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ABSTRACT 

The small, enclosed section of Ellen Brook Reserve provided the unique opportunity 

to observe a population of southern-brown bandicoots (lsoodon obesulus) in the 

absence of exotic predators. The reserves small-enclosed size enabled il possible to 

trap the whole area (excluding the ephemeral swamps) and so emigration and 

immigration could be excluded. This enabled good population size estimates, and 

inferences on the loss of individuals due to mortality could be more strongly argued 

for. 

An understanding of the population structure, dynamics, size and density, and body 

condition of/. obesulus in Ellen Brook Reserve, will provide important infonnation, 

for the development of future management programs and for the long-tenn survival of 

this species in closed reserves of this kind. 

Sampling was carried out on a monthly basis on four consecutive nights for five 

months and resulted in a high trap success of bandicoots (45%). The estimated 

population density of I. obesulus was high, ranging from 1.24 to 1.45 bandicoots ha 1 

with a large degree of range overlap. The sex ratio of the adult population showed a 

large female bias 3:1, whereas the pouch young were close to parity. A larger 

proportion of the male population (50%) than the female population (20%) that were 

caught in the first three months were missing in August and September, suggesting a 

higher mortality rate of the males. A seasonal effect on body weights and intraspecific 

aggression (as evidence by increased scarring) was observed during this study. Sexual 

dimorphism was apparent with adult males being significantly heavier and larger than 



females. The population was dominated by sexually mature adults but with a 

continually increasing number of pouch young. Seventy four percent of the females 

were currying pouch young by September. Although the mean± SE Jitter size was 

slightly smaller (2.1 ± 0.1) than found in other mainland I. obesulus populations the 

fecundity still appeared to be relatively high. 

Given the protection from exotic mammalian predators, this study suggests that 

I. ob£~sulus numbers are able to build up in sufficient numbers from a small size, with 

a female-biased sex ratio. Although fecundity does not appear to be adversely affected 

by the small size of the reserve, males appear to show a higher mortality rate than 

females. 
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CHAPTER I. INTRODUCTION 

In Australia, bandicoots and bilbies are one marsupial group that has suffered severely 

since European settlement, with the extinction of three species and the decline of all 

others (Lync, 1990). The southern brown bandicoot (lsoodon obesulus) occurs over 

most of the southern half of Australia, including Tasmania. Although considered 

common in some parts of its range (AJ. Friend, 1990; Hocking, 1990), /. obesulus has 

a patchy distribution over a reduced range throughout the southern half of the 

continent (Aitken, 1979). Its decline is considered to be due to predation by 

introduced carnivores and habitat changes brought about by the interaction of several 

factors: introduced herbivores, changed fire regimes and land clearing (Menkhorst 

and Seebeck, 1990; Claridge eta/., 1991 ). 

Ellen Brook Reserve is a small isolated A class reserve north of Perth. A small 

enclosed section of Ellen Brook Reserve that has undergone a fox-baiting program 

(using the compound I 080) over the last decade has seen the successful eradication of 

the fox (Vulpes vulpes), which is thought to be a major predator of!. obesulus 

(Dickman, 1988a; Claridge et al., 1991 ). Although the main purpose of the reserve is 

for the protection of the western swamp tortoise (Pseudemydura umbrina), sightings 

of 1. obesulus began to occur approximately two years after the erection of the vermin 

proof fence in 1990 and the commencement of the fox-baiting program (Kuchling, 

pers. comm.). Since then, sightings of I. obesulus have gradually increased. This has 

provided the unique opportunity for an ecological study of a possible relic population 

of I. obesulus in a sma11 area built upon a few individuals, in the absence of migration 

and absence from predation from mamma1ian predators, such as the fox. 



Although marsupial numbers have increased since the introduction of fox-baiting in 

Western Australia using 1080 (Kinnear et at., 1988; Friend and Scanlon, 1996), 

remnant bushland has been substantially reduced and fragmented. So although 

numbers of marsupial populations have increased in fox-baited areas, a restricted gene 

tlow between small isolated populations may have severe consequences on the long 

term survival of these species. The constraint of a small habitat size is exacerbated by 

an enclosure by a vermin proof fence, which reduces dispersal and immigration. 

Detennining the population structure, dynamics, size and density, and body condition 

of I. obesulus in Ellen Brook Reserve, will provide important information for the 

development of future management programs and for the long-tenn survival of this 

species in closed reserves of this kind. Programs such as Western Shield, that have 

been implemented for the resettlement of many marsupials back into mainland 

reserves, start with the reintroduction a small number of individuals released into a 

small enclosed area. An example is the western barred bandicoot (Perameles 

bougainville) which has been reintroduced into a nine hectare enclosure on Heirisson 

Prong (Richards and Short, 1996). Thus infonnation collected from this study, in 

Ellen Brook Reserve, may also provide valuable infonnation for the conservation of 

marsupial populations that are reintroduced into small, enclosed areas or isolated 

reserves with limited dispersal. 

1.1 The bandicoot families Peramelidae and Peroryctidae 

The order Peramelemorphia is represented by one superfamily, the Perameloidea, 

which includes all the living bandicoots and bilbies and are found only in Australia, 
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Papua New Guinea and nearby islands. Until recently this group was divided into two 

families: Thylacomyidac (bilbics) and Pcrarnclidac (bandicoots). However a recent 

study by Groves and Flannery ( 1990), placed the New Guinea genera into a separate 

family. Pcroryctidae. The remainir.~ species, including the bilbics, were placed into 

the family Perarnelidae. 

Although the bandicoots share the polyprotodont dentition of the family Dasyuridae, 

they differ from all other polyprotodonts in the development of a syndactyl hind foot, 

a feature characteristic also of the diprotodonts. Thus they appear to form an 

intermediate evolutionary group between the primitive marsupials of the 

polyprotodonts like the dasyuroids, and the more advanced diprotodonts like the 

phalangeroids (Gordon and Hulbert, 1987). 

The Peroryctidae family comprises four genera Peroryctes, Microperorycytes, 

Rhynchomeles, and Echymipera. Except for one species (Echimipera rufescens), all 

species from the family Peroryctidae are found only in Papua New Guinea and nearby 

islands (Flannery, 1990). Although the single species, E. rufescens, is found in both 

Australia and New Guinea, in Australia it is confined to the Cape York Peninsula 

(Gordon eta/., 1990). More recently the Peramelidae family has been separaed into 

two subfamilies, the bibies into Thylacomyinae and the bandicoots into Peramelinae 

(Strahan, 1995). The Thylacomyinae is represented by one genus Macrotis (bilbies), 

which only contains two species, one of which is now presumed to be extinct, 

Macrotis leucura (Strahan, 1995). The Peramelinae is represented by three genera 

Perameles,/soodon, and Chaeropus. However one species from Perameles, 

(Perameles eremiana) and the single species of Chaeropus (C. ecaudatus), are now 
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presumed to be extinct (Strahan 1995). Twenty species of bandicoots have so far been 

described, eleven of which have been found in Australia. However, three species arc 

now extinct. Apart from one species (l.modon macrourus), the family Peramclidae is 

restricted to Australia. 

1.1.1 General features of the bandicoots 

Bandicoots are found in a diverse range of habitats, ranging from tropical rainforest to 

heathland and desert steppe. They are small to medium-sized marsupials ranging from 

!50 mm to 560 mm in length and 200 g to 4,700 gin weight (Gordon and Hulbert, 

!987). They have long pointed muzzles with long jaws accommodating typical 

insectivorous teeth (Gordon and Hulbert, 1987). The dentition of the bandicoots 

consists of four or five pairs of blunt incisors in the upper jaw ~nd three similar pairs 

in the lower jaw. The canines are well developed, and are accompanied by three pairs 

of upper and lower premolars and four pairs of sharp-crowned upper and lower 

molars (Strahan, 1995). Although the dentition is most suitable for an insectivorous 

diet, bandicoots are generally omnivorous supplementing their diet with fruit and soft 

tubers. The bilby on the other hand, is mostly carnivorous and hunt small mammals 

and lizards as well as insects (Johnson, 1987). 

The hindlimbs of the bandicoot are much larger than the forelimbs and this 

contributes to their bounding gait. This size difference may be an evolutionary 

consequence of the need to retain short, powerful forelimbs for digging, while leaving 
J 

the hindlimbs as the main agent of rapid locomotion (Gorden and Hulbert, 1987). The 
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tail and cars arc short in all bandicoots, whereas in the hilby, it is long, tufted tails and 

has long ears (Johnson, 1987). 

The bandicoots are typical marsupials, in that the young are born in a rudimentary 

condition, and are sheltered in a pouch. However they differ from other marsupials 

(except for the koala) in that they possess a chorioallantoic placenta similar to that of 

eutherian mammals, in addition to the yolk sac (Lyne, 1990). The pouch opens 

downwards and backwards and contains eight teats, but generally only carries 3-4 

young at a time. It is believed that the limited number of pouch young at any one time 

is due to the increase in teat size, which occurs with lactation. A recently vacated teat 

is thought to be too large for the attachment of a newborn animal (Strahan, 1995). 

However, Merchant (1990) has observed some newborn young to attach themselves to 

a recently vacated teat. The bandicoots have a very short, recorded gestation period of 

only 12.5 days. This is believed to be the shortest gestation period recorded for any 

mammal (Lyne, 1974). They also have a very short lactation period, which only lasts 

about 60 days. Oestrus may occur during the lactation period and a new litter of 

young may be born as soon as the previous young vacate the pouch (Gemmell, 1982). 

Bandicoots may breed all year round, but some species show a seasonal breeding 

pattern (Heinsohn,J966; Stoddart and Braithwaite, 1979; Craven, 1981 ). This 

combination of reproductive features strongly suggests that ancestral bandicoots 

underwent selection for high fecundity and rapid maturity (Lee and Cockburn, 1985), 

enabling the group to be opportunistic and to colonise new patches of suitable habitat 

quickly. 
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1.2 Uiology/llcology of the southern-brown bandicoot (l.wodou obe.m/us) 

1.2.1 Introduction 

The southern brown bandicoot(/. ohe.wlus), also known locally by the Nyungah name 

quenda, is one of three species from the genera /soodon, the short-nosed bandicoots. 

I. obesu/us is a small, stout looking marsupial similar in size to that of a eutherian 

rabbit, and ranges from 280-360 mm in length and 400-2400 g in weight (Heinsohn, 

!966; Craven, 1981; Thomas, 1984). The ears are short and rounded, with large 

auditory bullae. The pelage is composed of two types of hair; long, coarse, bristly 

guard hair and a softer under fur. The coloration of the hair on the face, dorsal and 

lateral areas, ranges from brownish-grey to yellowish-brown. The ventral regions are 

a creamy-white colour. The hind limbs like those of all bandicoots (except the Pig­

footed bandicoot, Chaeropus ecaudatus), are longer than the forelimbs, and are 

similar in shape to the hind limbs of macropods. I. obesulus has two main gaits, a 

galloping motion and an ungainly quadrupedal like walking motion (Heinsohn, 1966). 

The tail is short and lightly furred and has no function in locomotion and is not 

prehensile (Strahan, 1995)./. obesu/us is strictly terrestrial and although 

predominantly nocturnal it has been found active during the day (Friend. pers. 

comm.). 
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1.2.2 Distribution and habitat preferenc. 

The somhcrn brown bandicoot is the most widely distributed species of the family 

Pcramelidae. It is found over most of the southern half of Austntlia including 

Tasmania, and is also found as far north as Cape York. It has been divided into a 

number of sub-species (Fig. I. I), which are /soodon obesulu,, afjinu.1· (Tasmania), 

Jsooclon obesulus fusciventer (WA),/soodon obesulus nauticus (Nuyts Archipelago, 

SA), and /soodon obe.mlns obesulus (SA, Vic, NSW) and lsoodon obesulus 

peninsulae (Cape York, Qld). However/. o. pen insulae is of uncertain taxonomic 

status, and although it is currently regarded as a subspecies of/. obesulus, it may 

eventually come to be regarded as a form of /soodon aura/us (Gordon et al.. 1990). 

I. obesulus is found in a variety of habitats in its widespread distribution. Outside 

Western Australia it occurs primarily in scrub and heathland communities, and in 

open forest and woodland habitats with a dense understorey (Stoddart and 

Braithwaite, 1979; Menkhorst and Beardsell, 1982; Copley et al., 1990; Hocking, 

1990; Kemper, 1990). However, it has also been found in areas of pasture and 

cropland lying close to dense cover (Heinsohn, 1966; Mallick et al., I 998b). In the 

heathlands,/. obesulus exhibits a clear preference for newly regenerating vegetation 

(Stoddart and Braithwaite, 1979). This preference may be associated with a high 

abundance of beetle larvae, a preferred prey type (Opie, 1980). Claridge et al. (1991) 

found that in the south-east ofNSW,/. obesulus preferred the dense cover of the 

slopes and ridges rather than gullies. It has also been suggested that males and 

females might occupy different habitat types (Stoddart and Braithwaite, 1979; 
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Claridge et at .. 1991 ). In Victoria, although /. obe.rulu.\· is generally absent from the 

eastern und western uplands, it does occur at altitudes of up to I {)()Om in the 

Grampians (Mcnkhorst and Seebeck, 1990). 

Isoodon ohuulu.s a. I. o. obesulus 
b. /. o. prnin.su!Ju 
c. I. o.fwcivmler 
d. I. o. nauticus 
e. /. o. affinu.s 

Figure 1.1 Distribution of Isoodon Obesulus sub-species (from Seebeck et al., 1990) 

In Western Australia/. obesulus is found on the coastal margin as far north as 

Yanchep and as far south as Cape LeGrand, with the furthest inland records at 

Wyalcatchem and Hyden (Friend, 1991). Animals show a preference for dense 

vegetation around wetlands and along watercourses which provide cover and 

abundant insect fauna (Craven, 1981; Friend, 1991 ). Although /. obesulus has 

declined significantly in some areas, predominantly the Southern Wheatbelt, it is still 

thought to be common locally (A.J. Friend, 1990). In the south-west/. obesulus is 
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nu1st wit.lc~pre<Jd, where it is not strk:tly confined to riverine habitats, bcin~ found in 

coastal woodlands, heaths and flats where vegetation is dense (Christensen el a/., 

1985). Couper ( 1998) found/. "'"'-'"'"·'occupied two distinct types of habitat, open 

Jarruh (Eucalyptus marginata) foi'est and swamp habitats. She found that there were 

distinctive physiological differences between populations found in the two uabitat 

types and the size of the bandicoots was significantly larger in the open Jarrah forest 

populations than in the swamp populations. 

From the accumulating data on the southern brown bandicoot in Australia, it appears 

that although this species shows a clear preference for dense cover in low shrub land, 

it is still found in a variety of other habitats. However, its distribution, although 

widespread, is relatively patchy, and its range has been significantly reduced in most 

states. The lack of research on the southern brown bandicoot in some states has made 

it difficult to make overall conclusions about its past and present distribution. 

1.2.2 Diet and feeding behaviour 

Although bandicoots have a polyprotodont dentition, which is ideally suited for an 

insectivorous and carnivorous diet,/. obesulus is generally considered omnivorous. It 

feeds on a wide range of both plant and invertebrate material including hypogeous 

fungi and the occasional small vertebrate (Heinsohn, 1966; Lee and Cockburn, 1985; 

Quin, 1985)./. obesulus has been found to change its diet seasonally as different food 

resources become available and so is considered to be a qualitatively opportunistic 
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omnivore. Analysis of faecal samples have shown that invertebrates make up the hulk 

of the diet (Quin, 1985; Broughton and Dickman 1991; Mallick eta/., l998u). The 

majority of this invertebrate proportion is derived from adult beetles and their larvae 

(Quin, 1985; Stoddart and Braithwaite, 1979). However, diet components vary in 

different habitats and depend on the analysis technique used (Quin, 1985). 

It's believed that/. obe.m/us detects its prey primarily by olfaction (Quin, 1991 ). For 

subterranean food, 1. vbesulus digs in the soil with its strong fore-claws using its nose 

as a probe and with its eyes shut (Heinsohn, I 966). This digging action produces a 

characteristic conical shaped hole. The size of the hole ranges from 3-10 em across 

and 6-15 em deep, though the size and shape varies depending on the soil type 

(Triggs, I 997). Feeding behaviour occurs predominantly at night.!. obesulus emerges 

after sunset but before dark, with most of its activity extending for several hours after 

dusk, where most of this activity is directed towards feeding (Thomas, 1984; 

Courtenay, I 995). 

1.2.4 Reproduction and growth 

Like all bandicoots, the pouch of I. obesulus is well developed and opens backwards 

and downwards. It contains 8 nipples arranged in an incomplete circle. /. obesulus is 

polyoestrous and breeding may be seasonal or continuous. If it is seasonal, the length 

and onset time of breeding varies considerably. In Tasmania,/. obesulus breeds for 

eight months of the year from June to February (Heinsohn, 1966), whereas in 

Victoria, breeding season is shorter, only six months from July to December (Lobert 
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and Lee, 1990). However, in the Grampians in central western Victoria breeding 

occurs all year round (Lobert and Lee, 19~0). In Western Australia, breeding nmy 

occu1· throughout the year, but with main peaks in spring (Craven, 1981: Thomas, 

1984; Thomas, 1987; Dell and How, 1988). Breeding also occurs throughout the year 

in the Franklin Islands in South Australia with similar spring peaks (Copley et al., 

1990). 

Seasonal breeding may coincide with peaks in food abundance (Heinsohn, 1966; 

Cockburn, 1990; Lobert and Lee, 1990), or may be due to other environmental 

variables such as temperature, rain or day length (Stoddart and Braithwaite, 1979). 

Cockburn (1990) considered the trigger of cessation of breeding to be food and water 

availability. This was also found to cause lower litter sizes in a continuous breeding 

population in the Franklin Islands (Copley eta[., 1990). However, Stoddart and 

Braithwaite (1979) believe that day length is a more likely cue for the breeding season 

rather than rainfall, which has also been found to be the major cue for the mating 

period in some dasyurids (McAllen and Dickman, 1986). Barnes and Gemmell ( 1984) 

found that it was an interaction of a variety of environmental variables rather than just 

one, with temperature and rainfall showing the strongest association as a cue for 

breeding season and reproduction rate in bandicoots, with day length being less 

significant. 

Gestation is short, ranging from 12-15 days (Stoddart and Braithwaite, 1979; Lobert 

and Lee, 1990). Lactation period is about 60 days, and as oestrus during lactation can 

occur, a new litter can be born immediately the pouch is vacated (Stoddart and 

Braithwaite, 1979). Tayler (1965) found that a new litter might be conceived even 
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while the previous Iiiier isstill in the puuch. He observed that only 13 days pas.,ed 

bctw~en observation of a single, relatively large, but still hairless pouch young and 

the appearance of five small young. 

Between 3 and 4 litters can be produced per year, with a mean litter size of between 3 

and 4 (Heinsohn, 1966; Thomas, 1984; Lobert and Lee, 1990). Mean Iiiier sizes vary 

from season to season with different age classes of females. Litter size tends to be 

higher in the beginning to the middle of the season (Craven, 1981; Stoddart and 

Braithwaite, 1979; Copley eta/., 1990). Stoddart and Braithwaite (1979) found that 

the oldest females produced the largest litters. Even within populations with 

continuous breeding, fertility may vary considerably if availability of food changes 

through out the year. If food abundance is high females appear to produce larger 

litters. whereas if food abundance is low then litter size and the number of litters 

produced decreases (Lobert and Lee, 1990). 

Like all bandicoots, the period from conception to weaning for!. obesulus is short. 

Nine days after parturition sex can be determined. At 48 days the eyes open and the 

young are fully funed. They are weaned at around 69 days (Thomas, 1984). Thomas 

(1984) found that there were discrepancies between the developmental stages of 

I. obesulus in W.A. and those found by Heinsohn (1966) in Tasmania, with the 

bandicoots in the latter having faster growth rates. Growth rates have also been shown 

to vary between bandicoots in Victoria and Tasmania. In Tasmania Sexual maturity in 

females and males is reached at approximately four and six months respectively 

(Heinsohn, 1966), compared to a minimum of seven months of age in Victoria 

(Lobcrt and Lee, 1990). These differences are believed to be a consequence of the 
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length of breeding sc;1son. In Tasmania, the eight month breeding season allows the 

growth to muturity of juveniles during the season of their birth, whereas the shorter 

six month breeding season in Victoria is too short to permit this (Lobert and Lee, 

1990). Heinsohn ( 1966) Found the strongest correlation with age to be head length 

whereas Thomas (1984) found that pes and forearm lengths were best correlated with 

age. 

The high reproductive output of/. obesulus enables this species to quickly colonise 

patches of suitable habitat as they develop (Menkhorst, 1994) and to recover quickly 

from low population numbers when environmental conditions improve. 

1.2.5 Home range 

The term home range appears to be somewhat arbitrary, so Jewell ( 1966) has 

described a home range as" an arena of activity with spatial qualities that vary 

throughout its extent, and that is subject to great irregularity in intensity of use". 

Home range can vary considerably in relation to population density (Stickel, 1960; 

Brown, 1966), and due to changes in feeding behaviour in different seasons, because 

food source availability may vary (Brown, 1966). 

Data on the size of home range and range overlap is conflicting between studies of 

I. obesulus. In some studies, males and to a lesser extent females, appear to be 

territorial, showing a minimal degree of home range overlap, both between sexes and 

within sexes (Heinsohn, 1966; McKenzie, 1967; Mallick eta/., 1988b). In other 

studies no evidence of territorial behaviour was found, and there was a high degree of 
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home range overlap between individuals (Tayler, 196:i; Craven, 1981; Copley eta/., 

1990; Broughton and Dickman 1991). Generally, males showed significantly larger 

home ranges than females, 2.34-6.95 ha and 1.83-3.28 ha respectively (Heinsohn, 

1966; Broughton ond Dickman, 1991; Mallick eta/., 1998b) probably as a result of 

their larger body size (Craven, 1981 ). 

Home range size and range overlap of I. obesulus is also thought to be related to 

both food availability and population density. At low population densities if 

resources are defendable and intruder pressure is low, J. obesulus will be territorial, 

but will occupy high overlapping ranges if population density is high (Broughton and 

Dickman, 1991 ). This statement clearly reflects the differences between populations 

in home range size and overlap. The lowest degree of overlap and largest range sizes 

were all found in populations with the lowest densities, 0.125 - 0.35 animals ha1 

(Heinsohn, 1966; McKenzie, 1967; Mallick et at., 1998b). The highest degree of 

overlap and smallest range sizes were all found in populations with the highest 

densities, 0.96- 5 animals ha1 (Craven, 1981; Copley et at., 1990; Lobert, 1990; 

Broughton and Dickman, 1991). 

In I. obesulus, social behaviour also appears to have a significant effect on size of 

home range and degree of overlap. McKenzie (1967) has found that in /. obesulus 

populations both sexes can exhibit dominant hierarchies, but to a lesser extent in 

females, with the larger dominant individuals occupying larger home ranges. During 

the breeding season temporary home range extensions were detected in males, and 

although male ranges overlapped during this period, the interaction was only due to a 

dominant larger male extending its range onto that of a sub-dominant, not vice-versa. 
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The datu show that many factors affect home range size aod the degree of range 

overl:.~p in/. obesulus. While home range size appears to be strongly correlated with 

body size, both the home range size and range overlap also appear to be controlled by 

food availability, population density and social hierarchy. The female home range 

generully <tppears to have only one function, that of suitable supply of food resources, 

whereas the larger home range of the male has two functions, that of food supply and 

to permit the males to have access to a larger number of females (Thomas, 1984). 

1.2.6 Age structure and sex ratio 

Sex, age, and size are three major variables that distinguish individuals in populations. 

The age distribution and sex ratio clearly affect the potential reproductive rate and 

mortality rate, and the rate of generation replacement (Yablokov, 1986). 

The sex ratio of some populations may be significantly disturbed from a I: I, 

favouring one sex over the other. Physiological and behavioural patterns may affect 

mortality of the sexes differently at different stages of their life history. Dispersal 

rates may differ between sexes. Juvenile males are the predominant dispersers in 

polygynous mammals (Greenwood, 1980; Holekamp and Sherman, 1993). In 

marsupials, high juvenile male dispersal has predominantly been found in macropods 

(Johnson, 1989) and dasyurids (Cockburn eta/., 1985b). This sex bias in dispersal is 

thought to be an important mechanism for the avoidance of inbreeding (Cockburn et 

a/., 1985b; Lee and Cockburn, 1985). Aggressive behaviour in the males may also 

leave them subjected to greater stress, and thus with a higher mortality rate. Sex ratios 

may differ under different environmental conditions (Trivers and Willard, 1973), 
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when the condition of the female may determine her capacily to invest in offspring 

and the amount of investment between the sexes of the offspring (Dickman, I 988b; 

Cockburn, 1990). In polygynous mating systems in which the male exhibits more 

variation in reproductive success than females, healthy mothers will invest more per 

offspring and bias the degree of investment towards the males. Unhealthy mothers 

invest less per offspring and produce more females (Cockburn, 1990). 

In I. obesulus, it has generally been found that the sex ratio in adults is biased towards 

males (Heinsohn, 1966; Mckenzie, 1967; Thomas, 1984; Dell and How, 1986; 

Dickman, !988a; Copley et al., 1990; Claridge et al., 1991 ). The pouch young ratio, 

however, tends to be closer to parity (Heinsohn, 1966; Thomas, 1987; Dell and How, 

1988). Some populations, however, have shown sex ratios bias towards females 

(Stoddart and Braithwaite, 1979; Craven, I 981; Thomas, 1987; Mallick eta/., !998b). 

Trap response, dispersal, mortality and predation, are all factors that have so far been 

postulated to contribute to the adult sex ratio biases in /. obesulus. 

A differential trap response between sexes is thought to be due to trap shyness, home 

range size and habitat preference. The observed male bias sex ratio may be partly due 

to the trap shyness of females (Heinsohn, 1966). If male and female I. obesulus 

occupy different habitats, then there is the potential that trapping locations will not 

encompass the habitat of both sexes equally, producing a possible bias in the sex 

ratios that may not truly represent the population as a whole. Stodddart and 

Braithwaite (1979) found that males and females occupy different habitats, where 

large adult females tend to be excluded from new regenerating heath land, which 

males dominated. Differences between male and female home range size may be a 
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factor contributing to the observed male biased populations. Male/. ohesu/us have 

J:u·ger home ranges than females (Heinsohn, I 966; McKenzie, I 967; Craven, I 98 I; 

Mallick eta/., 1998b) and so the greater mobility of males may increase their chances 

of coming into contact with the traps than that of females (Copley eta/., I 990). 

Mortality rates may also be affected by the smaller home range size of females, where 

the smaller range size may make them more vulnerable to the occurrence of tire than 

males (Dell and How, I 988). 

I. obesulus is considered a polygynous species with a high juvenile dispersal (Lobert 

and Lee, 1990) and it has been suggested that there may be a higher dispersal of 

juvenile males out of their natal areas than females (Dickman, I 988a). Male 

dominance hierarchy in/. obesulus has been observed with only a few dominant 

males contributing to the majority of the mating of the females in the population 

(McKenzie 1967; Dickman, 1988a). As density increases, space becomes limited and 

so in such a male dominant hierarchy, there will be a maximum number of territorial 

males that the population can hold. Su at high density the population may self regulate 

with males shifting to larger home range overlaps (Broughton and Dickman, I 991 ), 

and/or a higher dispersal rate of younger males out of the population. 

Preferenti•l prey of sexes by predators has been proposed as a major factor for the 

male biased populations (Dickman, 1988a; Claridge eta/., 1991). Dickman (1988a) 

found that I. obesulus suffered relatively high predation from foxes, and although 

males significantly outnumbered females, females were takr-n more frequently than 

males. In areas where f~xes were present, Claridge et a/. (I 99 I) found that a male 

biased sex ratio and low population density had occurred after logging, whereas prior 
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to logging operations, sex ratios were close to parity with a slightly higher population 

density. The immediate effect of intensive Jogging is a loss of undcnaorey necessary 

for bandicoot shelter and subsequently feral predators inducting the fox may have 

been responsible for losses from the bandicoot populations. The eastern barred 

bandicoot (Peramele.s gwmii) has also shown male biased sex ratios (Dufty, 1994a) 

which are thought to be caused by dominant males forcing sub-adults and adult 

females into sub-optimal habitat (Dufty, 1994b). Areas of sub-optimal habitat lack the 

necessary shelter of dense understorey and as a result, sub-adults and females may be 

more exposed to predators (Dufty, 1991). Female adult biased populations are 

generally found only in enclosed areas, where introduced predators are excluded 

(Craven, 1981; Thomas, 1987), and in areas where the fox is absent, such as in 

Tasmania (Mallick et al., 1998b). However in Tasmania Heinsohn ( 1966) did find a 

male bias sex ratio in a trapping program. However results from shooting showed the 

sex ratio to be closer to parity, and it was these results that were tt;ought to be the 

truer representation. The slight male bias in Heinsohn's (1966) studies may be due to 

a combination of factors including female trap shyness, lack of optimal habitat, and 

possible predation from cats. Although foxes are not present in Tasmania, areas that 

contain high numbers of cats still be influenced by predation from exotic predators. At 

Cranbourne in Victoria where foxes are also present, the population is female biased 

(Stoddart and Braithwaite, 1979). The vegetation structure at Cranboume primarily 

contains dense heathland, which is virtually impenetrable to animals any larger than 

bandicoots and so offers greater protection from mammalian and avian predators 

(Lobert, 1990). 
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Age structure in populations of/, obesulus in Western Australia varies throughout the 

year, partly due to changing percentages of breeding females, and partly to 

environmental factors such as climate and food source availability affecting mortality 

rates (Craven, 1981; Dell and How, 1988; Thomas, 1987). Although/. obesulus in 

Western Australia has a main breeding season during spring, breeding may occur at 

low levels throughout the year. The highest juvenile numbers generally occur in 

August, September and October, and the lowest in March, April and May (Craven, 

1981; Dell and How, 1988; Thomas, 1987). The sub-adults increased during autumn, 

due to higher breeding rates in the previous spring and decreased in November, 

December and January (Craven, 198 I; Thomas, I 987). Lengths in breeding season 

vary from state to state, with Tasmania recording eight months (Heinsohn, I 966), and 

Victoria six months ( Stoddart and Braithwaite, I 979; Lobert and Lee, I 990). These 

differences with Westem Australia indicate the difficulty in comparing studies, since 

different lengths of breeding season will produce different age structures throughout 

the year. 

The data on I. obesulus clearly indicates that age structure and sex ratios are a result 

of a complex combination of factors; however, predation from introduced predators 

sue as the European fox and cat has constantly re-occurred as a major factor. Further 

studies on the effects of predation on sex ratios and age structure are necessary for the 

future management of/. obesulus in the l1Jng term. The age structure and sex ratio are 

critical components in population structure as they both affect natality and mortality 

rates, and ultimately the growth rate. The age structure and sex ratio may reflect 

recent environmental conditions and so may be used to predict future outcomes of 
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population growth. This information will, in turn, be important for future management 

programs for long term sustainable populations. 

1.2.7 Population size and density 

To understand the dynamics of a population we first need to consider the density of 

the population and its total population number. Immigration and birth rate, and 

emigration and mortality rate affect a population's size. In turn the sex ratio and age 

structure clearly affects the potential reproductive rate, mortality rate, rate of 

generation replacement, and may also affect social interactions. The carrying 

capacity of the ecosystem is unlikely to be fixed over any extended time. Instead, it 

fluctuates with environmental conditions, continually altering the size of the 

population the ecosystem can support. Population densities of some species may go 

up and down rhythmically, showing large variations below and above the carrying 

capacity. These cycles are seen predominantly in populations of small mammals 

(Krebs and Myers, 1974). 

I. obesulus populations have been shown to exhibit fluctuations in population size 

and density and these have been attributed to changes in breeding activity (Craven, 

1981; Thomas, 1987; Copley et al., 1990) and /or environmental changes (Copley et 

al., 1990; Lober! and Lee, 1990), leading to a change in the carrying capacity of the 

habitat, in tum leading to a change in numbers of bandicoots (Mallick eta{., 1998b ). 

Population densities can change because of variations in dispersal rates. At high 

densities, individuals may leave a population and seek out new habitats, since 
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dispersal can affect the composition, size and spacing of populations, it can affect the 

productivity of those populations as well (Lidickcr, 1962; Wynne-Edwards, 1965). 

High population densities in/. ohe.mlus have shown a high degree of dispersal 

(Stoddart and Braithwaite, 1979; Lobcrt and Lee, 1990). Dispersal may act as a 

regulating mechanism, an example of which is found in an experiment on voles by 

Kreb eta/. ( 1969). It was found that in small, enclosed areas, which permitted free 

movement of predators but no migration of the voles, the populations increased to a 

high density until food resources were virtually destroyed. The voles subsequently 

suffered a severe decline associated with starvation through overgrazing. A similar 

example has been found in populations of macropods in a small enclosed reserve 

(Algar, 1986). Although/. obesulus is omnivorous with the bulk of its diet compm.od 

of invertebrates (Quin, 1985), food resources could still be severely affected by 

overpopulation. 

Density-limiting forces may arise from aggressive behaviour within a population, 

causing breakdown in parental care and a higher juvenile mortality (Calhoun, 1962). 

In I. obesu/us, adult aggression towards juveniles or less-aggressive individuals may 

result in mortality due to stress (reducing the health and survival of an individual) or it 

may force the emigration of juveniles and less-aggressive individuals (Heinsohn, 

1966; Thomas, 1984; Dickman, 1988a). 

Aggressive behaviour in crowded populations can affect behavioural changes in 

individuals, which may adversely cause reproduction (Christian and Davis, 1964; 

Wynne-Edwards, 1965; Chitty, 1967; Myers, 1967). Although it has not been 

detenmined if high density in I. obesulus populations affects the number and size of 
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litters, the survival of the young and the age at which they mature, some 

environmental factors have had effects. In an island population, response to drought 

was a reduced litter size (Copley eta/., 1990). 

Predation from exotic predators has been attributed to the demise of many marsupial 

groups (Kinnear eta/., 1999) including bandicoots (Claridge eta/., 1991; Dufty, 

1994a). Bandicoots have been generally found in low population densities in areas 

with foxes (Sampson, 1971; Claridge eta/., 1991) and in high densities in areas 

without the foxes, including enclosed reserve in Western AustraLia (Craven, 1981; 

Thomas 1987; Broughton and Dickman, 1991) and islands (Short eta/., 1998a). High 

I. obesulus densities have also been found in areas with a high degree of dense cover 

(Stoddart and Braithwaite 1979; A. J. Friend, 1990; Lobert and Lee, 1990). A 

combination of factors have been attributed to the demise of bandicoots which include 

habitat changes brought about by the interaction of several factors; introduced 

herbivores, changed fire regimes, and land clearing (Menkhorst and Seebeck, 1990; 

Claridge et al., 1991). 

1.2.8 Sexual size dimorphism 

Sexual size dimorphism among mammals is 1idespread, with males usually 

significantly larger than females (Heske and Ostefeld, 1990), although in some 

species the reverse has been found (Levenson, 1990). Sexual dimorphism is 

associated with polygynous and promiscuous mating systems, where competition 

between males selects for larger body size (Selander, 1965; Lee and Cockburn, 1985). 

Sexual dimorphism for body size may not necessarily be associated with polygynous 
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and promiscuous muting systems, but may favour selection for differential use of 

niches by the sexes, reducing intraspecific competition for resources (Hcskc and 

Ostfeld, 1990; Levenson, 1990). This has been suggested in populations of 

Antechinus . .stuartii, where the two sexes appear to be behaving like two species 

(Braithwaite, 1973). 

As /. obesulus is polygynous it would be expected that populations would show 

sexual size dimorphism with males significantly larger than females. Suer. has been 

found in all populations of/. obesulus so far studied throughout its distribution in all 

states (Heinsohn, 1966; Stoddart and Braithwaite, 1979, Craven, 1981; Copley eta/., 

1990; Mallick eta/., 1998b). However, growth rates, of both sexes are similar up to an 

age of 234 days (Thomas, 1984), and so the sexual dimorphism may simply be due to 

longevity differences between males and females (Stoddart and Braithwaite, 1979). 

In macropods. similar growth patterns between sexes are observed up to the age of 

sexual maturity, but thereafter, growth rates in the male then far outstrips those of the 

female (Newsome, 1977). A similar pattern may also be found in /. obesu/us, where it 

is not until sexual maturity is reached that growth rates differ between sexes. Cooper 

(1998) has found that sexual size dimorphism shows significant geographic variation 

in overall body size and shape, found in both male and female/. obesulus in the 

south-west of Western Australia. Although body size and shape was not correlated 

with climatic conditions, a strong relationship with habitat structure was found. 

Larger bandicoots were found in open forest habitats, while smaller bandicoots were 

found among swamp reeds. It is not known whether these differences in morphology 

found between habitat structures represent adaptive divergence, or are a result of 

environmental differences directly affecting the growth and development of the 
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bandicoots. DNA testing is currently under way to determine if these differences 

represent adaptive divergence between local populations (Cooper, 1998). 

1.3 Study aims 

The major aims of the study were: 

• To describe the structure and dynamics of a population of Jsoodon obesulus in the 

small enclosed predator-controlled section on Ellen Brook Reserve. 

• To investigate the constraints of a small enclosed reserve and a seasonal reduction 

of foraging area on the population structure and dynamics. 

1.3.1 Specific aims 

On the enclosed section of Ellen Brook Reserve, this study aimed to examine the 

• Population size and density 

• Age class distribution and sex ratio 

• Recruitment rate 

• Movement 

• Reproductive condition 

o Body condition 

o If any sexual size dimorphism exists within the population 
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A survey of the literature raises a number of issues relating to ecology and 

management issues to rernnanl populations of bandicoots in Austmlh1. From these I 

huve identified key research questions: 

I. How does a natural, seasonal reduction in foraging area in an enclosed population 

affect the population and dynamics? 

2. How do the patterns of sex ratios relate to the issues of enclosure and predation? 

3. To what extent is reproductive effort and recruitment affected by the enclosed 

constraints of the reserve? 

Chapter 2. Methodology 

2.1 Study area 

Ellen Brook Reserve is located on the eastern side of the Darling Scarp on the Pinjarra 

Plain adjacent to the western side of the Great Northern Highway 2 km north of 

Upper Swan (Figure 2.1). The reserve was vested in the National Parks and Nature 

Conservation Authority in 1962 for the protection of the western swamp tortoise 

(Pseudemydura umbrina). The reserve is separated into two by Ellen Brook, which 

flows seasonally during winter rains. On the southern side of Ellen Brook in the 

enclosed section the reserve consists of a clayey soil, with numerous depressions 

forming a Gilgai complex. In the depressions drainage is poor but the surrounding 

higher regions are relatively well drained (Pym, 1955). It is currently managed by the 

Department of Conservation and Land Management (CALM). The reserve has an area 
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of 76 ha, of which, approximately 38.8 ha, including the further extension in 1994 are 

enclosed within a vermin proof fence (Plate 2.1 ). The fence was first constructed in 

!989/90 around the southern end of the reserve. This end contains the numerous 

depressions of the Gilgai complex, which provide the optimum habitat for the western 

swamp tortoise. The southern end of the enclosed section that was extended a further 

I 0.8 ha in 1994 is slightly degraded with little understorey and a section of open 

pasture at its most southern point. 

Figure 2.1 A map of Upper Swan, Western Australia, showing the location of Ellen 

Brook Reserve. 
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Plate 2.1 Ellen Brook Reserve and trapping grid. 



A baiting program had been carried out sporadically between 1979 and 1988 in an 

effort to control exotic predators (using strychnine), but proved to be inadequate for 

eradicating the fox (Burbidge, 1987). A new fox control technique (using the 

compound 1080) developed by Kinnear et al. ( 1988) was applied in the reserve in 

1988, and the baiting progmm intensified. Since this new baiting program, bandicoots 

(lsoodon obesulus) have been observed in the enclosed area (Kuchling. pers. cornm.). 

Foxes have been capable of finding weak links inside the fence, so regular inspection 

is required (Burbidge, I 987). Fox and rabbit baiting programs are ongoing. At present 

there is a no burn· policy at Ellen Brook Reserve. 

Bowman et al. (I 989) defined the drainage pattern in the reserve by three generalised 

topographic zones (Fig. 2.2). Water flows in a southerly direction through the reserve 

until it reaches the drain. On the southern side of this drain elevation then increases in 

a southerly direction (Plate 2.2) and so subsequently water flows in a northerly 

direction until it reaches the drain. 

Zone 1: This is the largest of the drainage zones containing numerous 

claypans. These claypans begin to fill up during early winter, after 

the first rains. A 17.5m contour delineates the southern boundary 

of this zone, which essentially represents a restrictive bund to the 

flow of surface water. It is this zone that represents the principal 

feeding and breeding areas for western swamp tortoise. 

Zone 2: As the water level rises in the claypans in zone 1 and exceeds the 

restrictive height of the southern bonds, water overflows into zone 
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2. A 17 .4m contour delineates the southern boundary of zone 2, 

again essentially represented by restrictive bund to the flow of 

surface water. The claypans in zon~ 2 are shallower than those 

found in zone 1. 

Zone 3: As water levels continue to rise in zone 2, overflow from these 

Swamps then dissipates to the south and south-west, through 

minor depressions in zone 1 and eventually to the drainage line 

that flows into Ellen Brook. 

+ Sud•ct" wa1~1 flow 

JL Pos)thlc ~~~,a uf 
-y overflow of 

Drain w~ter) 

Main 5urv~y 1rea 

lun~ 1; 17 .Sm -t 

l.unt- 1. ; 17. 4 lu 17. '''" 

Zon" l ; 17.2S "' 17 . 4m 

Figure 2.2 Detailed topographical and drainage patterns of Ellen Brook Reserve 

(from Bowman Bishaw Gorham, 1989). 
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Plate 2.2 Southern swamps in Ellen Brook Reserve (August, 1999). 

This seasonal flow of water in the reserve may have a severe impact on the habitat llSe 

by the I. obesulus population. As the swamps begin to fill, foraging area is 

substantially reduced (approximately 30-40%). 

The vegetation structure inside the enclosed section of the reserve as described by 

Burbidge (1967) is an association of Melaleuca lateritia and the sedges, Leptocarpus 

canus and L. aristatus in the swamps (Plate 2.3-2.4). In the surrounding higher 

regions there is a complex association of the shrubs Acacia cyanophylla, Viminaria 

denudata, Melaleuca viminea, Hakea varia and Jacksonia sternbergiana (Plate 2.5-

2.6). There are a few Eucalyptus rudis scattered near the western side (Plate 2.7). The 

extended section of the reserve is currently undergoing rehabilitation with some 

revegetation having already begun with the planting of Melaleuca viminea, Melaleuca 

teretifolia and Hakea varia. 
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Plate 2.3 Northern swamps in Ellen Brook Reserve (March , 1999). 

Plate 2.4 Northern swamps in Ellen Brook Reserve (August, 1999). 
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Plate 2.5 Surrounding higher areas of Melaleuca spp. at the southern end of E11en 

Brook Reserve (March, 1999). 

Plate 2.6 Surrounding higher areas of Melaleuca spp. at the southern end (extended 

section) of Ellen Brook Reserve (March, 1999). 
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Plate 2.7 Clump of Eucalyptus rudis at the western side of Ellen Brook Reserve 

(August, 1999). 

2.2 Trapping procedures 

Bandicoots were live-trappeq using small Sheffield traps 20cm x 20cm x 58cm (Plate 

2.6). Traps were baited with a mixture of peanut paste, sardines and rolled oats and 

were placed in the center of each trap site (wherever possible) at 80m spacings on a 

permanent grid (Plate 2.1). Traps were only placed in the higher areas not affected by 

the ephemeral swamps. Trap sites were marked with either brightly painted stakes or 

tape. Traps were set on four consecutive nights each month from May to September. 

Traps remained permanently at trapping sites for the duration of the trapping program. 

At the end of the fourth trap night in each cycle traps were closed until the beginning 

of the foUowing trapping cycle. Traps were set an hour before dusk, and cleared after 
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sunrise. Once cleared, traps remained closed until resetting again one hour before 

dusk. To minimise environmental stress for animals in traps, the traps were covered 

with hessian and where possible placed under existing vegetation. 
----~~~~~--, 

Plate 2.8 Small Sheffield trap (20 em x 20 em x 58 em) 

2.3 Animal measurements and observations 

All bandicoots when first trapped were processed as follows: 

(i) Animals were placed in a dark calico bag for handling. They were weighed to 

the nearest gram, using a 2 kg or 5 kg spring balance. 

(ii) A number 1 trap-tag (National Band and Tag CO. Kentucky U.S.A.) was 

placed in each ear. 

(iii) Measurements were recorded for a number of morphological characters 

(Figure 2.3, Plates 2.7-2.9). 

• pes length (long) 

• head length ,. 
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• ear length, the distance from the notch at its base to the most distant tip of the 

auricle 

• tail length, from the hase of the tail to the tip 

• tail width, at the widest part near the base 

• forearm length, from the elbow to the most distant toe, not including the claw 

(iv) females the number of pouch young was recorded and sexed where possible. 

The presence of enlarged teats was used as an indicator of a previous litter. A 

pes length of 50mm was used to differentiate sexually mature females 

(Heinsohn, 1966; Mallick et al., 1998b). 

(v) For males, testis length was measured and for sexual maturity testes length 

;;, 17mm was used as an indicator for the production of sperm cells (Heinsohn, 

1966). 

All measurements except tail length were measured with vernier cailipers to the 

nearest 0.01 rnm. Tail length was measured with a ruler to the nearest 1 mm. Animals 

were weighed at each capture. In addition to the above measuremen~s. records of 

peculiar markings/injuries and general condition of the individual were made. These 

included scaning from fighting, condition of the tail, pouch condition and the degree 

of ear damage when tags were lost. When both ear tags were lost, it was still possible 

to determine wether the individual had been previously marked by the presence of 

puncture holes or tears. 
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To prevent the ejection of pouch young Fixomull tape was placed over the pouch. If 

pouch young were ejected then they were inserted back into the pouch with the 

subsequent application of Fixomull tape. If pouch young could not be inserted back 

into the pouch, then mother and pouch young were left together in a sealed bag for ··. . 

approximately one or two hours. After this time the bag was opened but left, so as to 

allow the mother leave on her own accord. All procedures were undertaken on site, 

and no animals were removed from the reserves. 

Figure 2.3 Diagram of measurements taken from I. obesu/us .. 

I: Head length 

2: Bartcngth 

3: Foreann length 

4: Tail length 

15: Pes length 
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Plate 2.9 Measurement of I. obesulus ear length. 

Plate 2.1() Measurement of I. obesulus pes length. 
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Plate 2.11 Measurement of/. obesulus forearm length 

2.4 Data analysis. 

Raw data was transferred into Excel 97 and where appropriate t-tests were applied . 

. 
For analysis of variance, raw data was transferred to SPPS version 6.1. All data was 

tested for normality. 

2.4.1 Population size 

A wide variety of models have been developed for mark-recapture methods. They 

generally belong to one of two general categories; those appropriate for closed 

populations and those appropriate for open populations. A closed model assumes that 

the popul,ation has a constant size during the study, where there are no permanent 
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deletions (deaths and/or emigration) or additions (births and/or immigration). An 

open model however does allow for additions and deletions from the population 

doring the entire stody. Althoogh closed models are statistically simpler than open 

models, they have a major disadvantage in that their use is limited to short-term 

studies only, where births and deaths can be ignored (Pollock eta/., 1990). When 

closed models are applied to open populations estimates will be significantly biased, 

usually overestimated, (Greenwood, 1997). 

There have been a variety of open models developed for mark-recapture studies. The 

parameters measured in these models include population size, survival rate, 

recmitment, and capture probability. These models are stochastic, so the parameters 

are subject to random variation during the study. The general method of choice for 

popuhtion size estimates using open models is the Jolly-Seber method, which allows 

for time variation in the population due to behavioural response or heterogeneity 

\Tanner, 1978; Pollock eta/., 1990; Greenwood, 1997). This multiple Mark -recapture 

procedure requires a minimum of three operations. However the calculations do not 

depend upon the captures being made at regular intervals. The Jolly-Seber method 

like all mark-recapture estimates requires a number of essential conditions. These 

conditions are. 

• There is no heterogeneity between animals in their catchability. 

• There is no trap response, that catching and marking do not affect mortality or 

emigration rates. 

• Emigration is pennanent. 

• Marked animals do not lose their marks and all marks are reported on recovery. 
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Bandicoots have a high reproductive rate (Lee and Cockburn, 1985), and in Western 

Australia/. obesulus may breed all year round (Craven, I 98 I). Because or this the 

Jolly-Seber method was chosen for this study since multiple recaptures were taken 

over u period of five months, so gains and losses in the population from births and 

deaths could not be excluded and so made it inappropriate to use a closed model. 

As the area of sampling is completely enclosed, it was assumed that immigration and 

emigration was not applicable. The program JOLLY (Krebs, I 995) was used to 

estimate population size, survival probability, and dilution rates from multiple 

censuses on open populations by means of the Jolly-Seber method. It calculates large 

standard errors from the formulae given in Seber (1982) and computes 95% 

confidence limits as given in Manly (1984). 

Variations in captures can produce huge biases in the estimates of population size. In 

bandicoot populations females may be trap shy (Heinsohn, I 966). Trap-shyness result 

in overestimates of population size and huge biases may be found in sex ratios. Other 

differences in catchability may be found if too few traps are used, or spacing of traps 

are too wide. If spacing between traps is too wide, some animal's home ranges may 

not include a trap. Home range size in I. obesulus has been shown to vary greatly 

between populations, ranging from 0.28-9.44 ha (Craven, 1981; Broughton and 

Dickman, I 991). The 80m spacings used in this study would adequately 

accommodate the I. obesulus home range sizes. 

As heterogeneity between animals in catchability can produce severe negative bias in 

the estimates of population size (Greenwood, I 997), tests of equal catchability were 
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done using the program LESLIE (Krebs, 1995). This program computes the Leslie, 

Chitty, and Chitty test of equal catchability appropriate to open populations subject to 

births and deaths and to data designed for the Jolly-Seber method of estimation 

(Krebs, 1989). 

Heterogenous capture probabilities, however, are relatively unimportant when avemge 

capture probabilities are high (Pollock eta/., 1990). Using the Jolly-Seber method 

Carothers ( 1979) found that even when strong evidence of heterogeneity was found 

the bias was negligible ( < 0.01 ). This illustrates the robustness of the Jolly-Seber 

survival rate estimator to heterogenous capture probabilities (Pollock eta/., 1990). 

2.4.2 Body size and condition 

For all morphologkal measurements values are given as means with SD. For 

statistical analysis Hests were used to compare the morphological characteristics 

between sexes, for adults, to test for sexual dimorphism. Monthly weights were 

compared between and within sexes and used as a condition indicator. The incidence 

of scarring was used as an indication of aggressive behaviour and was compared 

monthly between and within sexes. 

2.4.3 Reproduction 

Monthly reproductive condition of females was characterised by actively reproducing 

(with pouch young or enlarged teats) or not actively reproducing (no pouch young and 

no enlarged teats). Ratios were expressed in percentages. A one-factor ANOVA was 
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used to compare monthly litter sizes. A paired t~tcst was used to compare the number 

of young in nlittcr from first to last capture to determine if there is a significant loss 

of pouch young during trapping. The reproductive condition of females was separated 

into weight classes and u one~ factor ANOV A was applied to compare Jitter sizes. 

2.4.4 Age structure and sex ratio 

The age structure was divided into three main categories; Juveniles (growing and 

developing), Sub-adults (full-grown but not reproductive), and Adults. Sex ratios 

were observed monthly and pooled to determine if they differed from parity. Where 

necessary Chi-square analysis was used to test sex ratios for adults and pouch young 

against the assumption of parity. 

2.4.5 Movement 

I. obesulus movement was investigated using trapping data, where it was expressed 

as the mean distance moved by individuals between successive captures within 24 

hours and were examined in relation to sex. The maximum and minimum distances 

moved between any two captures, within a monthly trapping session was also 

calculated for both sexes. This technique is widely used as an index of relative 

movements (Copley et al., 1990; Friend, 1997; Leung, 1999; Short et al., 1998a). A 

one-factor ANOV A was applied to the distances moved between captures within 

monthly trapping sessions. At-test was applied to determine if there was any 

significant difference in the distances moved between sexes. 
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2.5 Ethical considerations 

Research on/. obe.mlu.\' was approved by the Edith Cowan University Animal 

Experimentation Ethics committee. The study was conducted under the license 

approved by the Department of Conservation and Land Management 

CHAPTER 3. RESULTS 

3.1 Trap and tag success 

Estimation of population size using mark and recapture methods relies for its 

precision on trap success and equal catchability of sub-groups. For example, 

differences in trap response may produce biases, and loss of identification marks/tags 

will lead to population estimates being overestimated. For these reasons, total trap 

StJccess and extent of ear tag loss were determined, and the success of recaptures of 

both sexes was compared. 

In this study, 754 trap nights yielded 343 captures, a trap success of 45%. There was a 

marked increase in trap success from May to June (Table 3.1). 

The mean± SE total number of recaptures for males was 5.2 ± 0.90 and for females 

4.5 ± 0.41, with no significant difference between the sexes (t56 = 0.89, P > 0.05). A 

large percentage of bandicoots (87 .8% of males, 93.5% of females) were caught on 

more than one occasion. These results suggest that there was no variability in trap 

response between the sexes and that there was no trap shyness in these animals. Only 
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two bandicoots, both females, were caught consecutively in the same trap within a 

single trapping session, suggesting any trap happiness was minimal. 

Table 3.1 Monthly trap success(%) of /. obesu/us on Ellen Brook Reserve. 

Trap success(%) 
May June July Aug. Sept. 

21.2 56.5 61.3 47.6 45.8 

No animals were excluded from the analyses due to tag loss. For recaptured animals, 

155 ear tags were applied. Forty of these tags were lost, resulting in a 25.8% tag loss. 

However only two animals were captured with both tags missing and these animals 

were easily identified from their descriptive features. Ear damage from tag loss was 

minimal. The high trap response of both sexes, with all individuals included in the 

analyses, provided a particularly good data-set for the estimation of population 

parameters. 

3.2 Population size and density 

Population size was estimated for June, July and August (Table 3.2) using the Jolly-

Seber method and varied between 56.1 and 48.3. The three monthly size estimates 

equate to density estimates of I .45, 1.43 and 1.24 bandicoots ha-' respectively. The 

population size decreased from June to August, however the probability of survival 

for marked individuals remained high. The 95% confidence limits calculated for the 

population estimates using the method of Manly (1984) are narrow and theSE are 

small, suggesting that sample estimates were close to the actual population mean. 
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The Leslie, Chilly, and Chilly Test of Equal Catchahility was applied to the marked 

segment of the population for the period July to August. This test estimated that 7.5 

new individm1ls entered the marked population, compared with the observed number 

of 7.0. This rcprcsellls, an over-estimate, of 6.7 %, which is a relatively small bias and 

so suggests that there is an equal catchability within the marked population. 

Table 3.2 Population size (mean± large SE) and associated parameters of 

/. obesufus in Ellen Brook Reserve, estimated using the Jolly-Seber method. 

Population size 95% confidence Probability of 
limits survival 

May 0.896 ± .064 

June 56.1 ±3.6 52.7 -64.9 0.881 ± .049 

July 55.6 ± 3.6 52-57.9 0.876 ± .054 

August 48.3 ± 6.5 45.4-50.4 

Number 
joining 

6.2 ± 2.6 

Q.4 ± 1.1 

The number of new bandicoots entering the trapped population decreased from June 

to July (Table 3.2) and during the August and September trapping sessions no new 

bandicoots were captured. These results suggest a low recruitment of I. obesulus into 

the population during this period and together with the high recapture success during 

the months of August and September, suggest that the majority of I. obesu/us from 

this population were trapped. 

The Jolly-Seber method does not distinguish between losses due to mortality and 

losses due to emigration. The probability of survival is therefore a reflection of these 

two factors combined. In this study of a small-enclosed reserve, where the total dry 
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foraging area was trapped, emigration was not a factor. Probability of survival is 

therefore largely a reflection of mortality rates. Although the probability of survival 

remained high, the Jolly-Scbcr method docs not compute values for the last two 

trapping sessions (August and September). During this period 50% of all males and 

20% of all females were not recaptured and this is reflected by the decrease in 

estimated population size in August. 

3.3 Body size and condition 

Sexual dimorphism was clearly apparent with adult male/. obesulus significantly 

larger and heavier than females (Table 3.3). Ear length was the only metric to exhibit 

no sexual dimorphism. Tail lengths have not been included because many bandicoots 

had lost a section of their tail. 

Table 3.3 Body dimensions (mean ± SD) of male and female/. obesulus. 

* P<0.05. 

Dimensions Male (n) Female (n) t-value 

Weight (g) 1030 ± 320 (15) 830± 180 (47) 2.30* 

Pes length (mm) 62.44 ± 3.14 (15) 56.97 ± 2.65 (47) 6.64* 

Head length (mm) 83.96 ± 5.53 (15) 79.59 ± 5.65 (44) 2.96* 

Forearm length (mm) 76.33 ± 5.68 (15) 70.50 ±4.57 (47) 4.01* 

Ear length (mm) 27.58 ± 3.77 (15) 27.56 ± 2.65 (47) NS 

Tail width (mm) 11.76 ± 1.01 (14) 10.79 ± 0.91 (45) 3.42* 
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Monthly weights were used as condilion indicators of the bandicoots during the study. 

The data presented in Figure 3.1 is from those animals caught at least once in each 

trapping session. Mct~n weights of both males and females decreased from May to 

August, with the trend being more marked in females (Figure 3.1 ). Both male and 

female weights incret~sed in September. However, unlike males, the females had not 

yet returned to the mean weight recorded at the beginning of the study. All bandicoots 

excluded from the analyses in Figure 3.1, also experienced weight loss between June 

and August and an increase in weight when recaptured in September. 

1000 

980 

960 

940 -"' 920 -~ 
"' 900 £1 

~ 880 

880 

940 

820 

BOO 
May June July 

Tl'applng session 
Aug. 

--Male 
-o-Female 

Sept. 

Figure 3.1 Mean monthly weights of adult/. obesulus. Error bars indicate one SE. 

The incidence of scarring was used as an indication of aggressive behaviour. Animals 

of both sexes showed an increase in the incidence of scarring over the trapping period 

(Figure 3.2). This was particularly evident in males. Scarring was more frequently 
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observed in males (68.8%) than females (49.9%). Individuals of both sexes had also 

lost sections of their tails during the study period. 
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Figure 3.2 The percentage of male and female /. obesulus showing evidence of 

scarring throughout the monthly trapping sessions in Ellen Brook Reserve. 

3.4 Reproduction 

3.4.1 Breeding 

Thirty-seven of the 49 females trapped showed signs of breeding (34 carrying pouch 

young and 3 with enlarged teats). Females with pouch young were tro.pped in all 

trapping sessions (Figure 3.3). The percentage of females carrying pouch young 

remained relatively stable during the months of May (46.7%), June (44.7%) and July 

(42.1%), but increased in August (62.9%) and September (74.2%). 
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Figure 3.3 Relative proportions of breeding J. obesulus females at each trapping 

session on Ellen Brook Reserve. 

3.4.2 Litter size 

Excluding recaptures, sixty-four litters, totalling 132 pouch young were recorded 

during the entire study. The mean± SE litter size was 2.1 ± 0.1 and sizes ranged 

between 1 and 5; with 2 being the most common (56.2%) of litters. There was no 

significant difference in the mean litter size between months (F4,80 = 2. 13, P> 0.05), 

though there was a trend of increasing litter size and size of range over the study 

period (Table 3.4). 

Ten out of 34 females lost a total of 13 pouch young (11 .9% of total young) between 

captures, from 11 litters, during the trapping period. A paired t-test was used to 

compare the number of young in a litter from the first to last capture to determine if 

pouch young mortality during trapping was significant. There was a significant 

difference between· the number of pouch young on the first and last capture present 
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over this period (lOR= 3.6, P > 0.05). The loss of pouch may have also already 

occurred before the first capture, which was indicated by vacant swollen teats. 

Table 3.4 Litter size and size range of litters of/. ohesulus for each trapping session. 

Litter size 

Mean± (SD) 

Range 

May 

1.7±0.5 

1-2 

June 

1.6 ± 0.6 

1-3 

July 

1.8 ± 0.5 

1-3 

Aug. Sept. 

2.0 ± 0.9 2.3 ± 1.0 

1-4 1-5 

The ejection of pouch young occurred only on a few occasions and only when young 

were well developed (fully furred and approximately 70 mm in body length). Only 

two pouch young were recorded as direct mortalities due to trapping. Both resulted 

from the mother treading on the ejected young. 

3.4.3 Reproduction within weight classes 

To determine if there was any weight-dependent pattern in reproductive status of 

females, bandicoots were clustered into weight classes as shown in Figure 3.4 and the 

number of reproducing females (as indicated by presence of pouch yoong or enlarged 

teats) was calculated for each weight class. No female I. obesulus below 500 g 

showed signs of reproduction. There was a marked change in the ratio of reproducing 

to non-reproducing females from the 601-700 g to the 701-800 g weight class. 

Although the highest number of actively reproducing females was found in the weight 

range 701-900 g, the ratio remained relatively unchanged until the 1101-1200 g 
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weight class. While only four females exceeded 1100 gin weight, all had pouch 

young. 

Figure 3.4 Female I. obesulus reproductive condition between weight classes on 

Ellen Brook Reserve 
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Table 3.5 presents the reproductive characteristics of I. obesulus clustered into weight 

classes. There was a significant effect of female weight class on mean litter size 

(F7,56 = 0.946, P < 0.05) though the relationship was not linear. However, there was a 

trend towards a wider range of litter sizes with increasing weight. As there is a large 

variation between numbers of females in each weight class, total pouch young 

numbers and number of li tters cannot be compared directly. 

The 700-1000 g weight range comprised 71 % of all the reproductively active females 

found in this population and contributed to 73% of all pouch young produced during 
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the study period. The 801-900 g weight class produced the highest number of pouch 

young and litter~. although female numbers were smaller thi.m tlmsc found in the 701-

800 g weight class. The optimum weight class for reproductive output in this 

population therefore appears to be 801-900 g. 

Table 3.5 Reproductive characteristics of/. obesulus among weight classes. 

Weight Mean Number of Pouch young Number of Mean number Number of 
Class (g) Litter size pouch young Range litters of litters Females 

501-600 2 2 1 1 1 

601-700 1.5 3 1-2 2 1 2 

701-800 1.93 27 1-2 14 1.4 10 

801-900 2.26 43 1-3 19 2.11 9 

901-1000 2 26 1-4 13 2.6 5 

1001-1100 1.3 4 1-2 3 1 3 

1101-1200 2.1 19 1-4 9 3 3 

1201-1300 2.67 8 1-5 3 1 1 

The highest number of actively reproducing females and the highest percentage of 

pouch young were both represented by the 701-1000 g weight range (Figure 3.4 and 

Table 3.5). Although some large numbers of pouch young were also found in higher 

weight classes they were only represented by a small number of females. Thus the 

bulk of the reproductive output is predominantly by females between 701-1000 g 

body weight. 
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3.4.4 Sexual maturity 

The smallesl female recorded wilh pouch young weighed 530 g, wilh a pes lcnglh of 

52 mm. In lhc sludics of Mallick et al.'s (1998b) and Heinsohn's (1966) lhc smallest 

breeding females had similar pes Ienglhs of 50 mm and 52 mm respectively. The pes 

length of 50 mm was therefore used to differentiate sexually mature females in the 

Ellen Brook Reserve population of/. obesulus .. Using this criterion, only two females 

were deemed to be sexually immature. 

For males,the smallest sperm producing testes lenglh was found to be 17 mm 

(Heinsohn, 1966). This length was lherefore used to differentiate sexually mature 

males. Using this criterion, only one male was sexually immature. The testes length 

(mean± SD) of the adults was 20.8 ± 2.3 mm, with a range of 17 - 27 mm. 

3.5 Age structure and sex ratio 

Fifteen males and 47 females were trapped during the study, resulting in a female 

biased 3:1 sex ratio. In the first trapping session, the sex ratio was not significantly 

different from parity (X2 = 0.615, P > 0.25). The subsequent trapping sessions yielded 

greater numbers of females, but not males (for the latter the trend was the reverse), 

resulting in consistently female-biased sex ratios (Figure 3.5). 

Of the 441itters that were sexed, the sex ratio of pouch young was not significantly 

different from parily (X2 = 1.16, P > 0.25). 
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Figure 3.5 Number of male and female I. obesulus caught in each trapping session. 

As only three sub-adults were caught during the study (1 male and 2 females), the 

captured population was dominated by sexually mature adults, with an increasing 

number of pouch young throughout the study period (Figure 3.6). 
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Figure 3.6 The age structure of I. obesulus in Ellen Brook Reserve. 
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Of the 3 sub-adults captured during the study, the male wus found in a very poor 

condition on its last capture (July), and died .,hortly after. One female was caught in 

June and the other in August and both were in good condition on their first capture. 

However one female had not gained any weight from June to August and was 

severely scarred at its last capture in August. 

Thus, the population was dominated by sexually mature adults, but with an increasing 

number of juveniles (as pouch young) throughout the study period. 

3.6 Movement 

I. obesulus movement was investigated using trapping recapture data. The distance 

males moved (mean± SD) over 24 hours was 213.3 ± 143.8 m (range 80-613 m) and 

for females it was 131.4 ± 94 m (range 0- 400 m). The difference in the mean 

distance moved between sexes over 24 hours was significant (tJB = 2.64, P < 0.05) 

with males showing the greater movement. 

To detennine if the distance bandicoots moved changed during the study period a 

one-way ANOV A was applied to the distances moved between captures within e3ch 

monthly trapping session. This was not significantly different for females ( F3•80 = 

.152, P > 0.05) but was significantly different for males ( F3.40 = 1.192, P < 0.05). 

Males increased their movement during the months of July and August. 
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As described previously the reserve was extended in 1994-95 ut the southern end by 

an enclosed fence. Trapping data was compared between the two areas (the original 

and extended nrea), to determine if bandicoots were utilising the extended area to the 

same degree as the original area. Trapping data wa~ also used to determine if there 

was any indication of an increase in movement into the extended area throughout the 

winter months, when foraging area is .substantially more reduced in the original area 

than the extended area. 

There was no significant difference in the mean captures of bandicoots per trap 

between the original and extended areas (t11 = 1.03, P > 0.05). Thus the population 

appears to have substantially dispersed into the extended area and there is no spatial 

heterogeneity in the population. However, differences were found in the trap success 

between monthly trapping sessions. Trap success increased steadily throughout the 

study period in the extended area, whereas in the original area it peaked in July with a 

decrease in August- September (Table 3.6). 

Table 3.6 Monthly trap success(%) of l. obesulus on Ellen Brook Reserve. 

Trapping area 
May 

Original area 19.1 

Extended area 7.1 

Trap 
June 

53.3 

39.3 

success(%) 
July 

58.6 

46.4 

Aug. 

48 

50 

Sept. 

48.6 

60.7 

All bandicoots trapped in the extended area were also trapped in the main area. No 

new bandicoots were trapped in the extended area in August and only one new 
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bandicoot wus trapped in this area in September. It had previously been captured 8 

times in the main area. These data suggest that bandicoots utilising the extended area 

at the beginning of the study had increased their foraging into this urea over the study 

period. At the same time, the filling of the ephemeral swamps was substantially 

reducing available foraging area in the original reserve. 

The number of different bandicoots caught at any one trap during the study was also 

used as an indication of home range overlap. The mean number of individual 

bandicoots caught at any one trap was 6.3, with a range from 2-11. Within sexes a 

maximum of 8 females or 5 males were caught at any one trap during the study. These 

results suggest that the bandicoot home ranges overlap considerably for both sexes 

throughout the reserve. 

Overall, these results indicate that there is a high degree of movement and home range 

overlap within the population for both sexes, but with males increasing their 

movement during the winter months. Bandicoots also appear to be utilising the 

extended area to a higher degree towards the end of winter, when the foraging area in 

the original main section is more reduced due to the increased coverage from 

ephemeral swamps. 
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CHAPTER 4. DISCUSSION 

4.1 J>opulution size and density 

The population size estimate equates to a relatively high density of/. ohesulus on 

Ellen Brook Reserve. This indicates that in the absence of exotic mammaJiun 

predators a small population of/. obesulus can substantially increase in size over a 

period of 9-ID years. Conversely, fox predation has been suggested to be a principal 

factor for the demise of/. obesulus on the mainland of Austrnlia (Ciarridge eta/., 

1991; Dell and How, 1988). In Western Australia, Dickman (1988a), also found that/. 

obesulus suffered relatively high predation from foxes, where 16 % of fox faeces 

collected contained I. obesulus fur. Most recently, fox predation is considered to be 

the principle factor limiting the size and distribution of a wide range of marsupial 

groups (Kinnear eta[., 1999). 

In Ellen Brook Reserve no sightings of I. obesulus were recorded prior to the erection 

of the vermin rroof fence and an intensified baiting program (using the compound 

1080) in 1990. The first sightings of/. obesulus occurred inside the enclosed section 

approximately 2-3 years after the erection of the fence (Kuchling, pers. comm.). Over 

this period to the present time, sightings steadily increased and recently a few 

sightings occurred outside the enclosed section in the south-western corner of the 

reserve near dense remnant vegetation (Martyn. pers. comm). Uuring this study no 

signs of bandicoots (scats or diggings) were found outside the enclosed section, 

however there were sightings of foxes and cats. These observations, together with the 
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trapping results of this study, suggest that the fox had a marked effect on/. ohesu/us 

numbers in the Ellen Brook area. 

Population densities of/. obesulus vary considerably across Australia between the 

study areas (Table 4.1 ). Part of this variation may reflect habitat differences between 

the areas./. obesulus has a preference for dense understorey (Dell and How, 1988; 

Friend, 1991; Mallick era/., 1998b), and the low densities 0f the Tasmanian studies 

(where the fox is absent) have been attributed to a lack of dense ground cover and 

prevalence of open pasture (Heinsohn, 1966; Mallick er al., 1998b). 

Table 4.1 Density estimates of lsoodon obesulus numbers (ha 1
). A summary of 

Australian studies. 

Density 
(nos.ha1

) 

Location Source. 

0- 0.35 Tasmania (south-east) Mallick et al. (1998b) 

0.07-0.2 Tasmania (north-west) Heinsohn (1964) 

1-5 Victoria (Cranbourne) Lobert and Lee (1990) 

1.8-2.7 Victoria (Cranbourne) Stoddart and Braithwaite ( 1979) 

0.01 -0.09 NSW (Eden) Claridge et al. ( 1991) 

1.3 -1.4 SA (Franklin Islands) Copley el al. (1990) 

0.4 WA (Tuttanning Reserve) Sampson ( 1971 ) 

0.61 -1.48 WA (Harry Waring Marsupial Craven (1981) 
Reserve) 

1-2 WA (Harry Waring Marsupial Broughton and Dickman (1991) 
Reserve) 

1.24- 1.44 W A (Ellen Brook Reserve) This study (1999) 

59 



However, the variation in density in these studies can also be correlated with 

presence/absence of exotic predators. Considering only Western Australian studies, 

the density of/. obe.mlus in Ellen Brook Reserve is similar to that in the Harry 

Waring Marsupial Reserve (Cruven, 1981; Broughton and Dickman 1991), but 

substantially higher than that in Tuttanning Reserve (Sampson, 1971). The history of 

the Harry Waring Marsupial Reserve is similar to that of Ellen Brook ReserV(\, where 

numbers of/. obe.mlus, have increased since the enclosure and exclusion of exotic 

mammalian predators (Monzu, I 970; Craven, I 98 I; Broughton and Dickman, I 99 I). 

Tuttaning Reserve, on the other hand, was an open reserve, with exotic mammalian 

predators present (Sampson, 1971). The Tuttaning Reserve study also included areas 

of open habitat and so differences may be also partly due to habitat preference. Low 

capture rates of/. obesulus in W.A have also been recorded on the Darling Scarp in 

areas with the presence of exotic mammalian predators, with the highest captures only 

found in dense heath understorey (Dell and How, 1988). 

Although high densities of/. obesulus have been found in the presence of exotic 

predators in Cranbourne, Victoria (Stoddart and Braithwaite, I 979; Lobert and Lee, 

I 990), the substantial area of dense heath understorey present can explain it. Lobert 

(1990) suggests that this understorey is virtually impenetrable to large mammalian 

predators, such as the fox, and so offers I. obesulus greater protection from 

mammalian predators. In this way, the dense heath habitat acts as a predation refugia 

(Kinnear et al., I 999). Exotic mammalian predators and habitat loss are both 

important factors contributing to the demise of/. obesulus and are possibly 

interconnected, with predation further exacerbated by loss of particular habitats. 
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Population size and density did not remain stable during the winter months in Ellen 

Brook Reserve, but instead decreased from July to August. This occurred 

concomitantly with a reduction in foraging area due to the filling of the swamps. In 

the absence of other contributing factors (eg mortality) one would expect an increased 

movement of bandicoots to the drier ground (where all traps were placed), with a 

resultant apparent increase in density (assuming that there was no trap saturation). 

Craven ( 1981) described such an increased density effect as a dry lakebed seasonally 

filled. Craven ( 1981) suggested that the increase in density resulted from bandicoots 

that had been forced to move out as the water level rose, rather than as a result of an 

influx of new recruits (no sub-adults were captured during this time). In contrast, in 

Ellen Brook Reserve, the/. obesulus population density actually decreased in August 

(reflected in the changes in population size estimates). The trap success was high 

throughout the study and it could be argued that a higher density of traps would be 

needed to reflect any real increase in density (eg two traps per trap site). However, 

trap success declined in August and September and in some locations, trap success 

was low throughout the study, even in areas which appeared to support ideal 

bandicoot habitat (eg dense heath). One possible explanation is that the population 

decrease is due to an increase in mortality toward the end of winter. 

4.2 Body size and condition 

Sexual dimorphism was clearly evident in /. obesu/us in Ellen Brook Reserve, with 

adult males significantly larger and heavier than females. This finding is consistent 

with other studies (Table 4.2). Dickman (1988a) suggests this may be strongly 
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associated with the polygynous muting system where competition between males is a 

selection pressure for larger body size (Selander, 1965; Lee and Cockburn, 1985). 

Growth rates of males and females arc similar up to 234 days of age (Thomas, 1984). 

It is possible that this sexual dimorphism may be due to a difference in longevity 

between males and females (Stoddart and Braithwaite, 1979), or to a difference in 

growth rates of males at maturity (Newsome, 1977). 

Table 4.2 A comparison of body weights for/. obesulus populations. 

Mean weight (g) Location Source 
Male Female 

1244.8 1000.6 Tasmania Mallick eta/. (1998b) 

614.19 476.09 Victoria Stoddart and Braithwaite ( 1979) 

1274 901 WA Dell and How (1988) 

1033 778 Victoria McKenzie (1967) 

1140 849 WA Thomas (1984) 

1165.9 946.6 Tasmania Heinsohn (1966) 

1030 830 WA This study (1999) 

There was a seasonal effect on body weight in both sexes of l.obesulus, with the 

lowest mean weights occurring in August. This seasonal pattern was more marked in 

females. Similar patterns have been found in an I. obesulus population on the Darling 

Scarp in Western Auslralia, where females were heaviest in spring-autumn and 

lightest in winter (Dell and How, 1988). Hall (1983) also found evidence of a seasonal 

effect on body weight in females in I. macrourus but not males. 

An explanation for why loss of body weight is found is that the seasonal changes are 

accompanied by a reduction in food resources and the filling of the swamps further 
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exacerbates this. Any subsequent increased m011ality rates would then be reflected in 

the decrease in population size in August. Fifty percent of all males trapped in the 

earlier months or the study were not recaptured in August or September, compared 

with 20% of females Thus while females body weight decreased more sharply than 

males, a larger percentage of the males were missing from the trapped population. 

Some of these males had not shown any degree of trap shyness prior to this. Two 

direct mortalities were recorded. One large adult female and one small sub~adult male, 

both died between August and September. So although body weight showed a 

seasonal effect, the decrease in body weight cannot be primarily attributed to the 

reduction of foraging area, as seasonal effects on body condition in bandicoots have 

also been found without a direct reduction in foraging area (Hall, 1983; Dell and 

How, 1988). 

The decline in body weight could reflect poor conditions during the winter months, 

which may be exacerbated by an increase in intraspecific aggression. Signs of 

intraspecific aggression (scarring) increased in both sexes, with the trend being more 

marked in males, over the study period. With a high density of animals in an enclosed 

reserve, the seasonal decline in foraging area could increase the probability of 

individuals coming into contact, resulting in an increased intraspecific aggression 

between individuals (shown from signs of scarring). 

I. obesulus is a solitary animal and when conspecifics come into contact there is often 

highly aggressive male- male behaviour and to a lesser degree female-male and 

female-female interactions (Heinsohn, 1966; Thomas, 1984). When aggressive 

behaviour has been observed, a submissive animal crouches with its back to the 
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dominant animal, which may then attack the submissive animal's back and rump 

region with its hind foot, removing hair (scarring) and sometimes scratching the skin 

(Heinsohn, 1966; Thonms, 1984). In an enclosed reserve in Western Australia 

Thomas ( 1987) found thai. there was a greater effect of intraspecific aggression 

(scarring) in male than female/. obesulus. It has been suggested that young females 

are more acceptable as recruits by mature bandicoots, than young males. (Thomas, 

1987). This is supported by findings that have shown up to 72 % of the attacks from 

large male /. obesulus > 1250 g are on smaller males (Dickman, 1988a) and more 

young males than females are evicted from their natal areas by dominant males 

(Stoddart and Braithwaite, 1979). It has also been shown that although /. obesulus are 

solitary animals a population can exhibit a male dominant hierarchy. this can also be 

seen in females to a lesser degree (McKenzie, 1967). 

An increase in evidence of intraspecific aggression in both sexes may not be only due 

to competition for resources from the decreased foraging area. During the trapping 

period, the percentage of breeding females increased and competition between males 

for mating rights may also have been another trigger for intraspecific aggression 

(Thomas, I 987). 

4.3 Reproduction 

Breeding occurred during the May-July period but showed a marked increase in 

August and September. These results are similar to ~hose found in other I. obesulus 

populations in Western Australia (Craven, 1981; Thomas, 1987; Dell and How, 

1988). During this study the July to August period appeared to be the optimal time for 
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breeding for/. obesulus in Ellen Brook Reserve, when 74.3 % of all females showed 

signs of breeding in August and 83.9% in September. 

Although litter size increased over the study period, the mean size of 2.1 is lower than 

that found in other studies both of/. obesulus and other bandicoot species (Table 4.3). 

It may be that litter size is adversely affected by the constraints of a relatively dense 

population in a small enclosure. /. obesulus show a high level of juvenile dispersal 
. 

(Stoddart and Braithwaite, 1979) and when population densities are high, dispersal 

may act as an important 'afety valve (Lidicker, 1962). When dispersal is limited, as in 

Ellen Brook Reserve, density-dependent behaviour may adversely affect the 

population condition (Christian and Davis, 1964; Wynne-Edwards, 1965; Chitty, 

1967; Myers, 1967). Small mean litter sizes have been found in island bandicoot 

populations (Table 4.3), where dispersal is also limited and population densities are 

high. (Copley eta/., I 990; Short et al., I 998a). The enclosure of Ellen Brook Reserve, 

creates, a similar island effect with similar impacts on reproduction. Environmental 

factors such as drought (Copley et al., I 990) and food abundance (La bert and Lee, 

1990) have also been suggested to affect Jitter size. When food abundance is low 

females produce both fewer and smaller litters (Lebert and Lee, I 990). At Ellen 

Brook Reserve, largest litter sizes were recorded in September, which was found in all 

other Western Australian studies (Craven, I 98 I; Thomas, I 987). 

The majority of actively reproducing female I. obesulus (71 %) in Ellen Brook 

Reserve fell within the weight range of70 I- I 000 g and contributed to 73% of all 

pouch young produced during the study. There were very few breeding females found 

in the weight classes below 701-800 g and no breeding females were found below 

530 g. So although young females have been shown to reach sexual maturity at a 
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Table 4.3 A comparison of litter size for bandicoot populations. 

Mean litter size Range Location Source 

Isodoll obesu/us 

3.05 1-5 Tasmania (south-east) Mallick eta/. (1998b) 

3.17 1-6 Victoria (Cranbourne) Stoddart & Braithwaite 

(1979) 

2.53 1-5 WA (Darling Scarp) Dell & How(l988) 

2.58 1-6 Victoria (Cranbourne) Lobert & Lee ( 1990) 

2.8 1-4 Tasmania Heinsohn (1966) · 

2.9 1-5 WA Thomas (1984) 

2.06 1-4 SA (Franklin Islands) Copley eta/. ( 1990) 

2.06 1-5 WA This study (1999) 

P. bougainville 

1.8 1-3 Dorre & Bernier Islands Short eta/. (i998a) 

I. macrourus 

2.7 1-5 Northern Territory G.R. Friend (1990) 

2.9 1-5 Queensland Hall ( 1983) 

P. nasuta 

2.44 NSW Lyne (1964) 

P. gunnii 

2.2 Victoria Dufty (1994b) 
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weight of only 530 gin this study, optimum, breeding condition, is not reached until 

the 701-800 g weight class. There is some evidence that body weight affects breeding 

condition in female bandicoots in Ellen Brook Reserve, with a trend of increasing 

ranges of litter size with increasing weight. Positive linear relationships between litter 

size and weight or age of females have been found in some bandicoot populations 

(Stoddart and Braithwaite, 1979; Hall, 1983; Short eta{., 1998a) but not in others 

(Lober! and Lee, 1990; Dufty, 1994b). Although body weights of females decreased 

from May to August, it does not appear to have affected the ability of females to 

breed throughout the winter months, since the percentage of females carrying pouch 

young continued to increase during this period. 

4.4 Age structure and sex ratio 

The adult sex ratio was female biased (3: I), which is an unusual outcome. Sex ratio of 

pouch young remained close to parity, suggesting that either mortality rates of post­

pouch stages differ between sexes, or that there is sex-dependent variation in trapping 

response. Sex ratios of bandicoot populations vary across studies (Table 4.4). Where 

substantial bias occurs, it usually favours males. The pouch young sex ratios in 

bandicoots are predominantly close to parity. Thus biased adult sex ratios are 

reflective of other influences such as differential sex dispersal ratios out of the 

population (Stoddart and Braithwaite, 1979), predation (Dickman, 1988a; Claridge et 

al., 1991; Dufty, 1994b) and variability in trap response between sexes. Variability in 

trap response between sexes is thought to be due to differences in trap shyness, trap 

happiness, home range size and habitat preference. 
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Table 4.4 A comparison of sex ratios in bandicoot populations. 

Adult Pouch Young Location Source 
rJ : ~ rJ : ~ 

-----
I. obesulus 

I : 1.2 I : 1.4 Tasmania Mallick et al. ( 1998b) 

I : 1.2 Victoria Stoddart and Braithwaite ( 1979) 

10 : I NSW Claridge eta/. ( 1991) 

I : I 1.4: I SA Copley et al. (1990) 

I : 1.6 WA Craven (1981) 

I: 2 I : I WA Thomas ( 1987) 

I :0.5 I : I WA Dell and How (1988) 

2: I WA Dickman ( 1988a) 

1.4: I I : 1.2 Tasmania Heinsohn (1966) 

I :0.6 WA Thomas (1984) 

P. Bougail•ville 

1.7 : I 1.2: I WA Short eta/. (1998a) 

I. macrourus 

1.5 : I QLD G.R. Friend (1990) 

I :I I : 0.8 QLD Hall (1983) 

P. gunnii 

2 : I Victoria Clark et al. (1995) 

1.1 : Victoria Brown (1985) 

1.7 : I I : I Victoria Dufty ( 1994b) 

2.1 : I 1.2 : I Victoria Dufty (1991) 

I : I 1.2 : I Tasmania Heinsohn ( 1966) 
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Male biased populations have been attributed to female trap shyness (Heinsohn, 1966) 

and the larger home range of males (Heinsohn, 1966; Craven, 1981; Copley el a/., 

1990; Mallick eta/., 1998b). Variability in trap response did not play any role in the 

Ellen Brook Reserve/. obesulus population. A large pcrcenlage of bandicoots of both 

sexes were caught on more than one occasion, only two bandicoots were caught 

consecutively in the same trap within a single monthly trapping session and there was 

no significant difference in recaptures between the sexes (t56 = 0.89, P > 0.05). Sex­

dependent habitat preferences could also result in sex ratio biases if trap locations are 

not representative of all habitat types (Stoddart and Braithwaite, 1979). In this study 

trap locations included all the habitat types found in the enclosed reserve and there 

was no variability in trap response which could be correlated with habitat type. 

Fox predation has been proposed as a major factor leading to male biased bandicoot 

populations (Dickman, 1988a; Claridge eta/, 1991 ). Dominant males are thought to 

occupy dense understorey, forcing sub-adults and adult females into sub-optimal 

habitat (Dufty, 1994b), which is more exposed to predators (Dufty, 1991 ). Like this 

study in Ellen Brook Reserve, studies which found female biased populations were in 

a enclosed reserve, where exotic predators are excluded (Craven, 1981; Thomas, 

1987) or in open areas without the presence of the fox, such as Tasmania (Mallick et 

al., 1998b). However in the latter study the adult female bias could be reflective of a 

female bias in pouch young (Table 4.4). One study has shown a female biased ratio in 

an l. obesulus population in Victoria (Stoddart and Braithwaite, 1979). The trapping 

area contained primarily very dense heathland, which is virtually impenetrable to 

animals any larger than bandicoots and so offers greater protection from large 

mammalian predators, such as the fox (Lobert, 1990). This would provide sufficient 

69 



optimum habitat for both sexes and us thP-re would be little sub-optimum habitat that 

dominant males could force sub-adults and adult females into, so differential fox 

pred~uion between sexes may not occur. This suggests that where there is a high 

degree of open pasture or understorey, fox predation will skew the population sex 

ratios towards males. 

There is a predominance of males in all studied populations of bandicoots in 

Australia where the fox is present (Table 4.4). In addition the decline of some island 

populations (where the fox is absent) has been attributed to cat predation (Short eta/., 

J998b) and this may account for a small adult male bias found in Tasmania 

(Heinsohn, 1966). These results suggest that in the absence of fox predation, a female 

biased population can occur. However, some bandicoot populations on islands are 

male biased in the absence of exotic mammalian predators (Short et al., 1998a). 

Although this appears to be due to trapping response (Short et al., 1998a) and so may 

not be a true reflection of the actual population. Short et al. (1998a) did find that there 

were periods when sex ratio was skewed towards females on both Bernier and Dorre 

Islands and a previous study on Dorre Island had shown a predominantly male biased 

population (Richards and Short, 1996). The predominance of males was highest 

during the breeding season, when there is greater mobility of males and when females 

carrying large pouch young may be Jess likely to leave or forage far from their nest 

and therefore Jess likely to encounter traps (Short et al., 1998a). 

What are the possible reasons for female biased ratios in the absence of the fox? In 

non-enclosed areas it could be due to a higher dispersal rate of males, a common 

feature of both eutherian (Greenwood, 1980; Holekamp and Sherman, 1993), and 
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marsupial (Johnson, 1989; Cockburn eta/., 1985) populations. In enclosed areas 

where dispersal is limited there may be a higher male mortality rat.c. There is a higher 

rate of dispersal of independent juvenile bandicoots (Stoddart and Braithwite, 1979; 

Brown, 1985) and this predominantly applies to males which are thought to be 

aggressively evicted from their natal areas by dominant males (Stoddart and 

Braithwaite, 1979; Dickman, 1988a). 

In the enclosed Ellen Brook Reserve, the sex ratio became increasingly female biased 

over the study period. From July onwards, this was due to fewer adult males being 

trapped together than an increase in females. As the breeding pattern in /. obesulus in 

Western Australia would show a very low natality rate in the previous autumn months 

and with a limited dispersal area, one inference which can be made, is that there was a 

higher mortality of adult males. As dispersal is limited, aggressive behaviour may 

increase between males (Thomas 1987). This may result in increased mortality, either 

directly or indirectly from an increase in stress. Such potential mortality would be 

exacerbated by the seasonal decline in forging area due to the filling of the ephemeral 

swamps. Animals forced into the surrounding drier areas may not find a suitable home 

range size, unless a new vacant horne range becomes available from a loss of a 

previous bandicoot (McKenzie, I 967). This in turn will increase intraspecitic 

competition, which may result in an increased mortality. An increased in mortality in 

adults is reflected in the decreasing population size from July to August and the 

suggestion of a higher level of male mortality is supported by a larger percentage of 

missing males in August and September. An increase in aggressiv~ behaviour is 

suggested by the higher ratio of the incidence of scarring which is more markedly 

apparent in males. Thus limited dispersal opportunities may change behaviour 
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puuerns, which increases the mortality rate of males rather than females. More 

research is needed on the dispersal patterns of bandicoots with a focus on limited 

space. 

Adults dominated the /. obesulus j\ge structure in EBen Brook Reserve. The low 

number of sub-adults in this population may have been a consequence of a lower 

reproductive rate during the previous late summer and autumn months (Craven, 1981; 

Thomas, 1984; Thomas, 1987; Dell and How, 1988), rather than a low trapability of 

sub-adults. Age structures in bandicoot populations are not static but change 

seasonally as a result of changes in the reproduction rate and environmental factors 

such a> climate and food availability (Craven, 1981; Copley et al., 1990, Dufty, 

1994a). 

Some bandicoot populatious, which are in a declining phase, often exhibit a 

population structure dominated by older individuals (due to a decreasing number of 

young). This pattern is more marked in females due to predominant loss of young 

adult females (Claridge et al., 1991; Dufty, 1994a). In Ellen Brook Reserve adult 

males are predominantly in a larger weight class (;o, 750g), whereas the adult females 

show a relatively normal distribution. The male population could be said to be in a 

declining phase. The increasing sex ratio bias towards females reflects this. The low 

recruitment of sub-adults into the population during the study, with a decrease in 

population size, suggests that the population was declining towards the end of winter. 

This decline is shown predominantly in the males and suggests a higher mortality rate 

of males. However this effect may be seasonal and the limited time period of this 

study limits inferences, which can be made. 
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4.5 Movement 

The mean distances moved by bandicoots, at Ellen Brook Reserve between captures, 

with males recording greater distances than females, is similar to that found by Dell 

and How (1988) in the Darling Scarp (WA). The greater distances moved in 

/. obesulus males is a common finding in a number of studies (McKenzie, 1967; 

Lebert, I 990; Broughton and Dickman, 1991, Mallick eta/,. I 998b ). The larger home 

range of male bandicoots is 'attributed to a larger body size (Craven, 198 I) and 

provides the potential for access to a greater number of females (Thomas, I 984; 

Courtenay, 1995). The increase in movement of males over the study period may 

reflect their increased home ranges to better access to receptive females (Copley et 

a/., I 990; Short et al., 1998a). Increa<es in the number of actively breeding females in 

Ellen Brook Reserve also occurred at this time. 

The large number of individuals caught at any one trap suggests that home ranges 

overlap considerably. Broughton and Dickman (1991) suggest that at low population 

densities, if resources are defendable and intruder pressure low,!. obesulus will be 

territorial but when population densities are high it will occupy high overlapping 

ranges. There is considerable support for this inference in the literature ( Heinsohn, 

1966; McKenzie, 1967; Craven, I 981; Copley et al., 1990; Lobert, I 990; Mallick et 

a[., 1998b). The data in this study support this, as there appears to be a large degree of 

home range overlap when population density is high. 
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Particular consideration of the extended section added in 1994 to Ellen Brook Reserve 

provides additional interesting insights into the movement of these bandicoots. The 

habitat in the extended area is substantially more open and degraded than that of the 

original area but is less affected by the ephemeral swamps, with approximately 10% 

of its area under water during the winter months compared to 50% in the original 

area. Bandicoots appeared to be utilising the extended area to the same degree as the 

main area, however bandicoots increased their movement into the extended area. This 

suggests that the bandicoots, which included the extended area in their home range at 

the beginning of the study, were utilising this area to a higher degree as the adjacent 

original area became inundated with water. 

4.5 General discussion 

Fox predation has been suggested as a primary factor for the demise of bandicoot 

populations and male biased sex ratios (Dickman, 1988a; Clarridge et al., 1991; 

Dufty, 1994b). As bandicoots have a high fecundity (Thomas, 1984; Lobert and Lee, 

1990) and are able to recolonise new habitats quickly (Stoddart and Braithwait, 1979), 

given the protection from exotic mammalian predators, this study suggests that 

/. obesulus numbers are able to increase to a relatively high density from a small 

number of individuals, though with a sex ratio that is female biased, while the sex 

ratio was close to parity at the beginning of the study, this may have been due to an 

initial lower trap response of females and not a true representation of the whole 

population. The female biased sex ratio increased throughout the study and this was 

not due to a continued change in trap response in the females but mainly to a decrease 

in the number of males trapped. During the study there was a reduction in foraging 
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area due to the seasonal filling of the ephemeral swamps. The decrease in the foraging 

areu and other severe environmental changes such as the climate coincided with a 

reduction in mean body weights for both sexes and an increase in signs of 

intraspecilic aggression (scarring), with a subsequent decrease in the population size 

estimate from July to August. These observations suggest that there was a higher 

mortality rate due to changes in the environmental conditions. However this may be 

partly due to lower recruitml.!nt of sub-adults into the population during this period. 

The higher percentage of all the males compared to the females not recaptured during 

August and September reflects the decrease in the population size estimate and 

suggests a higher mortality rate in the male population, increasing female bias of the 

sex ratio. The constraints of a small-enclosed reserve exacerbated by a seasonal 

reduction in foraging area may result in a higher male mortality rate. This may be due 

to the limited dispersal of males, which are the predominant dispersers rather than 

females (Stoddart and Braithwaite, 1979) and the males lower tolerance towards other 

males rather than females (Thomas, 1984; Dickman, 1988a). This would be 

exacerbated during the peak breeding season and so results in an increase in mortality 

either directly or indirectly from stress due to intraspecific aggression. The reduction 

in foraging area does appear to have some effect on the pattern of bandicoot 

movement where bandicoots are forced to utilise the higher drier areas in the extended 

area even though the extended area is somewhat degraded. 

Although the reserve is small and enclosed, it does not appear to adversely effect the 

fecundity, except for a slightly smaller mean litter size. an observation which has also 

been found in island bandicoot populations (Copley et al., 1990; Short et al., 1998a). 

Although there was a decrease in the body weights found in both sexes from May to 
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August, with a reduction in the foraging area, these factors also did not appear to have 

any adverse effect on the fecundity of this/, obe.mlus population. The numbers of 

actively reproducing females, mean litter size and mean litter range all continually 

incrensed, over this period (May-August). 

The small time scale limited the study. Trapping was carried out during a time of low 

recruitment of sub-adults into the population and so the low numbers (3) of this cohort 

meant that sex ratios could not be calculated. As 4 of the '5 trapping months were done 

during the period when that the ephemeral swamps filled. traps could not be placed in 

these areas to determine if bandicoots were in fact using them when dry. 

The results of this study have raised a number of questions. There has been no 

detailed research on the dispersal patterns on bandicoots, on whether dispersal varies 

with sex, density and environmental changes. Are female biased sex ratios the nann 

in the absence of the fox, or are they a result of the constraints of a small enclosure? 

The observations of bandicoots since in and around Ellen Brook Reserve suggest that 

this population grew from a small number of individuals. The population therefore 

provides a unique opportunity to study the genetics of a small population arising from 

a bottle-neck situation. More long-tenn studies in areas with and without foxes in 

open and dense habitats in unenclosed and enclosed areas would provide important 

information for the long-term management and survival of this species. Although this 

study and others suggest that fox predation is a primary factor in the demise of 

bandicoots, effecting changes in sex ratio and age structure, other factors such as a 

Jack adequate optimum habitat and dispersal opportunities m_ay play important roles. 
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