FAMDAMS.DOC 16/6/95.

Department of Conservation and Land Management

Science and Information Division

Sustainable Resources Group

Tree Crops Section

Entomology Report

Variation across provenance regions and families for damage to Eucalyptus

globulus leaves by chewing insects.

Allan Wills and Tom Burbidge.

June 1995

Summary

i 1

: :

1. A method of visually appraising damage by leaf chewing insects in *E. globulus* crowns was developed and tested. The amount of damage by leaf chewing insects varied significantly between three year old *E. globulus* trees originating from different provenance regions. Damage to the upper half of crowns trees about 8 to 10 m tall was positively correlated with the proportion of adult foliage carried.

2. Rankings of provenance regions based on damage to juvenile leaves in the lower half of crowns were similar to those reported in eastern Australia under conditions of severe damage. Rankings were similar between leaf age/position classes except for a King Island provenance whose rank changed from best to worst between oldest juvenile leaves in the lower crown and youngest, usually adult leaves in the upper crown. Provenances from the Furneaux Group in Bass Strait performed best overall and carried juvenile and adult foliage apparently resistant to chewing.

3. Significant edge effects were detected. Plantations less than 50m in width will probably suffer greater damage to upper foliage over their entire area compared to wider plantations.

Implications for plantation management

: ;

1. We hypothesize that leaf damage by insects is not likely to have contributed greatly to differences in growth rates during selection of breeding stock for superior growth rates. The families examined in this trial were selected for superior growth rates yet had measurable differences in leaf damage between families despite suffering relatively minor damage. Plantations of *E. globulus* are certain to include trees susceptible, throughout the rotation, to damage by a range of leaf chewing insects.

2. Significant edge effects were detected. Plantations less than 50m in width will probably suffer greater damage to upper foliage over their entire area compared to wider plantations. Where small plantations are necessary to redress soil degradation, the trees planted may need to be more resistant to insect damage than trees in larger plantations.

3. Leaves produced within 3 year old crowns during the first two years of growth were most damaged, indicating that **during the first two years after planting trees are most at risk of significant damage.** Long term risk of insect outbreaks remains unknown.

Introduction

Selection of desirable tree characteristics, usually relating to wood qualities and tree productivity, to include desirable traits in breeding stock is an important process in the development of commercial plantations of *Eucalyptus globulus* Labill. in Western Australia (Butcher 1990). Selection for resistance to damage by phytophagous insects has been suggested as a possible element of an Integrated Pest Management (IPM) approach to control of insect pests in eucalypt plantations (Floyd and Farrow 1994). A recent conference devoted to improving yields in eucalypt plantations did not include any papers appraising resistance to insect damage (Potts et al. 1995). Such an omission is surprising given the early recognition of the heritability of resistance to attack by particular insect species (Pryor 1953), and great interspecific and interprovenance variation in eucalypt susceptibility to insect damage (Richardson and Meakins 1986, Lowman and Heatwole 1987, Floyd et al. 1994).

Programs restricting selection criteria to high growth rates (and good form and wood qualities) implicitly assume that deleterious effects such as susceptibility to drought, or insect damage to leaves, will be selected against or will not impinge on growth rates. Susceptibilities of plantations to drought and insect damage are latent, though not insignificant hazards compared to the immediacy of rewards derived from selection for fast growth rates. Dutkowski (1995) reported a slight negative correlation between growth and drought susceptibility and concluded that 'in the absence of drought, selection for growth will only slightly decrease drought susceptibility.' The validity of these assumptions remain untested for the impact of insect damage in Western Australian *E. globulus* plantations.

Farrow et al. (1994) reported significant interprovenance variation in resistance of *E. globulus* juvenile foliage to feeding by *Mnesampela privata* (Guenée) and *Phylacteophaga froggatti* Riek larvae. These authors used visual estimates in conditions of severe damage to rate provenances. Severe damage is uncommon in *E. globulus* plantations in Western Australia (Abbott 1993) so a method for visually appraising relatively minor insect damage was developed and used to investigate interprovenance variation. Our objective was to confirm the reported variation, test for variation in

damage to more developed crowns than those examined by Farrow et al. (1994), and thereby determine the susceptibility of *E. globulus* plantations in Western Australia to insect damage.

Observations elsewhere of the progress of infestations by leaf chewing insects led us to expect the possibility of edge effects and effects from proximity of remnant vegetation on amounts of leaf damage in the trial. The design of the trial allowed a flexibility to test for notional edge effects and effects of proximity to remnant vegetation.

These hypotheses were specifically tested: Insect damage in the plantation was not related to a) provenance of the trees; b) leaf age or position in the crown; c) leaf morphology; and d) location within the plantation.

Methods

1 1

Location of study

E. globulus trees from 84 families selected for superior growth characteristics were rated for damage by leaf chewing insects in November 1994. The trial, hand planted in winter 1992, was located 8 km south of Mount Barker (34°42'S, 117°40'E) in Western Australia. The soil is sand, mostly to more than 2 m deep, well drained but possibly waterlogged at depth (Harper 1991). The plantation is contiguous on its western margin with a railway reserve in which remnant vegetation is predominantly tall myrtaceous heath containing isolated stands of small marri (*E. calophylla*) and jarrah (*E. marginata*) trees and pockets of Banksia woodland.

Trees in the trial were derived from seedlots from open pollinated fruits in remnant forest. The trial was planted to a lattice design and intended to allow comparison of growth characteristics of superior families. About 70% of families were Victorian provenances (Table 1), with the remainder from the islands in Bass Strait or from eastern Tasmania.

	Fairmes
17	38
4	23
5	6
5	11
1	2
1	1
2	3
	17 4 5 5 1 1 2

Table 1. Representation of provenance regions in the trial.

Damage assessment

1 3

: :

Five classes of leaf position/age were recognised. Leaves in each canopy were stratified according to their position in the crown and estimated age (Fig. 1). The boundaries of canopy strata were estimated from visual cues such as stage of leaf senescence, changes in leaf size and colour along branches, and by prior experience of size of the canopy at certain ages. The leaf morphology in each stratum was noted and 3 classes were recognised and assigned a value reflecting the presence of adult foliage. If the class contained all juvenile leaves the value 0 was assigned, mixed adult and juvenile leaves were assigned a value of 0.5, and all adult leaves assigned value 1.

Six damage categories were developed from a preliminary assessment of age class 2 leaves from 60 trees (Table 2). The ranges of damage within categories were set so that damage could easily be assigned to a class, and the modal damage categories were the middle classes of the range of damage classes. Damage categories were most sensitive to differences at small amounts of damage. The damage categories applied to age class 2 leaves were also applied to the other age classes of leaves.

Damage was regarded as the percentage of leaf area removed by leaf chewing insects for leaves expanding or chewed after expansion, or for fully expanded leaves that had been chewed before fully expanded, the percentage missing from the expected area. Only leaves remaining on the tree were assessed (ie damage due to complete removal of buds or leaves was not estimated). Complete removal of leaves by chewing appeared to be rare in the preliminary assessment but loss of leaves due to

ι. 1

11

11

Legend

1. Class 1 leaves, lower half of crown, produced 1992.

2. Class 2 leaves, lower half of crown, produced 1993.

3. Class 3 leaves, lower half of crown, produced 1994.

4. Class 4 leaves, upper half of crown, produced 1993 to 1994.

5. Class 5 leaves, upper half of crown, produced 1994.

Fig. 1. Diagrammatic arrangement of leaf classes in 3 year old crowns of *E. globulus* at Mt Barker, November 1994.

senescence was common in class 1 leaves. A leaf class for a tree was not rated for damage if more than 30% of leaves had fallen due to senescence. Standard trees were established for damage classes and these trees were appraised after each work break to maintain uniform standards across the trial. Each tree was rated independently by two observers, but large divergences in assignment to damage categories were discussed. Runted or dead trees were not assessed.

· · · · · · · · · · · · · · · · · · ·	CLASS 2	LEAVES	CLASS 4	LEAVES
	ASSESSOR A	ASSESSOR B	ASSESSOR A	ASSESSOR B
AREA DAMAGED				
Uncategorised (lost	179	180	172	172
to senescence)				
<1%	0	1	14	18
1-5%	276	234	1097	1083
6-10%	506	461	151	163
11-25%	345	471	6	4
26-50%	133	88	0	0
>50%	1	5	0	0
Total	1440	1440	1440	1440

Table 2. Frequencies of damage categorisations by two assessors for Class 2 and Class 4 leaves.

Visible chewing and sucking insects, and damage attributable to particular insects, were noted. Trees were assessed across family rows to minimise effects of assessor bias, and the provenance and family identity were unknown to the assessors. All observations were recorded on a Husky Hunter[™] field computer. About 18 trees per hour were assessed in 8 working hours per day over 10 day's. The maximum rate of assessment was about 36 trees per hour after 10 days experience.

Analysis

: :

1.1

Family plots were grouped into 6 blocks, of which blocks 1 and 6 had the longest perimeters not contiguous with other blocks, while block 1 was nearest to remnant vegetation and block 6 most distant. Leaf damage categories were converted to their range midpoint and the proportion of damage transformed by deriving the arcsin of its square root. Class 1 leaves were excluded from the analysis due to the large number of trees not assessed. Effects of block, leaf morphology and provenance region were investigated using ANOVA.

Family performances

Families were ranked according to four criteria: a) the average damage over the whole crown; b) damage to class 2 leaves; and damage to the upper half of the crown c) with, and d) without discounting the effect of leaf morphology.

Results

Differences between assessors

Acquisition of data directly to a field computer allowed monitoring of differences between assessors as the trial progressed. The insignificance of differences between assessors for class 2 and 4 leaves (Table 2) reflects the closeness of the assessors' perceptions of damage.

Visible insects

A visual census of insects detected active leaf chewing insects relatively infrequently (Table 3). The amount of damage caused by insects was unrelated to their apparent abundance. *P. froggatti* mines were most frequently encountered, yet contributed a trivial amount to overall damage. *Catasarcus* sp. (Curculionidae) were next most recorded and, on the basis of their characteristic damage patterns on leaves, contributed much to damage in the upper half of crowns. Autumn gum moth *M. privata*, the jarrah leafminer *Perthida glyphopa* and chrysomelid larvae were next most frequently seen. Jarrah leafminer caused minuscule damage to *E. globulus* foliage, whereas chrysomelid larvae caused chronic damage but were seen infrequently relative to the abundance of their damage. Most damage in class 2 leaves appeared to be due to *M. privata*.

Leaf age/position and types of damage

: ;

A preliminary ANOVA indicated large differences in damage between provenance regions and between leaf classes to be highly significant (Table 4a). Leaf morphology was not important with the inclusion of leaf class in the analysis, reflecting a confounding of morphology with leaf class and very much greater variation between leaf classes. Leaf damage diminished as leaf age diminished and as elevation in the crown increased (Table 5). Greatest damage was to class 2 leaves, juvenile leaves in the bottom half of the canopy, while next most damaged leaves were class 3 leaves, youngest leaves in the bottom half of the canopy. Similarly, youngest leaves were least damaged in the upper canopy.

TROPHIC GROUP	NAME	COMMON NAME	FREQUENCY	%	
CHEWER	Phylacteophaga froggatti	Leaf blister sawfly, mines.	108	7.50	
CHEWER	Catasarcus ?impressipennis	Weevil.	91	6.32	
CHEWER	Mnesampela privata	Autumn gum moth, damage and larvae 1994.	80	5.56	
CHEWER	Perthida glyphopa	Jarrah leafminer, mines.	70	4.86	
CHEWER	Chrysomelidae	Chrysomelid larvae.	69	4.79	
CHEWER	Unknown, Lepidopteran?	Tip miner, mines.	38	2.64	
CHEWER	Oecophoridae	Leaf tier larvae (damage without larvae not recorded).	36	2.50	
CHEWER	Scarabaeidae	Spring beetles.	18	1.25	
CHEWER	Chrysomelidae	Chrysomelid eggs.	15	1.04	
CHEWER	Curculionidae	Weevil larvae.	6	0.42	
CHEWER	Chrysomelidae	Chrysomelid adults.	3	0.21	
CHEWER	Perga sp.	Gregarious sawfly larvae.	2	0.14	
CHEWER	Curculionidae	Brown weevil.	1	0.07	
CHEWER	Perga sp.	Gregarious sawfly eggs.	1	0.07	
PARASITOID	4	Galls	1	0.07	
SAPSUCKER		Shield bug	41	2.85	
SAPSUCKER		Leaf hopper	2	0.14	
SAPSUCKER		Coccid scales	1	0.07	
PREDATOR		Coccinelid adults	11	0.76	
PREDATOR		Coccinelid eggs	3	0.21	
PREDATOR		Coccinelid larvae	3	0.21	

Table 3. Frequency of trees with visible insects or attributable damage. Damage by leaf tiers, 1993 damage by M. privata and presence of Psylloidea or Cicadellidae not recorded

Block, provenance region and leaf morphology effects

εJ

11

ANOVAs were performed on each leaf class separately to investigate the effect of leaf morphology and to simplify analysis of the block, provenance region and leaf morphology effects on leaf damage. Block effects were significant for class 4 and 5 leaves (Table 4b), with most damage sustained within the edge blocks 1 and 6 and least damage to the centre most blocks 3 and 4 (Table 5). There appeared to be no influence from proximity to remnant vegetation although class 2 and 3 leaves in block 6, the most distant from remnant vegetation, sustained least damage compared to other blocks.

SOURCE D.F. Type III M.S. F Ratio P of > F.S.S. BLOCK 5 0.00563 0.00112 0.2675 1.31 REGION 4.85 6 0.02497 0.00416 0.0003 LEAF MORPHOLOGY 0.00026 0.00026 0.30 0.5831 1 LEAF CLASS 132.25 0.0001 3 0.34145 0.11382 **REGION*LEAF CLASS** 18 0.02454 0.00136 1.58 0.0815 **BLOCK*REGION** 25 0.02253 0.00090 1.05 0.4194

Table 4a. Analysis of variance, including leaf classes 2 to 5, of the variable LDAM (transformed proportion of leaf damage).

Table 4b. F ratios and probabilities of greater ratios from ANOVAs of the variable LDAM for each leaf class based on type III sums of squares.

	CLASS 2	2	CLASS :	3	CLASS 4	ł	CLASS 5		
SOURCE	F Ratio	P of > F.							
BLOCK	2.40	0.0704	1.13	0.3719	3,95	0.0094	8.12	0.0001	
REGION	4.16	0.0061	6.82	0.0003	5.70	0.0008	6.90	0.0002	
LEAF MORPH.	0.30	0.5892	4.02	0.0563	15.72	0.0006	0.86	0.3618	

Table 5. Least squares means of the variable LDAM for blocks and leaf classes. Individual ANOVAs performed for each leaf class.

				•	
	LEAF CLA	SS			_
BLOCK	CLASS 2	CLASS 3	CLASS 4	CLASS 5	
1	0.343	0.188	0.194	0.191	
2	0.319	0.194	0.184	0.176	
3	0.376	0.188	0.176	0.171	
4	0.356	0.191	0.179	0.171	
5	0.330	0.185	0.188	0.176	
6	0.305	0.183	0.193	0.179	

1 1

ι)

Provenance region effects were highly significant for all leaf classes. Least squares means of leaf damage were ranked for each leaf class, and the ranks summed for each region (Table 6). Trees from the Furneaux Group had the least damage (highest aggregates of ranks), while trees from north

eastern Tasmania were most damaged. Next least damaged, in order of decreasing damage, were trees from the Otway region in Victoria, King Island and south east Tasmania region. Ranks of regions were similar between leaf classes, except for trees from King Island that ranked as least damaged for class 2 leaves and most damaged for class 5 leaves.

	LEAF CLASS								
REGION	CLASS 2	CLASS 3	CLASS 4	CLASS 5	Sum o ranks.				
Vic. C. Otway.	0.387 (2)	0.195 (2)	0.187 (3)	0.185 (1)	8				
Vic. South Gipps.	0.341 (3)	0.188 (3)	0.186 (4)	0.180 (3)	13				
Furn. Flinders I.	0.293 (6)	0.178 (6)	0.170 (7)	0.171 (6)	25				
Furn. C. Barren I.	0.319 (5)	0.176 (7)	0.178 (5)	0.168 (7)	24				
King I	0.292 (7)	0.185 (4)	0.193 (2)	0.185 (1)	14				
Tas. NE.	0.415 (1)	0.216 (1)	0.206 (1)	0.178 (4)	7				
Tas. SE.	0.323 (4)	0.180 (5)	0,178 (5)	0.174 (5)	19				

Table 6. Least squares means for each	h provenance region of the variable LDAM. Rank of each mean
in parentheses. Individual ANOVAs	performed for each leaf class.

Leaf morphology significantly affected damage to class 4 leaves while the effect on damage to classes 2, 3 and 5 leaves was not significant. Damage to class 4 leaves was positively correlated with the proportion of adult foliage.

Types of leaf damage were not attributed to leaf age classes but it was noted that the most frequent damage pattern on leaves in class 2 was typical of chewing by large caterpillars, presumably autumn gum moth active during winter 1993 or winter 1994. It was apparent from damage patterns on leaves that weevil adults of *Catasarcus* sp. and chrysomelid beetles and larvae were most active on expanding or newly expanded adult foliage. Damage typical of these insect groups was trivial on juvenile leaves in the lower half of the canopy.

Performance of families

τ. 5

Families from the Furneaux Group fell within the quartile of lowest damage more frequently than families from other regions (Table 7). The performance of seven families from five Furneaux

provenances was consistently highly ranked, rating in the top quartile of all four performance criteria. A single family from another region, south east Tasmania, fell within the quartile of least damage for all four criteria. Eight families from seven Otway provenances fell within the highest damage quartiles for all four criteria.

Discussion

Amounts of damage reported from this trial are comparable to amounts of insect damage usually observed in commercial plantations in south west Australia. The observed damage was also very much less than the 90% loss of functional leaf area reported from species trials including *E. globulus* at Shepparton in Victoria by Floyd and Farrow (1994) and less than leaf damage to between 60% to 95% of leaf area in an *E. globulus* provenance trial at Tatura in Victoria (Farrow et al. 1994).

Despite the unremarkable overall amounts of damage to the Mt Barker plantation, significant edge effects on the distribution of damage to the upper half of the canopy across the trial were detected. The presence of edge effects has implications for plantation planning and management, particularly since a proportion of the *E. globulus* estate in Western Australia is in small plantations with relatively large perimeter to area ratios. Considering the scale of plots measured in this trial, plantations less than about 50 m width would show greatest increase in damage over the whole plantation, due to edge effect. In other plantations we have observed greatest damage by *M. privata* on edges nearest remnant vegetation. No such pattern of damage was detected in this trial, possibly because damage to juvenile leaves in the lower half of the canopy in 1994 obscured differences in distribution of earlier damage.

There was significant variation in damage between provenance regions. The performances of provenance regions as rated by this study broadly concur with reported variation across provenance regions in susceptibility of juvenile *E. globulus* leaves to damage by the leaf chewing caterpillars of *Mnesampela privata* and leaf mining larvae of *Phylacteophaga froggatti* in Victorian trials (Farrow et al. 1994). In particular, juvenile leaves of Bass Strait Island provenances sustained substantially less

Table 7. Summary of Regions, Provenances and Families: Number of trees assessed, average leaf morphology scores, and best (B) and worst (W) quartiles for damage criteria.

. .

e i cine

e (

6.1

.

REGION	PROVENANCE	FAMILY	LATDD	LONDD	NUMBER	MORPHOLOGY	MORPHOLOGY	E	SEST AND WO	DRST QUARTILES	
					ASSESSED	ALL CLASSES	CLASSES 4&5	ALL CLASSES	CLASS 2	CLASSES 4&5	CLASSES 4&5
					<u></u>			MEAN LDAM	LDAM	LDAM	RESIDUALS
	18418	67	40 317	140 217	20	0.42	0.74				
EURN CAPE BARREN I	16/16	74	40.317	140.317	20	0.43	0.74		ь в	в р	в р
ELION CAPE BARDEN I	16410	74 52	40.317	140.017	16	0.30	0.66		Б	8	5
EURN CAPE BARDEN I	16417	84	40.307	140.217	12	0.38	0.03				р р
ELION CAPE BARDEN I	16419		40.307	140.217	13	0.30	0.71	D D	в		в
FURN, CAPE BADDENI I	10415	40	40.350	140.117	12	0.20	0.48	Þ	Б	в	
FURN. CAPE BARREN I.	16419	49	40.350	140.117	10	0.37	0.62		Ð		
ELION CARE DARREN I.	18420		40.350	140.117	11	0.33	0.00	ь	Б	в	B
FURN, CAPE BARREN I.	18420	25	40.307	140.003	1/	0.24	0.40			-	vv
FURN, CAPE BARREN I.	16420	20	40.307	148.083	0 15	0.30	0.89		141	в	В
FURN, CAPE BARREN I.	16420	60	40.307	148.083	15	0.41	0.73	٧V	vv	В	8
FURN EUNDERS I	16425	12	40.433	140.000	10	0.43	0.78	в		в 0	5
	16420	13	40.233	140.133	14	0.29	0.57	B	Б		B
FURN FUNDERS I	10427	60	39.750	147.950	10	0.43	0.75		•	в	в
FURN. FLINDERS I.	10429	43	39.917	147.950	14	0.35	0.08	8	В	в	В
FURN, FLINDERS I.	10431	21	40.033	148.017	10	0.40	0.73	8	8	в	8
FURN. FLINDERS I.	10431	69	40.033	148.017	19	0.39	0.72	в	в	В	В
FURN. FLINDERS I.	10433	48	40.067	148.067	18	0.41	0.76				В
	10424	70	40.000	144.000	18	0.30	0.60	В	в		vv
KING I. TACMANUA NE	10424	/3	40.000	144.000	19	0.38	0.72		14/	~	
TASMANIA NE	16074	2	41.033	147.850	14	0.13	0.25		v	В	vv
TASMANIA SE	16082	3/	42.933	147.207	15	0.32	0.60	В	в	-	-
I ASMANIA SE	16083	4	43.367	147.283	15	0.38	0.73	В	в	в	в
IASMANIA SE	10083	39	43.367	147.283	13	0.34	0.65				
VICTORIA CAPE OTWAY to LORNE	16052	Б	38.733	143.433	12	0.42	0.69				
VICTORIA CAPE OT WAY to LORNE	16052	9	38.733	143.433	17	0.46	0.76				
VICTORIA CAPE OTWAY to LORNE	16052	12	38.733	143.433	17	0.51	0.84	W	w	W	W
VICTORIA CAPE OTWAY to LORNE	16052	38	38.733	143.433	19	0.44	0.76	w	w	w	• W
VICTORIA CAPE OTWAY to LORNE	16053	50	38.750	143.433	20	0.44	0.78	В	В		
VICTORIA CAPE OTWAY to LORNE	16054	26	38.750	143.417	9	0.49	0.80	w	w		
VICTORIA CAPE OTWAY to LORNE	18055	24	38.767	143.417	18	0.20	0.39	В	в		w
VICTORIA. CAPE OTWAY to LORNE	16056	14	38.817	143.567	13	0.43	0.73	vv	vv	-	
VICTORIA CAPE OTWAY to LORNE	10000	34	38.817	143.007	14	0.21	0.43			в	
VICTORIA CAPE OTWAY to LORNE	10000	44	38.817	143.007	10	0.49	0.80	VV 14/	147	VV NA	VV .
VICTORIA CAPE OTWAY to LORNE	10000	53	38.817	143.007	10	0.39	0.70	vv	vv	VV P	VV P
VICTORIA CAPE OTWAY to LORNE	10000	11	30.000	143.000	13	0.35	0.02	147	14/	р 14	D 14/
VICTORIA CAPE OTWAY TO LORNE	16000	22	38.083	143.833	19	0.40	0.80	٧٧	vv	VV 14/	vv
VICTORIA CAPE OTWAY to LORNE	10224		38.817	143.007	12	0.42	0.77	147	147	VV \\	
VICTORIA CAPE OTWAY TO LURNE	10224	2	30.017	143.007	10	0.00	0.32	vv	vv	vv	
VICTORIA CAPE OTWAY TO LORNE	16224	32	38.817	143.00/	13	0.38	0.70		347		
VICTORIA CAPE OTWAY TO LURNE	10224	41	30.017	143,007	10	0.38	0.71		¥¥		
VICTORIA CAPE OTWAY TO LURNE	10224	78	30.01/	143.007	13	0.35	0.74		D	14/	
VICTORIA CAPE OTWAT TO LORNE	16225	23	20./03	143.003	15	0.00	0.00	10/	w/	VV \\\/	w
	16226	22	30.703	143.003	17	0.40	0.00		**	¥¥ \A/	¥¥ \\/
VICTORIA CAFE UTWAT TO LORNE	10220	33	38.000	140.017	.,	0.++	0.01			**	**

Cont.

13a

-

.

-

. . .

Table 7. Continued.

.....

....

m 1

ter i i

~

.

e -

N 1

						NO DOLLO ANY					
REGION	PROVENANCE	FAMILY	LATDD	LONDD	NUMBER	MORPHOLOGY	MORPHOLOGY	B	EST AND WO	DRST QUARTILES	
					ASSESSED	ALL CLASSES	CLASSES 445	ALL CLASSES	LASS 2	LASSES 445	CLASSES 4&5
• · · · · · · · · · · · · · · · · · · ·	· · · ·								LUAIM	LDAW	RESIDUALS
VICTORIA CAPE OTWAY to LORNE	16226	56	38,800	143.617	14	0.49	0.86	w			
VICTORIA CAPE OTWAY to LORNE	16226	79	38,800	143.617	15	0.46	0.77				В
VICTORIA CAPE OTWAY to LORNE	16227	84	38.783	143.617	19	0.56	0.90	w		w	Ŵ
VICTORIA CAPE OTWAY to LORNE	16240	3	38,750	143,450	15	0.47	0.78	Ŵ		Ŵ	Ŵ
VICTORIA CAPE OTWAY to LORNE	16240	19	38.750	143.450	14	0.34	0.61				
VICTORIA CAPE OTWAY to LORNE	16240	29	38.750	143.450	12	0.44	0.73	w		w	w
VICTORIA CAPE OTWAY to LORNE	16240	35	38.750	143,450	9	0.29	0.56		w		Ŵ
VICTORIA CAPE OTWAY to LORNE	16240	36	38,750	143,450	14	0.59	0.89	w			В
VICTORIA CAPE OTWAY to LORNE	16240	81	38,750	143,450	14	0.44	0.79				_
VICTORIA CAPE OTWAY to LORNE	16240	83	38,750	143.450	9	0.35	0.61	w	w	w	w
VICTORIA CAPE OTWAY to LORNE	16241	68	38.733	143.300	14	0.47	0.82	Ŵ	Ŵ	w	
VICTORIA CAPE OTWAY to LORNE	16401	20	38.667	143.800	14	0.49	0.82	Ŵ	Ŵ	Ŵ	w
VICTORIA CAPE OTWAY to LORNE	16401	80	38.667	143.800	12	0.49	0.85	Ŵ		Ŵ	Ŵ
VICTORIA CAPE OTWAY to LORNE	16402	76	38,650	143.800	12	0.48	0.77	ŵ	w	Ŵ	
VICTORIA CAPE OTWAY to LORNE	16402	77	38.650	143.800	19	0.42	0.72	Ŵ	Ŵ	Ŵ	w
VICTORIA CAPE OTWAY to LORNE	16405	10	38,600	143.900	17	0.45	0.81				
VICTORIA CAPE OTWAY to LORNE	16407	46	38,533	143.933	15	0.53	0.87	w	w	w	
VICTORIA SOUTH GIPPSLAND	16066	18	38.333	146.500	15	0.30	0.57		B		w
VICTORIA SOUTH GIPPSLAND	16066	21	38.333	146.500	15	0.38	0.72		-	w	Ŵ
VICTORIA SOUTH GIPPSLAND	16066	47	38.333	146.500	17	0.36	0.63			••	••
VICTORIA SOUTH GIPPSI AND	16066	59	38.333	146.500	14	0.25	0.46			в	
VICTORIA SOUTH GIPPSI AND	16066	61	38.333	146.500	11	0.31	0.57		В	5	w
VICTORIA SOUTH GIPPSI AND	16066	71	38 333	146.500	14	0.30	0.55		Ŵ		••
VICTORIA SOUTH GIPPSI AND	16068	16	38.333	146.550	20	0.31	0.56	B	B		
VICTORIA SOUTH GIPPSI AND	16068	28	38 333	146 550	13	0.35	0.63	B	B		
VICTORIA SOUTH GIPPSI AND	16068	30	38 333	146 550	14	0.36	0.64	0	5		
VICTORIA SOUTH GIPPSLAND	16068	57	38.333	146.550	13	0.39	0.67	w	w		
VICTORIA SOUTH GIPPSLAND	16319	7	38.317	146.550	16	0.51	0.80	Ŵ	ŵ		В
VICTORIA SOUTH GIPPSLAND	16319	15	38.317	146.550	15	0.42	0.72	В	в		
VICTORIA SOUTH GIPPSLAND	16319	17	38.317	146.550	10	0.24	0.40	-	Ŵ	B	
VICTORIA SOUTH GIPPSLAND	16319	42	38.317	146.550	15	0.42	0.75				В
VICTORIA SOUTH GIPPSLAND	16319	45	38.317	146.550	13	0.32	0.56	В		В	
VICTORIA SOUTH GIPPSLAND	16319	52	38.317	146.550	18	0.32	0.57				
VICTORIA SOUTH GIPPSLAND	16319	54	38.317	146.550	12	0.45	0.69				
VICTORIA SOUTH GIPPSLAND	16319	62	38.317	146.550	16	0.30	0.55	В	В		
VICTORIA SOUTH GIPPSLAND	16319	66	38.317	146.550	12	0.42	0.75				
VICTORIA SOUTH GIPPSLAND	16319	70	38.317	146.550	19	0.38	0.70				В
VICTORIA SOUTH GIPPSLAND	16319	72	38.317	146.550	19	0.46	0.75				
VICTORIA SOUTH GIPPSLAND	16319	75	38.317	146.550	14	0.41	0.70				
VICTORIA SOUTH GIPPSLAND	16400	40	38.617	146.350	18	0.47	0.81		В	w	

- •

....

,

.

13Ь

- -

damage than mainland provenances, except for south east Tasmanian provenances that also performed well. The single north east Tasmanian provenance sustained greater damage to juvenile leaves than other provenance regions, contrasting with observations on thirteen north east Tasmanian provenances by Farrow et al. (1994) who found this provenance region ranked as third best of eight regions considered.

The positive correlation between proportion of adult foliage and damage is paradoxical considering class 2 leaves, which were virtually all juvenile morphology, had greatest damage. These observations probably indicate changes over time to the suite of leaf chewing insects present and their feeding preferences in terms of position in the canopy, leaf age and leaf morphology.

The insignificance of a leaf morphology effect in leaf classes 2 and 5, and to a lesser extent leaf class 3, could be explained by the unbalanced distribution of leaf morphology scores in these leaf classes. Tree crowns had all juvenile foliage in leaf class 2 except two cases and leaves were predominantly of adult morphology in leaf class 5. Foliage in leaf class 3 consisted mainly of a mixture of adult and juvenile morphologies, with relatively few cases of only adult foliage or only juvenile foliage.

Selection for resistance to damage by phytophagous insects is often regarded as difficult for several reasons. Temporal uncertainty of sufficient damage to allow measurable variation between genotypes has been perceived as a constraint (Floyd and Farrow 1994), and most identifications of insect resistant stock have been consequent upon outbreak damage by single pest species. The observations reported here show consistent and significant variation between provenance regions and families at small but chronic amounts of damage usual in Western Australian plantations of *E. globulus*.

A broad suite of phytophagous insects were active in the plantation. We believe, from knowledge of distinct differences between insect groups in feeding preferences of foliage morphology and age, and the appearance of damage they cause, that the leaf classes assessed at Mt Barker were subject to differently structured suites of chewing insects. In particular, larvae of *M. privata* were most important in the lower half of crowns while *Catasarcus* spp and Chrysomelid beetles and larvae were

1 1

most important in the upper half of crowns. It is surprising, given differences in leaf morphology across leaf classes, that the relative performance of provenance regions was consistent regardless of leaf age and position in the crown. The King Island provenance was exceptional by showing a complete reversal of rank from least damaged old juvenile leaves to most damaged young, usually adult leaves in the top half of their crowns.

Farrow et al. (1994) rated damage to juvenile leaves of *E. globulus* at two sites in Victoria, one where *M. privata* was active while at the other both *M. privata* and *P. froggatti* were active. Consistency of ranks across trials of provenance regions common to both trials was interpreted by the authors as evidence of cross resistance to the two insect species. The superior performance of Furneaux Group families in the current study, especially with the effect of leaf morphology removed, is indicative of inherent resistance to damage by leaf chewing insects of both adult and juvenile foliage, and is characteristic of this provenance region. In the absence of a demonstrated mechanism of resistance and only an inferred history of attack by leaf chewing species, we hypothesize that families from this provenance region exhibit resistance to chewing by several insect species.

There is scant knowledge of the links between eucalyptus leaf qualities and damage by insect phytophages (briefly reviewed by Floyd and Farrow 1994). We classified leaves according to age, gross morphology and position in the crown and found all three variables influenced the amount of leaf damage. The significant provenance region effect, in the presence of a leaf morphology effect on variation in leaf damage in each leaf age class, points to other leaf qualities affecting leaf damage. Understanding these qualities is vital to properly balancing the selective pressures on insect populations and anticipating the effects of tree selection and breeding on the structure of insect populations in plantations.

Selection for superior growth rates may coincidentally select for resistance to insect damage in conditions of outbreak defoliation due to the impact of defoliation on growth (Raymond 1995). At the small amount of damage observed at Mt Barker, and given the young age of the trees, leaf damage is probably only weakly correlated with growth. We are unable to test the validity of the assumption

implicit in selecting for high growth rates, that such a selection minimises the effects of damage by leaf insects. An analysis awaits the gathering of growth data from the Mt Barker trial.

Further investigation of regional differences in insect population structures is planned, whereby damage and insect populations on standard *E. globulus* families would be analysed from geographically dispersed plantations.

Acknowledgments

We thank Trevor Butcher for access to the plantation, advice on the plantation design and for providing a field computer with software; Matt Williams for statistical analysis of the data; and Ian Abbott for guidance and comments on an earlier draft of this report.

References

î î

Abbott I. (1993) Insect problems of eucalypt plantations in Australia: 6. Western Australia. Aust. For. 56, 381-384.

Butcher T.B. (1990) *Eucalyptus globulus* tree improvement cooperative in Western Australia. Unpublished report. Department of Conservation and Land Management, Western Australia, Perth. 56 pp.

Dutkowski G.W. (1995) Genetic variation in drought susceptibility of *Eucalyptus globulus* ssp. globulus in plantations in Western Australia. In *Eucalypt Plantations: Improving Fibre Yield and Quality*. Potts B.M., Borralho N.M.G., Reid J.B. Cromer R.N., Tibbits W.N. and Raymond C.A. (Eds.). Proc. CRCTHF - IUFRO Conf., Hobart, February 1995. CRC for Temperate Hardwood Forestry, Hobart. pp. 199-203.

Farrow R.A., Floyd R.B. and Neumann F.G. (1994) Inter-provenance variation in resistance of Eucalyptus globulus juvenile foliage to insect feeding. *Aust. For.* 57, 65-68.

Floyd R.B., Farrow R.A. and Neumann F.G. (1994) Inter and intra-provenance variation of red gum foliage to insect feeding. *Aus. For.* 57, 45-48.

Floyd R.B and Farrow R.A. (1994) The potential role of natural insect resistance in the integrated pest management of insect plantations in Australia. In: *Forest Pest and Disease Management*. Halos S.C. (ed). Seameo Biotrop, Bogor, 1994. (Biotrop Special publication no. 53) pp 55-76.

Harper R. (1991) Evaluation of soils, landforms and potential tree performance Plantagenet Locations
1425 and 1511. Unpublished report. Department of Conservation and Land Management, Western
Australia, Perth. 24pp.

Lowman M.D. and Heatwole H. (1987) The impact of defoliating insects on the growth of eucalypt saplings. *Aust. J. Ecol.* **12**, 175-181.

Potts B.M., Borralho N.M.G., Reid J.B., Cromer R.N., Tibbits W.N. and Raymond C.A. (1995) Eucalypt Plantations: Improving Fibre Yield and Quality. Proc. CRCTHF - IUFRO Conf., Hobart, February 1995. CRC for Temperate Hardwood Forestry, Hobart.

Pryor L.D. (1953) Variable resistance to leaf-eating insects in some eucalypts. *Proc. Linn. Soc. N.S.W.*77, 364-368.

Raymond C.A. (1995) Genetic variation in *Eucalyptus regnans* and *Eucalyptus nitens* for levels of observed defoliation caused by the *Eucalyptus* leaf beetle, *Chrysophtharta bimaculata* Olivier, in Tasmania. *For. Ecol. Manage.* **72**, 21-29.

1.1

t. 3

1.3

Richardson K.F. and Meakins R.H. (1986) Inter- and intra-specific variation in the susceptibility of eucalypts to the snout beetle *Gonipterus scutellatus* Gyll. (Coleoptera: Curculionidae). *South African Forestry Journal* **139**, 21-31.

ιi

i J