradients associated with SSHE?2 are
those of edaphic physical variables. This is particularly so for those attributes that are products
of bulk densities and whose vectors gave poor correlations with the total ordination space. The
strongest gradients associated with SSHE3 are those of climatic variables. Some edaphic
chemical variables are correlated with both axes, although the strongest gradients for this class

of variable exists for NIT10, NIT30 and FE30 along SSHE3.

Cluster groups defined in Chapter 3, were not clearly separated in four dimensional space.
Given that the final configuration of plots in four dimensions is based upon environmental
attributes rather than top height development patterns, this result is not surprising. However,
if the hypothesis that the environment is the cause of the polymorphic top height development
patterns is accepted, some separation could be expected. To pursue the hypothesis further a
discriminant function was developed where plots were allocated to cluster groups on the basis
of their scores on the four SSHE axes. The classification summary table for this analysis

(Table 24) shows that only 46% of the plots were correctly allocated by this function.
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Table 23: Pearson’s correlation coefficient for the relationship between
environmental ordination axis SSHE2 and SSHE3 and environmental attributes.
VARIABLE SSHE2 (P>X) SSHE3 P-X)
NIT10 -0.3766 0.004 -0.5223 0.0001
AMMI0 -0.4625 0.0003 S -
K10 04357 0.0008 - -
ORG_C10 -0.4055 0.0019 - -
PHIO0 -0.3148 0.0181 - -
NIT30 -0.3378 0.0109 -0.6686 0.0001
K30 -0.4640 0.0003 - -
ORG_C30 - - -0.3620 0.0061
FE30 - - -0.5933 0.0001
* PH30 103949 0.0026 : :
C_NIT30 0.3867 0.0032 - -
BDI10 0.4399 0.001 0.4790 0.0003
SANDPIO 0.6988 0.0001 0.3872 0.0035
SILT10 -0.7212 0.0001 -(0.4306 0.001
SIBD10 -0.6604 0.0001 -0.4621 0.0005
BD30 0.3854 0.0037 0.4479 0.0006
CLAY30 -.5670 0.0001 -0.3088 0.0218
SAND30 0.7282 0.0001 0.5173 0.0001
SILT30 -0.6889 0.0001 -0.5790 0.0001
CBD30 -0.4398 0.0009 -
SABD30 0.4368 0.001 - -
SIBD30 -0.6227 0.0001 -0.6025 0.0001
BDS50 04567 0.006 0.4649 0.0005
CLAYS0 -0.7453 0.0001 -
SAND30 0.8666 - 0.0001 .
SILTS0 -0.7673 0.0001 -0.4828 0.0003
CBD50 -0.7094 0.0001 - -
SABD30 0.5829 0.0001 -
SIBDS0 -0.8414 0.000% -0.4525 0.0008

GRBD350 03734 0.0059

Cont.,
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Table 23 (Cont.)

VARIABLE SSHE2 P>X) SSHE3 (P>X)
RAD . . 0.8220 0.0001
RAD_HM - - 0.7989 0.0001
RAD_LM - . - 0.8462 0.0001
RAD_R 0.4245 0.0011 0.4629 0.0003
RAD_S - - -0.3444 0.0001
RAD_WQ - - 0.8746 0.0001
RAD_DQ - - 0.7607 0.0001
TEMP 0.4457 0.0006 -

TEMP_HM - - 0.5691 0.0001
TEMP_LM . - -0.3499 0.0082
TEMP_R - - 0.5239 0.0001
TEMP_S . - 04071 0.0018
TEMP_DQ 0.3741 0.004 0.5880 0.0001
RAIN - - -0.8276 0.0001
RAIN_HM 0.3367 00112 -0.6678 0.0001
RAIN_LM -0.3658 0.0056 -0.7663 0.0001
RAIN_R 03777 00041 0.6126 0.0001
RAIN_S 0.5177 0.0001 03199 0.0162
RAIN_WQ 0.3217 0.0156 -0.6961 0.0001
RAIN_DQ -0.3131 0.018 -0.7908 0.0001
DEPTH_IP 0.3516 0.0079 -
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Table 24: Classification summary table from an discriminant analysis. Plots were
allocated to a cluster group by discriminant function comprised of SSH
environmental ordination axis.

CLUSTER GROUP
1 2 3 4 5 6 7
1 2 - - - - - -
(100}
2 1 4 ; 3 1 2 2
(7.69) (30.77) (7.69) (7.69) (15.38) (15.38)
3 . . 10 1 - 2 )
N (79.62) (7.69) (15.38)
g 4 - 2 - 3 - : -
E" (40.00) (60.00)
g 3 2 1 1 - . - 1
2 (40.00) (20.00) (20.00) (20.00)
E 6 2 ; 3 - 3 3 .
p: (18.18) (27.27) (27.27) (27.27)
g 7 - 1 . 1 1 - 4
o (14.29) (14.29) (14.29) (12.50)
4.2.3.3 VEGETATION ORDINATION

As for the environmental ordination, the stress value and the strength of the vector correlations
were assessed in each of six dimensions. On the basis of these assessments three dimensions
were considered optimal for representing the information contained within the top height data
(Figure 19). A maximum of 50 iterations were used to determine the final configuration of
plots. Again ten randomly selected configurations were submitted as start values to guard
against focal solutions. Thelcut off dissimilarity value used for hybrid multidimensional
scaling was 0.25. The final stress value of the ordination was 0.099 which is also within
Kruskal’s (1964) recommendations (Figure 17). Individual axes resulting from this ordination

will be labelled SSHV, SSHV2 and SSHV3 respectively.

The position of plots in three dimensional space and the directions of some of the more
prominent vectors are given in Figure 19, The vector with the highest correlation s that ot siie

index (r = 0.9736). Other prominent vectors are listed in Table 25.
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Table 25: Correlations for major environmental vectors in three dimensional space
defined by the vegetation ordination.

VECTOR CORRELATION
SI 0.9736
P10 . 05805
NIT10 0.6829
P_NIT10 0.6126
NIT30 0.5938
FE30 0.5658
SILT50 0.4802
RAD 0.5000
RAD_DQ 0.5169
RAIN_LM 0.6102
RAIN_DQ 0.5617

A strong relationship exists between site index and a vector going from the top left hand corner
to the lowerright hand corner of Figure 19. The size of the circles in Figure 19 are proportional
to site index and clearly increase in size in the same general direction as the site index vector.
Site index is significantly correlated with all three SSHV axis, with Pearson’s correlation
coefficients for the relationships being SSHV1 r=-0.9566 (p>0.0001), SSHV2 r=0.3830
(p>0.0036) and SSHV3 r=-0.5816 (p>0.0001).

With the exception of the vector for FE30 other prominent vectors are oblique to the three
SSHYV axis. Only the SILT50 vector extends in the same general direction of that of site index,

while other environmental vectors are oblique to these two.

Individual environmental variables were correfated with the SSHV axes to extract significant
linear gradients. Strong gradients were evident for edaphic chemical variables along SSHV 1,
with weaker gradients evident for climatic variables. Qnly the FE30 gradien: was significant
for SSHV2, while edaphic physical variables, particularly from 50 ¢m depth were significant

for SSHV3 (Table 26).
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The nature of the relationships between individual environmental variables and the individual
SSHYV axes was examined graphically. Where a relationship was evident it was usually of a
linear nature however, some variables such as the climatic variables did demonstrate
curvilinear or nonlinearrelationships. As such the gradients and vectors of these attributes will
be deemed less prominent by the linear interpretation techniques such as Pearson’s correlation

and rotational correlation.

Cluster groups defined in Chapter 3 are clearly separated along SSHV1 and SSHV3, SSHV 1

separates group 7 from all other groups, groups 2 and 4 from all other groups, groups 1 and

3 from all other groups and groups 5 and 6 from all other groups. SSHV3 separates groups 2
and 4, groups 3 and 1 and groups 5 and 6 (Figure 20).
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Table 26: Pearson’s correlation coefficient between environmental attributes and
the three axes resulting from the vegetation ordination.

VARIABLE SSHV1I  (P>X) SSHV2 P>X) SSHV3 P>X)
St -0.9567 0.0001 0.3830 00036  -0.5816 0.0001
P10 -0.5210 0.0001 - ‘. . .
NIT10 -0.6056 0.0001 . . . .
P_NITI10 0.4938 0.0001 . . . ;
FE30 - . -0.3880 0.0031 . -
P_NIT10 -0.3354 0.011 - . ; .
BD10 04318 0.0012 - . -
SAND10 0.3484 0.009 . . 03424 0.01
SILT10 -0.3849 0.0037 . -0.3757 0.0047
SIBDIO -0.4330 0.0012 ; . . ;

- GRBD10 0.3521 0.009 - - - -
BD30 03912 0.003 - . ; -
SAND30 0.3383 0.011 - - 0.3155 0.019
SILT30 -0.4563 0.0005 . ; .
SIBD30 -0.5620 0.0001 - ; .
GRBD30 03194 0.02 . . .
BDS50 03732 0.005 . -
CLAYS50 ; - - 03892 0.004
SANDS0 ; . . : 0.4343 0.001
SILT50 -0.4625 0.0005 - 03471 0.01
CBD50 . - . 03307 0.01
SABDS0 - . 0.4292 0.001
SIBDS0 -0.4835 0.0003 . - 03171 0.02
RAD 0.4614 0.0003 - .
RAD_HM 04331 0.0009
RAD_R 0.4346 0.0008 3 .
RAD_S -0.3282 0.01
RAD_WQ 0.3585 0.006 -

RAD_DQ 0.4804 0.0002 ;

TEMP 0.3445 0.009 0.4039 0.002
TEMP_HM 0.3580 0.007

TEMP_DQ 04511 0.005

RAIN_LM 0.5577 0.001

RAIN_S 0.3895 0.003

RAIN_DQ 0.5251 0.0001
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P of cluster groups in two dimensions defined by
SSHV'I and SSHV3. The direction of significant environmental
gradients is also shown.
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4.2.4 DISCUSSION AND CONCLUSION

The application of numerical muitivariate methods to ecological data has been criticised (Levin
and Lewontin 1980; Salt 1983) and in some situations the assumptions inherent in these
methods are violated when applied to ecological data (Austin 1976b, 1980, 1987). As such the

problems encountered during the data exploration phase of this study should be noted.

Firstly, it became obvious that the shapes of some vectors and gradients were not linear. As
such the linear techniques emplovyed to interpret ordinate space, rotational correlation and

Pearson’s correlation, will not represent the importance of such variables fully.

Secondly, the choice of metric used to define the dissimilarity matrix will have an influence
upon which gradients and vectors are extracted (Gauch 1973; Clymo 1980; Beals 1984; Faith
etal. 1987). A number of different metrics were examined for their suitability to both data sets.
For the environmental ordination the Gower metric (Gower 1971) was used, as thb application
of this metric assumes data to be interval (see Beibin 1989) in nature, the scale recomme;ndcd

for such data (Belbin pers. comm).

The Bray-Curtis metric (Bray and Curtis 1957) was applied to the unstandardised top height
data after the recommendations of Faith et al. (1987). Although criticised by Orloci (1974) the
metric was found to vield realistic results. Standardisation of the top height data had litte effect
upon the ordination’s outcome. Although an uncommon result (Noy-Meir et al. 1975; Faith
er al. 1987), it is not surprising given that the data is of the same units and from one species
only. Contrary to their robust nature the Kulczynski (Hajdu 1981) and the relativised
Manhattan (Sokal and Michener 1957) metrics were found 1o be influenced by missing data

to an unacceptable degree.

As the top heightdata has a time series associated. the twodimensional profile algorithm (Faith
er al. 1985) was applied to derive o dissimiarity matrix in the same manner as was done 1o

R

Chapter 3. However. when the 3SH algorithms were pplied w the s, the fina




configuration of plots were considered less realistic than other outcomes. This is possibly due

to the influence of missing data and a consequence of the small dissimilarities yielded via this

algorithm.

For the purposes of this discussion nomenclature will foilow Austin (1980) and Austin and
Cunningham (1981) who divided environmental gradients into three types, indirect, direct and
resource gradients, Indirect gradients are those whose influence on productivity is indirect such
as SLOPE_PC. Direct gradients are those that exert a direct physiological effect upon
productivity e.g. PH. A resource gradient is one where the factor is directly used as a resource
for productivity e.g. NIT10. Austin et al. (1985) proposes the hypothesis that if environmental

gradients are expressed as resource gradients improved predictions will result.
4.2.4.1 ENVIRONMENTAL ORDINATION

The relationship which exists between the ordinate space, defined via the environmental
ordination, and site index should not be considered optmal for extracting the maximum
correlation between site index and its vector. Such an ordination merely produces a configuration
of plots with no reference to the productivity attributes, with the final configuration of plots
in ordinate space influenced by variables which may have little or no effect upon productivity.
The relationship which exists between the environmental crdinate space and productivity
should be viewed as a holistic relationship rather than any optima. Although a relationship
berween the environmentand productivity was evident, the relationship between the environment

and polymorphism was not clear.

It is concluded that site index is significantly related to the ordinate space defined by
environmental attributes, while cluster groups donotexhibitclear separation in the same space.
Site index would seem to be a more generalist measure while cluster groups, representing both
productivity and top height deveiopment patteras are less general. and specitic relationships
with environmental attributes mav be reguired to vield clear separation. Attributes from all

classes of variable i.e.. climauc. cdaphic physical and chemical were prominent when the
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ordinate space was interpreted, suggesting a reduced data set should contain members from

cach of these groups. Most gradients of significance were either direct or resource gradients.

4.2.42 VEGETATION ORDINATION

The site index vector has a very high correlation with the ordinate space defined from top
height. This suggests that site index is a reasonable representation of top height development
asawhole. Likewise, thecluster groups were clearly separated, suggesting that the polymorphism

encapsulated within the clusters is not an artifact of any one numerical analysis technique.

The vegetation ordination, unlike the environmental ordination, produced a space which
 differed in both productivity and top height development pattern. As such, any environmental
attribute whose vector has a sufficiently large correlation coefficient could reasonably be
expected to exert either direct or indirect influence on productivity and/or polymorphism. Of
the ten most prominent vectors, five are resource gradients. Again, no one class of variable
dominates with climatic, edaphic physical and chemical attributes showing significant

relationships.

The P10, NIT10, P_NIT10, NIT30 and FE30 vectors represent the directions of major fertility
gradients. Both P and N are well recognised as essential elements which affect productivity
(Summer and Farina 1986). The P_NIT10 vector is a reflection of the synergism which exists
between these two elements. Terman er al. (1977) suggests that increased levels of N will
increase the ability of the plant to absorb P, however, the mechanism of this interaction is not
clearly understood (Summer and Farina 1986). Examinadon of the direction of vectors. in
relation to the site index vector, and the gradients along the three SSHV axes shows that as the

value of the NIT10, P10. P_NIT10 and NIT30 variables increase, so too does site index.

The FE30 variable is unlikely to be exerting direct influencs upon productivity. Although I
is classed as an essential element, the FE30 variable is more iikely to be acting as a surrogate
for the P fixing capabilitdes of the site (Ballard and Fiskell 1574 Lewis er gi. 198 b Lewis e o,

N

1987a.b; Schwab and Kulyingyong 1989 The direction of e FE30 vector is approximatciy
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180° to that of the P10 vector suggesting that the influence of FE30 on site index and top height

development is opposite to that of P10.

These edaphic chemical vectors may be reflecting the differences in previous land use of the
plots. Throughout the study area it is frequently observed that plots which are located on land
which was previously pasture are more productive than pléts located on land which was
previously unimproved. This phenomenon is termed the pasture effect in Australia and the
old-field effect in North America (c.f. Haines et /. 1973; Skinner and Attiwill 1981). Under
a pasture regime, conditions for wee growth become more favourable as nutrients are
accumulated in the soil with the addition of fertiliser (Lewis er al. 1987 a,b; Schwab and
Kulyingyong 1989). Edaphic physical properties may also be improved through the actions of
| pasture crop roots (Martin 1944; Skinner and Attiwiil 1981). In a comprehensive study of the
pasture effect, Skinner and Attiwill (1981) conclude that the effect was not due to the changes
in the microflora and fauna composition or the modification of edaphic physical characteristics
but“... the effectis associated witha significant increase in the availability of soil phosphorus.”
Whether site index and top height developmentare influenced by the pasture effect to the same

degree as total volume, is yet to be ascertained.

Of the edaphic physical attributes, only the SILT50 vecter had a relatively high correlation
coefficient. This vector probably represents the direction of the soil water storage capability
gradient and reflects the degree to which the profile will dry out during the summer period.
South west Western Australia experiences a Mediterranezn type climate and, as such, some
areas within the study area will sufff;r water deficits during the dry season. Fine textured soils
have low hydraulic corductivities and therefore resist dming out. However, the absence of

other edaphic physical vectors, particularly those expressed as bulk densities was surprising.

Although edaphic physical vectors were notas prominent i 2ther vectors. their gradients along
SSHV axes were significant. These gradients suggest 0z as the quantty of silt and cloy

increase in the profile so o deoes site index.
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The remaining four vectors describe the direction of climatic gradients. Because of the
correlation which exists between the climatic variables, discerning causal relationships is
impossible, however, broad description is warranted. The direction of the RAD and RAD_DQ
vectors may be viewed as the direction in which sites become progressively hotter and drier,
particularly during the summer months. Site index decreases in the same direction. The
directions corresponding to the RAIN_DQ and RAIN_LM vectors may be interpretated as the

direction in which sites suffer less from water deficits during summer. Site index increases in

this direction.

Both radiation and water deficits have been shown to influence £. globulus productivity

(Beadle and Inicns 1990). In their comparison of E. globulus productivity at various sites,

| Beadle and Inions (1990) found that increased radiation was associated with increased above

ground biomass production. However, in south west Western Australia, increased radiation is

also associated with decreased rainfall and higher temperatures leading to water deficits in

summer.
It may be concluded from the vegetation ordination that;

(i)  both site index and the polymorphism encapsulated within the cluster groups, are

strongly related to the ordinate space;

(i) thatenvironmental variables from the climatic and edaphic physical and chemical groups

are significantly related to this space and, therefore;
(1i1) that both size index and polymorphism are related to environmental variables:

(tv) that half of the more prominent environmental vectors are resource gradients which

supports Ausun’s er al. {1985) hvpothesis.

A disadvantage associated with the data exploration techniques reporied here s that no

mechanism exists whereby the svnergistic relationship which may exist berween olassoe o

variable, can be explored. For exampie, evidence suggests that there moy be a svnerpisiic




relationship between the N status of a stand and water-use efficiency, due to improved stomatal
control as N status increases (Brix 1972; Brix and Mitchell 1986). As aresultof the synergistic
and interactive relationships which may exist between variables it is prudent to use a formal
modelling approach to express the relationships between productivity and environmental
variables. Nonetheless, the use of such multivariate techniques has identified the nature and
pattern of the relationships which exist between individual variables and site productvity, This

knowledge 1s useful for constructing formal empirical models to predict site productivity.
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4.3 RELATIONSHIPS BETWEEN SITE PRODUCTIVITY AND

ENVIRONMENTAL ATTRIBUTES FOR E.GLOBULUS IN SOUTH
WEST WESTERN AUSTRALIA. II. EMPIRICAL MODELS TO
PREDICT PRODUCTIVITY.

4.3.1 INTRODUCTION

When evaluating the productive capabilities of a tract of land, using environmental attributes,
the usual approach is to develop a linear regression equation to predict a measure of site
productivity, such as site index. Although some success has been attained with this approach

many equations are limited in:

(1) their success in accounting for a significant proportion of the productivity variation

(Corns and Pluth 1984; Schmoldt er al. 1985; Monserud et al. 1990);

(1) theirapplicability beingrestricted by the need to derive variables which require faboratory

analysis (Daubenmire 1976); and

(iit) the synergistic and nonlinear nature of many of the environmental attributes are often not
accounted for by linear combinations of single environmental attributes (McQuilkin

1976).

Some studies have sought to overcome some of these difficulties by including interactive terms
in theirequations (Jacksonand Gifford 1974; Corns 1983), while Czarnowski eral. (1971) used
nonlinear parameter estimation techniques to overcome some of the problems associated with
nonlinearity. However, few alternatives to the standard approach appear in the literature. One
exceptionisthe technique ofdcriving.'a lineardiscriminantfunction to predict class membership.
Classes may be site index classes (Gasana and Loewenstein 1984) or any other grouping which

reflect differences in productivity (Harding er al. 1985).

A slightly different approach is presented by Verbyla and Fisher (198%) who argue that
regression equations developed from randomly selected plots underrepresent prime sites and

it1s these sites only where intensive silviculture is feasible. As a result they used what they
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termed classification - tree analysis to derive an allocation procedure to nominate sites to prime

or nonprime classes on the basis of percentage sand and soil pH.

The multivariate analysis presented in Section 4.2 has shown, that the productivity of
E.globulus in south west Western Australian can be related to environmental variables. The
most prominent variables are those which refiect the sites’ soil moisture holding capabilities,
such as SIBDS50, the soil nutrient status, such as NIT10 and P10 and the degree to which the
site experiences water stress over the summer months suchas RAD, RAD_DQ, RAIN_DQand
TEMP_HM (see Table 18 for a list of variable codes). Likewise the polymorphism
encapsulated within the cluster groups, defined in Section 3.2.3.3.4, may also be related to

some of these site atmibutes. Therefore it is the aim of this study:

(i) todevelop equations which predict site index from the environmental variables shown to
be related to productivity in Section 4.2. Due regard is to be given to the synergistic and

nonlinear relationships which may be encountered; and

(i) develop a method to allocate plots to a top height development cluster group on the -basis

of environmental attributes.

4.3.2 METHODS

Details of plot selection, the productivity criteria used and the methods for deriving the

environmental attributes are given in section 4.2.2.

43.2.1 NUMERICAL ANALYSIS
+3.2.L1 REGRESSION ANALYSIS

Regression analysis was used to relate site index to environmental atributes. Prior to the

development of any equation the multcolinearity between atuibuics was examined

correfating all individual attributes with each other. Plots of site index with individ.-

environmental atribuies were aiso examined for nonlinear behavicur, Pstmation of =«




parameters for the linear and nonlinear equations was by the standard criterion of ordinary least
squares under the assumptions and methodologies previously detailed (see section 3.2.2.4.1).
Where parameter estimates were required for nonlinear functional forms, the derivative free

secant method of Ralston and Jennrich (1979) was used.

Alarge number of equations were developed during data analysié. The equations presented and
discussed were judged to be best on the basis of the proportion of the variation in site index
explained, their significance and the nature of their residual statistics. Those equations
displaying heteroscedasticity among residuals were discarded. The functional forms of
candidate equations were derived using the information gathered in Section 4.2, knowledge

of the multicolinearity among attributes and the nature of their relationship with site index.
43.2.1.2 DISCRIMINANT ANALYSIS

Discriminant analysis enables the assignment of an individual or a group of objects to one of
several known alternative populations, on the basis of several measurements taken from the
objects (Cacoullos 1973). As such, the technique should enable the allocation of plots to one
of the seven cluster groups, defined in Section 3.2.3.3.4, on the basis of environmental
attributes. Application of discriminant analysis assumes that the data used to derive the
discriminant functions consist of a random sample from a population mixture of multivariate

normal populations and that the covarances are homogeneous across all populations

(Williams 1981).

Since the seminal work on the technique in 1936 (Fisher 1936), many applications have been
‘ound {Cacoullos and Stvan 1973: Williams 1981). However, with the exception of forest
ecology (eg. Kuusipalo 1985 Callaway er al. 1987) it is only recently that the technique has

heen used frequently in the field of forest science. This is particularly so for the literature

concerned with site evaluztion. Some examples mclude Harding or el (19857 who used the

:2chnique to predict productivity classes on the basis of environmental attributes. Turvey ¢r al.

~1986) also used the technigue to predict volume classes from edophic aunbutes. as did
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Harrington (1986), who predicted site index classes from environmental attributes. In all three
studies no mention is made as to whether the assumptions inherent in discriminant analysis are
violated or of the consequences of any such violation. However, Gasana and Loewenstein
(1984) tested the assumption that the covariances of the populations, in their case site index
classes, were homogeneous and found the assumptions to be invalid. Gasana and Loewenstein
(1984) then used individual popuiation covariances when deriving the canonical function.
When individual population covariances are used in this manner the technique is termed
quadratic discriminant analysis. When the pooled covariance is used the technique is termed

linear discriminant analysis.

Application of linear discriminantanalysis to data with heterogeneous population covariances
will distort the final configuration of plots in multidimensional space (Williams 1981). In such
cases, quadratic discriminant analysis yields a more pronounced separation of populations
(Michaelis 1973). However. the degrees of freedom required to correctly test the hypothesis
of homogeneous covariances between cluster groups, and to calculate and use individual

population covariances. should the hypothesis be rejected, were too few in this study.

The assumption of multidimensional normality, unlikely when dealing with ecological data
(Williams 1981), is likely to be violated in this study. As Anderson and Bahadur (1962) point
out, deviations frommuliidimensionai normality may affect the results of quadratic disciminant
analysis much more than those from linear discriminant analysis. Given the problems of
insufficient degrees of freedom and the probable violation of the multidimensional normality
assumption, linear discriminant analysis is preferred to the quadratic methodology for
allocating plots to ciuster groups or; the basis of environmental attributes. In this case some

misclassifications may occur 25 a result of any hetereogeneity between covariance matrices.

An alternative to discriminant analvsis is logistic discrimination, where the probability of
group membership is modeled. Fortwo populations logisticdiscriminagion was firstsuggested

ce (19677 The rechinique was then exrended to Incorporat

by Cox (19663 and Day end kemrid

more than two pepulations (4 aderson 1972, The advantage of Togistie diseriminanon 1 tha




it may be used with equal facility whether the variables are discrete or continuous and that,
unlike discriminant analysis, the estimation procedure is efficient under many different

assumptions about the underlying distributions (Anderson 1973).

The parameters of the logistic function were estimated with an iterative procedure. One
difficulty which can arise is that non-unique maxima of theulikclihood estimates occur if the
plots from each population can be separated by hyperplanes. The implications of such a
situation are discussed further by Anderson (1972). In this study some cluster groups may be
separated by hyperplanes with the net result of nonconvergence of the iterative procedure.
Therefore, heuristic allocation rules were developed, based on the identification of subgroups
of clusters. Subgroups were then split into individual clusters using environmental attributes -

and logistic discrimination via the methods of Cox (1966) and Day and Kerridge (1967).

4.3.3 RESULTS

4.3.3.1 EQUATIONS FOR PREDICTING SITE INDEX FROM EACH ATTRIBUTE
TYPE '

Duringthedataexploration phase of this study (Section 4.2) it wasconcluded thatrepresentatives
of alldata types (i.e. climatic, edaphic physical and chemical) were related to productivity. This
suggests that any regression model which predicts site index would require representatives
from each attribute type to explain the maximum amount of variation in site index. To examine

this hypothesis further regression equations were derived for each attribute type separately.

Examination of plots of sotl chemical variables with site index showed that site index was
asymptotically related to P10 and NIT10. As such a log/reciprocal transformation of the data
was applied. Other soil chemical variables displayed no relationship with site index. The best
model (Eq. [21]) for predicting site index from soil chemical variables, along with model

statistics 1s given in Table 27,

Plots of soil physical atibutes with site index showed thatr where a relationship was eviaean:

itwas linear in form. Ag such, no datatransformation or norlinear estimation wehnigues were
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required. The bestmodel (Eq. [22]) for predicting site index from soil physical attributes along

with model statistics are given in Table 27.

Plots of climatic attributes with site index also showed that where a relationship was evident,
itwas linear. The bestmodel (Eq. {23]) to predict site index from climatic attributes along with
model statistics is given in Table 27. When estimating the pérameters of Eq. [23] plot number
60 was removed from the data set. This plot, situated in Albany (Figure 1) has climatic attribute

values which are vastly different from other plots. As such the plot was prominent as an outlier

during residual analysis.

Although significant (p>0.006} the equation to predict site index from topographic atributes |
only explained 21% of the variation encountered. The equation (Eq.[24]) and its statistics are
given in Table 27,

43.3.2 EQUATIONS FOR PREDICTING SITE INDEX FROM MOISTURE,
NUTRIENT AND LIGHT REGIMES

Productivity has long been assumed to be a function of the light, temperature, soil moisture
and soil nutrient regimes of a site (Major 1963; Krajina 1969; Kozlowski 1982; Klinka and
Carter 1990). Many expressions for soil nutrient regime and soil moisture regime have been
derived (c.f. Kabzems and Klinka 1987a,b; Carter and Klinka 1990; Robertson et a/. 1990).
Soil nutrient regime may be defined as the amount and balance of essential nutrients that are
available to vascular plants through root uptake over a period of several vears
(Klinka er al. 1984). Soil moisture regime is defined as the amount of water available to

vascular plants through root uptake over an extended period of time (Kabzems and Klinka

16872a).

Inthis study the data were too limited to derive formal quantitative expressions for soil nutrient
and moisture regimes. particularly if temporal variztions is to be accounted for. As such
equations were derived comprised of those variables which were considered 1o influencs the

availability of moisture. Soil texture reflecting abilizv of the soil to hold water, rainfall and
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rainfall distribution, reflecting the recharge capacity and temperature, reflecting the speed that
which a site will dry out, were used in the equation’s construction. Many combinations of these
variables were found to be significant, however, the best equation (Eq. [25]) and its statistics

are given in Table 27.

Equations, derived of variables which were considered to influence the availability of
nutrients, were also constructed. Soil chemical and texture variables were used. Soiichemical
variables reflect the fertility of the site and soii texture in the top 10cm of the profile, reflects
the amount of exchange sites for nutrient absorption by the roots. Again, many combinations
of these variables were significant, however, the best equation (Eq. [26]) and its statistics are

given in Table 27,
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Table 27: Equations to predict site index from environmental attributes,

Equation Equation r? adj r? n  Standard F Value
Identification Error

Soil Chemical Attributes Only 1

Eq. (213 inS = 3.09- L.62/NITI0 + 1.03 (NIT10) - 0.24/P10 0.4338 0.4011 56 0.02 13.28
Soil Physical Attributes Only

Eq. {22] S = 14.59-3.78 (SIBD50 + CBD50) + 23.06 SIBDS50 - 2.59 BD10 0.3878 0.3470 49 0.33 - 950
Climatic Attributes Only '

Eq. [23] S = 79.02 + 102 RAIN_LM + 2.77 RAD_HM 0.4994 0.4801 55 0.28 2593
Site Attributes Only .

Eq. {24} S = 11.85+0.024 TOP_POS - 0.023 VEG_CV + 13.78 SHAPE_S§ 0.2093 0.1637 56 0.35 4.59
Soil Moisture Attributes

Eq. [25] S = 7.41-3.12(SIBD50. RAIN_DQ) + 0.12 (SIBD50. RAIN_DQ. TEMP_HM)

- 0.0041 RAIN + 0.59 RAIN_LM - 2.73 (SIBD50 + CBD30) 0.6406 0.6015 52 0.25 16.40

Soil Nutrient Attributes 1

g, [26] IS = 288 - 1.46/NITI10 + 1.0062 (NIT10¥ - 0.32/P10 + 0.0092 SILTIO 0.5530 4.5172 55 0.02 15.46
Temperature and Light :

Eq. [27] S = 65.75-140 TEMP-1.19 RAD DQ 0.2388 0.2100 56 0.35 8.31
Al Attribute Types :

Eq. (28] S = 7.26+0.00031 (51.52)% - 5.99 x 107 (S1..82)° 0.7875 0.7786 51 0.19 88.93
Combined Variables via Stepwise Algorithm

Eg. (397 S = -5L.50+0.37 NIT10 - 0.0029 FE30 + 0.88 RAIN_LM + 1.10 ORG_C10

+ 275 RAD + 0.25 CLAYI0 + 6.07 SIBD50 - 2.58 CBDS0 (.8378 0.8060 51 0.17 27.11

Old Pastare sites ]

Eg. {35] InS = 2.84 - L.51/NIT10 + 1.O9NIT10) + 0.011 SILT10 . 0.5827 0.5305 28 0.027 11.17

Cont,
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Table 27 (Continued)

Equation Equation r? adj r? n  Standard F Value
Identification Error
0Old Pasture Sites
Eq. [36] § = -83.30+ L.25 RAIN_LM + 2.68 TEMP_HM + 42.83 SIBDS0 - 2.30
CBDS0 - 0.18 (SIBD50O. RAIN_DQ. TEMP_HM) 0.8892 0.8601 25 0.19 30.5
Eq. [37] S = 378+ 0.48(S3) + 0.00015 (53.84)? - 2.83x107 (§3.54) 0.9187 0.9070 25 0.16 79.06
01d Forest Sites
Eq. [381 S = 10.04 + (. 32 SILTIO + 0,18 CLAY10 - 0.0026 FE30 0.3538 0.2695 27 0.36 4.20
Eq. [39) S = 6.34 +0.087 SILTS0 + 0.29 RAIN LM 0.3174 0.2605 27 0.36 5.58
. {40] 5 = -4.35+0.74 55 + 0.66 86 0.4935 0.4495 26 0.32 11.25
Where: .
Si = 7.41 - 312 (SIBDSO.RAIN_DQ) + 0.12 (SIBDSO.RAIN_DQ.TEMP_HM) - 0.0041 RAIN + 0.59 RAIN_LM - 2.73 (SIBD5S0 + CBD50)
52 = ¢ {2.88 - 1.46/NIT10 + 1.0062 7 (NIT10)* - 0.32/P10 + 0.0092 SILTIO)
53 = - 8330+ 125 RAIN LM + 2.68 TEMP_HM + 42.83 SIBDS0 - 2.30 CBDS0 - 0.18 (SIBDSO.RAIN“DQ.TEMP_HM)
54 = e {2.84 - L5INITIO + 1.09/ (NITIOY + 0.011 SILTI0
S3 = 6.34 + 0.087 SILTS0 + 0.29 RAIN_LM

56 =

10.04 + 0.02 SILTI0 + 0.18 CLAY 10 - 0.0026 FE30




Variables expressing the temperature and light were combined and the best equation (Eq. [27])
is given in Table 27. If the hypothesis, that productivity is a function of the soil nutrient and
moisture regime is accepted then an equation comprised from a selection of ail attribute types
should display model statistics which are more desirable that the individual equations Eq. [21]
to Eq. {27]. Four such equations are presented. Equation [28] and its statistics is presented
inTable 27. Three nonlinearequations (Egs.[30],[31),[32]) are shownin Table 28. Equations
[28] and Egs. [30], {311, and {32] are not directly comparable due to the different parameter

estimation techniques employed in their construction.
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4333 AN EQUATION FOR PREDICTING SITE INDEX USING A STEPWISE
ALGORITHM

The practice of submitting all environmental variables into a variable selection algorithm such
as stepwise (Hocking 1976) has become common place in the literature concerned with
predicting productivity from environmental variables (eg. Hamilton and Krause 1985:
Schmidt and Carmean 1988; Verbyla and Fisher 1989). For comparative purposes a stepwise

variable selection technique was used to derive Eq. [29] (Table 27).

4334 EQUATIONS FOR PREDICTING SITE INDEX WHEN PREVIOUS LAND
USE IS CONSIDERED

To examine the effect of the previous land use on the parameter estimates and variables
selected, the data were divided into plots established on unimproved land and plots cstablishea
on previously agricultural pasture. For both data sets equations were derived from variables
which were considered to influence the availability of (a} nutrients and (b) moisture. Again
equations derived from all attribute types were constructed for each data set. For plots
established on what was agricultural lands, the equations comprised of variables reflecting
nutrient availability (Eq. {35]) moisture availability (Eq. [36]) and all attribute types (Eq. [37])
and their statistics are presented in Table 27. Nonlinear forms are givenin Table 28. For plots
established on unimproved lands, the equations comprised of variables reflecting nutrient
availability (Eq. [38]), moisture availability (Eq. {39]) and all atribute types (Eq. [40]) and

their statistics are given in Table 28.

4.3.35 PREDICTION OF CLUSTER GROUP MEMBERSHIP USING
ENVIRONMENTAL ATTRIBUTES AND LINEAR DISCRIMINANT
ANALYSIS

To further identify which variables possess discriminatory powers, a one-way analysis of
variance was employed to test for differences between the mean values of each environmental
aunbute, foreach top heightdevelopmentcluster groupdefinedinszsction3.2.2.4.2. The means
and their standard errors. by clusier group, are given in Table 29, G v variables whose Fvalues

were significantat probability levels greater than p=0.01 are inciuded in the table. As such soi]
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physical attributes sampled from 50 cm depth are noticeably absent. However, the means of

these variables were significantly different (p>0.02).

Using environmental attributes only, the most successful discriminant function derived,
correctly classified 78.85% of plots. This discriminant function and its classification table are
given in Table 30. A discriminant function comprised of RAIN__LM, BD10, P10, RAD and
site index correctly classified 86.79% of plots and is presented in Table 31, along with its
classification table. Linear discriminant analysis using site index only, correctly classified
69.64% of plots while a discriminant function comprised of P10, BD10, RAIN_LM and RAD
only, correctly classified only 52.83% of plots. This demonstrates the discriminating power
of site index. However, site index in isolation does not provide an adequate discrimination of /
cluster groups. For maximum separation a combination of site index and cnvhonmeﬁtai

attributes is required (Table 31).
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Table 29: Univariate statistics for environmental attributes for each cluster
differences between means (P>0.01) shown. Significance level given in paren

group (Mean + Standard Error) .Only variables with significant
thesis.

Variable

BDI0
GRBDI10
BD30
SIBD30
GRBD30
P10

NIT10
C_NITI0
P_NITI0
P_AMMIO
RAD
RAD_HM
RAD_DQ
RAIN LM
RAIN DO

S

(P>0.001)
(P>0.0008)
(P>0.002)
(P>0.005)
(P>0.001)
(P>0.001)
(7>0.0001)
(250.002)
(P>0.001)
(P%0,002)
(00,0021
(P>0.0044)
{(P>0.0016)
{(P>0.0001)
(#>0.0003)

{7=0.0001)

Cluster group
1 2 4 5
n=2 n=13 n=13 n=5 n=35 n=11 n=7
097 £ 0.21 L10 £ 006 14l = 0.07 .00 £ 0.02 1.8 + Q.12 141 £ 0.12 097 + 0.06
0.16 + 0.14 026 £+ 0.08 087 £ 0.10 024 £ 007 027 + o021 0.67 £ 0.20 019 £+ 007
124 + (.12, 1.30 £ 0.09 1.67 £ 0.09 1.39 £ 0.04 124 £ 022 1.69 + 0.08 122 +  0.06
009 £ 0.08 011 £+ 002 007 £ 0.1 013 £ 002 007 £ 0.03 0.06 £ 0.06 017 £+ 003
0.22 £ 0.20 030 £ (.10 Lo9 = 011 052+ 010 038 £+ 0.29 0.80 £ 0.19 034 £ 0.11
6.00 £ 2.00 7.25 £ 225 905 £+ 232 16,12 +  3.90 294 + 066 4.68 £ 0.96 41.52 £ 16.69
135 £ 035 1.67 £ 0.18 1.56 + 0.14 320+ 1.4 196 + 029 148 £ 0.13 717 £ 1.18
1.5 = 0.79 1.76 £ 022 201 0.20 144 = 0.44 LO4 £ 0.13 190 £ 0.30 048 0.06
7.35 & 0.65 1508 £ 6.03 1545 = 479 57.14 £ 2876 620 £ 230 694 £ 1.69 34038 + 169.51
24.65 £ 7.35 5641 £ 17.73 584 £ 1567 14746 £ 71.49 20,12 £ 521 2840 = 7.53 343,86 + 149,01
1742 £ 0.32 1684 £ 0.21 1765 £+ 0.15 17.37 £ 0.30 1739 £+ 043 1733 £ 0.13 16,39 0.13
27.85 £ 047 27.39 £ 0.24 2818 £+ (.18 2784+ 034 2797 £+ 0.58 27.81 £ 0.18 2669 + 0.14
2686 & 044 2006 £ 0.325 2696 + Q.16 2662 +  0.32 2659 £ 0.55 2670 £ 0.16 2547 £ Q.15
11.21 £ 048 1634 £ 1.17 1263 =+ 076 1368 £ 141 1399 £ 263 1341 + 0.52 2087 £ 056
44.57 + 090 6239 £+ 4.78 4643 £ 249 5087 + 542 4985 £ 9.37 50.59 £ 2.55 7559 £ 3.9¢6
995 £ 0.15 1382 + (.34 11.85 0.17 14358 £ 024 78 + 022 5.88 + 0.17 18.07 % 0.39




Table 30: Discriminant function and its classification table for allocating plots to
cluster groups on the basis of environmental attributes.

Actual Predicted Group
Group

1 2 3 4 6
1 2

(100.00)

2 1 9 2 1

(7.69) (69.23) (15.38) (7.69)
3 9 1 i

{81.82) (9.09) {9.09)
4 1 4
' (20.00) (80.00)
3
(100.00)

6 1 1 2 7

{9.09) (9.09) (18.18) (63.64)
7

(100.00)

Variable Discriminant function
Constant -5761 -6030 -6096 -6072 -5982 -5983 -6228
NIT10 -15.59 -16.20 -15.90 -15.46 -15.33 -15.83 -13.37
GREBD30 -8.65 -15.08 -6.58 -12.02 -3.69 ~11.11 -11.11-
RAIN_ LM 112.35 115.51 115.72 115.61 114,22 114,82 117.60
FE30 0.007 0.007 0.007 0.005 0.017 0.0G9 0.011
ORG_C10 62.56 66.67 66.80 68.02 69.53 65.71 66.02
BD30 -28.86 -16.48 -24.76 -19.60 -41.09 -18.09 -19.561
RAD 586.37 598.23 . 602,25 600.44 598.45 596.22 607.18
SILTS0 -1.70 -1.38 -1.69 -1.59 -2.02 -1.73 -1.71




Table 31: Discriminant function and its classification table for allocating plots to
cluster groups on the basis of environmental attributes and site index.

Actuoal Predicted Group
Group
i 2 3 4 5 6 7
1 2
(100.00)
2 9 2 2
(69.23) (15.38) (15.38)
3 13
(100.00)
4 1 3
(25.00) (75.00)
5 5
‘ (100.00)
6 2 7
(22.22) (77.78)
7 7
(100.00)
Variable Discriminant Function
constant 4291 -4436 -4494 4482 4503 -4466 4602
P10 -0.78 -0.79 -0.79 -0.78 -0.78 -0.78 -0.69
S -1.24 4.33 1.63 5.01 4,76 -1.21 9.89
BD10 -24.25 -15.27 -14.35 -18.08 -24.48 -16.09 -10.55
RAIN LM 78.08 79.19 79.82 79.26 80.58 79.62 80,22
RAD 444 64 447.76 452.56 449 99 434.81 451.09 450.82




4.3.3.6 SEPARATION OF CLUSTER GROUPS VIA HEURISTIC RULES AND
LOGISTIC REGRESSION

As initial attempts to fit logistic discrimination functions failed to converge, alternative
hierarchic methods were employed. The high discriminatory power of site index was utilized
suchthata 100% classification of the data was achieved by simply splitting the site index range

appropriately, such that:

S>164m = cluster group 7
10.9m <§ <163m = cluster groups 2,3 or 4
8.7m<S <10.8m = cluster groups 1 or 6
S <8.6m = cluster group 5

No heuristic rule could be derived to separate cluster groups 6 and 1. Within cluster subgroup
(2,3,4), cluster group 4 has site index values which range from 14.0 mto 16.3 m, while cluster
group 3 has values between 11.0 m and 12.7 m. Thus, complete discrimination of cluster

groups 3 and 4 can be attained if they can be separated from cluster group 2.

A logistic regression was carried out to separate cluster group 2 and subgroup (3,4). The only
significant variables were S, NIT10 and GRBD50. The estimated probability of belonging to

cluster group 2 is given by,

e ~7.356+-0.892S ~2.053NIT10-2.952GRBD 50

[41]

P = _ -2 (}53;\111"10—2 952GRBD 50
1 4 57356 +0.8925 -2 .

If the estimated p exceeds 0.5, then the plot is estimated 0 be more likely to belong to cluster
group 2. Using this rule on the 29 plots in subgroup (2,3.4), for which there was no missing
data. the function correctly allocates § of the 12 plots in cluster group 2. and 16 of the 17 in

subgroup {3.4). Since all of cluster group 3 will be discriminated from ali of cluster group 4
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using the site index range, this rule rmisallocates seven of the 56 (87.50%) plots. Cluster group 1

is assumed to be misallocated.

4.3.4 DISCUSSION
4.3.4.1 EQUATIONS FOR THE PREDICTION OF SITE INDEX

When only those equations which were derived from individual attribute types are considered,
the equation comprised of climatic attributes accounted for the most variation in site index
(48%). The two attributes comprising this equation RAIN_LMand RAD HM both refiect the
degree to which the stand will suffer water stress during the summer months, Given the vcry:;-'
seasonal nature of south west Western Australia’s mediterranean climate this is not’an
unexpected result. Equations comprised of soi] chemical and soil physical variables only
account for40% and 35% of the variation in site index respectively. No significant interactive
terms were identified for any of the three equations suggesting that multiplicative interaction
occurs between attribute types rather than within, This result is unexpected given the well
documented interactions which occur between nutrients (Terman et a/. 1977; Summer and
Farina 1986). Formal experimentation is required to identify the nature and form of such

interaction prior to submitting such a term to a linear regression equation.

It is unlikely that Egs. [21], [22], [23], or [24] possess enough precision of estimation to be
useful for predicting site index. The aim of deriving such equations was to examine the
hypothesis that productivity is not merely due to one attribute type alone. This is clearly not
the case as the equations which predict site index from variables reflecting soil moisture and
soil nutrients account for 60% and 52%, respectively, of the variation in site index. Eq. [25]
also contains multiplicative interactive terms. Again the equation which reflects the influence
of moisture stress explains the greater proportion of the site index variability. The equation
which represents the temperature and light regime Eq. [27] only accounts for 219 of the
variation in site index. It is unlikely that temperature and radiation are as Iimiting.as nurigni

and moisture in south west Western Australia (Beadle and Inions 19903, The significance of

201




TEMP and RAD_DQ in this e@uation is probably due to their correlation with other climatic

variables rather than a meaningful result.

Equations comprised of attributes which reflect both the available nutrients and moisture
account for larger proportions of the variability in site index (78% - 91%) than single attribute
equations, or the equations which reflect soil moisture or nutrient regimes alone. With the
exception of Eq. [29] all such equations require a multiplicative interaction term for maximum

explanation of the variation.

The equation derived via the stepwise procedure (Eq. [29]) accounts for 81% of the variation
in site index. However, its use is subject to concern. It is the most parameterised model and
as such may be subject to prediction bias (Verbyla 1986). Also, the linear combination of
attributes, with no provision for their synergistic nature, casts doubt on its extrapolative
qualities as the selection of attributes, via a stepwise procedure, may include biologically

insignificant attributes (Verbyla and Fisher 1989).

On the basis of model statistics and biological realism it is recommended that Eqgs. [28], [301,
[31] or [32] are the most appropriate for use when estimating site index from environmental
variables. The proportion of the variability in site index accounted for by these equationsis high
given the size of the study area and the range of environmental attributes spanned (c.f. Hunter
and Gibson 1984; Saunders er a/. 1984; Buckley 1988; Monserud er al. 1990) however, these
results are not unique (¢.f. Page 1976; Brown and Loewenstein 1978). The only other study
of this nature which used £. globulus asits subject was undertaken by Gasana and Loewenstein

(1984} in Rwana. They produced an equation which accounted for 71% of the variation in site

index.

Given the size and ecological complexity of the study area it is not surprising to find that the
most promiunent attributes are those which reflect the moisture and nutrient regimes and that
these factors are interdependent (McQuilkin 1976). The most prominest atiwibutes inciuds

NITI10, P10. SIBD50, CBDS0. BD10, RAIN_LM. RAIN_DQ, TEMP HM and RAD _HM.




Four of these variables (NIT10, P10, TEMP_HM and RAD_HM) may be viewed as resource
gradients. Again the hypothesis as proposed by Austin et al. (1985), that using environmental

gradients which are classed as resource gradients improved predictions, holds true.

Moisture is obviously critical to tree growth (Kozlowski 1982) however, identifyin gavariable
to express moisture availability to the tree is extremely difficult (Broadfoot 1969). It is
particularly difficult to express such an attribute as a resource gradient. The SIBD50 and
CBD30 are variables which effect moisture availability through theirinfluence upon the soil’s
ability to resist drying. The significance of moisture, as expressed by SIBDS50 and CBDS50 is
common in such studies (Page 1976) but not universal (Daubenmire 1968; Monserud ¢f a/.
1990). The climatic variables are merely reflecting the degree to which soil water stores wili

be recharged and the severity of the summer water stress.

The attributes discussed here were also prominent during the data exploration vhase of this

study (see section 4.2).
4.3.4.2 DISCRIMINATION OF CLUSTER GROUPS

For allocating plots to a cluster group it is recommended that the discriminant function
comprised of P10, BD10, RAIN_LM, RAD and site index or the heuristic rules detailed in
section 4.3.3.6 are the more suitable. The discriminant function comprised of environmenial
attributes only contains eight attributes and as such, mayv be subject to prediction bias

(Verbyla 1986).

Although the use of discaminant functions, for allocating plots to productivity classes, is
becoming common (Gasana and Loewenstein 1984; Harding er al. 1985: Harrington 1986:
Turvey er al. 1986) this study is the first to use the technigue as a means of dealing with
polymorphism. The technique. as appliedinthisstudy, truncazes the requirement for two height
neasurements when applying polymorphic nondisjoint top height development and site index
equatlons. A philosophicaily similar approach is presented by Monserud (19843 who Incorporates

habitat typeinto top heightde velopmentequations such that the top height development pattern
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varied with each habitat type. In this study the use of vegetation, or any otherclassification unit
was notavailable toemploy such an approach. As such an allocation methodolo gy was required
based upon the causes, or at least variables related to the causes, of polymorphism so that the

appropriate top heightdevelopment and site index equations could be selected (see Section 3 2).

The discriminant analysis and logistic regression exercise emphasises the utility of site index.
It is shown to be a major discriminant of cluster groups and the polymorphism contained
therein, However, for maximum separation of cluster groups site index and environmental

attributes are required.

Whether the use of the discriminant procedures, for separating plots into cluster groups prior
to predicting top height development, yields greater accuracy and precision over standard

techniques such as the use of Eq.[11] will be the topic of Chapter 5.
4.3.4.3 EFFECT OF PREVIOUS LAND USE

When the dataset is split, on the basis of the previous land use, marked differences in mode]
statistics become obvious. The equation fitted to data derived from land that was previously
pasture (Eq. [37]) accounts for 91% of the variability in site index, compared to only 45% for
the equation fitted to data derived from land that was previously unimproved (Eq. [401) . The
differences in productivity associated with the historv of land use are well documented, with
pasture sites the more productive (Haines ef al. 1973: Skinner and Attiwill 1981). Likewise,
the differences in soil properties between land use histories are also well documented

(Adejuwon and Ekanade 1988),

The differences in productivity between land use history are usually attributed to nutdent
accumulation through fertilisation (Lewis ef /. 1987 2.5). nutrient enrichment through the
activity of grasses and legumes (Williams 1962; Donz'd £970) and the physical structure of
the soil becoming enhanced by the activities of pasturs szecies roots (Martin 1944}, Foweve -

this does not explain the disparity in model statistics m22ween the two land use histories, One
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possible explanation is that soil properties are more homogeneous under pasture and therefore
the error incurred when estimating nutrient levels will be smaller. However, it is unlikely that
such a disparity is due to this alone. Another more feasible explanation is that, due to the
modified soil environment under a pasture regime (Dalal and Mayer 1986a,b,c; Lewis et al.
1987a,b), many of the limiting factors, which may be jnfluential under forest sites, are
removed. The nett effect would be that less noise would exist in the pasture data set and

productivity becomes more predictable.
4.3.4.4 SOURCES OF ERROR AND BIAS

The eqﬁations derived are subject to errors of varying magnitude and therefore warrant’
- discussion. Firstly, the linear and nonlinear equations are not directly comparable due to the
different parameter estimation procedures employed. Also, where nonlinear parameter
estimation techniques were used, estimates of the variance and therefore confidence intervals
may be biased. A further area of concern when using regression is prediction bias (Verbyla
1986). Where many independent variables are screened for relationships with site index the
probability of chance correlations is (1-p"), where P is the probability level of significance and
n is the number of variables screened. In studies such as this, many attributes are screened with
the very real chance that erroneous correlations will occur. The effect of such bias is well
documented with equations exhibiting desirable model statistics but not performing at all well
when validation occurs (McQuilkin 1976; Verbyla 1986). This situation is of particular
concern when a stepwise procedure is used (Brandt 1970). The strategy of undertaking
multivariate data exploration prior to model formulation assisted in identifyin g the nature and
pattern of relationships, prior to model formulation. The chance of constructing modeis with

prediction bias is reduced using this strategy.

Secondly, the mathematical expression for the synergistic relationships betwesn atributes was
necessarily coarse. The intercorrelations and interactions among environmenial atributes
made the developmentof complexinteractive expressions impossible. Forna: ox DETIMS AIALON

would be required to define the nature and form of such interaction.




A third weakness stems from the inability to measure attributes which directly influence
productivity. Instead, most factors are inferred indirectly from secondary expressions such as
SIBDS0 etc. This is particularly so when deriving expressions for soil nutrients where the
method of extracting the element from the soil sample may influence whether ornotitis related
to productivity (Keeney 1980; Powers 1980). Likewise, the variables expressing climate used
in this study were derived from a set of equations. As such these attributes should be viewed

as indices rather than the climate actually experienced at the site.

A fourth source of error stems from the spatial and temporal variation of the soil medium. The
ternporal variation in soil nutrients was not accounted for in this study. With the exception of
Page (1976) this is standard practice in such studies. However, soil chemistry is known to
change overtime under forest canopy (France et al. 1989; Billet et al. 1990) introducing a
sampling error of undefined magnitude. In this study, where the rotation is short (10 years) this
error is assumed to be small. A further error is incurred as a result of the spatiai heterogeniety
of the soil (Usher 1970; Blyth and Macl.eod 1978; Keeney 1980). Again, the sampling error
incurred as a result of the spatial heterogeniety is assumed to be small in this study (see

section 4.2.3.1).

A fifth cause of unexplained variation in site index may result from not accoundng for all the
factors which exert an influence upon productivity. For example, no measure of genetic
variability was used in this studv. yet genotype has been shown to be abour a third more
important than the environment in determining phenotypic variation in dominant height of
Douglas-firin the U.S5.A. (Monserud et al. 1990: Monserud and Rehfeldt 199C . However. in
this study the subject species is an exotic to south west Western Australia, a=d the genetic
complexity between environment and genotype evident in Monserud and Reh=21dt’s (1990}

study is untikely to be as influential.

“

A final source of error may result from the small number of sample plots. ¥ six plots is

towards the lower end of range used in such studies.
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Although the error sources listed above are of real concern, the variation in site index accounted

for by the equations is towards the upper end of the published ran ge for such studies. However,

the utility, accuracy and precision of such equations is best assessed by validation on

independent data, which is the topic of Chapter 5.

4.3.5 CONCLUSION

It may be concluded from this study that:

(1)

(1)

(111}

(iv)

(v)

(vi)

both site index and the polymorphism in top height development are related to

environmental attributes;

the maximum explanation of the variation in site index is achieved in functioms
comprised of all variable typesi.e., climatic, edaphic chemical and edaphic physical, and

interactive terms are required;

large amounts of the variation in site index were explained by Egs. [28],{29], [30], [31]

and [32];

cluster groups, representing the polymorphic nature of the top height development
patterns, may be separated by heuristc rules and logistic regression or discriminant
functions. In either case the procedures require the input of both site index and some

environmental attributes;

the use of multivariate data exploration techniques was useful for identifying the nature
and patterns which exist between productivity and environmental attributes. Such

knowiedge is useful when formulating the functional forms of predictive equations or

allocation rules; and,
no recommendations will be made 2s to which predictive equation or allocation
procedure 1s the most appropriate untii arier the equatons have been validated. which

is the subject of Chapter Five.
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CHAPTER FIVE

Validation of Predictive Equations




5.1 LITERATURE REVIEW: VALIDATION OF PREDICTIVE
EQUATIONS

5.1.1 INTRODUCTION

Equations which predict an outcome, such as those detailed in Chapters 3 and 4, are merely
mathematical abstractions. As such they cannot be expected to make predictions which agree
exactly with reality. Prior to the use of any system of equations, collectively termed a model.
it should be examined to compare its agreement with the system it is intended to represent
(Goodall 1972). Such an examination is termed validation (Schaeffer 1980). Validation
involves the comparison of model output with a data set which is independent from that used

to calibrate the model.

There are two philosophical approaches to model validation. The first approach uses a
framework of statistical hypothesis testing to formally assess whether a model meets the
specified accuracy requirement of the user. The second approach uses no specified standard

of accuracy and the objective is simply to give the user some estimate of how far estimated

values will be from the truth.

A third approach, which is not validation under the above definition but is worthy of mention.
is cross-validation. Here the i" sample is deleted during model calibration. The model is then
tested on the excluded case and an error derived. The excluded case is returned to the data set
and the i* + 1 case is excluded and the procedure is repeated. The procedure continues until
all cases have been removed. The accuracy of the model is then the mean of all errors. This
procedure has proven popular particularty where small sample sizes prevents segregation of
the data into calibration and validation datasets (Frank er ¢/, 1984; Harding et al. 1985).
Modifications of this cross-validation procedure are available (Efron 1983) and a comparison

of such methodologies is given by Gong (1986).

A slightly different appreach is given by Gertner (1986) and Gerter (1987) who examinec

the random errors in the independent variables and theiwr effect on model precision. For the
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purposes of this review these procedures are not classed as validation methodologies and will

not be discussed further.
5.1.2 THE STATISTICAL HYPOTHESIS TESTING APPROACH

The firstof such methodologies was proposed by Freese (1960). The approachrequires the user
to define an acceptable level of accuracy. The accuracy attained by the model is then es timated,
and finally a statistical testis applied to decide whether the model meets the accuracy required.
The method is prominent in the forest science literature (Moser and Hall 1969; Pearso-n and
Sternitzke 1974; Evert 1981) and modifications of the procedure have also arisen (Rennie and
Wiant 1978; Ek and Monserud 1979). In such modifications 2 maximum anticipated error or
critical error is calculated and defined as the smatlest value of the error, which will lead to the
acceptance of the null hypothesis. The critical error may also be used as a validation statistic

(Ek and Monserud 1979).

Itis argued that the assumptions underlyin g Freese’s procedure have not been cxplicir.ly stated
by Freese (1960). Reynolds (1984) clarified the assumptions inherentin Freese’s methodology
and proposed a more powerful test of accuracy by relating the critical error bounds to an interval
estimator for a particular quantiie of the distribution of the errors. These procedures were
modified further by Gregoire and Reynolds (1988) who also discussed the robustness of such

tests to departures from error normality.

Although examples of such tests appear in the literature (Ek and Monserud 1979; West 1981:
Dolph 1989; Borders and Patterson *1990), the methodology has been criticized for its
requirement for a user specified level of accuracy (Holdaway and Brand 1983). Under such
a situation it is possible that a model may be deemed acceprable by one user and rejected by
another. As such most models are validated using indenendent data to yield indicarions of

accuracy and precision in the absence of formal hypothesis testing,




5.1.3 MEASURES OF ACCURACY AND PRECISION

With this approach two or more models may be compared, or a single model tested for its
predictive capabilities. The measure of success, or otherwise, is the residual, defined as the
observed minus the predicted value. Some authors have defined the residual as the predicted
minus the observed, however this definition violates regression theory (Zuuring et al, 1988).
The accuracy and precision of the model under examination is given by the mean and standard
deviation of the residuals. However, no set of rules exist which stipulate the appropriateness
of the model. As pointed out by Zuuring er al. (1988), final acceptance of the model is
subjective, even though rigorous statistical analysis is employed to derive the model. Whether
the model is accepted, given its accuracy and precision, will largely depend upon the end use

of the model predictions (Newberry and Stage 1988).

This approach is employed more often than the formal hypothesis testing methodolo gies. Ithas
been used to examine the accuracy and precision of a single model (Holdaway and Brand 1983),
to compare a number of models (Lenhart 1988; Patterson and Stiff 1988) and to compare
different modelling procedures (Stage and Renner 1988). The mean and standard deviation of
the residuals are the most commonty used statistics (Devan and Burkhart 1982; Holdaway and
Brand 1933; Stage and Renner 1988), although slight variations may occur. For example, the
percentage bias of the residuals, defined as the ratio of the mean error to the sampie mean, was
used by Dolph (1989) for validating height-diameter equations. Other variations include that
proposedby West (1983) whodevelopedregressioneguations which exaxﬁined therelationships
between residuais and various independent attributes such as stand age, site index and time
period of the simulation projection. Another approach used a Student’s t-test 10 examine
whether the mean of the residuals was equal to zero. Rejection of the nuil hypothesis would
imply bias (Dyer and Bailey 1987). Zuuring er af. + 1988) describes a method for graphically
displaying residuals with various independent varizbles. A simple lincar regression relating

observed to predicied estimates has been used bv E and Monserud (1979) and Wegr ¢ 198 1




Some authors have adopted the strategy of using both validation philosophies when testing or
comparing models, presenting both formal hypothesis tests as well as descriptive validation
statistics (Ek and Monserud 1979; West 1981).

5.1.4 VALIDATION OF TOP HEIGHT DEVELOP‘VIENT SITE INDEX AND
SOIL-SITE EQUATIONS

Although Carmean and Lenthall (1989) used both Freese’s (1960) and Reynold’s (1984)
accuracy tests, most studies use descriptive statistics when validating top height development
and site index equations. For example, Devan and Burkhart (1982) and Lappi and Bailey
(1988) use the mean and standard deviation of the residuals when validating their top height
development curves. Newnham (1988) employed the strategy of examining the mean residual
for each site index class when validating site index curves in Canada, Some authors employ
arange of residual statistics such as the mean, standard deviation, minimum, maximum and
range (Cieszewski and Bella 1989). Smith and Watts (1987) compare seven top height
development equations using the maximurn absolute residual, the residual standard deviation

and the frequencies of the absolute residuals by residual classes.

In those studies concerned with predicting productivity from environmental atributes,
validation is usually presented as adescription of residuals. Cross validation has also been used,
but infrequently (White 1982; Harding et al. 1985: Verbyla and Fisher 1989). The correlation
coefficient or the r-squared between observed and predicted values is a cormnmon validation
statistic in such studies (Broadfoot 1969; Blyth and MacLeod 1981). However, as with site
index and top height development equations, most studies describe the nature of the residuals
with such statistics as the mean, standard deviation or standard error (Page 1976: Shoulders

and Tiaks 1980: Schmidt and Carmean 1988).




5.2 VALIDATION OF TOP HEIGHT DEVELOPMENT EQUATIONS,
SITE INDEX EQUATIONS AND EQUATIONS WHICH PREDICT SITE
INDEX FROM ENVIRONMENTAL ATTRIBUTES

5.2.1 INTRODUCTION

Much has been written about the need for validating modéls (House 1974: Caswell 1977:
Shaeffer 1980; Holdaway and Brand 1983), particularly models which predict productivity
from environmental attributes (Broadfoot 1969; McQuilkin 1976; Verbvia 1986).

The top height development and site index equations presented in Chapter 3 and the equations
which predict site index from environmental attributes presented in Chapter 4, have been
compared on the basis of the residual statistics, derived from the statistical analysis of the
calibration data sets only. However, these equations will form the bases for land acquisition
and managerial decisions. As such some indication or test of their ability to predict is

obligatory.
It is the aim of this study to:

(1)  define the accuracy and precision of the predictions made by the individual

candidate equations detailed in Chapters 3 and 4;

(i1) make recommendations as to which equations are the more apzropriate and under

which circumstances: and

(iif) define the accuracy and precision of predictions when equations are used in

concert.




5.2.2 METHODS
5.2.2.1 VALIDATION DATA SETS

To derive the data set used for the validation of the top height development and site index
curves, fourteen plots were established across the geographic range of the study area
(Figure 21).A single site tree was felled in each plot with the selection of the site trees and the
reconstruction of their growth pattern, via the methods previously described in Section 3.2.2.
Of the 14 plots four were aged five years, five were aged six years, three were aged seven years,

one was aged eight years and one was aged ten years, yielding 89 age top height data points,

Ateach of the 14 validation plots environmental atributes were derived via the assumptlons
and methodologies detailed in Section (4.2.2. 3). A further four plots existed where top height
development and site index data were previously derived and used in the construction of the
equations reported in Chapter 3. However, these plots had incomplete collections of
environmental data and therefore were not used in the construction of the equations reported
in Chapter 4. These four plots were resampled for environmental attributes, bringing the total
plots available for the validation of the equations which predict site index from environmental

attrtbutes to 18.
52.2.2 VALIDATION CRITERIA

The validation philosophy proposed by Freese (1960) and Reynolds (1984) is not deemed
appropriate for this study as it requires a user specified accuracy level. The models under
validation in this study will be used for different reasons by different people, each with a
differentaccuracy requirement. As such itis considered more appropriate to provide such users
with an estimate of the accuracy and precision of the equation in a descriptive manner. Such

descriptive statistics are also usefui for model comparisons.
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Figure 21: South west Western Australia showing the location of plots used
for model calibration and model validation. T -
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Models were compared on the basis of residuals, defined as the observed minus the predicted
value. Candidate models were initially compared using the mean of the residuals _(5) and the
standard deviation of the residuals (DSD).B represents the accuracy of the equation while D,
represent the precision, The r-squared statistic from a linear regression analysis using the
observed value as the dependent variable and the predicted value as the independent is also
given. The most accurate and precise models were validated further by graphically examinin g

the relationship between the residuals and the independent variables.

5.2.3 RESULTS

5.2.3.1 VALIDATION OF TOP HEIGHT DEVELOPMENT EQUATIONS

Residual statistics derived from the validation of equations which predicttop heightdevelopment
are given in Table 32. Of the equations validated, Ek’s (1971) and Payendeh’s (1974)
modification of the Chapman-Richards functional form {(Eq. [11]) (see section 3.2.3.3.0)
displays the best residual statistics. It has the smallest values of D, indicating it is the most
accurate equation tested. Eq. [11] and the algebraic difference equation Eq. [18] (see section

3.2.3.3.3) have similar levels of precision, as indicated by their Dsp values.

The allocation of plots to cluster groups, via heuristic rules and logistic regression, yielded
better residual statistics than when discriminant analysis was used as the allocation criteria.
However, neither strategy yields residual statistics which Were an improvement over those

vielded by the use of Egs. [1 ITor[18}.

On the basis of residual statistics it is recommended that Eq. [11] be used to model top height
development. Examination of plots of residuals with S, H and A revealed no patterned bias,
However, when a linear regression. using the observed top height s the dependent, and the

predicted top height as the independent variable, was undertaken the intercept term was found

to be significantly (p<0.0373) different from zero. No explanation can be offered as sneh bine

is not evident in plots of observed versus predicted top heighs {Figum 22).
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Table 32: Residual statistics generated from the validation of top height development
equations(n=89).

Equation D D, r
Eq.[11] 0.13 0.84 0.9811
Eq.[18] -0.23 0.83 ) 09811
Eq.[20]* 0.15 1.01 0.9741
Eq.[20]** -0.29 1.45 0.9469
Eq.[18]* 0.16 0.90 0.9787
Eq.{I8]** 032 1.08 0.9684

*  equation applied to each cluster group where the plot was allocated to a cluster group via heuristic
rules and logistic regression.

** equation applied to each cluster group where the plot was allocated to a cluster group via discriminant
functions.
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5.2.3.2 VALIDATION OF SITE INDEX EQUATIONS

Residual statistics derived from the validation of equations which predict site index from H
and A, are given in Table 33. The alternative form of Ek’s (1971) and Payendeh’s (1974)
modification of the Chapman-Richards functional form (Eq. (13]) (see section 3.2.3.3. 1) was
both inaccurate and imprecise. Bias was detected with increasing values of S for this equation
and it is therefore rejected. The algebraic difference site index equation (Eq. [19]) (see section
3.2.3.3.3) displayed poor accuracy. However, if dara derived from years one and two were
deleted from the validation data set, the equation yields acceptable accuracy and the highest

level of precision of the site index equations validated.

;

Unlike top height development equations, separation of the data into cluster groups and
applying cluster specific versions of Eq.[19],improved accuracy butnot the level of precision.
The allocation of plots to cluster groups via heuristicrules and 1o gisticregression yiclds greater
accuracy than the allocation of plots via discriminant functions. Little effect upon precision

was detected between the two allocation procedures (Table 33).

In all cases the removal of the first two years data improved both accuracy and precision, It
is recommended that Eq.[19] is used to predict S from H and A and the equation should not
be applied until the stand is at least three years of age. If environmental attributes are available,
the allocation of plots to cluster groups via heuristic rules and logistic regression and the
application of the algebraic difference site index equaton will yield increased accuracy. Again
the application of these equations should only occur when the stand is three or more years of
age. No patterned bias was detected w.i)th increasing values of A, H or S for either equation.
Theinterceptterms from linearregressions using observed sie index asthe dependent variable,
were not significant (p>0.1076; p>0.3153) for Eq. [19] or the algebraic difference site index

equation applied to each cluster grouprespectively. Plows of predicted site index with observed

site index is given in Figure 23 for both methods,




Table 33: Residual statistics generated from the validation of site index equations

(n=89).

Equation D D, r
Eq.[13] 0.93 1.72 0.7021
Eq.{I3} 0.76 1.41 ) 0.9132
Eq.[19] 0.65 1.93 0.7215
Eq.[19} 0.18 0.87 09175
Eq.[197* -0.19 3.52 0.3681
Eq.[19]*t 0.03 1.06 0.8744
Eq.[19]** : 0.24 3.55 0.3430
Eq.[19]#*! 0.09 1.17 0.8494

*  equation applied to each cluster group where the plot was atlocated to a clyster group via heuristic
rules and logistic regression.

** equation applied to each cluster group where the plot was allocated to a cluster group via discriminant
functions,

! data from years one and two removed from the data set,
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3.233 VALIDATION OF EQUATIONS WHICH PREDICT SITE INDEX FROM
ENVIRONMENTAL ATTRIBUTES

Residual statistics derived from the validation of equations which predict site index from
environmental attributes are given in Table 34. The most accurate and precise results were
obtained from equations comprised of all attribute types (see Section 4.3.3.2) (i.e. Egs. [28],
{301, [31], [32]). Equations comprised of single attribute types, or combinations of attribute
types, and the equation derived via a stepwise variable selection algorithn, were less accurate
and less precise than these equations.The equation displaying the least desirable residual

statistics is that derived via the stepwise algorithm (Eq. [29]) (see section 4.3.3.3).

Although displaying desirable residual statistics Eq. [30] and Eq. [31] both exhibit patterned
bias with site index, such that site index is underestimated for larger values of S. This problem
does not occur when Eq. [28] or Eq. {32] are used. Eq. [32] is less accurate than Eq. [28]
although their precisionis similar. Therefore, itis recommended that Eq. [28] be used to predict
site index from environmental attributes. When a linear regression, using predicted values as
the independent variable and the observed values as the dependent, was fitted the imerceét term
was not significant (p>0.7565) indicarin g alack of bias. Plots of observed versus predicted site

index for this equation is given in Figure 24,

No improvement in residual statistics was gained by using equations or data specific to a

previous land use (Table 34).




Table 34: (A) Residual statistics generated from the validation of equations which
predict site index from environmental attributes (n=18). o

Equation D D, r

Eq.[21] 0.66 2.02 0.7007

Eq.[22] 1.44 2.70 ’ 0.3250

Eq.{23] -0.003 2.18 0.5543

Eq.[25] -0.13 2.18 0.5551

Eq.[26] 0.87 1.87 0.6883

Eq.[27] 1.04 2.68 04095

Eq.[28] -0.12 173 0.7233

Eq.[29] 0.64 3.42 0.1183 i
" Eq.f30} 0.01 1.74 0.7213 ’

Eq.[31] -0.08 1.84 0.6981

Eq.[32] 0.38 1.71 0.7334

(B) Residual statistics generated from the validation of equations which predict site
index from environmental attributes, Pasture sites only (n=16).

Equation D D, r

Eq.[35] 0.52 1.89 0.6652
Eq.[36] -0.39 1.68 0.7341
Eq.{37] -0.27 1.63 0.7468
Eq.[33] -0.24 1.56 0.7595
Eq.[34] -0.10 ’ 1.59 0.7507
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5.2.3.4 VALIDATION OF TOP HEIGHT DEVELOPMENT EQUATIONS IN
COMBINATION WITH EQUATIONS WHICH PREDICT SITE INDEX
FROM ENVIRONMENTAL ATTRIR UTES.

Not only must equations perform well individually they must also perform well in unison.
Residual statistics were examined when equations were used in concert, where site index was
predicted from environmental attributes and used as input into top height development

equations. Residual statistics for some of the combinations examined are given in Table 35,

The most accurate and precise combination of equations, where cluster groups were not
defined, was Eq. [32] to predict site index and Eq. [11] to predict top height development. If
the predicted site index (fromEq.[32]) was substituted into Eq. {201, which is specifictocluster
groups, a marked improvement in accuracy is evident. Of the four combinations (i.e.Eq. [28]
& Eq. [20]; Eq. [30] & Eq. [20]; Eq.[31]& Eq.[20); Eq.[32] & Eq.[20]), Eq.[30] &Eq. [20]

is the most accurate. However, bias is evident with site index when this combination is used.

On the basis of residual statistics from the validation of the equations used in combination and
the performance of equations when used individually, it is recommended that Eq. [32] is used
in combination with Eq. [11] when predicting top height development from environmental

attributes,

Linear regression, using the observed top height as the dependent variable and predicted top
height as the independent variable, yielded intercepts which were not significant for the
Eq. [32] & Eq. [11] (p>0.1370) combination. A plot of observed top height by predicted top

height is given in Figure 23.
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Table 35: Residual statistics generated from the validation of top height
development equations and equations which predict site index from environmental _
attributes (n = 83),

Equation D D, P

Eq.{28] +Eq[11] -0.54 122 -0.9598

Eq.{30] + Eq.[11] 041 1.21 0.9606

Eq.[31] + Eq.{11] -0.50 127 0.9567

Eq.[32] + EqJ11] 0.10 1.21 0.9614

Eq.[28] + Eq[11]* -0.08 1.21 0.9616

Eq.(30] + Eq[11]* 0.01 1.25 0.9587 |

Eq.(31] + Eq11]* 0.05 1.33 0.9538
Eq.(32] + Eq.[11]* 0.23 1.51 0.9601

Eq.[28] + Eq.[18] -0.64 1.29 0.9569

Eq.[30] + Eq.[18] 0.58 1.23 0.9594

Eq.[31] + Eq.[18] 0.61 1.33 0.9532

Eq.[32] + Eq.[18] -0.20 1.24 0.9587

*  equation applied to each cluster group where the plot was allocated to a cluster group via heuristic
rules and logistic regression,
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5.2.4 DISCUSSION
52.4.1 TOP HEIGHT DEVELOPMENT EQUATIONS

It is surprising that the validation statistics pertaining to Eq. [11] were better than other
candidate top height development equations. Based upon the residuals generated from
calibrating the equations on the calibration data set (see Section 3.2.3.4) Eq.[18],Eq. [20] and
Eq. [18] applied to each cluster group, displayed the most desirable residuals. Likewise,
Eq. [18] has qualities as a top height development equation, not possessed by Eq. [11] (see
Section 3.2.4.3). Nonetheless, Eq. [11] has been used with success by other authors (Carmean
and Hahn 1981; Carmean and Lenthal] 1989). Smith and Watts (1987) found the equation gave:
the best validation statistics of the seven equations they tested for their ability to predict top

height development.

The allocation of plots to cluster groups and applying cluster specific top height equations to
each cluster did not improve the validation statistics. This is a surprising result given the
polymorphic nature of the top height data set and Monserud’s (1984) conclusion, that the
Ek-Payendah functional form lacked the flexibility to track the polymorphism in his data set.
A possible explanation is that the two allocation procedures, used in this study, were unable

to consistently allocate independent plots to appropriate cluster groups, thus incurring errors.

Two concerns exist when using the Ek-Payendeh equation, firstly, predicted top height does
not equal site index at the reference age and secondly, the equation is not reference age
invariant. In this study both problems do not seem to incur an error which is of any practical

impertance.
5.2.4.2 SITE INDEX EQUATIONS

The failurs of the alternative form of Ek’s (1971) and Pavendeh’s (1974) modification of the
Chapmar-Richard’s functional form Eq. [13] to yield appropriate validation statistics is not

uncommon. Smith and Watts (1987) found that this functional form vielded the worst




validation statistics of the seven site index equations they validated and concluded that the
algebraic difference site index equation yielded the best. Monserud (1984) concludes that this
functional form forces on the data an equation that could not represent the expected model
behaviourand that where the equation has been used successfullyithas been fitted to the inverse
of published height growth curves (Payendeh 1974; Monserud and Ek 1976) rather than to

actual site index data.

In this study the algebraic difference equation yields the best validation statstics. Similar
results are reported by Smith and Watts (1987). However, unlike the top height development
equation, the allocation of plots to cluster groups and application of cluster specific versions
of Eq. [19] did improve the accuracy of the validation statistics. However, increased accuracy
was at the cost of decreased precision. As the allocation of plots to cluster groups by heuristic
rules and logistic regression is strongly influenced by site index, an increased accuracy is not
surprising. However, the decrease in the level of precision is unexpected and possibly due to

the failure of the allocation procedures.

Improvements in both accuracy and precision occurred if data from years one and two were
excluded from the validation data set. This may be due to the influence of establishment
practice on height growth during the early stages of stand development. Three vears seem to
be required for the stand to reflect the influences of the site.

5.24.3 THE PREDICTION OF SITE INDEX FROM ENVIRONMENTAL
ATTRIBUTES

The most accurate and precise equations were those comprised of all atiribute types and
containing multiplicative interactive terms. This was also the case if modei calibration statistics
are examined (see Section 4.3.3). This is not surprising given the scale of the study and the

synergistic nature of the influences upon £, viobuius growth across the study wreq.

The equation derived via the stepwise procedurs (Eq. {297} vielded validation statstios whics

are unacceptable. With the use of stepwise procedures variables are selecied oo -he hasis o
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individual contributions to the model sums of squares. As such the equation may be subject
to prediction bias (Verbyla 1986) and include attributes which are biologically insignificant
(Verbyla and Fisher 1989). Although this equation yields the most desirable model statistics
(Table 27) it yields the worst validation statistics, casting doubt upon the common practice of

selecting such attributes by stepwise procedures.

Segregating the data set into land use histories improved the model statistics during model
parameterisation (Table 27). However, no improvement was evidentin the validation statistics
after segregating the validation data set. A practical disadvantage of segregating the data in this
manner is that it is often quite difficult to ascertain whether a property is freshly cleared and
sown to pasture or whether it has been pasture for some time, thus casting doubt as to which

equation is applicable.

5244 TOP HEIGHT DEVELOPMENT EQUATIONS IN COMBINATION WITH
EQUATIONS WHICH PREDICT SITE INDEX FROM ENVIRONMENTAL
ATTRIBUTES

On the basis of the validation statisdcs derived for individual equations, one would expect that
Eq. [28] combined with Eq. [11] would yield the best validation statistics. However, where
cluster groups were not accounted for, this was not the case with Eq.[32] and Eq. [11] yielding
a much improved level of accuracy over other equations (Table 35). Unlike the validation of
individual equations, the allocation of plots to cluster groups via heuristic rules and logistic
regression and the application of the cluster specific version of Eq. [11] in concert with Egs.
(28], [30], [31] and [32] markedly improved accuracy without a loss in precision. No
explanation can be offered for this phenomenon given that it was not the case when equations
were validated individually. However, this does serve to illustrate the importance of validating

equations in concert as well as individually.

5.2.4. POLYMORPHIC NONDISJOINT TOP HEIGHT DEVELOPMENT

Ln

Combining plots of similar top heigit development patterns into cluster groups, using the two-
dimensional profile algorithm and the UPGMA fusion strategy. then fuing top height

developmentand site indexequations o each cluster was a strate gy which confined potvimorphism
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to that which exists between clusters. As such the calibration model statistics applied to these
clusters were more desirable than those derived via standard methodologies. This approach is
philosophically similar to that taken by Monserud (1984) who built habitat type into his top
height and site index equations, to account for such polymorphism. However, habitat type was

quite assessable in Monserud’s study (Pfister and Arno 1980) unlike cluster groups used here.

The strategy of allocating plots to cluster groups via discriminant functions or heuristic rules
andlogisticregression did not generaily improve the validation statistics as expected. This may

be because;

(1)  the polymorphism encapsulated in clusters, derived via cluster analysis, is a

mathematical artifact and bears little resemblance to reality; or,

(ii) the techniques employed to allocate independent plots to cluster groups did so

without the level of accuracy required to use such specific equations.

On the basis of the multivariate data exploration (see chapter 4) I do not believe that the
polymorphism is a mathematical artifact. Rather, the failure of this strategy is probably due
to the allocation procedures. To derive multivariate logistic equations and discriminant
functions based upon heterogeneous covariance matrices, many degrees of freedom are
required (see Section 4.2.2.4). As such these techniques could not be fully explored in this
study. I therefore conclude that algorithms specific to individual clusters are not appropriate

until further research is undertaken to derive and test more appropriate allocation techniques.

5.2.5 CONCLUSION

On the basis of validation statistics it is recommended that Eq. {11] be used for the prediction
of top height given stand age and site index and Eq. {19] be used for the prediction of stand
site index given top height and age. Eq. [19] should only be applied to stands of age three or
older. When predicting site index from environmental atributes Eq. [28] is the most
appropriate. When site index is estimated from environmental aticibutes and used as inputinto

top height equations Eq. [32] and Fq. {11] are recommended,
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6.1 LITERATURE REVIEW
6.1.1 INTRODUCTION

The need to estimate forest growth and yield has long been recognised. Prior to the advent of
computer technology tﬁe most common method of obtaining such estimates was from yield
tables and alignment charts (Schlich 1925; Tesch 1981). Today more sophisticated, computer
based projection systems are in use and are commonly termed growth models. Due to the
concurrent development of many kinds of growth models in various parts of the world, a
confused set of terminology is evident in the literature. For consistency, the terminology of
Bruce and Wensel (1988) will be adopted for this study. 'As such a growth model is defined
-as a mathematical function, or system of functions, used to relate actual growth rates to'

measured tree, stand, and site variables.

Areview of the historical development of growthand yieldmodelling is given by Tesch (1981),
while a categorisation of the historical developmentstages has been delivered by Moser (1980).
Moser (1980) suggests the following historical chaptersinthedevelopment of growth and vield

models:

()  yield tables;

(i}  yield functions:

(iii) compatible growth and yield functions;
(iv) diameter distribution apprgachcs; and

{v) simulation approaches.
6.1.2 A CLASSIFICATION OF GROWTH MODELS

A vast variety of growth models appear in the literature, each reflecting different siivicultural

practices, modelling phitosophies. applications and mathematical cornplexioy, Snvel i

of growth models can therefore be basedon a variety of characteristics, Forexumple. Burkhart
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(1977a) classified growth models as either stochastic or deterministic, where stochastic growth
models include random variables whose values are generated, whereas deterministic models
do not. Other categories can be defined by classes of predictive functions and/or statistical
technigues used in their definition (Lowell and Mitchell 1987). Bruce and Wensel (1988) argue
that growth models should be categorised accordin gtothe condit{pn of the forest to which they

apply and the purpose of the model.

A more detailed classification is offered by Clutter er al. ( 1983) who suggests that models be
classified on the basis of the target populations to which the predictions will apply. Therefore

models are classified as those pertaining to:

(1)  natural forests;
(a) uneven-aged,

(b) even-aged,

(i) plantation forests;

{a) thinned,

(b) unthinned.

Alternatively, Clutter et al. (1983) suggests models can be classified by the complexity of the

mathematical approach involved. thus models may be classified as:

(1)  models in tabular form;
(ii)  models as equations and systems of equations:
(a)  direct prediction of unit area values,
(b)  wnitarea values obtained by summation.
(1) equations for classes of wees,

(2)  equations for individual trees.




Clutter et al. (1983) also makes the important distinction between explicitand implicit growth
models. Where the solution of the model provides estimates of volume per unitarea, the model
is explicit. With implicit models the solution produces basic information on stand structure.

Yieldestimates implied by the predicted structure are then calculated from further computations

based on the stand structure information.

The first and most frequently utilized classification of models is that of Munro (1974). Munro
presents three classes of models. The first, stand growth models, are those where the
_independent variables are stand characteristics such as age, siteindex and basal area. Secondly,
single tree distance dependent models require single tree inputas well as some measure of inter-
tree distance. Finally, single tree distance independent models require single tree input but no
measure of inter-tree distance isrequired. As Munro’s classification has gained acceptance and
is frequently used in the literature it will be adopted for the purposes of this review. Ho WEVEr,
when describing amodel Clutter’s er al. (1983) definition of implicitand explicit methods will

accompany Munro’s (1974) classificaton.
6.1.3 STAND GROWTH MODELS

The approaches to modelling stand level growth and yield are many and varied and include the
use of differential equations (Clutter 1963), generalised least squares (Ferguson and Leech
1978),logisticregression analysis (Lowell and Mitchell 1987), diameterdistribution projections
using probability dcnsity functions (Bailey 1980) or Markov chains (Peden et al. 1973) or -
simple linear regressions (Payendeh 1990). It should be noted that some stand level models,
suchas diameter distribution models may ﬁ}oducc some tree level output. such asthe frequency
of trees per dbh class. Although, Garcia (1988) classed such models as distant independent
individual tree growth models, they are still classified as stand level models in the majority of
cases because the independent variables are stand leve) statistics (Burkhart 1977a:

Clutter er al. 1983).
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6.1.3.1 EXPLICIT PREDICTION OF GROWTH AND YIELD

Originally normal yield tables were used for the estimation of current and future yields. These
tables were then generalised by including a measure of stand density as a third independent
variable in addition to site index and age (Schumacher 1939). Nowadays, such equations
estimate current yield from functions of Vaﬂabics such as site iﬁaex, age, stocking, density and
dominant height (Bennett 1970; Sullivan and Clutter 1972; Chambers 1980; Sadig and
Beckwith 1986; Payandeh 1990). Such equations usually estimate the yield in the units of
interest, for example, volume per acre, outside bark of all trees of 4.6 inches dbh and larger
to a top diameter of 4 inches outside bark (Bennett 1970). This approach is adequate where the
resource is used for a single product with defined merchantable limits. However, where the
resource is used for a variety of products the yield will vary depending upon which producf
is being estimated. Many studies simply predict total volume which is subsequently divided
into product classes (Burkhart ef al. 1972). However, such a strategy may yieid illogical
estimates for certain combinations of independent attributes. An alternative approach utilizes
the strategy employed in the single tree volume equation derived by Burkhart (1977b) and.Van
Deusen eral. (1981). Aratioequation was developed where the merchantable yield is a function
of total yield, quadratic mean diameter, stocking, top diameter merchantability limit and

threshold dbh limit (Amateis et al. 1986: Matney et al. 1988).

The explicit prediction of future yield requires the independent variables of an equation, which
explicitly predicts current yield, to be projected to some point into the future. For example,

Schumacher’s variable density yield equation as given by Pienaar and Shiver (1986);

I
In(Y) =4+, N +BJ(S)+B3<9(D)

Where:
Y = vyield/unit area
A = stand age
f(SY =  some funciion of sie quality
g(D) = some function of stand density

In = natural Jogarithm




As presented this equation may be viewed as one which explicitly predicts current yield.
However, if § is expressed as top height and D as basal area, future values of S and D may be
obtained from top height and basal area development functions and substituted into the above

equation. As such a future value of Y is obtained.

The nature and functional forms of the equations which describe the development of the
independent stand attributes are many and varied. The most frequently projected attribute is
basal area. Usually projected basal area is a function of age and the basal area at the beginning
of the projection period (Clutter and Jones 1980). Other equations may include site index
(Borders and Bailey 1986), stocking (Chojnacky 1988) and dominant height (Varmola 1988)
invarious combinations (Pienaar and Shiver 1986). Bailey and Ware (1983) developed a basal
| area development equation in which they included a variable to reflect the type of thinning

applied to stands.

Itis argued that stand models which predict future yield must take into account future mortality
(Hamilton and Edwards 1976). Where the yield equation or basal area projection equations use
stocking as an independent variable, changes in stems per unit area over time must be accounted
for. Many mortality functions have been constructed (Lee 1971; Ek 1974; Stiell 1974;
Monserud 1976; Evert 1981; Buchman et af. 1983; Rennoils and Peace 1986) however, the
majority predict stocking at some future time as afunction of presenttime, and current stocking
(Clutter and Jones 1980; Pienaar and Shiver 1981). An alternative approach involves the
prediction of the probability of mertality (Hamilton 1974) but is more applicable o diameter
class or single tree equations. Equations to predict the future values of top heights have been

covered in Chapter 3.

Another approach to predicting future yvields involves the prediction of volume increment and

summing the increments to obtain vield (Oliver 1979),
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6.1.3.1.1 PARAMETER ESTIMATION

Growth and yield are viewed as functions of site quality, age and density as well as the
interactions between these variables. Stand density is also taken to be a function of site quality,
age and initial measurements of stand density. Site quality is usually a reference to height and
age. Each of these equations describes a different relationship:'and all are assumed to hold
simultaneously (Borders and Bailey 1986). However, when deriving such models the
parameters are estimated using ordinary least squares on individual equations in isolation. As

such the sum of individual increments may give different results to the solution of a yield

equation (Clutter 1963).

- As a result of such inconsistency Clutter (1963) proposed the idea of compatibility among °
growth and yield equations such that when the growth function is integrated over a time
interval, the yield is obtained for the end of the projection interval. The benefits of such
compatibility, as listed by Clutter (1963), are logical consistency and that the knowledge of
existing yield models will suggest appropriate growth models upon differentiation. Clutter’s
(1963) proposal of compatibility has been well accepted and is now common in stand levet
growth models (Pienaar and Turnbull 1973; Borders and Bailey 1986; Pienaar and Shiver
1986; Borders 1989).

Estimations of the parameters of stand level growth models are subjectto anumberofconcerns.
Firstly, most parameters are estimated from repeated measures of permanent inventory plots.
Such time series data proposes statistical problems as discussed in Section 3.1.7. Secondlv.
equations which explicitly predict futuré: yields are usually a systern of interrelated equations
such as those proposed by Clutter (1963). Parameters of such equations are usually estimated
by ordinary least squares applied separately to each equauon compﬁsing the system. Such
systems are classed as recursive or simultaneous equations under the definition of Pindyck and
Rubinfeld (1981) and Borders (1989). Where ordinary least squares are used to estimate

interdependent multi-equation systems, resuiting estimates may not be the most efficien:.




Attempts to solve this problem are many. For example, Sullivan and Clutter (197 2) estimated
the parameters of the equations, defined by Clutter (1963), simultaneously by substiturin gthe
predicted values of basal area, in place of actual basal area, into the yield prediction equation
prior to estimating its parameters. The final equation was fitted using ordinary least squares
and maximum likelihood. A similar approach was employed by Burkhart and Sprinz (1984).
Furnival and Wilson (1971) used econometric techniques (Fomby et al. 1984) to fit muiti-
equation models. Recently, the application of such techniques, usually termed two or three
stage least squares, has become common when addressing such problems {Murphy and
Sternitzke 1979; Murphy and Beltz 1981; Amateis et al. 1984; Borders and Bailey 1986;
Gregoire 1987; Borders 1989).

Although the problem of parameter estimation of interdependent models is receiving more
attention in the recent literature, the error structure associated with such models is poorly
understood. With the exception of Bailey (1981) and Borders and Bailey (1986) this topic has

received scantattention thus inhibitin gthe use of confidence intervals around yield predictions.

The problems inherent within parameter estimations of interrelated equations are at least of
theoretical concern. However, as Borders (1989) points out, parameter estimation is the final
step in the modelling process. Prior to this, much time and effort must be put forth for data
acquisition and development of theory upon which mathematical models are based. Any gzins
inpredictive ability are much more likely to be attributable to appropriate data bases and sound

growth theory than to theoretically sound parameter estimation procedures.
6.1.3.2 IMPLICIT PREDICTION OF STAND LEVEL GROWTH AND YIELD

On a stand level the implicit prediction of current and future vields involves the use ofdiamezr

distribution methods. The frequency of trees per unit area oy diameter class is represente::

some probability density function. Diameter distribution methods provide more informz -
on stand structure than the explicit methods previously discussed. Such information is v«

for determining the value of raw material. harvesting costs. product mixes and for deris-

261




management plans (Hyink and Moser 1983). These techniques are generally applied to even-
aged plantation yields (Bennett and Clutter 1968; Burkhart and Strub 1974; Smalley and Bailey
1974; Alder 1979; Bailey 1980; Pienaar and Harrison 1988) however, application to uneven-
aged stands have also been reported (Schreuder et al. 1979; Hyink and Moser 1983).

Basically, the method represents the diameter distribution of a stand with some density
function, such as the Weibull probability density function (Bailey and Dell 1973). The
frequency of trees in each diameter class is then derived and their volumes estimated from
single tree volume equations, such as those discussed in Chapter 2. Prior to estimating the tree
volumes, tree heights are estimated using height-diameter equations, such as those presented
by West (1982a), Zakrzewski and Bella (1988), Dolph (1989%a) and Borders and Patterson
| (1990). The parameters of the probability density function are usually represented as functions
of stand attributes such as site index, age, basal area, etc. Therefore, the implicit prediction of
future yields merely involves the projection of those stand attributes used to estimate the
parameters, as was the case for the explicit prediction of future yields (Smalley and

Bailey 1974).

The choice of probability density function to representdiameter distribution is arbitrary. There
is no biological basis on which to argue for or against a particular functional form (Borders
etal. 1987). Early work indiameter distribution models used the exponential distribution (Leak
1965; Schmelz and Lindsay 1965). This function represents negative J-shaped dismributions.
Functions which have been used to represent mound shaped distributions include the gamma
distribution (Nelson 1964; Bailey 1980), the three parameter lognormal distﬁbuﬁon (Bliss and
Reinker 1964), the beta distribution (Lenhartand Clutter 1971; Goodwin and Candy 1986) and
Johnson’s SB distribution (Hafley and Schreuder 1977, Tham 1988). However. since Bailey
and Dell’s (1973) paper, the Weibull probability density function (Weibull 1251) has been
unlized more than any other function for even-aged diameter distributions Schreuder
et al. 1979; Matney and Sullivan 1982; Zutter ¢1 af. 1986 Shiver 1988, Its populzrity ster:

from its flexibility and the fact that a closed form cumulative density function can be derived.




The three parameter function has a probability density of the form;

c—1 c
f(x)z_z_ E__.b_g__ .exp. — ﬂ

« for x2=aaz=0

b>0
c>0
Where;
x = dbh
a = location parameter
b = scale parameter
¢ = shape parameter

_To derive a model using this methodology a probability density function is fitted to each plot
such that a matrix of parameter estimates is obtained. These parameters are then expressed as
functions of stand characteristics (Smalley and Bailey 1974; Burk and Burkhart 1984). This
approach is termed the parameter prediction method (Hyink and Moser 1983). However, such
parameters are usually highly cormrelated and vary independently to stand characteristics,
making it difficult to develop predictive equations that explain a high percentage of the
variation in the parameters. Consequently, stand table statistics such as basal area, quadratic
mean diameter and diameter percentiles are related to analytical equivalents for a probability
density function (Dubey 1967). This technique is termed the parameter recovery method
(Hyink and Moser 1983) and usually involves the use of percentiles for thaining the
probability density function’s parameter estimates. The technique is based upon the fact that,
if three sample percentiles are known, each can be equated to its corresponding Weibull
cumulativedistribution function and the thré:e equations solvedinteractively (Clutterer a/. 1983).
The problems caused by correlations between parameter estimates are overcome with this
method and the copious calculations involved with fitting ziprobability density functiontoeach
plot are unnecessary. Bofders et al. (1987) argue that the stand characteristics used in the
parameter recovery method really are the variables of interest and that predicting highly
variable probability density function parameters is an unnecessary and unsatisfactory step in

estimating a stand table.
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Borders er al. (1987) developed a method which does not rely on a predefined probability
density function. To characterise the diameter distribution, they define an empirical probability
density function based on 12 percentiles. The 55th percentile s a function of the quadratic mean
diameter. The other percentiles are functions of adjacent percentiles and in some cases
quadratic mean diameter. This method assumes a uniformed distribution of tree frequency

between adjacent percentiles and is termed the percentile method by Borders and Patterson

(1990).

Another approach to implicit stand level modelling, which does not require a predetermined
probability density function is that proposed by Pienaar and Harrison (1988). This procedure
projects an individual tree diameter list into the future based on a hypothesis concernin g the
expected change in relative tree size over time, Relative size is defined as the ratio of tree basal
area to the mean tree basal area and is an extension of the earlier work of Clutter and Jones
(1980). Mortality and basal area growth equations are also required. Deriving such a system

requires time series data, where each tree is uniquely identified.

In a comparison of the parameter recovery method, percentile method and the method of
Pienaar and Harrison (1988), it was shown that the basal area growth projection method of

Pienaar and Harrison (1988) was superior in accuracy and precision (Borders and Patterson

1990).

Another method of projecting diameter class frequencies is the use of Markov chains (Bruner
and Moser 1973; Peden et al. 1973). With this methodology the probability of a tree
progressing from one diameter class to théncxt 1s derived. The probabilities are assembled into
a transition matrix. Mortality and harvest removals may also be built into these probabilities

{Bruner and Moser 1973).
6.1.3.2.1 PARAMETER ESTIMATION

As the estmation of the parameters of a probability density function reguires nerative

computations some earlier works chose to transform the functions such that the eStmators were




thenderived as for linear regression (Bain and Antle 1967). However, this procedure is absent

from the recent literature.

Other parameter estimation technique include the percentile estimation procedures put
forward by Zanakis (1979). Zarnoch and Dell (1985) compared the percentile estimation
procedure to that of maximum likelihood estimation and found the percentile estimators to be
biased but with smaller variances. Moment estimation has also been used to estimate the
parameters of a Weibull function (Garcia 1981). In a comparison of maximum likelihood, the
percentile estimation and moment estimation procedures, Shiver (1988) found that maximum

likelihood estimation provided the best estimates of the parameters of known distributions.

- In a noteworthy approach, the parameters for the equations which comprise the percentile
method of Borders et al. (1987) were first estimated with ordinary least squares. However, the
errors were found to be contemporaneously correlated. Therefore, the parameters were re-

estimated using seemingly unrelated regression (Zellner 1962).

Although there are numerous techniques of estimating the parameters of a probability density
functionitis generally accepted that maximum likelihood estimators are best (Bailey and Dell
1973; Shiver 1988). When deriving equations which project driving variables, such as basal

area etc, into the future the parameter estimation procedures suffer from the same problems

6.1.4 SINGLE TREE GROWTH MODELS

A vast variety of single tree growth models have appeared in the literature. All have the
requirement of time series data for model parametrization. Therefore. single tree growth
models are not an option for this study. The copious literature concerned with the topic will,

theretore, not be fully reviewed.




6.1.4.1 SINGLE TREE DISTANCE DEPENDENT MODELS

As the output of single tree distance dependent models are the sum of individual tree growth
and yield, these models are'implicit. The models require a tree list, individual tree data such
as dbh, height etc. and information on between tree distances, usu.all-y inputted as a set of x-
y coordinates, as major components of input data. Single tree distance dependent growth
models are based on the postulation that if the competitive influences on an individual tree,
induced by its neighbours, can be quantified greater detail on tree development is provided.
The amount of competition to which a tree is subject is often expressed as being proportional
to the amount that the “competitive circle” of the subject tree is overlapped by the competitive

circles of neighbouring trees.

There has developed an abundance of techniques for determinin g the radius of the competitive
circle and for calculating overlap areas and wet ghing these by the relative sizes of competitors,
These procedures may be based on the mean distance to various nei ghbours (Thompson 1956),
angles (Lin 1974) and units of area (Ek and Monserud 1979) to name a few (c.f. Opie 1968;
Bella 1971; Ek and Monserud 1974; Daniels 1976).

The application of single tree distance dependent growth models proceeds in the following

order, as listed by Clutter et al. (1983):

(i) A competitive index value is calculated for each tree in the tree list;
(ii) Mortality is derived as functions of the competitive index;

(iif) Predicted periodic growth for each tree is calculated and added to the current size;

(iv) Steps (i), (ii) and (iii) are repeated interactively until the end of the projection

period is arrived at:

(v) Individual tree volumes are calculated from the final tree size measurements and

summed.
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Single tree distance dependent growth models were favoured during the 1960°s and 1970’s
because of theirassumed ability to characterize spatial variation in plantin g, mortality, thinning
and competition. The disadvantages of this approach are that it is computationally more
expensive than other classes of models and the difficulties involved with obtaining spatial
coordinates of tree positions, variables not often included in standard forest inventory, The
fundamental assumption underlaying this approach involves the assertion that individual tree
growth can be predicted more precisely if the sizes and locations of nei ghbouring competitors
are known. However, various studies have suggested that the use of competition indices have
contributed little or no improvement in growth prediction over that obtained using basal area

as the measure of competition (Beck 1974: Daniels and Burkhart 1975).

16.1.4.2 SINGLE TREE DISTANCE INDEPENDENT MODELS

Single tree distance independent growth models use stand table data as input, in addition to
some stand level data. Trees are grown individually or in groups of similar dbh classes to
generate stand table data at some future pointin time. No set of x-y coordinates of tree positions
is used to calculate competitive effects, rather functions involving basal area are frequently
used to modify the potential growth response (Alder 1979; Belcher ef al. 1982). Other
modifiers include measures of green crown size (West ez al. 1982b) and crown competition
factor (Krajicek et al. 1961; Arney 1985). The range of density measures available as growth
modifiers are reviewed by Curtis (1970), West (1982b) and Payendeh and Ek (1986). Other

extrinsic modifiers may also be used (Wykoff 1990).

This class of growth model provides for aii the mixed size class. age class and species mixture
capabilities of distance dependent approaches, without the need for the input of tree positions.
As such they may utilize information from standard tagged tree plotinventories. Where the
projection of the future stand table does notrequire iterative calculations fittle more computer
time is required than for stand level models (Clutter and Allison 1974; Alder 1979; Clutter and
Jones 1980). Other models of this class. designed to handle raixed species and/or uneven-aged

stands, do require iterative computations and are more demanding of computer resources
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(Stage 1973; Belcher er al. 1982). However, with the increasing advances in computer

technology these considerations have become secondary.

The utility of the single tree distance independent approach is that much detail on stand
composition and product size distributions are available. Also various silvicultural options

may be incorporated into the algorithms (Lowell 1988; Knowe and Foster 1989).
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6.2 CONSTRUCTION OF EMPIRICAL EQUATIONS FOR
ESTIMATING THE YIELD OF PLANTATION GROWN
E. GLOBULUS

6.2.1 INTRODUCTION

The ability to estimate current and future yields, under various conditions of the stand, is critical
to any plantation scheme. In south west Western Australia the State requires estimates of
plantation yields so that annuity calculations can be made and uneconomic sites avoided (see

Chapter 1).

Published growth and yield studies of E. globulus have generally used the single tree distance
independentapproaches. Forexample, Tomé (1988) developedasingle tree distance independent
growth model for E. globulus plantations in Portugal. Tomé (198 8) also presents a stand level

yield equation,

In Australia, West (1981) presents a single tree distance independent approach for estimating
growth and yield of mixed species, even-aged regrowth forests in Tasmania. In these forests
E. globulus is only one component. In West’s study diameter increments of individual trees
were expressed as functions of various tree and stand parameters. A mortality function which
predicts the death of individual trees as a stochastic process is also presented, Other functions

useful in West’s simulator are presented in West (1979) and West (1982a).

Inalesselaborate study, also in the regrowth forests of Tasmania, Goodwin and Candy (1986)
use both a single tree distance independent:find a diameter distribution approach. Their study
was based on a limited data set from a single stand comprised of E. globulus only. Equations
for top height development and individual tree diameter increments are presented. The
diameter distribution was modelled via the parameter prediction methodology using a beta
distribution. Their mortality function was based on the 3/2 self thinnin grule because of a lack

of data to develop empirical functions.
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For shortrotation E. globulus plantations in Rwana, Gasana (1 983) has derived a set of explicit
equations for the prediction of current yield. After testing many functional forms, the final
equation predicted stand volume as a function of stand age, site index, stocking and density
percentage. Density percentage was defined as the average spacing between trees as a

percentage of site index. Stand basal area was also expressed as a function of these parameters.

No particular modelling philosophy can be argued to be the most appropriate for £. globulus
with the final choice being influenced by the purpose of growth and yield predictions, resources

and quantity and quality of the data.

Itis the aim of this study to define a method for the prediction of current and fumre yields for

- E. globulus plantations in south west Western Australia.
6.2.2 METHODS

6.2.2.1 RATIONALE BEHIND THE CHOICE OF MODELLING PHILOSOPHY

After much consideration of the topic it was decided to pursue a stand level, explicit modelling
philosophy for the following reasons. Firstly, with the exception of the top heightdevelopment
data, presented in Chapter 3, all other data stem from static point measurements. To apply the
single tree modelling philosophies time series data is obli gatory. Although time series data will

eventually become available, this study was restricted to a single measurement.

Secondly, only pulpwood will be harvested from the plantation estate. As such the piece size
distribution and product differentiation capabilities of implicit modellin g philosophies are not
essential. For planning harvesting operations the knowledge of piece size distributions would
be of advantage. However, such planning will not occur for about eight years, by then time

series data will be available and more elaborate models may be constructed.
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6.2.2.2 DATASETS

Two datasets were used to develop the yield functions. The firstresulted from the measurement
of 100 temporary inventory plots established in the planationestates owned by Bunnings Tree
Farms Ltd. This dataset will be referred to as the Bunnings data set. Each tree was measured
for diameter at breast height over bark (dbhob) with a standard diameter tape, to the nearest
0.1 cm. The heights of all trees were estimated with a sunnto clinometer to the nearest 0.1 m.

3795 trees were measured in the 100 plots.

A second data set was available as a result of establishing 58 permanent inventory plots for the
purposes of this study. The plots were established by the Depértmcnt of Conservation and Land
~Mana gerﬁent (CALM)and will be referred to as the CALM data set. These plots were measured
inwinter 1987 and 55 plots were remeasured in winter 1988. Each tree was measured for dbhob
with a standard diameter tape to the nearest 0.1 m. Height was measured to the nearest 0.1 m
withasunnto clinometer and bark thickness was measured at two points, atrightangles at breast

height, with a Swedish bark gauge. 3336 trees were measured in this fashion.

Although the plots were measured in two consecutive years the data were not treated as time
series. As this increment period may be atypical the consecutive measurements were treated

as independent.
6.2.2.3 BARK THICKNESS AND STAND VOLUME ESTIMATION

To estimate the volume of each plot individual tree volumes were estimated using Eq.[6] B
presented in Section 2.2. Plot volume is tfien the sum of all the individual tree volumes and is
expressed as total merchantable volume under bark ha!. However, to apply Eq.[6] «cr, dbhub
is required. The Bunnings data set lacked this measurement and therefore required estimates

of bark thickness prior to estimating plot volumes.




6.2.2.3.1 ESTIMATION OF BARK THICKNESS

To develop a bark thickness equation the CALM dataset was used. Univariate statistics for

dbhob, dbhub and two times bark thickness is given in Table 36,

To estimate dbhub two approaches are possible. The first is to develop an equation which
predicts bark thickness from dbhob and/or tree and stand attributes (West 1979; West 1982a;
Gordon 1983) or develop equations to estimate dbhub directly from dbhob (Monserud 1979;
Dolph 1989b). After plotting bark thickness against dbhob and dbhub against dbhob the

strategy of predicting dbhub directly from dbhob was pursued (Figure 26).

The literature was examined for candidate functional forms which may be appropriate for the
| estimation of dbhub and those selected are listed in Table 37. The CALM data set was then split
into a calibration and validation data set by setting aside about one randomly selected tree per
plot(n =113 trees). After parametrization the final candidate equations were validated via the

~assumptions and methods presented in Chapter 5.

Parameter estimation was via the standard criteria of ordinary least squares. For the nonlinear
equations the parameters were estimated via nonlinear ordinary least squares using the
derivative free secant method of Ralston and Jennrich (1979). Most candidate equations
displayed heterogeneity among residuals upon parametrization. As such the parameters were
re-estimated via weighted least squares. Statistics derived via weighted least squares were
identified by the subscript (WT) with the equation identification number. The variance
assumption for weighted least squares was (52 o< l/dbhObz and was found to be a

reasonable one during the data exploration phase of this study.
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Table 36: Univariate statistics for variables used to develop a bark thickness equation

e

Variable (cm) X St. Dev. Range n
DBHOB 14.1 7.1 0.5-419 3342
DBHUB 126 6.5 03- 396 3336
2 x Bark thickness 1.5 0.8 00- 54 3336

Table 37: Functional forms of candidate bark equations

Functional form Citation

dbhub = B,Dbhob Powers (1969)
dbhub = B + B8 Dbhob Dolph (1989)
dbhub = Dbhob/ (8, + B, Dbhob) West (1979)
dbhub = B Dbhob Dolph (1989)
dbhub = B, + B, Dbhob + B , Dbhob? +...+ 8 Dbhob* -
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Figure 26: (a) Twice bark thickness against diameter at breast height
overbark and (b) diameter at breast height underbark by diameter
at breast height overbark for the 3336 trees in the CALM data set.
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62232 CALCULATION OF PLOT VOLUMES AND STAND VARIABLES

Using the derived dbhub equation (Eq.[42]) the dbhub of each tree in the Bunnings data set
was estimated. The merchantable volumes under bark of each tree in both data sets were
estimated using the single tree volume equation Eq.[6] o, Plot volumes were calculated as the
sum of individual trees in the plots. Plot volume, basal area and stoQCking were converted to per
hectare figures. The site index of each plotin the CALM data set was known from stem analysis
(see Section 3.2.2.2). The site index of the plots in the Bunnings data set was estimated using
the site index equation (Eq.[19]) (see Section 3.2.3.3.3). The top height of each plot in both
datasets was defined as the average of the tallest one or two trees per plot depending upon plot

size. In this study top height is defined as the average height of the tallest 40 stems ha™.

Univariate statistics for the combined data sets is given in Table 38, while the location of plots

comprising the datasets are shown in Figure 27.
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Figure 27: South west Western Australia showin

g the location of plots which

comprise the Bunnings and CALM data sets.
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Table 38: Univariate statistics for various stand attributes for the combined data set,
data split by landuse history and for the calibration and validation data sets, o

_ TOTAL DATA SET
X SD N Range
\% 84.8 60.0 201 65 - 290
BA 11,7 54 201 18 - 276
S 14.7 3.8 201 75 - 239
H 17.2 4.8 201 75 - 343
A 7.0 38 201 36 - 170
N 863.1 309.1 201 1540 - 20000
LAND HISTORY
- PASTURE — UNIMPROVED
X Sb N Range X SD N Range
Y 76.5 46.7 132 7.5 - 240.1 99.6 774 69 65 - 2960
BA 11.6 4.7 132 22 - 235 12.2 6.4 69 L7 - 276
S 16.3 34 132 10.0 - 239 11.5 2.3 69 75 - 162
H 16.2 4.1 132 75 - 276 19.0 53 69 91 - 343
A 32 1.9 132 30 130 10.3 42 69 40 - 170
N 899.1 2543 132 154.0 - 14880 792.5 383.6 69 18.0 - 2000.0
- CALIBRATION — VALIDATION
X SD N Range X SD N Range
A% 85.5 61.9 171 6.5 - 296,0 81.2 48.7 30 149 - 2105
BA 11.9 5.4 171 1.8 - 275 11.8 5.0 30 41 - 278
S 147 3.8 i71 75 - 239 14.4 4.0 30 75 - 214
H 17.2 3.9 171 75 - 343 17.1 4.6 36 103 - 276
A 7.0 3.8 171 30- 170 6.8 3.6 30 35 - 170
N 8583 3083 171 180.0 - 2000.0 901.0 315.9 30 1540 - 1355.0
v = stand merchantable volume underbark per hectare, to a top diameter of 4cm (m3ha‘1)
BA = stand basal area at breast height under bark (mzha‘l)
S = site index {m)
H = top height (m)
A = age (yrs)
N =  stems per hectare

g
1
~1




6.2.2.4  EXPLICIT PREDICTION OF CURRENT STAND YIELD AND CURRENT
BASAL AREA

To develop the equations which estimate stand yield and basal area, the CALM and Bunnings

data sets were .combined. A set of candidate functional forms were selected after extensive

correlation and graphical analysis of the data, The literature was also searched for functional

forms which may be appropriate. The initial set of candidate functional forms were parametrized

and equations compared on the basis of model statistics and the behaviour of the residuals. A

reduced set of candidate equations were thus selected for further analysis.

The history of land use prior to the establishment of the plantation has been found to influence
site produc'tivity (Chapman 1938; Skinner and Attiwill 198 1). As such the combined data set
“was split into two data sets reflecting the land use histories. Those plots in plantations
established on pastured lands (PASTURE data set) were separated from those in plantations
established on previously unimproved lands (UNIMPROVED data set). For each candidate
equation the hypothesis, that the equation fits both data sets equally well and that no significant

loss of explanatory power is experienced by combining the datasets, was tested.

Having determined whether the functional forms were applicable only to the individual Jand
use data sets or the combined data set, the combined data set was separated into a calibration
data set and a validation data set by randomly selecting 29 plots to be withheld from model
parametrization. The integrity of land use histories was maintained in both the parametrization

and validation data sets (Table 38).

6.2.2.5 PARAMETER ESTIMATION AND VALIDATION CRITERIA

Parameter estimation was via the standard criteria of ordinary least squares. Where Io gamthmzc
transformations were employed, Sprugel’s (1983) correction factor was qpplied after
transformation of the logarithmic terms to standard units (see Section 2.2.2.3). For nonlinear
©quations the parameters were estimated via nonlinear ordinary least squares using the
derivative free secant method of Ralston and Jennrich (1979). The final candidate equanions

were validated via the assumptions and methods presented in Chapter 3.

278




623  RESULTS

6.2.3.1 ESTIMATION OF DIAMETER INSIDE BARK AT BREAST HEIGHT

An initial set of candidate equations were parametrized and their model statistics and residual

patterns examined., A final set of three candidate functional forms were selected in this manner

for further examination. Table 39 presents the model coefficients for the three equations after
their parameters were estimated usin g the calibration dataset. Table 40 presents the validation

statistics of the final equations after they were applied to the validation dataset.

Onthe basis of parametrization and validation statistics the fourth order polynomical (Eq.[42]) f _.
was found to be the more appropriate. This equation was the least biased and most precise of
the final candidate equations. It is noteworthy that weighting the equations did not improve

the model statistics or validation statistics of any of the equations.

Table 39: Equations for estimating the diameter of breast height underbark from
diameter at breast height overbark

Equation Model r n
Eq. [41] Dbhub = 0.89 Dbhob 0.9987 3228
Eq. [41]wt Dbhub = (.89 Dbhob .9974 3228
Eq. {42] Dbhub = 0.83 Dbhob + 0.0078 Dbhob?

-0.00032 Dbhob’ + 0.0000044 Dbhob* (1.998% 3228
Eq. [42]wt Dbhub =  0.84 Dbhob + 0.0066 Dbhab?

-0.00026 Dbhob? + 0.0000035 Dbhob 0.9976 3228
Eq. {43] Dbhub = 0.85 Dbhob o 0.99412 3228
Eq. (43]wt Dbhub =  0.84 Dbhob'en 0.9955* 3228

' r*values estimated by (] - a/b)

where = residual sums of squares

corrected total sums of squares
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Table 40: Valndatnon statast:cs derlved from the validation of three bark equations
{n=113) -

Equation H D,
Eq. {41] -0.08 0.55
Eq. [41]wt 0.04 0.56
Eq. [42] 0.04 0.54
Eq. [42]wt -0.04 0.55
Eq. {43] -0.05 0.55
Eq. [43]wt . -0.06 0.56

6.2.3.2 EXPLICIT PREDICTION OF CURRENT YIELD

Univariate statistics for stand level attributes are given in Table 38. After extensive graphical
and correlation analysis and areview of the literature, a number of functional forms were either
derived or selected for further analysis. These functional forms were parametrized usiﬁg the

total data set and are presented along with their adjusted r* values in Table 41. After

examination of the model statistics and the patterns of the residuals foreach candidate equation,
the Iog/log transformation and Schumacher’s variable density yield equation (Pienaar and

Shiver 1986) were selected for further examination.




Table 41: Functional forms and adjusted 2 for candidate equat:ons used for the
explicit prediction-of current yield

Equation Adj®
v = B,+8 B+8,H+B BH+B A% 0.9777
v = B SB(l-ewmm ' 0.9779
Inv = B,+8 A'+B8,S+8/nB 0.9894
Iv = B,+8 H+B InB 0.9873
v = 8,+8,BH 0.9718
v = B +BBH 0.9446
Inv = B +BmB+8InH 0.9903
v = B,+8 B+8 H+B8 BH 09772
Inv = B8,+BInB 0.9473
Inv = 8,+8 InH 0.7636
8,8,8,8,8,8 = paramaters to be estimated
In = natoral logarithm
B = basal area (m*ha")
H = top height {m)
S = gite index (m)
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Prior to final model formulation the log/lo g transformation and Schumacher’s equations were
parametrized using the PASTURE, UNIMPROVED and TOTAL datasets, to test the
hypothesisthat the functional forms and their parameters are equally applicable to both sources
of data. In both cases the hypothesis that the equations are equally applicable to either data
source was accepted (p <0.001). Consequently, the equations were parametrized using the
calibration data set (Table 38) which is comprised of data from both land use histories. The

final equations are as follows:

InV =-0.99+0.93InH +1.092InB Eq. [44]

Adj” = 09920 n =171 RSS = 0.867 Fvalue = 10539

InV =144—-3.97A7 +0.044S +1.19InB Eq. [45]

Adir” = 09852 n =171 RSS = 1.57 Fvalue = 3781

All terms iz both equations were significant (p <0.0001) and no heteroscedasticity among

residuals wzs detected.

The use of £9.[44] or Eq.[45] requires the basal area of the stand to be known or estimated.
ThlS will nozbe possible for some applications of the results of this study. As such an equation
wh1ch explicitly predicts current yield from stand attributes other than basal area was sought.
Again candifate equations were tested for their applicability to both the PASTURE and
UNIMPROVED déta sets. In all cases the hypothesis that the candidate equations were equally
applicable 1z both datasets was rejected ( p > 0.001). Consequently, separate equations were
derived and zarametrized for the PAS'I;URE and UNIMPROVED data using the calibration
data set (Tabe 38).
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The two best equations are as follows:

If the stand is established on pastured lands -

InV =4.25+0.00073N —29.58H" +0.0435 +0.0874 Eq. [46]
Adir* = 08610 n =112 RSS = 7.90 Fvalue = 172

I the stand is established on unimproved lands -

InV =-4.35+2.881nH +0.001N — 4934 Eq. [47]

Adjr® = 0.8405 n = 59 RSS = 726 Fvalue = 103

It is noteworthy that not only do the parameters of any particular functional form require
re-estimation for both sources of data, but in this case the best fits were obtained via the

application of different functional forms to both sources of data.
6.2.3.3  EXPLICIT PREDICTION OF CURRENT BASAL AREA

After graphical and correlation analysis and a review of the literature, a number of functional
forms were either derived or selected for further analysis. The candidate functional forms were
parametrized using the PASTURE, UNIMPROVED and TOTAL data sets, to test the
hypothesis that the functional forms and their parameters are equally applicable to both sources
of data. In all cases the hypothesis that a single parametrized equation is equally applicable to
either data source was rejected (p > 0.001). Consequently, individual equations were fitted to

both the PASTURE and UNIMPROVED components of the calibration data set.
The final equations for the explicit prediction of current basal area are as follows;

If the stand was established as pastured lands -

InB =1.85-15.H""+0.00068N + 0.0385S5 +0.06A4 Eq. [48]
Adjr* = 07555 n =112 RSS =711 Fvalue = 129
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If the stand was established on unimproved lands -

inB =3.84 - 28.46H " +0.00085N —4.734 ! Eq. [49]
Adir" = 07367 n =59 RSS = 635 Fvalue = 64.43

All terms in both equations were significant {p < 0.005) and no heteroscedasticity among

residuals was detected.

6.2.3.4 VALIDATION OF PREDICTIVE EQUATIONS

Equations Eq.[44], Eq.[46], Eq.[47], Eq.[48), and Eq.[49] were validated by predicting stand
- volume or the basal area of the plots comprising the validation data set (Table 38). The mean
residual, the standard deviation of ihe residuals, and the r-squared statistic, from a linear
regression analysis using the observed value as the dependent variable for each of the above
equations, are given in Table 42. Eq.[44] was also validated using a predicted basal area as

input. The basal area was predicted usin 2 Eqgs.[48] and [49]. The validation statistics stemmin g

from this approach are included in Table 42,

Validation residuals were found to be random and showed no pattern with any stand attribute.
On the basis of the validation statistics itis recommended thatfor the prediction of current stand
yield Eq.[44] is used. However, where basal area is not available Egs.[46] and [47] should be
used. Figures 28 and 29 show the predicted stand yields with the actual stand yields for both
approaches. For the prediction of stand basal area equations Egs.[48]and [49] yield acceptable

results. All equations yield validation statistics which are within practically acceptable limits.
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Table 42: Validation statistics for equations which explicitly predict stand volume or
--basal area (n = 29).

Equation Statistic
D, r

ol

Yield equations

Eq. [44] -0.01 6.78 0.9750
Eq. [46] + Eq. [47]! -0.75 17.42 0.8374
Eq. [44]2 -1.42 17.38 0.8358

Basal area equations

Eq. [48] + Eq. [49] 0.04 2.35 0.6781

%Y O e

prediction of cumrent yield using equations specific to land use histories

prediction of current yield using Eq. [44] where basal area is predicted using
Eg. [48] and Eqg. [49]

= mean of residuals

= standard deviation of residuals

= the r-squared statistic from a linear regression, using the observed value as the dependent variable
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624  DISCUSSION

In the recent literature most growth and yield simulation studies have tended to follow the
single tree distance independent philosophies or a biology of production approach (Botin
etal. 1972). Such studies are most applicable to complex multi-species, uneven-aged
dynamic forests, such as those which occur in the Pacific North-west of the United States.
Under such conditions growth and yield simulation methods need to be consistent and robust
to a wide range of forest conditions and have the capacity to predict the yield of the range of
products harvested from such forests (Stage 1973; Wykoff et al. 1982; Wykoff 1986; Wykoff
1990),

- Alternatively, where the forest of interest is an even-aged monoculture and particularly where
a single product is harvested, there is no evidence to suggest that a stand level approach is less
applicable. Such situations occur in the southern states of the United States and in the forests
on which this study is based (Murphy and Farrar 1983; Burkhart et q/, 1985; Matney eral. 1988:
Pienaar et al. 1990; Walters et al. 1990). The stand level equations used in this study validate

with levels of accuracy and precision acceptable for practical purposes.

The functional forms presented are similar to other studies which seek to explicitly predict
current yield (c.f. Clutter er ¢/, 1983; Burkhart er /. 1985). However, this study differs by
accounting for the effect of land use history. Land use history is not a concern when using
Eq.[44] to estimate yield. Here the effect is accounted for by using both basal area and top
height as independent variables. However,qwhen basal area is not available the common
practise of estimating basal area, with equati;ns such as Eq.[48] and Eq.[49] and substituting
the value into a yield equation such as Eq.[44], did not validate as wel] as using the equations

specific to a land use history (i.e. Eq.[46] and Eq.[47]) (Table 42).

The pasture or old-field effect has received some atiention in the literature (see Section4.3.4.3),
However, little effort has been directed towards quantifying or incorporating the effect into
growth and yield studies. For example, Clutter er a!. (1976) and Burkhart et a/. (1985) found

no evidence that land use history influenced vield and concluded that. ‘a single vield equation
ry ) gley q
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is adequate for predicting total cubic-foot volume yield across all site preparation methods and
physiographic regions sampled’. It is noteworthy that the equation of Burkhart et al. (1985)

did not include basal area as an independent variable.

On the other hand Amateis and Burkhart (1987}, while studying the influence of land use
history upon individual tree volumes, concluded that ‘trees grown in old-field plantations are
more conical in shape than trees from cutover-site plantations. This means that for trees of the

same stump diameter and total height, old-field-plantation-grown trees have more volume’.

In this study it was observed thatfortwo stands, of differentland use histories, but of equivalent
stocking, age and top heights, the stand established on pasture will have a larger basal area.
* Under such a situation it is obligatory to account for such differences when basal area and top
height am not included in the same equation. In this study the strategy of applying separate
equations to each source of data was adopted. The alternative strategy of incorporating dummy

variables into a single equation, was not examined (e.g. Monserud 1984).

The effect of land use history on basal area is assumed to be nutritionally induced (Skinner and
Attiwill 1981) as a result of nutrient accumulation under an agricultural regime (Lewis et al.
1987a,b). No evidence was found to suggest that top height is influenced by land use history.
As such the use of site index and top heights as a measure of the potential of a site to yield
produce is assumed to be sound. However, whether the site actually achieves the potential wil]

be a function of many things, including the previous land use and nutritional status.
6.2.41  PREDICTION OF FUTURE YIELD

The explicit prediction of future yield requires the projection of the independent variables of
the equations presented in this study, to some future point in time. A number of strategies are
available to achieve this aim. Firsily, substitution of future values of H and B into Eq.[44] wiil
give an estimate of future yield. However, such an approach requires a method to predict future
values of H and B. Future values of H may be estimated using the equations derived in

Chapter 3. However, because of the lack of basal area growth data, no method of predicting
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future values of stand basal area has beenderived. An example of a stand Ievel basal area growth

function is given in Pienaar et al. (1990).

An alternative strategy for predicting future values of B is to substitute future values of H, N,
S and A into Eqs.[48] and [49]. The predicted future value of B may then be substituted into
. Eq.[44]. However, thisapproach proved less accurate and less precise, whenestimating current
yield, than using Eqs.[46] and [47] directly. There is no reason to suspect that this result would
notapply equally to the prediction of future yields. Therefore, the strategy of substituting future
values of H, S, N and A into Eqs.[46] and [47] is recommended for the explicit prediction of

future yields.

- Future values of H may be estimated using Eq.{11] presented in Chapter 3. S is invariant over
time and may be either measured directly when the stand is five years of age, estimated from
measurements of stand top height and age using Eq.[19], also described in Chapter 3, or
estimated using environmental variables using Eq.[28] presented in Chapter 4. A is simply
nominated as the age of the stand at which the future estimate of yield is required. Future
estimates of N are usually obtained from mortality functions (c.f. West 1981 Burkhart ez g/,
1985; Matney et al. 1987; Pienaar et al. 1990). However, the data available to this study are
too limited to derive such functions. Also faced with the problem of limited data on which to
base a mortality function, Goodwin and Candy (1986) employed the so called 3/2 self thinning
rule (Drew and Flewelling 1979; White 1981) to their growth and yield model for E. globulus.
In their study natural mortality was observed to have commenced at age 12 years. Similar
patterns were observed in this study. Few, if any mortality was observed between the stand ages
of two and ten years. As such, a monality function is not critical for the prediction of future

yields when dealing with such short rotation, even-aged monocultures.

The varation in stocking observed in the dataset (Table 38) is atributed 1o differences in
planting densities and the quality of site preparation employed at planting. The quality of site
preparation is observed to have a marked influence on the survival over the critical first

summer, where most mortality occurs. Itis therefore assumed that N will rermain constantover
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the duration of the rotation once the stand has reached two years of age. The management
practises of the Department of Conservation and Land Management stipulate that a minimum
of 95% survival is required at a stand age of two years. Therefore, for the prediction of future

yields, future values of N should be the current value if the stand is older than two yearsor95%

of the planting density for younger stands.

Itis recognised that the lack of an empirical mortality function remains a weakness of this study.
However, mortality is observed to have less influence on these fast growing, short rotation
plantations, than on the longer term forests to which most growth simulators are applied. It is
also recognized that a lack of data prevents the formal validation of the equations ability to
predict future yields and that this also remains a weakness of this study and a priority for future

research.
6.2.5 CONCLUSION
For the population of plantations sampled in this study it was concluded that:

(i)  The current yield of plantation grown E. globulus is best estimated using Eq.[44]
and that this single yield equationis adequate for estimatin g the total merchantable

volume under bark, across all land use histories sampled;

(i1) Where basal area is not available as an independent variable, the current yield of
plantation grown E. globulus is best estimated usin g Eqgs.[46] and [47] which are

specific to the two land use histories sampled;

(iii) Both‘methods of estimating current yield validate with levels of accuracy and

precision within practically acceptable standards; and,

(iv) The explicit prediction of future yield is obtained by estimating the future values
of the independent variables comprising Eqs.[44], [46] and [47), using the
equations developed in Chapters 3 and 4. However, the accuracy and precision of

such a course of action has not been determined formally.
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