Flushing study of the Monkey Mia lagoon, Western Australia, during 19-22 September 1996

A collaborative project between the Marine Conservation Branch, Midwest Region and Gascoyne District of the Department of Conservation and Land Management and the Department of Environmental Engineering of the University of Western Australia

Field Programme Report MM - 01/96

Prepared by N D'Adamo Marine Conservation Branch

August 1996

Marine Conservation Branch Department of Conservation and Land Management 47 Henry St Fremantle, Western Australia, 6160 This report may be cited as:

D'Adamo N (1996). Flushing study of the Monkey Mia lagoon, Western Australia, during 19-22 September 1996. Field Programme Report MM - 01/96. (Marine Conservation Branch, Department of Conservation and Land Management, 47 Henry St., Fremantle, Western Australia, 6160). Unpublished report.

Copies of this report may be obtained from:

Marine Conservation Branch Department of Conservation and Land Management 47 Henry St. Fremantle, Western Australia, 6160

> Ph: 61-9-4325100 Fx: 61-9-4305408

CONTENTS

SUM	MARY	1
ACKN	NOWLEDGEMENTS	2
1 1.1 1.2	INTRODUCTION Aim Background 1.2.1 General 1.2.2 Past hydrodynamic studies.	3 3 3 3 3
1.3	Collaborations	5
2 2.1 2.2 2.3 2.4	SURVEY GRID, METHODS AND EQUIPMENT. Site and grid details Contingency for adverse weather conditions. Methods. Equipment 2.3.1 Salinity-temperature monitoring. 2.3.2 Current measurements. 2.3.3 Water level. 2.3.4 Meteorological data.	5 5 7 9 9 9 9 9 10
3	FIELD PROGRAMME	10
4	SAFETY	11
5	DATA PROCESSING AND REPORTING	11
6	BUDGET	11
7 7.1 7.2 8	FUTURE WORK Field surveys Modelling	13 13 13
DEEE		1.4
KEFE	IKEINCES	14
FIGUI	RES	
Figure Figure	 Locality diagram of Monkey Mia and boundaries of the Shark Bay Marine Park and Shark Bay World Heritage area Proposed salinity-temperature profiling sites and detailed bathymetry of the Monkey Mia lagoon and its surrounding waters. The "inner grid" lies within the dashed line 	4
Figure	e 3 Aerial photo of the Monkey Mia lagoon and Red Cliff Bay	8
TABL	LES	
Table Table	 Site coordinates Field itinerary for Phase 1 of the survey, including planning and travel arrangements to Denham 	7 10
Table Table Table	 Typical field itinerary for Phase 2 of the survey Typical field itinerary for Phase 3 of the survey, including return travel to Perth Budget 	10 11 12

Tide predictions and boating guide of Western Australia". Westprint, Western Australia).

SUMMARY

This field programme report presents details of the planning and proposed field work for a study of the flushing characteristics of the Monkey Mia lagoon and adjacent waters during 19-22 September 1996. A grid of 31 sites will be visited repeatedly during the field period in order to establish the flushing behaviour of the lagoonal waters under the influence of tides, winds and density gradients during typical early-spring conditions. The study follows on from the preliminary field survey of the Shark Bay Marine Reserves Monitoring Programme (SBMRMP), conducted in April 1996, and during which salinity-temperature data were collected at selected sites within the study region (see D'Adamo, Colman and Pobar, 1996; D'Adamo and Pobar, 1996). The results of the study will serve as a contribution to the SBMRMP by developing a better understanding of the Monkey Mia region of the Shark Bay Marine Park with particular reference to the Monkey Mia lagoon. The information will provide a better technical basis from which to assess the potential for contaminant accumulation in the Monkey Mia lagoon. The objectives of the study are consistent with the recommendations of recent studies which have highlighted the need to improve the understanding of the hydrodynamics of the lagoon and wider waters of the bay (Environmental Protection Authority, 1989; Trayler and Shephard, 1993; Murex Consultants Pty. Ltd., 1994; CALM, 1994).

The study is being coordinated by the Marine Conservation Branch of the Department of Conservation and Land Management (CALM) and conducted in collaboration with CALM's Midwest Region and Gascoyne District offices and the Department of Environmental Engineering of the University of Western Australia (DEEUWA). The study will form the basis of a student Honour's project at the DEEUWA. Field assistance is being provided by the Department of Fisheries, Carnarvon.

Funding of \$10,000 has been provided by the World Heritage Unit of the Commonwealth Department of the Environment, Sports and Territories.

ACKNOWLEDGEMENTS

Direction

- Kieran McNamara Director, Nature Conservation Division, CALM.
- Dr Chris Simpson Manager, Marine Conservation Branch (MCB), Nature Conservation Division, CALM.
- Greg Leaman Manager, Midwest Region, CALM.

CALM Regional/District collaboration

- Geraldton Region Ron Shephard, Programme Leader, Nature Conservation.
- Gascoyne District Paul Brown, Manager; Brad Barton, Operations Officer.

University of Western Australia collaboration

• Department of Environmental Engineering - Dr Greg Ivey and Dr Charitha Pattiaratchi.

Funding and resources

- Funding of \$10,000 has been provided by the World Heritage Unit of the Commonwealth Department of the Environment, Sports and Territories.
- In kind resources comprising scientific supervision, logistical support, instrumentation and staffing have been provided by the Marine Conservation Branch and Gascoyne District, CALM.
- In kind resources comprising scientific supervision, computing resources and instrumentation have been provided by the Department of Environmental Engineering, University of Western Australia.
- Logistical support in the form of vessels and field staff have been provided by the Department of Fisheries, Carnarvon

1 INTRODUCTION

1.1 Aim

The aim of the study is to develop a better understanding of the general hydrodynamics of the Monkey Mia region of the Shark Bay Marine Park with particular reference to the Monkey Mia lagoon.

The results will also be used to assess whether a follow-up summer study of the hydrodynamics of the lagoon is required to provide a more detailed understanding of the seasonal characteristics of the hydrodynamics of the lagoon.

1.2 Background

1.2.1 General

Monkey Mia is located on the eastern side of the Peron Peninsula in Shark Bay, Western Australia (Figure 1). The lagoon has a high conservation status and is situated within the Monkey Mia Recreation Zone of the Shark Bay Marine Park. The high numbers of tourists (>80000 per year) that come to view dolphin feeding in the lagoon results in it being a high revenue earning attraction and an opportunity to promote the conservation value of dolphins and other flora and fauna of the Bay by means of public awareness and education. Careful management of the pressures that can accompany high usage is required, with an adequate understanding of the mixing and transport of water and contained substances, as emphasised by recent studies (Environmental Protection Authority, 1989; Trayler and Shephard, 1993; Murex Consultants Pty. Ltd., 1994; CALM, 1994).

In the Shark Bay Marine Reserves Draft Management Plan 1994 (Department of Conservation and Land Management, 1994) the physically protected nature of Shark Bay was highlighted in discussions relating to circulation and exchange. It was emphasised that "Water temperature, circulation patterns and salinities have a major impact on the distribution of habitats and the biology of individual species. A comprehensive understanding of these variables is essential for effective management of the marine park". To that end a major recommendation of the draft management plan was to "Encourage research into water circulation, salinity and temperature fluctuations in Shark Bay and utilise this information in marine reserve management and assessment of proposed developments in, and affecting, the marine reserves". The objectives of this proposed study are consistent with these recommendations.

The proposed study will contribute to the environmental management of the lagoon by providing a more detailed understanding of the manner and rate at which water, and contained substances, are flushed from the lagoon out to the more open waters of Shark Bay under a range of oceanographic conditions. The climate of Shark Bay during late winter-early spring is characterised by prolonged calms interrupted by occasional storms, and during calms the effect of wind-driven mixing and advection is less than during storms. The information will provide a better technical basis from which to assess the potential for contaminant accumulation in the Monkey Mia lagoon. This will allow a better basis from which to manage the potential increase in contaminant inputs to the dolphin feeding area and surrounding waters as usage of these waters increases over time.

1.2.2 Past hydrodynamic studies

Monkey Mia

No specific studies of the hydrodynamics of the Monkey Mia lagoon have been conducted to date although the issue of flushing was highlighted as important in the context of pollution management and conservation by recent environmental studies (Environmental Protection Authority, 1989; Trayler and Shephard, 1993; Murex Consultants Pty. Ltd., 1994; CALM, 1994), as discussed above.

This field study follows an initial salinity-temperature and habitat survey of the Monkey Mia lagoon and adjacent nearshore waters conducted on 18 April 1996 as part of the preliminary survey of the Shark Bay Marine Reserves Monitoring Programme (see D'Adamo, Colman and Pobar, 1996; D'Adamo and Pobar 1996). The salinity temperature data from that survey showed there were significant salinity and temperature differences between the lagoon and adjacent waters. The mean salinity in the lagoon was greater than 42 pss whereas the salinity of near-surface water 3-5 km offshore was about 39.5 pss. The lagoonal temperature was about 25.5 °C compared to about 24.5 °C further offshore.

Shark Bay is subjected to large rates of evaporative salinity increases and restricted exchange with the adjacent ocean and as a result is predominantly hypersaline. Salinities have been found to range from oceanic (approximately 35 pss) in the northern areas of the Bay to hypersaline (up to approximately 72 pss) in the southernmost areas, such as Hamelin

Basin and L'haridon Bight. The approximate north-south direction in the salinity gradient is present throughout the year. Water temperatures range from about 16 °C in winter to about 26 °C in summer, with the greatest seasonal fluctuations occurring in the southern areas of the Bay. The main factor that restricts exchange is the blocking effect of sills between the central portions of the Bay (such as Faure Sill near Monkey Mia) and the lower southern reaches. In addition, the presence of Bernier and Dorre Islands to the north of Dirk Hartog Island presents a further physical barrier to exchange with the ocean. These and other general physical characteristics of Shark Bay have been comprehensively described in Logan and Brown (1986) which contains information on the climate, bathymetry, sea level history, geomorphology, geology, benthic habitats, salinity, temperature, broadscale flow patterns and exchange. Logan and Brown (1986) analysed long-term records of salinity, temperature and currents, and considered the data in conjunction with evaporative, bathymetric, tidal and wind effects, to calculate a salt budget and estimate a residence time of order 8 months for water in the Hamelin Pool/Faure Sill area.

More detailed studies of the hydrodynamics of Shark Bay are currently being conducted by Mr Murray Burling, a M. Eng. Sc. student at the Department of Environmental Engineering of the University of Western Australia (supervised by Drs Charitha Pattiaratchi and Greg Ivey). Mr Burling is analysing oceanographic data and applying a threedimensional barotropic numerical model to the Bay (Burling and Pattiaratchi, 1995a, b). Mr Burling's analyses have highlighted the vertically and horizontally stratified salinity and temperature (and therefore density) structure of the Bay, including the region offshore of Monkey Mia. Circulation in the Bay is strongly influenced by wind and tidal effects, however Burling and Pattiaratchi's (1995a, b) preliminary data analyses suggest that the density stratification and Coriolis force (due to the Earth's rotation) provide important influences on the nature of wind and tidal driven flows. Burling and Pattiaratchi (1995a, b) also suggest that characteristic horizontal density gradients in the Bay are sufficiently strong to drive density currents of significance to the overall circulation.

Mr Alan Pearce of the CSIRO Division of Oceanography is undertaking analyses of NOAA-AVHRR sea-surface temperature imagery for Shark Bay and adjacent oceanic waters to determine the seasonal characteristics of basin-wide SST structures and the influence of the Leeuwin Current (Cresswell and Golding, 1980; Cresswell, 1990; Pearce, 1990) on the hydrodynamics of Shark Bay.

1.3 Collaborations

This study was initiated following discussions between the Marine Conservation Branch, Midwest Region and Gascoyne District. The work will be conducted as a joint exercise between CALM's Marine Conservation Branch (MCB) (contacts: Chris Simpson, Nick D'Adamo), Midwest Region (contacts: Greg Leaman, Ron Shephard) and Gascoyne District (contacts: Paul Brown, Brad Barton) and the University of Western Australia's Department of Environmental Engineering (DEEUWA). Nick D'Adamo is the Field Team Leader for the study. Logistical support has been provided by the Monkey Mia Visitor Centre (contact: Brian Nicholson).

Discussions between MCB and DEEUWA have resulted in an agreement to conduct the study as a collaborative exercise between CALM and DEEUWA, with the involvement a fourth year honours student in the data processing and preparation of a data report. Supervision will be shared by Drs Greg Ivey and Chari Pattiaratchi of DEEUWA and Nick D'Adamo of MCB. Terms for the collaboration are presented in Section 8 of this proposal.

2 SURVEY GRID, METHODS AND EQUIPMENT

2.1 Site and grid details

Figure 2 presents the bathymetry of the lagoon and adjacent waters and also the grid of salinity-temperature monitoring sites, with the dashed line indicating the boundary of what is referred to as the "inner grid" of sites. The coordinates of the sites are listed in Table1.

Figure 2 Proposed salinity-temperature profiling sites and detailed bathymetry of the Monkey Mia lagoon and its surrouding waters. The "inner grid" lies within the dashed line.

Table 1 Site coordinates.

SITE	LATITUDE	LONGITUDE	COMMENT
M1	25° 48.65	113° 47.25	
M2	25° 46.23	113° 45.80	
M3	25° 47.45	113° 44.35	INNER GRID
M4	25° 47.45	113° 43.55	INNER GRID
M5	25° 47.58	113° 43.10	INNER GRID
M6	25° 47.40	113° 43.00	INNER GRID
M7	25° 47.44	113° 42.88	INNER GRID
M8	25° 47.52	113° 42.82	INNER GRID
M9	25° 47.28	113° 42.75	INNER GRID
M10	25° 47.40	113° 42.66	INNER GRID
M11	25° 47.48	113° 42.62	INNER GRID
M12	25° 47.20	113° 42.60	INNER GRID
M13	25° 47.30	113° 42.50	INNER GRID
M14	25° 47.41	113° 42.39	INNER GRID
M15	25° 47.30	113° 41.63	INNER GRID
M16	25° 47.00	113° 42.05	INNER GRID
M17	25° 46.85	113° 42.40	INNER GRID
M18	25° 46.60	113° 42.75	INNER GRID
M19	25° 47.00	113° 43.25	INNER GRID
M20	25° 46.40	113° 44.00	INNER GRID
M21	25° 45.20	113° 43.50	INNER GRID
M22	25° 45.60	113° 42.57	INNER GRID
M23	25° 46.00	113° 41.80	INNER GRID
M24	25° 46.28	113° 41.05	INNER GRID
M25	25° 44.75	113° 41.20	INNER GRID
M26	25° 44.13	113° 39.35	
M27	25° 43.85	113° 40.98	
M28	25° 43.82	113° 42.68	
M29	25° 43.78	113° 45.52	
M30	25° 42.00	113° 43.00	
M31	25° 42.00	113° 40.40	

The bathymetric relief and prominence of the sill that envelopes the lagoon is highlighted in the aerial photo of Figure 3. As shown, the bathymetry of the lagoon and adjacent waters of Red Cliff Bay is characterised by a relatively deep basin of approximately 4-6 m (with respect to chart datum, which is approximately the level of lowest astronomical tide) surrounded to the south by land, and to the east and north by a relatively shallow sill of less than about 1 m depth. The approximate dimensions of the inner lagoon area (within the 1 m contour) are 1500 m X 900 m in the NW-SE and SW-NE directions, respectively. The wider semi-enclosed area, containing a portion of Red Cliff Bay, has dimensions of approximately 2800 m X 2200 m (within the 1 m contour). A series of approximately parallel channels and sills are situated offshore of the lagoon and Red Cliff Bay.

For the purposes of this proposal the inner lagoonal area will be referred to as the Monkey Mia lagoon, or otherwise simply as the 'lagoon', and the broader area which contains the 'lagoon' and the remaining part of Red Cliff Bay will be referred to as Red Cliff Bay. The wider waters of Shark Bay will be referred to as Shark Bay, or otherwise simply as the 'Bay'.

2.2 Contingency for adverse weather conditions

In the event of foul weather and the decision by the skipper to rule out offshore monitoring on safety grounds, then the programme will revert to monitoring of sites within the immediate confines of the Monkey Mia lagoon. Decisions of this nature are to be made by consultation between the Field Team Leader, Nick D'Adamo, and the skipper. Another possible alternative would be to station the vessel off the end of the jetty and perform repeated CTD profiling of the water column at that point to determine the temporal variation of the mean salinity-temperature characteristics in response to strong wind conditions.

Figure 1 Locality diagram of Monkey Mia and boundaries of the Shark Bay Marine Park and Shark Bay World Heritage area

Figure 3 Aerial photo of the Monkey Mia lagoon and Red Cliff Bay

With respect to safety considerations, the skipper of the vessel reserves the right to alter field activities due to foul weather.

2.3 Methods

The period of the hydrodynamic field survey was chosen to coincide with neap tides and early spring meteorological conditions anabling a likelihood of encountering calm periods interrupted by occasional storms. Measurements will be at a sufficiently high temporal resolution so as to capture the influence of the dominant factors of tides, winds and density effects. The general techniques of repetitive basin-scale salinity-temperature (ST) profiling in conjunction with direct current measurements (using current meters and/or drifter drogues) will be used. Water level variation and meteorological parameters will also be monitored.

The objective of the ST monitoring is to detail the three-dimensional salinity-temperature-density structure as it changes due to mixing, circulation and exchange. Changes in the salinity, temperature and density structure can be interpreted to infer vertical mixing and horizontal motions. Complementary in situ flow measurements will enable the inferred flow patterns to be directly verified.

The acquisition of regional satellite imagery will assist in understanding first, the role of broadscale processes in introducing water to the Monkey Mia-Faure Sill region and second, the fate of water that leaves the lagoonal area and enters the wider waters of the Bay. To this end, the strategic measurement of salinity-temperature fields in waters offshore of Monkey Mia, between Peron Peninsula and the mainland, should provide valuable insight to the wider circulation patterns when considered in conjunction with a time series of regional SST images

2.3 Equipment

2.3.1 Salinity-temperature monitoring

A high resolution conductivity-temperature-depth (CTD) probe will be used (from the Centre for Water Research, University of Western Australia). The CTD probe acquires data in free fall mode at 50 Hz reading directly to an onboard computer. The sensors return salinity, temperature and depth data at accuracies of 0.001 ps, 0.001 °C and 0.001 m, respectively. A demonstration of the operation of the CTD probe was held on 14 August 1996 at the Department of Environmental Engineering of the University of Western Australia (UWA). This was conducted by Mr Terry Smith of the Centre for Water Research (UWA).

CALM will provide 4 temperature loggers for deployment within the lagoon and wider surrounding waters of the Bay. These loggers collect time-series data of water temperature variation over relatively wide spatial scales, and would thereby provide data that could be used to assist in the calibration and validation of barotropic and baroclinic numerical models of the hydrodynamics of the Bay (Burling and Pattiaratchi, 1995a, b).

2.3.2 Current measurements

Four cross-vane drifter drogues will be deployed at selected times to measure flow. The drogue vanes will be square and $2x2 \text{ m}^2$ in cross-section. The general approach will be to deploy the drogues within the lagoon after the completion of an ST grid circuit and then periodically fix their positions by differential GPS for a period of 5-10 hours during the ST monitoring.

In addition, CALM will explore the possibility of deploying fixed point current meters (Neil-Brown ACM-2) under a collaboration between the Department of Environmental Protection, CALM, and the Department of Fisheries. Continuous current meter records would serve as valuable calibration and validation data for the application of threedimensional barotropic and baroclinic models (Burling and Pattiaratchi, 1995a, b). In addition, the data would assist in understanding the hydrodynamic response of the wider waters of the Bay to winds, tides and density effects. A better understanding and predictive ability of circulation within Shark Bay would assist greatly in assessing the impacts of proposed commercial activities such as aquaculture.

2.3.3 Water level

The period of the field survey has been planned to coincide with neap tides. Tidal variation at Monkey Mia approximately reflects that at Carnarvon and extracts from the Tide Tables for Carnarvon and Denham are presented in Appendix I.

2.3.4 Meteorological data

The closest Bureau of Meteorology site is at Denham, Shark Bay. The following parameters are read from instruments and recorded to data sheets every third hour of the day, beginning at 0000 hours but excluding 2100 hours: wind speed and direction at 10 m, air temperature, cloud cover, visibility, barometric pressure, relative humidity. Data will be obtained from the Bureau of Meteorology, Perth.

3 FIELD PROGRAMME

The field work is planned to span a total of 5 days through consecutive tidal cycles (predominantly semi-diurnal) with the objective of capturing periods of relatively weak ($\leq 5 \text{ m s}^{-1}$) and, if the opportunity arises, strong (~ 10 m s⁻¹) winds. Measurements will involve basin-scale salinity-temperature profiling, with complementary current measurements, water level and meteorological data collection. Satellite imagery of sea-surface temperature (SST) and water colour for the Shark Bay region will also be acquired in order to gain an insight into broad-scale circulation patterns that may be evident from changes in the SST structure.

A total of 31 CTD profiling sites (Figure 2) have been chosen to cover both the Monkey Mia lagoon area and the surrounding waters of Red Cliff Bay and Shark Bay (see Figure 2 and Table 1). This overall grid is referred to as the 'major' grid. A more focussed grid of 23 sites (concentrating on the Monkey Mia lagoon) has been selected from the major grid and these sites lie within the dashed line of Figure 2. This smaller grid is referred to as the 'inner' grid. The field programme will be structured in three Phases (1, 2 and 3, respectively), as follows.

Phase 1

During Phase 1 it is proposed that the inner grid of 23 sites be visited intensively 4 times per day over two consecutive days, but with the additional stations that complete the major grid added to the circuit once per day (say as the first ST circuit of each day). Table 2 presents the field itinerary for Phase 1, including planning and travel arrangements. This will enable any changes in the lagoon's salinity, temperature and density fields to be captured at a temporal resolution consistent with the time scales of the major forcings (i.e., tides, density currents, wind events). In addition, the detailing of the broader salinity field should enable the changes within the lagoon to be related to any exchange processes that occur between the lagoon and adjacent waters.

Date	Field day	Time	Activity or	Principal	Field officer	Skipper
			circuit	investigator		
14-8-96		0900	CTD probe			
			demonstration at			
			UWA			
To be		0700	Depart Perth,			
advised			travel to Denham			
			in CALM vehicle			
	1	0630-1130	Major grid	N D'Adamo	CALM officer	DoF skipper 1
	1	1230-1600	Inner grid	N D'Adamo	CALM officer	DoF skipper 1
	1	1630-2000	Inner grid	N D'Adamo	CALM officer	DoF skipper 2
	1	2030-2400	Inner grid	N D'Adamo	CALM officer	DoF skipper 2
	2	0630-1130	Major grid	N D'Adamo	CALM officer	DoF skipper 1
	2	1230-1600	Inner grid	N D'Adamo	CALM officer	DoF skipper 1
	2	1630-2000	Inner grid	N D'Adamo	CALM officer	DoF skipper 2
	2	2030-2400	Inner grid	N D'Adamo	CALM officer	DoF skipper 2

Phase 2

After Phase 1 it is envisaged that the monitoring be reduced to two major grids per day until the end of day 5 of the programme or until the occurrence of a mixing event due to strong winds (of order 10 m s⁻¹). A typical field itinerary for these days is given in Table 3.

Table 3. Typical field itinerary for Phase 2 of the survey

			investigator		
3, 4 or 5	0630-1130	Major grid	N D'Adamo	CALM officer	DoF skipper 1
3, 4 or 5	1200-1730	Inner grid	N D'Adamo	CALM officer	DoF skipper 1

Phase 3

In the event of the occurrence of a strong mixing event the field programme will return to the routine of Phase 1 during and after the mixing event in order to capture the temporal and spatial characteristics of mixing and flushing caused by strong winds (of order 10 m s⁻¹). A typical field itinerary for these days is given in Table 4.

Table 4. Typica	l field itinerary	for Phase	3 of the survey,	including return travel.
-----------------	-------------------	-----------	------------------	--------------------------

Day	Time	Activity or	Principal	Field officer	Skipper
		circuit	investigator		
3, 4 or 5	0630-1130	Major grid	N D'Adamo	CALM officer	DoF skipper 1
3, 4 or 5	1230-1600	Inner grid	N D'Adamo	CALM officer	DoF skipper 1
3, 4 or 5	1630-2000	Inner grid	N D'Adamo	CALM officer	DoF skipper 2
3, 4 or 5	2030-2400	Inner grid	N D'Adamo	CALM officer	DoF skipper 2
To be advised	0700	Depart Denham,			
		travel to Perth in			
		CALM vehicle.			

A possible follow-up survey may be conducted during strong wind conditions in summer to capture the hydrodynamic response of the lagoon to strong SSW winds.

4 SAFETY

All safety procedures relating to navigation and associated onboard procedures will be the responsibility of the skipper of the vessel. Scheduled communications and reporting to land-based stations will be conducted according to Department of Fisheries protocols and coordinated by the skipper.

As stated in Section 3, above, alterations to field procedures based on safety aspects related to weather conditions are the responsibility of the skipper. Decisions to modify the field programme will be made by consultation between Nick D'Adamo (Field Team Leader) and the skipper.

5 DATA PROCESSING AND REPORTING

The following sequence outlines the minimum level of processing, analysis and reporting that will follow the field survey.

- A data report containing all edited data and associated plots and contours. This is to be produced as the requirement of a summer vacation scholarship, funded from the project budget (see Section 8, below).
- An interim report, based on a preliminary analysis of the data, describing the major hydrodynamic mechanisms. This will draw on the data report and will be principally produced by Nick D'Adamo in collaboration with Drs Ivey and Pattiaratchi and the student.
- A final report on the results of the study, containing details of mixing, circulation and flushing analyses. This will be produced as a 4th year Honour's report.

6 BUDGET

The budget has been framed within the context of a collaboration between CALM and DEEUWA, with the participation of a 4th year Honours student at DEEUWA. Table 5 presents the budget details.

Table 5. Budget

Item	Comment	Cost	
		From budget	In kind
Preparation	CALM - Principal Investigator 15 days Technical support and field report	\$420	In kind
Supervision	CALM DEEUWA		In kind In kind
Field personnel	CALM - Field officer Dept of Fisheries Boatman 1 Dept of Fisheries Boatman 1	\$1280	In kind In kind In kind
CTD meter hire	CALM - 5 days @ \$150/day DEEUWA - 5 days @ \$150/day	\$750	In kind
Vessel hire	Dept of Fisheries (nominal)		In kind
Vessel costs and and monitoring infrastructure	Dept of Fisheries CALM	\$400 \$200	
Preparation of 4 drogues	CALM	\$200	
Differential GPS Hire	CALM - 2 days @ \$100/day	\$200	
Car	CALM - 8 days	\$800	
Accommodation	CALM - 1 week @ \$100	\$100	
Other	CALM - Allowances, equipment transport, insurance	\$250	
Temperature loggers	4 X \$325	\$1300	
Consumables	CALM	\$400	
Technical assistant (post-survey)	CALM	\$320	
Data processing	CALM - student summer vacation scholarship at DEEUWA	\$2800	
Cost of scientific publication	CALM - Diagrams etc	\$200	

TOTAL (from budget)		\$10802
Contingency	10%	\$982
Sub total		\$9820

7 FUTURE WORK

7.1 Field surveys

Depending on the range of meteorological and hydrodynamic conditions encountered, further field studies may be required to complement the results of this study. For example, it may be required that a specific hydrodynamic study be conducted during characteristic summer conditions to investigate the role of prevailing south-southwesterly winds in the mixing, circulation and flushing of the lagoon.

In addition, it may be possible to increase the scale of this or future studies if other interests (e.g., environmental protection, aquaculture, fisheries, shipping) were to provide collaborative support to increase the spatial scale and field programme of the study. For example, the deployment of current meters and broader scale salinity-temperature monitoring would contribute to a greater understanding of the circulation of Shark Bay. The data would provide process information and data for modelling. In addition, baseline monitoring of sediment quality would provide a valuable baseline data set for long-term monitoring of the lagoon.

7.2 Modelling

Although numerical modelling of the hydrodynamics is not within the scope of this proposal it is recommended that the results of the field exercise be considered for use in numerical modelling of the hydrodynamic behaviour of these waters under a wide range of oceanographic and meteorological conditions. It remains to be seen how important density effects are relative to wind and tidal effects in the hydrodynamics of the lagoon and wider Bay waters. However, with the existing knowledge that there can be strong vertical and horizontal salinity, temperature and therefore density gradients throughout Shark Bay, including the Monkey Mia area, then it would seem appropriate to consider, in the first instance, the application of baroclinic numerical models. The models should incorporate the dynamical effects of wind stress, tides, density currents, Coriolis force, and thermal fluxes at the water surface (e.g., heating, cooling, evaporation). A number of baroclinic models exist for such a purpose. These include the Princeton Ocean Model which has been successfully applied to Cockburn Sound and the adjacent coastal waters off Perth during strongly stratified conditions (Simpson *et. al.*, 1996) and the HAMSOM model which has been successfully applied to Perth's coastal waters (Pattiaratchi *et. al.*, 1995) and is currently being applied to Shark Bay (pers. comm., Murray Burling, University of Western Australia).

8 DATA OWNERSHIP AND COLLABORATION PROTOCOLS

All data will remain the property of CALM. Data collected in collaboration with another organisation or agency may, upon agreement with CALM, be used for non-commercial scientific purposes by the collaborator, with due acknowledgement to CALM, and with due consideration (by consultation with CALM) to the inclusion of CALM personnel in authorship. Within the collaborative arrangement between the DEEUWA and CALM the following separation of obligations and responsibilities apply.

101114

. .

Proposal	
Motivation and objectives	CALM
General methodology	CALM
Planning	CALM
Core funding	CALM
Field survey - resourcing	
Personnel	CALM//FISHERIES
ST meter	DEEUWA
Weather station	CALM
Vessel	CALM/FISHERIES
Other equipment	CALM

. . .

Interim report on hydrodynamics CALM/DEEUWA

 Thesis or technical report
 DEEUWA (student)/DEEUWA and CALM supervision

Scientific paper or technical publication CALM/DEEUWA (incl. student)

REFERENCES

Burling M and Pattiaratchi C B (1995a). Shark Bay hydrodynamic study preliminary data report: including February 1995 field trip. (Centre for Water Research, University of Western Australia, Nedlands, Western Australia, 6009). Unpublished report WP 1043 MB.

Burling M and Pattiaratchi C B (1995b). Shark Bay hydrodynamic study data report: August field trip. (Centre for Water Research, University of Western Australia, Nedlands, Western Australia, 6009). Unpublished report WP 1086 MB.

Cresswell G R (1991). The Leeuwin Current - observations and recent models. In: The Leeuwin Current: an influence on the coastal climate and marine life of Western Australia. (eds. A F Pearce and D I Walker). *J. Roy. Soc. WA*. **74**:1-14.

Cresswell G R and Golding T J (1980). Observations of a south-flowing current in the southeastern Indian Ocean. *Deep-Sea Res.* 27:449-446.

Department of Conservation and Land Management (1994). Shark Marine Reserves Draft Management Plan 1994. (Department of Conservation and Land Management for the National Parks and Nature Conservation Authority, Perth, Western Australia, 6000). Unpublished report.

D'Adamo N, Colman J G and Pobar G J (1996). Shark Bay Marine Reserves Monitoring Programme. Field Data Report SBMRMP-02/96. Preliminary Field Survey: 15-22 April 1996. (Marine Conservation Branch, Department of Conservation and Land Management, 47 Henry Street, Fremantle, 6160). Unpublished report.

D'Adamo N and Pobar G J (1996). Shark Bay Marine Reserves Monitoring Programme. Unpublished Field Programme Report SBMRMP-01/96. Preliminary Field Survey: 15-22 April 1996. (Marine Conservation Branch, Department of Conservation and Land Management, 47 Henry Street, Fremantle, 6160). Unpublished report.

Environmental Protection Authority (1989). Disappearance of dolphins at Monkey Mia. (Environmental Protection Authority of Western Australia, Perth, Western Australia, 6000). Bulletin 381. Unpublished report.

Logan B and Brown R G (1986). Field Seminar Handbook. Sediments of Shark Bay and Macleod Basin Western Australia. (Sedimentology Research Group, Department of Geology, University of Western Australia, Nedlands, Western Australia, 6009). Unpublished report.

Murex Consultants Pty. Ltd. (1994). Review of dolphin management at Monkey Mia. (Submitted to the Executive Director, Department of Conservation and Land Management, Perth, Western Australia, 6000). Unpublished report.

Pattiaratchi C B, Imberger J, Zakar N and Svenson T (1995). Perth Coastal Waters Study: Physical measurements. Project P2. (Water Authority of Western Australia. Water Authority of Western Australia, Leederville, Western Australia, 6007). Unpublished report.

Pearce A F (1991). Eastern boundary currents of the southern hemisphere. In: The Leeuwin Current: an influence on the coastal climate and marine life of Western Australia. (eds. A F Pearce and D I Walker). J. Roy. Soc. WA. **74**:1-14.

Simpson C J, Burt J S, Cary J L, D'Adamo N, Masini R J and Mills D A (1996). Southern Metropolitan Coastal Waters Study (1991-1994): Final Report. (Department of Environmental Protection, Perth, Western Australia, 6000). (in press).

Trayler K and Shephard R (1993). Water quality at Monkey Mia, Shark Bay. A report and recommendations based on the 1991 monitoring programme. (Department of Conservation and Land Management, Perth, Western Australia, 6000). Landnote 1-93.

APPENDIX 1 Predicted tides at Carnarvon and Denham, Western Australia. (Source: "1995-96 - Tide predictions and boating guide of Western Australia". Westprint, Western Australia).

				CA	RNA	RVG	DN									СА	RNA	RVC	N				
	LAT	24° 53'	s	LON	G 113°	37' E	τı	ME ZO	NE-0	800			LAT	24° 53	s	LON	G 113°	37' E	τı	ME ZO	NE-0	800	
	٦	TIMES A	AND H	IEIGHT	rs of I	HIGH	AND L	ow w/	TERS				1	IMES	AND H	EIGH	IS OF I	HIGH /	AND LO	AW WC	TERS		
			S	БЕРТ	ЕМВЕ	ER	1996	5								ост	OBE	R - 1	996				
	Time	m		Time	m		Time	m		Time	m		Time	m		Time	m		Time	m		Time	m
1 su	0050 0644 1315 1854	1.35 0.16 1.23 0.26	9 мо	0157 0800 1506 2141	0.69 0.99 0.38 0.89	17 TU	0046 0702 1330 1859	1.28 0,15 1.09 0.38	25 we	0245 0850 1525 2145	0.53 1.15 0.29 1.10	1 то	0045 0706 1347 1859	1.37 0.04 1.08 0.41	9 we	0251 0844 1457 2116	0.57 0.92 0.45 1.02	17 тн	0042 0725 1410 1909	1,36 0.04 1.04 0.53	25 FR	0335 0955 1528 2145	0.27 1.07 0.43 1.32
2 мо	0125 0728 1401 1929	1.35 0.17 1.13 0.32	10 דט	0306 0903 1543 2212	0.61 1.04 0.34 0.96	18 we	0113 0740 1409 1930	1.29 0,16 1.02 0.43	26 тн	0340 0954 1602 2224	0.37 1.21 0.27 1.21	2 we	0117 0746 1430 1934	1.31 0.10 1.00 0.48	10 тн	0330 0938 1530 2148	0.46 0.98 0.42 1.10	18 FR	0115 0805 1459 1948	1.33 0.10 0.99 0.58	26 SA	0416 1046 1606 2224	0.13 1.12 0.44 1.39
<u>3</u> то	0200 0814 1447 2002	1.32 0.21 1.01 0.40	11 we	0346 0953 1614 2240	0.51 1.10 0.30 1.04	19 тн	0141 0821 1456 2002	1.28 0,19 0.95 0.49	27 FR	0424 1047 1638 2301	0.22 1.24 0.27 1.30	3 тн	0147 0827 1516 2010	1.24 0.18 0.93 0.54	11 FB	0402 1022 1601 2217	0.34 1.05 0.41 1.18	19 sa	0151 0851 1556 2036	1.27 0,18 0.95 0.63	27 su	0455 1132 1644 2301	0.04 1.14 0.45 1.42
4 we	0234 0903 1537 2036	1.26 0.28 0.91 0.48	12 тн	0421 1034 1643 2307	0.42 1.14 0.26 1.10	20 FR	0215 0911 1555 2041	1.25 0.25 0.87 0.56	28 SA	0505 1135 1714 2337	0.10 1.24 0.28 1.36	FR	0218 0911 1610 2049	1.14 0.27 0.87 0.61	12 sa	0433 1100 1631 2245	0.23 1.09 0.40 1.25	20 su	0241 0946 1702 2142	1.18 0.28 0.93 0.68	<mark>28</mark> мо	0533- 1215 1720 2336	~0.02 1.13 0.47 1.41
5 TH	0312 1000 1635 2110	1.18 0.35 0.82 0.56	13 FR	0453 1112 1710 2332	0.34 1.17 0.28 1.17	21 SA	0301 1015 1709 2130	1.19 0.32 0.82 0.63	29 su	0545 1221 1748	0.04 1.21 0.31	5 SA	0254 1003 1715 2142	1.05 0.36 0.84 0.67	13 su	0505 1135 1700 2314	0.14 1.12 0.41 1.31	21 MO	0353 1059 1813 2322	1.07 0.38 0.96 0.68	29 то	0611- 1255 1757	-0.03 1.11 0.50
6 FR	0359 1108 1746 2151	1.10 0.41 0.77 0.64	14 sa	0524 1145 1736 2357	0.26 1.18 0.29 1.22	22 su	0413 1145 1836 2259	1,13 0.37 0.82 0.69	<u>30</u> мо	0012 0626 1304 1824	1.39 0.02 1.15 0.36	6 su	0346 1111 1830 2318	0.95 0.44 0.84 0.71	14 мо	0538 1211 1730 2342	0.07 1.13 0.43 1.35	22 то	0537 1229 1918	0.99 0.44 1.03	30 we	0010 0647 1335 1834	1.38 0.00 1.08 0.54
7 sa	0508 1234 1917 2324	1.02 0.45 0.76 0.71	15 ຣບ	0556 1219 1802	0.21 1.17 0.31	23 мо	0548 1332 2002	1.08 0.37 0.88				7 мо	0533 1245 1945	0.88 0.48 0.88	15 ™	0612 1247 1800	0.03 1.12 0.45	23 WE	0134 0724 1353 2015	0.59 0.97 0.45 1.12	31 тн	0042 0723 1415 1911	1.32 0.05 1.04 0.58
8 su	0640 1414 2055	0.98 0.43 0.81	16 мо	0021 0629 1253 1830	1.26 0.17 1.14 0.34	24 ™	0059 0730 1440 2101	0.66 1.09 0.33 0.98				8 10	0142 0729 1411 2038	0.68 0.87 0,47 0.94	16 we	0012 0647 1327 1833	1.37 0.01 1.09 0.49	24 TH	0247 0849 1445 2101	0.43 1.01 0.44 1.23			
Сор	yright.	The Ne	ationa	l Tidal	Facility	,Flind	ers Un	iversity	, Sout	h Aust	ralia	Cop	yright.	The N	ationa	l Tidal	Facility	y,Flind	ers Ur	lversity	, Sou	ih Ausi	tralia

	ат «			104	A 1120	202 E		NE 70									16148	TAIN					
	ч - т									NSUU				25* 56	5° S	LON	G 113'	32' E	਼ਾ	IME ZC	NE-C	800	
		IIVIC.Q /		Elan	naur	nior	AND			nə				TIMES	AND I	HEIGH	ITS OF	HIGH	AND	LOW V	VATE	AS	
			5	SEPT	EMB	ER -	1996	i								OCT	OBE	R - 1	9 96				
Th	ne	m		Time	m		Time	m		Time	m		Time	m		Time	m		Time	m		Time	п
1 02 50 15 21	45 43 09 14	1.07 0.45 1.02 0.51	9 мо	0931 1803	0.89 0.41	17 ™	0244 1002 1522 2045	1.03 0.37 0.93 0.60	25 we	0426 1045 1804 2335	0.65 1.03 0.47 0.89	1 TU	0235 1019 1541 2033	1.08 0.29 0.86 0.58	9 WE	0440 1033 1714 2307	0.60 0.78 0.51 0.79	17 TH	0230 1039 1600 2028	1.16 0.29 0.90 0.72	25 FR	0625 1159 1715 2327	0,4 0,9 0,6 1,0
2 03 10 MO 15 21	21 38 53 23	1.09 0.43 0.92 0.54	10 TU	0035 0415 1043 1843	0.70 0.63 0.90 0.40	18 we	0310 1051 1602 2100	1.07 0.38 0.88 0.63	26	0542 1150 1845	0.54 1.04 0.48	2 we	0308 1100 1622 2059	1.06 0.32 0.80 0.60	10 TH	0534 1138 1749 2332	0.52 0.81 0.52 0.65	18 FR	0306 1123 1650 2104	1.17 0.33 0.87 0.74	26 SA	0718 1253 1745	0,3 0.9 0.6
3 039 111 TU 163 211	57 30 38 35	1.09 0.43 0.83 0.57	11 WE	0033 0511 1141 1914	0.73 0.57 0.92 0.40	19 тн	0341 1142 1649 2121	1.10 0.39 0.63 0.65	27 FR	0015 0654 1246 1912	0.96 0.44 1.04 0.51	3 тн	0340 1141 1707 2124	1.03 0.35 0.74 0.63	11 FR	0621 1226 1815 2359	0.44 0.85 0.54 0.91	19 SA	0350 1208 1752 2146	1.15 0.38 0.84 0.76	27 su	0007 0805 1338 1816	1.1 0.2 0.9 0.1
4 04: 12: WE 17: 21:	31 24 26 47	1.07 0.44 0.74 0.59	12 тн	0043 0600 1228 1941	0.77 0.51 0.94 0.41	20 FR	0419 1235 1747 2146	1.12 0.42 0.77 0.67	28 SA	0053 0758 1335 1928	1.02 0.36 1.01 0.53	4 FR	0413 1221 1808 2151	0.98 0.39 0.70 0.65	12 SA	0705 1302 1833	0.38 0.89 0.57	20 su	0442 1256 1914 2245	1.10 0.45 0.84 0.78	28 мо	0045 0847 1418 1849	1. 0.3 0.9 0.0
5 133 TH 182 220	08 24 28 00	1.03 0.46 0.67 0.61	13 FR	0101 0645 1307 2001	0.82 0.46 0.96 0.44	21 SA	0509 1337 1907 2215	1.11 0.44 0.73 0.69	29 su	0129 0850 1419 1945	1.06 0.31 0.97 0.55	5 sa	0450 1305 2000 2219	0.93 0.43 0.68 0.67	13 su	0028 0747 1335 1853	0.97 0.32 0.92 0.60	21 MO	0546 1350 2025	1.03 0.51 0.86	29 TU	0119 0925 1457 1923	1,1 0,2 0,8 0,8
6 055 143 FR 202 220	50 35 22 34	0.99 0.46 0.63 0.62	14 sa	0124 0732 1341 2015	0.88 0.42 0.97 0.47	22 su	0613 1452 2057 2300	1.09 0.46 0.73 0.71	30 Mo	0202 0936 1500 2007	1.09 0.29 0.92 0.56	6 su	0537 1400 2146 2258	0.87 0.46 0.69 0.69	14 мо	0057 0830 1408 1914	1.03 0.29 0.94 0.63	22 TU	0045 0715 1453 2115	0.78 0.94 0.56 0.91	30 we	0154 1000 1533 1958	1. 0.3 0.4 0.4
7 ⁰⁶⁴ 58 58	45 54	0.95 0.45	15 su	0150 0822 1414 2023	0.94 0.39 0.97 0.51	23 MO	0736 1609 2206	1.05 0.46 0.76				7 мо	0651 1515 2237	0.80 0.49 0.72	15	0128 0912 1442 1935	1.08 0.27 0.94 0.67	23 we	0400 0914 1553 2201	0.70 0.89 0.60 0.97	31 TH	0226 1032 1610 2033	1.0 0.2 0.8 0.6
8 080 170 SU	01 08	0.91 0.43	16 мо	0216 0913 1446 2034	0.99 0.38 0.95 0.56	24 TU	0132 0919 1714 2253	0.73 1.03 0.46 0.82				8 т∪	0318 0859 1624 2246	0.67 0.77 0.50 0.75	16 WE	0158 0955 1519 1959	1.13 0.27 0.93 0.70	24 ™	0521 1049 1639 2245	0.57 0.89 0.62 1.03		-	

DISTRIBUTION LIST

FLUSHING STUDY OF THE MONKEY MIA LAGOON, WESTERN AUSTRALIA. Field Programme Report MM - 01/96.

Kieran McNamara, Director, Nature Conservation Division, CALM Dr Chris Simpson, Manager, Marine Conservation Branch, CALM Greg Leaman, Manager, Midwest Region, CALM Ron Shephard, Program Leader, Nature Conservation, Midwest Region, CALM Paul Brown, Manager, Gascoyne District, CALM Brian Nicholson, Chief Ranger, Monkey Mia Visitor Centre, CALM Andrew Bartleet, Regional Manager, Gascoyne Region, Fisheries Department of Western Australia Mike O'Day, Gascoyne Region, Fisheries Department of Western Australia Dr Greg Ivey, Department of Environmental Engineering, University of Western Australia Dr Charitha Pattiaratchi, Department of Environmental Engineering, University of Western Australia Ms Clare Blythe, Department of Environmental Engineering, University of Western Australia World Heritage Unit, Commonwealth Department of the Environment, Sports and Territories Alan Biggs, Chief Executive Officer, Shire of Shark Bay Alan Pearce, Division of Oceanography, Commonwealth Scientific and Industrial Research Organisation