KABAY

rehabilitation environmental and biological CONSULTANTS Pty Ltd

ACN 085 315 546
252 French Street
Tuart Hill
WA 6060
Phone 61-08 9349 0401
FAX 61-08-9349 0401

Email <u>dkabay@iinet.net.au</u> Mobile 0417 950 508

ABN 20 085 315 546

Salinity Action Plan

Wetland Vegetation Monitoring

2001/2002

Report

July 2002

ED Kabay

Contents

Introduction	7
Methods	7
Data Collection	8
Invitro soil salinity	8
Digital Photographs	11
Retagging	
GPS Measurements	
Data analysis	
Lake View (Blue Gum Swamp)	13
Description	13
Transects	
Results	
Population Structure and Tree Vigour	13
Changes in understorey composition	15
Soil Characteristics	
Summary	17
Maisey's Wetland 1	19
Description	19
Transects	19
Results	19
Population Structure and Tree Vigour	19
Changes in understorey composition	22
Soil Characteristics	24
Summary	24
Maisey's Wetland 2	25
Description	25
Transects	
Results	25
Population Structure and Tree Vigour	25
Changes in understorey composition	26
Soil Characteristics	
Summary	27
Lake Logue	29
Description	29
= += + · · · · · · · · · · · · · · · · ·	

Transects	29
Results	29
Population Structure and Tree Vigour	29
Changes in understorey composition	
Soil Characteristics	31
Summary	
Walyormouring Lake	33
Description	33
Transects	33
Results	33
Population Structure and Tree Vigour	
Changes in understorey composition	
Soil Characteristics	35
Summary	35
Lake Eganu	37
-	
Description	37
Transects	37
Results	37
Population Structure and Tree Vigour	37
Changes in understorey composition	39
Soil Characteristics	41
Summary	41
Ardath Lake	43
Description	43
•	
Transects	
Results	
Population Structure and Tree Vigour	
Changes in understorey composition	
Soil Characteristics	
Summary	4 /
Lake Campion	49
Description	49
Transects	49
Results	49
Population Structure and Tree Vigour	49
Changes in understorey composition	55
Soil Characteristics	61
Summary	62
L/PRINCIPLE V	

Paperbark Swamp	 6 4
Description	64
Transects	
Results	64
Population Structure and Tree Vigour	64
Changes in understorey composition	67
Soil Characteristics	69
Summary	69
Goonaping Swamp	71
Description	71
Transects	71
Results	71
Population Structure and Tree Vigour	71
Changes in understorey composition	74
Soil Characteristics	78
Summary	<i>78</i>
References	80
Figure 1 Size Class Distributions for Casuarina obesa, Eucalyptus rudis and Melaleuca strobop at Lake View.	15
Figure 2 Species Distribution along Lake View Transect 2 in 1998 and 2002	16
salmonophloia and Melaleuca strobophylla for Maisey's Wetland 1	21
Figure 4. Species Distribution along Maisey's Wetland 1 Transect 1 in 1998 and 2002	22
Figure 5. Species Distribution along Maisey's Wetland 1 Transect 1 in 1998 and 2002	23
Figure 6. Size Class Distributions for <i>Melaleuca strobophylla</i> Maisey's Wetland 2	26
Figure 7. Species Distribution along Maisey's Wetland 2 Transect 2 in 1998 and 2002	27
Figure 8. Size Class Distributions for <i>Casuarina obesa</i> and <i>Melaleuca strobophylla</i> at Lake Log	27 mie 30
Figure 9. Species Distribution along Lake Logue Transect 2 in 1997 and 2000	31
Figure 10. Size Class Distributions for Casuarina obesa for Walyormouring Lake	34
Figure 11. Species Distributions for Castacrina obesa for Waryormouring Eakermanning Figure 11. Species Distribution along Walyormouring Lake Transect 1 in 1998 and 2002	34
Figure 12. Species Distribution along Walyormouring Lake Transect 2 in 1998 and 2002	35
Figure 13. Size Class Distributions for Casuarina obesa, Eucalyptus loxophleba, and Melaleuc	а а
strobophylla at Lake Eganu	39
Figure 14. Species Distribution along Lake Eganu Transect 1 in 1998 and 2002	40
Figure 15. Species Distribution along Lake Eganu Transect 2 in 1998 and 2002	40
Figure 16. Species Distribution along Lake Eganu Transect 3 in 1998 and 2002	40
Figure 17. Size Class Distributions for Casuarina obesa and Eucalyptus yilgarnensis at Ardath.	44
Figure 18. Species Distribution along Ardath Lake Transect 1 in 1998 and 2002	45
Figure 19. Species Distribution along Ardath Lake Transect 2 in 1998 and 2002	46
Figure 20. Size Class Distributions for Acacia acuminata, A? prainii, Acacia sp, Alyxia buxifol.	ia,
Bossiaea ?rufa, Callitris glaucophylla, Dodonaea filifolia, Eremophila oppositifolia angus	tifolia,
Eucalyptus vilgarnensis Melaleuca uncinata and M pauperiflora at Lake Campion	55
Figure 21. Species Distribution along Lake Campion Transect 1 in 1998 and 2002	56

Figure 22. Species Distribution along Lake Campion Transect 2 in 1998 and 2002	5 /
Figure 23. Species Distribution along Lake Campion Transect 3 in 1998 and 2002	
Figure 24. Species Distribution along Lake Campion Transect 4 in 1998 and 2002	59
Figure 25. Size Class Distributions for Eucalyptus loxophleba, Eucalyptus yilgarnensis, Melaleuc	са
lateriflora, and Melaleuca strobophylla at Paperbark Swamp	
Figure 26. Species Distribution along Paperbark Swamp Transect 1 in 1998 and 2002	68
Figure 27. Species Distribution along Paperbark Swamp Transect 1 in 1998 and 2002	68
Figure 28. Species Distribution along Paperbark Swamp Transect 1 in 1998 and 2002	68
Figure 29. Size Class Distributions for Eucalyptus wandoo, Eucalyptus rudis, Eucalyptus margin	ata
and Melaleuca preissiana at Goonaping Swamp	73
Figure 30. Species Distribution along Goonaping Swamp Transect 1 in 1997 and 2000	74
Figure 31. Species Distribution along Goonaping Swamp Transect 2 in 1998 and 2002	75
Figure 32. Species Distribution along Goonaping Swamp Transect 3 in 1998 and 2002	76
T : (CCD 11	
List of Tables Table 1 In vitro soil salinities of selected location within a transect. (see Methods for definition o	f
"Dist along" and "Dist out"	
Table 2. Summary of Tree Data for Lake View	
Table 3 Summary of understorey species distribution in all Transects at Lake View	
Table 4 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lake	
View over the two sampling periods	
Table 5 Summary of Lake View Data	
Table 6. Summary of Tree Data for Maisey's Wetland 1	
Table 7 Summary of understorey species distribution in all Transects at Maisey's Wetland 1	
Table 8 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Mai	
over the 3 year period	
Table 9 Summary of data for Maizey 1	
Table 10. Summary of Tree Data for Maisey's Wetland 2	26
Table 11 Summary Of Understorey Species Distribution In All Transects At Maisey's Wetland 2	27
Table 12 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at	2 ,
Maizeys 2 over the two Sampling Periods	27
Table 13 Summary of Data for Lake Maisey 2	28
Table 14. Summary of Tree Data for Lake Logue	
Table 15 Summary Of Understorey Species Distribution In All Transects At Lake Logue	
Table 16 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lal	
Logue over the Two Sampling Periods	
Table 17 Summary of data from Lake Logue	
Table 18. Summary of Tree Data for Walyormouring Lake	
Table 19 Summary Of Understorey Species Distribution In All Transects At Walyormouring Lak	37 ~ 35
Table 20 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lal	
Walyormouring over the Two Sampling Periods.	
Table 21 Summary of data for Lake Walymorouring	36
Table 22 Summary of Case Date for Lake Walythorouting	30
Table 22. Summary of Tree Data for Lake Eganu	ጋታ ለበ
Table 24 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lal	1 0 ke
Eganu over the Two Sampling Periods	
Table 25 Summary of data for Lake Eagnu	
Table 26. Summary of Tree Data for Ardath Lake	7 ∠ 1/1
Table 27 Summary of Tree Data for Ardath Lake	77
Table 27 Summary Of Understorey Species Distribution in All Transects At Ardam Lake	+∪

Table 28	Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lake	
Arda	ath over the Two Sampling Periods	47
	Summary of data for Lake Ardath	
	Summary of Tree Data for Lake Campion	
Table 31	Summary Of Understorey Species Distribution In All Transects At Lake Campion	59
	Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lake	
Cam	pion over the Two Sampling Periods.	62
Table 33	Summary of data for Lake Campion	62
Table 34.	Summary of Tree Data for Paperbark Swamp	67
	Summary Of Understorey Species Distribution In All Transects At Paperbark Swamp	69
	Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at	
Pape	erbark Swamp over the Two Sampling Periods	69
Table 37	Summary of data for Paperbark Swamp	70
Table 38.	Summary of Tree Data for Goonaping Swamp	74
	Summary Of Understorey Species Distribution In All Transects At Goonaping Swamp	77
	Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at	
Goo	napping Swamp over the Two Sampling Periods	78
Table 41	Summary of data for Goonapping Swamp	78

Introduction

This report represents the results of the second monitoring period of a subset of lakes of the vegetation component of a project designed to provide on-going monitoring of wetland salinity and biological resources in wetlands of the agricultural zone of south-west Western Australia. Maintenance of wetland biological diversity in the agricultural zone is one of the major objectives of the Salinity Action Plan. Due to their low position in the landscape, wetlands are the habitat most affected by salinisation

The wetland monitoring project has four specific objectives, only one of which is relevant to this report:

- 1) Analyze and report trends in salinity and depth of agricultural zone wetlands monitored by CALM since 1978.
- 2) Monitor salinity, depth and nutrient status of a broad range of wetlands.
- 3) Monitor water birds, fish, frogs and aquatic invertebrates in a sub-set of wetlands to measure any changes in fauna of the wetlands.
- 4) Monitor floristic composition and tree health in the same sub-set of wetlands to measure any changes in flora occurring in, and around the wetlands.

Work presented in this document is an integral part of the overall project and will specifically address the fourth objective. Information from other components of the project that address the remaining objectives, will be used to interpret change in the vegetation and the impact this may have on fauna.

The objective, scope and approach of the study are outlined in the first report for this set of lakes (R. Gurner, R. Froend and G. Ogden 1999).

During 2001/02, vegetation was re-assessed at 9 wetlands, which had been initially measured in 1998/99 namely:

Site	Category
Logue	Fresh
Eganu	2° saline
Lake View	Declining
Walyormouring	2° saline
Dowerin	Fresh
Campion	1° saline
Goonaping	Fresh
Ardath Lake	1° saline
Paperbark	Fresh

Methods

The same methods as outlined in R. Gurner, R. Froend and G. Ogden (1999) were used in the second monitoring program for these lakes except for the following. Where the exact method could not be clearly understood the following were used.

Seedling: This was defined as small plants usually less than 2mm (but could bee larger) in Diameter at Breast Height but did not have their Mean Crown Score (MCS)measured. Rather their crown was defined as being healthy, stressed, slightly stressed or very stressed. The "seedling" data referred to in

Tables that document "Summary of Trees Data..." for the various lakes refers to these "seedlings". The MCS then refers to only "trees" and a "tree" is defined as having its Crown Scored.

The data for the histogram referred only to trees and seedlings that had their DBH measured. The data in the Table above and the histogram may not co inside regards to "Seedlings" and "Numbers <2cm"

Data Collection

The lakes were visited between late spring 2001 and late summer 2002. Some lakes had to the re visited or delayed being surveyed because access to some transects were limited by the presence of lake water.

Invitro soil salinity

As the salinities (EM38 measurements both in the vertical -deep 1.5m salinities- and the horizontal-shallow salinities modes) of the various locations within a transects were being made, soil samples were collected from the top 10cm in the area where the soil conductivities with the EM38 meter were being carried out. These were stored in labeled plastic bags and taken back to the laboratory (Murdock University)

"Dist (Distance) out" is the distance from the datum peg (left hand side facing lake at which the GPS reading was taken) along the base of the transect. It can be left hand side=0m, middle=10m or Right hand side or boundary of the transect =20m from the datum peg. "Dist (Distance) Along" is the distance from the 20m side of the transect along the transect towards the lake (see GPS Readings following)

Electrical conductivity of soil solution was determined using a 1:5 (w/v) soil water extract. Samples were prepared as per Rayment and Higginson (1992) with the following modifications.

Soil samples were air-dried and sieved where necessary to remove course particles (>2mm). 50 ml of deionised water was added to 10 ± 0.05 g of soil in a centrifuge vial.

The samples were shaken in a rotary mechanical shaker for 60 minutes and centrifuged for 10 minutes at 4000 rpm before electrical conductivity of supernatant liquid was measured with a Hanna HI 8733 electrical conductivity meter

The data is tabulated in Table 1. The code is as follows

Code	Lake	Code	Lake
	Ardath Lake	LV	Lake View
CAMP	Campion	LW	Walyormouring
	Goonaping	MAI (1)	Dowerin 1
LE	Eganu	MAI (2)	Dowerin 2
LOG	Logue		
PB	Paperbark		

Table 1 In vitro soil salinities of selected location within a transect. (see Methods for definition of "Dist along" and "Dist out"

Lake	Transect	Dist along	Dist out	mS/m
AL	T1	0	0	823
AL	T1	8	20	1916
AL	T1	8	10	1008
AL	T1	16	0	1687
AL	T1	20	20	1181
AL	T1	24	10	1029
AL	T1	32	20	409
AL	T1	36	10	641
AL	T1	36	0	767
AL_	T2	0	0	50.7
AL	T2	4	20	315
AL	T2	8	10	148.8
AL	T2	16	0	528
AL	T2	20	10	559
AL	T2	24	20	835
AL	T2	32	0	1181
AL	T2	36	10	681
AL	T2	40	20	987
CAMP	T1	0	20	36.2
CAMP	T1	4	0	45.2
CAMP	T1	88	10	22.2
CAMP	T1	16	20	39.6
CAMP	T1	20	0	108.2
CAMP	T1	24	10	77.4
CAMP	T1	28	20	3.27
CAMP	T1	32	0	3.86
CAMP	T1	36	10	9.56
CAMP	T1	40	20	8.6
CAMP	T2	0	0	10.47
CAMP	T2	0	20	4.2
CAMP	T2	4	10	34
CAMP	T2	12	20	3.18
CAMP	T2	16	0	2.74
CAMP	T2	20	10	1.83
CAMP	T2	28	20	1.22
CAMP	T2	28	0	1.82
CAMP	T2	36	10	12.83
CAMP	T2	40	0	7.98
CAMP	T2	44	20	5.17
CAMP	T2	52	0	849
CAMP	T2	56	10	9.9
CAMP	T2	60	20	42.2
CAMP	T3	0	10	2.4
CAMP	Т3	4	20	17.4
CAMP	T3	4	0	15.66
CAMP	T3	12	10	36.4

Lake	Transect	Dist along	Dist out	mS/m
CAMP	T3	20	0	10.82
CAMP	T3	20	20	9.77
CAMP	Т3	28	10	53.4
CAMP	T3	32	0	10.99
CAMP	T3	36	20	1.09
CAMP	Т3	44	10	3
CAMP	T3	48	0	17.08
CAMP	Т3	50	10	58.6
CAMP	Т3	52	20	2.98
CAMP	Т3	60	0	228
CAMP	T4	0	0	5.02
CAMP	T4	4	10	2.89
CAMP	T4	12	20	3.65
CAMP	T4	20	0	23.5
CAMP	T4	24	10	97
CAMP	T4	28	20	14.1
CAMP	T4	36	10	540
CAMP	T4	40	0	301
GOO	T1	0	10	4.26
GOO	T1	4	0	7.24
GOO	T1	12	20	3.67
GOO	T1	16	10	5.44
GOO	T1	24	0	4.23
GOO	T1	32	20	3.12
GOO	T1	36	10	6.71
GOO	T1	44	0	4.19
GOO	T1	48	20	4.86
GOO	T1	52	10	6.99
GOO	Tl	60	0	5.58
GOO	T2	0	0	2.78
GOO	T2	4	10	2.74
GOO	T2	12	20	3.85
GOO	T2	20	0	11.95
GOO	T2	24	10	7.86
GOO	T2	32	20	30.1
GOO	T2	36	0	7.88
G00	T2	36	0	3.19
G00	T2	40	10	15.74
G00	T2	48	20	31.2
GOO	T2	48	0	12.03
GOO	T2	56	10	16.57
GOO	Т2	60	0	3.94
GOO	T2	60	20	19.47
GOO	Т3	0	0	1.35
GOO	T3	8	20	1.75
GOO	T3	20	0	3.14

Lake	Transect	Dist along	Dist out	mS/m
GOO	T3	24	20	2.28
G00	T3	28	10	1.98
G00	T3	36	0	6.59
G00	T3	40	10	17.12
G00	T3	44	20	3.3
G00	T3	52	0	2.41
G00	T3	56	10	3.45
G00	T3	60	20	2.56
LE	T1	0	10	5
LE	T1	0	0	264
LE	T1	4	20	8.43
LE	T1	4	0	7.29
LE	T1	12	10	35.6
LE	T1	20	0	152.8
LE	T1	24	10	34.1
LE	T1	36	10	22.5
LE	T1	40	20	46
LE	T1	40	20	3.36
LE	T1	40	0	12.95
LE	T1	48	10	2.97
LE	T1	52	0	1.63
LE	T1	56	20	21.7
LE	T1	60	10	5.33
LE	T2	0	10	71.1
LE	T2	0	20	48.5
LE	T2	12	10	56.1
LE	T2	16	0	53.8
LE	T2	20	20	54
LE	T2	28	10	23.9
LE	T2	36	0	94.5
LE	T2	36	20	15.4
LE	T2	40	10	14.38
LE	T2	52	20	50.9
LE	T2	56	0	112.9
LE	T2	56	10	210
LE	T2	60	10	88.6
LE	T3	0	0	6.51
LE	T3	4	10	6.15
LE	T3	12	20	2.81
LE	T3	16	10	15.62
LE	T3	20	0	13.58
LE	T3	24	20	6.97
LE	T3	32	10	17.32
LE	T3	40	0	8.05
LE	T3	40	20	3.96
LOG	T1	0	0	93.7
LOG	T1	4	10	72.2
LOG	T1	8	20	65.7
LOG	T1	16	0	67.9
FOO.	11	10		07.5

Lake	Transect	Dist along	Dist out	mS/m
LOG	T1	20	10	88.1
LOG	T1	24	20	67.2
LOG	T1	28	0	87.6
LOG	T1	32	10	114.4
LOG	T2	20	0	85
LOG	T2	20	4	67.8
LOG	T3	0	20	49
LOG	T3	0	0	21.3
LOG	T3	4	20	20.1
LOG	T3	12	10	57.8
LOG	T3	24	20	71.4
LOG	T3	32	10	56.4
LOG	T3	36	20	90.4
LOG	T3	40	0	87.7
LOG	T3	52	10	56.4
LOG	T3	56	20	102.9
LOG	T3	60	0	57.7
LV	T1	0	0	3.22
LV	T1	0	20	2.7
LV	T1	8	10	60.7
LV	T1	12	20	149.8
LV	T1	16	0	16.63
LV	T1	20	10	112
LV	T1	28	20	699
LV	T1	30	0	712
LV	T1	36	10	117
LV	T1	40	20	330
LV	T2	0	20	26.1
LV	T2	4	0	20.6
LV	T2	4	10	24.5
LV	T2	12	20	8.1
IV	T2	16	0	102.9
LV	T2	16	10	120.8
IV	T2	24	20	658
IV	T2	28	10	389
LV LV LV LV	T2	28	0	144.8
IV	T2	36	30	299
LV	T2	40	10	259
LV	T2	40	0	59.9
LW	T1	0	0	364
LW	T1	4	20	991
LW	T1	8	20	795
LW	T1	16	0	503
LW	T1	20	20	748
LW	T1	24	20	925
LW	T1	24	10	1999
	T1	32	0	1509
LW LW	T1	40	10	1290
			20	1488
LW	T1	40	20	1400

Lake	Transect	Dist along	Dist out	mS/m
LW	T1	48	0	1125
LW	T1	56	20	1910
LW	T1	60	10	1106
LW	T1	60	20	1414
LW	T2	0	0	600
LW	T2	4	10	682
LW	T2	16	10	1111
LW	T2	16	0	738
LW	T2	28	10	1284
LW	T2	30	20	1255
LW	T2	32	0	1162
MAI(1)	T1	0	0	16.42
MAI(1)	T1	4	10	7.1
MAI(1)	T1	12	20	17.96
MAI(1)	T1	20	0	18.18
MAI(1)	T1	24	10	19.02
MAI(1)	T1	32	20	30.2
MAI(1)	T1	36	10	44.8
MAI(1)	T1	40	0	64.7
MAI(1)	T2	0	0	7.04
MAI(1)	T2	4	10	9.32
MAI(1)	T2	12	20	17.05
MAI(1)	T2	20	0	12.16
MAI(1)	T2	24	10	28.7
MAI(1)	T2	32	20	36
MAI(1)	T2	36	10	64.1
MAI(1)	T2	40	0	75.5
MAI(2)	T1	0	0	23
MAI(2)	T1	4	10	12.06
MAI(2)	T1	8	20	7.44
MAI(2)	T1	16	0	76.7
MAI(2)	T1	20	10	67
MAI(2)	T1	24	20	44
MAI(2)	T1	30	0	103
MAI(2)	T2	0	0	17.7
MAI(2)	T2	4	10	16.61
MAI(2)	T2	8	20	25.4
MAI(2)	T2	16	20	7.81

Lake	Transect	Dist along	Dist out	mS/m
MAI(2)	T2	20	10	33.8
MAI(2)	T2	20	0	29.3
PB	T1	0	0	7.33
PB	T1	4	10	31.7
PB	T1	12	20	8.38
PB	T1	16	0	7.29
PB	T1	20	10	15.53
PB	T1	28	20	20.7
PB	T1	36	10	15.74
PB	T1	44	10	20.8
PB	T1	44	20	3.03
PB	Tl	52	0	26.9
PB	Tl	56	10	4.23
PB	T1	60	20	10.85
PB	T2	0	0	5.79
PB	T2	4	10	6.95
PB	T2	8	20	4.46
PB	T2	16	0	6.92
PB	T2	20	10	5.4
PB	T2	24	20	4.77
PB	T2	32	10	3.52
PB	T2	36	0	7.86
PB	T2	40	20	4.25
PB	T3	0	0	26.7
PB	T3	8	10	5.29
PB	T3	12	20	3.73
PB	T3	16	0	16.99
PB	T3	24	10	9.13
PB	T3	28	20	7.84
PB	T3	36	0	17.4
PB	T3	40	10	15.04
PB	Т3	48	20	8.2
PB	T3	52	0	11.18
PB	T3	60	0	6.13

Digital Photographs

A digital camera was used and six photographs was taken of each transects Three photographs of the transect were taken on the right, middle and left of the transect facing the water i.e. photographs of the end of the transect furthest from the lake The second group of 3 photographs were taken facing away from the lake on the right, middle and left of the transects i.e. photographs of the end of the transect closest to the lake.

Retagging

Where retagging was required a 30mm square 1mm thick numbered Aluminium plate with a 3mm hole in the middle nailed with either a 50mm long 2.8 diameter flat top galvanized nail or 1mm thick galvanized wire was used to nail or attach the tag to the tree or shrub. Where the numbering was similar to that previously used in the transect, similar numbers are differentiated by the either being rectangular i.e. nnn(R) (1998/99 numbering tags) or square nnn(S) (2001/02 numbering tags). The original roofing nail was left in the tree to aid in identifying the location future re-measuring site for the particular tree.

GPS Measurements

As the original GPS readings for the location of the transect were not accurate because of USA government policy, these readings were repeated using a Garmin etrex GPS unit. The left hand corner of the transect facing the lake (i.e. the edge of the transect away from the lake) was designated the location of the transect, 0/0 for soil salinity determination and the location of whether the understorey plots were on the left or right hand side of the transect.

Data analysis

In this report the results of the second monitoring program for these lakes were compared and analyzed with those of the first in the following ways.

- 1. Changes in the soil salinities (conductivities both vertically and horizontal) with sections (0m 10m and 20m Section Means) of each transect (for understorey changes) and within the whole transect (Transect Means) for overstorey changes.
- 2. Changes in the number of trees and seedlings and crown condition (Mean Crown Score) for each species for the whole lake (transects combined).
- 3. Changes in the size distribution of the overstorey for the whole lake (transects combined).
- 4. Changes in the distribution of understorey species within each transect.

Lake View (Blue Gum Swamp)

Description

R. Gurner et al (1999) reports that Blue Gum Swamp is a small ephemeral wetland situated in a narrow band of remnant vegetation on private farmland 10km North West of Moora (30°35' S, 115°58' E). The Swamp lies in a cleared catchment adjacent to a large chain of seasonal wetlands which receive inflow from the northern waters of the Moore River. The bulk of the water supply for Blue Gum Swamp comes from direct precipitation and runoff. Although there is no direct hydrological interaction between Blue Gum Swamp and the surrounding chain of wetlands, during high rainfall years Blue Gum Swamp interconnects with the series of wetlands via channels and flats forming part of the larger system. This flooding event occurs approximately every 10 years with the latest event occurring in March 1999. Blue Gum Swamp has also been recognised as an important refuge for waterbirds. Grazing history within the surrounding vegetation and on the lakebed itself is unknown, but it seems likely that grazing has occurred.

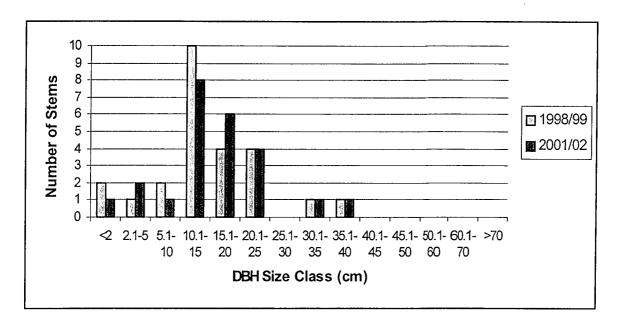
Transects

Two 40 metre transects were established around the main lake area starting from the terrestrial vegetation extending on to the lakebed.

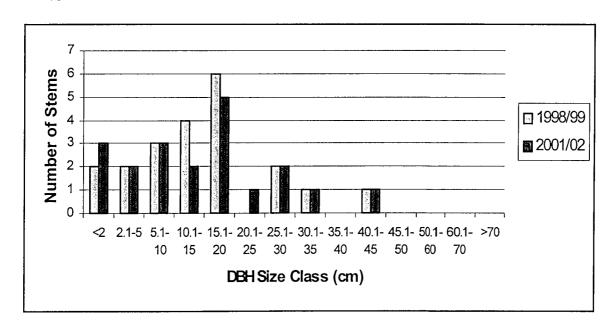
The first monitoring was undertaken in February 1999 and the second in early October 2001. At this time the lake was dry. Some re nailing of tags was carried out.

Transect 1: (GPS: 50 401319 / 6615173) lies directly on the southern bank of the lake, 30 metres east of the main track where the relief is moderate.

Transect 2: (GPS: 50 401380 / 6615359) is located on northeastern side of the lake south of the inflow drain on slight to moderate relief.


The plant communities around the lake are as described by R. Gurner et al (1999)

Results


Population Structure and Tree Vigour

There has been very little change in the population structure over the last year at this lake (Figure 1 and Table 2). Crown condition of a number of species has deteriorated (*Casuarina* spp and *Melaleuca* spp) but not significantly.

Casuarina obesa

Eucalyptus rudis

Melaleuca strobophylla

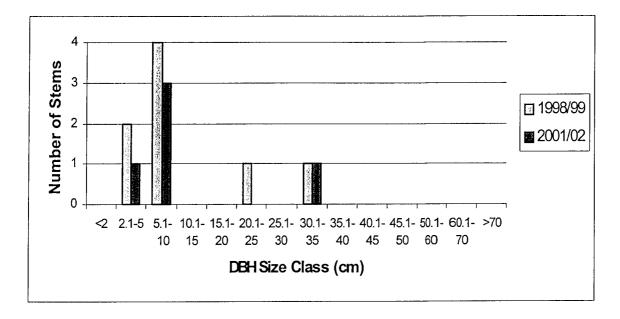


Figure 1 Size Class Distributions for Casuarina obesa, Eucalyptus rudis and Melaleuca strobophylla at Lake View.

Table 2. Summary of Tree Data for Lake View

Species	Trees 1999	Trees 2002	Seedlings 1999	Seedlings 2002	MCS (SD) 1999	MCS (SD) 2002
Casuarina obesa	25	24	0	0	15.0 (2.5)	13.0 (4.5)
Eucalyptus rudis	21	21	0	0	9.3 (3.9)	13.5 (5.9)
Melaleuca strobophylla	8	5	0	0	14.5 (2.6)	12.8 (1.6)
Melaleuca teretifolia	2	2	1	0	19.5 (6.4)	7 (0)
Melaleuca viminea	9	3	0	0	11.9 (2.5)	9.3 (4.0)

Changes in understorey composition

The salt tolerant species *Halosarcia* sp, *Atriplex lindleyi* and *Wilsonia rotundifolia* have appeared in the transects in addition to seedlings of *Melaleuca* spp. The distribution of the other understorey species has not changed dramatically (Figure 2 and 3 and Table 3)

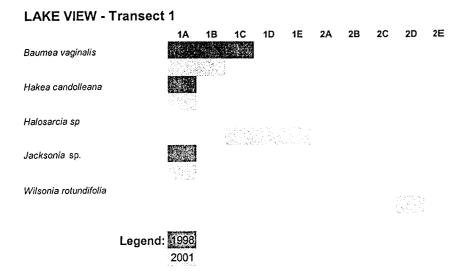


Figure 2 Species Distribution along Lake View Transect 1 in 1998 and 2002

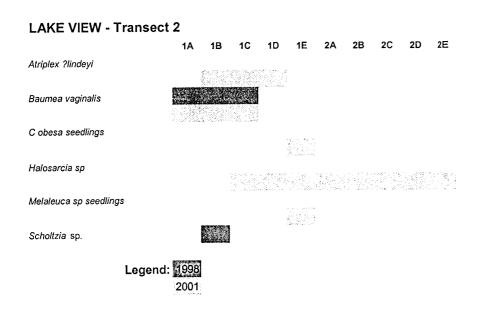


Figure 2 Species Distribution along Lake View Transect 2 in 1998 and 2002

Table 3 Summary of understorey species distribution in all Transects at Lake View

LAKE VIEW - Transect 1	New Recruit	Expansion	Extinction	Contraction	No Change
Halosarcia sp	yes				
Wilsonia rotundifolia	yes				
Baumea vaginalis				yes	
Hakea candolleana					yes
Jacksonia sp.					yes

LAKE VIEW - Transect 2	■ 기계를 보고하고 있는데 기계를 하는데	Expansion	Extinction	Contraction	No Change
Atriplex ?lindleyi	yes				
C obesa seedlings	yes				
Halosarcia sp	yes				

LAKE VIEW - Transect 2	New Recruit	Expansion	Extinction	Contraction	No Change
Melaleuca sp seedlings	yes				
Scholtzia sp.			yes		
Baumea vaginalis					yes

Soil Characteristics

Table 4 tabulates the mean soil salinities for the transects over the two sampling periods. There was an increase of 13% in the vertical and 23% in the horizontal EM38 measurements over the three year period.

Table 4 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lake View over the two sampling periods

				1,45,44,500	s Principle	Distanc	e Across (m)	1 14906			¥* 4056.5	
	official.		0 m		10 m				a in contrata continue de la caractera de la companie de la companie de la companie de la companie de la compa			
Distance (m)	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02
T1												
Section Mean	367	505	326	502	414	515	403	527	463	463	491	487
Transect Mean	415	494	406	505								
T2												
Section Mean	447	387	359	366	442	464	362	431	446	589	375	532
Transect Mean	445	480	365	443								

Summary

Table 5 summarizes all the data for Lake View transects. With the increase in soil salinities there has been a decrease in tree condition, a decrease in salt sensitive understorey species and an increase in the more salt tolerant species.

Table 5 Summary of Lake View Data

Condition	Increase	Decrease	No Change
Soil Salinity (Mean salinity change over all Transects)	yes		
Crown Condition (all transects MCS)	Eucalyptus rudis	Casuarina obesa Melaleuca strobophylla Melaleuca teretifolia Melaleuca viminea	
Count of Overstorey Individuals (Species increasing /decreasing /No Change in Counts)		Casuarina obesa Melaleuca strobophylla Melaleuca teretifolia Melaleuca viminea	Eucalyptus rudis

Condition	Increase	Decrease	No Change
Understorey Species	Atriplex ?lindleyi	Baumea vaginalis	Hakea candolleana
(Species increasing	Baumea vaginalis	Scholtzia sp	Jacksonia sp.
/decreasing/No Change)	C obesa seedlings		
_	Halosarcia sp		
	Melaleuca sp seedlings	•	
	Wilsonia rotundifolia		

Maisey's Wetland 1

Description

R. Gurner et al. (1999) reports that Maisey's wetland is a moderately small ephemeral wetland situated on privately owned farm land (Peter Maisey) east of Lake Dowerin (31°15'S, 117°04'E) and approximately 10km south east of the Dowerin town site. The wetland lies within cleared paddocks apart from a thin band of remnant vegetation remaining on the outer lake perimeter. The wetland is characterised by a short steep bank which moderates on the eastern and northern sides. The wetland historically has been used for grazing, particularly the northern section where grazing was undertaken until 1993. A number of smaller and lower topographical wetlands surround the main Maisey's lake with scattered dead Eucalyptus loxophleba and Melaleuca strobophylla presumably from waterlogging (pers. Com. Peter Maisey, 1999). Maisey's wetland is classified as fresh with the majority of the lake water supply coming from direct precipitation and runoff with little hydrological interaction with the adjacent saline Lake Dowerin.

Transects

Two 40 metre transects were established on Maisey's wetland to sample the outer fringing terrestrial vegetation, littoral wetland vegetation and lakebed.

The first monitoring was undertaken in March 1999 and the second in mid January 2002. The lake was dry at the time of sampling.

Transect 1: (GPS: 50 506799 / 6542543) lies centrally on the western side of the lake off the main track.

Transect 2: (GPS: 50 507269 / 6542467) lies on the eastern side of the lake approximately 75 metres south of the inflow channel. Both transects start on the top ridge of the wetland and finish on the lakebed.

The plant communities around the lake are as described by R. Gurner et al (1999)

Results

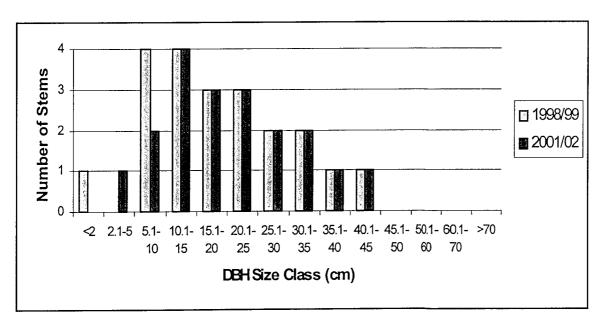
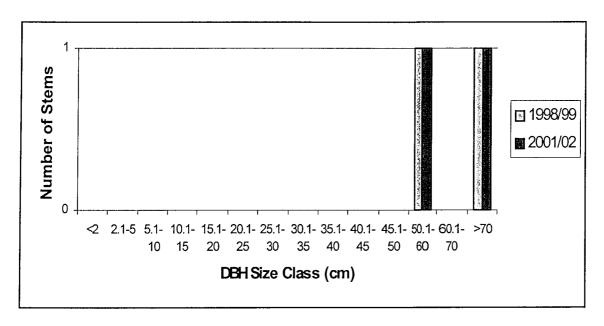

Population Structure and Tree Vigour

Figure 4 indicates that there has been a slight recruitment of saplings of *Eucalyptus loxophleba* with a slight improvement in crown health in all tree species except *E loxophleba* and *E salmonophloia* (Table 4)


Casuarina obesa

Eucalyptus loxophleba

Eucalyptus salmonophloia

Melaleuca strobophylla

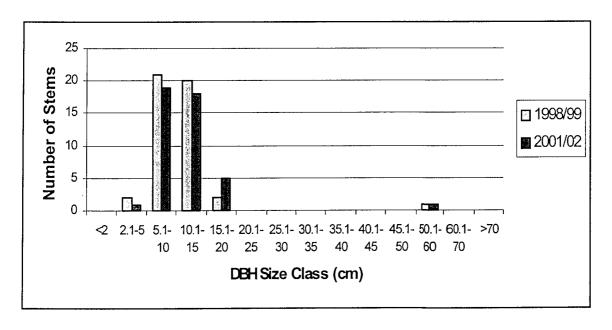


Figure 3. Size Class Distributions for Casuarina obesa, Eucalyptus loxophleba, Eucalyptus salmonophloia and Melaleuca strobophylla for Maisey's Wetland 1

Table 6. Summary of Tree Data for Maisey's Wetland 1

Species	Trees 1999	Trees 2002	Seedlings 1999	Seedlings 2002	MCS (SD) 1999	MCS (SD) 2002
Casuarina obesa	3	3	0	0.0	11.7 (5.5)	13.7 (1.2)
Eucalyptus loxophleba	21	20	0	0.0	12.5 (2.9)	11.2 (3.0)
Eucalyptus salmonophloia	2	2	0	0.0	22.0 (1.4)	15.0 (0)
Melaleuca strobophylla	46	44	0	0.0	12.5 (2.2(13.2 (1.5)

Changes in understorey composition

Figures 5 and 6 indicate that there has been a expansion of the less salt tolerant understorey species such as *Austrostipa elegantissima*, *Enchylaena tomentosa* and *Melaleuca* sp seedlings with a decrease in the more salt tolerant species such as *Chenopodium* sp , *Halosarcia* and *Sclerolaena* spp over the monitoring sampling period. Because the specific identity of the other species was not known in 1998 changes in the distribution of the other species is unknown.

MAISEY'S 1 - Transect 1

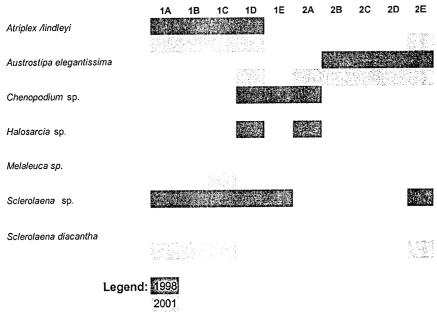


Figure 4. Species Distribution along Maisey's Wetland 1 Transect 1 in 1998 and 2002

MAISEY'S 1 - Transect 2 1A 1B 1C 1D 1E 2A 2B 2C 2D 2E Atriplex ?lindleyi Atriplex sp. Chenopodium sp. Enchylaena tomentosa tomentosa Halosarcia pergranulata Pergranulata Halosarcia sp. Melaleuca strobophylla Sclerolaena diacantha Legend: 1998

Figure 5. Species Distribution along Maisey's Wetland 1 Transect 2 in 1998 and 2002

Table 7 Summary of understorey species distribution in all Transects at Maisey's Wetland 1

MAISEY'S 1 - Transect 1	New Recruit	Expansion	Extinction	Contraction
Melaleuca sp.	yes			
Sclerolaena diacantha	yes			
Atriplex /lindleyi		yes		
Austrostipa elegantissima		yes		
Chenopodium sp.			yes	
Halosarcia sp.			yes	
Sclerolaena sp.			yes	

MAISEY'S 1 - Transect 2	New Recruit	Expansion	Extinction	Contraction
Atriplex ?lindleyi	yes			
Enchylaena tomentosa	yes			
tomentosa				
Halosarcia pergranulata pergranulata	yes			
Melaleuca strobophylla	yes			
		To areas		From Areas
		Away		Close to lake
Sclerolaena diacantha		from Lake		
Atriplex sp.			yes	
Chenopodium sp.			yes	
Halosarcia sp.			yes	
Sclerolaena sp.			yes	

KABAY rehabilitation, environmental and biological CONSULTANTS Pty Ltd

Soil Characteristics

Table 7 tabulates the mean soil salinities for all the transects over the two sampling periods. There was decrease of 23% in the vertical and decrease of 27% in the horizontal EM38 measurements over the period.

Table 8 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Maizeys over the 3 year period

	11 1 10 10 11 11 11 11 11 11 11 11 11 11		programme and the			Distanc	e Across (m) 🖏				4.1
		0 m			10 m				20) m	Said the	
Distance (m)	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02
T1												
Section Mean	384	210	262	125	343	189	225	108	346	213	233	128
Transect Mean	358	204	240	120								
T2												
Section Mean	304	289	180	173	297	308	179	198	317	321	196	201
Transect Mean	306	306	185	191								

Summary

Table 9 summarises all the data for Maizey 1. Though soil salinity has decreased, there has been a deterioration in the condition and number of Eucalypt species and an increase in the condition of the more salt tolerant *Casuarina* and *Melaleuca* tree species which could be due to the long drought conditions which have been experienced between the sampling period. This suggestion that changes are due to drought rather than salinity is supported by the increase in normal understorey species and a decrease of salt tolerant species.

Table 9 Summary of data for Maizey 1

Condition	Increase	Decrease	No Change
Soil Salinity (Mean salinity change over all Transects)		yes	
Crown Condition (all transects MCS)	Casuarina obesa Melaleuca strobophylla	Eucalyptus loxophleba Eucalyptus salmonophloia	
Count of Overstorey Individuals (All transects. Species increasing /decreasing /No Change in Counts)	Casuarina obesa Melaleuca strobophylla	Eucalyptus loxophleba	Eucalyptus salmonophloia
Understorey Species (All Transects. Species increasing /decreasing/No Change)	Atriplex ?lindleyi Austrostipa elegantissima Chenopodium sp. Enchylaena tomentosa tomentosa Halosarcia pergranulata pergranulata Melaleuca sp. Melaleuca strobophylla Sclerolaena diacantha	Atriplex sp. Chenopodium sp Halosarcia sp. Sclerolaena sp.	

Maisey's Wetland 2

Description

R. Gurner et al. (1999) reports that a second, smaller ephemeral wetland to the north west (approximately 100 m) (31°14′ S, 117°03′ E) was sampled and has been referred to as Maisey's Wetland 2. Unlike Maisey's wetland (first lake) the surrounding vegetation has been entirely cleared leaving approximately 20 mature Melaleuca strobophylla individuals on the lakebed. The shallow banks of the wetland now contain dense stands of seedlings and saplings. The saplings are reported to have germinated following an unusually high rainfall period between 1989 - 1991 (pers. Com. Peter Maisey, 1999). Also noticeable was a number of seedlings which have germinated since this mass recruitment event. The wetland has been fenced since the original germination event effectively precluding grazing. Similarly to the main wetland, Maisey's wetland 2 is fresh with the majority of the lakes water supply coming from direct precipitation and runoff with little hydrological interaction between other wetlands in the vicinity.

Transects

Two transects (32 m and 20 m in length) were established on Maisey's Wetland 2 to include a sample of the thick dense regeneration on the fringe of the wetland and the remnant mature trees located on the lake bed.

The first sampling was undertaken in March 1999 while the second was carried out in mid January 2002 At this time the lake was dry.

Transect 1: (GPS: 50 506265 / 6542911) is situated on the south west corner of the wetland in front of the mature stand of Melaleuca strobophylla.

Transect 2: (GPS:50506541 / 6543036) is situated on the eastern side of the wetland within the very dense stand of *Melaleuca strobophylla* saplings. Transect 2 lies approximately 50 metres directly in from the fence.

The plant communities around the lake are as described by R. Gurner et al. (1999)

Results

Population Structure and Tree Vigour

Data was too limited to say what changes had occurred in the overstorey structure at the wetland though the crown condition analysis indicated a slight deterioration in tree health between the two monitoring periods.

Melaleuca strobophylla

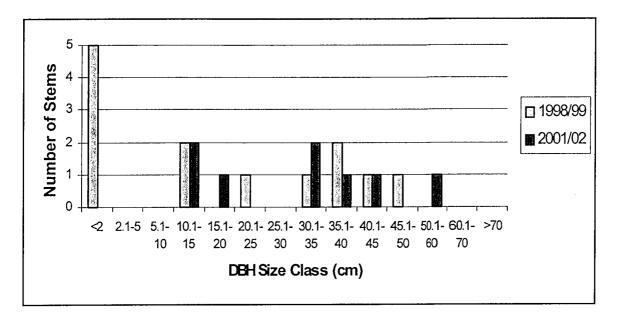


Figure 6. Size Class Distributions for Melaleuca strobophylla Maisey's Wetland 2.

Table 10. Summary of Tree Data for Maisey's Wetland 2

- [1] 전 경영 (1) 교육 (1) - 고급 등학교 (대한 기본	1000	Trees 2002	Seedlings 1999	Seedlings 2002		MCS (SD) 2002
Melaleuca strobophylla	8	8	608	586.0	16.5 (2.8)	12.5 (5.1)

Changes in understorey composition

Figures 8 and 9 indicate that there has been a recruitment of the more salt tolerant species and a contraction of salt sensitive species eg *Austrostipa elegantissima*.

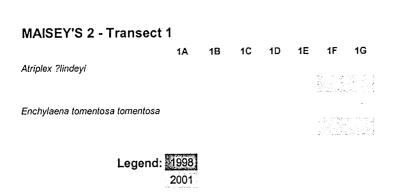


Figure 8. Species Distribution along Maisey's Wetland 2 Transect 1 in 1998 and 2002

MAISEY'S 2 - Transect 2

1A 1B 1C 1D 1E

Austrostipa elegantissima

Legend: (1998) 2001

Figure 7. Species Distribution along Maisey's Wetland 2 Transect 2 in 1998 and 2002

Table 11 Summary Of Understorey Species Distribution In All Transects At Maisey's Wetland 2

MAISEY'S 2 - Transect 1	New Recruit	Expansion	Extinction	Contraction
Atriplex ?lindeyi	Yes			
Enchylaena tomentosa	Yes			
tomentosa			,	

MAISEY'S 2 - Transect 2	New Recruit	Expansion	Extinction	Contraction
Austrostipa elegantissima				Yes

Soil Characteristics

Table 10 tabulates the mean soil salinities for the transects over the two sampling periods. There was an increase of 18% in the vertical and 23% in the horizontal EM38 measurements over the three year period.

Table 12 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Maizeys 2 over the two Sampling Periods.

						Distanc	e Across (m	ı) 🖟		450 m		
0 m					0.41.4138		10 m			20) m	
Distance (m)	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Transfer of the control of the control	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02
T1												·
Section Mean	180	185	106	110	177	188	105	127	167	168	101	102
Transect Mean	175	180	104	113								
T2						<u> </u>						
Section Mean	217	283	133	180	210	275	131	179	207	271	128	171
Transect Mean	211	276	131	177								

Summary

Table 13 summarises all the data for Lake Maiseys 2. With the increase in soil salinities there has been a decrease in crown health of the trees and a move towards more salt tolerant understorey plants.

Table 13 Summary of Data for Lake Maisey 2

Condition	Increase	Decrease	No Change
Soil Salinity	Yes		
(Mean salinity change over			
all Transects)			
Crown Condition		Melaleuca strobophylla	
(all transects MCS)			
Count of Overstorey			Melaleuca
Individuals			strobophylla
(All transects. Species			
increasing /decreasing /No			
Change in Counts)			
Understorey Species	Atriplex ?lindeyi	Austrostipa elegantissima	
(All Transects. Species	Enchylaena tomentosa tomentosa		
increasing /decreasing/No			
Change)			

Lake Logue

Description

R. Gurner et al. (1999) reports that Lake Logue is a large, fresh seasonal lake situated 12 km southwest of Eneabba in the Lake Logue Nature Reserve (29073, Class C) (29°51' S, 115°08' E). The total lake area is 424.8 hectares with 74% consisting of open water and 25% vegetation (Halse, Pearson and Patrick, 1993). Lake Logue and nearby Lake Indoon are the largest components of a northerly trending chain of ephemeral wetlands which sit upon extensive aeolian sands. Lake Logue is a broad shallow claypan (composed of grey soils, heavy bluish-grey clays and silty clays) surrounded by dunes of coarse white sand which rise to 5m (Australian Nature Conservation Agency, 1996). Logue is bounded by a white sandy beach except in the west where there is a low limestone cliff. Water is supplied to Lake Logue by direct precipitation, surface runoff and discharges from ephemeral drainages, notably Eneabba Creek from the east (Australian Nature Conservation Agency, 1996). Lake Logue and nearby Lake Indoon are linked by groundwater with flow moving in a northwest direction. Lake Logue consists of seasonally waterlogged flats and micro scale creeks (Australian Nature Conservation Agency, 1996). The Logue/Indoon area acts as a major feeding stopover, staging area for dispersal and drought refuge for waterbirds. A population of the declared vulnerable plant Eremophila microtheca occurs on seasonally waterlogged flats. Also Phytophthora cinnamomi and Phytophthora citricola is present at Lake Logue (Australian Nature Conservation Agency, 1996). Wild horses have been identified as a disturbance to the Lake Logue Nature Reserve.

Transects

One 60 metre transect and three 40 metre transects were established on Lake Logue to sample the outer fringing wetland vegetation on the lakebed.

The first monitoring was undertaken in March 1999 after which the lake extensively flooded and the second in late January and late February 2002. Water was still in the lake after the 1999 floods. The water level was such that a large number of tags, especially those secured by galvanised wire were missing. Extensive retagging of the plants occurred in all transects.

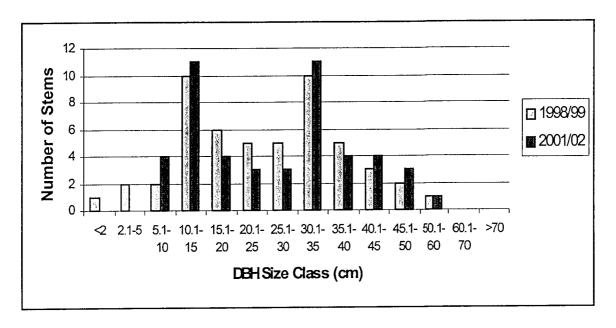
Transect 1: (GPS: 50 319602 / 6695680) is situated on the south west section of the Lake, left off the main access track running from the road in front of the mature stand of *Melaleuca strobophylla* on the lake bed

Transect 2: (GPS:50 319595 / 6697539) is situated on the far northwestern side of the Lake in direct line of the major access track around the lake bed (same used to located transect 1). Plot leads into open water.

Transect 3: (GPS: 50 318825 / 6696607) is situated on the middle west side of the lake directly north of the low limestone cliff.

Transect 4: (GPS:50 320126 / 6695274) is situated on the south western side of the wetland near inflow drain.

All transects are situated on the lake bed. The major access track on the lake bed was used to located all transects. Plot leads into open water.


The plant communities around the lake are as described by R. Gurner et al. (1999)

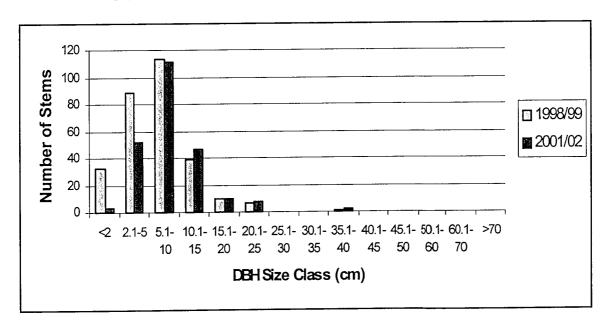
Results

Population Structure and Tree Vigour

Though Figure 10 does not indicate any recruitment it does suggest that growth has occurred with individuals moving to the higher size class between the monitoring periods. That there has been a deterioration in crown health indicates that the time between the monitoring periods has been stressful.

Casuarina obesa

Melaleuca strobophylla



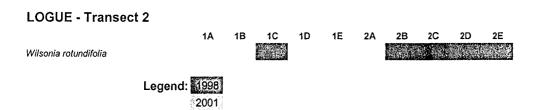

Figure 8. Size Class Distributions for Casuarina obesa and Melaleuca strobophylla at Lake Logue

Table 14. Summary of Tree Data for Lake Logue

Species	Trees 1999	Trees 2002	Seedlings 1999	Seedlings 2002	MCS (SD) 1999	MCS (SD) 2002
Casuarina obesa	51	45	1	0.0	13.0 (2.8)	11.6 (2.4)
Melaleuca strobophylla	292	231	0	0.0	14.5 (2.7)	13.8 (1.6)

Changes in understorey composition

The three years of flooding has eliminated any understorey at lake Logue.

2002 Understorey

No transects had any Understorey due to the flooding over the last 3 years (since 1999 floods)

Figure 9. Species Distribution along Lake Logue Transect 2 in 1997 and 2000

Table 15 Summary Of Understorey Species Distribution In All Transects At Lake Logue

LOGUE - Transect 2	Lander (1997) [10] [10] [10] [10] [10] [10] [10]	Expansion	Extinction	Contraction	No Change
Wilsonia rotundifolia			Yes		

Soil Characteristics

Table 13 tabulates the mean soil salinities for the transects over the two sampling periods. There was an increase of 71% in the vertical and 37% in the horizontal EM38 measurements over the period.

Table 16 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lake Logue over the Two Sampling Periods.

e, e skaleni	i lajaterna Namisha bara	Distance Across (m)										
n de la companya de l		er en										
Distance (m)	Vertical 1998	Vertical 2002	Horizontal 1998	Horizontal 2002	Vertical 1998	Vertical 2002	Horizontal 1998	Horizontal 2002	Vertical 1998	Vertical 2002	Horizontal 1998	Horizontal 2002
T1												
Section Mean	52	227	58	209	63	209	71	192	58	225	67	205
Transect Mean	58	221	65	202								
T2												
Section Mean	80		80		91		99		93	227	101	. 267
Transect Mean	88		93									
Т3												
Section Mean	51	118	49	85	56	130	53	94	53	112	54	81

KABAY rehabilitation, environmental and biological CONSULTANTS Pty Ltd

	- Appli					Distanc	e Across (m			Jan cen		
	400		0 m				10 m	·全国教育	\$6'9W	BUSINESS IN TRACE	0 m	
Distance (m)	Vertical 1998	Vertical 2002	Horizontal 1998	Horizontal 2002	Vertical 1998	Vertical 2002	Horizontal 1998	Horizontal 2002	Vertical 1998	Vertical 2002	Horizontal 1998	Horizontal 2002
Transect Mean	53	120	52	87								
T4								_				
Water												

Summary

Waters are beginning to recede from Lake Logue and soil salinities are beginning to increase. The extensive flooding has lead to tree deaths and a deterioration in tree health. The understorey has not yet recovered.

Table 17 Summary of data from Lake Logue

Condition Increase	Decrease	No Change
Soil Salinity		
(Mean salinity change over		
all Transects)		
Crown Condition	Casuarina obesa	
(all transects MCS)	Melaleuca strobophylla	
Count of Overstorey	Casuarina obesa	
Individuals	Melaleuca strobophylla	
(All transects. Species		
increasing /decreasing /No		
Change in Counts)		
Understorey Species	Wilsonia rotundifolia	
(All Transects. Species		
increasing /decreasing/No		
Change)	,	

Walyormouring Lake

Description

R. Gurner et al (1999) reports that Walyormouring Lake is a large saline seasonal lake situated approximately 25 km northwest of Goomalling in the Walyormouring Nature Reserve (17186) (31°08' S, 116°51' E). The total lake area is 1010.0 hectares with 80% consisting of open water and 19% vegetation (Halse, Pearson and Patrick, 1993). The lake lies upon flat to undulating topography with moderately steep short banks common around the outer lake perimeter, particularly on the southwestern side. The lake has a main inflow channel at the northwestern end which may also act as an outflow channel after periods of flooding. The lake can overfill during flooding events but will retain water for extended periods after flooding. Halse, Pearson and Patrick (1993) suggest it is during these periods that the few live saplings of *Casuarina obesa* germinating each year die. The lake is located in a relatively cleared catchment surrounded by farmland with evidence suggesting that areas of the reserve have previously been used for grazing. Walyormouring Lake has had a long history of salinisation and water logging.

Transects

One 60 metre plot and one 40 metre plot were established on Walyormouring Lake to sample the mature and regeneration stands of *Casuarina obesa* woodland on the northern section of the lake bed.

Monitoring was undertaken in March 1999 while the second occurred in early October 2001 Due to the windy conditions on this lake causing extensive wear on the tags, a large number of tags were re nailed or re wired.

Transect 1: (GPS: 50 488589 / 6554294) is situated on the north side of the Lake, located by the west access track running from the road in front of the Nature Reserve sign.

Transect 2: (GPS:50 488727 / 6554095) is situated approximately 200 metres south east of transect 1 in a dense regeneration stand.

The plant communities around the lake are as described by R. Gurner et al. (1999)

Results

Population Structure and Tree Vigour

Again there is evidence that though there has been some recruitment, crown health has deteriorated during the period.

Casuarina obesa

Figure 10. Size Class Distributions for Casuarina obesa for Walyormouring Lake

Table 18. Summary of Tree Data for Walyormouring Lake

Species	Trees 1999	1	, ,	Seedlings 2002	MCS (SD) 1999	MCS (SD) 2002
Casuarina obesa	217	183	165	36	9.2 (3.2)	6.8 (2.5)
Melaleuca strobophylla	1	1	0	0	8 (?)	6 (?)

Changes in understorey composition

Though it is difficult to determine changes in the distribution of the major understorey species at this lake due to the general occurrence of *Halosarcia* sp through out the plots, there has been a recruitment of *Wilsonia rotundifolia* in transect 1.

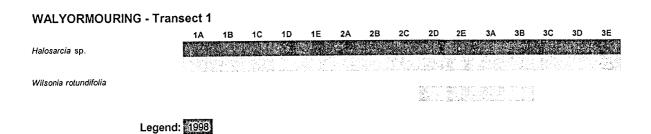


Figure 11. Species Distribution along Walyormouring Lake Transect 1 in 1998 and 2002

WALYORMOURING - Transect 2 1A 1B 1C 1D 1E 2A 2B 2C 2D 2E Halosarcia sp. Legend: 1998 2001

Figure 12. Species Distribution along Walyormouring Lake Transect 2 in 1998 and 2002

Table 19 Summary Of Understorey Species Distribution In All Transects At Walyormouring Lake

WALYORMOURING -	New Recruit	Expansion	Extinction	Contraction	No Change
Transect 1					
Wilsonia rotundifolia	yes				
Halosarcia sp.					yes

WALYORMOURING - Transect 2	New Recruit	Expansion	Extinction	Contraction	No Change
Halosarcia sp.					yes

Soil Characteristics

Table 16 tabulates the mean soil salinities for the transects over the two sampling periods. There was an increase of 69% in the vertical and 248% in the horizontal EM38 measurements over the three year period.

Table 20 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lake Walyormouring over the Two Sampling Periods.

		a bulktiğ		- NEW P		Distanc	e Across (n	1)		godine v		
	··· · · · · · · · · · · · · · · · · ·								I			
Distance (m)	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02
T1 Section Mean	140	32(102	602	143	322	107	604	151	349	126	569
Transect Mean	140 145	326 332	103	592	143	322	107	004	151	349	120	309
T2												
Section Mean	383	507	294	773	384	546	283	740	274	438	209	611
Transect Mean	347	497	262	708								

Summary

Table 21 summaries all the data for Lake Walymorouring. Soil salinities have increased and this has effected the condition of the salt tolerant tree species. A new salt tolerant species has colonized the area.

Table 21 Summary of data for Lake Walymorouring

Condition	Increase	Decrease	No Change
Soil Salinity	yes		
(Mean salinity change over	•		
all Transects)			
Crown Condition		Casuarina obesa	
(all transects MCS)		Melaleuca strobophylla	
Count of Overstorey	Casuarina obesa		Melaleuca strobophylla
Individuals			
(All transects. Species			
increasing /decreasing /No			
Change in Counts)			
Understorey Species	Wilsonia rotundifolia		Halosarcia sp.
(All Transects. Species			
increasing /decreasing/No			
Change)			

Lake Eganu

Description

R. Gurner et al. (1999) reports that Lake Eganu is a large semi-permanent saline lake situated approximately 40 km south of Carnamah in the Pinjarrega Nature Reserve (25210) (30°00' S, 115°53' E). The total lake area is 82.2 hectares with 23 % consisting of open water and 76 % vegetation (Halse, Pearson and Patrick, 1993). Lake Eganu is part of a larger system which includes a series of permanent and seasonal swamps with numerous inlet channels and outflow drains. The hydrology of this chain of wetlands is unknown, but the direction of the flow appears to be in a northwest direction. The surrounding area is a gently undulating lowland of aeolian quartz sands (Australian Nature Conservation Agency, 1996). Lake Eganu has a long history of water gauging/study and is a major refuge for water birds. Lake Eganu has a long history of salinisation and has declined since the early 1970's.

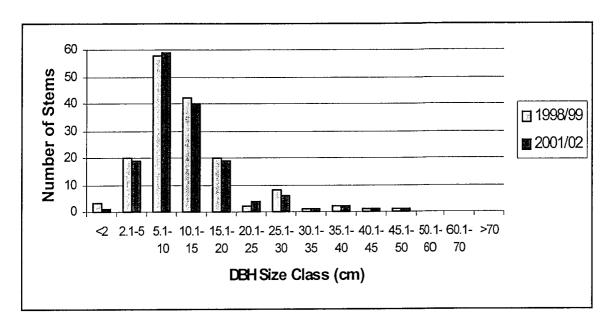
Transects

Three transects were established on Lake Eganu, two 60 metre plots and one 40 metre plot which sampled the upper littoral zone down to the lakebed. The first monitoring was undertaken in March 1999 while the second occurred in mid October 2001 (for overstorey and soil conductivity for T1 and T2) and late January 2002 (for all of T3 and understorey for T1 and T2.) Water was still in this lake in October but not in January. Some re nailing of tags occurred in this lake.

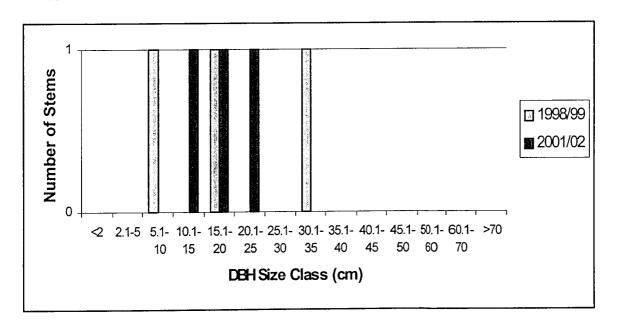
Transect 1: (GPS: 50 391616 / 6680908) is positioned on the middle east side of the Lake, located by the north western sand track approximately 200 metres west of the bridge off Green Head road.

Transect 2: (GPS: 50 391480 / 6680396) is situated approximately 250 metres south of transect 1starting in a live Casuarina obesa woodland and finishing on the lake bed, 30 metres from the water mark.

Transect 3: (GPS: 50 393589 / 6683507) is located in the northern series of wetlands. The access track which leads directly to the plot is located 50 metres before the bridge, heading north.


The plant communities around the lake are as described by R. Gurner et al. (1999)

Results


Population Structure and Tree Vigour

The data in Figure 15 indicate that there has been little recruitment or tree growth at this lake though there has been a slight improvement in the crown health of the major species *Casuarina obesa*.

Casuarina obesa

Eucalyptus loxophleba

Melaleuca strobophylla

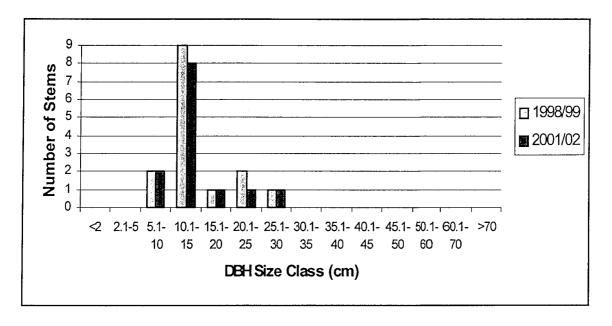


Figure 13. Size Class Distributions for Casuarina obesa, Eucalyptus loxophleba, and Melaleuca strobophylla at Lake Eganu

Table 22. Summary of Tree Data for Lake Eganu

Species	Trees 1999	Trees 2002	Seedlings 1999	Seedlings 2002	MCS (SD) 1999	MCS (SD) 2002
Acacia sp.	0	0	2	2.0		
Casuarina obesa	157	153	1	0.0	9.9 (4.3)	12.2 (2.4)
Eucalyptus loxophleba	3	3	0	0.0	14.3 (2.5)	14.7 (6.8)
Hakea recurva. recurva	0	0	5	4.0		
Melaleuca lateriflora	0	0	1	1.0		
Melaleuca strobophylla	15	13	0	0.0	15.5 (1.9)	11.2 (3.5)
Melaleuca viminea	0	0	3	3.0		
Scholtzia sp.	0	0	4	0.0		

Changes in understorey composition

There has been a reduction of the distribution of *Baumea vaginalis* and *Sclerolaena parviflora* and an elimination of *Chenopodium* sp and *Hakea recurva* from the transects with a recruitment of *Rhagodia drummondii* and expansion of *Halosarcia* and *Enchylaena* spp

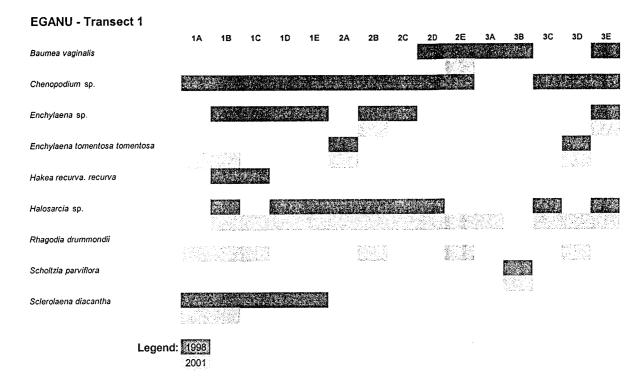


Figure 14. Species Distribution along Lake Eganu Transect 1 in 1998 and 2002

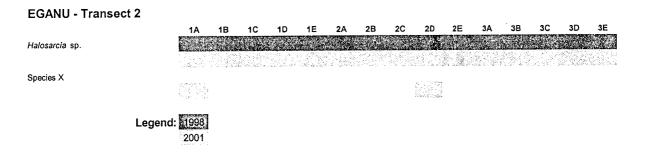


Figure 15. Species Distribution along Lake Eganu Transect 2 in 1998 and 2002

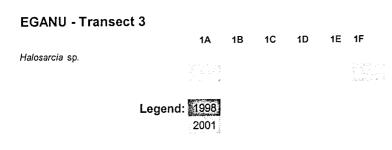


Figure 16. Species Distribution along Lake Eganu Transect 3 in 1998 and 2002

Table 23 Summary Of Understorey Species Distribution In All Transects At Lake Eganu

EGANU - Transect 1	New Recruit	Expansion	Extinction	Contraction	No Change
Rhagodia drummondii	yes				
Enchylaena sp.		yes			

EGANU - Transect 1	New Recruit	Expansion		Contraction	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Halosarcia sp.		yes			
Chenopodium sp.			yes		
Hakea recurva. recurva			yes		
Baumea vaginalis				yes	
Enchylaena tomentosa tomentosa				yes	
Sclerolaena diacantha				yes	
Scholtzia parviflora					yes

EGANU - Transect 2	New Recruit	Expansion	Extinction	Contraction	No Change
Enchylaena sp	yes				
Halosarcia sp.					yes

EGANU - Transect 3	New Recruit	Expansion	Extinction	Contraction	No Change
Halosarcia sp.	yes				

Soil Characteristics

Table 19 tabulates the mean soil salinities for the transects over the two sampling periods. There was a decrease of 19% in the vertical and 25% in the horizontal EM38 measurements over the three year period.

Table 24 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lake Eganu over the Two Sampling Periods.

	Stein Co		45.		ng Juri			Distanc	ce Across (m) 4. 4.				
				0 m					10 m	(權) 特別提出			20 m	
Distance (m)	Vertical 1998/99	Vertic 2001/0		Horizontal 1998/99	7.7.	izontal 01/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02
T1														
Section Mean	422	2 3	30	291		218	401	319	271	211	387	302	262	195
Transect Mean	403	317	2	75	208							_		
T2														
Section Mean	557	5	23	402		353	650	588	485	431	662	606	533	472
Transect Mean	623	572	4	73	419									
Т3														
Section Mean	320	2	23	264		154	328	193	273	137	317	180	265	133
Transect Mean	322	199	20	67	141									

Summary

Table 25 summaries all the data for Lake Eagnu. There has been a reduction in soil salinities over the period and this has been reflected in an increase in the condition of salt sensitive trees. However closer to the lake there has been a reduction in the number of the salt tolerant trees and the understorey has become more dominated by salt tolerant species without the elimination of the salt sensitive species.

Table 25 Summary of data for Lake Eagnu

Condition	Increase	Decrease	No Change
Soil Salinity		yes	
(Mean salinity change over			
all Transects)			
Crown Condition	Casuarina obesa	Melaleuca strobophylla	
(all transects MCS)	Eucalyptus loxophleba		
Count of Overstorey		Casuarina obesa	Acacia sp
Individuals		Hakea recurva. Recurva	Eucalyptus loxophleba
(All transects. Species		Melaleuca strobophylla	Melaleuca lateriflora
increasing /decreasing /No		Scholtzia sp.	Melaleuca viminea
Change in Counts)			
Understorey Species	Enchylaena sp.	Baumea vaginalis	Scholtzia parviflora
(All Transects. Species	Halosarcia sp.	Chenopodium sp.	Halosarcia sp
increasing /decreasing/No	Rhagodia drummondii	Enchylaena tomentosa tomentosa	
Change)		Hakea recurva. recurva	
,		Sclerolaena diacantha	

Ardath Lake

Description

R. Gurner et al. (1999) reports that Ardath Lake (32°05' S, 118°09' E) lies in a large block of remnant vegetation vested in the Shire of Bruce Rock. Along with other low-lying areas in the surrounding landscape, much of the vegetation of the lake is severely salt affected. Inflow and outflow appears to occur through the channel at the south western end of the lake. A low drainage bund has been constructed across a second channel which lies directly north of the main channel. The bund appears to direct flow into the lake through the main channel and may block outflow into the second channel. These modifications to the drainage may be intended to maintain water levels for recreation (i.e. skiing).

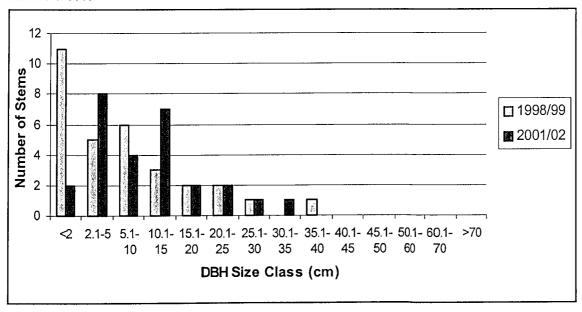
Transects

Two 40 metre transects were established on this lake:

Transect 1: (GPS: 50 608866 / 6448308) is positioned on the western side of the lake, located by the main access track off the sealed rod.

Transect 2: (GPS: 50 609112 / 6448112) is situated on the eastern side of the lake, located by the main access track. Transect 2 finishes in the water. **Note:** the rear of this transect crosses the access track and has no rear right star picket.

The second sampling program for this lake occurred in early December 2001


The plant communities around the lake are as described by R. Gurner et al. (1999)

Results

Population Structure and Tree Vigour

The limited data for this lake that the trees have mostly survived but that *Eucalyptus yilgarnensis* has not fared as well as the more salt tolerant *Casuarina obesa*.

Casuarina obesa

Eucalyptus yilgarnensis

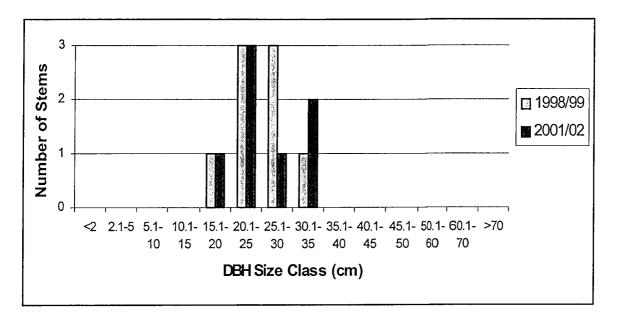


Figure 17. Size Class Distributions for Casuarina obesa and Eucalyptus yilgarnensis at Ardath.

Table 26. Summary of Tree Data for Ardath Lake

Species	Trees 1999	Trees 2002	Seedlings 1999	Seedlings 2002	MCS (SD) 1999	MCS (SD) 2002
Casuarina obesa	25	16	6	13	13.9 (2.7)	14.4 (2.2)
Eucalyptus yilgarnensis	7	6	0	0	10.7 (3.0)	8.8 (2.1)
Melaleuca lateriflora	0	0	9	2	N/a	n/a
Melaleuca thyoides	0	0	21	18	n/a	n/a
Scaevola spinescens	0	0	0	2	n/a	n/a
Acacia ?rostellifera	0	0	1	2	n/a	n/a

Changes in understorey composition

There is a difference between the two transects. In Transect 1 there has been an elimination of a number of species including *Enchylaena tomentosa*, *Mesembryanthemum nodiflorum*, *Chenopodium* sp. *Acacia* sp and *Alyxia buxifolia*. In Transect 2 there has been a recruitment or expansion of *Melaleuca thyoides*, *Darwinia halophila*, *Sclerolaena diacantha*, *Dianella revoluta*, *Daviesia argillacea* and *Scaevola spinescens* and a decrease or elimination of *Grevillea acuaria*, *Acacia rostellifera* and *Olearia pimeleoides*

ARDATH - Transect 1 1B 1C 1D 2B 2C 2E 1E 2A Carpobrotus sp. Chenopodium sp. Halosarcia sp. Enchylaena tomentosa Mesembryanthemum nodiflorum Scaevola spinescens

Legend: 1998 2001

Figure 18. Species Distribution along Ardath Lake Transect 1 in 1998 and 2002

ARDATH - Transect 2 1A 1B 1C 1D 1E 2A 2B 2C 2D 2E Acacia ?rostellifera Alyxia buxifolia Carpobrotus sp. Chenopodium sp. Daviesia argillacea Darwinia halophila Dianella revoluta Enchylaena tomentosa tomentosa Grevillea acuaria Halosarcia lylei Melaleuca thyoides Olearia pimeleoides Scaevola spinescens Sclerolaena diacantha

Legend: ###

Figure 19. Species Distribution along Ardath Lake Transect 2 in 1998 and 2002

Table 27 Summary Of Understorey Species Distribution In All Transects At Ardath Lake

ARDATH - Transect 1	New Recruit	Expansion	Extinction	Contraction	No Change
Carpobrotus sp.			yes		
Chenopodium sp.			yes		
Enchylaena tomentosa			yes		
Mesembryanthemum nodiflorum			yes		
Scaevola spinescens			yes		
Halosarcia sp.					yes

	New	il in a 🗖 in a filtrick	Take Produce Devices	Contraction	N ₀
ARDATH - Transect 2	Recruit				Change
Darwinia halophila	yes				
Melaleuca thyoides	yes				
Scaevola spinescens	yes				
Sclerolaena diacantha	yes				
Dianella revoluta	yes				
Daviesia argillacea		yes			
Enchylaena tomentosa tomentosa		yes		yes	
Halosarcia lylei		yes			
Acacia ?rostellifera			yes		
Alyxia buxifolia			yes		
Chenopodium sp.			yes		
Grevillea acuaria				yes	
Olearia pimeleoides				yes	
Carpobrotus sp.					yes

Soil Characteristics

Table 22 tabulates the mean soil salinities for the transects over the two sampling periods. There was an increase of 18% in the vertical and 18% in the horizontal EM38 measurements over the three year period.

Table 28 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lake Ardath over the Two Sampling Periods.

	1.1				- 1 4 1 4 1	Distance	Across (m)			e tyrologi		
5- 12 E-8, 22			0 m				10 m				20 m	
Distance (m)	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02
T1	1											
Section Mean	696	861	727	883	704	846	764	920	686	835	744	812
Transect Mean	695	847	745	872								
T2												
Section Mean	472	528	374	441	484	550	373	458	545	615	479	557
Transect Mean	500	564	409	485			<u></u>		L			

Summary

Table 29 summaries all the data for Lake Ardath. With the increase in soil salinities there has been a decrease in the health of salt sensitive trees and a reduction in the salt sensitive understorey. Salt tolerant trees and understorey plants have increased in condition and proportion in the understorey population respectively.

Table 29 Summary of data for Lake Ardath

Condition	Increase	Decrease	No Change
Soil Salinity	yes		
(Mean salinity change			
over all Transects)	·		
Crown Condition	Casuarina obesa	Eucalyptus yilgarnensis	
(all transects MCS)			
Count of Overstorey	Acacia ?rostellifera	Casuarina obesa	
Individuals	Scaevola spinescens	Eucalyptus yilgarnensis	
(All transects. Species		Melaleuca lateriflora	
increasing /decreasing		Melaleuca thyoides	
/No Change in Counts)			
Understorey Species	Darwinia halophila	Acacia ?rostellifera	Halosarcia sp.
(All Transects. Species	Enchylaena tomentosa tomentosa	Alyxia buxifolia	Carpobrotus sp
increasing	Grevillea halophila	Carpobrotus sp.	
/decreasing/No Change)	Halosarcia lylei	Chenopodium sp	
	Melaleuca thyoides	Dianella revoluta	
	Scaevola spinescens	Enchylaena tomentosa	
	Sclerolaena diacantha	Grevillea acuaria	
	Daviesia argillacea	Mesembryanthemum nodiflorum	
		Olearia pimeleoides	
		Scaevola spinescens	

Lake Campion

Description

R. Gurner et al. (1999) reports that Lake Campion is a very large seasonal hypersaline lake situated approximately 40 km north of the Merredin town site in the Campion Nature Reserve (24789) (31°09' S, 118°21' E). The total lake area is 611.2 hectares with 100 % consisting of open water (Halse, Pearson and Patrick, 1993). A series of saline depressions occur in the remnant vegetation to the east and south of the lake along with several small creeks which flow into the lake. A narrow band of remnant vegetation separates the lake from adjoining pasture to the north. The saline nature of the lake has lead to the death of the majority of the littoral vegetation. The lake is used for skiing when water level permits.

Transects

Four transects were established on Lake Campion. The plots sampled the upland wetland vegetation through to the *Halosarcia* species on the lakebed.

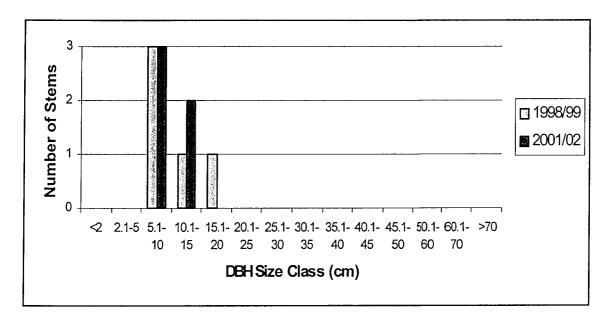
The first monitoring was undertaken in November 1998 while the second occurred in early December 2001 (T1, T2 and T3) when there was water in the lake and late January 2001 for T4. By January the lake had dried up allowing access to T4.

Transect 1: (GPS: 50 628395 / 6555055) is situated approximately half way along the western peninsula that crosses Stock Road.

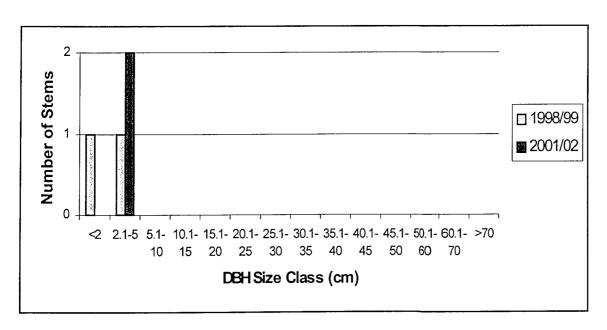
Transect 2: (GPS:50 628208 / 6554632) is located approximately half way along the northwestern side of the southern section of the lake.

Transect 3: (GPS: 50 628169 / 6553366) is positioned in the middle of the bay to the south east of the car park/boat ramp.

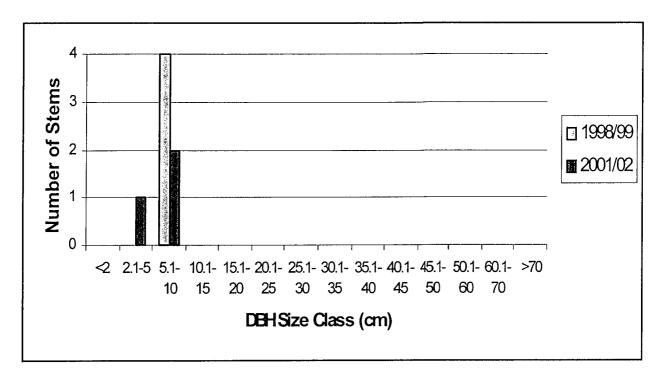
Transect 4: (GPS:50 629289 / 6554488) is situated approximately half way along the second bay on the south west side of the main lake body.

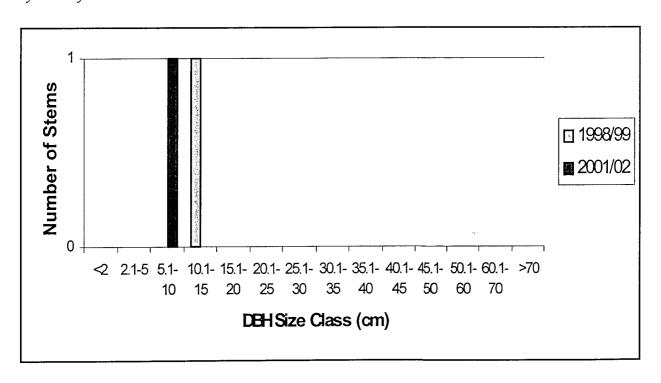

The plant communities around the lake are as described by R. Gurner et al. (1999)

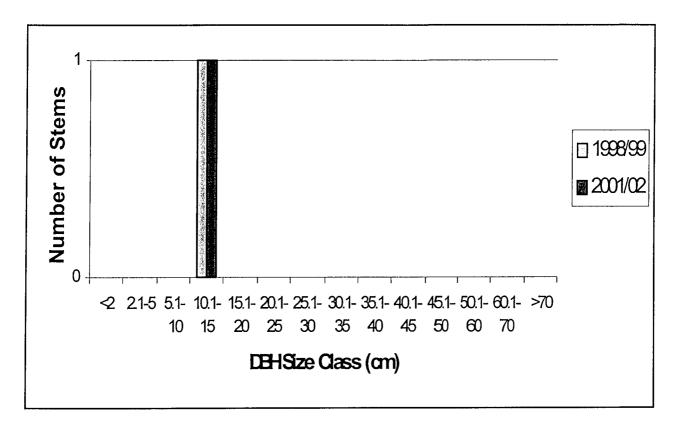
Results

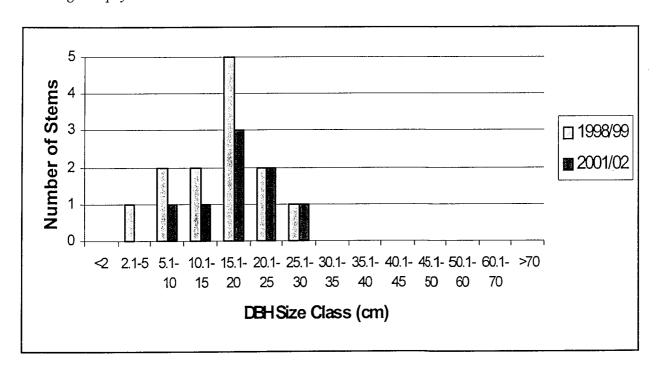

Population Structure and Tree Vigour

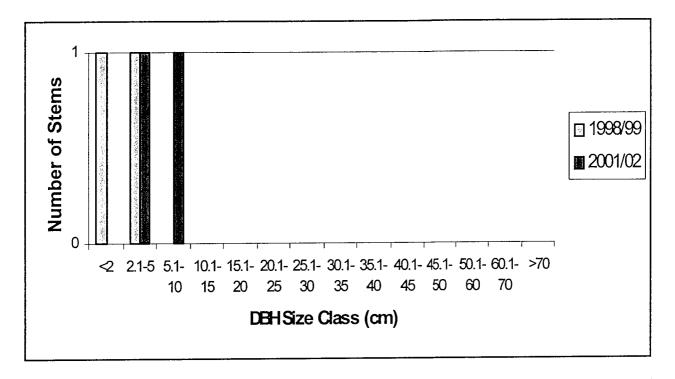
Though there has been some mortality amongst the trees at this lake, crown health has not deteriorated to any degree.

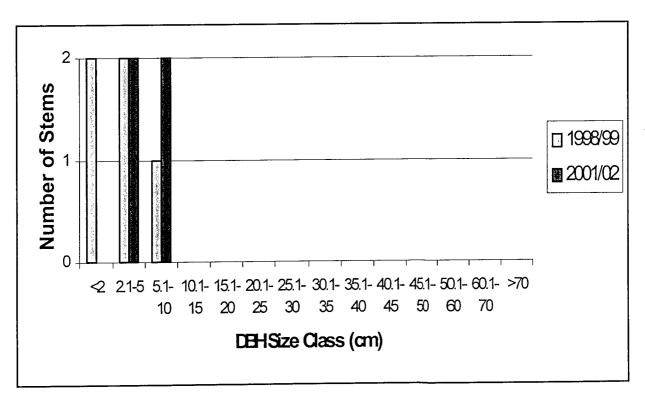

Acacia ?prainii

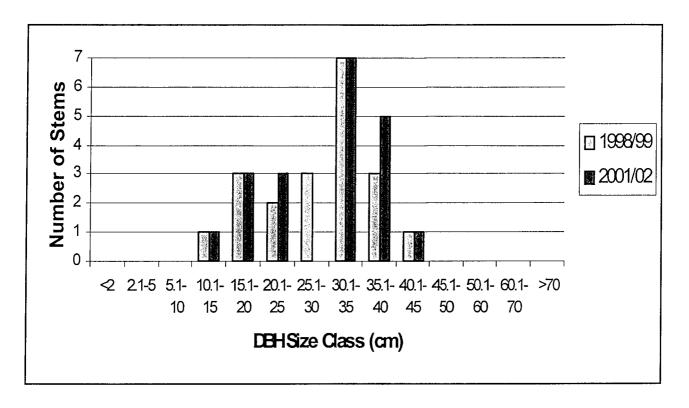

Acacia acuminata

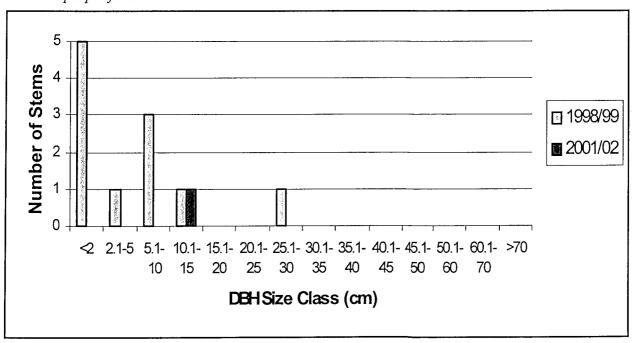

Acacia sp.


Alyxia buxifolia


Bossiaea?rufa


Callitris glaucophylla


Dodonaea filifolia


Eremophila oppositifolia angustifolia

Eucalyptus yilgarnensis

Melaleuca pauperiflora

Melaleuca uncinata

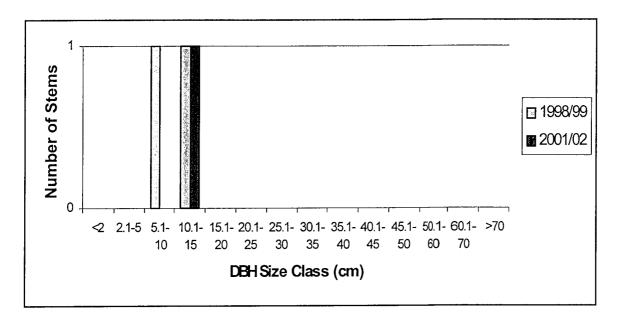


Figure 20. Size Class Distributions for Acacia acuminata, A? prainii, Acacia sp, Alyxia buxifolia, Bossiaea ?rufa, Callitris glaucophylla, Dodonaea filifolia, Eremophila oppositifolia angustifolia, Eucalyptus yilgarnensis Melaleuca uncinata and M pauperiflora at Lake Campion

Table 30. Summary of Tree Data for Lake Campion

Species	Trees 1999	Trees 2002	Seedlings 1999	Seedlings 2002	MCS (SD) 1999	MCS (SD) 2002
Acacia ?prainii	5	5	2	0.0	11.0 (2.4)	<9.0
Acacia acuminata	2	2	0	0.0	14.0 (0.7)	
Acacia sp.	4	2	5	2	11.5 (3.4)	13.0 (2.8)
Alyxia buxifolia	1	1	1	0.0	13	12.0
Bossiaea? rufa	2	1	7	0.0	11.0	12.0
Callitris glaucophylla	13	6	0	1.0	15.2 (3.6)	15.5 (1.5)
Dodonaea filifolia	1	21	19	5.0	11.0	11.0
Eremophila oppositifolia. angustifolia	4	4	3	4.0	15.5 (2.5)	17.0
Eucalyptus yilgarnensis	20	20	0	0.0	13.8 (4.6)	12.4 (2.8)
Hakea recurva	0	0	6	6.0		, , , , , , , , , , , , , , , , , , , ,
Melaleuca pauperiflora	7	1	7	0.0	11.9 (4.5)	14.0
Melaleuca uncinata	2	1	237	181.0	16.0 (1.4)	9.0

Changes in understorey composition

Species diversity is quite high at Campion. There has been a number of changes in the distribution of species along the transects. These have included the elimination and recruitment of some species specially in the areas of the transects closest to the lake. Those area closest to the lake have had salt sensitive species eliminated while salt tolerant species have increased.

CAMPION - Transect 1 1B 1C 1D 1E 2A 2B 2C 2D Atriplex vesicaria Austrostipa elegantissima Chenopodium sp. Dodonaea filifolia Enchylaena tomentosa Frankenia sp. Gnephosis tenuissima Gunniopsis glabra Gunniopsis intermedia Halosarcia lepidosperma Halosarcia pergranulata Melaleuca uncinata Mesembryanthemum nodiflorum Rhagodia? drummondii Sclerolaena convexula Sclerolaena diacantha Legend: 1998

Figure 21. Species Distribution along Lake Campion Transect 1 in 1998 and 2002

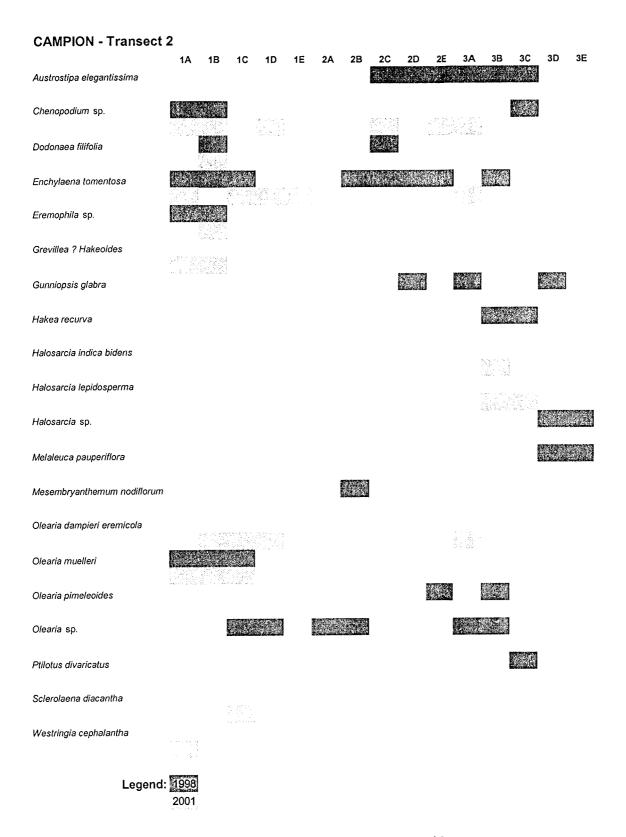


Figure 22. Species Distribution along Lake Campion Transect 2 in 1998 and 2002

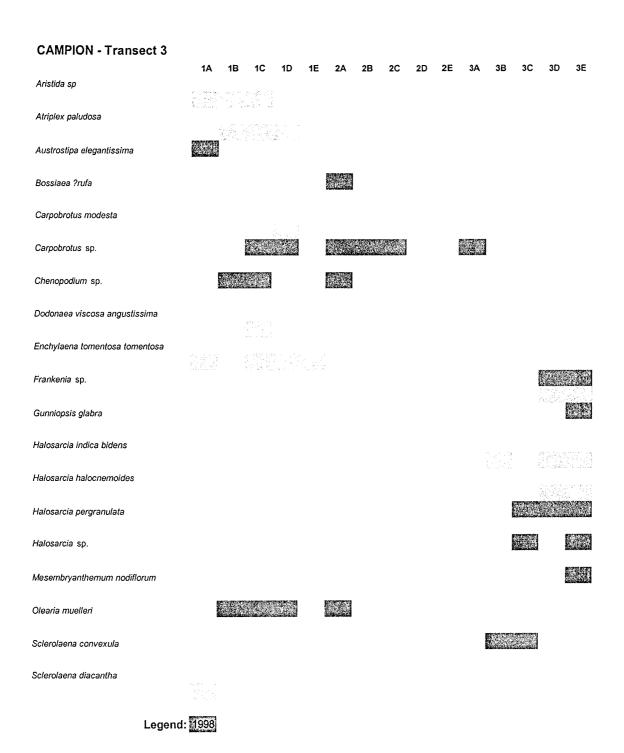


Figure 23. Species Distribution along Lake Campion Transect 3 in 1998 and 2002

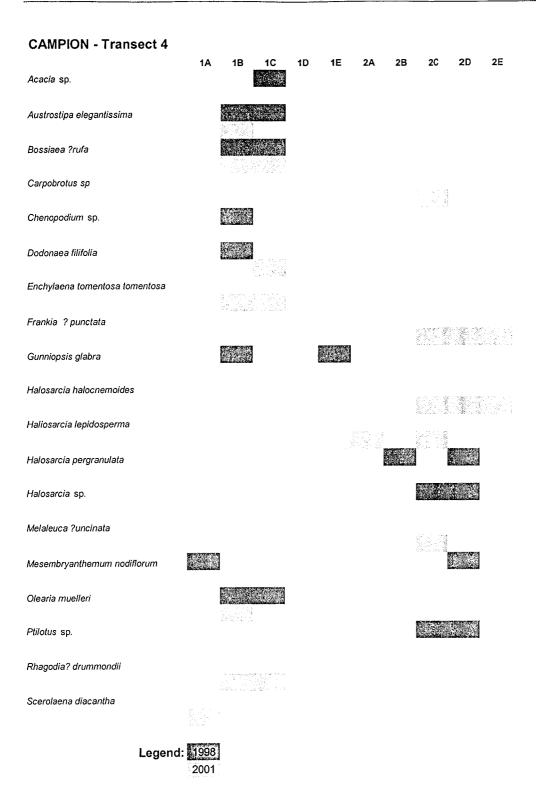


Figure 24. Species Distribution along Lake Campion Transect 4 in 1998 and 2002

Table 31 Summary Of Understorey Species Distribution In All Transects At Lake Campion

CAMPION - Transect 1	New Recruit	Expansion	Extinction	Contraction	No Change
Gunniopsis intermedia	yes			,	
Rhagodia? drummondii	yes				
Sclerolaena diacantha	ves				

CAMPION - Transect 1	New Recruit Expansion	Extinction	Contraction	No Change
Atriplex vesicaria		yes		
Austrostipa elegantissima		yes		
Gnephosis tenuissima		yes		
Gunniopsis glabra		yes		
Dodonaea filifolia		yes		
Melaleuca uncinata		yes		
Mesembryanthemum		yes		
nodiflorum				
Sclerolaena convexula		yes		
Chenopodium sp.			yes	
Halosarcia lepidosperma			yes	
Halosarcia pergranulata			yes	
Enchylaena tomentosa				yes
Frankenia sp.				yes

CAMPION - Transect 2	New Recruit	Expansion	Extinction	Contraction	No Change
Grevillea ? Hakeoides	yes				
Halosarcia indica bidens	yes				
Halosarcia lepidosperma	yes				
Olearia dampieri	yes				
eremicola					
Sclerolaena diacantha	yes				
Westringia cephalantha	yes				
Chenopodium sp.		yes			
Enchylaena tomentosa		yes		yes	
Austrostipa elegantissima			yes		
Gunniopsis glabra			yes		
Hakea recurva			yes		
Halosarcia sp.			yes		
Melaleuca pauperiflora			yes		
Mesembryanthemum			yes		
nodiflorum					
Olearia pimeleoides			yes		
Olearia sp.			yes		
Ptilotus divaricatus			yes		
Dodonaea filifolia				yes	
Eremophila sp.				yes	
Olearia muelleri					yes

CAMPION - Transect 3	New Recruit	Expansion I	Extinction	Contraction	No Change
Aristida sp	yes				
Atriplex paludosa	yes				
Carpobrotus modesta	yes				
Dodonaea viscosa angustissima	yes				
Enchylaena tomentosa tomentosa	yes				
Halosarcia indica bidens	yes				
Halosarcia halocnemoides	yes				
Sclerolaena convexula	yes				
Austrostipa elegantissima			yes		

CAMPION - Transect 3	New Recruit	Expansion	Extinction	Contraction	No Change
Bossiaea ?rufa			yes		
Carpobrotus sp.			yes		
Chenopodium sp.			yes		
Gunniopsis glabra			yes		
Halosarcia pergranulata			yes		
Halosarcia sp.			yes		
Mesembryanthemum nodiflorum			yes		
Olearia muelleri			yes		
Sclerolaena diacantha			yes		
Frankenia sp.					yes

CAMPION - Transect 4	New Recruit	Expansion	Extinction	Contraction	No Change
Carpobrotus sp	yes				
Enchylaena tomentosa	yes				
tomentosa					
Frankia ? punctata	yes				
Halosarcia lepidosperma	yes				
Halosarcia halocnemoides	yes				
Melaleuca ?uncinata	yes				
Rhagodia? drummondii	yes				
Sclerolaena diacantha	yes				
Dodonaea filifolia		To lake		From lake	
Acacia sp.			yes		
Chenopodium sp.			yes		
Gunniopsis glabra			yes		
Halosarcia pergranulata			yes		
Halosarcia sp.			yes		
Mesembryanthemum			yes		
nodiflorum					
Ptilotus sp.			yes		
Austrostipa elegantissima				yes	
Olearia muelleri				yes	
Bossiaea ?rufa					yes

Soil Characteristics

Table 25 tabulates the mean soil salinities for the transects over the two sampling periods. There was only a slight change (increase of 3% in the vertical and decrease of 1% in the horizonal EM38 measurements) in soil salinities over the three year period.

Table 32 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Lake Campion over the Two Sampling Periods.

						Distanc	e Across (m)					
		a Naide	0 m				10 m			ja st	20 m	
Distance (m)	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02
T1												
Section Mean	506	479	414	326	507	497	348	336	485	510	340	35.
Transect Mean	499	495	368	338								
T2												
Section Mean	331	326	290	235	331	318	293	224	292	390	211	33'
Transect Mean	318	345	265	265								
Т3												
Section Mean	286	299	191	198	291	294	181	190	282	308	173	188
Transect Mean	286	300	182	192	!							
T4				·								
Section Mean	460	483	350	338	421	411	247	302	454	451	338	_302
Transect Mean	445	448	312	314								

Summary

Table 33 summaries all the data for Lake Campion. There has been no changes in the soil salinities and this is reflected in the little changes that have occurred in the transects. Changes that have occurred include the decrease in some salt tolerant understorey and an increase in a number of salt sensitive understorey species.

Table 33 Summary of data for Lake Campion

Condition	Increase	Decrease	No Change
Soil Salinity (Mean salinity change over all Transects)			yes
Crown Condition (all transects MCS)	Acacia sp Callitris glaucophylla Eremophila oppositifolia angustifolia	Acacia ?prainii Eucalyptus yilgarnensis	
Count of Overstorey Individuals (All transects. Species increasing /decreasing /No Change in Counts)	Dodonaea filifolia	Acacia sp. Bossiaea? rufa Callitris glaucophylla Melaleuca pauperiflora Melaleuca uncinata	Acacia ?prainii Acacia acuminata Alyxia buxifolia Eremophila oppositifolia angustifolia Eucalyptus yilgarnensis Hakea recurva

Condition	Increase	Decrease	No Change
Understorey Species	Aristida sp	Acacia sp.	Bossiaea ?rufa
(All Transects. Species	Atriplex paludosa	Atriplex vesicaria	Enchylaena tomentosa
increasing	Carpobrotus modesta	Austrostipa elegantissima	Frankenia sp.
/decreasing/No Change)	Carpobrotus sp	Bossiaea ?rufa	Frankenia sp.
	Chenopodium sp.	Carpobrotus sp.	Olearia muelleri
	Dodonaea filifolia	Chenopodium sp.	3.2
	Dodonaea viscosa angustissima	Dodonaea filifolia	
	Enchylaena tomentosa tomentosa	Eremophila sp.	
	Frankia? punctata	Frankenia sp.	
	Grevillea ? Hakeoides	Gnephosis tenuissima	
	Gunniopsis intermedia	Gunniopsis glabra	
	Halosarcia halocnemoides	Hakea recurva	
	Halosarcia indica bidens	Halosarcia lepidosperma	
	Halosarcia lepidosperma	Halosarcia pergranulata	
	Melaleuca ?uncinata	Halosarcia sp.	
	Olearia dampieri eremicola	Melaleuca uncinata	
	Rhagodia? drummondii	Melaleuca pauperiflora	
	Sclerolaena convexula	Mesembryanthemum nodiflorum	
	Sclerolaena diacantha	Olearia muelleri	
	Westringia cephalantha	Olearia pimeleoides	
		Olearia sp.	
		Ptilotus divaricatus	
		Ptilotus sp.	
		Sclerolaena convexula	
		Sclerolaena diacantha	

Paperbark Swamp

Description

R. Gurner et al. (1999) reports that Paperbark Swamp is a small fresh seasonal wetland which is located approximately 30 km south west of Corrigin in the Paperbark Nature Reserve (Reserve Number) (32°24' S, 118°, 06' E). The wetland lies within cleared paddocks apart from the vegetation remaining in the reserve. The wetland is characterised by gentle to flat sloping banks near the perimeter to sharp rolling topography toward the centre which is comprised of interconnected depressions, mounds and creeks. A large drainage inlet has been constructed within the southern section of the reserve opposite a paddock with evidence of water logging and erosion. Modification to the drainage of the lake may be causing the vegetation stress noted within the southern portion of the Swamp. Grazing history within the Paperbark Swamp is unknown, but it seems likely that grazing has occurred within the southern sections of the nature reserve.

Transects

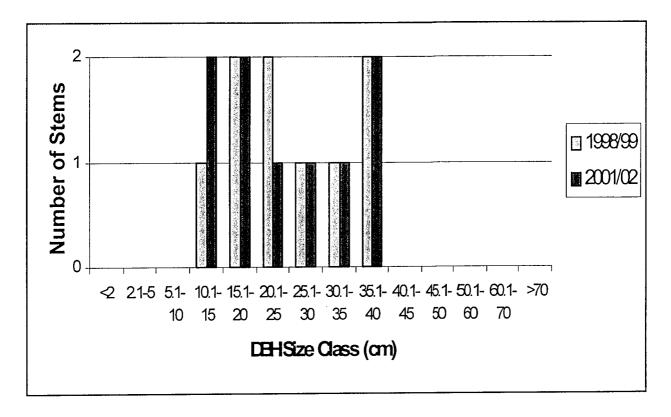
Three 60 metre transects were established in Paperbark Swamp. Transects 1 and 2 sampled the terrestrial vegetation of the reserve and transect 3 sampled the community of *Melaleuca strobophylla* and *Melaleuca pholidophylla* in the centre of the swamp.

The second sampling occurred in early December 2001 when the lake was dry.

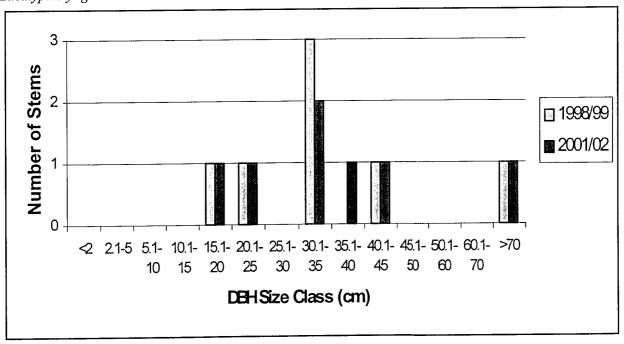
Transect 1: (GPS: 50 603590 / 6413029) is situated 50 metres in from the dogleg in the main access track near the property boundary.

Transect 2: (GPS:50 603693 / 6412780) is located approximately 200 metres south from the dogleg in the main track. SSE of transect 1.

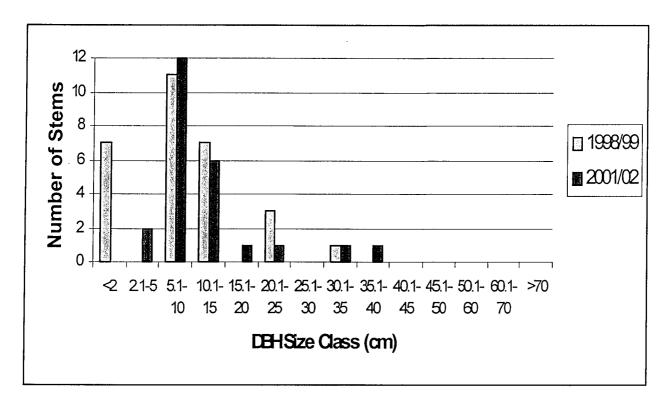
Transect 3: (GPS: 50 603243 / 6413123) is positioned approximately 100 metres ENE of the corner drain inlet at the southern end of the reserve. Located in a stand of mature Melaleuca strobophylla.

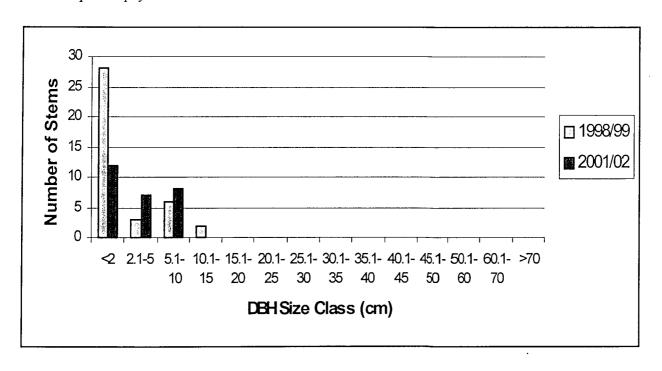

The plant communities around the lake are as described by R. Gurner et al. (1999)

Results


Population Structure and Tree Vigour

There has not been much change in population structure or tree vigor between the sampling periods (Figure 27 Table 10)


Eucalyptus loxophleba


Eucalyptus yilgarnensis

Melaleuca lateriflora

Melaleuca pholidophylla

Melaleuca strobophylla

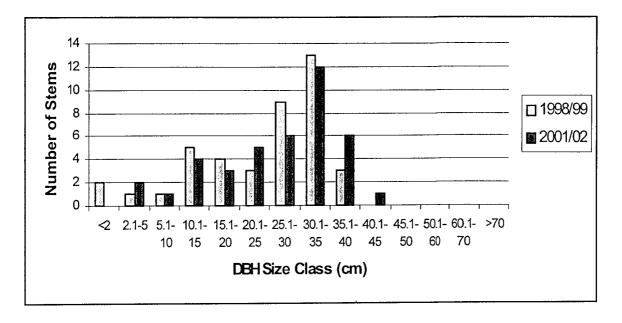


Figure 25. Size Class Distributions for Eucalyptus loxophleba, Eucalyptus yilgarnensis, Melaleuca lateriflora, and Melaleuca strobophylla at Paperbark Swamp

Table 34. Summary of Tree Data for Paperbark Swamp

Species	Trees 1999	Trees 2002	Seedlings 1999	Seedlings 2002	MCS (SD) 1999	MCS (SD) 2002
Bossiaea ?rufa	1	1	0	0		
Eucalyptus loxophleba	9	9	0	0	9.0 (3.7)	9.4 (3.9)
Eucalyptus yilgarnensis	7	7	0	0	12.9 (4.0)	12.6 (2.8)
Hakea recurva	1	0	0	0		
Melaleuca lateriflora	24	22	127	89		13.8 (1.7)
Melaleuca pholidophylla	29	26	121	116		14.2 (1.0)
Melaleuca strobophylla	40	40	1	1	13.7 (2.4)	13.2 (1.7)
Scaevola spinescens	0	4	0	0		

Changes in understorey composition

The lack of change in the overstorey is also reflected in the understorey with little change in species distribution along the transect.

PAPERBARK - Transect 1 1B 1C 1D 1E 2A 2B 2C 2D 3E Atriplex semibaccata Disphyma crassifolium Enchylaena tomentosa Eremophila decipiens Maireana brevifolia Scierolaena diacantha Legend: 1998

Figure 26. Species Distribution along Paperbark Swamp Transect 1 in 1998 and 2002

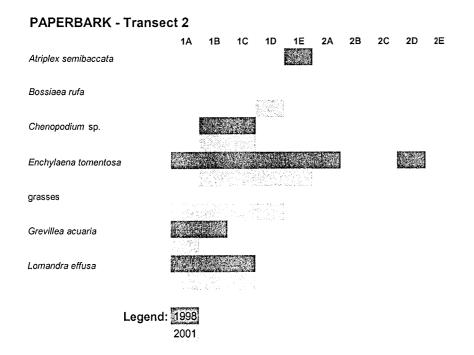


Figure 27. Species Distribution along Paperbark Swamp Transect 1 in 1998 and 2002

Figure 28. Species Distribution along Paperbark Swamp Transect 1 in 1998 and 2002

Table 35 Summary Of Understorey Species Distribution In All Transects At Paperbark Swamp

PAPERBARK - Transect 1	New Recruit		Extinction	Contraction	No Change
Disphyma crassifolium	yes				
Eremophila decipiens	yes				
Sclerolaena diacantha	yes				
Atriplex semibaccata		yes			
Enchylaena tomentosa		yes			
Maireana brevifolia				yes	

PAPERBARK - Transect 2	New Recruit	Expansion	Extinction	Contraction	No Change
Bossiaea rufa	yes				, , , ,
grasses	yes				
Atriplex semibaccata			yes		
Enchylaena tomentosa				yes	
Grevillea acuaria				yes	
Chenopodium sp.					yes
Lomandra effusa					yes

Soil Characteristics

Table 28 tabulates the mean soil salinities for the transects over the two sampling periods. There was an increase of 79% in the vertical and 103% in the horizontal EM38 measurements over the three year period.

Table 36 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Paperbark Swamp over the Two Sampling Periods.

(Přísa)				Maria d	unidi.	Distanc	e Across (m	ı) . Š. (ž. (š.				
			0 m				10 m			20) m	
Distance (m)	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02
T1												
Section Mean	88	131	49	71	87	135	48	74	102	151	58	82
Transect Mean	92	139	52	76								
T2												
Section Mean	105	227	59	150	109	232	61	157	126	267	70	185
Transect Mean	113	242	63	164								
Т3												
Section Mean	76	129	34	64	80	129	37	69	79	119	37	_64
Transect Mean	78	125	36	66								

Summary

Table 37 summaries all the data for Paperbark Swamp. There has been an increase in the soil salinities of the swamp though from low levels and this has caused the death of individuals of some tree species and a decrease in some salt sensitive understorey species.

Table 37 Summary of data for Paperbark Swamp

Condition	Increase	Decrease	No Change
Soil Salinity (Mean salinity change over all Transects)	yes		
Crown Condition (all transects MCS)	Eucalyptus loxophleba	Eucalyptus yilgarnensis Melaleuca strobophylla	
Count of Overstorey Individuals (All transects. Species increasing /decreasing /No Change in Counts)	Scaevola spinescens	Hakea recurva Melaleuca lateriflora Melaleuca pholidophylla	Bossiaea ?rufa Eucalyptus loxophleba Eucalyptus yilgarnensi: Melaleuca strobophylla
Understorey Species (All Transects. Species increasing /decreasing/No Change)	Atriplex semibaccata Atriplex semibaccata Bossiaea rufa Disphyma crassifolium Enchylaena tomentosa Eremophila decipiens grasses Sclerolaena diacantha	Enchylaena tomentosa Grevillea acuaria Maireana brevifolia	Chenopodium sp. Lomandra effusa

Goonaping Swamp

Description

R. Gurner et al. (1999) reports that Goonaping Swamp is a small fresh seasonal wetland which is located approximately 50 km south west of York in the Wandoo Conservation area (32°09' S, 116°, 35' E). The wetland lies within a forest catchment with cleared paddocks adjacent to the north and west of the reserve. The bulk of the water supply for Goonaping Swamp comes from direct precipitation and runoff with inflow occurring in two drains located on the northern and southwestern edges of the swamp. Outflow is restricted to the southwestern drain. The Swamp is characterised by moderately steep slopes with a broad shallow lakebed depression. The wetland slopes are comprised of laterite scree and clayey soils primarily supporting Eucalyptus wandoo woodlands with scattered Eucalyptus marginata and pockets of Banksia species occurring on deep sands. The lower slopes and littoral zone consist of sandy to clayey loams of alluvial origin supporting Melaleuca preissiana and Eucalyptus rudis with wetland communities of Melaleuca viminea occurring further down slope (Capill, 1984).

Transects

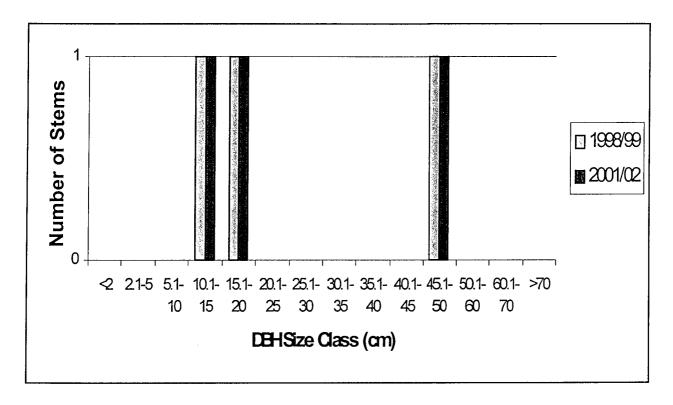
Three 60 metre transects were established on Goonaping Swamp sampling the elevated terrestrial vegetation down into the littoral zone.

The first monitoring was undertaken in February 1999 while the second occurred in late December 2001 and early and mid January 2002 Transect 3 had been nearly completely burnt in a 2000 fire. A number of trees had been destroyed and the understorey completely burnt

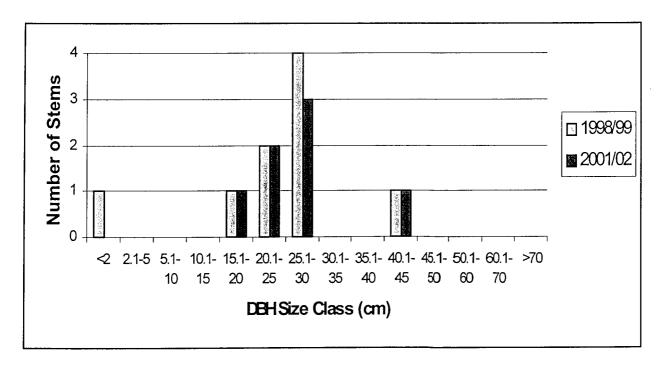
Transect 1: (GPS: 50 461770 / 6442420) is situated on the southeastern side of the swamp approximately 100 metres from the main inflow outflow drain.

Transect 2: (GPS:50 462303 / 6443446) is located on the northwestern side of the lake where the elevation is higher. Transect 2 is positioned near the stand of large mature Eucalyptus rudis.

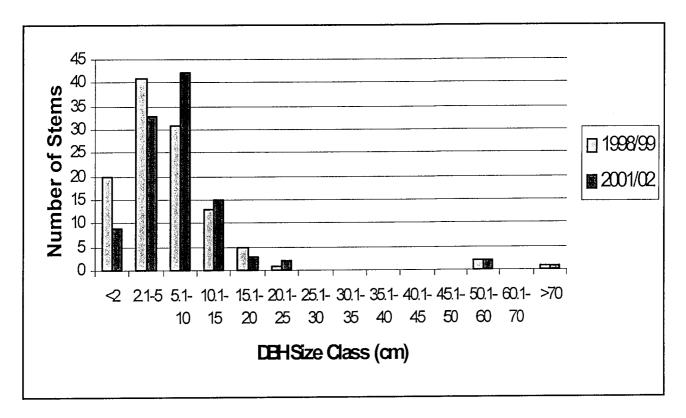
Transect 3: (GPS: 50 462432 / 6443223) is positioned on the middle east side of the Swamp approximately 200 metres around from transect 2. Transect 3 can be accessed through the inflow drain near the cleared paddocks off the main track.


The plant communities around the lake are as described by R. Gurner et al. (1999)

Results


Population Structure and Tree Vigour

This lake is very similar to Paperbark Swamp in that very little change has occurred in the overstorey component with the increase in crown vigor indication slightly improved conditions during the period. A fire has effected part of the swamp killing a number of mature *Melaleuca* trees.


Eucalyptus marginata

Eucalyptus rudis

Eucalyptus wandoo

Melaleuca preissiana

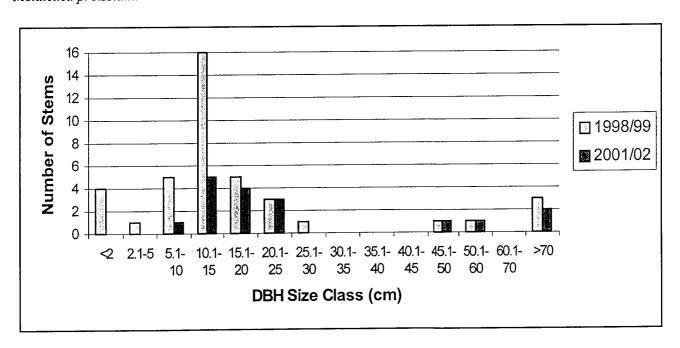


Figure 29. Size Class Distributions for Eucalyptus wandoo, Eucalyptus rudis, Eucalyptus marginata and Melaleuca preissiana at Goonaping Swamp

Table 38. Summary of Tree Data for Goonaping Swamp

Species	Trees/Plants 1999	Trees/Plants 2002	Seedlings 1999	Seedlings 2002	MCS (SD) 1999	MCS (SD) 2002
Acacia saligna	1	1	-		-	-
Banksia menziesii	0	0	5	4.0	-	-
Eucalyptus marginata	3	3	0	0.0	14.3 (4.5)	17.7 (2.3)
Eucalyptus rudis	7	7	1	0.0	14.9 (2.4)	12.5 (1.3)
Eucalyptus wandoo	114	100	87	130.0	(13.7 (3.5)	17.9 (2.3)
Hakea prostrata	1	2	0	0.0		
Hakea varia	34	34	_	-	_	-
Jacksonia sp.	3	4				
Kunzea ericifolia	166	193				
Macrozamia riedlei	1	5				
Melaleuca preissiana	33	13	0	0.0	11.6 (2.9)	14.2 (1.6)
Melaleuca viminea	472	474				
Regelia ciliata	20	8				
Xanthorrhoea preissii	58	97				

Changes in understorey composition

The understorey of this lake is very diverse.

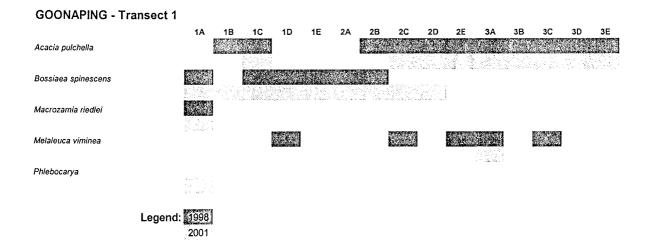


Figure 30. Species Distribution along Goonaping Swamp Transect 1 in 1997 and 2000

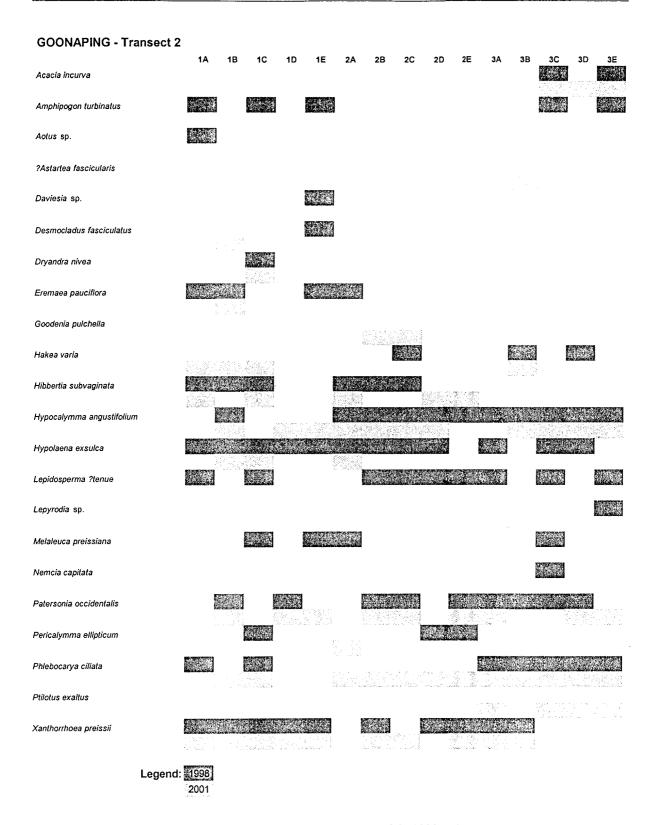


Figure 31. Species Distribution along Goonaping Swamp Transect 2 in 1998 and 2002

Figure 32. Species Distribution along Goonaping Swamp Transect 3 in 1998 and 2002

Table 39 Summary Of Understorey Species Distribution In All Transects At Goonaping Swamp

GOONAPING - Transect 1	 A September 1 document of the control of the control	Expansion	Extinction	Contraction	No Change
Phlebocarya	yes				
Bossiaea spinescens		yes			
Acacia pulchella				yes	
Melaleuca viminea				yes	
Macrozamia riedlei					yes

GOONAPING - Transect 2	New Recruit	Expansion		Contraction	No Change
? Astartea fascicularis	yes	1 - 241 - 241 - 271 - 271			
Goodenia pulchella	yes				
Ptilotus exaltus	yes				
Acacia incurva		yes			
Hibbertia subvaginata		yes			
Phlebocarya ciliata		yes			
Hakea varia		From lake			
Patersonia occidentalis		To lake			
Desmocladus fasciculatus		From lake		From Lake	
Amphipogon turbinatus			yes		
Aotus sp.			yes		
Daviesia sp.			yes		
Lepidosperma ?tenue			yes		
Lepyrodia sp.			yes		
Melaleuca preissiana			yes		
Nemcia capitata			yes		
Eremaea pauciflora				yes	
Hypolaena exsulca				yes	
Pericalymma ellipticum				yes	
Dryandra nivea					yes
Hypocalymma angustifolium					yes
Xanthorrhoea preissii					yes

	New	Expansion	Extinction	Contraction	No Change
GOONAPING - Transect 3	Recruit				
Calytrix angulata	yes				
Meeboldina coangustatus	yes				
Desmocladus fasciculatus	yes				
Hypocalymma angustifolium		yes			
Patersonia occidentalis		To lake			
Hypolaena exsulca		From lake		From lake	
Banksia menziesii			yes		
Carpobrotus sp.			yes		
Lepidosperma ?tenue			yes		
Leucopogon obovatus			yes		
Melaleuca preissiana			yes		
?Melaleuca sp.			yes		
Melaleuca viminea			yes		
Xanthosia atkinsoniana			yes		
Astroloma or Leucopogon sp.				yes	

GOONAPING - Transect 3	New Recruit	Extinction	Contraction	No Change
Hibbertia subvaginata			yes	
Kunzea ericifolia			yes	
Hakea varia				yes
Macrozamia riedlei				yes
Phlebocarya ciliata				yes

Soil Characteristics

Table 31 tabulates the mean soil salinities for the transects over the two sampling periods. There was an increase of 177% in the vertical and 973% in the horizontal EM38 measurements over the three year period.

Table 40 Comparison of Mean Section and Transect soil salinities (mS/m) for all Transects at Goonapping Swamp over the Two Sampling Periods.

					Salatin	Distan	ce Across (m)				
Zan je dan			0 m				10 m		Daniel R	stáritistinetetti. Eré ni	0 m	
Distance (m)	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02	Vertical 1998/99	Vertical 2001/02	Horizontal 1998/99	Horizontal 2001/02
T1												
Section Mean	28	56	10	35	22	53	8	34	29	57	11	36
Transect Mean	26	55	10	35								
T2												
Section Mean	27	74	3	45	28	79	5	47	44	94	14	56
Transect Mean	33	82	8	49								
Т3												
Section Mean	12	45	-2	30	3	39	-8	29	-2	33	-11	21
Transect Mean	4	39	-7	27								

Summary

Table 41 summaries all the data for Goonapping Swamp. Soil salinities have increased but this has more to do with decreased in soil moistures over the last 3 dry years rather than an inflow of saline waters or a rise in ground waters. Changes have occurred due to a recent fire in one of the transects and the development of the understorey composition and tree health in the other transects since the last fire.

Table 41 Summary of data for Goonapping Swamp

Condition	Increase	Decrease	No Change
Soil Salinity	Yes		
(Mean salinity change			
over all Transects)			
Crown Condition	Eucalyptus marginata	Eucalyptus rudis	
(All Transect MCS)	Eucalyptus wandoo		
,	Melaleuca preissiana		

Condition	Increase	Decrease	No Change
Count of Overstorey	Hakea prostrata	Eucalyptus wandoo	Acacia saligna
Individuals	Jacksonia sp.	Melaleuca preissiana	Banksia menziesii
(All transects. Species	Kunzea ericifolia	Regelia ciliata	Eucalyptus marginata
increasing /decreasing	Macrozamia riedlei		Eucalyptus rudis
/No Change in Counts)	Melaleuca viminea		Hakea varia
	Xanthorrhoea preissii		
Understorey Species	?Astartea fascicularis	Acacia pulchella	Dryandra nivea
(All Transects. Species	Acacia incurva	Amphipogon turbinatus	Hakea varia
increasing	Bossiaea spinescens	Aotus sp.	Hypocalymma angustifolium
/decreasing/No Change)	Calytrix angulata	Astroloma or Leucopogon sp.	Macrozamia riedlei
	Desmocladus fasciculatus	Banksia menziesii	Phlebocarya ciliata
	Goodenia pulchella	Carpobrotus sp.	Xanthorrhoea preissii
	Hakea varia	Daviesia sp.	-
	Hibbertia subvaginata	Desmocladus fasciculatus	
	Hypocalymma angustifolium	Eremaea pauciflora	
	Hypolaena exsulca	Hibbertia subvaginata	
	Meeboldina coangustatus	Hypolaena exsulca	
	Patersonia occidentalis	Kunzea ericifolia	
	Patersonia occidentalis	Lepidosperma ?tenue	
	Phlebocarya ciliata	Lepyrodia sp.	
	Ptilotus exaltus	Leucopogon obovatus	
		?Melaleuca sp.	
		Melaleuca preissiana	
		Melaleuca viminea	
		Nemcia capitata	
		Pericalymma ellipticum	
		Xanthosia atkinsoniana	

References

- Australian Nature Conservation Agency (1996). A Directory of Important Wetlands in Australia. Second Edition. ANCA, Canberra.
- Capill, L.G. (1984). Wandoo Woodland Conservation. A Proposal for a System of Ecological Reserves in the Woodlands of Southwestern Australia.
- Gurner R, R. Froend and G. Ogden (1999) Salinity Action PlanWetland Vegetation Monitoring 1998/1999
- Halse SA, Pearson GB and Patrick S, (1993) Vegetation of depth gauged wetlands in nature reserves of south-west Western Australia. CALM Technical Report No. 30.

EN.REFLIST