Flora and Vegetation of the Proposed Cape Preston Rail Corridor West Pilbara Iron Ore Project

2007 - 2008

Prepared by:

Western Botanical PO Box 3393 BASSENDEAN DC, WA 6942

November 2009

For:

API Management Level 1 Aquila Centre, Preston Rd South Perth WA

Ref: WB481 Version 2

Report No.: WB481

Prepared by: Denise True, Kellie McMaster, Hayley Hughes, Cassie Adam, Bec Graham, Amy Douglas, Bridget Watkins and Gemma Lindschau

Field Survey and Data management by: Denise True, Kellie McMaster, Hayley Hughes, Cassie Adam, Bec Graham, Amy Douglas, Bridget Watkins, Andrew Taylor and Gemma Lindschau

Checked by: Denise True and Kellie McMaster

Draft issued: 17/3/09

Version 2 dated: 20/11/09

Western Botanical ABN 31 069 875 403 PO Box 3393 BASSENDEAN DC, Western Australia 6942 Ph: (08) 9270 0999 Fax: (08) 9268 4988

Table of Contents

1.	Introdu	ction	6
	1.1	Background and Study Area	6
	1.2	Scope and Objectives of the Study	6
	1.3	Physiography and Geology	9
	1.4	Land Systems	9
	1.5	Botanical Context and Existing Data	12
2.	Method	s	15
	2.1	Desktop Survey	15
	2.2	Study Team and Survey Timing	15
	2.3	Vegetation Mapping	17
	2.4	Floristic Assessment	18
	2.5	Specimen Collection and Identification	19
	2.6	Taxonomy and Nomenclature	20
	2.7	Data Management and Floristic Analysis	20
	2.8	Limitations of the Study	21
3.	Vegetat	ion	23
	3.1	Overview of Vegetation	23
	3.2	Vegetation Types of the Cape Preston Rail Corridor	24
	3.3	Vegetation of Conservation Significance	43
	3.4	Floristic Patterns of the Study Area	46
4.	Flora		49
	4.1	General	49
	4.2	Flora of Conservation Significance	51
	4.3	Introduced Species	61
5.	Discuss	ion	65
	5.1	General	65
	5.2	Conservation Significance	66
6.	Referen	ices	67
Ap	pendix 1	Vegetation Structural Table of Specht as modified by Aplin (1979)	69
Ap	pendix 2	Vegetation of Study Area	70
Ap	pendix 3	Representative Photographs of the Vegetation of the Study Area	72
Ap	pendix 4	Summary of Site Data from Relevés and Quadrats within the Study A	rea 90
Ap	pendix 5	Locations of all vegetation sampling sites (WGS 84, Zone 50)	137
Ap	pendix 6	Species Representation in Vegetation Types for the Study Area	145
Ap	pendix 7	Area of Vegetation Types across the Study Area and Proposed Impac	ct Area147
Ap	pendix 8	List of Vascular Flora Recorded in the Study Area	151

Appendix 9	Location	of Introdu	ced Species	from the	Study Area

160

Tables

Гable 1	Land systems intersected by the study area1	0
Table 2	Distribution of Land systems within the Cape Preston Rail Study Area1	1
Гable 3	Beard (1975) Vegetation types in the Study Area (Shepherd et al., 2002)1	4
Гable 4	Field Surveys of the Proposed Cape Preston Rail Corridor	6
Table 5	Distribution of Recording Sites in the Study Area1	8
Гable 6	Surveyed and Unsurveyed Burnt Areas of the Proposed Cape Preston Rail Corridor	
Table 7	Area of Vegetation landform elements within the Study Area2	3
Гable 9	Vascular Flora Families with the highest number of species recorded from the Cape Preston Rail Corridor4	
Гable 10	Vascular Flora Genera with the highest number of species recorded from the Cape Preston Rail Corridor4	9
Table 11	Most frequently recorded taxa in the study area5	0
Гable 12	Flora of conservation significance known to be in the locality of the Study Area5	1
Гable 13	Locations of Priority Three Flora within the Study Area (Zone 50K) WGS845	1
Гable 14	Locations and Descriptions of Mulga (<i>Acacia aneura</i> var. <i>intermedia</i>) recorded within the study area5	7
Гable 15	Locations of <i>Triodia</i> sp. <i>Robe River</i> in the Study Area5	9
Гable 16	Locations of Aristida holathera var. latifolia in the Study Area6	0
Гable 17	Records of Introduced Species and Preferred Habitats within the Study Area6	1
Figure	s	
Figure 1	Location of the Proposed Cape Preston Rail Corridor Study Area	8
Figure 2	Bioregions of the Study Area1	3
Figure 3		7
Figure 4	Map of fire-affected areas in the Cape Preston Corridor Study Area2	2
Figure 5	Distribution of Flaveria australasica ssp. gilgai5	2
Figure 6	Distribution of <i>Goodenia nuda</i> 5	3
Figure 7	Distribution of <i>Indigofera</i> sp. Bungaroo Creek (S. van Leeuwen 4301) PN5	4
Figure 8	Distribution of <i>Terminalia supranitifolia</i> 5	6

Plates

Plate 1: Flaveria australasica ssp. gilgai P3	52
Plate 2: Goodenia nuda P3	54
Plate 3: Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) PN P3	55
Plate 4: Terminalia supranitifolia (P3) growing on a rocky free face to the north of the rail corridor, north of the Fortescue River	
Plate 5: Acacia aneura over Triodia wiseana	58
Plate 6: <i>Triodia</i> sp. Robe River	60
Plate 7: *Argemone ochroleuca ssp. ochroleuca	62
Plate 8: *Vachellia farnesiana in flower	64

1. Introduction

1.1 Background and Study Area

API Management Pty Ltd (API) is proposing to develop the West Pilbara Iron Ore Project (WPIOP). The WPIOP is based on eight iron ore deposits found in five locations located between 35 and 80 km south to south west of Pannawonica, along the western fringe of the Hamersley ranges. The ore bodies are goethite-hematite Channel Iron Deposits (CIDs) which are detrital iron-rich material transported into Tertiary river systems and preserved in paleodrainage channels that exist as mesa landforms.

The proposed mine areas extend over 55 km on the Red Hill and Mt Stuart Pastoral Stations and unallocated Crown Land. A railway will be constructed between the deposits and roads will be constructed to enable access between the mine sites and associated infrastructure. Botanical surveys of these areas have been reported separately (Western Botanical, 2009a, b). A railway line is proposed to a port at Dixon Island (207 km). One hundred kilometres of this proposed rail alignment (referred to here as the Cape Preston rail alignment), from the northern most deposit of Cochrane was surveyed by Western Botanical (Figure 1).

The corridor surveyed (the study area) is generally 200 m wide, with areas of up to 500 m over major rivers such as the Robe River and Fortescue River. The size of the total study area is 2398 ha. The area to be impacted is anticipated to be generally 100 m wide, similarly with some wider areas over major rivers. The proposed impact area encompasses 925.7 ha. The study area traverses three pastoral leases, from Red Hill at the southern end, through Yarraloola, and the northwest terminates on Mardie Station.

1.2 Scope and Objectives of the Study

The purpose of this report is to provide baseline information for the purposes of enfironmenal impact assessment at the Public Environmental Review (PER) level of assessment set by the Environmental Protection Authority (EPA) under the *Environmental Protection Act 1986*.

This report documents the flora and vegetation surveys of the study area conducted by Western Botanical during September 2007 to September 2008. Prior to commencing the survey, consultation was undertaken with the Department of Environment and other botanists experienced in flora and vegetation survey in the Pilbara, to ensure that the level of survey and methodology would be comparable with other datasets collated from these sources.

The level of survey appropriate for this project was determined at Level 2, as defined by the Environmental Protection Authority (2004). According to the EPA (2004), the scale and nature of the impact of the proposed West Pilbara Iron Ore Project meet the criteria of the 'high' and 'moderate' characteristics (Appendix 2-Table 3 in EPA 2004) for the Pilbara Bioregion. A detailed Level 2 survey requires "one or more visits in the main flowering season and visits in other seasons; and replication of plots in vegetation units, and great coverage and displacement of plots over the target area" (EPA 2004). The purpose of a comprehensive survey according to the EPA (2004) is "to enhance the level of knowledge at the locality scale and the context at the local scale". The work was structured with longer-term study and multiple visits.

The study aims to provide detailed baseline information on the vegetation and flora of the proposed Cape Preston Rail Corridor; develop an inventory of flora; survey for rare flora (if seasonally appropriate); describe the vegetation; indicate plant communities of conservation interest; and identify habitat areas for rare flora surveys.

1.3 Physiography and Geology

The physiography of the Pilbara region is related to the underlying rocks. Geologically, the area is divided into coastal plains, uplands and a transition zone (Williams 1968). The majority of the study area travels through the transition zone, the landforms comprise mesas and hills with some plain and plains with scattered hills.

Beard (1975) described eight physiographic units or natural regions for the Fortescue Botanical District (Pilbara Region). The Cape Preston Rail Corridor study area traverses five of these:

- Onslow Coastal Plain (13.9% of Study Area) a plain extending from Mary Anne Point to Cape Preston. It comprises extensive plains dominated by neutral and alkaline soils and gravels and plains dominated by alkaline red soils and areas of cracking and non-cracking clay soils.
- Abydos Plain (4.3% of Study Area) this continues the Onslow Coastal Plain further east, from Cape Preston to Pardoo Creek. The coastal portion is alluvial, the majority is granite. The granite further inland outcrops in small hills, ranges and dykes.
- Chichester Plateau (28.1% of Study Area) a long, narrow unit that is bounded on the south side by the Fortescue draining. Comprising mainly rocks of basalt, with siltstone, mudstone, shale, dolomite and jaspilite included.
- Stuart Hills (53% of the Study Area) Principally plains, gently undulating from breakaways and residuals capped by Robe pisolites, also stony hills and steeply dissected pediments on fine-grained sandstone, shale and dolomite.
- Hamersley Plateau (0.4% of the Study Area) A compact unit bounded to the west, north and east by a well-marked abrupt escarpment. Comprised predominantly of jaspilite and dolomite with some shale, siltstone and volcanics.

1.4 Land Systems

Land system mapping is a natural classification of land based predominantly on biophysical features (Van Vreeswyk *et al.* 2004). The rangeland land system mapping provides a level of assessment over the Pilbara bioregion encompassing, flora, vegetation, geomorphology, soils, and site type ecology and resource condition. The Cape Preston Rail study area intersects ten land systems (Table 1).

The proportion of the land systems occurring in the study area comprise between 0.01 and 0.62% of the total area of the land system in the Pilbara (Table 2). Rocklea and Newman are two of the most extensive land systems throughout the region, the study area occurs on the western margins of their distribution. Four land systems are considered to have a limited distribution; Paraburdoo, Nanutarra, Peedamulla and Sherlock land systems. Sherlock Land System comprises only 0.1% of the Pilbara.

Table 1 Land systems intersected by the study area

(Descriptions from Van Vreeswyk et al. 2004)

Land System	Description
Boolgeeda	Stony lower slopes and plains below hill systems supporting hard and soft spinifex grasslands and mulga shrublands; occurring broadly throughout
C :	the study area
Capricorn	Hills and ridges of sandstone and dolomite supporting shrubby hard and soft spinifex grasslands; occurring in the southern section of the study area
Newman	Rugged jaspilite plateaux, ridges and mountains supporting hard spinifex
Newman	grasslands; occurring in the central and southern sections of the study area
Nanutarra	Low mesas and hills of sedimentary rocks supporting soft and hard spinifex grasslands; occurring in the central section of the study area
Paraburdoo	Basalt derived stony Gilgai plains and stony plains supporting snakewood and mulga shrublands with spinifex and tussock grasses; occurring in the northern section of the study area
Peedamulla	Gravelly plains supporting hard spinifex grasslands and minor snakewood shrublands; occurring in the central section of the study area
River	Active flood plains and major rivers supporting grassy eucalypt woodlands, tussock grasslands and soft spinifex grasslands; occurring in the central and southern sections of the study area
Rocklea	Basalt hills, plateaux, lower slopes and minor stony plains supporting hard spinifex (and occasionally soft spinifex) grasslands; occurring in the northern section of the study area
Sherlock	Stony alluvial plains supporting snakewood shrublands with patchy tussock grasses and spinifex grasslands; occurring in the southern section of the study area
Urandy	Stony plains, alluvial plains and drainage lines supporting shrubby soft spinifex grasslands; occurring in the most southern section of the study area

 Table 2
 Distribution of Land systems within the Cape Preston Rail Study Area

Land	Distribution	Total Area (Ha) Pilbara	Amount of Land system within the Study Area	
system		Bioregion	На	% of total in Pilbara Bioregion
Boolgeeda	Extensive throughout the Pilbara; the Cape Preston Rail study area is at the western limit of distribution.	774,800	751.3	0.10
Capricorn	Widespread in the Hamersley and Chichester subregions; numerous occurrences in the southern half of the Cape Preston Rail study area.	529,600	94.0	0.02
Newman	Extensive throughout the Hamersley Range. The Cape Preston Rail study area is at the western limit of distribution of this land system.	1,458,000	260.2	0.02
Nanutarra	Limited distribution in the western section of the Hamersley subregion. Few occurrences on the northern half of the Cape Preston Rail study area at its western distribution.	69,700	433.2	0.62
Paraburdoo	Restricted to small pockets in the Roebourne and northern Chichester subregions. The Cape Preston Rail study area occurs on the western limit of distribution of this land system.	56,500	146.9	0.26
Peedamulla	Occurs as a narrow band along the boundary of the Hamersley and Roebourne subregions. The Cape Preston study area is on the eastern limit of distribution of this land system.	58,700	31.7	0.05
River	Occurs in major river systems throughout the Pilbara; occurs in the Robe and Fortescue rivers in the Cape Preston Rail study area.	408,800	139.0	0.03
Rocklea	Extensive throughout the Pilbara. Cape Preston Rail study area is on the western limit of the distribution.	2,299,300	303.7	0.01
Sherlock	Limited distribution in association with river systems in the western sections of the Hamersley and Chichester subregions. Few occurrences in the Cape Preston Rail study area.	19,200	64.2	0.33
Urandy	Scattered distribution throughout the Pilbara, The Cape Preston Rail study area is on the western limit of distribution.	131,100	173.7	0.13

1.5 Botanical Context and Existing Data

1.5.1 Bioregional Setting

Thackway and Cresswell (1995) developed the Interim Biogeographic Regionalisation of Australia (IBRA) comprising 85 biogeographic regions. The regions were derived by compiling climate, lithology/geology, landform, vegetation, flora and fauna, land use, and other attributes as needed. The best data and information available at the time for each State and Territory was used including field knowledge, published resource and environmental reports, continental data sets, and existing biogeographic regionalisations (Commonwealth of Australia 1999). The IBRA was designed principally as a framework for examining deficiencies in the National Reserve System and subsequent allocations of federal funding to the states. In Western Australia the bioregions were based on the work of Beard (1990), a compilation of the project "Vegetation Survey of Western Australia", comprising survey work undertaken between 1964 and 1981.

It is commonly understood that the level of biodiversity in Western Australia is significantly more variable at a finer spatial scale than is accounted for by IBRA. An audit of the knowledge and gaps in available data was more recently undertaken by the Department of Conservation and Land Management (now DEC) (McKenzie and May 2003). Outcomes of the audit included summaries of the significant components of biodiversity in each subregion and bioregion.

The study area is located within the Pilbara Bioregion. The Pilbara Bioregion comprises four subregions; the study area traverses three of these subregions. From the south it traverses the Hamersley subregion, and then skirts the south-eastern edge of the Roebourne subregion and the western edge of the Chichester subregion (Kendrick & Stanley, 2003; Figure 2).

1.5.2 Regional Vegetation Mapping

The study area lies within the Fortescue Botanical District of the Eremaean Botanical Province (Beard 1975). Mapped by Beard (1975) at 1:1,000,000, he described the Pilbara region as generally characterised by tree and shrub steppe communities dominated by *Eucalyptus* trees, *Acacia* shrubs, *Triodia pungens* and *T. wiseana* grasses, with some mulga (*Acacia aneura*) occurring in valleys and short-grass plains on alluvia (Beard, 1990). The Hamersley escarpment is dominated by spinifex vegetation, mulga is known to occur in valleys and on basaltic rocks, while grass savannah occur on valley plains (Beard 1990).

The mapping (Beard 1975) as interpreted by Shepherd *et al.*. (2002) describes ten vegetation types for the study area (Table 3).

The biodiversity of the Pilbara is considered to be rich but poorly understood. The Department of Environment and Conservation undertook a Pilbara Bioregional study during 2002-2007, which has not yet been published. It will hopefully provide a more recent, detailed regional perspective on the flora and vegetation of the Pilbara.

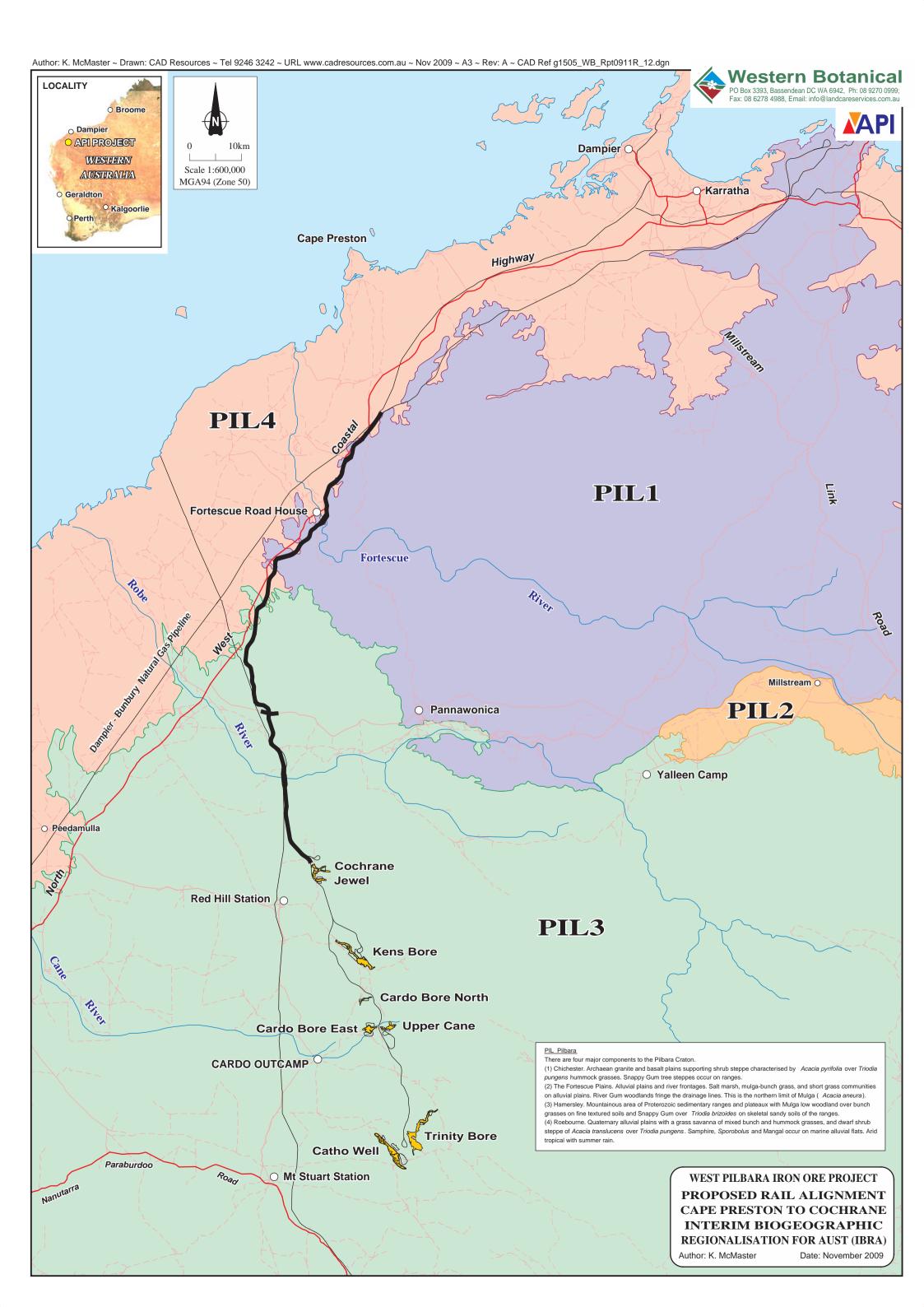


Table 3 Beard (1975) Vegetation types in the Study Area (Shepherd et al., 2002)

Vegetation Vegetation Description			
Association No.			
(Shepherd et al.)			
29	Sparse Low woodland; mulga (Acacia aneura), discontinuous in scattered groups		
82	Hummock grasslands, low tree steppe; snappy gum (Eucalyptus leucophloia) over		
	soft spinifex (<i>Triodia epactia/ T. pungens</i>)		
93	Hummock grasslands, shrub steppe; kanji over soft spinifex		
157	Hummock grasslands, grass steppe; hard spinifex (Triodia wiseana)		
173	Hummock grasslands, shrub steppe; kanji (Acacia inaequilatera) over soft spinifex		
	(Triodia epactia/ T. pungens) & hard spinifex (T. wiseana) on basalt		
175 Short bunch grassland – savanna/grassplain (Pilbara)			
601	Mosaic: Sedgeland; various sedges with very sparse snakewood/Hummock		
	grasslands, shrub-steppe; kanji (Acacia inaequilatera) over soft spinifex (Triodia		
	epactia/ T. pungens)		
Hummock grasslands, sparse shrub steppe; <i>Acacia bivenosa</i> over hard			
(Triodia wiseana)			
605	Hummock grasslands, shrub steppe; Acacia pachycarpa & waterwood (Acacia		
coriacea) over soft spinifex (Triodia epactia/ T. pungens)			
620	Hummock grasslands, shrub steppe; snakewood (Acacia xiphophylla) over soft		
spinifex (Triodia epactia/ T. pungens)			

1.5.3 Detailed Botanical Surveys

There have been numerous studies undertaken in many parts of the Pilbara over the past twenty years. These studies have predominantly focussed on areas of high mineralisation particularly for iron ore. However, there is still no environmental geology or regolith mapping at a scale of more than 1:250,000, no quantitative (quadrat-based) regional flora or fauna survey, and little data on the ecological requirements of many components including hummock grasses, particularly the effects of fire, or studies on the spread and impact of weed species such as buffel grass and kapok.

Many localised studies have been undertaken for mining development projects. Historically the eastern Pilbara has dominated these studies south to Tom Price and east to Marble Bar. Recently, a number of iron ore prospects along the coastal plain near Cape Preston have been surveyed and exploited (Halpern *et al.* 2001). Few studies have occurred in the western part of the Pilbara, the southern end of the study area, other than in the mesas of the Robe River valley, near Pannawonica, for Rio Tinto (formerly Robe River Iron Pty Ltd). A number of these surveys are particularly pertinent to this current study (Biota 2006; 2005a; 2005b). Floristically, the area is considered to be poorly collected.

2. Methods

2.1 Desktop Survey

Prior to commencement of field survey, a database search of known Declared Rare Flora (DRF), priority-listed flora and Threatened Ecological Communities (TEC) was obtained from the Department of Environment and Conservation (DEC), (DEC 2008a;b;c). Using the list provided, a field herbarium was compiled at the WA Herbarium to assist field identification.

2.2 Study Team and Survey Timing

2.2.1 Reconnaissance Surveys

Three reconnaissance surveys were undertaken:

- Denise True completed a reconnaissance of the rail and mining areas for two days on the 27th and 28th February 2007 (2 person days). The initial two-day survey included a biologist from Biota (undertaking terrestrial fauna surveys), Dan Kamien, accompanied by three engineers from Calibre Engineering. The purpose of the reconnaissance was to drive the proposed rail alignment (Version 4) to Cape Preston and provide a site visit to the study area and accommodation facilities.
- Denise True, Geoff Cockerton and Shapelle McNee completed a reconnaissance for three days from the 20th 22nd March 2007 (9 person days). The survey provided an overview of the study area from the northern end of the proposed rail line at Cape Preston, and included the majority of the resource areas of Cochrane, Jewell, Kens Bore and Upper Cane. Photographs and locations of flora collected and vegetation descriptions were recorded using a handheld Garmin 76 GPS and a digital camera.
- Denise True and Shapelle McNee completed a reconnaissance for three days from the 2nd 4th April 2007 (6 person days). The survey included two biologists from Biota (Roy Teale and Garth Humphreys). A helicopter was utilised to survey along the finalised Cape Preston rail corridor, and each of the resource areas. Photographs and locations of flora collected and vegetation descriptions were recorded using a handheld Garmin 76 GPS and a digital camera. The aerial view of the mesas assisted in providing a regional perspective of the vegetation landscapes.

2.2.2 Field Survey

The study area was surveyed over a two-year period, September 2007- September 2008 (Table 4). The principal survey periods were September and November in 2007, and May June in 2008. A total of 102 field person days were undertaken in total.

Table 4 Field Surveys of the Proposed Cape Preston Rail Corridor

Dates of Survey	Personnel	No. Person Days
24/9/07 - 27/9/07	Denise True, Shapelle McNee, Cassie Adam, Daniel Brassington, Amy Douglas, Kellie McMaster (4 days)	24
07/11/07 - 14/11/07	Denise True, Hayley Hughes, Daniel Brassington, Kellie McMaster, Cassie Adam (8 days)	40
22/5/08 - 25/5/08	Denise True, Gemma Lindschau, Cassie Adam, Amy Douglas, Andrew Taylor, Bridget Watkins (4 days); Kellie McMaster (2 days)	26
22/06/08	Denise True, Rebecca Graham, Cassie Adam, Bridget Watkins, Amy Douglas, Kellie McMaster, Gemma Lindschau, Andrew Taylor (1 day)	8
3/07/08	Denise True, Hayley Hughes, Andrew Taylor, Bridget Watkins (1 day)	4
Total No. Field Days		102

2.2.3 Seasonal Conditions during the Survey Period

The climate of the Pilbara region is typically described as arid tropical, with summer rainfall averaging between 250-300 mm per annum (Beard, 1990). The records of three Bureau of Meteorology recording stations along the length of the study area were examined (Figure 3). Red Hill is at the southern end of the study area, Pannawonica is in the middle and Mardie is at the northern end on the coastal strip.

Since 1971, Pannawonica recording station has shown an average annual rainfall of 375.2 mm, with an average annual maximum temperature of 34.6 °C and an average annual minimum temperature of 19.6 °C. Nearby meteorological stations in the region (Red Hill, Emu Creek Station, Onslow, Karratha, and Mardie Station) show similar low rainfalls and high temperatures. Most rainfall occurs between December and May, with little rain through the rest of the year. Rainfall at Pannawonica may be higher than other areas in the region due to its higher elevation (200 m), while rainfall and temperatures at Mardie are influenced by the coastal location.

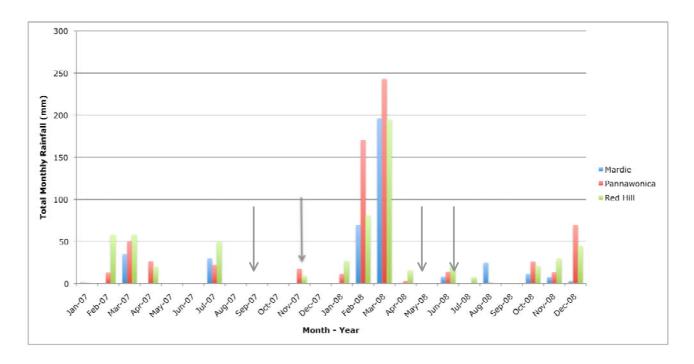


Figure 3 Monthly rainfall from nearby recording stations Jan 07 - Dec 08 (supplied by the Bureau of Meteorology)

Note: Arrows indicate the main survey periods, September and November 2007; May and June 2008.

The 2007 surveys were conducted during a prolonged dry period (Figure 3). As an arid tropical climate, the highest rainfalls are usually recorded during the 'cyclone' season December to March. Historically, during this time, the mean monthly rainfall recorded at Red Hill Station since 1898 was 185 mm to 437 mm. The recorded total precipitation in 2007 at Red Hill was 194 mm; Pannawonica received 130.2 mm and Mardie had 66 mm for 2007. The majority of this was recorded in February and March with a bit more in July. The 2008 rainfall was significantly higher; Red Hill recorded 442.8 mm; Pannawonica 552 mm and Mardie 321.4 mm.

2.3 Vegetation Mapping

Vegetation was described using a vegetation structural table of Specht as modified by Aplin (1979). This version included a hummock grassland stratum and recorded cover less than 2 percent (Appendix 1).

The vegetation codes follow closely that of Biota (2006) to provide some consistency and enable comparison, with nearby studies. The vegetation codes are based on abbreviations of the dominant species in each vegetation type, arranged by stratum. The codes are formulated using the first capital letter of the genus, and the first lower case letter of the species name e.g. *Acacia ancistrocarpa* = Aa. Where there are numerous species with the same species first letter, the second or third letter is also used e.g. *Acacia atkinsiana* = Aatk.

The study area was mostly situated on plains, low hills and foot slopes of adjacent ranges and mesas. Numerous creeks rising in the ranges crossed perpendicular to the alignment. In these situations plains with numerous minor creeklines were mapped as a unit rather than delineate the creeklines individually.

Vegetation boundaries were drafted on to 1:10,000 aerial photograph base maps in the field. The vegetation descriptions were based on the collation of relevés and vegetation descriptions from foot traverses and the detailed floristic data provided by quadrats. According to the National Vegetation Inventory System, taking into account the range in structure and floristic variation in each vegetation type, the vegetation mapping is classified as vegetation association to sub-association level.

2.4 Floristic Assessment

A total of 29 permanent quadrats were established on the proposed Cape Preston Rail Corridor (Table 5). The locations of the quadrats were chosen to represent the major vegetation types occurring within the study area and to help detect rare flora.

Table 5 Distribution of Recording Sites in the Study Area

Cape Preston Rail Corridor	No. Sites Recorded
Quadrats	29
Relevés	200
Vegetation Site Descriptions	95
Total No. Sites	324

In addition to the quadrats, a total of 324 detailed site recordings were also undertaken within the resource areas (Table 5). These included 200 relevés, which are unpegged sampling sites equivalent in description to a quadrat, and 95 vegetation site descriptions. The relevés were mostly used to describe vegetation types in places where permanent quadrats were difficult to access or to establish, such as the free face of a mesa. Similarly the vegetation site descriptions were usually associated with opportunistic collections of flora in habitats such as gorges or creeklines.

As with the quadrats, each relevé and vegetation description location was recorded with a hand held GPS and photographs were taken. Each change in vegetation along the length of the corridor was recorded. The vegetation was mapped onto 1:10,000 aerial photography base maps for the width of the corridor.

The quadrat size of 50 m by 50 m is accepted as the standard area required to adequately sample the flora of the Pilbara. In narrow vegetation types such as creeks and gorges, transects were utilised. A transect was the width of the creek vegetation by a length of up to 120 m.

Each quadrat was permanently pegged with four aluminium droppers to physically mark each corner. Quadrats were generally established in teams of two and three. Use of an optical square and compass ensured that the quadrats were correctly positioned and can be accurately re-instated if loss of some markers occurs. Two photographs of each site were taken using a 6 mega-pixel digital camera.

The details recorded for each quadrat included:

- Location recorded at each permanent stake using a hand-held GPS Garmin 76 (accurate to approximately 5 m). Coordinates were recorded in WGS 84, Zone 50.
- Vegetation description based on structural table of Specht (1970) as modified by Aplin (1979) using height and cover of dominant species.

- The condition of the vegetation as affected by seasonal conditions such as recent rains or extended dry season, evidence of fire and any signs of ground disturbance such as grazing or exploration activities were recorded and quantified.
- Percent Foliage Cover was estimated for each species.
- Landform and substrate were recorded in detail using a modified version of the DEC BIF form.

The centre line of the rail corridor was uploaded into each hand held Garmin 76 GPS to ensure accurate location of the field teams within the Cape Preston Rail Corridor.

The majority of the study area was surveyed by foot traverse (89 km) in teams of two and three; a 23 km section was undertaken by vehicle traverse where the alignment coincided with an existing track. A portion of the proposed rail line (13.15 km) was not surveyed as it was recently burnt and very little vegetation had regenerated at the time of survey (Table 6).

Table 6 Surveyed and Unsurveyed Burnt Areas of the Proposed Cape Preston Rail Corridor

Location (chainage	Surveyed Recently Burnt Areas	Unsurveyed Recently Burnt Areas
km)	(km)	(km)
73500 - 74000	0.3	
75000 - 75100	0.1	
75800 - 75850	0.05	
77300 - 77400	0.1	
77625 - 77665	0.4	
78100 - 79000		0.9
79000 - 80500		1.45
90600 - 92000		1.4
92700 - 97600		1.2
97600 - 97800	0.2	
98800 - 103100		4.3
104000 - 106500	2.5	
107800 - 110000	2.2	
110600 - 111250	0.65	
113000 - 116900		3.9
Total distance (km)	6.5	13.15

2.5 Specimen Collection and Identification

An inventory of vascular flora was compiled for each habitat unit. Any taxa not readily identified in the field were collected, pressed and verified at the WA Herbarium. For each population of significant flora encountered, the likely impact of the proposed clearing was estimated.

Voucher specimens were collected from all populations of significant flora. Specimens of significant species and other good quality collections will be lodged at the WA Herbarium. A number of specimens were of insufficient flowering material due to the poor season, and specialist expertise was called upon to assist in the determinations.

2.6 Taxonomy and Nomenclature

The nomenclature and conservation status for plant species in this report was verified using the most recent listing by the WA Herbarium. As well, reference to the collections held by Malcolm Trudgen was used.

Acacia trudgeniana and A. inaequilatera are related, similar species that apparently occur throughout the study area. Both have characteristics such as thick corky bark, spiny stipules and the spine tipped phyllodes being markedly asymmetrical, which cause difficulties in field identification.

The two species are not known to be sympatric (B.R Maslin and S. van Leeuwen 2008), *A. trudgeniana* occurring on flat, low undulating plains, and *A. inaequilatera* higher in the landscape. However, this was not always reflected in the data collected in the current study.

There are no collections of *A. trudgeniana* from the study area in the WA Herbarium (DEC 2009). Specimens collected throughout the study have been variously identified as both species by a specialist. This has led to confusion with regard to accurate identification. As such, all specimens recorded in this study have been treated as *A. inaequilatera*. All material collected from the study area will be submitted to the WA Herbarium for further determination.

2.7 Data Management and Floristic Analysis

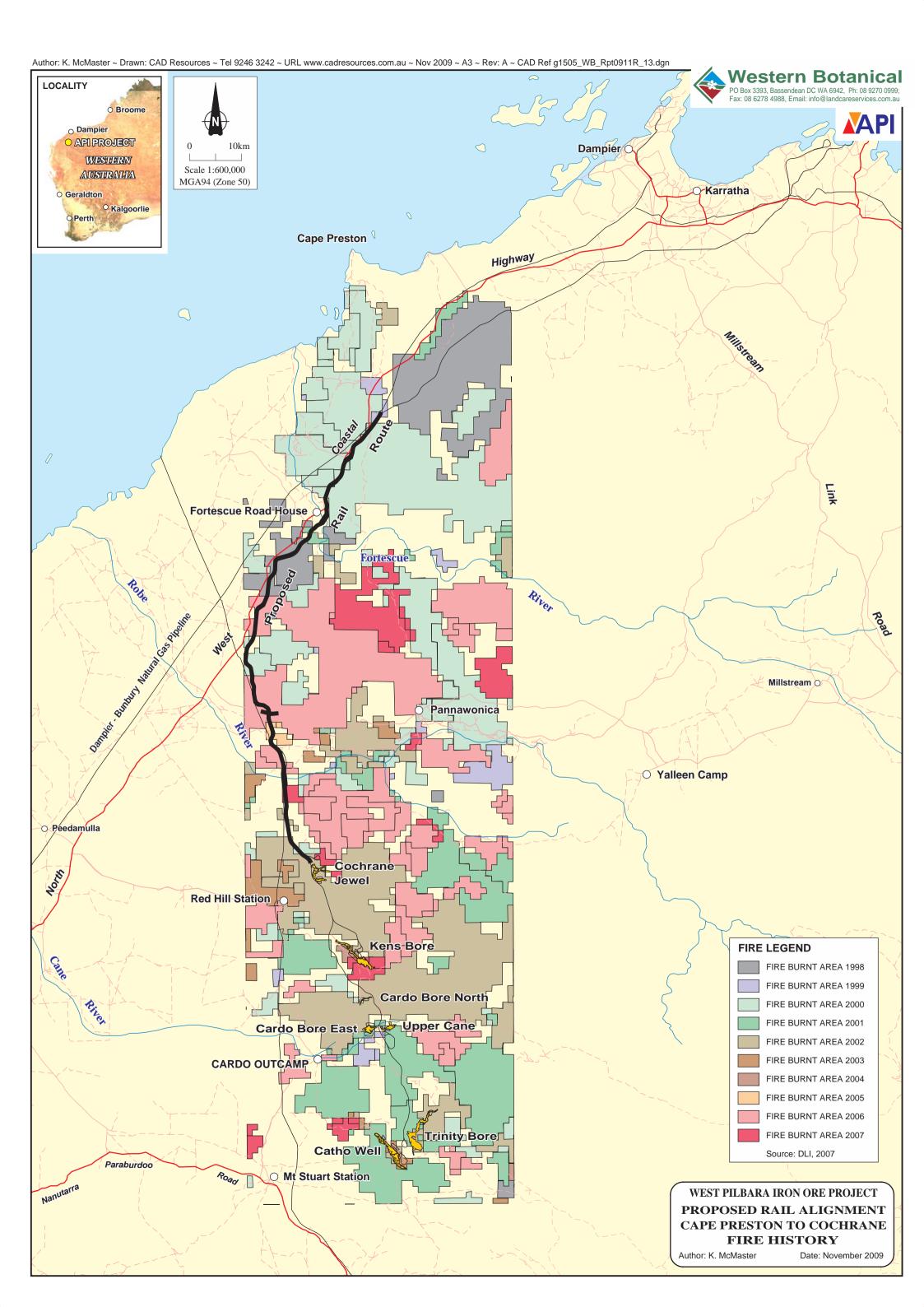
Species composition, community structure and landform information recorded from individual quadrats, relevés and detailed site descriptions from the study area, were entered into an MS Access database developed by Malcolm Trudgen and Ted Griffin.

To investigate the conservation value of the vegetation of the study area, a numerical analysis of the floristic data was undertaken by Malcolm Trudgen and Ted Griffin (Griffin & Trudgen, 2009). The floristic data from quadrats and relevés with more than 10 taxa from the current study, was combined with data from other projects to provide a regional perspective. This regional dataset contains two thousand eight hundred and eighty three sites (2,883).

Reconciliation of flora species names was undertaken prior to running data analysis using the PATN (Belbin 1987) numerical classification package. This involved reducing some infraspecific names to the relevant species names; combining some taxa where confusion was likely to have occurred in field observations and identifications; and omitting some records that were considered ambiguous (Griffin and Trudgen 2009). The PATN modules used were ASO (calculation of similarity matrix), FUSE (classification), DEND (representation of classification) and SSH (a form of ordination) to display relationship of sites to the whole data set.

Within and among the data sets utilised there are variations in, seasonal conditions, the time of survey, the quality of field observation and the standard of variation. However, for most of this larger data set, the majority of identifications or confirmation of species was performed by M.E. Trudgen. Furthermore, M. E. Trudgen was either present during many of the surveys or liaised closely on survey design for these data sets. For the survey work undertaken by Western Botanical in this study, M.E. Trudgen provided confirmation of all species identifications and liaised on survey design.

2.8 Limitations of the Study


A substantial level of detailed survey has been conducted during this study (See Section 2.4). However, in assessing the results of this survey the following aspects of the study need to be considered.

A regional representation and assessment of the conservation significance of the vegetation is problematic as few other detailed surveys have been undertaken at a similar scale in this part of the Pilbara. To help address this issue of a lack of regional data in the public forum, consultation with other botanists working in this region was undertaken to ensure that data collection, management and synthesis are consistent. To this end, the utilisation of a database developed by botanist Malcolm Trudgen and Ted Griffin, was made to integrate the data from the current study with this broader data set.

Consultation undertaken with the Department of Environment and Conservation (DEC) confirmed that to adequately represent the floristics of the region, environmental impact assessments in the Pilbara region are typically conducted over at least two seasons. The majority of surveys of the study area were conducted during 2007, including most of the quadrat establishment (all but two), and particularly the foot traverses of the majority of the corridor. All of the quadrats were re-scored in 2008 and some additional searches for rare flora were undertaken. However, the difference in survey effort and timing has been reflected in the statistical analysis with the inclusion of relevés (only recorded in 2007) with quadrats scored in both 2007 and 2008. Essentially a large proportion of the flora was not present (annuals and ephemerals) in data collected only in 2007.

Much of the study area has been burnt in the past ten years. A compilation of satellite data provided by Department of Land Information (DLI) shows that few parts of the study area remain unburnt in the last decade (Figure 4). Patches of the rail line (6.5 km) between Cochrane at the southern end, and north of the Pannawonica Road had been burnt as recent as January 2007 (Section 2.4). These areas were not surveyed in detail and vegetation boundaries could not be determined accurately within the vicinity of the burnt areas. Vegetation growth in arid tropical areas can be prolific with good seasonal rains. However, the 2008 sampling season was not sufficient to qualify as comprehensive sampling over these burnt areas.

Thorough searches for rare flora have not been carried out over extensive parts of the Cape Preston Rail Corridor. A large portion of survey effort was conducted during the dry period of 2007, reducing the likelihood of locating priority species.

3. Vegetation

3.1 Overview of Vegetation

Sixty eight vegetation types were identified and mapped across the Cape Preston rail corridor study area (Appendix 2).

Stony Plains, Hills and Breakaways comprised the majority of the study area, one tenth of the study area consisted of clayey plains, and the remainder the sum of the numerous minor creeklines and a few major drainage lines such as the vegetation of the Robe River and Fortescue River and tributaries (Table 7).

Table 7 Area of Vegetation landform elements within the Study Area

Landform	Proportion of the Study Area (%)
Stony Plains	40
Stony Hills and Breakaways	32
Creeklines - including major, minor and associated floodplains	17
Clayey Plains	11

Representative photographs for many of the vegetation types are provided in Appendix 3. The raw data and locations of quadrats and relevés are provided in Appendices 4 and 5. A matrix of species recorded in each vegetation type is provided in Appendix 6. The vegetation types are described below, detailing the associated species, land systems and landform.

The vegetation types which covered the largest proportion of the study area were P1a (532.45 ha or 22%) and S7d (347.59 ha or 14.5%). These same vegetation types also cover the largest area within the proposed impact area (P1a- 197.60 ha or 21.3%; S7d- 135.35 ha or 14.6%). Vegetation types with the most restricted extent across the study area were S8d (0.39 ha or 0.02%) and S4j (0.57 ha or 0.02%). Forty four vegetation types had areas less than 1% of the study area and 29 of these extend over less than 0.5% of the study area. Vegetation types S4j, S6a and S13c are present in the study area, but are not included in any proposed impact areas. Vegetation types with the most restricted distributions within the proposed impact area are P1c (0.0002 ha or < 0.001 %) and S13b (0.0069 ha or 0.001%). Appendix 7 shows the area each vegetation type covers in the study area and the proposed impact area.

3.2 Vegetation Types of the Cape Preston Rail Corridor

Stony Plain (P)

1. Acacia atkinsiana, A. bivenosa Shrublands

P1a AatkAbAaTw *Acacia atkinsiana, A. bivenosa* and *A. ancistrocarpa* high shrubland to open shrubland over *Triodia wiseana* open hummock grassland

This vegetation type occurred on stony plains with numerous minor drainage lines where Triodia epactia was dominant rather than T. wiseana. It was one of the most common vegetation types throughout the rail corridor. It occurs predominantly on the Boolgeeda Land System, with lesser amounts on the Capricorn, Nanutarra, Peedamulla, Sherlock and Urandy Land Systems. Some areas had been burnt within the last 3 years and Senna notabilis was recorded at this seral stage but not generally in the older post-fire vegetation. Associated species: Acacia inaequilatera, A. tumida var. pilbarensis, Bulbostylis barbata, Cleome viscosa, Corchorus incanus ssp. incanus, Corchorus parviflorus, Corymbia hamersleyana, Eriachne pulchella ssp. dominii, Eragrostis exigua, E. lanicaulis, Eremophila longifolia, Grevillea wickhamii ssp. hispidula, Hakea lorea ssp. lorea, Hibiscus sturtii var. aff. grandiflorus, Indigofera monophylla, Keraudrenia nephrosperma, Paspalidium clementii, Petalostylis labicheoides, Polycarpaea longiflora, Ptilotus astrolasius var. astrolasius, P. calostachyus var. calostachyus, Senna artemisioides ssp. oligophylla, S. glutinosa ssp. glutinosa, Stylobasium spathulatum, Sida arsiniata, Tephrosia uniovulata, Trichodesma zeylanicum var. zeylanicum and Triumfetta clementii. Sites CP040, CP052, CP057, CP102, CP106, CP110, CP122, CP126, CP133, CP172, CP174, CP174, CP234, CP236, CP237, CP241, CP247, CP251, CP253, CP259, CP275, CP277, CP295, CP305, CP367, CP369, CP387, CP389, CP391.

P1c ChAatkAbTwTe Corymbia hamersleyana scattered low trees over Acacia atkinsiana, A. bivenosa open shrubland over Triodia wiseana, T. epactia very open to closed hummock grassland

This vegetation type was found within the proposed mine area mostly along the proposed transport corridor (Western Botanical, 2009). Within the mine area it predominantly occurred predominantly on the Boolgeeda Land System with a proportion on the Capricorn Land System. Associated species include: *Acacia ancistrocarpa, A. aneura, A. synchronicia, Bonamia rosea, Eremophila cuneifolia, Eriachne pulchella* ssp. *pulchella, Eucalyptus leucophloia* ssp. *leucophloia, Goodenia microptera, Grevillea wickhamii* ssp. *hispidula, Hakea lorea* ssp. *lorea, Hibiscus sturtii* var. aff. *grandiflorus, Paraneurachne muelleri, Ptilotus astrolasius* var. *astrolasius, Senna glutinosa* ssp. *glutinosa, Solanum diversiflorum* and *S. lasiophyllum.* All sites surveyed within this vegetation type were within the proposed mine area (Western Botanical, 2009). These sites were; BOR239, BOR241, HR008, HR055, HR058, TC146, TC147. Thus, this vegetation type is not included in the vegetation by species matrix (Appendix 6).

2. Acacia Shrublands

P2a AaAbAiAsTeTw Acacia ancistrocarpa, A. bivenosa, A. inaequilatera and A. synchronicia open shrubland over Triodia epactia and T. wiseana open hummock grassland

This vegetation type occurred on stony plains, on the Urandy Land System at one location in the southern part of the study area. Associated species: *Gossypium australe* (Burrup Peninsula form), *Grevillea wickhamii* ssp. *hispidula*, *Hakea lorea* ssp. *lorea*, *Ptilotus astrolasius* var. *astrolasius*, *P. calostachyus* var. *calostachyus*, *Tephrosia uniovulata*, *Senna artemisioides* ssp. *oligophylla*, *Sida* aff. *echinocarpa* (MET 15350) and *Sida pilbarensis*. Site CP142.

P2e ChAbApyTw Corymbia hamersleyana scattered low trees over Acacia bivenosa and A. pyrifolia var. pyrifolia shrubland over Triodia wiseana open hummock grassland

This vegetation type occurred on stony plains, recorded in the northern section of the study area (29 - 33 km). It occurred predominantly on Paraburdoo Land System and to a lesser extent on Rocklea Land System. Associated species: *Acacia inaequilatera, A. ancistrocarpa, Corymbia hamersleyana, *Cenchrus ciliaris, Senna artemisioides* aff. ssp. *oligophylla* (thinly sericeous), *Senna glutinosa* ssp. *glutinosa, Scaevola spinescens* (broad form) and *Eremophila forrestii* ssp. *forrestii*. Sites CP380, CP362, CP336, CP378, CP408, CP338.

P2f ChAiAbTw Corymbia hamersleyana scattered low trees over Acacia inaequilatera scattered tall shrubs over A. bivenosa scattered shrubs over Triodia wiseana open hummock grassland.

This vegetation type occurred on stony plains with numerous minor drainage lines, it was sampled from the middle section of the study area at approximately the (74 km). It occurred on the Nanutarra Land System. Associated species: *A. ancistrocarpa, A. atkinsiana, A. tumida* var. *pilbarensis, Bonamia rosea, Codonocarpus cotinifolius, Corchorus parviflorus, Grevillea wickhamii* ssp. *hispidula, Senna glutinosa* ssp. *glutinosa, Scaevola spinescens* (broad form), *Eremophila forrestii* ssp. *forrestii, Ptilotus exaltatus* var. *exaltatus, P. astrolasius* var. *astrolasius, P. calostachyus* var. *calostachyus, Tephrosia uniovulata* and *Solanum diversiflorum*. Site CP323.

3. Acacia synchronicia Shrublands

P3b AsAbAaTwPTc Acacia synchronicia, A. bivenosa (A. ancistrocarpa) open shrubland to shrubland over Triodia wiseana very open hummock grassland over Ptilotus calostachyus var. calostachyus very open herbs

This vegetation type occurred on stony plains dissected by numerous, minor drainage lines in northern section of the proposed rail line from Du Boulay Creek to Fortescue River. The drainage lines area dominated by *Acacia ancistrocarpa, Triodia epactia*. Following good rains, grasses and sedges including *Aristida contorta, Eriachne pulchella* ssp. *pulchella, Bulbostylis barbata* and *Fimbristylis dichotoma* form a tussock grassland/sedgeland (more than 60% cover). This vegetation type occurred north of the Fortescue River on the Boolgeeda, Newman, Rocklea and Paraburdoo Land Systems. Associated species: *Acacia bivenosa, A. inaequilatera, A. tumida* var. *pilbarensis, A. pyrifolia* var. *pyrifolia, Corymbia hamersleyana, Petalostylis labicheoides, Tephrosia uniovulata, Senna artemisioides* ssp. *oligophylla, Senna glutinosa* ssp. *pruinosa, Ptilotus astrolasius* var. *astrolasius, P. auriculifolius, P. exaltatus* var. *exaltatus* and *P. helipteroides* var. *helipteroides*. Sites CP018, CP176, CP415, CP419, CP407, CP403, CP417, CP429, CP411, CP436, CP423, CP425, CP427, CP405, CP442, CP402, CP413, CP409.

4. Hard Spinifex Hummock Grasslands

P4b ChAaTw Corymbia hamersleyana scattered low trees over Acacia ancistrocarpa scattered shrubs over Triodia wiseana hummock grassland

This vegetation type occurred on stony plains on the Boolgeeda and Capricorn Land Systems It was sampled from one location at the southern end of the study area (124 km). Associated species: *Acacia bivenosa, A. inaequilatera, A. maitlandii, A. synchronicia, Corchorus parviflorus, Gossypium australe* (Burrup Peninsula form), *Grevillea pyramidalis* ssp. *leucadendron, Hakea lorea* ssp. *lorea, Ptilotus astrolasius* var. *astrolasius, Senna artemisioides* ssp. *oligophylla, S. glutinosa* ssp. *pruinosa* and *Tephrosia uniovulata*. Sites CP245, CP492, CP493.

5. Snakewood Shrublands

P5a AxAatkAaTeTw Acacia xiphophylla low open woodland to high open shrubland over A. atkinsiana and A. ancistrocarpa open shrubland over Triodia epactia and T. wiseana very open hummock grassland

This vegetation type occurred on stony plains with numerous minor drainage lines, it was sampled from two locations, from the middle section of the study area (73 km) and from the southern section, south of the Robe River. It occurred mainly on the Nanutarra and Sherlock Land Systems. Associated species: *A. bivenosa, A. synchronicia, Corymbia hamersleyana, Ptilotus exaltatus* var. *exaltatus* and *P. astrolasius* var. *astrolasius*. Sites CP329, CP263.

P5b AxAbTw Acacia xiphophylla low open woodland to high open shrubland over A. bivenosa open shrubland over Triodia wiseana open hummock grassland

This vegetation type occurred on stony plains predominantly on the Nanutarra and Boolgeeda Land Systems and to a lesser extent on Newman Land System. It was widespread (60 to 70 km) in the middle section of the study area. The vegetation is a mosaic of Snakewood and *A. bivenosa* across a stony plain dissected by numerous minor drainage lines dominated by *A. atkinsiana* and *A. ancistrocarpa* shrublands. Associated species: *A. inaequilatera, A. synchronicia, Corymbia hamersleyana, Senna glutinosa* ssp. *glutinosa, Scaevola spinescens* (broad form), *Eremophila forrestii* ssp. *forrestii, Ptilotus exaltatus* var. *exaltatus, Trichodesma zeylanicum* var. *zeylanicum, Indigofera monophylla, Solanum lasiophyllum, S. diversiflorum, Maireana georgei, Corchorus parviflorus* and *Trachymene oleracea* ssp. *oleracea*. Sites CP371, CP365, CP363, CP351, CP347, CP053, CP337.

P5c AxAsAatkTw Acacia xiphophylla low open woodland to high open shrubland over A. synchronicia and A. atkinsiana open shrubland over Triodia wiseana open hummock grassland

This vegetation type occurred on stony plains, it was sampled at one location in the southern section of the study area (121 km). It occurs on the Boolgeeda and Capricorn Land Systems. Associated species: *A. inaequilatera* and *Hakea lorea* ssp. *lorea*. Site CP255.

P5d AxTw Acacia xiphophylla low open woodland to high open shrubland over Triodia wiseana very open hummock grassland

This vegetation type occurred on stony plains on the pediment, it was sampled from two locations, in the middle section of the study area (70 km) and north of the Robe River. It occurs mainly on the Newman and Nanutarra Land Systems, and to a lesser extent the River and Peedamulla Land Systems. Associated species: *Acacia synchronicia, Senna artemisioides* ssp. *oligophylla, Senna glutinosa* ssp. *glutinosa, Ptilotus exaltatus* var. *exaltatus, Salsola tragus* ssp. *tragus* and *Triodia epactia*. Sites CP064, CP244.

P5e AxTwTe Acacia xiphophylla low open woodland to high open shrubland over Triodia wiseana and occasionally T. epactia very open hummock grassland

This vegetation type occurred on stony plains, it was widespread throughout the entire study area, south of 29 km. It occurred on eight land systems mainly on Boolgeeda, Paraburdoo and Nanutarra Land Systems. Associated species: *Maireana georgei, Acacia ancistrocarpa, A. bivenosa, A. inaequilatera, A. synchronicia, Corymbia hamersleyana, Eremophila cuneifolia, Indigofera monophylla, Maireana melanocoma, Ptilotus astrolasius var. astrolasius, P. exaltatus var. exaltatus, Senna glutinosa ssp. glutinosa, Senna artemisioides ssp. oligophylla and *Vachellia farnesiana.* Sites CP058, CP086, CP088, CP104, CP206, CP208, CP209, CP212, CP220, CP225, CP232, CP235, CP279, CP325, CP334, CP348, CP350, CP352, CP366, CP430, CP452.

6. Soft Spinifex Hummock Grasslands

P6f ChApyGpTe Corymbia hamersleyana low open woodland over Acacia pyrifolia var. pyrifolia, Grevillea pyramidalis ssp. leucadendron high open shrubland over Triodia epactia open hummock grassland

This vegetation type was widespread within the proposed mine area mostly along the proposed transport corridor (Western Botanical, 2009). Within the mine area it predominantly occurred on the Urandy Land System with a proportion on the Boolgeeda and Robe Land Systems (Western Botanical, 2009). A small amount of this vegetation type (5.12 ha) extends into the very southern part of the proposed rail alignment. Associated species include: Acacia ancistrocarpa, A. inaequilatera, A. synchronicia, Boerhavia coccinea, B. gardneri, Bonamia media var. villosa, Bulbostylis barbata, *Cenchrus ciliaris, *C. setiger, Cleome viscosa, Corchorus aff. parviflorus (JW011-11), C. sidoides ssp. sidoides, Cullen lachnostachys, C. leucochaites, Eremophila longifolia, Gossypium australe (Burrup Peninsula form), Hakea lorea ssp. lorea, Indigofera colutea, I. monophylla, Pentalepis trichodesmoides, Portulaca oleracea, Ptilotus astrolasius var. astrolasius, Senna notabilis, S. venusta, Solanum diversiflorum, Sporobolus australasicus, Tephrosia aff. supina (06BP45-006), T. rosea var. glabrior, Trianthema pilosa and Yakirra australiensis var. australiensis. All sites surveyed within this vegetation type were within the proposed mine area (Western Botanical, 2009). These sites were; CP132, CP136, CP138, CR024, TC002, TC004, TC021, TC022, TC025, TC138, TC139, TC140, TC148, TC149, TC15. Thus, this vegetation type is not included in the vegetation by species matrix (Appendix 6).

Stony Hills and Breakaways (S)

1. Acacia atkinsiana, A. bivenosa Shrublands

S1a AbAatkTw Acacia bivenosa and A. atkinsiana open shrubland over Triodia wiseana open hummock grassland

This vegetation type occurred on rocky, low rolling hills and footslopes, it was sampled in the middle section of the study area (between 60 - 74 km). It occurred predominantly on the Newman Land System and with lesser amounts on the Boolgeeda, Nanutarra and Peedamulla Land Systems. *Acacia ancistrocarpa* and *A. synchronicia* often co-occurred. Associated species: *Acacia inaequilatera*, *A. tumida* var. *pilbarensis*, *Senna glutinosa* ssp. *glutinosa*, *Ptilotus exaltatus* var. *exaltatus*, *P. calostachyus* var. *calostachyus*, *Corchorus parviflorus* and *Triodia* sp. Robe River. Sites CP327, CP353, CP361, CP248.

2. Acacia bivenosa Open Heath over Triodia wiseana

S2a AarAbApyTw *Acacia arida, A. bivenosa* and *A. pyrifolia* var. *pyrifolia* open heath over *Triodia wiseana* hummock grassland

This vegetation type occurred on low stony rises in the northern part of the study area north of Du Boulay Creek. It occurred mostly on the Paraburdoo Land System and to a lesser extent on the Rocklea Land System. It was a mixed *Acacia* spp. shrubland with all species patchy in their distribution across the landscape. Other associated species: *Corymbia hamersleyana* and *Grevillea pyramidalis* ssp. *leucadendron*. Site CP406.

4. Acacia Shrublands

S4a AarAbAtrTw *Acacia arida, A. bivenosa* and *A. trachycarpa* shrubland over *Triodia wiseana* open hummock grassland

This vegetation type occurred on stony hills on the Newman Land System. It was sampled in one location in the middle of the study area, about 4 km south of the Fortescue River. Associated species: *Acacia tumida* var. *pilbarensis, Grevillea pyramidalis* ssp. *leucadendron, Senna artemisioides* ssp. *oligophylla, S. glutinosa* ssp. *glutinosa* and *Tephrosia uniovulata*. Sites CP488, CP487, CP486.

S4j AtAbSgpTwPTc Acacia tumida var. pilbarensis scattered tall shrubs over A. bivenosa and Senna glutinosa ssp. pruinosa open shrubland over Triodia wiseana very open hummock grassland and Ptilotus calostachyus var. calostachyus very open herbs

This vegetation type occurred on low rocky hills, with one small occurrence on the Nanutarra Land System in the middle of the study area (86km). Associated species: *Acacia ancistrocarpa, A. inaequilatera, Cymbopogon ambiguus, Eriachne mucronata* (typical form), *Grevillea wickhamii* ssp. *hispidula* and *Polycarpaea longiflora*. Site CP287.

5. Acacia Shrubland over *Triodia* sp. Robe River and *Triodia wiseana* Hummock Grassland

S5a AarTwTsprr Acacia arida open shrubland over Triodia wiseana and T. sp. Robe River hummock grassland

This vegetation type occurred on the free face of a range and the base of a gorge, in one location 2 km south of the Fortescue River. It occurred on the Newman Land System. Associated species: *Acacia ancistrocarpa, A. bivenosa, A. inaequilatera, Eucalyptus leucophloia* ssp. *leucophloia, Ficus brachypoda, Gossypium robinsonii, Terminalia canescens, Indigofera monophylla* and *Grevillea pyramidalis* ssp. *leucadendron.* Sites CP472, CP471, CP474.

6. Acacia synchronicia Shrublands

S6a AsTw Acacia synchronicia open shrubland over Triodia wiseana very open hummock grassland

This vegetation type occurred on low rocky hills, and was recorded in two locations in the southern section of the study area, north of the Robe River at 110 km and at 128 km. It occurred predominantly on the Newman Land System and a proportion on the Capricorn Land System. Associated species: *Acacia ancistrocarpa, A. bivenosa, A. inaequilatera, Grevillea pyramidalis* ssp. *leucadendron, Hakea lorea* ssp. *lorea, Ptilotus astrolasius* var. *astrolasius, Scaevola spinescens* (broad form), *Senna artemisioides* ssp. *oligophylla* and *Sida pilbarensis*. Site CP146.

7. Hard Spinifex Hummock Grasslands

S7a AatkAaTwPTc Acacia atkinsiana scattered tall shrubs over A. ancistrocarpa open shrubland over Triodia wiseana open hummock grassland and Ptilotus calostachyus var. calostachyus scattered herbs

This vegetation type occurred on low rocky hills, one small occurrence was recorded in the middle section of the study area (84km), in the Nanutarra Land System. Associated species: Corchorus parviflorus, Grevillea wickhamii ssp. hispidula, Keraudrenia velutina ssp. elliptica, Ptilotus calostachyus var. calostachyus, Tephrosia uniovulata and Tribulus suberosus. Site CP303.

S7b AaTw Acacia ancistrocarpa open shrubland over Triodia wiseana open hummock grassland

This vegetation type occurred on low stony hills and slopes. It was common and widespread and recorded in the northern section of the study area (26 - 45 km). It occurred in the Rocklea Land System and to a lesser extent the Paraburdoo Land System. It comprised 7% of the vegetation on the rail corridor. Following rains in 2008 the quadrat site had a good cover of grasses and herbs such as *Aristida contorta, Eriachne pulchella* ssp. *dominii, Sporobolus australasicus, Yakirra australiensis* var. *australiensis, Indigofera monophylla* (Burrup form), *Polycarpaea holtzei, Cleome viscosa, Streptoglossa decurrens* and *Ptilotus fusiformis* var. *fusiformis.* Associated species: *Acacia inaequilatera, A. pyrifolia* var. *pyrifolia, A. bivenosa, Corchorus incanus* ssp. *incanus, C. laniflorus, Gomphrena affinis* ssp. *pilbarensis, Indigofera monophylla, Tephrosia uniovulata* and *Trichodesma zeylanicum* var. *zeylanicum.* Sites CP016, CP418, CP394, CP384, CP370, CP368, CP316, CP388, CP386, CP374, CP376, CP392.

S7d AbTw Acacia bivenosa open shrubland over Triodia wiseana open hummock grassland

This vegetation type was one of the most widespread throughout the study area (south of 44km). It occurred on low rocky hills and slopes on the Nanutarra, Newman, Boolgeeda, Rocklea, Capricorn, Paraburdoo, Urandy and River Land Systems. It is typical of the hard spinifex grasslands and isolated *Acacia* spp. shrubs of the Nanutarra and Newman Land Systems. Associated species: *Acacia ancistrocarpa, A. arida, A. inaequilatera, A. pyrifolia* var. *pyrifolia, A. synchronicia, Corchorus parviflorus, Eucalyptus leucophloia, Grevillea pyramidalis* ssp. *leucadendron, Hakea lorea* ssp. *lorea, Petalostylis labicheoides, Tephrosia uniovulata, Ptilotus astrolasius* var. *astrolasius, P. calostachyus* var. *calostachyus, Scaevola spinescens* (broad form), *Senna artemisioides* ssp. *oligophylla* and *Senna glutinosa* ssp. *glutinosa*. Sites CP062, CP068, CP072, CP128, CP140, CP169, CP193, CP213, CP249, CP166, CP182, CP186, CP204, CP214, CP226, CP285, CP297, CP301, CP315, CP333, CP397, CP023, CP099, CP117, CP399, CP401, CP433, CP439, CP459, CP460, CP475, CP476, CP477, CP481.

S7e AiAbTw Acacia inaequilatera high open shrubland over A. bivenosa open shrubland over Triodia wiseana hummock grassland

This vegetation type occurred on low stony hills and plains on the Paraburdoo Land System. It was sampled from two areas in the northern section of the study area, adjacent to the gas pipeline (between 25 - 28 km). Other associated species: *Acacia ancistrocarpa, Hakea lorea* ssp. *lorea, Corchorus incanus* ssp. *incanus, Senna glutinosa* ssp. *glutinosa, Triumfetta clementii, Enneapogon caerulescens, Aristida contorta, Bonamia media* var. *villosa, Gomphrena cunninghamii, Solanum lasiophyllum, Scaevola spinescens* (broad form), *Hibiscus sturtii* var. *platychlamys, Swainsona formosa* and *Ptilotus calostachyus* var. *calostachyus* and *P. auriculifolius*. Sites CP010, CP320, CP109.

S7i AiTw Acacia inaequilatera scattered tall shrubs over Triodia wiseana open hummock grassland

This vegetation type occurred on low rocky hills and slopes and was recorded in the southern section of the study area (south of 123 km). It occurred on the Capricorn and Boolgeeda Land Systems. Associated species: *Acacia ancistrocarpa, Corchorus parviflorus, Ptilotus astrolasius* var. *astrolasius, P. calostachyus* var. *calostachyus, Senna artemisioides* ssp. *oligophylla* and *Senna glutinosa* ssp. *glutinosa*. Sites CP039, CP074, CP078, CP080, CP150, CP152, CP175, CP189, CP215, CP221.

S7j ChAbTw Corymbia hamersleyana scattered low trees over Acacia bivenosa scattered shrubs over Triodia wiseana open hummock grassland

This vegetation type occurred on low rocky hills, and was widespread throughout the study area (122 to 127 km). It occurred predominantly on the Boolgeeda Land System and a proportion on the Capricorn Land System. Associated species: *Acacia ancistrocarpa, A. inaequilatera, A. synchronicia, Eriachne helmsii, Gossypium australe* (Burrup Peninsula form), *Senna glutinosa* ssp. *pruinosa, S. artemisioides* ssp. *oligophylla, S. glutinosa* ssp. *glutinosa, Ptilotus astrolasius* ssp. *astrolasius, Sida pilbarensis* (green form) and *Hakea lorea* ssp. *lorea.* Sites CP037, CP154, CP217, CP243.

S7m ERfTEspbTw Eremophila fraseri ssp. fraseri open shrubland over Tephrosia sp. B Kimberley Flora scattered low shrubs over Triodia wiseana open hummock grassland

This vegetation type occurred on low rocky dolomite hills, it was sampled in the middle section of the study area, (104 km), between the Pannawonica Road and the Robe River. It occurred on the Capricorn Land System. Associated species: *Acacia bivenosa, A. trachycarpa,*

A. inaequilatera, Clerodendrum floribundum var. angustifolium, Senna glutinosa ssp. pruinosa, S. artemisioides ssp. oligophylla, Ficus brachypoda, Pentalepis trichodesmoides, Sarcostemma viminale ssp. australe, Eriachne mucronata (typical form), Grevillea wickhamii ssp. hispidula and Polycarpaea longiflora. Sites CP393, CP395.

S7n Tw Triodia wiseana open hummock grassland

This vegetation type occurred on low rocky hills, predominantly on the Boolgeeda Land System, with smaller amounts occurring within the Newman and Rocklea Land Systems. *Acacia inaequilatera* and *A. bivenosa* often occur sparsely. Other associated species: *A. tumida* var. *pilbarensis, A. ancistrocarpa* and *Senna glutinosa* ssp. *pruinosa*. Site CP129.

8. Low Mulga Woodlands

S8d AaneTw Acacia aneura var. intermedia low woodland over Triodia wiseana open hummock grassland

This vegetation type occurred in one small location 3 km south of the Fortescue River, on a west-facing slope of a stony hill on the Rocklea Land System. Site CP480.

13. Terminalia Woodlands

S13b TERcTw Terminalia canescens low open woodland over Triodia wiseana scattered hummock grasses

This vegetation type occurred on rocky dolomite hills, and was recorded at the southern end of the study area (124km), in one small occurrence on the Capricorn Land System. Associated species: Abutilon dioicum, Acacia bivenosa, Aristida holathera var. holathera, Cleome viscosa, Cymbopogon ambiguus, Gossypium australe (Burrup Peninsula form), Senna glutinosa ssp. glutinosa and Sida pilbarensis. Site CP038r.

S13c TERsGwCOpSOlTw Terminalia supranitifolia scattered low trees over Grevillea wickhamii ssp. hispidula scattered tall shrubs over Corchorus parviflorus and Solanum lasiophyllum low open shrubland over Triodia wiseana very open hummock grassland

This vegetation type occurred on the freeface of a range, in the northern part of the rail corridor north of the Fortescue River, on the Nanutarra Land System. Other associated species: *Clerodendrum floribundum* var. *angustifolium, C. tomentosum* var. *lanceolatum, Cymbopogon ambiguous* and *Triumfetta appendiculata* (Mardie form). Site CP119.

Minor Creeklines (I)

1. Acacia ancistrocarpa, A. bivenosa Shrublands

I1a AaAarAbTw Acacia ancistrocarpa, A. arida and A. bivenosa shrubland over Triodia wiseana very open hummock grassland

This vegetation type was recorded in minor drainage lines, north of the Fortescue River, mostly in the Paraburdoo Land System. *Triodia epactia* occasionally occurred along with *Triodia wiseana* in the very open hummock grassland. Associated species: *Acacia inaequilatera, Acacia pyrifolia* var. *pyrifolia, Corymbia hamersleyana* and *Senna artemisioides* ssp. *oligophylla*. Sites CP424, CP426, CP428, CP432, CP444.

I1b AbAaTw Acacia bivenosa and A. ancistrocarpa shrubland over Triodia wiseana open hummock grassland

This vegetation type occurred in minor drainage lines in the north of the study area. It occurred in six land systems, predominantly in the Nanutarra and Boolgeeda Land Systems. Associated species: *Acacia pyrifolia* var. *pyrifolia*, *Acacia tumida* var. *pilbarensis*, *Hakea lorea* ssp. *lorea*, *Indigofera monophylla*, *Scaevola spinescens* (broad form), *Senna artemisioides* aff. ssp. *oligophylla* (thinly sericeous), *Senna glutinosa* ssp. *glutinosa*, *Senna glutinosa* ssp. *pruinosa* and *Solanum diversiflorum*. Sites CP202, CP335, CP364, CP485.

I1d ChAaAbTw/g Corymbia hamersleyana scattered low trees over Acacia ancistrocarpa and A. bivenosa open heath over Triodia wiseana very open hummock grassland over very open grassland

This vegetation type was recorded in minor drainage lines in the northern section of the study area (30 - 40 km), adjacent to the North West Coastal Highway. It occurred mainly in the Rocklea Land System. Associated species: *Acacia pyrifolia, Aristida contorta, *Cenchrus ciliaris, Indigofera monophylla* (Burrup form), *Senna artemisioides* ssp. *oligophylla, Senna glutinosa* ssp. *pruinosa* and *Triumfetta clementii*. Sites CP015, CP101, CP346, CP354, CP372.

2. Acacia pyrifolia High Shrublands

12b ApyAbTwCEc Acacia pyrifolia var. pyrifolia high open shrubland over A. bivenosa open shrubland over mixed low open shrubland over Triodia wiseana hummock grassland and *Cenchrus ciliaris very open tussock grassland

This vegetation type was recorded in minor drainage lines in the northern part of the study area. It occurred in the Paraburdoo Land System. The mixed low open shrubland included *Scaevola spinescens* (broad form), *Indigofera monophylla* and *Eremophila forrestii* ssp. *forrestii*. Other associated species: *Acacia ancistrocarpa, Acacia synchronicia, Dactyloctenium radulans, Cucumis maderaspatanus, Hakea lorea* ssp. *lorea, Sporobolus australasicus* and *Urochloa pubigera*. Sites CP014, CP322, CP324.

3. Acacia Shrublands

I3b CcAcPTaTe

Corymbia candida ssp. candida scattered low trees over Acacia citrinoviridis open heath over Ptilotus astrolasius var. astrolasius low open shrubland over Triodia epactia open hummock grassland

This vegetation type was recorded in minor drainages north and south of the Pannawonica Road. It occurred mainly in the Nanutarra and Boolgeeda Land Systems. Associated species: *Acacia ancistrocarpa, Acacia sclerosperma* ssp. *sclerosperma, Acacia tumida* var. *pilbarensis, Aristida holathera* var. *holathera, *Cenchrus ciliaris, Hakea lorea* ssp. *lorea, Scaevola spinescens* (broad form), *Senna artemisioides* ssp. *oligophylla, Stylobasium spathulatum* and **Vachellia farnesiana*. Site CP051, CP164, CP224, CP230 and CP281.

I3d ChAbAarTw

Corymbia hamersleyana low scattered trees over Acacia bivenosa and A. arida open shrubland over Triodia wiseana hummock grassland

This vegetation type occurred in minor drainage lines rising in the range north of the Fortescue River, in the Newman and Boolgeeda Land Systems. *Tephrosia* sp. B Kimberley Flora (C.A. Gardner 7300) covers as much as 11% at one site within this vegetation type. Other associated species *Acacia inaequilatera*, *Cajanus cinereus*, *Indigofera monophylla*, *Grevillea pyramidalis* ssp. *leucadendron*, *Grevillea wickhamii* ssp. *hispidula* and *Terminalia canescens*. Sites CP111, CP113, CP115.

I3e ElAbAaAtTw

Eucalyptus leucophloia ssp. leucophloia scattered low trees over Acacia bivenosa, A. ancistrocarpa and A. tumida var. pilbarensis high open shrubland over Triodia wiseana hummock grassland

This vegetation occurred in a few minor drainage lines rising in rocky hills, in the middle of the study area, in the Nanutarra Land System. Associated species: *Acacia atkinsiana, Aristida holathera* var. *holathera, Bonamia rosea, Corchorus parviflorus, Goodenia stobbsiana, Hakea lorea* ssp. *lorea, Indigofera monophylla, Keraudrenia nephrosperma* and *Petalostylis labicheoides*. Sites CP192, CP194.

I3g GwAtAbTw

Grevillea wickhamii ssp. hispidula and Acacia tumida var. pilbarensis open scrub over A. bivenosa open shrubland over Triodia wiseana open hummock grassland

This vegetation type occurred in minor drainages between low rocky hills south of the Fortescue River, in the Newman Land System. Associated species: *Acacia arida, Acacia inaequilatera, Acacia pyrifolia* var. *pyrifolia, Corymbia hamersleyana, Grevillea pyramidalis* ssp. *leucadendron, Indigofera monophylla, Senna glutinosa* ssp. *glutinosa* and *Terminalia canescens*. Sites CP466, CP467, CP469.

I3h TERcAtrAarTwCEc Terminalia canescens low open woodland over Acacia trachycarpa high shrubland over A. arida shrubland over Triodia wiseana very open hummock grassland over *Cenchrus ciliaris very open tussock grassland

This vegetation type was recorded in minor, stony, dissected drainage lines in the northern part of the study area, mostly in the Paraburdoo Land System. Associated species: *Acacia ancistrocarpa, Acacia pyrifolia* var. *pyrifolia, Acacia sericophylla, Acacia tumida* var. *pilbarensis, Cleome viscosa, Eucalyptus victrix, Flueggea virosa* ssp. *melanthesoides, Grevillea pyramidalis*

ssp. leucadendron, Indigofera monophylla (Burrup form), Ipomoea muelleri, Tephrosia rosea var. clementii, Tephrosia sp. B Kimberley Flora (C.A. Gardner 7300) and Triodia epactia. Sites CP013, CP328, CP356, CP358, CP360, CP382.

4. Acacia synchronicia, A. bivenosa Shrublands

I4a AbAsTeTw/g Acacia bivenosa and A. synchronicia open heath over Triodia epactia and T. wiseana very open hummock grassland over very open mixed grasses

This vegetation type occurred on floodplains associated with minor drainage lines in the northern part of the study area (38 to 42 km), in the Rocklea and Paraburdoo Land Systems. The very open mixed grasses included *Aristida contorta, Brachyachne prostrata, *Cenchrus ciliaris, Dactyloctenium radulans, Enneapogon caerulescens, Iseilema dolichotrichum* and *Sporobolus australasicus*. Other associated species: *Acacia inaequilatera, Acacia tumida var. pilbarensis, Boerhavia coccinea, Bulbostylis barbata, Cleome viscosa, Gomphrena cunninghamii, Goodenia forrestii, Goodenia microptera, Hakea lorea ssp. lorea, Hibiscus sturtii var. platychlamys, Indigofera colutea, Indigofera linifolia, Polycarpaea longiflora, Ptilotus astrolasius var. astrolasius, Ptilotus exaltatus var. exaltatus, Ptilotus helipteroides var. helipteroides, Senna artemisioides ssp. oligophylla, Senna notabilis, Sida arsiniata, Trianthema triquetra var. triquetra, Solanum lasiophyllum and Triodia epactia*. Sites CP019, CP021, CP414, CP438.

5. Corymbia Woodlands

I5b CcAbTeTw Corymbia candida ssp. candida scattered low trees over Acacia bivenosa scattered shrubs over Triodia epactia and T. wiseana open hummock grassland

This vegetation type occurred in a broad drainage line in the middle of the study area (75km), in the Boolgeeda Land System. This vegetation type occurred adjacent to *Acacia xiphophylla* shrublands. Associated species: *Acacia ancistrocarpa, Acacia synchronicia, Ptilotus exaltatus* var. *exaltatus* and *Sida* sp. Pilbara. Sites CP216, CP218.

15c CcChAtrAtPlCc Corymbia candida ssp. candida and C. hamersleyana low open woodland over Acacia trachycarpa, A. tumida var. pilbarensis and Petalostylis labicheoides high open shrubland over *Cenchrus ciliaris very open tussock grassland

This vegetation type occurred, in minor drainage lines in the middle of the study area, in the Boolgeeda Land System. Associated species: *Abutilon amplum, Acacia ancistrocarpa, Acacia bivenosa, Acacia citrinoviridis, Acacia pyrifolia* var. *pyrifolia, Cleome viscosa, Corchorus incanus* ssp. *incanus, Eremophila longifolia, Gossypium robinsonii, Scaevola spinescens* (broad form), *Senna artemisioides* ssp. *oligophylla, Tephrosia rosea* var. *glabrior, Trichodesma zeylanicum* var. *zeylanicum, Triumfetta clementii* and *Waltheria indica*. Sites CP240, CP373.

I5e ChAatkAbTw Corymbia hamersleyana scattered low trees over Acacia atkinsiana and A. bivenosa shrubland over Triodia wiseana open hummock grassland

This vegetation type was recorded in minor drainage lines, in the middle of the study area. It occurred mainly in the Nanutarra Land System. *Triodia* sp. Robe River was recorded from one site. Associated species *Acacia synchronicia*, *Acacia tumida* var. *pilbarensis*, *Cenchrus ciliaris, Eriachne pulchella ssp. dominii and Scaevola spinescens (broad form). Sites CP054, CP339, CP341, CP343, CP345, CP355.

I5g ChAiAaTe Corymbia hamersleyana low open woodland over Acacia inaequilatera high open shrubland over A. ancistrocarpa scattered shrubs over Triodia epactia open hummock grassland

This vegetation type occurred in minor drainage lines in the southern part of the study area. It occurred in the Capricorn and Boolgeeda Land Systems. Associated species: *Acacia bivenosa*, *Acacia synchronicia*, *Acacia trachycarpa*, *Acacia tumida* var. *pilbarensis*, *Corchorus parviflorus*, *Grevillea pyramidalis* ssp. *leucadendron*, *Grevillea wickhamii* ssp. *hispidula*, *Hakea lorea* ssp. *lorea*, *Indigofera monophylla*, *Indigofera rugosa*, *Senna artemisioides* ssp. *oligophylla* and *Tephrosia rosea* var. *glabrior*. Sites CP134, CP148.

I5h ChAtAatkAaTw Corymbia hamersleyana scattered low trees over Acacia tumida var. pilbarensis, A. atkinsiana and A. ancistrocarpa shrubland over Triodia wiseana open hummock grassland

This vegetation type occurred in minor drainage lines throughout the study area. It occurred in five land systems, predominantly in the Nanutarra and Boolgeeda Land Systems. Associated species: Acacia bivenosa, Acacia inaequilatera, Aristida holathera var. holathera, Aristida holathera var. latifolia, Bonamia rosea, *Cenchrus ciliaris, Cymbopogon ambiguus, Eragrostis aff. eriopoda (WAS site 963), Eremophila longifolia, Eriachne aristidea, Eucalyptus leucophloia ssp. leucophloia, Grevillea wickhamii ssp. hispidula, Gossypium australe (Burrup Peninsula form), Hakea lorea spp. lorea, Hibiscus sturtii var. campylochlamys, Indigofera monophylla, Jasminum didymum ssp. lineare, Keraudrenia velutina ssp. elliptica, Petalostylis labicheoides, Ptilotus astrolasius var. astrolasius, Ptilotus calostachyus var. calostachyus, Scaevola spinescens (broad form), Senna artemisioides ssp. oligophylla, Senna glutinosa ssp. glutinosa, Sida pilbarensis, Tephrosia uniovulata, Trianthema pilosa, Trichodesma zeylanicum var. zeylanicum and Triodia epactia. Sites CP050, CP066, CP108, CP112, CP116, CP171, CP131, CP135, CP168, CP170, CP184, CP188, CP231, CP239, CP246, CP299, CP307, CP309, CP377, CP381.

15i ChAtAbTw Corymbia hamersleyana scattered low trees over Acacia tumida var. pilbarensis high scrub to high open shrubland over A. bivenosa open shrubland over Triodia wiseana very open hummock grassland

This vegetation type occurred in minor drainage lines on the northern half of the study area (35-60km). It occurred mostly in the Rocklea and Newman Land Systems. Associated species: Acacia ancistrocarpa, Acacia arida, Acacia atkinsiana, Acacia pyrifolia var. pyrifolia, Acacia synchronicia, *Cenchrus ciliaris, Cleome viscosa, Gossypium australe (Burrup Peninsula form), Gossypium robinsonii, Grevillea pyramidalis ssp. leucadendron, Grevillea wickhamii ssp. hispidula, Hakea lorea ssp. lorea, Indigofera monophylla, Jasminum didymum ssp. lineare, Scaevola spinescens (broad form), Senna artemisioides ssp. oligophylla, Senna glutinosa ssp. glutinosa, Senna glutinosa ssp. pruinosa and Tephrosia uniovulata. Sites CP017, CP127, CP396, CP398, CP400, CP404, CP431, CP434, CP435, CP445, CP447, CP453, CP457, CP463, CP478, CP482, CP490.

6. Eucalyptus Woodlands

I6a EcChGpApyAtrTEsppTeTw Eucalyptus camaldulensis var. obtusa and Corymbia hamersleyana scattered low trees over Grevillea pyramidalis ssp. leucadendron high open shrubland over Acacia pyrifolia var. pyrifolia and A. trachycarpa open shrubland over Tephrosia spp. low open shrubland over Triodia epactia and T. wiseana very open hummock grassland

This vegetation was found in minor drainage lines and associated floodplains, north of the Fortescue River (44 km), mostly in the Paraburdoo Land System. The *Tephrosia* spp. low open shrubland included *T.* aff. *clementii* (8) (HD106), *T. rosea* var. *glabrior*, *T.* sp. B. Kimberley Flora and *T. uniovulata*. Other associated species: *Acacia ancistrocarpa, Acacia arida, Acacia bivenosa, Acacia tumida* var. *pilbarensis, *Cenchrus ciliaris, Cleome viscosa, Corchorus incanus* ssp. *incanus, Corchorus parviflorus, Goodenia lamprosperma, Gossypium australe* (Burrup Peninsula form), *Gossypium robinsonii, Grevillea wickhamii* ssp. *hispidula, Indigofera monophylla, Polycarpaea longiflora* (White form, M13-7), *Ptilotus astrolasius* var. *astrolasius, Sporobolus australasicus* and *Vachellia farnesiana. Sites CP022, CP250, CP446, CP448, CP450.

I6b EcEvMgMlAcoCE/s Eucalyptus camaldulensis var. obtusa woodland over E. victrix low woodland over Melaleuca glomerata, M. linophylla and Acacia coriacea ssp. pendens high shrubland over *Cenchrus ciliaris and *C. setiger tussock grassland over patches of Cyperus spp. very open sedges

This vegetation type occurred in dissected drainages and their tributaries, in the northern section of the study area. It occurred in the Nanutarra and Rocklea Land Systems. Associated species: *Acacia ampliceps, Acacia pyrifolia* var. *pyrifolia, Acacia synchronicia, Cyperus bifax, Cyperus vaginatus, Eriachne* aff. *festucacea, Sesbania cannabina* and *Tephrosia rosea* var. *clementii*. Sites CP020, CP390, CP410, CP412, CP416.

7. Low Mulga Woodlands

I7a AaneERfoTw Acacia aneura var. intermedia low woodland over Eremophila forrestii ssp. forrestii open shrubland over Triodia wiseana open hummock grassland

This vegetation type occurred in isolated areas south of the Fortescue River, in the Nanutarra Land System. Associated species: Abutilon aff. lepidum (L), Acacia atkinsiana, Acacia bivenosa, Acacia tumida var. pilbarensis, Acacia xiphophylla, Aristida contorta, Bulbostylis barbata, Cassytha capillaris, *Cenchrus ciliaris, Crotalaria medicaginea var. neglecta, Duperreya commixta, Eriachne pulchella ssp. dominii, Euphorbia boophthona, Evolvulus alsinoides var. decumbens, Gomphrena affinis ssp. pilbarensis, Hibiscus burtonii, Hibiscus sturtii var. aff. grandiflorus, Hybanthus aurantiacus, Indigofera monophylla (BRO 46-12), Isotropis atropurpea, Maireana melanocoma, Maireana planifolia, Cucumis maderaspatanus, Portulaca oleracea, Ptilotus exaltatus var. exaltatus, Ptilotus helipteroides var. helipteroides, Salsola tragus ssp. tragus, Sarcostemma viminale ssp. australe, Scaevola spinescens (broad form), Sclerolaena diacantha, Senna glutinosa ssp. glutinosa, Sida cardiophylla, Solanum diversiflorum, Solanum ellipticum, Sporobolus australasicus, Trichodesma zeylanicum var. zeylanicum, Triodia sp. Robe River, Triumfetta clementii and Yakirra australiensis var. australiensis. Sites CP055, CP349, CP359.

8. Terminalia Woodlands

I8a TERcAarTw Terminalia canescens low open woodland over Acacia arida open shrubland over Triodia wiseana very open hummock grassland

This vegetation type occurred in the northern part of the study area, in a gully south of the Fortescue River, in the Newman Land System. Associated species: *Polycarpaea longiflora, Senna artemisioides* ssp. *oligophylla, Senna glutinosa* ssp. *glutinosa* and *Tinospora smilacina*. Site CP470.

Major Creeklines (A)

1. Acacia pyrifolia High Shrublands

A1a AtrApyTeCEc Acacia trachycarpa high shrubland over A. pyrifolia var. pyrifolia scattered shrubs over Triodia epactia very open hummock grassland over *Cenchrus ciliaris very open tussock grassland

This vegetation type occurred on floodplains associated with tributaries of the Robe River (117km). It occurred in the Urandy Land System on brown silty clay loam soils. Associated species: *Corchorus parviflorus, Eucalyptus camaldulensis* var. *obtusa, Euphorbia coghlanii, Gossypium australe* (Burrup Peninsula form), *Grevillea pyramidalis* ssp. *leucadendron, Cucumis maderaspatanus, Senna artemisioides* ssp. *oligophylla, Stylobasium spathulatum* and *Tephrosia rosea* var. *glabrior*. Site CP160.

A1b VfAsApyTw *Vachellia farnesiana, Acacia synchronicia and A. pyrifolia var. pyrifolia high shrubland over Triodia wiseana very open hummock grassland

This vegetation type was recorded only on the floodplain south of the Fortescue River. Most of this vegetation type was found in the River Land System, with a small area occurring in the Newman Land System. Associated species: *Acacia bivenosa, Acacia coriacea, Acacia inaequilatera, Acacia trachycarpa, Capparis spinosa* var. *nummularia, *Cenchrus ciliaris, Hakea lorea* ssp. *lorea, Ipomoea muelleri, Ptilotus astrolasius* var. *astrolasius* and *Senna glutinosa* ssp. *glutinosa*. Sites CP441, CP462, CP464, CP465.

3. Corymbia Woodlands

A3a CcChAcolAaTe Corymbia candida ssp. candida and C. hamersleyana low open woodland over Acacia colei var. colei and A. ancistrocarpa high open shrubland over Triodia epactia very open hummock grassland

This vegetation type was recorded in broad drainage lines across alluvial plains in the southern half of the study area (74.5km). The majority of this vegetation type occurred on the Nanutarra Land System and a small area on the Peedamulla Land System. Some areas of this vegetation had been burnt within a year of survey. Associated species: *Acacia inaequilatera*, *Cenchrus ciliaris, Eucalyptus camaldulensis var. obtusa, Gossypium australe (Burrup Peninsula form), Jasminum didymum ssp. lineare, Senna artemisioides ssp. oligophylla, Sida arsiniata, Tephrosia uniovulata, Trichodesma zeylanicum var. zeylanicum and Triodia wiseana. Sites CP076, CP094, CP098, CP317, CP319.

A3c ChAaAtrTe/g Corymbia hamersleyana low open woodland over Acacia ancistrocarpa and A. trachycarpa scattered shrubs over Triodia epactia open hummock grassland over Aristida holathera var. latifolia, Eragrostis aff. eriopoda (WAS site 963) and *Cenchrus ciliaris very open grassland

This vegetation type occurred on floodplains immediately adjacent to large drainage lines, typically on red-brown, silty clay loam soils, in the middle of the study area (70km). The majority of these floodplains were present in the Peedamulla Land System, with a small area in the Nanutarra Land System. Associated species: *Acacia atkinsiana, Acacia pyrifolia* var. pyrifolia, Bonamia rosea, Eremophila longifolia, Gossypium australe (Burrup Peninsula form), Grevillea wickhamii ssp. hispidula, Grevillea pyramidalis ssp. leucadendron, Petalostylis labicheoides, Ptilotus astrolasius var. astrolasius, Rhynchosia minima var. australis, Scaevola spinescens (broad form), Senna artemisioides ssp. oligophylla, Tephrosia uniovulata and Trichodesma zeylanicum var. zeylanicum. Sites CP035, CP056, CP143, CP145, CP147, CP238.

A3e ElChCcGwTw Eucalyptus leucophloia ssp. leucophloia, Corymbia hamersleyana and C. candida ssp. candida scattered low trees over Grevillea wickhamii ssp. hispidula high open shrubland over Triodia wiseana very open hummock grassland

This vegetation type occurred on floodplains associated with dissected drainage lines at Peters Creek (80km). It occurred mainly in the Boolgeeda Land System with a small area in the Nanutarra Land System. Associated species: *Acacia atkinsiana, Acacia trachycarpa, Acacia tumida* var. *pilbarensis, *Cenchrus ciliaris, Corchorus parviflorus, Ehretia saligna* var. *saligna, Petalostylis labicheoides, Polycarpaea longiflora* (White form, M13-7), *Senna glutinosa* ssp. *glutinosa, Triumfetta johnstonii* and *Waltheria indica*. Site CP198.

4. Eucalyptus Forests

A4a EcAcoPl Eucalyptus camaldulensis var. obtusa open forest over Acacia coriacea ssp. coriacea and Petalostylis labicheoides high open shrubland

This vegetation was found in the riverbed of the Fortescue River. The majority of this vegetation occurs in the River Land System. Associated species: *Acacia pyrifolia* var. *pyrifolia*, *Capparis spinosa* var. *nummularia*, *Erythrina vespertilio* and *Phyllanthus reticulatus*. Sites CP121, CP125.

A4b EcMgERAt/s/h Eucalyptus camaldulensis var. obtusa open forest over Melaleuca glomerata high open shrubland over Eragrostis tenellula scattered tussock grasses over Cyperus bifax, C. difformis and C. vaginatus very open sedges over patches of mixed open herbs

This vegetation type was recorded along the banks of the Robe River, in the River Land System. Patches of mixed open herbs included Amaranthus mitchellii, Ammannia auriculata, *Argemone ochroleuca ssp. ochroleuca, Centipeda minima ssp. macrocephala, Dysphania melanocarpum forma leucocarpum, *Citrullus colocynthis, Cleome viscosa, *Cucumis melo ssp. agrestis, Dysphania kalpari, Euphorbia tannensis ssp. eremophila (Burrup form), Flaveria australasica, Goodenia lamprosperma, Helichrysum luteoalbum, Phyllanthus maderaspatensis, Pluchea rubelliflora, Pterocaulon sphaeranthoides, Stemodia grossa, Trachymene oleracea ssp. oleracea and Vigna lanceolata var. lanceolata. Other associated species: Acacia trachycarpa, Acacia tumida var. pilbarensis, *Cenchrus ciliaris, Gossypium robinsonii, Senna notabilis, Sesbania cannabina, Sesbania formosa and Typha domingensis. Sites CP508, CP269.

5. Eucalyptus Woodlands

A5a EcAtrCEc

Eucalyptus camaldulensis var. obtusa low open woodland over Acacia trachycarpa high open shrubland over *Cenchrus ciliaris very open tussock grassland

This vegetation type was recorded in major dissected drainage lines in the southern half of the study area. It was sampled in the middle section of the study area at Peters Creek (81km) and in the southern section in a tributary south of the Robe River. It occurred in the Boolgeeda and Urandy Land Systems. Associated species: Acacia pyrifolia var. pyrifolia, Adriana urticoides var. urticoides, *Argemone ochroleuca ssp. ochroleuca, Aristida holathera var. latifolia, Cleome viscosa, Corchorus laniflorus, Corchorus parviflorus, Euphorbia coghlanii, Gossypium australe (Burrup Peninsula form), Gossypium robinsonii, Grevillea wickhamii ssp. hispidula, Melaleuca linophylla, Phyllanthus maderaspatensis, Tephrosia rosea var. glabrior, Trichodesma zeylanicum var. zeylanicum and Triodia wiseana. Sites CP158, CP200.

A5b EcCcChAsppTwTeCEc/h Eucalyptus camaldulensis var. obtusa open woodland over Corymbia candida ssp. candida and C. hamersleyana low open woodland over Acacia spp. high shrubland over Triodia wiseana and T. epactia very open hummock grassland over *Cenchrus ciliaris open tussock grassland over mixed patches of herb

This vegetation type was recorded in the Robe River and tributaries. This vegetation was mostly associated with the Sherlock Land System, but smaller areas of it were also present in the Nanutarra, River and Peedamulla Land Systems. The high shrubland in this vegetation consisted of Acacia ligulata, Acacia pyrifolia var. pyrifolia, Acacia sclerosperma ssp. sclerosperma and Acacia trachycarpa. The mixed patches of herbs included Abutilon amplum, Alternanthera nana, Amaranthus mitchellii, Blumea tenella, Boerhavia burbidgeana, Bonamia rosea, Calandrinia ptychosperma, Centipeda minima ssp. macrocephala Cleome viscosa, Convolvulus angustissimus ssp. angustissimus, Corchorus aff. parviflorus, Corchorus parviflorus, Crotalaria medicaginea (Burrup form; B65-11), *Cucumis melo ssp. agrestis, Cullen pogonocarpum, Dichanthium sericeum ssp. humilius, Duperreya commixta, Dysphania melanocarpum forma leucopodon, Dysphania rhadinostachya ssp. rhadinostachya, Euphorbia biconvexa, Euphorbia boophthona (large seed form), *Euphorbia hirta, Evolvulus alsinoides var. villosicalyx, Flaveria australasica, Goodenia forrestii, Goodenia lamprosperma, Goodenia nuda (P3), Heliotropium ovalifolium, Indigofera boviperda ssp. boviperda, Indigofera monophylla, Ipomoea muelleri, Leptopus decaisnei var. orbicularis, *Malvastrum americanum, Marsilea hirsuta, Cucumis maderaspatanus, Polycarpaea longiflora, Portulaca oleracea, Ptilotus appendiculatus var. appendiculatus, Ptilotus astrolasius var. astrolasius, Ptilotus calostachyus var. calostachyus, Ptilotus exaltatus var. exaltatus, Rhynchosia minima var. australis, Rostellularia adscendens var. clementii, Setaria dielsii, Sida aff. fibulifera (B64-13B), Sida aff. fibulifera (FMG 125-20), Streptoglossa bubakii, Stylobasium spathulatum, Trachymene oleracea ssp. oleracea and Vigna lanceolata var. lanceolata. Other associated species Acacia ancistrocarpa, Acacia bivenosa, Acacia citrinoviridis, Acacia inaequilatera, Gossypium robinsonii and Petalostylis labicheoides. Sites CP042, CP321, CP265, CP385.

6. Herblands

A6a PITRz Petalostylis labicheoides scattered shrubs over Trichodesma zeylanicum var. zeylanicum very open herbland

This vegetation type occurred on the floodplain to the north and in the riverbed of the Fortescue River. The majority of this vegetation occurred in the River Land System. Associated species: *Asphodelus fistulosus, Eucalyptus camaldulensis var. obtusa, Euphorbia schultzii, Grevillea wickhamii ssp. hispidula, Leptopus decaisnei var. orbicularis, Ptilotus obovatus var. obovatus and Trachymene oleracea ssp. oleracea. Site CP123.

Clayey Plain (C)

2. Acacia Shrublands

C2c AiAaTe Acacia inaequilatera high open shrubland over A. ancistrocarpa open shrubland over Triodia epactia open hummock grassland

This vegetation type occurred on alluvial plains with silty clay soils, it was sampled in the southern end of the study area. It occurred mainly on the Urandy Land System, with some found in the River Land System and a very small amount in the Capricorn Land System. Associated species: Acacia atkinsiana, Acacia bivenosa, Acacia synchronicia, Acacia trachycarpa, Aristida holathera var. holathera, Bonamia rosea, *Cenchrus ciliaris, Cleome viscosa, Corchorus incanus ssp. incanus, Eremophila longifolia, Gossypium australe (Burrup Peninsula form), Grevillea pyramidalis ssp. leucadendron, Hakea lorea ssp. lorea, Indigofera monophylla, Ptilotus astrolasius var. astrolasius and Senna artemisioides ssp. oligophylla. Sites CP041, CP156, CP257, CP261, CP267.

C2d AiAsTwTe Acacia inaequilatera and A. synchronicia scattered tall shrubs over Triodia wiseana and T. epactia open hummock grassland

This vegetation type occurred on silty clay loam, alluvial plains associated with the Robe River. It occurred predominantly the River and Sherlock Land Systems, and a small area in the Newman Land System. Associated species: *Acacia sclerosperma* ssp. *sclerosperma*, *Acacia trachycarpa*, *Cenchrus ciliaris, Corymbia candida ssp. candida, Eucalyptus camaldulensis var. *obtusa*, Gossypium australe (Burrup Peninsula form), Hakea lorea ssp. lorea and *Vachellia farnesiana. Sites CP271, CP383.

C2e CcAaAbTe Corymbia candida ssp. candida scattered low trees over Acacia ancistrocarpa and A. bivenosa high open shrubland over Triodia epactia hummock grassland

This vegetation type occurred on flat alluvial plains with dark red-brown clay loams, it was sampled in the plain south of the Robe River over a 4 km section. It occurred predominantly on the Urandy Land System and was the dominant community across this land system in the study area. A small area of this vegetation type was located in the Sherlock Land System. Associated species: *Gossypium australe* (Burrup Peninsula form), *Hakea lorea* ssp. *lorea*, *Ptilotus appendiculatus* var. *appendiculatus*, *Senna artemisioides* ssp. aff. *oligophylla* (thinly sericeous), *Solanum diversiflorum* and *Streptoglossa bubakii*. Sites CP162, CP509, CP531.

3. Acacia synchronicia Shrublands

C3a AsTe Acacia synchronicia open shrubland over Triodia epactia open hummock grassland

This vegetation type occurred on alluvial plains with silty clay loam soils, it was sampled in the middle of the study area. It occurred predominantly in the Nanutarra Land System, and to a lesser extent in the Peedamulla Land System. Associated species: *Acacia ancistrocarpa, Acacia atkinsiana, Acacia bivenosa, Corymbia hamersleyana, Eremophila forrestii* ssp. *forrestii, Ptilotus astrolasius* var. *astrolasius, Ptilotus calostachyus* var. *calostachyus, Salsola tragus* ssp. *tragus, Scaevola spinescens* (broad form), *Senna artemisioides* ssp. *oligophylla* and *Triodia wiseana*. Sites CP222, CP228, CP331.

5. Grasslands

C5a ERAxDsXi/h Eragrostis xerophila, Dichanthium sericeum ssp. humilius and Xerochloa imberbis mixed closed grassland over mixed very open herbland

This vegetation type occurred on extensive plains on cracking, clay-loams in the northern section of the study area, mainly north of the proposed rail crossing on the North West Coastal Highway, Cape Preston. This vegetation is typical of the Horseflat Land System in this region. This community appears similar to that of the Roebourne Plains PEC, but does not contain the same key species. Nevertheless, it would seem to be floristically unique, and appears unique among the grasslands typical of the Horseflat land system, just to the north of the study area. Some areas associated with lower lying drainages on the plain comprised of Acacia coriacea ssp. pendens open woodland over grassland. These wetter areas also supported a substantial population (up to 12% cover) of the invasive weed *Malvastrum americanum. Other associated species: Acacia bivenosa, Acacia xiphophylla, Abutilon malvifolium, Boerhavia burbidgeana, Brachyachne convergens, *Cenchrus ciliaris, Cleome viscosa, Crotalaria dissitiflora ssp. benthamii, Cullen graveolens, Eragrostis benthamii, Euphorbia coghlanii, Flaveria australasica ssp. gilgai, Gomphrena affinis ssp. pilbarensis, Heliotropium conocarpum, Indigastrum parviflorum, Indigofera linifolia, Ipomoea muelleri, Iseilema macratherum, Panicum laevinode, Pterocaulon sphaeranthoides, Ptilotus carinatus, Ptilotus exaltatus var. exaltatus, Ptilotus helipteroides var. helipteroides, Rhynchosia minima var. australis, Salsola tragus ssp. tragus, Sida aff. fibulifera (HD200-6), Sporobolus australasicus, Stemodia kingii, Streptoglossa bubakii, Streptoglossa tenuiflora and Triodia wiseana. Site CP012.

6. Snakewood Shrublands

C6b AxTwERAx Acacia xiphophylla open shrubland over Triodia wiseana open hummock grassland over Eragrostis xerophila open tussock grassland

This vegetation type occurred on extensive plains on cracking, clay-loams north of the northern section of the study area. Only a small portion occurs within the study area. This vegetation is typical of the Horseflat Land System in this region. The perennial grasses *Triodia wiseana* and *Eragrostis xerophila* are dominant. However, following rainfall a mixture of other ephemeral grasses, including *Astrebla pectinata*, *Dichanthium sericeum* ssp. *humilius, Sporobolus australasicus*, *Dactyloctenium radulans*, *Brachyachne convergens*, *Urochloa pubigera*, *Enneapogon caerulescens* and *Panicum laevinode* are a significant component of the community. Other associated species: *Acacia ancistrocarpa*, *Acacia synchronicia*, *Streptoglossa bubakii*, *Enchylaena tomentosa* var. *tomentosa*, *Salsola tragus* ssp. *tragus*, *Ptilotus carinatus*, *Crotalaria dissitiflora* ssp. *benthamiana* and *Ptilotus exaltatus* var. *exaltatus*. Sites CP011, CP318, CP326.

7. Soft Spinifex Hummock Grasslands

C7a AiTe Acacia inaequilatera high open shrubland over Triodia epactia hummock grassland

This vegetation type occurred on alluvial plains with silty clay soils, near drainage lines in the southern part of the study area. It occurred mainly on the Urandy Land System with a small area in the Capricorn Land System. Some areas of this vegetation type were burnt in January 2007. Associated species: *Acacia ancistrocarpa, Acacia bivenosa, Bonamia rosea, Corchorus parviflorus, Eremophila longifolia, Eriachne mucronata* (typical form), *Grevillea pyramidalis* ssp. *leucadendron, Gossypium australe* (Burrup Peninsula form), *Hakea lorea* ssp. *lorea, Indigofera monophylla, Jasminum didymum* ssp. *lineare, Ptilotus astrolasius* var. *astrolasius, Scaevola spinescens* (Broad form), *Senna artemisioides* ssp. *oligophylla* and *Sida clementii*. Sites CP032, CP036, CP060, CP070, CP130, CP144, CP153, CP159, CP161, CP163.

C7b ApyGpTe Acacia pyrifolia var. pyrifolia scattered tall shrubs over Grevillea pyramidalis ssp. leucadendron scattered shrubs over Triodia epactia hummock grassland

This vegetation type occurred predominantly in the proposed mine area, on the Urandy Land system with smaller proportions on the Rocklea, Robe and Newman Land Systems. Only a small section of this vegetation type extends into the very southern end of the proposed rail alignment. Associated species: *Grevillea wickhamii, Acacia inaequilatera, A. bivenosa, Eucalyptus leucophloia* ssp. *leucophloia, Hakea lorea* ssp. *lorea* and *Indigofera boviperda*. All sites sampling this vegetation type were located in the proposed mine study area (Western Botanical, 2009). These sites were; HR065, TC052, TC053, TC126. As such this vegetation type is not included in the vegetation by species matrix (Appendix 6).

3.3 Vegetation of Conservation Significance

In assessing the conservation significance of the vegetation of the Study Area, the following parameters were used:

- Proportional impact on the extent of land systems in the study area
- Vegetation known to support priority species
- · Known areas of plant endemism
- Range extensions of flora recorded
- Location of species at the limit of their range
- Restricted floristic grouping
- Known conservation priorities and values from published data from the region

Twenty vegetation types of the Cape Preston Rail Corridor Study Area are considered to be of conservation value as they support priority flora, occur in major drainages such as the Robe River and Fortescue River, appear to be restricted and/or are considered conservation priorities (McKenzie and May 2003).

Habitat for Priority Species:

Vegetation supporting the Priority 3 species *Flaveria australasica* ssp. *gilgai*:

• C5a ERAxDsXi/h - occurs at the very northern most extent of the study area in a very small area (0.79 ha), 42% of which is proposed to be impacted. This vegetation is known to extend to the north of the study area. This community appears similar to that of the Roebourne Plains PEC, but does not contain the same key species. Nevertheless, it would seem to be floristically unique, and appears unique among the grasslands typical of the Horseflat land system, just to the north of the study area. Unfortunately, the one site within this vegetation type was not included in the analysis, due to its location just outside of the most recently proposed alignment. It is recommend that data from the site CP012 be provided to DEC Pilbara flora expert Steve van Leeuwen for further analysis.

Vegetation supporting the Priority 3 species *Indigofera* sp. Bungaroo Creek (S. van Leeuwen 4301) PN:

- **P1a** AatkAbAaTw occurred right across the study area and was a relatively common and widespread vegetation type, occurring on stony plains with numerous minor drainage lines. It is within these minor drainage lines that the P3 species *Indigofera* sp. Bungaroo Creek (S. van Leeuwen 4301) PN is most likely to occur. This vegetation type covered the largest proportion of the study area (532.45 ha or 22%) and is only proposed to have 37% of its area impacted. Other than the presence of this P3 species it is not considered of conservation significance.
- **P5b** AxAbTw this vegetation type is also of conservation interest as a moderately widespread Snakewood vegetation type (30.75 ha of the study area with 34% proposed to be impacted). Some of this vegetation occurs on the restricted Nanutarra land system. One record of the P3 species *Indigofera* sp. Bungaroo Creek (S. van

- Leeuwen 4301) PN occurred within this vegetation type. Therefore, it is also of conservation value as a habitat supporting a priority species.
- **S13b** TERcTw this vegetation type occurs in only one very small area (1.6 ha) within the study area. However, the proposed impact should be only 0.43% of this. This vegetation type occurred on rocky dolomite hills at the southern end of the study area, and is of conservation interest as a habitat supporting a priority species.
- **I5e** ChAatkAbTw this vegetation type is a minor drainage line which occurs mainly on the restricted Nanutarra Land System (26.8 ha). It is also of interest as *Triodia* sp. Robe River occurs as a presence in this vegetation type.
- **I7a** AaneERfoTw this vegetation type is also of conservation interest as a mulga woodland within a minor drainage line. It only occurs in a few isolated areas south of the Fortescue River on the restricted Nanutarra land system. It only occupies 0.7 ha of the study area and 64% of this is proposed to be impacted. One record of the P3 species *Indigofera* sp. Bungaroo Creek (S. van Leeuwen 4301) PN occurred within this vegetation type. Therefore, it is also of conservation value as a habitat supporting a priority species.

Vegetation supporting the fire sensitive Priority 3 species *Terminalia supranitifolia*:

• **S13c** TERsGwCOpSOlTw - occurring on the free face of a mesa in two locations north of the Fortescue River. Located on the restricted Nanutarra land system. Only covers 0.94 ha of the study area and is not included in the proposed impact area.

<u>Communities of Established High Conservation Value:</u>

Vegetation of the Robe River and its tributaries:

- **A4b** EcMgERAt/s/h this vegetation type occurred on the banks of the Robe River over 41.03 ha of the study area, of which 29.9% is proposed to be impacted. 0
- **A5b** EcCcChAsppTwTeCEc/h this vegetation type occurred within the Robe River and its tributaries over 20.53 ha of the study are (15.9% proposed to be impacted). This vegetation was mostly found on the restricted Sherlock land system, but also on the restricted Nanutarra and Peedamulla land systems. This vegetation type is <u>also</u> of conservation interest as habitat for the Priority 3 species *Goodenia nuda*.

Vegetation of the Fortescue River and its floodplains:

- **A1b** VfAsApyTw this vegetation type was recorded only on the floodplain south of the Fortescue River and extended for an area of 16.63 ha of the study area. Just over 16% of this area is proposed to be impacted.
- **A4a** EcAcoPl this vegetation type was recorded in the dry riverbed of the Fortescue River over an area of 13.49 ha (19% proposed to be impacted).
- **A6a** PITRz this vegetation type occurred on the dry riverbed and floodplain to the north of the Fortescue River. It occupies an area of 21.29 ha within the study area (22.7% proposed to be impacted).

Snakewood (*Acacia xiphophylla*) communities:

- **P5b** AxAbTw moderately widespread Snakewood vegetation type (30.75 ha of the study area with 34% proposed to be impacted). Some of this vegetation occurs on the restricted Nanutarra land system. One record of the P3 species *Indigofera* sp. Bungaroo Creek (S. van Leeuwen 4301) PN from within this vegetation type also increases its conservation value.
- **P5c** AxAsAatkTw relatively scarce Snakewood vegetation type. This vegetation is only found in one location within the study area and only occupies 5.67 ha (0.2%). Impact is proposed to take 67.5% of this area.
- **P5d** AxTw this snakewood vegetation occurs at only 2 locations, and some of it occurs on the restricted Nanutarra land system, with a small amount on the restricted Peedamulla land system. This vegetation type only occupies 0.6% of the study area, and the proposed impact will only affect 18.6% of this area.
- **P5e** AxTwTe a very widespread vegetation type covering 107.06 ha of the study area. Proposed impacts will affect 34.2% of this area. Some of this vegetation type is distributed on the restricted Paraburdoo and Nanutarra land systems.
- **C6b** AxTwERAx moderately widespread Snakewood vegetation type through the study area (29.3 ha), but with proposed impact estimated to impact over 62% of its area.

<u>Vegetation of Importance as Habitat for Species of Interest:</u>

Mulga (*Acacia aneura*) vegetation at the north-western limit of its distribution:

- **S8d** AaneTw this mulga woodland on stony hills and breakaways, only occurs in one small location in the study area (0.4 ha) and 25% (0.1 ha) is proposed to be impacted.
- **I7a** AaneERfoTw this mulga woodland within a minor drainage line, only occurs in a few isolated areas south of the Fortescue River on the restricted Nanutarra land system. It only occupies 0.7 ha of the study area and 64% of this is proposed to be impacted.

Habitat of *Aristida holathera* var. *latifolia*, uncommon in the Pilbara:

- **I3b** CcAcPTaTe *Aristida holathera* var. *latifolia* and *Acacia aneura* var. *intermedia* are present in this minor drainage line vegetation type. It is a moderately widespread vegetation type within the study area (29.69 ha) and it is proposed that 39.25% of this will be impacted.
- **I5h** ChAtAatkAaTw *Aristida holathera* var. *latifolia* is an associated species of this vegetation type, which covers 52.36 ha of the study area and 45.9% of this is proposed to be impacted.

Habitat for *Triodia* sp. Robe River at the northern limit of its known distribution:

• **S5a** AarTwTsprr – this vegetation type which provides habitat for *Triodia* sp. Robe River, a species of interest, at the northern extremity of its distribution. In fact, *Triodia* sp. Robe River is a dominant structural element of this vegetation type. However, this vegetation only occurs in one location, covering only 11.06 ha of the study area. It is proposed that 39.6% of this will fall within the impact area. *Triodia* sp. Robe River is recorded from three other sites in this study area, but in none of these is it recorded as more than only a presence.

3.4 Floristic Patterns of the Study Area

Floristic groups are not intended to be an equivalent or alternative to the mapping of vegetation types, but simply provide an additional, quantitative evaluation of how similar or unique sites may be to each other. It should also be noted that floristic groups are only based on the presence and absence of taxa, and unlike vegetation mapping, they do not account for the structure or dominance of the species in a site. The analysis provided by Griffin and Trudgen (2009) compares the sites from this study to a total of 2,883 sites across the Pilbara to provide a regional perspective on the distribution of floristic groupings found in this study. The 600 group level (the level of statistical difference at which the 2,883 sites are sorted into 600 groups) was deemed appropriate for analysis of regional representation of floristic groups (Griffin and Trudgen, 2009).

Of the groups at the 600 group level, Griffin and Trudgen (2009) identified 74 floristic groups found in the API West Pilbara Iron project areas (proposed mine area, associated infrastructure, and Cape Preston rail alignment) with a restricted distribution or poor sampling throughout the Pilbara bioregion. Of these restricted floristic units, 24 occurred along the proposed Cape Preston rail alignment (Table 8).

The likely distribution of these floristic groups was assessed by examining the representation of the sites, the extent of their vegetation types, and our knowledge of the area from three years of survey work in the Western Pilbara (Table 8). For example, some units that may be considered floristically restricted by Griffin and Trudgen (2009) data analysis, are in reality quite common, but simply under sampled within the region. Those groups that are consequently regarded as restricted or uncommon are discussed below. Those units that are considered to be under sampled are not further discussed, but should be targeted for further botanical survey work in the West Pilbara region to better determine their distribution.

According to our assessment, eight floristic units are considered to be restricted in distribution within the study area. Three of these may be under sampled. A further two floristic units are considered to be uncommon, although one of these is widespread.

600 group unit 63

This floristic unit only contains one site and it is from the API Cape Preston Rail. It is typified by the fire sensitive priority species *Terminalia supranitifolia* and would appear to be quite an uncommon vegetation type, which should be avoided if possible (Griffin and Trudgen, 2009). The only site in this floristic group is CP119. This site was mapped in vegetation type S13c.

600 group unit 94

This floristic unit only contains one site from the API Cape Preston Rail. It is typified by a woodland of *Terminalia canescens* on a dolomite geology (Griffin and Trudgen, 2009). This floristic unit appears to be either very poorly sampled or of a restricted occurrence (Griffin and Trudgen, 2009). Impacts upon this unit should be minimised. The only site in this floristic group is CP038r. This site was mapped in vegetation type S13b.

60 group unit 140

This floristic unit was represented by three sites, all from the API Cape Preston rail alignment. It is likely that this unit is restricted in distribution and only occurs in the West Pilbara (Griffin and Trudgen, 2009). All sites in this floristic unit contained *Senna glutinosa* ssp. *glutinosa*, *Indigofera monophylla* (BRO 46-12) a.k.a *Indigofera* sp. Bungaroo Creek (S. van Leeuwen 4301) **P3**, *Triodia wiseana*, *Triumfetta clementii*, *Eriachne pulchella*, *Scaevola spinescens* (broad form), *Trichodesma zeylanicum* var. *zeylanicum*, *Salsola tragus*, *Cassytha capillaris*, *Hybanthus*

aurantiacus, Solanum diversiflorum and *Ptilotus exaltatus* var. *exaltatus*. The sites found in this floristic until were CP053, CP054 and CP055. These are mapped in vegetation types P5b, I5e and I7a respectively.

600 group unit 146

There were only has three sites in this floristic unit, all from the API project areas, with two from the Cape Preston rail alignment. The other site was from the internal transport corridors within the mine area. This unit is restricted to the West Pilbara and is likely to have a restricted distribution (Griffin and Trudgen, 2009). All three sites in this floristic unit contained *Corymbia candida, Senna artemisioides* ssp. *oligophylla, Cucumis maderaspatanus* and *Triodia epactia*. The sites within this study area found within this floristic unit were CP162 and CP531. These were both mapped in vegetation type C2e.

600 group unit 248

This floristic unit was composed of six sites, with four from API project areas and one of those from the Cape Preston rail alignment. This unit is moderately widespread but uncommon (Griffin and Trudgen, 2009). Within this floristic unit *Acacia inaequilatera, Acacia bivenosa* and *Triodia wiseana* were founding all sites. The only site within this study area found in this floristic unit was CP472. This site was mapped in vegetation type S5a.

600 group unit 257

This floristic unit was composed of 17 sites, all from API project areas. Only one of these sites was from the Cape Preston rail alignment. This unit is restricted to the West Pilbara (Griffin and Trudgen, 2009). Further, most of the sites in this unit contain the geologically restricted species *Triodia* sp. Robe River (Griffin and Trudgen, 2009). While there are many sites in this floristic unit, they are geographically restricted (Griffin and Trudgen, 2009). Therefore, this floristic unit is likely to have a restricted occurrence (Griffin and Trudgen, 2009). Species common to all sites in this floristic unit were *Triodia wiseana* and *Triodia* sp. Robe River. *Eucalyptus leucophloia* ssp. *leucophloia* was found in 94% of sites. The only site in this floristic unit from this study area was CP474. This site occurred in vegetation type S5a.

600 group unit 129

This floristic unit contained three sites, but only one from the API data set, and this site was located on the Cape Preston Rail alignment. This unit is appears to have a West Pilbara distribution, but is likely to be poorly collected rather than very uncommon (Griffin and Trudgen, 2009). This floristic group contains *Eucalyptus camaldulensis* var. *obtusa, Melaleuca glomerata, Acacia trachycarpa, Goodenia lamprosperma, Phyllanthus maderaspatensis, Stemodia grossa, Cleome viscosa, Cyperus vaginatus, Pluchea rubelliflora, Sesbania cannabina, Pterocaulon sphaeranthoides* and *Dysphania melanocarpa* forma *melanocarpa* in all three sites. The site from this study located in this floristic unit is CP508. This site was mapped in vegetation type A4b.

600 group unit 153

This floristic unit was represented by four sites, all found within the API Cape Preston rail alignment. This unit is therefore restricted in distribution and disturbance to it should be minimised (Griffin and Trudgen, 2009). In all four sites within this floristic group *Corymbia candida, Corymbia hamersleyana* and *Acacia tumida* var. *pilbarensis* occurred. The four sites contained in this floristic group were CP135, CP198, CP240 and CP373. These were mapped in the vegetation types I5h, A3e and I5c (CP240 and CP373) respectively.

600 group unit 264

This floristic unit contained nine sites, all from the API project areas, with three from the Cape Preston Rail alignment, three from the internal transport corridor and three from the waste areas around Catho Well mesa. This unit is restricted to the West Pilbara but not uncommon

(Griffin and Trudgen, 2009). *Acacia ancistrocarpa, Tephrosia uniovulata, Ptilotus astrolasius* var. *astrolasius* and *Goodenia microptera* occurred in all nine sites. Also common were *Corymbia hamersleyana, Triodia epactia, Solanum diversiflorum* and *Trichodesma zeylanicum* var. *zeylanicum*, found in eight of nine sites. Sites within this study area that occurred in this floristic unit were CP050, CP051 and CP056. These sites occurred in vegetation types I5h, I3b and A3c respectively.

600 group unit 138

This floristic group was represented by four sites, two from the current API Cape Preston rail alignment. It is likely to be restricted to the West Pilbara, but may not be uncommon in the survey area (Griffin and Trudgen, 2009). This floristic group contained *Eucalyptus victrix, Acacia pyrifolia var. pyrifolia, Acacia bivenosa, Tephrosia rosea var. clementii* and *Cenchrus ciliaris* in all four sites. The sites found in this floristic unit were CP013 and CP020. These are mapped in vegetation types I3h and I6b respectively.

600 group unit 244

This floristic unit was composed of seven sites, three of which were from API study areas, and one of which was on the Cape Preston rail alignment. Sites were typified by Snakewood (*Acacia xiphophylla*) vegetation and were found across a variety of geologies (Griffin and Trudgen, 2009). This unit appears to be uncommon but widespread (Griffin and Trudgen, 2009). This floristic unit had *Acacia xiphophylla*, *Senna glutinosa* ssp. *luerssenii*, *Brachyachne preostrata* and *Triodia wiseana* in 85% of sites. Within this study area, the only site found in this floristic unit was CP058. This site was mapped in the vegetation type P5e.

4. Flora

4.1 General

A total of 358 taxa of vascular flora (species, subspecies and varieties) representing 53 families and 142 genera were recorded from the Cape Preston Rail Corridor (Appendix 8). This included 16 introduced flora species.

Sixty five field records and 19 flora collections could not be determined to species level with confidence due to the unavailability of good flowering material. These collections do not match any known taxa of conservation significance. These were determined as far as was possible to family or genera and are present in the vascular flora list (Appendix 8) as 'Genera' sp. (inadequate material), but are not included in the taxa counts.

The families and genera recorded with the greatest number of taxa are presented in Tables 9 & 10. The representation of Poaceae, Malvaceae, Mimosaceae, Papilionaceae and Amaranthaceae is typical of the flora of the Pilbara. The 2008 surveys following fairly significant rainfall in the northern half of the study area resulted in a significant increase in the number of Poaceae genera, from 39 to 54, and a subsequent increase in species richness recorded. Twenty one families and 81 genera were represented by only one taxon.

Table 8 Vascular Flora Families with the highest number of species recorded from the Cape Preston Rail Corridor

FAMILY	No. Taxa
Poaceae	54
Malvaceae	34
Papilionaceae	34
Mimosaceae	27
Amaranthaceae	21
Euphorbiaceae	17
Asteraceae	17
Convolvulaceae	15
Tiliaceae	14
Chenopodiaceae	12
Caesalpiniaceae	12
Myrtaceae	8

Table 9 Vascular Flora Genera with the highest number of species recorded from the Cape Preston Rail Corridor

Genus	No. Taxa
Acacia	26
Ptilotus	16
Sida	12
Senna	11
Euphorbia	10
Hibiscus	10
Corchorus	9
Eriachne	8
Indigofera	8

The most frequently recorded species were *Triodia wiseana*, *Acacia bivenosa*, *A. ancistrocarpa*, *A. inaequilatera*, *Corymbia hamersleyana*, *Acacia synchronicia*, *A. pyrifolia* var. *pyrifolia*, *A. atkinsiana*, *Senna glutinosa* ssp. *glutinosa*, the weed **Cenchrus ciliaris*, *A. tumida* var. *pilbarensis*, *S. artemisioides* ssp. *oligophylla*, *Triodia epactia* and *Hakea lorea* ssp. *lorea* (Table 11). One hundred and nine species were recorded from only a single record. This reflects the patchy distributions and ephemeral nature of the flora of the Pilbara.

Table 10 Most frequently recorded taxa in the study area

			No. Records	S	
Species	Quadrat	Relevé	Vegetation description	Individual specimen collection	TOTAL
Triodia wiseana	23	179	69	6	277
Acacia bivenosa	22	155	57	1	235
Acacia ancistrocarpa	19	112	41	2	174
Acacia inaequilatera	15	75	21	1	112
Corymbia hamersleyana	9	61	30	2	102
Acacia synchronicia	14	64	18	1	97
Acacia pyrifolia var. pyrifolia	12	51	21	1	85
Acacia atkinsiana	9	59	13	3	84
Senna glutinosa ssp. glutinosa	13	50	11		74
*Cenchrus ciliaris	17	40	11		68
Acacia tumida var. pilbarensis	5	42	18	1	66
Senna artemisioides ssp. oligophylla	14	43	5		62
Triodia epactia	11	41	8	1	61
Hakea lorea ssp. lorea	11	43	2		56
Ptilotus astrolasius var. astrolasius	12	32	5		49
Acacia trachycarpa	10	30	8	1	49
Grevillea wickhamii ssp. hispidula	6	28	7	2	43
Indigofera monophylla	16	23	3	1	43
Acacia xiphophylla	4	18	17	2	41
Ptilotus calostachyus	4	29	7		40
Corchorus parviflorus	7	26	5	1	39
Tephrosia uniovulata	9	21	7		37
Trichodesma zeylanicum var. zeylanicum	17	16	3	1	37
Scaevola spinescens (broad form)	11	23	3		37
Acacia arida	4	22	6	1	33
Gossypium australe (Burrup Peninsula form)	11	18	3	1	33
Grevillea pyramidalis ssp. leucadendron	6	17	9		32
Ptilotus exaltatus	15	16	1	1	33
Senna glutinosa ssp. pruinosa	8	16	5	1	30

4.2 Flora of Conservation Significance

A search of the DEC Threatened (Declared Rare Flora) database, Priority Species List and the Western Australian Herbarium Specimen database (DEC 2008 b and c) for the study area indicated 8 priority species known to occur in the vicinity of the study area (Table 12).

Table 11 Flora of conservation significance known to be in the locality of the Study Area

Priority Flora	Conservation Status
Abutilon uncinatum	1
Goodenia pallida	1
Gunniopsis sp. Fortescue (ME Trudgen11019)	1
Acacia glaucocaesia	3
Goodenia nuda	3
Owenia acidula	3
Rhynchosia bungarensis	3
Terminalia supranitifolia	3

4.2.1 Rare and Priority Flora Recorded

No flora gazetted as Declared Rare Flora (DRF) under the *Wildlife Conservation Act 1950*, were recorded in the Proposed Cape Preston Rail Corridor survey area. Four Priority Three species were recorded in the study area. *Indigofera* sp. Bungaroo Creek (S. van Leeuwen 4301) PN was recorded in six locations, *Terminalia supranitifolia* was recorded in two locations, while *Goodenia nuda* and *Flaveria australasica* ssp. *gilgai* were recorded in one location each (Table 13).

Table 12 Locations of Priority Three Flora within the Study Area (Zone 50K) WGS84

Species	Location	Habitat	No.	Easting mE	Northing mN
Flaveria australasica ssp. gilgai	Quadrat CP012	Alluvial plain	1	422895	7664784
Goodenia nuda	Quadrat CP042	Minor drainage line	1	404472	7592374
Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) PN	Relevé CP038r	Crest/upper slope low mesa	1	405915	7581111
Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) PN	Quadrat CP052	Rocky pediment	1	406923	7638180
Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) PN	Quadrat CP053	Broad pediment	1	401794	7632621
Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) PN	Quadrat CP054	Pediment drainage	1	401829	7632742
Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) PN	Quadrat CP055	Drainage line	1	402214	7635978
Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) PN	Quadrat CP057	Plain	1	396726	7616142
Terminalia supranitifolia	Relevé CP119	Free face	1	412494	7644863
Terminalia supranitifolia	WPI-187	Debris slope	3	412407	7647146

Flaveria australasica ssp. gilgai Priority 3

An annual, erect, compact herb 20 - 40 mm with yellow flowers forming a compact hemispheral head (Plate 1; DEC 2009). It is known from seven collections and occurs in the west Pilbara on red cracking clay soils, from Dampier to Tom Price (Figure 5; DEC 2009).

F. australasica ssp. *gilgai* was recorded from one location at the very northern end of the study area on an alluvial plain with red-brown, soft, cracking silty clay loam. *F. australasica* ssp. *gilgai* was recorded in May 2008. The vegetation at this site was described as *Eragrostis xerophila* very open tussock grassland.

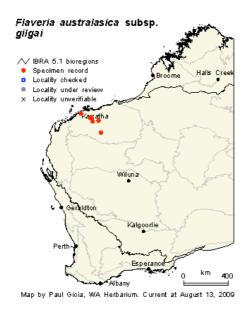


Figure 5 Distribution of Flaveria australasica ssp. gilgai.

Image used with the permission of the Western Australian Herbarium, Department of Environment and Conservation. Accessed on the 23/02/2009 (http://florabase.dec.wa.gov.au/help/copyright)

Plate 1: Flaveria australasica ssp. gilgai P3

Goodenia nuda Priority 3

An erect to ascending herb 0.5 m. Flowers are yellow, from April to August (Plate 2). It is known to occur in the west and east Pilbara, and has one known occurrence in the Little Sandy Desert (Figure 6; DEC 2009).

G. nuda was recorded from one location in the southern section of the Cape Preston Rail Corridor in a minor drainage line with hard setting, firm, brown, silty clay loam. G. nuda was recorded in June 2008, three to four months after rainfall, from a site previously surveyed in October 2007. The vegetation at this site was described as Eucalyptus camaldulensis var. obtusa open woodland, over Corymbia hamersleyana and C. candida ssp. candida low open forest, over Acacia trachycarpa and A. ligulata high shrubland, over Triodia wiseana and T. epactia very open hummock grassland, over *Cenchrus ciliaris and Eragrostis exigua tussock grassland.

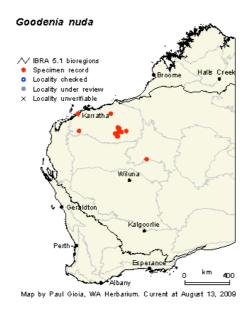


Figure 6 Distribution of Goodenia nuda

Image used with the permission of the Western Australian Herbarium, Department of Environment and Conservation. Accessed on the 23/02/2009 (http://florabase.dec.wa.gov.au/help/copyright)

Plate 2: Goodenia nuda P3

Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) PN Priority 3

An upright spreading perennial shrub to 2.3 m, known to occur from only six records from the WA Herbarium in low landscapes on slopes with skeletal red, gritty, soil and near creek banks. Very little is known about *Indigofera* sp. Bungaroo Creek (S. van Leeuwen 4301) PN, it appears to be restricted to the Pilbara region (Figure 7) with all records in close proximity to the Study area.

Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) PN was found in six locations through out the Cape Preston rail corridor (Plate 3).

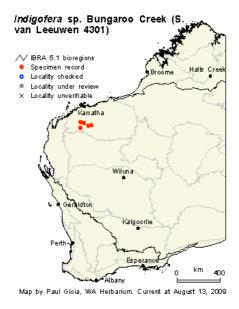


Figure 7 Distribution of Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) PN

Plate 3: Indigofera sp. Bungaroo Creek (S. van Leeuwen 4301) PN P3

Terminalia supranitifolia Priority 3

A spreading, tangled shrub or tree 1.5-3 m. Flowers are green to yellow, from May to July and December. It occurs in pebbly, coarse sand amongst rocky landforms; rock piles, outcrops, valley walls, rocky slopes and rocky plateaus. It is only known from near Karratha in the Pilbara region (DEC 2009).

Terminalia supranitifolia was found at two locations in the northern section of the Cape Preston Rail Corridor (Plate 4). The first location was a free face of a cliff on a range in vegetation described as, *T. supranitifolia* scattered low trees over *Grevillea wickhamii* ssp. hispidula and Acacia arida scattered tall shrubs, over *Triodia wiseana* very open hummock grassland. Three *T. supranitifolia* plants were also recorded opportunistically on a debris slope, growing to a height of 4 m. This species has previously been recorded from; Burrup Peninsula in the Pistol Ranges, in the Valley of Bungaroo Creek, Dampier Island, Yarraloola and Hearson Cove (Figure 8).

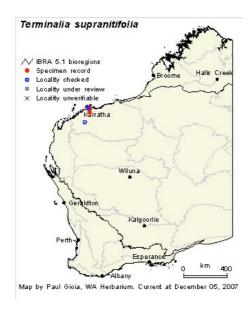


Figure 8 Distribution of $\it Terminalia\ supranitifolia$

Plate 4: *Terminalia supranitifolia* (P3) growing on a rocky free face to the north of the rail corridor, north of the Fortescue River

4.2.2 Flora of taxonomic interest

Acacia aneura Mulga

Acacia aneura (Plate 5) varieties occur all over the state, all flowering between February and June/October and seven varieties are known to occur in the Pilbara bioregion. One variety was recorded within the study area (Table 14) with a brief description and the location. Some of these records occur at the north-western extremity of the distribution of Acacia aneura.

Table 13 Locations and Descriptions of Mulga (*Acacia aneura* var. *intermedia*) recorded within the study area

Site	Type	Zone	Easting	Northing	Vegetation
CP055	Quadrat	50	402214	7635978	Acacia aneura var. intermedia low woodland over Eremophila forrestii ssp. forrestii scattered shrubs over Triodia wiseana open hummock grassland
CP224	Relevé	50	400927	7628915	Corymbia candida ssp. candida low open woodland over Acacia ancistrocarpa open scrub over Triodia epactia hummock grassland
CP293	Vegetation Description	50	400278	7606517	Acacia aneura var. intermedia over Triodia wiseana
CP349	Vegetation Description	50	402473	7635096	Acacia aneura var. intermedia low woodland
CP357	Vegetation Description	50	402745	7635912	Acacia aneura var. intermedia low woodland
CP359	Relevé	50	402511	7635923	Acacia aneura var. intermedia low open woodland over A. tumida var. pilbarensis, A. bivenosa, A. atkinsiana and A. xiphophylla high open shrubland over Triodia wiseana scattered hummock grasses over Cenchrus ciliaris very open grassland
CP480	Relevé	50	409273	7641023	Acacia aneura var. intermedia low woodland over Triodia wiseana open hummock grassland

Plate 5: Acacia aneura over Triodia wiseana

Triodia sp. Robe River

Triodia sp. Robe River (Plate 6) is a hummocking Spinifex common in rocky slopes and mesa free faces. *Triodia* sp. Robe River was first recognised as a distinct taxon in 1991 by Malcolm Trudgen carrying out work for the Robe River Iron Mesa J project. It occurs on the slopes of most mesas in the Robe Valley. At the time, one or two collections in the herbarium suggested a wider occurrence of what was thought to be the same entity in the Red Hill area, but it was not collected (M. Trudgen pers. comm.).

The collections made by Western Botanical were confirmed by Malcolm Trudgen as the same entity, extending the known distribution of the species. *Triodia* sp. Robe River is not very widespread with a geographic range of less than 100 km and may be geographically restricted. It is known from a significant number of populations (M. Trudgen pers. comm.). It was recorded in a few isolated areas, north of Pannawonica and south of the Fortescue River on the proposed Cape Preston Rail Corridor (Table 15), and further south throughout the resource areas on Red Hill and Mt Stuart Stations.

The conservation status of the species and the associated vegetation is being reviewed.

 Table 14
 Locations of Triodia sp. Robe River in the Study Area

Site	Туре	Zone	Easting	Northing	Vegetation
CP226	Relevé	50	400890	7629003	Clerodendrum floribundum var. angustifolium scattered low trees over Tephrosia sp. B Kimberley Flora (C.A. Gardner 7300) low scattered shrubs over Triodia sp. Robe River very open hummock grassland
CP353	Relevé	50	402532	7635542	Acacia atkinsiana and A. bivenosa open shrubland over Triodia wiseana and T. sp. Robe River open hummock grassland
CP355	Relevé	50	402604	7635695	Corymbia hamersleyana scattered low trees over Acacia bivenosa and A. atkinsiana open shrubland over Triodia wiseana scattered hummock grasses over Cenchrus ciliaris open tussock grassland
CP359	Relevé	50	402511	7635923	Acacia aneura var. intermedia low open woodland over A. tumida var. pilbarensis, A. bivenosa, A. atkinsiana and A. xiphophylla high open shrubland over Triodia wiseana scattered hummock grasses over Cenchrus ciliaris very open grassland
CP361	Relevé	50	402745	7635912	Acacia bivenosa and A. atkinsiana open shrubland over Triodia wiseana open hummock grassland
CP472	Relevé	50	410724	7642564	Eucalyptus leucophloia ssp. leucophloia scattered low trees over Acacia arida shrubland over Triodia wiseana open hummock grassland
CP474	Relevé	50	410600	7642291	Ficus brachypoda low open woodland over Triodia wiseana and T. sp. Robe River hummock grassland
CP547	Vegetation Description	50	410801	7642582	<i>Triodia</i> sp. Robe River
API- 3004	Individual Collection	50	402574	7635735	

Plate 6: Triodia sp. Robe River

4.2.3 Range extensions

Aristida holathera var. latifolia B.K. Simon

Aristida holathera var. latifolia is a grass from the Poaceae family that is poorly known, previously recorded from three localities near Broome. It was collected at three locations in the middle of the Cape Preston rail corridor study area, north of the Robe River in two quadrats and one relevé (Table 16). This is a significant range extension of Aristida holathera var. latifolia of more than 900 km. It was recorded in drainage lines of Corymbia hamersleyana and Corymbia candida ssp. candida over Acacia spp. shrublands over Triodia wiseana and/or Triodia epactia hummock grasslands.

Table 15 Locations of Aristida holathera var. latifolia in the Study Area

Site	Type	Zone	Easting	Northing	Vegetation
CP050	Quadrat	50	396760	7616846	Corymbia hamersleyana scattered low trees over Acacia tumida var. pilbarensis high open shrubland over A. ancistrocarpa and A. atkinsiana open shrubland over Triodia wiseana and T. epactia open hummock grassland over Eragrostis aff. eriopoda (WAS Site 963)
CP051	Quadrat	50	397801	7614765	Corymbia candida ssp. candida scattered low trees over Acacia atkinsiana, A. ancistrocarpa and Grevillea wickhamii ssp. hispidula high open shrubland over Triodia epactia and T. wiseana hummock grassland
CP184	Relevé	50	397144	7619070	Corymbia hamersleyana scattered low trees over Acacia tumida var. pilbarensis and A. ancistrocarpa high shrubland over Triodia wiseana very open hummock grassland

4.3 Introduced Species

Fifteen introduced species were identified during the proposed Cape Preston Rail vegetation survey (Table 17; Appendix 9). Descriptions of each species follow.

Only one of these species, *Argemone ochroleuca* ssp. *ochroleuca* (Mexican Poppy) is listed as a declared plant under the *Agriculture and Related Resources Protection Act, 1976* (Department of Agriculture and Food Western Australia 2007). This annual herb is difficult to control as it produces very large quantities of seed that can stay dormant for many years (Dep. Agriculture and Food, 2007). With its preferred habitat of creek and riverbeds, which are prone to flooding, this seed can easily spread over large distances (Biota, 2006).

Reduction of weed infestation generally, and of Mexican Poppy specifically, may be addressed by the construction and implementation a Weed Hygiene and Management Plan by the proponent in consultation with the DEC. Management methods that may be implemented to assist in the control of Mexican Poppy include the avoidance of any disturbance to surface drainage features wherever practicable. This often entails the reduction of vehicle movement within and around surface drainage features to a minimum (Biota, 2005b).

Table 16 Records of Introduced Species and Preferred Habitats within the Study Area Adapted from DEC 2009; Hussey *et al.*. 2007

Family	Species	No.	Broad description of preferred habitat
		Records	
Asphodelaceae	*Asphodelus fistulosus	1	Along the coastline but also along road and
			rail verges
Asteraceae	*Sonchus oleraceus	1	Disturbed soils, including wasteland and roadsides
Cucurbitaceae	*Citrullus colocynthis	1	Disturbed areas, floodplains and creeks
	*Cucumis melo ssp. agrestis	8	Riverbeds, drainage lines and floodplains
Euphorbiaceae	*Euphorbia hirta	1	Alluvial soils in drainage lines and creeks
Malvaceae	*Malvastrum americanum	5	River and creek margins and cracking clays
Mimosaceae	*Vachellia farnesiana	16	Disturbed areas, creek and river banks,
			road and rail verges
Papaveraceae	*Argemone ochroleuca ssp.	2	Coarse seed banks and gravel riverbeds
	ochroleuca		
Passifloraceae	*Passiflora foetida var.	1	Coastal areas and disturbed banks of
	hispida		creeks and rivers.
Poaceae	*Cenchrus ciliaris	68	Disturbed soils particularly cleared
			pastoral land, creek and riverbanks and
			floodplains
	*Cenchrus setiger	2	Along watercourses
	*Cynodon dactylon	1	Wetlands and river edges
	*Echinochloa colona	2	Creeks, swamps and irrigated crops
	*Setaria verticillata	2	Disturbed areas, river edges and
			shrublands
Portulacaceae	*Portulaca oleracea	13	Disturbed areas
Sterculiaceae	*Melochia pyramidata	1	Disturbed natural vegetation, bare areas,
			river banks, creek banks and dry
			watercourses

*Argemone ochroleuca ssp. ochroleuca (Mexican poppy) is a prickly annual herb 0.3-1 m (Plate 7). Flowers are white, cream or yellow, from February to March and July to November. It occurs in red/white/grey sand and red-brown clay loam on creek edges, riverbanks and roadsides (DEC 2009). Initially a garden species, it is now found throughout the Pilbara, Gascoyne and Carnarvon areas. In particular it prefers the coarse seed banks and gravel beds of the main rivers that dominate these regions (Hussey et al. 2007). This species is a declared plant (Department of Agriculture and Food Western Australia 2007) and was recorded in two locations in the study area.

Plate 7: *Argemone ochroleuca ssp. ochroleuca

*Asphodelus fistulosus (Onion weed) is an annual or biennial herb 0.2-0.4 m. Flowers are white, from June to October. It occurs on sand, clay or calcareous soils (DEC 2009). Onion weed has become a widespread, intrusive weed in calcareous soils from Exmouth to Eucla. It is especially dominant along the coastline but is also found on road and rail verges, which have facilitated its dispersal into bushland and pastoral areas (Hussey *et al.* 2007). This species was recorded in one location in the study area.

*Cenchrus ciliaris (Buffel grass) is a tufted, or sometimes stoloniferous, perennial herb 0.2-1.5 m. Flowers are purple, from February to October. It occurs in white, red or brown sand, stony red loams or cracking black clays (DEC 2009). Buffel grass has become a particularly serious weed from Geraldton to the Pilbara, Kimberley and adjoining desert and is spread through nearly all vegetation types. It was sowed widely across pastoral areas as stock pasture and is now prominent throughout creek lines, river edges and roadsides. As well as out-competing native vegetation for habitat and resources, it severely alters fire regimes by producing large quantities of highly flammable fuel that is prone to more regular fires (Hussey *et al.* 2007). This species was recorded in 68 locations in the study area.

*Cenchrus setiger (Birdwood grass) is an erect, tussocky, stoloniferous, perennial herb 0.5 m. Flowers are cream to purple, from April to May. It occurs in brown sands, red loam and pindan soils on sand dunes, plains, rangelands, stony hillsides and floodplains (DEC 2009). Birdwood grass, like its relative *C. ciliaris*, was introduced as a pasture source and has since become a widespread weed along the watercourses from the Kimberley to Geraldton (Hussey et al. 2007). This species was recorded in two locations in the study area.

*Citrullus colocynthis (Colocynth) is a trailing perennial herb or climber. Flowers are yellow, from January to October. It occurs in sandy and rocky areas, stony loams, clay soils and wet soils. It also thrives in disturbed areas and on floodplains (DEC 2009). Colocynth is distributed throughout the wetlands and creeks of the Kimberley and Pilbara regions. It is possible its true abundance is under-represented due to its resemblance to *C. lanatus* (Hussey et al. 2007). This species was recorded in one location in the study area.

*Cucumis melo ssp. agrestis (Ulcardo melon) is a trailing annual herb or climber. Flowers are yellow, from February to June and September to October (DEC 2009). This species was recorded in eight locations in the study area.

*Cynodon dactylon (Couch) is a rhizomatous, prostrate perennial herb 0.05-0.3 m. Flowers are green to purple, from June to November/February. It occurs in sand, loam or clay (DEC 2009). Couch has commonly been used as a lawn cover and has now spread to invade numerous wetlands and river edges across the state (Hussey et al. 2007). This species was recorded in one location in the study area.

*Echinochloa colona (Awnless barnyard grass) is a tufted annual herb 0.2-0.6(-0.9) m. Flowers are green to purple, from February to July. It occurs in black sand and black clay near watercourses and swamps (DEC 2009). Awnless barnyard grass is a widespread weed throughout the Kimberley and Pilbara in creeks, swamps and irrigated crops (Hussey *et al.* 2007). This species was recorded in two locations in the study area.

*Euphorbia hirta (Asthma plant) is an erect or decumbent, many-branched annual herb 0.1-0.8 m. Flowers are yellow, green or white, from January to October. It occurs in alluvial soils, particularly along watercourses (DEC 2009). Asthma plant is a common weed that spreads from the Kimberley south to Onslow, Carnarvon and Cue (Hussey *et al.* 2007). This species was recorded in one location in the study area.

*Malvastrum americanum (Spiked *Malvastrum) is an erect perennial herb or shrub 0.5-1.3 m. Flowers are yellow to orange, from April to July. It is found in orange/red/yellow sands, gritty alluvial sand, black/brown clay, alluvial cracking clays, limestone and calcrete situated on stony ridges, hillsides, floodplains and along drainage lines (DEC 2009). Spiked *Malvastrum is widely distributed across the Kimberley and Pilbara regions from river and creek margins to wastelands and numerous arid zone vegetation types. It is also inedible to herbivores, which allows it to spread further and more successfully (Hussey *et al.* 2007). This species was recorded in five locations in the study area.

*Melochia pyramidata (Pyramid flower) is a sprawling to erect annual or perennial, herb or shrub, 0.3–1.5 m. Flowers are white, pink, blue, purple, from March to October. It is found in alluvium, sand and black clay along river banks, creek banks and dry watercourses growing in disturbed natural vegetation, on bare areas (DEC 2009). Melochia pyramidata is commonly found near rivers, creeks and irrigated crops in the Kimberley and the Pilbara (Hussey et al. 2007). This species was recorded in one location in the study area.

*Passiflora foetida var. hispida is a woody climbing vine 9 m. Flowers are cream, white or blue, from February to November. It occurs in coastal areas and on river and creek banks (DEC 2009). *P. foetida* var. hispida is particularly common across the disturbed banks of rivers and creeks from the Kimberley to Carnarvon (Hussey *et al.* 2007). This species was recorded in one location in the study area.

*Portulaca oleracea (Purslane) is a succulent, prostrate to decumbent annual, herb, to 0.2 m. Flowers are yellow, from April to May. It occurs in clay loam, sandy soils and is found in disturbed areas throughout Western Australia (DEC 2009). Under water stress the plant

becomes reddish. Purslane is a common and widespread weed of horticulture, paddocks and gardens (Hussey *et al.* 2007). This species was recorded in 13 locations in the study area.

*Setaria verticillata (Whorled pigeon grass) is a loosely tufted annual herb 0.1-1.3 m. Flowers from December to June and it is found in sands, clays and loams (DEC 2009). Whorled pigeon grass has become a regular and widespread weed from the Kimberley to the Pilbara in disturbed areas, river edges and shrublands (Hussey *et al.* 2007). This species was recorded in two locations in the study area.

*Sonchus oleraceus (Common sow thistle) is an erect annual herb 1.5 m. Flowers are yellow, from January to December. It occurs in a variety of soils, particularly in disturbed areas (DEC 2009). Common sow thistle is broadly distributed across Western Australia in gardens, market gardens, wasteland and on roadsides (Hussey *et al.* 2007). This species was recorded in one location in the study area.

*Vachellia farnesiana (Mimosa bush) is an erect, spreading, thicket-forming, thorny tree or shrub 4 m (Plate 8). Flowers are yellow, from June to August. It occurs in gravel and stony sandy, clay or loam soils situated in low-lying areas, on river and creek banks and in disturbed areas (DEC 2009). Mimosa bush is distributed widely from the Kimberley to Carnarvon and Wiluna and occasionally as far south as Muchea. It is found throughout creek lines, rivers, roadsides and disturbed floodplains across the pastoral districts. It appears to spread rapidly along the disturbed verges of transport corridors, which have contributed to the development of its vast coverage (Hussey et al. 2007). This species was recorded in sixteen locations in the study area.

Plate 8: *Vachellia farnesiana in flower

5. Discussion

5.1 General

The study area is a long, narrow corridor 100 km long and 200-500 m wide that traverses three subregions of the Pilbara bioregion and eleven land systems. Sixty eight vegetation types were described for the study area. These can be summarised as:

Hummock grasslands of *Triodia wiseana* (Hard Spinifex) and/or *Triodia epactia* (Soft Spinifex) with a scattered shrub over storey of *Acacia ancistrocarpa*, *A. bivenosa* and/or *A. inaequilatera* on plains and stony rises.

Shrublands of *Acacia xiphophylla* with an understorey of Hard Spinifex *Triodia wiseana* and/or Soft Spinifex *Triodia epactia* hummock grasslands, and herbs varying in density on plains.

Open Woodland of *Corymbia hamersleyana* with Shrublands of combinations of *Acacia bivenosa*, *Acacia ancistrocarpa* and *Acacia atkinsiana* over *Triodia wiseana* open hummock grassland on plains.

Open Forest/Low Woodlands of *Eucalyptus camaldulensis* and/or *Eucalyptus victrix* and *Melaleuca glomerata* high open shrubland in the Robe River.

Low Woodlands of *Corymbia ferriticola* ssp. *ferriticola* and *Corymbia hamersleyana* over *Acacia ancistrocarpa* and *Acacia inaequilatera* high shrubland, over *Triodia wiseana* and/or *T. epactia* very open hummock grassland in drainage lines.

Shrublands of *Acacia bivenosa* and *Acacia ancistrocarpa* over *Triodia wiseana* open hummock grassland in minor drainage lines.

Scattered low trees of *Eucalyptus leucophloia* ssp. *leucophloia* over *Acacia bivenosa*, over *Triodia wiseana* on hills and ranges.

A total of 358 taxa were recorded over two survey seasons. The study area comprised moderate to high species richness comparable with other studies in the western Pilbara (Biota 2006).

No Declared Rare Flora pursuant to the *Wildlife Conservation Act 1950*, were recorded from the study area. Three Priority 3 flora (*Goodenia nuda, Terminalia supranitifolia* and *Flaveria australasica* ssp. *gilgai*) were recorded from the study area.

Additional species of interest from the study area include *Triodia* sp. Robe River, *Aristida holathera* var. *latifolia* and *Acacia aneura*. Consideration should be given to avoid these additional species of interest.

The majority of the vegetation of the study area was in good to excellent condition. Buffel grass **Cenchrus ciliaris* was noted to be associated with low-lying areas subject to grazing. It was recorded at 87 locations.

The study area has been subject to an intense fire history over the past decade. A number of areas were burnt at the beginning of 2007. The DLI fire history data has been captured at a large scale from aerial and satellite information, but it indicates that very few parts of the study area have remained unburnt in the past ten years. Nearly 17 km of the Cape Preston rail corridor were burnt prior to the commencement of survey (during January 2007).

5.2 Conservation Significance

The study area encompasses ten Beard Vegetation Associations, all of which are considered to be a priority for conservation through reservation. Four of these are high priority, four are medium and 3 are low priority (Kendrick 2003).

Seventeen vegetation types of the Cape Preston Rail Corridor are considered to be of high conservation value as they support priority flora, occur in major drainages such as the Robe River and Fortescue River, appear to be restricted and/or are considered conservation priorities (McKenzie and May 2003).

In assessing the conservation significance of the vegetation of the Cape Preston Study Area, the following parameters were used:

- Proportional impact on the extent of land systems in the study area
- Vegetation known to support priority species
- · Known areas of plant endemism
- Range extensions of flora recorded
- Location of species at the limit of their range
- · Restricted floristic grouping
- Known conservation priorities and values from published data from the region

6. References

- Aplin T.E.H. (1979). The Flora. In: *Environment and Science*. Editor B.J. O'Brien. Pgs: 53-76. University of Western Australia Press, Nedlands W.A.
- Beard J.S. (1975). *Vegetation Survey of Western Australia: Pilbara*. University of Western Australia Press, Nedlands, W.A.
- Beard J.S. (1990). Plant Life of Western Australia. Kangaroo Press Pty Ltd, New South Wales.
- Belbin, L. (1987). *PATN Manuals CSIRO Wildlife and Ecology*, PO Box 84 Lyneham: ACT 2602. Australia Technical Reference Manual (303p.) PATN Users Guide (72p.)
- Bureau of Meteorology (2008) *Climatic Averages for Australian Sites Averages for Red Hill, Pannawonica and Mardie.* http://www.bom.gov.au
- Biota Environmental Sciences (2005a). *Vegetation and Flora Survey of Mesa A and Mesa G, near Pannawonica*. Unpublished report prepared for Robe River Iron Associates.
- Biota Environmental Sciences (2005b). *A Vegetation and Flora Survey of the Brockman Syncline 4 Project area, near Tom Price*. Unpublished report prepared for Hamersley Iron Pty Ltd.
- Biota Environmental Sciences (2006) *A Vegetation and Flora Survey of the Proposed Mesa A Transport Corridor, Warramboo Deposit and Yarraloola Borefield.* Unpublished report prepared for Robe River Iron Associates.
- Commonwealth of Australia (1999). *Australian Guidelines for Establishing the National Reserve System*. Environment Australia, Canberra.
- Department of Agriculture and Food (2007). *Declared Plants Search*. http://agspsrv95.agric.wa.gov.au/dps/version02/01 plantsearch.asp
- Department of Environment and Conservation (2008a) Threatened Ecological Communities Database Search.
- Department of Environment and Conservation (2008b) Threatened (Declared Rare) Database Search.
- Department of Environment and Conservation (2008c) WA Herbarium Database. Search.
- Department of Environment and Conservation (2009) *Florabase: The Western Australian Flora*. http://florabase.calm.wa.gov.au/.
- Environmental Protection Authority (2004). Guidance for the Assessment of Environmental Factors (in accordance with the Environmental Protection Act 1986) Terrestrial Flora and Vegetation Surveys for Environmental Impact Assessment in Western Australia. No. 51. June 2004.
- Griffin E.A. and M.E. Trudgen (2009). *Numerical Analysis of Floristic Data from the Australian Premium Iron West Pilbara Iron Ore Project with other data from the Pilbara Bioregion of Western Australia*. Unpublished report.
- Halpern Glick Maunsel, Biota Environmental Sciences and M.E. Trudgen and Associates (2001) *Austeel Biological Survey Phase 1*. Unpublished report prepared for Austeel Pty Ltd.

- Hussey, B.M.J., G.J. Keighery, J. Dodd, S.G. Lloyd and R.D. Cousens. (2007) *Western Weeds: A guide to the weeds of Western Australia*. Second edition. The Plant Protection Society of Western Australia.
- Kendrick P. (2003). Pilbara 3 (PIL3 Hamersley subregion). October 2001. In: *A Biodiversity Audit of Western Australia's 53 Biogeographical Subregions in 2002*. Editors; McKenzie N.L., J.E. May and S. McKenna. Pgs: 568-580. Department of Conservation and Land Management
- Kendrick P. and F. Stanley (2003). Pilbara 4 (PIL4 Roebourne synopsis). October 2001. In: *A Biodiversity Audit of Western Australia's 53 Biogeographical Subregions in 2002*. Editors; McKenzie N.L., J.E. May and S. McKenna. Pgs: 581-594. Department of Conservation and Land Management.
- Maslin B.R. and S. van Leeuwen (2008). New Taxa of *Acacia* (Leguminosae: Mimosoideae) and notes on other species from the Pilbara and adjacent desert regions of Western Australia. *Nuytsia* **18**: 139-188.
- McKenzie N.L., J.E. May and S. McKenna (eds) (2003). *A Biodiversity Audit of Western Australia's 53 Biogeographical Subregions in 2002*. Department of Conservation and Land Management.
- Shepherd, D.P., G.R. Beeston and A.J.M. Hopkins (2002). Native vegetation in Western Australia. *Technical Report* 249. Department of Agriculture, Western Australia, South Perth.
- Thackway, R. and I. D. Cresswell (eds) (1995). *An Interim Biogeographic Regionalisation for Australia: a framework for establishing the national system of reserves, Version 4.0.*Australian Nature Conservation Agency, Canberra.
- van Vreeswyk A.M.E., A.L. Payne, K.A. Leighton and P. Hennig (2004). An inventory and condition survey of the Pilbara region, Western Australia. *Technical Bulletin No. 92*. Department of Agriculture, Western Australia, South Perth.
- Western Botanical (2009) Flora and Vegetation of the Proposed Mine Area & Associated Infrastructure West Pilbara Iron Ore Project 2007 2009. Unpublished report prepared for API Management.
- Williams I.R. (1968). 1:250,000 Geological Series Explanatory Notes, Yarraloola Western Australia Sheet SF/50-6. *Geological Survey of Western Australia*. Bureau of Mineral Resources, Geology and Geophysics, Perth W.A.

Appendix 1 Vegetation Structural Table of Specht as modified by Aplin (1979)

Life form and height of tallest stratum	Projective foliage cover of tallest stratum as %	Description
Trees over 30 metres	70-100 30-70 10-30 2-10 Under 2	High closed forest High open forest High woodland High open woodland Scattered tall trees
Trees 10-30 metres	70-100 30-70 10-30 2-10 Under 2	Closed forest Open forest Woodland Open woodland Scattered trees
Trees under 10 metres	70-100 30-70 10-30 2-10 Under 2	Low closed forest Low open forest Low woodland Low open woodland Scattered low trees
Shrubs over 2 metres	70-100 30-70 10-30 2-10 Under 2	Closed scrub Open scrub High shrubland High open shrubland Scattered tall shrubs
Shrubs 1-2 metres	70-100 30-70 10-30 2-10 Under 2	Closed heath Open heath Shrubland Open shrubland Scattered shrubs
Shrubs under 1 metre	70-100 30-70 10-30 2-10 Under 2	Low closed heath Low open heath Low shrubland Low open shrubland Scattered low shrubs
Herbs/Sedges/Grasses	70-100 30-70 10-30 2-10 Under 2	Closed herb, sedge, grassland Herb, sedge, grassland Open herb, sedge, grassland Very open herb, sedge, grassland Scattered, herbs, sedges, grasses

Grasses then divided into:

Tussock grasslands (perennial tussock species, e.g. *Eragrostis* species);

Hummock grasslands (*Triodia* and *Plectrachne* species that form hummocks)

Curly spinifex grassland (Plectrachne pungens, which does not form hummocks)

Annual tussock grassland (e.g. annual Sorghum species)

The "curly Spinifex grassland" division follows J.S Beard.

Appendix 2 Vegetation of Study Area

Stony Plain (P)

P2a

P2e

P2f

P4b

P5a

P₅b

P₅c

P5d

P5e

1. Acacia atkinsiana, A. bivenosa Shrublands

Acacia atkinsiana, A. bivenosa and A. ancistrocarpa high shrubland to open shrubland over Triodia wiseana open hummock grassland AatkAbAaTw ChAatkAbTwTe Corymbia hamersleyana scattered low trees over Acacia atkinsiana, A. bivenosa open shrubland over Triodia wiseana, T. epactia very open to P1c

2. Acacia Shrublands

Acacia ancistrocarpa, A. bivenosa, A. inaequilatera and A. synchronicia open shrubland over Triodia epactia and T. wiseana open hummock AaAbAiAsTeTw

ChAbApyTw Corymbia hamersleyana scattered low trees over Acacia bivenosa and A. pyrifolia var. pyrifolia shrubland over Triodia wiseana open hummock

grassland

ChAiAbTw Corymbia hamersleyana scattered low trees over Acacia inaequilatera scattered tall shrubs over A. bivenosa scattered shrubs over Triodia

wiseana open hummock grassland

3. Acacia synchronicia Shrublands AsAbAaTwPTc

Acacia synchronicia, A. bivenosa (A. ancistrocarpa) open shrubland to shrubland over Triodia wiseana very open hummock grassland over

Ptilotus calostachyus var. calostachyus very open herbs

4. Hard Spinifex Hummock Grasslands

ChAaTw Corymbia hamerslevana scattered low trees over Acacia ancistrocarpa scattered shrubs over Triodia wiseana hummock grassland

5. Snakewood Shrublands

AxAbTw

AxTw

AxTwTe

AxAsAatkTw

AxAatkAaTeTw Acacia xiphophylla low open woodland to high open shrubland over A. atkinsiana and A. ancistrocarpa open shrubland over Triodia epactia and T.

wiseana very open hummock grassland

Acacia xiphophylla low open woodland to high open shrubland over A. bivenosa open shrubland over Triodia wiseana open hummock grassland Acacia xiphophylla low open woodland to a high open shrubland over A. synchronicia and A. atkinsiana open shrubland over Triodia wiseana

open hummock grassland

Acacia xiphophylla low open woodland to high open shrubland over Triodia wiseana very open hummock grassland

Acacia xiphophylla low open woodland to high open shrubland over Triodia wiseana and occasionally T. epactia very open hummock grassland

6. Soft Spinifex Hummock Grasslands

P6f ChApyGpTe Corymbia hamersleyana low open woodland over Acacia pyrifolia var. pyrifolia, Grevillea pyramidalis ssp. leucadendron high open shrubland over

Triodia epactia open hummock grassland

Stony Hills and Breakaways (S)

1. Acacia atkinsiana, A. bivenosa Shrublands

S1a AbAatkTw Acacia bivenosa and A. atkinsiana open shrubland over Triodia wiseana open hummock grassland

2. Acacia bivenosa Open Heath over Triodia wiseana

Acacia arida, A. bivenosa and A. pyrifolia var. pyrifolia open heath over Triodia wiseana hummock grassland S2a AarAbApyTw

4. Acacia Shrublands

S4a

S7b

S7i

S7m

Acacia arida, A. bivenosa and A. trachycarpa shrubland over Triodia wiseana open hummock grassland AarAbAtrTw

Acacia tumida var. pilbarensis scattered tall shrubs over A. bivenosa and Senna glutinosa ssp. pruinosa open shrubland over Triodia wiseana

very open hummock grassland and Ptilotus calostachyus var. calostachyus very open herbs.

5. Acacia Shrubland over Triodia sp. Robe River and Triodia wiseana Hummock Grassland

S5a AarTwTsprr Acacia arida open shrubland over Triodia wiseana and T. sp. Robe River (M.E. Trudgen MET 12,369) hummock grassland

6. Acacia synchronicia Shrublands

AtAbSgpTwPTc

S6a AsTw Acacia synchronicia open shrubland over Triodia wiseana very open hummock grassland

7. Hard Spinifex Hummock Grasslands

S7a AatkAaTwPTc Acacia atkinsiana scattered tall shrubs over A. ancistrocarpa open shrubland over Triodia wiseana open hummock grassland and Ptilotus

calostachyus var. calostachyus scattered herbs Acacia ancistrocarpa open shrubland over Triodia wiseana open hummock grassland

Acacia bivenosa open shrubland over Triodia wiseana open hummock grassland S7d AbTw S7e Acacia inaequilatera high open shrubland over A. bivenosa open shrubland over Triodia wiseana hummock grassland

AiAbTwS7i AiTw Acacia inaequilatera scattered tall shrubs over Triodia wiseana open hummock grassland

Corymbia hamersleyana scattered low trees over Acacia bivenosa scattered shrubs over Triodia wiseana open hummock grassland ChAbTw Eremophila fraseri ssp. fraseri open shrubland over Tephrosia sp. B Kimberley Flora scattered low shrubs over Triodia wiseana open hummock

ERfTEspbTw

S7n Tw Triodia wiseana open hummock grassland

8. Low Mulga Woodlands

AaTw

AaneTw Acacia aneura var. intermedia low woodland over Triodia wiseana open hummock grassland

13. Terminalia Woodlands

TERcTw Terminalia canescens low open woodland over Triodia wiseana scattered hummock grasses S13b TERsGwCOpSOITw Terminalia supranitifolia scattered low trees over Grevillea wickhamii ssp. hispidula scattered tall shrubs over Corchorus parviflorus and Solanum

lasiophyllum low open shrubland over Triodia wiseana very open hummock grassland

WEST PILBARA IRON ORE PROJECT PROPOSED RAIL ALIGNMENT CAPE PRESTON TO COCHRANE VEGETATION LEGEND

Sheet 1 of 3 Date: November 2009 Author: K. McMaster

Minor Creekline (I)

I1d

I3d

I3e

l3g

I3h

I4a

I5b

I5c

l5e

___ I5h

| I5i

l6b

 Acacia ancistrocarpa, A 	. bivenosa	Shrublands
---	------------	------------

I1a AaAarAbTw Acacia ancistrocarpa, A. arida and A. bivenosa shrubland over Triodia wiseana very open hummock

I₁b AbAaTw Acacia bivenosa and A. ancistrocarpa shrubland over Triodia wiseana open hummock grassland

Corymbia hamersleyana scattered low trees over Acacia ancistrocarpa and A. bivenosa open heath over Triodia wiseana very open hummock

grassland over very open grassland

2. Acacia pyrifolia High Shrublands

ChAbAarTw

EIAbAaAtTw

GwAtAbTw

AbAsTeTw/g

ChAatkAbTw

ChAtAatkAaTw

EcEvMgMIAcoCE/s

ChAiAaTe

ChAtAbTw

TERcAtrAarTwCEc

ChAaAbTw/g

12b ApyAbTwCEc Acacia pyrifolia var. pyrifolia high open shrubland over A. bivenosa open shrubland over mixed low open shrubland over Triodia wiseana

hummock grassland and Cenchrus ciliaris very open tussock grassland

3. Acacia Shrublands

I3b CcAcPTaTe Corymbia candida ssp. candida scattered low trees over Acacia citrinoviridis open heath over Ptilotus astrolasius var. astrolasius low open

shrubland over Triodia epactia open hummock grassland Corymbia hamersleyana scattered low trees over Acacia bivenosa and A. arida open shrubland over Triodia wiseana hummock grassland Eucalyptus leucophloia ssp. leucophloia scattered low trees over Acacia bivenosa, A. ancistrocarpa and A. tumida var. pilbarensis high open

shrubland over Triodia wiseana hummock grassland

Grevillea wickhamii ssp. hispidula and Acacia tumida var. pilbarensis open scrub over A. bivenosa open shrubland over Triodia wiseana open hummock grassland

Terminalia canescens low open woodland over Acacia trachycarpa high shrubland over A. arida shrubland over Triodia wiseana very open

hummock grassland over Cenchrus ciliaris very open tussock grassland

4. Acacia synchronicia, A. bivenosa Shrublands

Acacia bivenosa and A. synchronicia open heath over Triodia epactia and T. wiseana very open hummock grassland over very open mixed

5. Corymbia Woodlands

Corymbia candida ssp. candida scattered low trees over Acacia bivenosa scattered shrubs over Triodia epactia and T. wiseana open hummock CcAbTeTw grassland

Corymbia hamersleyana and C. candida ssp. candida low open woodland over Acacia trachycarpa, A. tumida var. pilbarensis and Petalostylis

CcChAtrAtPICc labicheoides high open shrubland over Cenchrus ciliaris very open tussock grassland

Corymbia hamersleyana scattered low trees over Acacia atkinsiana and A. bivenosa shrubland over Triodia wiseana open hummock grassland Corymbia hamersleyana low open woodland over Acacia inaequilatera high open shrubland over A. ancistrocarpa scattered shrubs over Triodia epactia open hummock grassland

Corymbia hamersleyana scattered low trees over Acacia tumida var. pilbarensis, A. atkinsiana and A. ancistrocarpa shrubland over Triodia wiseana open hummock grassland

Corymbia hamersleyana scattered low trees over Acacia tumida var. pilbarensis open scrub to high open shrubland over A. bivenosa open

shrubland over Triodia wiseana very open hummock grassland

6. Eucalyptus Woodlands

EcChGpApyAtrTEsppTeTw Eucalyptus camaldulensis var. obtusa and Corymbia hamersleyana scattered low trees over Grevillea pyramidalis ssp. leucadendron high open

shrubland over Acacia pyrifolia var. pyrifolia and A. trachycarpa open shrubland over Tephrosia spp. low open shublan

Eucalvotus camaldulensis var. obtusa woodland over E. victrix low woodland over Melaleuca glomerata, M. linophylla and Acacia coriacea ssp. pendens high shrubland over Cenchrus ciliaris and C. setiger tussock grassland over patches of Cyperus spp. very o

7. Low Mulga Woodlands

17a AaneERfoTw Acacia aneura var. intermedia low woodland over Eremophila forrestii ssp. forrestii open shrubland over Triodia wiseana open hummock

grassland

8. Terminalia Woodlands

l8a **TERcAarTw** Terminalia canescens low open woodland over Acacia arida open shrubland over Triodia wiseana very open hummock grassland

Major Creekline (A)

A1b

A3a

A3c

A3e

A4a

A4b

1. Acacia pyrifolia High Shrublands

A1a AtrApyTeCEc Acacia trachycarpa high shrubland over A. pyrifolia var. pyrifolia scattered shrubs over Triodia epactia very open hummock grassland over

Cenchrus ciliaris very open tussock grassland VfAsApyTw

Vachellia farnesiana, Acacia synchronicia and A. pyrifolia var. pyrifolia high shrubland over Triodia wiseana very open hummock grassland

3. Corymbia Woodlands

CcChAcolAaTe Corymbia candida ssp. candida and C. hamersleyana low open woodland over Acacia colei var. colei and A. ancistrocarpa high open shrubland

over Triodia epactia very open hummock grassland ChAaAtrTe/g

Corymbia hamersleyana low open woodland over Acacia ancistrocarpa and A. trachycarpa scattered shrubs over Triodia epactia open hummock

grassland over Aristida holothera var. latifolia, Eragrostis aff. eriopoda (WAS site 963) and Cenchrus ciliaris very op

Eucalyptus leucophloia ssp. leucophloia, Corymbia hamersleyana and C. candida ssp. candida scattered low trees over Grevillea wickhamii ssp.

EIChCcGwTw hispidula high open shrubland over Triodia wiseana very open hummock grassland

4. Eucalyptus Forests

EcAcoPI Eucalyptus camaldulensis var. obtusa open forest over Acacia coriacea ssp. coriacea and Petalostylis labicheoides high open shrubland EcMgERAt/S/H Eucalyptus camaldulensis var. obtusa open forest over Melaleuca glomerata high open shrubland over Eragrostis tenellula scattered tussock grasses over Cyprus bifax, C. difformus and C. vaginatus very open sedges over patches of mixed open herbs

5. Eucalyptus Woodlands

Eucalyptus camaldulensis var. obtusa low open woodland over Acacia trachycarpa high open shrubland over Cenchrus ciliaris very open tussock **EcAtrCEc** A5a

grassland EcCcChAsppTwTeCEc/H A5b

Eucalyptus camaldulensis var. obtusa open woodland over Corymbia candida ssp. candida and C. hamersleyana low open woodland over Acacia spp. high shrubland over Triodia wiseana and T. epactia very open hummock grassland over Cenchrus ciliaris open tussock

> WEST PILBARA IRON ORE PROJECT PROPOSED RAIL ALIGNMENT CAPE PRESTON TO COCHRANE **VEGETATION LEGEND**

6. Herblands

PITRz A6a

Petalostylis labicheoides scattered shrubs over Trichodesma zeylanicum var. zeylanicum very open herbland

Clayey Plain (C)

2. Acacia shrublands

C2c AiAaTe AiAsTwTe C2d C2e CcAaAbTe Acacia inaequilatera high open shrubland over A. ancistrocarpa open shrubland over Triodia epactia open hummock grassland Acacia inaequilatera and A. synchronicia scattered tall shrubs over Triodia wiseana and T. epactia open hummock grassland Corymbia candida ssp. candida scattered low trees over Acacia ancistrocarpa and A. bivenosa high open shrubland over Triodia epactia

hummock grassland

3. Acacia synchronicia Shrublands

C3a AsTe Acacia synchronicia open shrubland over Triodia epactia open hummock grassland

5. Grasslands

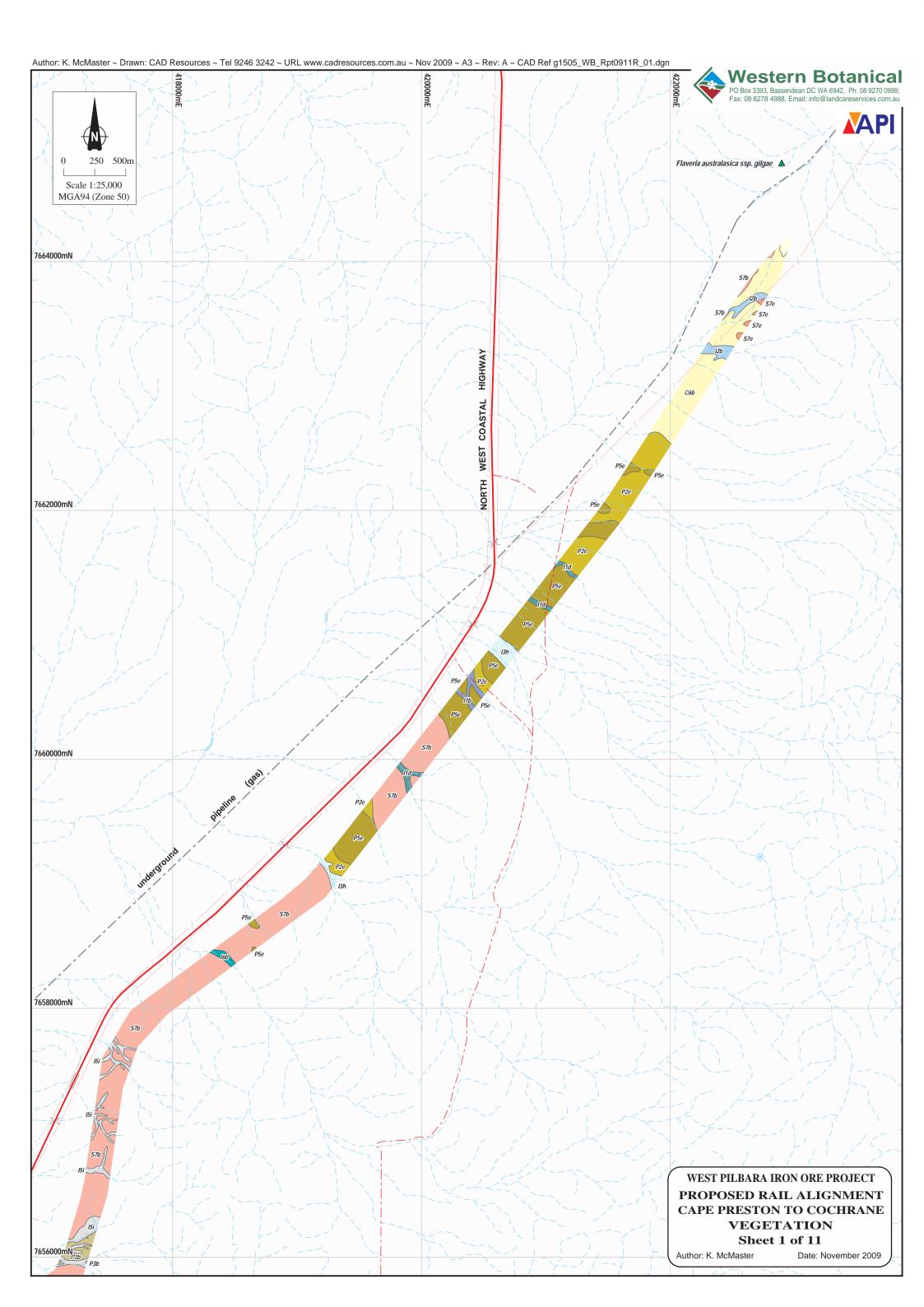
C5a ERAxDsXi/h Eragrostis xerophila, Dichanthium sericium ssp. humilis and Xerochloa imberbis mixed closed grassland over mixed very open herbland

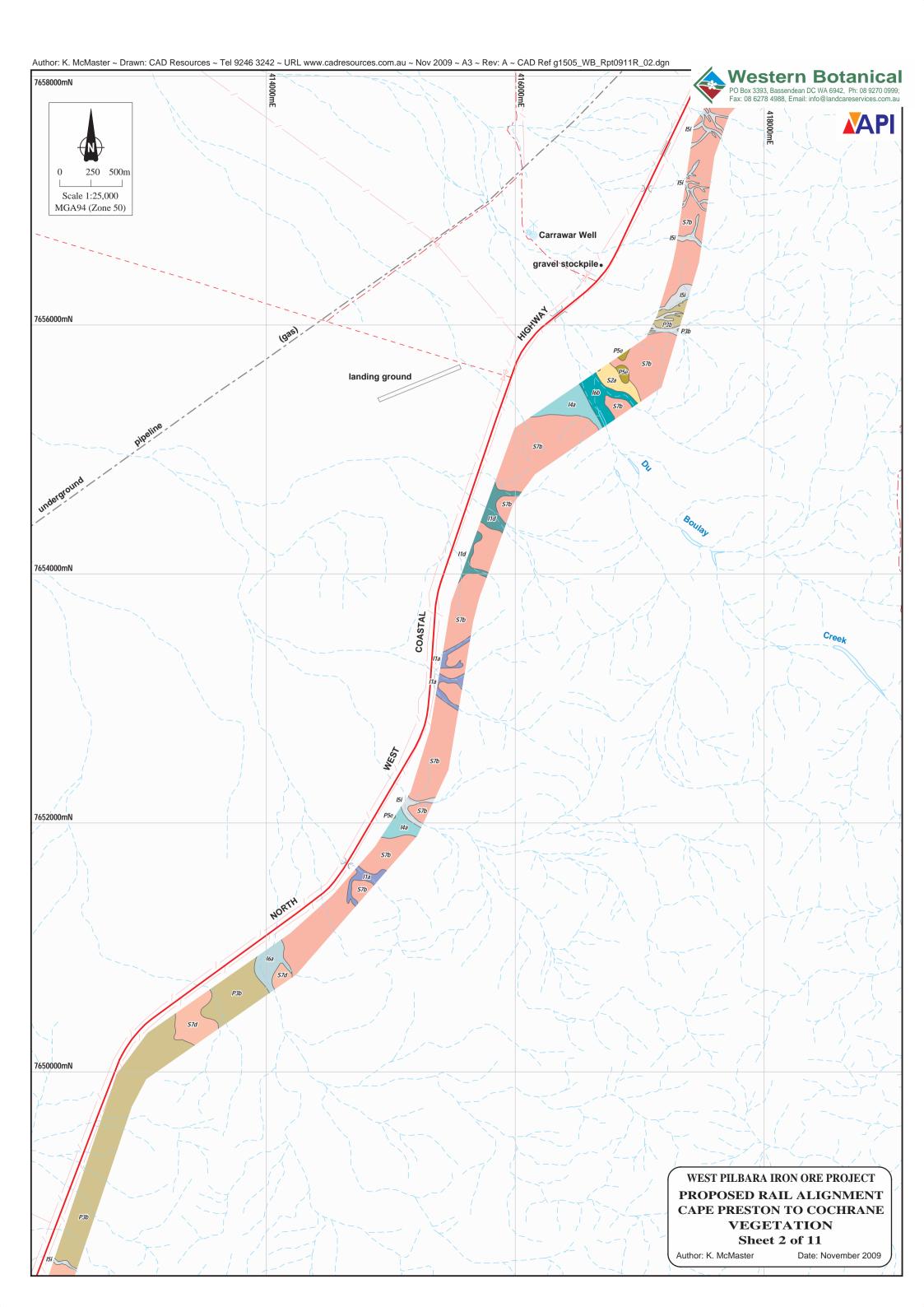
6. Snakewood Shrublands

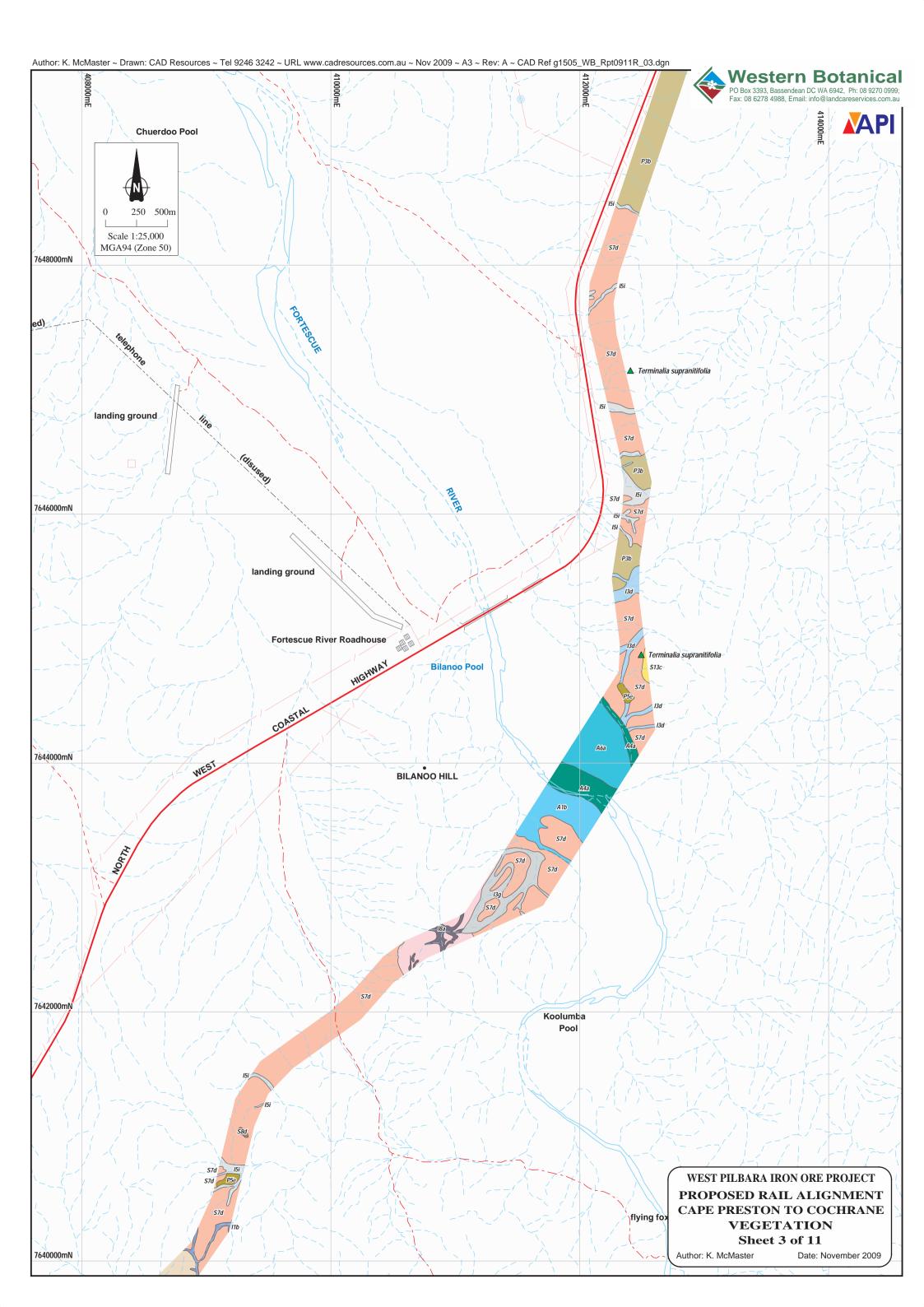
C6b AxTwERAx Acacia xiphophylla open shrubland over Triodia wiseana open hummock grassland over Eragrostis xerophila open tussock grassland

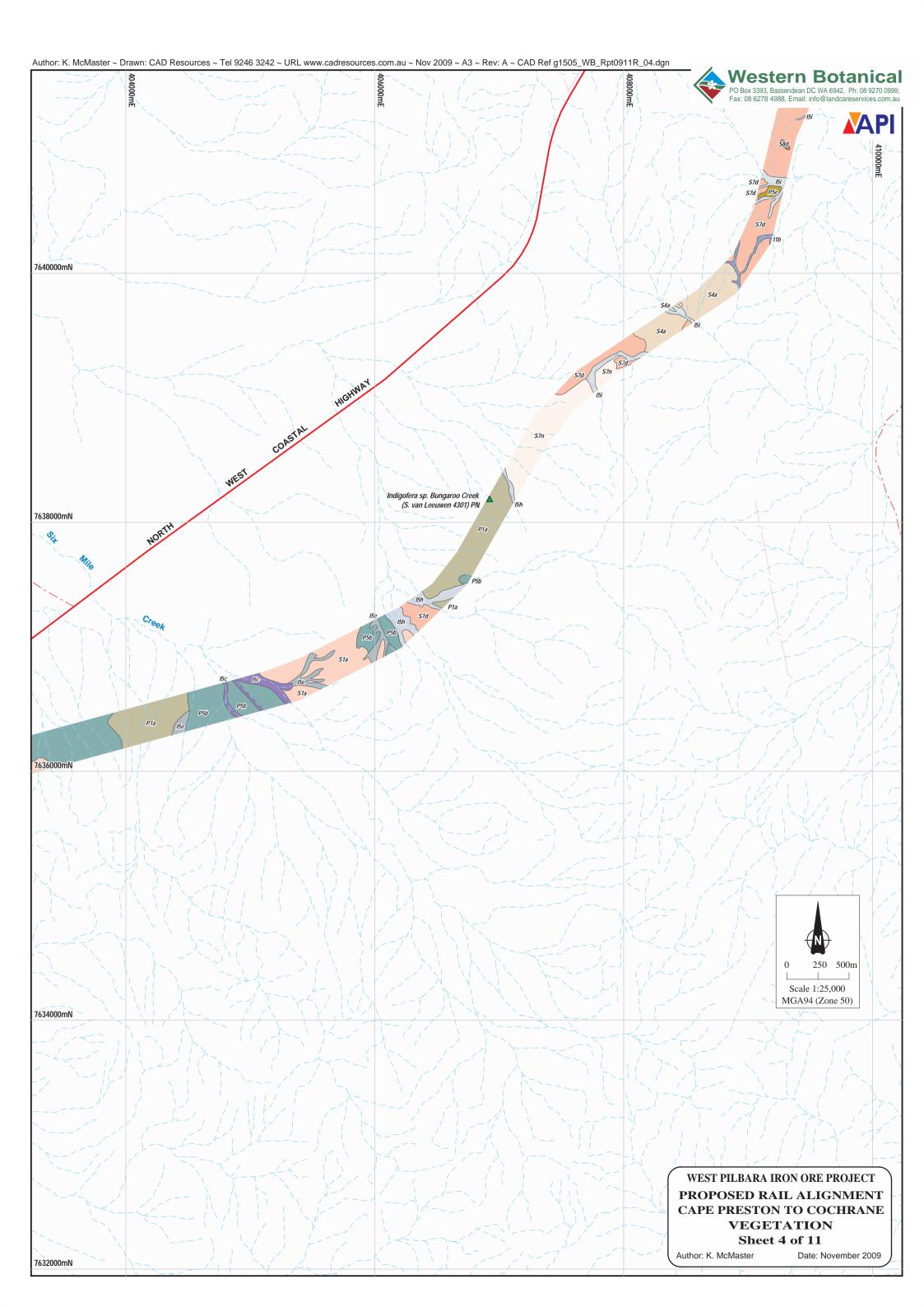
7. Soft Spinifex Hummock Grasslands

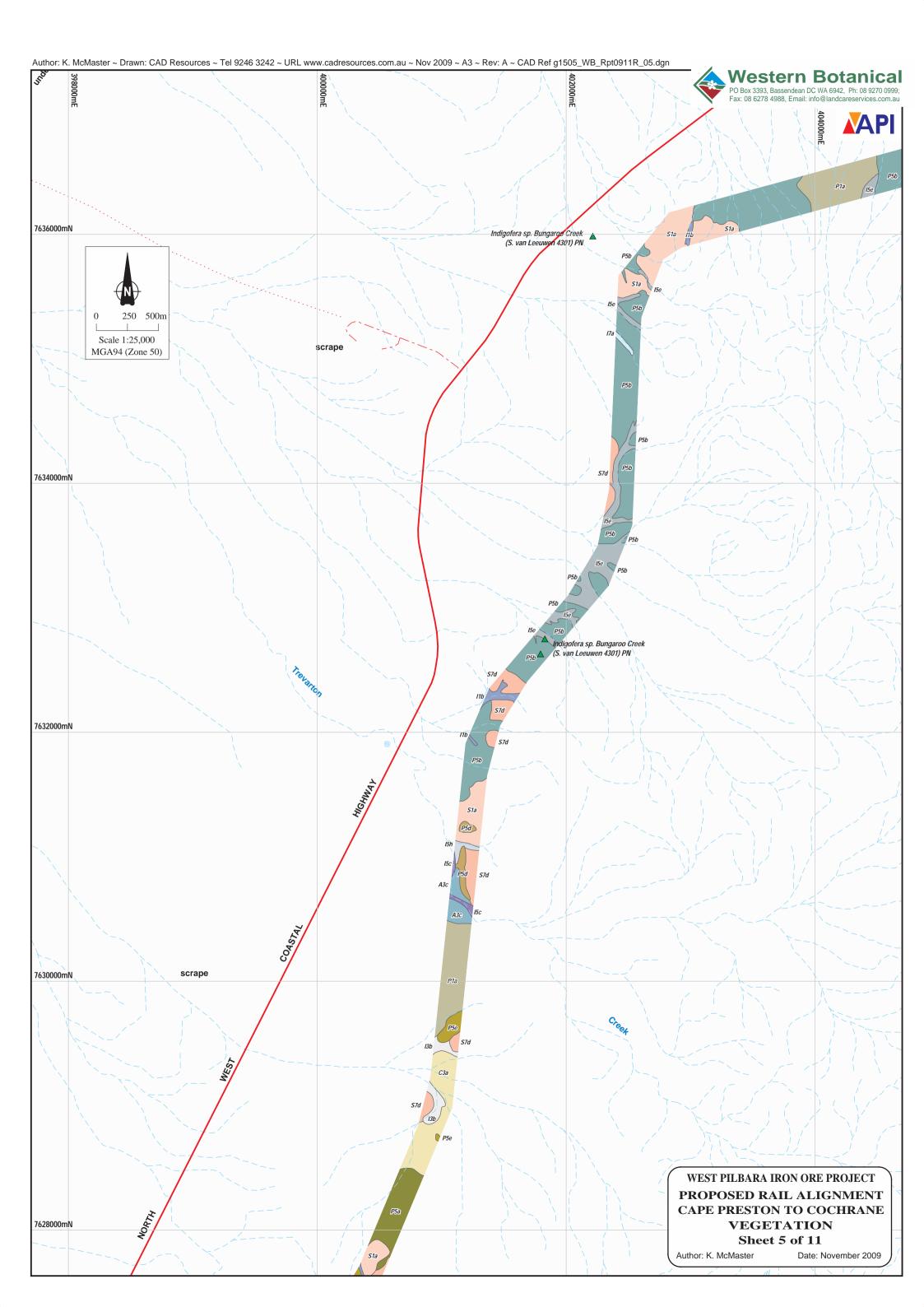
C7a Acacia inaequilatera high open shrubland over Triodia epactia hummock grassland C7b ApyGpTe

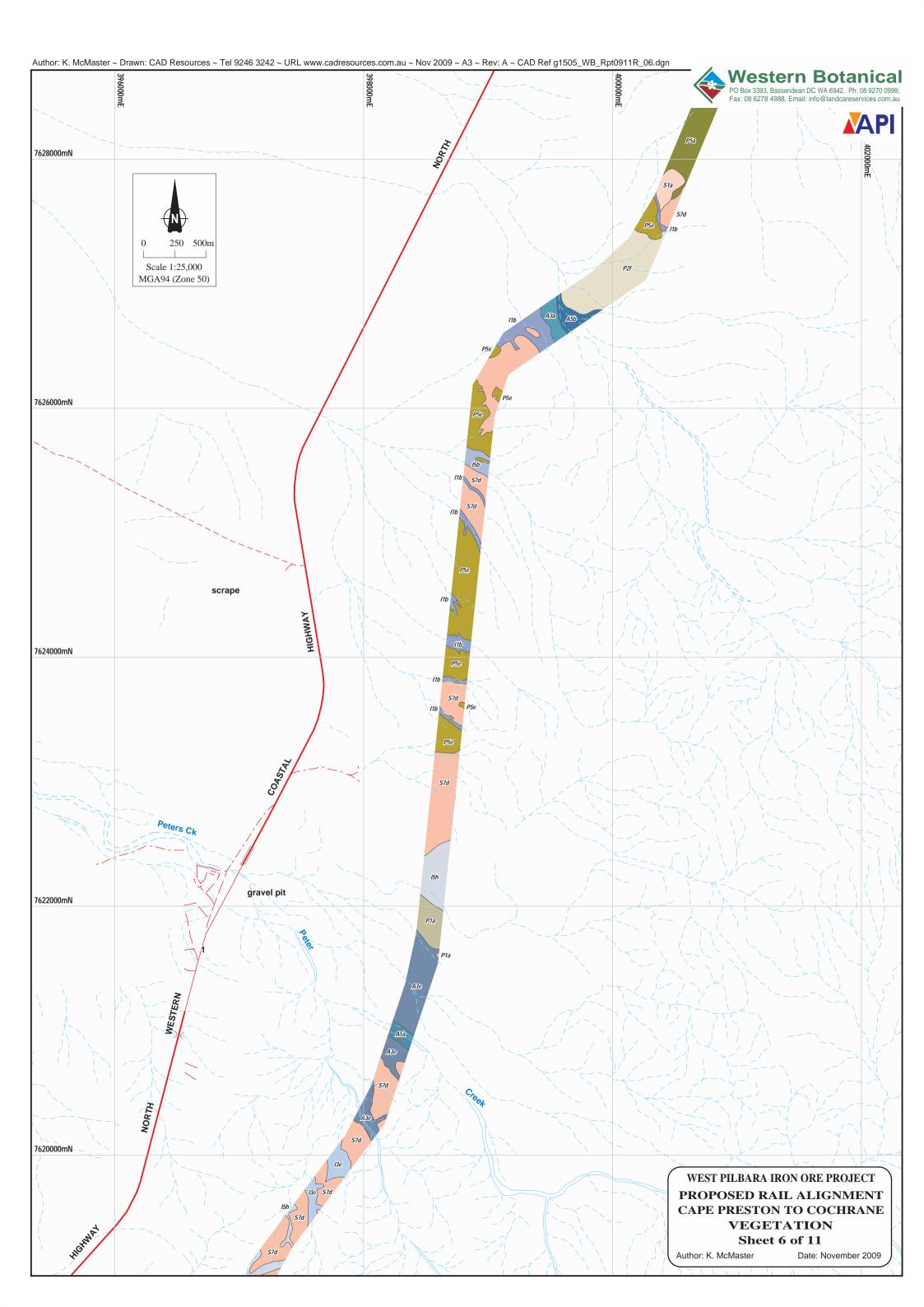

Acacia pyrifolia var. pyrifolia scattered tall shrubs over Grevillea pyramidalis ssp. leucadendron scattered shrubs over Triodia epactia hummock

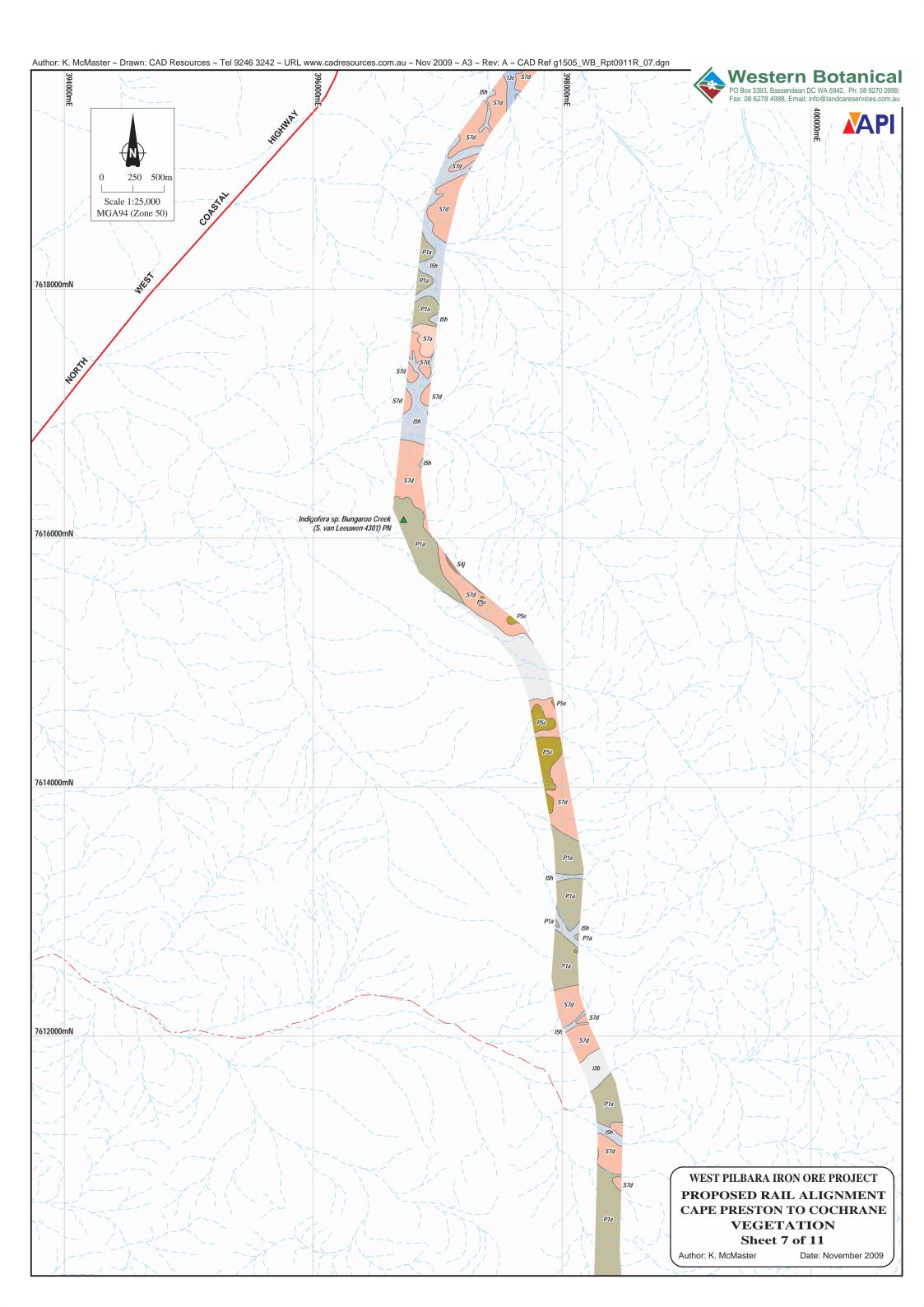

grassland

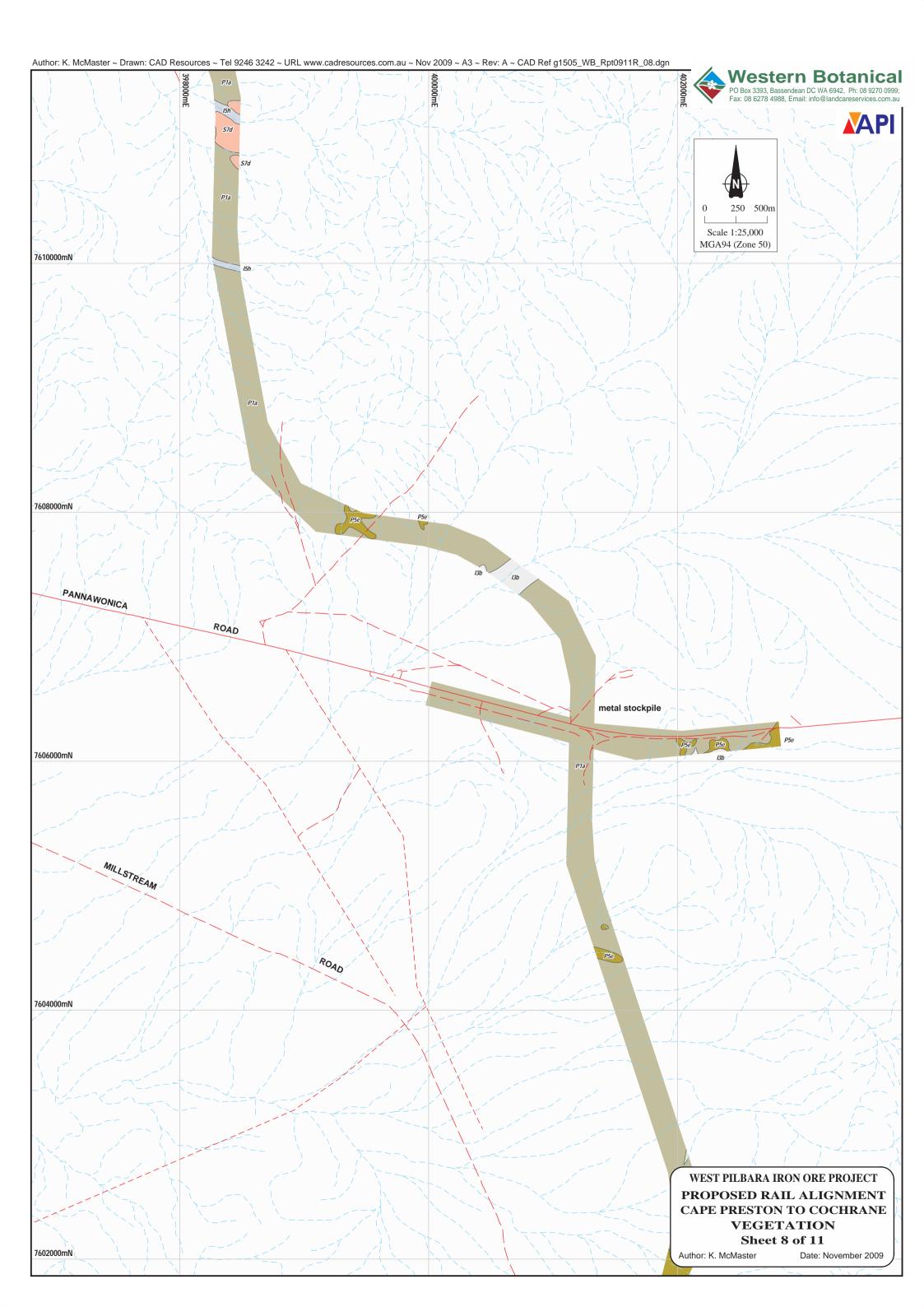

WEST PILBARA IRON ORE PROJECT PROPOSED RAIL ALIGNMENT **CAPE PRESTON TO COCHRANE VEGETATION LEGEND** Sheet 3 of 3

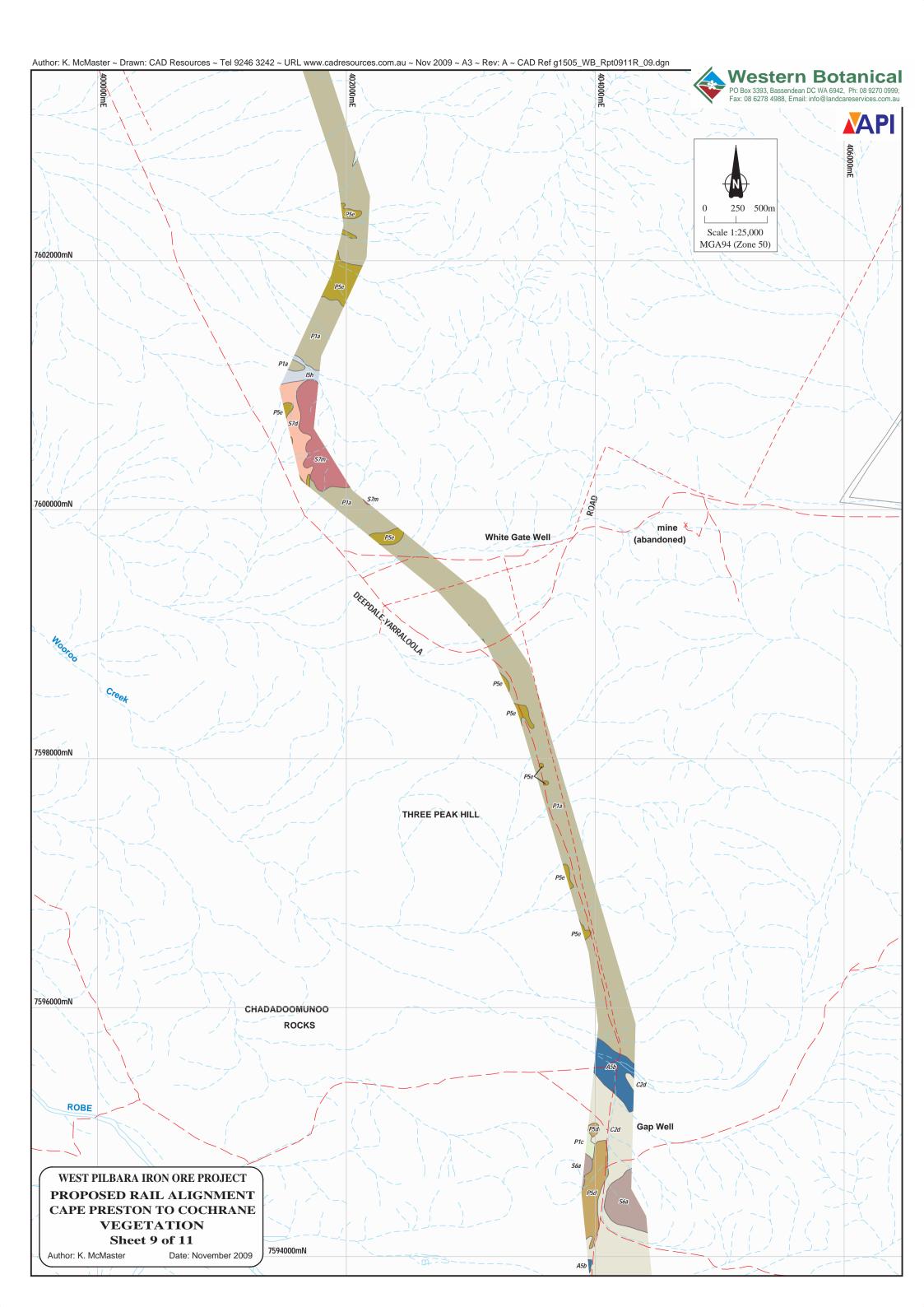

Author: K. McMaster

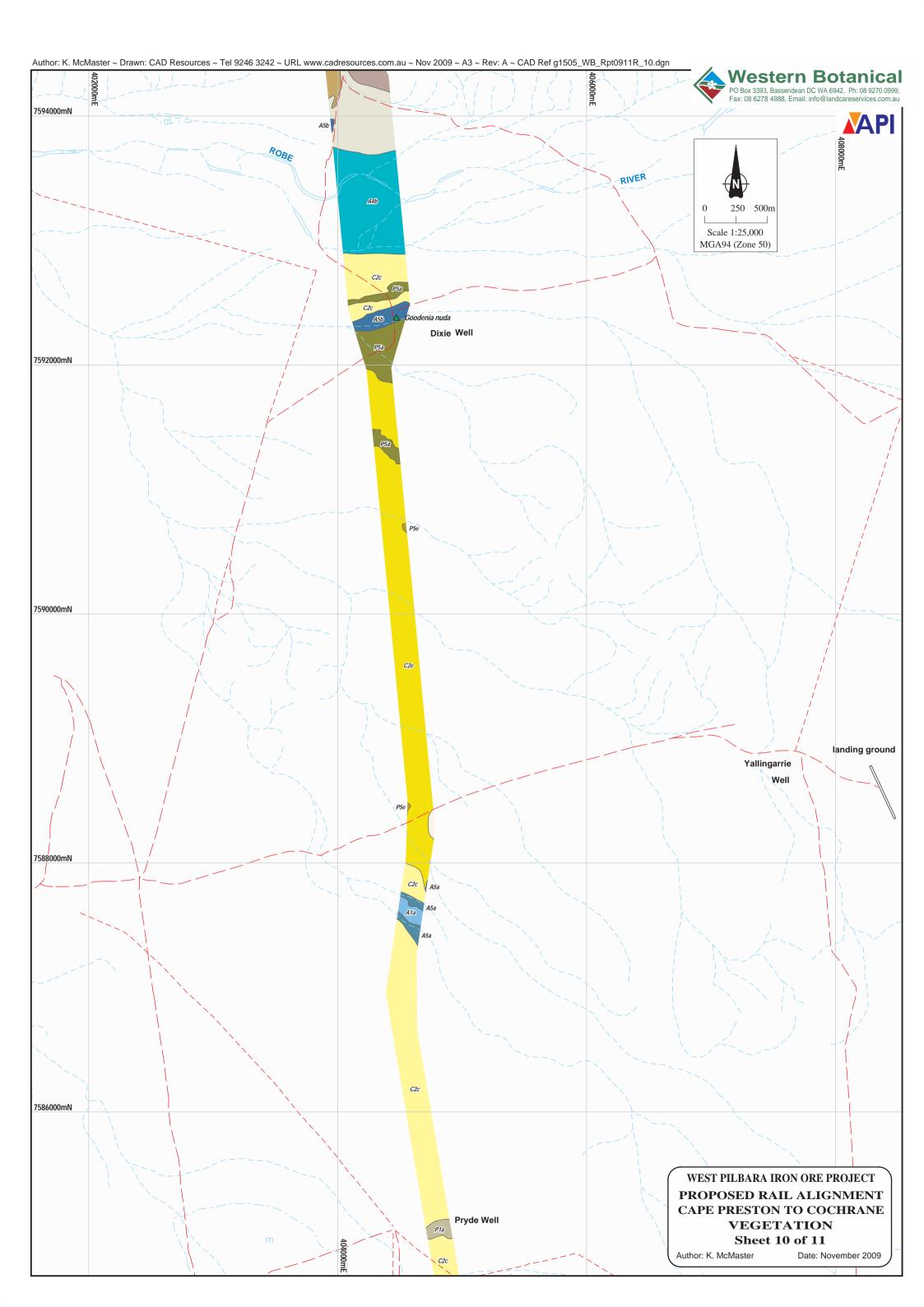

Date: November 2009

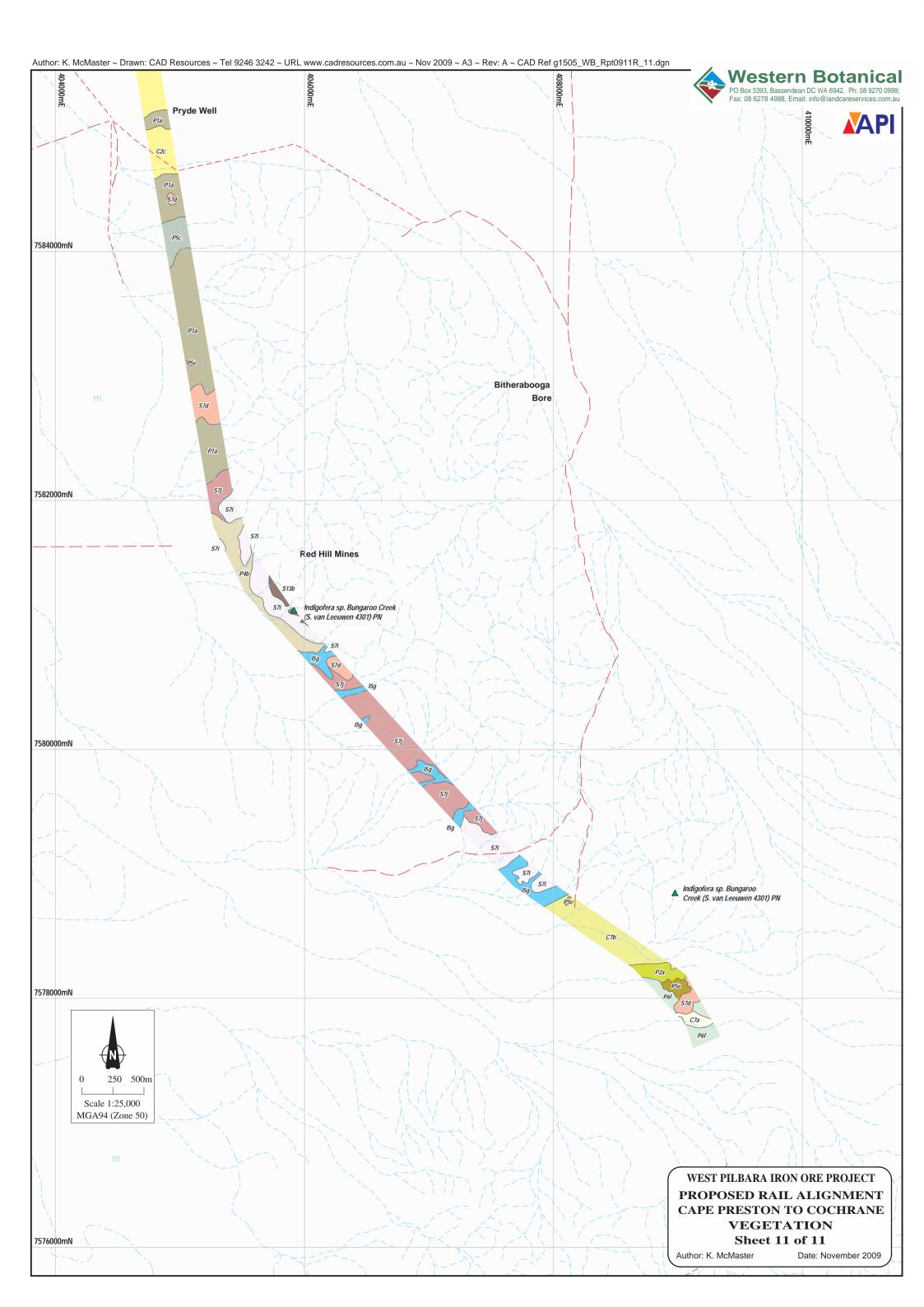












Appendix 3 Representative Photographs of the Vegetation of the Study Area

Stony Hills and Breakaways

S1a AbAatkTw *Acacia bivenosa* and *A. atkinsiana* open shrubland over *Triodia wiseana* open hummock grassland on stony hills and breakaways (Site 361, November 2007)

S4a AarAbAtrTw *Acacia* arida, *A. bivenosa* and *A. trachycarpa* shrubland over *Triodia wiseana* open hummock grassland on stony hills and breakaways (Site CP487, September 2007)

S4j AtAbSgpTwPTc *Acacia tumida* var. *pilbarensis* scattered tall shrubs over *A. bivenosa* and *Senna glutinosa* ssp. *pruinosa* open shrubland over *Triodia wiseana* very open hummock grassland and *Ptilotus calostachyus* var. *calostachyus* very open herbs on stony hills and breakaways (Site CP287, November 2007)

S6a AsTw *Acacia synchronicia* open shrubland over *Triodia wiseana* very open hummock grassland on stony hills and breakaways (Site CP146, October 2007)

S7a AatkAaTwPTc *Acacia atkinsiana* scattered tall shrubs over *A. ancistrocarpa* open shrubland over *Triodia wiseana* open hummock grassland and *Ptilotus calostachyus* var. *calostachyus* scattered herbs on stony hills and breakaways (Site CP303, November 2007)

S7b AaTw *Acacia ancistrocarpa* open shrubland over *Triodia wiseana* open hummock grassland on stony hills and breakaways (Site CP368, September 2007)

S7d AbTw *Acacia bivenosa* open shrubland over *Triodia wiseana* open hummock grassland on stony hills and breakaways (Site CP439, September 2007)

S7i AiTw *Acacia inaequilatera* scattered tall shrubs over *Triodia wiseana* open hummock grassland on stony hills and breakaways (Site CP215, October 2007)

S7j ChAbTw *Corymbia hamersleyana* scattered low trees over *Acacia bivenosa* scattered shrubs over *Triodia wiseana* open hummock grassland on stony hills and breakaways (Site CP037, October 2007)

S7m ERfTEspbTw *Eremophila fraseri* ssp. *fraseri* open shrubland over *Tephrosia* sp. B Kimberley Flora scattered low shrubs over *Triodia wiseana* open hummock grassland on stony hills and breakaways (Site CP393, November 2007)

S7n Tw *Triodia wiseana* open hummock grassland on stony hills and breakaways (Site CP129, September 2007)

S13b TERcTw *Terminalia canescens* low open woodland over *Triodia wiseana* scattered hummock grasses on stony hills and breakaways (Site CPr038, October 2007)

S13c TERsGwCOpSOITw *Terminalia supranitifolia* scattered low trees over *Grevillea wickhamii* ssp. *hispidula* scattered tall shrubs over *Corchorus parviflorus* and *Solanum lasiophyllum* low open shrubland over *Triodia wiseana* very open hummock grassland on stony hills and breakaways (Site CP119, September 2007)

Stony Plains

P1a AatkAbAaTw *Acacia atkinsiana*, *A. bivenosa* and *A. ancistrocarpa* high shrubland to open shrubland over *Triodia wiseana* open hummock grassland on a stony plain (Site CP040, October 2007)

P1a AatkAbAaTw *Acacia atkinsiana*, *A. bivenosa* and *A. ancistrocarpa* high shrubland to open shrubland over *Triodia wiseana* open hummock grassland on a stony plain (Site CP040 Rescore, June 2008)

P2d ChAaTw *Corymbia hamersleyana* scattered low trees over *Acacia ancistrocarpa* scattered shrubs over *Triodia wiseana* hummock grassland on a stony plain (Site CP492, October 2007)

P3b AsAbAaTwPTc *Acacia synchronicia, A. bivenosa* (*A. ancistrocarpa*) open shrubland to shrubland over *Triodia wiseana* very open hummock grassland over *Ptilotus calostachyus* var. *calostachyus* very open herbs on a stony plain (Site CP402, September 2007)

P5a AxAatkAaTeTw *Acacia xiphophylla* low open woodland to high open shrubland over *A. atkinsiana* and *A. ancistrocarpa* open shrubland over *Triodia epactia* and *T. wiseana* very open hummock grassland on a stony plain (Site CP329, November 2007)

P5b AxAbTw *Acacia xiphophylla* low open woodland to high open shrubland over *A. bivenosa* open shrubland over *Triodia wiseana* open hummock grassland on a stony plain (Site CP337, November 2007)

P5c AxAsAatkTw *Acacia xiphophylla* low open woodland to high open shrubland over *A. synchronicia* and *A. atkinsiana* open shrubland over *Triodia wiseana* open hummock grassland on a stony plain (Site CP255, October 2007)

P5d AxTw *Acacia xiphophylla* low open woodland to high open shrubland over *Triodia wiseana* very open hummock grassland on a stony plain (Site CP064, October 2007)

P5e AxTwTe Acacia xiphophylla low open woodland to high open shrubland over Triodia wiseana and occasionally T. epactia very open hummock grassland on a stony plain (Site CP325, September 2007)

P6c ChAaAiTe *Corymbia hamersleyana* low open woodland over *Acacia ancistrocarpa* and *A. inaequilatera* shrubland over *Triodia epactia* hummock grassland on a stony plain (Site CP132, October 2007)

Clayey Plains

C2a AbSCsTw *Acacia bivenosa* open shrubland over *Scaevola spinescens* scattered low shrubs over *Triodia wiseana* hummock grassland on a clayey plain (Site CP519, May 2008)

C2c AiAaTe *Acacia inaequilatera* high open shrubland over *A. ancistrocarpa* open shrubland over *Triodia epactia* open hummock grassland on a clayey plain (Site CP041 Rescore, June 2008)

C2d AiAsTwTe Acacia inaequilatera and A. synchronicia scattered tall shrubs over Triodia wiseana and T. epactia open hummock grassland on a clayey plain (Site CP383, November 2007)

C2e CcAaAbTe *Corymbia candida* ssp. *candida* scattered low trees over *Acacia ancistrocarpa* and *A. bivenosa* high open shrubland over *Triodia epactia* hummock grassland on a clayey plain (Site CP162, October 2007)

C3a AsTe *Acacia synchronicia* open shrubland over *Triodia epactia* open hummock grassland on a clayey plain (Site CP222, November 2007)

C5a ERAxDsXi/h *Eragrostis xerophila, Dichanthium sericeum* ssp. *humilius* and *Xerochloa imberbis* mixed closed grassland over mixed very open herbland on a clayey plain (Site CP012, September 2007)

C5a ERAxDsXi/h *Eragrostis xerophila, Dichanthium sericeum* ssp. *humilius* and *Xerochloa imberbis* mixed closed grassland over mixed very open herbland on a clayey plain (Site CP012 Rescore, May 2008)

C6b AxTwERAx *Acacia xiphophylla* open shrubland over *Triodia wiseana* open hummock grassland over *Eragrostis xerophila* open tussock grassland on a clayey plain (Site CP011 Rescore, May 2008)

C7a AiTe Acacia inaequilatera high open shrubland over *Triodia epactia* hummock grassland on a clayey plain (Site CP060, October 2007)

C7a AiTe Acacia inaequilatera high open shrubland over *Triodia epactia* hummock grassland on a clayey plain (Site CP032, October 2007)

Major Creeklines

A1a AtrApyTeCEc *Acacia trachycarpa* high shrubland over *A. pyrifolia* var. *pyrifolia* scattered shrubs over *Triodia epactia* very open hummock grassland over *Cenchrus *ciliaris* very open tussock grassland on major creekline floodplains (Site CP160, October 2007)

A1b VfAsApyTw *Vachellia *farnesiana*, *Acacia synchronicia* and *A. pyrifolia* var. *pyrifolia* high shrubland over *Triodia wiseana* very open hummock grassland on major creekline floodplains (Site CP441, September 2007)

A2a AcoAiAtrGpCEcEUa Acacia coriacea ssp. coriacea, A. inaequilatera, A. trachycarpa and Grevillea pyramidalis ssp. leucadendron high open shrubland over *Cenchrus ciliaris and Eulalia aurea grassland on a major creekline (Site CP504, June 2008)

A3a CcChAcolAaTe Corymbia candida ssp. candida and C. hamersleyana low open woodland over Acacia colei var. colei and A. ancistrocarpa high open shrubland over Triodia epactia very open hummock grassland on a major creekline (Site CP094, October 2007)

A3c ChAaAtrTe/g Corymbia hamersleyana low open woodland over Acacia ancistrocarpa and A. trachycarpa scattered shrubs over Triodia epactia open hummock grassland over Aristida holathera var. latifolia, Eragrostis aff. eriopoda (WAS site 963) and *Cenchrus ciliaris very open grassland on major creekline floodplains (Site CP035 Rescore, July 2008)

A3e ElChCcGwTw Eucalyptus leucophloia ssp. leucophloia, Corymbia hamersleyana and C. candida ssp. candida scattered low trees over Grevillea wickhamii ssp. hispidula high open shrubland over Triodia wiseana very open hummock grassland on major creekline floodplains (Site CP198, November 2007)

A4a EcAcoPl *Eucalyptus camaldulensis* var. *obtusa* open forest over *Acacia coriacea* ssp. *coriacea* and *Petalostylis labicheoides* high open shrubland on a major creekline (Site CP125, September 2007)

A4b EcMgERAt/s/h *Eucalyptus camaldulensis* var. *obtusa* open forest over *Melaleuca glomerata* high open shrubland over *Eragrostis* tenellula scattered tussock grasses over *Cyperus bifax, C. difformis* and *C. vaginatus* very open sedges over patches of mixed open herbs on a major creekline (Site CP508, June 2008)

A5a EcAtrCEc *Eucalyptus camaldulensis* var. *obtusa* low open woodland over *Acacia trachycarpa* high open shrubland over *Cenchrus *ciliaris* very open tussock grassland on a major creekline (Site CP200, November 2007)

A5b EcCcChAsppTwTeCEc/h Eucalyptus camaldulensis var. obtusa open woodland over Corymbia candida ssp. candida and C. hamersleyana low open woodland over Acacia spp. high shrubland over Triodia wiseana and T. epactia very open hummock grassland over *Cenchrus ciliaris open tussock grassland over mixed patches of herbs on a major creekline (Site CP042, October 2007)

A6a PITRz *Petalostylis labicheoides* scattered shrubs over *Trichodesma zeylanicum* var. *zeylanicum* very open herbland on major creekline floodplains (Site CP123, September 2007)

Minor Creeklines

I1b AbAaTw *Acacia bivenosa* and *A. ancistrocarpa* shrubland over *Triodia wiseana* open hummock grassland on minor creeklines (Site CP335, November 2007)

I1d ChAaAbTw/g *Corymbia hamersleyana* scattered low trees over *Acacia ancistrocarpa* and *A. bivenosa* open heath over *Triodia wiseana* very open hummock grassland over very open grassland on minor creeklines (Site CP101, September 2007)

I2b ApyAbTwCEc *Acacia pyrifolia* var. *pyrifolia* high open shrubland over *A. bivenosa* open shrubland over mixed low open shrubland over *Triodia* wiseana hummock grassland and *Cenchrus ciliaris very open tussock grassland on minor creeklines (Site CP014, September 2007)

I3b CcAcPTaTe *Corymbia candida* ssp. *candida* scattered low trees over *Acacia citrinoviridis* open heath over *Ptilotus astrolasius* var. *astrolasius* low open shrubland over *Triodia epactia* open hummock grassland on minor creeklines (Site CP164, November 2007)

I3d ChAbAarTw *Corymbia hamersleyana* low scattered trees over *Acacia bivenosa* and *A. arida* open shrubland over *Triodia wiseana* hummock grassland on minor creeklines (Site CP115, September 2007)

I3e ElAbAaAtTw Eucalyptus leucophloia ssp. leucophloia scattered low trees over Acacia bivenosa, A. ancistrocarpa and A. tumida var. pilbarensis high open shrubland over Triodia wiseana hummock grassland on minor creeklines (Site CP192, November 2007)

I3h TERCAtrAarTwCEc Terminalia canescens low open woodland over Acacia trachycarpa high shrubland over A. arida shrubland over Triodia wiseana very open hummock grassland over *Cenchrus ciliaris very open tussock grassland on minor creeklines (Site CP013, September 2007)

I5b CcAbTeTw *Corymbia candida* ssp. *candida* scattered low trees over *Acacia bivenosa* scattered shrubs over *Triodia epactia* and *T. wiseana* open hummock grassland on minor creeklines (Site CP218, November 2007)

ISc CcChAtrAtPICEc Corymbia candida ssp. candida and C. hamersleyana low open woodland over Acacia trachycarpa, A. tumida var. pilbarensis and Petalostylis labicheoides high open shrubland over *Cenchrus ciliaris very open tussock grassland on minor creeklines (Site CP383, November 2007)

I5e ChAatkAbTw *Corymbia hamersleyana* scattered low trees over *Acacia atkinsiana* and *A. bivenosa* shrubland over *Triodia wiseana* open hummock grassland on minor creeklines (Site CP341, November 2007)

I5g ChAiAaTe *Corymbia hamersleyana* low open woodland over *Acacia inaequilatera* high open shrubland over *A. ancistrocarpa* scattered shrubs over *Triodia epactia* open hummock grassland on minor creeklines (Site CP134, November 2007)

I5h ChAtAatkAaTw *Corymbia hamersleyana* scattered low trees over *Acacia tumida* var. *pilbarensis, A. atkinsiana* and *A. ancistrocarpa* shrubland over *Triodia wiseana* open hummock grassland on minor creeklines (Site CP171, October 2007)

I5j ChAtAbTw *Corymbia hamersleyana* scattered low trees over *Acacia tumida* var. *pilbarensis* high scrub to high open shrubland over *A. bivenosa* open shrubland over *Triodia wiseana* very open hummock grassland on minor creeklines (Site CP017, September 2007)

I6a EcChGpApyAtrTEsppTeTw Eucalyptus camaldulensis var. obtusa and Corymbia hamersleyana scattered low trees over Grevillea pyramidalis ssp. leucadendron high open shrubland over Acacia pyrifolia var. pyrifolia and A. trachycarpa open shrubland over Tephrosia spp. low open shrubland over Triodia epactia and T. wiseana very open hummock grassland on minor creeklines (Site CP022 Rescore, May 2008)

I6b EcEvMgMlAcoCE/s Eucalyptus camaldulensis var. obtusa woodland over E. victrix low woodland over Melaleuca glomerata, M. linophylla and Acacia coriacea ssp. pendens high shrubland over *Cenchrus ciliaris and C. setiger tussock grassland over patches of Cyperus spp. very open sedges on minor creeklines (Site CP020, September 2007)

I7a AaneERfoTw Acacia aneura var. intermedia low woodland over Eremophila forrestii ssp. forrestii open shrubland over Triodia wiseana open hummock grassland on minor creeklines (Site CP055 Rescore, May 2008)

I8a TERcAarTw *Terminalia canescens* low open woodland over *Acacia arida* open shrubland over *Triodia wiseana* very open hummock grassland on minor creeklines (Site CP470, September 2007)

I4a AbAsTeTw/g *Acacia bivenosa* and *A. synchronicia* open heath over *Triodia epactia* and *T. wiseana* very open hummock grassland over very open mixed grasses on minor creeklines, floodplain (Site CP019 Rescore, May 2008)

Appendix 4 Summary of Site Data from Relevés and Quadrats within the Study Area

West Pilbara Iron Site CP012 **Quadrat size** 50 x 50 m

Described Daniel Brassington **Survey Date** 22/09/2007

Habitat Flat open alluvial plain

Soil Soft, cracking clay, silty loam, reddish brown in colour **Vegetation** *Eragrostis xerophila* very open tussock grassland

Veg Condition Very good, no effective disturbance except grazing by hoofed animals

Fire Age Unknown

West Pilbara Iron Site CP013 Quadrat size 110 x 10 m

Described Daniel Brassington **Survey Date** 22/09/2007

Denise True 25/05/2008

Habitat Stony creek bed

Soil Loose sandy loam soils

Vegetation Eucalyptus victrix scattered low trees over Acacia arida and A. trachycarpa open

shrubland over *Cenchrus ciliaris open tussock grassland

Veg Condition Very good, no effective disturbance except grazing by hoofed animals

Fire Age 12 years

West Pilbara Iron Site CP014 **Quadrat size** 50 x 50 m

Described Kellie McMaster **Survey Date** 23/09/2007

Cassie Adam 22/05/2008

Habitat Flat plain

Soil Firm, brown, clay-loam, with surface flake

Vegetation Acacia pyrifolia var. pyrifolia and A. bivenosa open shrubland over Triodia wiseana

hummock grassland over very open mixed tussock grasses

Veg Condition Very good **Fire Age** Unknown

Notes Cenchrus ciliaris runs in a strip down the centre of the plot

West Pilbara Iron Site CP015 **Quadrat size** 50 x 50 m

Described Kellie McMaster **Survey Date** 23/09/2007

Cassie Adam 22/05/2008

Habitat Flat broad drainage between low hills

Soil Firm, hard setting, clay loam, brown-red in colour

Vegetation *Corymbia hamersleyana* scattered low trees over *Acacia ancistrocarpa* open scrub over

Triodia wiseana open hummock grassland over very open Aristida contorta tussock

grassland

Fire Age Unknown

West Pilbara Iron Site CP016

Described Kellie McMaster **Survey Date** 23/09/2007 **Quadrat size** 50 x 50 m

Denise True 22/05/2008

Habitat Upper slope of low stony rise in an alluvial plain

Soil Firm, dark red brown, sandy clay loam

Rock Metamorphic

Vegetation Acacia ancistrocarpa high open shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good, no effective disturbance except grazing by hoofed animals

Fire Age Unknown

West Pilbara Iron Site CP017 Quadrat size 120 x 10 m

Described Cassie Adam **Survey Date** 24/09/2007

Denise True 22/05/2008

Habitat Drainage line

Soil Firm, loose, red-brown, sandy clay loam

Vegetation Acacia tumida var. pilbarensis closed scrub over A. ancistrocarpa, A. pyrifolia var. pyrifolia

and A. bivenosa shrubland over Triodia wiseana very open hummock grassland

Veg Condition Excellent, no effective disturbance

Fire Age > 10 yrs

West Pilbara Iron Site CP018 **Quadrat size** 50 x 50 m

Described Kellie McMaster **Survey Date** 24/09/2007

Cassie Adam 22/05/2008

Habitat Alluvial plain or pediment between drainage lines on low hills

Vegetation Acacia synchronicia open shrubland over Triodia wiseana very open hummock grassland

over Aristida contorta tussock grassland and Bulbostylis barbata very open sedgeland

Veg Condition Excellent **Fire Age** < 5 yrs

West Pilbara Iron Site CP019 Ouadrat size 50 x 50 m

Described Kellie McMaster **Survey Date** 24/09/2007

Cassie Adam 25/05/2008

Habitat Slight rise to the south west of a riverbed in undulating country

Soil Loose, red-brown, silty clay loam

Vegetation Acacia bivenosa open scrub over Triodia wiseana very open hummock grassland

Veg Condition Excellent **Fire Age** > 10 yrs

Notes Triodia cover not uniform

West Pilbara Iron Site CP020 **Quadrat size** 30 x 70 m

Described Kellie McMaster **Survey Date** 25/09/2007

Cassie Adam 23/05/2008

Habitat Densely vegetated riverbedSoil Loose, dark brown, silty loam

Vegetation *Eucalyptus camaldulensis* var. *obtusa* and *E. victrix* open forest over *Acacia coriacea* ssp.

pendens, Melaleuca linophylla and M. glomerata high shrubland over *Cenchrus setiger and

C. ciliaris tussock grassland

Veg Condition Excellent, no effective disturbance except grazing by hoofed animals

Fire Age < 10 yrs

Notes Patches of sedges, *Melaleuca*, *Acacia* and *Cenchrus spp. occurring throughout the plot

West Pilbara Iron Site CP021

Described Kellie McMaster **Survey Date** 25/09/2007 **Quadrat size** 50 x 50 m

Denise True 23/05/2008

Habitat Alluvial flood plain

Soil Firm, loose, brown (red when dry) sandy clay loam

Vegetation Acacia synchronicia scattered tall shrubs over A. bivenosa and Senna artemisioides ssp.

oligophylla low open shrubland over *Triodia epactia* and *T. wiseana* open hummock grassland over *Aristida contorta* scattered tussock grasses

Veg Condition Excellent except grazing

Fire Age < 5 yrs

Notes Site is between an *Acacia tumida* dominated drainage and an *Acacia xiphophylla*

(snakewood) community

West Pilbara Iron Site CP022 **Quadrat size** 30 x 70 m

Described Kellie McMaster **Survey Date** 25/09/2007

Cassie Adam 23/05/2008

Habitat Low flat rise between two dissected drainages
Soil Firm, loose, dark reddish brown, clayey sand

Vegetation *Corymbia hamersleyana* scattered low trees over *Grevillea pyramidalis* ssp. *leucadendron*

high open shrubland over *Acacia trachycarpa* and *A. pyrifolia* var. *pyrifolia* shrubland over *Triodia epactia* and *T. wiseana* open hummock grassland over *Cenchrus *ciliaris* very open

tussock grassland

Veg Condition Excellent, no effective disturbance except grazing by hoofed animals

Fire Age No recent evidence
Notes Presence of cryptograms

West Pilbara Iron Site CP023 **Quadrat size** 50 x 50 m

Described Cassie Adam **Survey Date** 26/09/2007

Denise True 23/05/2008

Habitat SE upper slope of a small hill opposite a small drainage line

Soil Loose, firm soil

Rock Layered, unknown sedimentary rock

Vegetation Acacia bivenosa and Petalostylis labicheoides open shrubland over Triodia wiseana

hummock grassland

Veg Condition Excellent, no effective disturbance

Fire Age Approx 10 yrs

West Pilbara Iron Site CP037 **Quadrat size** 50 x 50 m

Described Kellie McMaster **Survey Date** 21/10/2007

Denise True 20/06/2008

Habitat Low rises/ pediment/ alluvial plainSoil Firm, red-brown, loose, loamy sand

Rock Channel Iron Deposit (CID)

Vegetation Corymbia hamersleyana low open woodland over Acacia bivenosa, A. ancistrocarpa and A.

inaequilatera open shrubland over Triodia wiseana open hummock grassland

Veg Condition Excellent, no effective disturbance except grazing by hoofed animals

Fire Age > 5 years

West Pilbara Iron Site CP038r Relevé 50 x 50 m

Described Kellie McMaster **Survey Date** 22/10/2007

Denise True 20/06/2008

Habitat Community on dolomite on the crest and upper slope of a low mesa featuring outcropping

Rock White dolomite

Vegetation Terminalia canescens low open woodland over Triodia wiseana very open hummock

grassland

Veg Condition Excellent, no effective disturbance

Fire Age >20 years

West Pilbara Iron Site CP039 Quadrat size 50 x 50 m

Described Cassie Adam Survey Date 24/10/2007

Rebecca Graham 22/06/2008

Habitat Open rocky scree slope and pediment

Soil Firm, brown, silty clay loam

Rock Dolorite

Vegetation *Acacia inaequilatera* scattered shrubs over *A. bivenosa* low scattered shrubs over *Triodia*

wiseana open hummock grassland

Veg Condition Very Good **Fire Age** >5 years

West Pilbara Iron Site CP040 **Quadrat size** 50 x 50 m

Described Daniel Brassington **Survey Date** 24/10/2007

Rebecca Graham 20/06/2008

Habitat Flat, alluvial plain

Soil Loose, firm, silty clay loam

Vegetation Acacia atkinsiana shrubland over Triodia wiseana and T. epactia open hummock grassland

Veg Condition Very good, no effective disturbance except grazing by hoofed animals

Fire Age Approx 10 yrs

West Pilbara Iron Site CP041 **Quadrat size** 50 x 50 m

Described Cassie Adam **Survey Date** 24/10/2007

Rebecca Graham 20/06/2008

Habitat Pediment, alluvial plain and low rolling hills **Soil** Firm, loose, dark red-brown, silty clay loam

Vegetation Acacia trudgeniana high open shrubland over A. ancistrocarpa open shrubland over

Cleome viscosa and Bonamia rosea low shrubland over Triodia epactia open hummock

grassland

Veg Condition Excellent, no effective disturbance except grazing by hoofed animals

Fire Age Unknown

Notes Termite mounds present

West Pilbara Iron Site CP042 **Quadrat size** 120 x 10 m

Described Amy Douglas Survey Date 24/10/2007

Rebecca Graham 20/06/2008

Habitat Woodland in drainage line

Soil Hard setting, firm, brown, silty clay loam

Vegetation Eucalyptus camaldulensis var. obtusa open woodland over Corymbia hamersleyana and C.

candida ssp. candida low open forest over Acacia trachycarpa and A. ligulata high shrubland over Triodia wiseana and T. epactia very open hummock grassland over

*Cenchrus ciliaris and Eragrostis exigua tussock grassland

Veg Condition Good, no effective disturbance except grazing by hoofed animals

Fire Age Approx 10 years

West Pilbara Iron Site CP050 Quadrat size 50 x 50 m

Described Denise True **Survey Date** 9/11/2007

Denise True 24/05/2008

Habitat Drainage line

Soil Loose, red-brown, silty clay loam

Rock Nil exposed

Vegetation Corymbia hamersleyana scattered low trees over Acacia tumida var. pilbarensis high open

shrubland over *A. ancistrocarpa* and *A. atkinsiana* open shrubland over *Triodia wiseana* and *T. epactia* open hummock grassland over *Eragrostis* aff. *eriopoda* (WAS site 963) and

Aristida holathera var. latifolia very open tussock grassland

Veg Condition Good, no effective disturbance

Fire Age 5-10 years

West Pilbara Iron Site CP051 **Quadrat size** 50 x 50 m

Described Kellie McMaster **Survey Date** 9/11/2007

Kellie McMaster 24/05/2008

Habitat Wide, flat drainage line
Soil Red-brown, silty clay loam
Rock Channel Iron Deposit (CID)

Vegetation Corymbia candida ssp. candida scattered low trees over Acacia atkinsiana, A, ancistrocarpa

and Grevillea wickhamii ssp. hispidula high open shrubland over Triodia epactia and T.

wiseana hummock grassland

Veg Condition Excellent, no effective disturbance except grazing by hoofed animals

Fire Age > 5 years

West Pilbara Iron Site CP052 **Quadrat size** 50 x 50 m

Described Kellie McMaster **Survey Date** 12/11/2007

Cassie Adam 23/05/2008

Habitat Rocky pediment

Soil Loose, firm, dark red-brown covering under lag gravel

Vegetation Acacia atkinsiana open shrubland over Triodia wiseana open hummock grassland

Veg Condition Excellent **Fire Age** Unknown

West Pilbara Iron Site CP053 **Quadrat size** 50 x 50 m

Described Kellie McMaster **Survey Date** 12/11/2007

Cassie Adam 24/05/2008

Habitat Broad pediment with open shrubland between low hills on alluvial plain with drainages

between

Soil Dusky red, silty clay loam

Vegetation Acacia xiphophylla high open shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good, no effective disturbance except grazing by hoofed animals

Fire Age Long unburnt

West Pilbara Iron Site CP054 **Quadrat size** 70 x 30 m

Described Kellie McMaster **Survey Date** 12/11/2007

Kellie McMaster 24/05/2008

Habitat Pediment drainage between snakewood communities

Soil Sandy clay loam, fine loose, firm
Rock Channel Iron Deposit (CID)

Vegetation Acacia bivenosa high shrubland over Triodia wiseana open hummock grassland over

Eriachne pulchella ssp. dominii scattered tussock grasses

Veg Condition Excellent, no effective disturbance except grazing by hoofed animals

Fire Age Unknown

West Pilbara Iron Site CP055 Quadrat size 150 x 10 m

Described Kellie McMaster **Survey Date** 12/11/2007

Kellie McMaster 25/05/2008

Habitat Drainage line coming down from a hogback/ old mesa through pediment

Soil Red-brown, silty clay-loam

Vegetation Acacia aneura var. intermedia low woodland over Eremophila forrestii ssp. forrestii

scattered shrubs over Triodia wiseana open hummock grassland

Veg Condition Good **Fire Age** Unknown

Notes Lots of dead/dry trees. Transect is 150 m following the *Acacia aneura* community, not in a

straight line.

West Pilbara Iron Site CP056 Quadrat size 50 x 50 m

Described Daniel Brassington **Survey Date** 13/11/2007

Denise True 24/05/2008

Habitat Alluvial plain just above a broad riverSoil Firm, hard setting, brown, silty clay loam

Vegetation *Corymbia hamersleyana* low open woodland over mixed *Acacia* spp. scattered shrubs over

Triodia epactia open hummock grassland over Eragrostis aff. eriopoda (WAS site 963),

Aristida holathera var. latifolia and *Cenchrus ciliaris open tussock grassland

Veg Condition Very good, no effective disturbance except grazing by hoofed animals

Fire Age <10 years

West Pilbara Iron Site CP057 **Quadrat size** 50 x 50 m

Described Hayley Hughes **Survey Date** 13/11/2007

Cassie Adam 24/05/2008

Habitat Plain with mesas to the north and eastSoil Loose, orange-brown, silty clay loam

Vegetation Acacia atkinsiana high shrubland over A. bivenosa shrubland over Triodia wiseana closed

hummock grassland

Veg Condition Excellent **Fire Age** > 5 years

West Pilbara Iron Site CP058 **Quadrat size** 50 x 50 m

Described Cassie Adam **Survey Date** 13/11/2007

Rebecca Graham 20/06/2008

Habitat Pediment of tilted mesa/rolling hills with small drainage line

Soil Loose, hard setting, dark reddish brown soil

Vegetation Acacia xiphophylla high shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** > 10 years

West Pilbara Iron Site CP111 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 25/09/2007

Habitat Broad incised creek line

Vegetation Corymbia hamersleyana low scattered trees over Acacia bivenosa and A. arida open

shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP113 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 25/09/2007 **Habitat** Alluvial plain between ranges 80 m in height

Vegetation Acacia inaequilatera, Grevillea wickhamii ssp. hispidula and *Vachellia farnesiana scattered

tall shrubs over A. bivenosa open shrubland over Triodia wiseana hummock grassland

Veg Condition Evidence of disturbance shown by tractor tracks

Fire Age Unknown

West Pilbara Iron Site CP115 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 25/09/2007

Habitat Incised creek line

Vegetation Corymbia hamersleyana low open woodland over Tephrosia sp. B Kimberly Flora (C.A.

Gardener 7300) low shrubland over Triodia wiseana scattered hummock grasses

Veg Condition Very good **Fire Age** 5-8 years

West Pilbara Iron Site CP117 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 25/09/2007

Habitat Rocky lower slope, pediment of range

Vegetation Corchorus parviflorus and Ptilotus calostachyus var. calostachyus low open shrubland over

Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** < 5 years

West Pilbara Iron Site CP119 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 25/09/2007

Habitat Free face of range

Vegetation Terminalia supranitifolia scattered low trees over Grevillea wickhamii ssp. hispidula and

Acacia arida scattered tall shrubs over Triodia wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP123 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 25/09/2007

Habitat Stony river and flood plain

Vegetation Eucalyptus camaldulensis var. obtusa scattered low trees over Petalostylis labicheoides and

Grevillea wickhamii ssp. *hispidula* scattered shrubs over *Trichodesma zeylanicum* var.

zeylanicum low open shrubland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP125 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 25/09/2007

Habitat Plain
Soil Deep loam soils

Vegetation Eucalyptus camaldulensis var. obtusa open forest over Acacia coriacea ssp. coriacea and

Petalostylis labicheoides high open shrubland over very open annual tussock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Grassy plain from forest to range base

West Pilbara Iron Site CP129 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 26/09/2007

Habitat Rocky, low, rolling hills

Vegetation Acacia bivenosa scattered shrubs over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP131 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 26/09/2007

Habitat Drainage line

Vegetation Corymbia hamersleyana scattered low trees over Acacia atkinsiana and A. tumida var.

pilbarensis high shrubland over Triodia wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP133 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 26/09/2007

Habitat

Vegetation Acacia bivenosa, A. atkinsiana and Acacia synchronicia shrubland over Triodia wiseana

open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP135 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 26/09/2007

Habitat Incised creek line

Vegetation *Corymbia candida* ssp. *candida* and *C. hamersleyana* scattered low trees over *Acacia*

tumida var. pilbarensis and A. bivenosa open shrubland over Triodia wiseana hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP150 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington Survey Date 23/10/2007

Habitat Hilltop

Rock Pale calcrete in appearance

Vegetation Acacia inaequilatera scattered tall shrubs over A. bivenosa and Eremophila fraseri ssp.

fraseri scattered shrubs over Triodia wiseana open hummock grassland

Veg Condition Excellent **Fire Age** Unknown

West Pilbara Iron Site CP152 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 23/10/2007

Habitat Pediment

Vegetation Acacia inaequilatera and A. bivenosa open shrubland over Triodia wiseana open hummock

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP154 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 23/10/2007

Habitat Low exposed hill

Rock Pale grey-orange yellow exposed bedrock

Vegetation Corymbia hamersleyana scattered low trees over Acacia bivenosa scattered shrubs over

Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** < 10 years

West Pilbara Iron Site CP156 Relevé $\sim 50 \times 50 \text{ m}$

Described Kellie McMaster **Survey Date** 23/10/2007

Habitat Alluvial plain

Soil Firm, reddish brown, clay loam

Vegetation Acacia inaequilatera high open shrubland, over A. ancistrocarpa open shrubland over

Triodia epactia very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Lots of dead ephemeral species present at site. Shrubs become sparser as discontinuous

lag gravel appears to the north.

West Pilbara Iron Site CP158 Relevé $\sim 50 \times 50 \text{ m}$

Described Kellie McMaster **Survey Date** 23/10/2007

Habitat River/ Drainage lineSoil Sandy silty loam on banks

Vegetation Eucalyptus camaldulensis var. obtusa low woodland over Acacia trachycarpa high open

shrubland over *Cenchrus ciliaris very open tussock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP160 Relevé ~50 x 50 m

Described Daniel Brassington Survey Date 23/10/2007

Habitat Alluvial plain

Soil Brown, silty clay loam

Vegetation Acacia trachycarpa high shrubland over Triodia epactia very open hummock grassland

over Cenchrus ciliaris very open tussock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP162 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 23/10/2007

Habitat Broad open area on an alluvial plainSoil Dark reddish brown, clay loam

Vegetation Corymbia candida ssp. candida scattered low trees over Acacia trachycarpa, A. bivenosa

and A. ancistrocarpa high open shrubland over Triodia epactia hummock grassland

Veg Condition Very good

Fire Age Unknown

Notes A few areas in this vegetation type occur on low rocky rises, where the species

composition is the same, but a little less dense, and Ptilotus astrolasius and Acacia

atkinsiana occur.

West Pilbara Iron Site CP164 Relevé ~50 x 50 m

Described Kellie McMaster **Survey Date** 8/11/2007

Habitat Broad drainage line

Soil Red-brown, sandy clay loam

Vegetation Corymbia candida ssp. candida scattered low trees over Acacia citrinoviridis open heath

over Triodia epactia open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP166 Relevé ∼50 x 50 m

Described Kellie McMaster **Survey Date** 8/11/2007

Habitat Top of low rocky hill

SoilFirm, loose, fine, red brown, sandy loamRockChannel Iron Deposit (CID) and dolomiteVegetationTriodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Typical CID style rocks on the top of the hill, and dolomite present on the sides and

towards the base of the hill.

West Pilbara Iron Site CP168 Relevé $\sim 50 \times 50 \text{ m}$

Described Kellie McMaster **Survey Date** 8/11/2007

Habitat Minor drainage between low rocky rises and pediment/alluvial plain

Soil Silty clay loam

Vegetation Corymbia hamersleyana scattered low trees over Acacia tumida var. pilbarensis and A.

ancistrocarpa open scrub over A. bivenosa shrubland over Triodia wiseana hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP170 Relevé ~50 x 50 m

Described Kellie McMaster **Survey Date** 8/11/2007

Habitat Drainage line in plain/pediment

Soil Loose, firm, red brown, sandy silty loam

Vegetation Corymbia hamersleyana scattered low trees over Acacia tumida var. pilbarensis, A.

atkinsiana and A. ancistrocarpa high open shrubland over Triodia wiseana very open

hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP172 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Kellie McMaster **Survey Date** 8/11/2007

Habitat Alluvial plain

Soil Loose, firm, red brown, silty clay loam

Vegetation Acacia synchronicia, A. bivenosa, A. ancistrocarpa and A. atkinsiana scattered shrubs over

Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP174 Relevé $\sim 50 \times 50 \text{ m}$

Described Hayley Hughes **Survey Date** 8/11/2007

Habitat Pediment crossed by minor drainage lines

Vegetation Acacia bivenosa and A. ancistrocarpa scattered shrubs over Triodia wiseana very open

hummock grassland

Veg Condition Very good **Fire Age** < 2 years

Notes Species covers increase in the minor drainages as compared with the low hills

West Pilbara Iron Site CP176 **Relevé** ~50 x 50 m

DescribedKellie McMasterSurvey Date 8/11/2007**Habitat**Low rocky hills dissected with small drainages

Soil Firm, loose, sandy clay loam

Vegetation Acacia inaequilatera scattered tall shrubs over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Moving south through this vegetation type, the community remains the same, except that

Acacia ancistrocarpa appears and the cover of Acacia bivenosa increases

West Pilbara Iron Site CP178 **Relevé** ~50 x 50 m

Described Kellie McMaster **Survey Date** 8/11/2007

Habitat Drainage line

Soil Firm, loose, red brown, clay silt loam

Vegetation Corymbia hamersleyana scattered low trees over Acacia ancistrocarpa shrubland over

Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP180 Relevé $\sim 50 \times 50 \text{ m}$

Described Kellie McMaster **Survey Date** 8/11/2007

Habitat Low hills with minor drainages.

Soil Firm, loose, fine soil.

Vegetation Acacia bivenosa and A. ancistrocarpa open shrubland over Triodia wiseana open hummock

Veg Condition Very good **Fire Age** Unknown

Notes Patchy distributions of *Acacias* over the vegetation type

West Pilbara Iron Site CP182 Relevé ~50 x 50 m

Described Kellie McMaster **Survey Date** 9/11/2007

Habitat Alluvial plain/ pediment

Soil Firm, loose, red brown, silty clay loam

Vegetation Acacia bivenosa scattered shrubs over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP184 **Relevé** ~50 x 50 m

Described Cassie Adam **Survey Date** 9/11/2007

Habitat Drainage line

Soil Red brown, sandy clay loam

Vegetation Corymbia hamersleyana scattered low trees over Acacia tumida var. pilbarensis and A.

ancistrocarpa high shrubland over Triodia wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP186 Relevé ~50 x 50 m

Described Cassie Adam **Survey Date** 9/11/2007

Habitat Pediment/alluvial plain

Soil Firm, loose, red brown, silty clay loam

Vegetation Acacia bivenosa scattered shrubs over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP192 **Relevé** ~50 x 50 m

Described Cassie Adam **Survey Date** 9/11/2007

Habitat Dissected drainage lineSoil Red brown, silty clay loam

Rock Conglomerate

Vegetation Eucalyptus leucophloia ssp. leucophloia scattered low trees over Acacia tumida var.

pilbarensis high open shrubland over Acacia bivenosa open shrubland over Triodia

wiseana hummock open grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP194 Relevé ∼50 x 50 m

Described Cassie Adam **Survey Date** 9/11/2007

Habitat Alluvial plain/ drainageSoil Red brown, silty clay loam

Vegetation Acacia ancistrocarpa and Acacia bivenosa high shrubland over Triodia wiseana hummock

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP198 Relevé ~50 x 50 m

Described Cassie Adam **Survey Date** 9/11/2007 **Habitat** Dissected drainage with an associated flood plain

Rock Conglomerate

Vegetation Eucalyptus leucophloia ssp. leucophloia, Corymbia hamersleyana and C. candida ssp.

candida scattered low trees over Grevillea wickhamii ssp. hispidula high open shrubland

over Triodia wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP200 Relevé ~50 x 50 m

Described Cassie Adam Survey Date 9/11/2007

HabitatDissected river bedSoilSoft, loose, gritty sand

Vegetation Eucalyptus camaldulensis var. obtusa low open woodland over Grevillea wickhamii ssp.

hispidula and Acacia trachycarpa high open shrubland over *Cenchrus ciliaris very open tussock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Wide riverbed, *Eucalyptus camaldulensis* occurs in the riverbed, all other species occur on

the riverbanks. High cover of *Cenchrus *ciliaris* on riverbanks, which is mostly dead.

West Pilbara Iron Site CP202 Relevé ~50 x 50 m

Described Kellie McMaster **Survey Date** 10/11/2007

Habitat Drainage in pediment/ alluvial plainSoil Firm, loose, brown, clay loam.

Vegetation Acacia ancistrocarpa high open shrubland over A. bivenosa shrubland over Triodia

wiseana

open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP204 Relevé ~50 x 50 m

Described Cassie Adam **Survey Date** 10/11/2007

Habitat Alluvial plain/ pediment

Soil Firm and loose

Vegetation Triodia wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP206 Relevé ~50 x 50 m

Described Kellie McMaster **Survey Date** 10/11/2007

Habitat Alluvial plain

Soil Fine, loose, orange brown, silty clay loam

Vegetation Acacia xiphophylla high open shrubland over Triodia wiseana scattered hummock grasses

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP208 Relevé ~50 x 50 m

Described Kellie McMaster **Survey Date** 10/11/2007

Habitat Alluvial plain

Soil Fine, loose, orange brown, silty clay loam, with some surface flaking in places **Vegetation** *Acacia xiphophylla* high shrubland over *Triodia wiseana* open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP212 **Relevé** ~50 x 50 m

Described Kellie McMaster **Survey Date** 10/11/2007

Habitat Alluvial plain

Soil Fine, loose, orange brown, silty clay loam, with some surface flaking in places

Vegetation Acacia xiphophylla high open shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP214 Relevé ~50 x 50 m

Described Kellie McMaster **Survey Date** 10/11/2007

Habitat Low rocky rise

Soil Firm, loose, red brown soil

Rock White quartz

Vegetation Acacia bivenosa and A. ancistrocarpa low scattered shrubs over Triodia wiseana very open

hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Acacia bivenosa cover is very patchy, ranging from a presence in some areas up to 2% in

others.

West Pilbara Iron Site CP216 Relevé $\sim 50 \times 50 \text{ m}$

Described Kellie McMaster **Survey Date** 10/11/2007

Habitat Alluvial plain

Vegetation Acacia bivenosa low scattered shrubs over Triodia epactia hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP217 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 21/10/2007

Habitat Plain

Soil Sandy silt with pebbles in patches

Vegetation Corymbia hamersleyana low open woodland over Acacia synchronicia scattered tall shrubs

over A. bivenosa scattered shrubs over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP218 Relevé ~50 x 50 m

Described Cassie Adam **Survey Date** 10/11/2007

Habitat Alluvial plain

Soil Firm, loose, clay loam

Vegetation Corymbia candida ssp. candida low open woodland over Triodia epactia and T. wiseana

very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Small patch of *Corymbia* woodland amongst a larger *Acacia xiphophylla* site.

West Pilbara Iron Site CP219 Relevé $\sim 50 \times 50 \text{ m}$

DescribedDenise TrueSurvey Date 21/10/2007**Habitat**Creek line running parallel to the range to the east

 $\textbf{Vegetation} \quad \textit{Corymbia hamersleyana} \text{ scattered low trees over } \textit{Senna artemisioides} \text{ ssp. } \textit{oligophylla} \text{ open}$

shrubland over *Tephrosia* sp. B Kimberly Flora (C.A. Gardener 7300) and *Jasminum didymum* ssp. *lineare* low open shrubland over *Triodia wiseana* very open hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP220 Relevé ~50 x 50 m

Described Kellie McMaster **Survey Date** 10/11/2007

Habitat Alluvial plain

Vegetation Acacia bivenosa shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP221 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 21/10/2007

Habitat Pediment and debris slope

Rock Dolomite

Vegetation Acacia inaequilatera scattered tall shrubs over Tephrosia sp. B Kimberly Flora (C.A.

Gardener 7300) low scattered shrubs over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP222 **Relevé** ~50 x 50 m

Described Kellie McMaster **Survey Date** 11/11/2007

Habitat Alluvial plain/ pediment

Soil Dusty red, silty clay loam, with some surface flake

Vegetation Acacia synchronicia open shrubland over Triodia epactia open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP224 Relevé $\sim 50 \times 50 \text{ m}$

Described Kellie McMaster **Survey Date** 11/11/2007

Habitat Pediment

Soil Dusty red, silty clay loam, with some surface flake

Vegetation Corymbia candida ssp. candida low open woodland over Acacia ancistrocarpa open scrub

over Triodia epactia hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP226 **Relevé** ~50 x 50 m

Described Kellie McMaster **Survey Date** 11/11/2007

Habitat Top of a low mesa

Rock Channel Iron Deposit (CID)

Vegetation *Clerodendrum floribundum* var. *angustifolium* scattered low trees over *Tephrosia* sp. B

Kimberley Flora (C.A. Gardner 7300) low scattered shrubs over *Triodia* sp. Robe River

very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes A small community, restricted to the outcropping on the eastern end of the mesa.

Surrounded by Acacia bivenosa, A. inaequilatera, and Senna glutinosa ssp. glutinosa

scattered shrubs over Triodia wiseana hummock grassland.

West Pilbara Iron Site CP228 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington Survey Date 11/11/2007

Habitat Broad alluvial plainSoil Sandy clay loam

Vegetation Acacia atkinsiana high shrubland over Triodia epactia open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP230 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 11/11/2007

Habitat Alluvial plain

Vegetation Corymbia candida ssp. candida scattered low trees over Acacia atkinsiana scattered

shrubs over Triodia epactia open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes A line of *Corymbia* trees running roughly east-west, immediately south of a *Acacia*

xiphophylla community

West Pilbara Iron Site CP232 Relevé ~50 x 50 m

DescribedDaniel BrassingtonSurvey Date 11/11/2007**Habitat**Broad pediment, from a low hill/mesa to the east

Soil Sandy clay loam

Vegetation Acacia xiphophylla high open shrubland over Triodia wiseana very open hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP234 Relevé ~50 x 50 m

Described Daniel Brassington Survey Date 11/11/2007Habitat Very shallow drainage within an alluvial plain

Soil Sandy clay loam

Vegetation Acacia atkinsiana high shrubland over Triodia wiseana and T. epactia hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP236 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 11/11/2007

Habitat Open alluvial plain

Vegetation Acacia atkinsiana open shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes A vehicle track runs near to this area

West Pilbara Iron Site CP238 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Daniel Brassington **Survey Date** 11/11/2007

Habitat Broad drainage line/systemSoil Reddish brown, silty clay loam

Vegetation Corymbia hamersleyana low open woodland over Grevillea wickhamii ssp. hispidula

scattered tall shrubs over *Acacia ancistrocarpa* scattered shrubs over *Triodia epactia* open hummock grassland over *Aristida* sp. (WPI-751) and *Cenchrus *ciliaris* scattered tussock

grasses

Veg Condition Very good Fire Age Unknown

Notes A long band of vegetation adjacent to river/drainage

West Pilbara Iron Site CP240 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 11/11/2007

Habitat Deeply incised stony river bed

Vegetation Corymbia hamersleyana and C. candida ssp. candida low open woodland over Acacia

trachycarpa and Petalostylis labicheoides high open shrubland over *Cenchrus ciliaris very

open tussock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Almost no grasses or low herbs growing in the stony river bed, approximately 20 m wide

West Pilbara Iron Site CP242 **Relevé** ~50 x 50 m

Described Daniel Brassington **Survey Date** 11/11/2007

Habitat Rocky hills

Vegetation Acacia bivenosa and A. synchronicia open shrubland over Triodia wiseana open hummock

Veg Condition Very good **Fire Age** Unknown

Notes Some *Corymbia hamersleyana* and *Acacia ancistrocarpa* in gullies between the hills.

Vegetation is denser in gullies.

West Pilbara Iron Site CP243 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Amy Douglas Survey Date 23/10/2007

Habitat Low hill

Vegetation Corymbia hamersleyana scattered low trees over Acacia inaequilatera scattered tall shrubs

over Ptilotus astrolasius var. astrolasius low scattered shrubs over Triodia wiseana open

hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP244 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 11/11/2007

Habitat Alluvial plain/ pediment

Vegetation Acacia xiphophylla high shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good Fire Age Unknown

West Pilbara Iron Relevé $\sim 50 \times 50 \text{ m}$ Site **CP245**

Described Denise True Survey Date 22/10/2007

Low hill Habitat

Soil Dark red-brown, clay loam

Vegetation Corymbia hamersleyana scattered low trees over Acacia inaequilatera scattered tall shrubs

over A. bivenosa scattered shrubs over Ptilotus astrolasius var. astrolasius scattered low

shrubs over Triodia wiseana open hummock grassland

Veg Condition Very good Fire Age Unknown

West Pilbara Iron Relevé ~50 x 50 m Site CP246

Described **Daniel Brassington Survey Date** 11/11/2007

Habitat Drainage line

Vegetation Corymbia hamersleyana scattered trees over Acacia atkinsiana high shrubland over

Triodia

wiseana closed hummock grassland

Veg Condition Very good Fire Age Unknown

West Pilbara Iron Site CP247 Relevé $\sim 50 \times 50 \text{ m}$

Described **Amy Douglas Survey Date** 23/10/2007

Habitat Plain dissected by numerous drainage lines

Red-brown, silty clay loam Soil

Vegetation Acacia bivenosa, A. ancistrocarpa and A. atkinsiana open shrubland over Triodia wiseana

open hummock grassland

Veg Condition Very good Fire Age Unknown

West Pilbara Iron Site CP248 Relevé ~50 x 50 m

Described **Daniel Brassington Survey Date** 11/11/2007

Habitat **Broad** pediment

Vegetation Acacia bivenosa high open shrubland over Triodia wiseana hummock grassland

Veg Condition Very good Fire Age Unknown

This site is south of an Acacia xiphophylla patch. Overall the vegetation is mapped together as dissected pediment Acacia bivenosa and Acacia synchronicia over Triodia wiseana, with higher

percentage covers in drainages, with occasional Acacia xiphophylla over Triodia wiseana

patches.

West Pilbara Iron Site CP249 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas Survey Date 23/10/2007

Habitat Debris slope of a degraded mesa.

Vegetation Acacia inaequilatera scattered tall shrubs over A. bivenosa open shrubland over Triodia

wiseana open hummock grassland

Veg Condition Very good Fire Age Unknown

West Pilbara Iron Site CP251 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Amy Douglas **Survey Date** 23/10/2007

Habitat Drainage line

Vegetation Acacia atkinsiana shrubland over Triodia wiseana and T. epactia hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP253 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Amy Douglas **Survey Date** 23/10/2007

Habitat Drainage line

Soil Red-brown, sandy clay loam

Vegetation Acacia bivenosa and A. synchronicia high open shrubland over A. atkinsiana open

shrubland

over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP255 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas **Survey Date** 23/10/2007

Habitat Plain

Vegetation Acacia xiphophylla high open shrubland over A. synchronicia and A. atkinsiana open

shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP257 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas **Survey Date** 23/10/2007

Habitat Plain

Soil Brown, silty clay loam

Vegetation Acacia atkinsiana high shrubland over Triodia wiseana and T. epactia open hummock

grassland

Veg Condition Very good **Fire Age** < 5 years

Notes Triodia wiseana changes to almost 100% Triodia epactia to the north of the site, and

Acacia atkinsiana changes to Acacia ancistrocarpa

West Pilbara Iron Site CP259 Relevé $\sim 50 \times 50 \text{ m}$

Described Cassie Adam **Survey Date** 23/10/2007

Habitat Plain

Soil Red, silty clay loam

Vegetation Acacia ancistrocarpa and A. atkinsiana high shrubland over A. bivenosa open shrubland

ver

Triodia wiseana and T. epactia hummock grassland

Veg Condition Very good
Fire Age Unknown
Notes Termite mound

West Pilbara Iron Site CP261 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Cassie Adam **Survey Date** 23/10/2007

Habitat Alluvial plain

Soil Brown, silty clay loam

Vegetation Acacia inaequilatera high open shrubland over Hakea lorea ssp. lorea scattered shrubs

over

Ptilotus astrolasius var. astrolasius scattered low shrubs over Triodia epactia open

hummock

Veg Condition *Triodia* grazed by cattle

Fire Age Unknown Notes Termite mound

West Pilbara Iron Site CP263 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 24/10/2007

Habitat Plain

Vegetation Acacia xiphophylla high open shrubland over A. atkinsiana and A. ancistrocarpa scattered

shrubs over Triodia epactia and T. wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP265 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 24/10/2007

Habitat Drainage line

Soil Red-brown, cracking, silty clay soils

Vegetation *Eucalyptus camaldulensis* var. *obtusa* open woodland over *Corymbia hamersleyana* and *C.*

candida ssp. candida low open woodland over Acacia trachycarpa high shrubland over Petalostylis labicheoides scattered shrubs over Triodia wiseana and T. epactia very open

hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP267 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 24/10/2007

Habitat Plain

Soil Cracking, silty clay soils

Vegetation Acacia inaequilatera scattered tall shrubs over A. ancistrocarpa scattered shrubs over

Triodia epactia hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP269 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 24/10/2007

Habitat Drainage line, Robe River bed

Soil Sandy, silty clay soils

Vegetation Eucalyptus camaldulensis var. obtusa open forest over Melaleuca glomerata low woodland

over Cyperus vaginatus very open sedgeland over Stemodia grossa very open herbland

Veg Condition Very good

Fire Age Unknown

West Pilbara Iron Site CP271 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 24/10/2007

Habitat Drainage line, Robe River

Soil Silty clay loam

Vegetation Eucalyptus camaldulensis var. obtusa scattered trees over Corymbia candida ssp. candida

scattered low trees over Acacia synchronicia, A. sclerosperma ssp. sclerosperma and A.

trachycarpa high shrubland over Triodia epactia hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP277 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 8/11/2007

Habitat Pediment

Vegetation Acacia bivenosa open shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** 4-5 years

West Pilbara Iron Site CP279 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 8/11/2007

Habitat Plain

Vegetation Acacia xiphophylla high shrubland over Acacia ancistrocarpa, A. bivenosa and Senna

glutinosa ssp. glutinosa scattered shrubs over Maireana georgei scattered low shrubs over

Triodia wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP281 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 8/11/2007

Habitat Broad drainage line

Soil Silty soils

Vegetation Corymbia candida ssp. candida and C. hamersleyana low open woodland over Acacia

ancistrocarpa shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP285 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 8/11/2007

Habitat Pediment

Vegetation Ptilotus calostachyus var. calostachyus low open shrubland over Triodia wiseana very open

hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP287 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Cassie Adam **Survey Date** 8/11/2007

Habitat Mesa slope and free face

Vegetation *Acacia tumida* var. *pilbarensis* scattered tall shrubs over *A. bivenosa, Senna glutinosa* ssp.

pruinosa and Ptilotus calostachyus var. calostachyus open shrubland over Triodia wiseana

very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP289 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 8/11/2007

Habitat Alluvial plain and drainage line

Soil Silty soil

Vegetation Acacia bivenosa, A. ancistrocarpa and A. atkinsiana shrubland over Acacia synchronicia low

scattered shrubs over Triodia wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP291 Relevé $\sim 50 \times 50 \text{ m}$

Described Cassie Adam **Survey Date** 8/11/2007

Habitat Alluvial plain

Soil Orange-brown, silty clay loam

Vegetation Acacia atkinsiana and A. bivenosa open shrubland over Triodia wiseana very open

hummock

grassland

Veg Condition Previous disturbance

Fire Age Unknown

West Pilbara Iron Site CP295 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 9/11/2007

Habitat Alluvial plain

Vegetation Acacia bivenosa, A. ancistrocarpa and A. atkinsiana high open shrubland over Triodia

wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP297 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 9/11/2007

Habitat Low hills

Vegetation Acacia bivenosa open shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP299 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 9/11/2007

Habitat Drainage lineSoil Silty soils

Vegetation *Corymbia hamersleyana* low open woodland over *Acacia ancistrocarpa* and *A. tumida* var.

pilbarensis high open shrubland over Triodia epactia very open hummock grassland over

Eragrostis aff. eriopoda (WAS site 963) very open tussock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP301 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 9/11/2007

Habitat Rolling hills and the end of drainage line

Vegetation *Corymbia hamersleyana* scattered low trees over *Acacia ancistrocarpa* high open

shrubland over A. bivenosa open shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP303 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 9/11/2007

Habitat Low rocky hills

Vegetation Acacia atkinsiana scattered tall shrubs over A. ancistrocarpa and Codonocarpus cotinifolius

open shrubland over *Ptilotus calostachyus* var. *calostachyus* low scattered shrubs over

Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** < 5 years

West Pilbara Iron Site CP305 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 9/11/2007 **Habitat** Numerous drainage lines feeding onto plain

Vegetation Acacia tumida var. pilbarensis, A. ancistrocarpa and A. atkinsiana high open shrubland

over

Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Termite mound, and occasional large bare areas

West Pilbara Iron Site CP307 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 9/11/2007

Habitat Drainage line

Soil Sandy, silty clay loam

Vegetation Corymbia hamersleyana scattered low trees over Acacia ancistrocarpa and A. atkinsiana

high open shrubland over Triodia wiseana and T. epactia hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP309 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 9/11/2007

Habitat Drainage line

Vegetation Corymbia hamersleyana low open woodland over Petalostylis labicheoides and Acacia

tumida var. pilbarensis open shrubland over Triodia epactia and T. wiseana very open

hummock

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP315 Relevé $\sim 50 \times 50 \text{ m}$

Described Hayley Hughes **Survey Date** 10/11/2007

Habitat Low rolling hills with minor drainage lines

Vegetation Acacia ancistrocarpa scattered tall shrubs over A. bivenosa scattered shrubs over Triodia

wiseana hummock grassland

Veg Condition Very good **Fire Age** Approx 10 years

West Pilbara Iron Site CP316 Relevé ~50 x 50 m

Described Cassie Adam **Survey Date** 22/09/2007

Habitat Hill.

Rock Basalt and white quartz

Vegetation Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP317 Relevé $\sim 50 \times 50 \text{ m}$

Described Hayley Hughes **Survey Date** 10/11/2007

Habitat Wide, broad drainage line sloping towards an alluvial plain

Vegetation Corymbia candida ssp. candida scattered low trees over Acacia inaequilatera scattered tall

shrubs over A. ancistrocarpa open shrubland over Triodia epactia and T. wiseana very

open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Burnt patch to the west

West Pilbara Iron Site CP320 Relevé ~50 x 50 m

Described Cassie Adam **Survey Date** 22/09/2007

Habitat Low rolling hills

Vegetation Acacia inaequilatera high open shrubland over A. bivenosa open shrubland over Triodia

wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP322 Relevé ~50 x 50 m

Described Cassie Adam **Survey Date** 22/09/2007

Habitat Minor drainage line

Vegetation Acacia ancistrocarpa, A. pyrifolia var. pyrifolia and A. bivenosa high open shrubland over

Triodia wiseana hummock grassland

Veg Condition Very good Fire Age Unknown Notes Wash area

West Pilbara Iron Site CP323 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Hayley Hughes **Survey Date** 10/11/2007

Habitat Undulating stony plain

Vegetation Corymbia hamersleyana scattered low trees over Acacia inaequilatera scattered tall shrubs

over A. bivenosa scattered shrubs over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Acacia tumida, Grevillea wickhamii and Triodia wiseana drainage line 80 m to the north of

this site

West Pilbara Iron Site CP324 **Relevé** ~50 x 50 m

Described Cassie Adam **Survey Date** 22/09/2007

Habitat Drainage line

Vegetation Acacia bivenosa, A. synchronicia and A. pyrifolia var. pyrifolia shrubland over Triodia

wiseana hummock grassland over *Cenchrus ciliaris open tussock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP325 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 10/11/2007

Vegetation Acacia xiphophylla high open shrubland over Senna glutinosa ssp. glutinosa open

shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP327 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Hayley Hughes **Survey Date** 10/11/2007

Habitat Pediment plain

Vegetation Acacia bivenosa and A. atkinsiana open shrubland over Triodia wiseana open hummock

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP328 **Relevé** ~50 x 50 m

Described Cassie Adam **Survey Date** 22/09/2007

Habitat Flat plain

Vegetation Eucalyptus victrix scattered low trees over Acacia trachycarpa high shrubland over Triodia

wiseana hummock grassland over *Cenchrus ciliaris very open tussock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Stony ridge drop off to the south

West Pilbara Iron Site CP329 Relevé $\sim 50 \times 50 \text{ m}$

Described Hayley Hughes **Survey Date** 10/11/2007

Habitat Flat plain with numerous minor drainage lines running north - south

Vegetation Corymbia hamersleyana scattered low trees over Acacia xiphophylla high open shrubland

over A. bivenosa and A. atkinsiana open shrubland over Triodia wiseana hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP330 Relevé $\sim 50 \times 50 \text{ m}$

Described Cassie Adam **Survey Date** 22/09/2007

Habitat Alluvial plain/ pediment

Vegetation Acacia bivenosa and A. ancistrocarpa shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP332 Relevé $\sim 50 \times 50 \text{ m}$

Described Cassie Adam **Survey Date** 22/09/2007

Habitat Alluvial plain/ pediment

Vegetation Acacia pyrifolia var. pyrifolia high open shrubland over A. bivenosa shrubland over Triodia

wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP333 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 11/11/2007

Habitat Low rolling hills

Vegetation Acacia bivenosa open shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP335 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Cassie Adam **Survey Date** 11/11/2007

Habitat Drainage line

Soil Red-brown, silty clay loam

Vegetation Acacia ancistrocarpa and A. tumida var. pilbarensis high open shrubland over Acacia

bivenosa shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP336 Relevé ~50 x 50 m

Described Cassie Adam **Survey Date** 22/09/2007

Habitat Drainage line

Vegetation Corymbia hamersleyana scattered low trees over Acacia coriacea ssp. pendens, A. pyrifolia

var. pyrifolia and A. inaequilatera high shrubland over A. bivenosa, A. ancistrocarpa and A.

trachycarpa open heath

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP337 Relevé $\sim 50 \times 50 \text{ m}$

Described Cassie Adam **Survey Date** 11/11/2007

Habitat Alluvial plain/ pediment **Soil** Orange-brown, silty clay loam

Vegetation Acacia xiphophylla high open shrubland over A. bivenosa open shrubland over Triodia

wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP338 Relevé ∼50 x 50 m

Described Cassie Adam **Survey Date** 22/09/2007

Habitat Alluvial plain/ pediment

Vegetation Acacia bivenosa open shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP340 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Alluvial plain/ pediment

Vegetation Acacia bivenosa shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Site is south of an *Acacia xiphophylla* community

West Pilbara Iron Site CP341 Relevé $\sim 50 \times 50 \text{ m}$

Described Cassie Adam **Survey Date** 11/11/2007

Habitat Drainage line

Soil Orange-brown, firm, loose, silty clay loam soils, with a sandy surface

Vegetation Corymbia hamersleyana scattered low trees over Acacia bivenosa and A. atkinsiana

shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP342 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Drainage line

Vegetation Acacia bivenosa shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP346 Relevé ~50 x 50 m

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Drainage line

Vegetation *Corymbia hamersleyana* scattered low trees over *Acacia ancistrocarpa* high open shrubland over *A. bivenosa* and *A. pyrifolia* var. *pyrifolia* open shrubland over *Cenchrus *ciliaris* open tussock

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP347 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Cassie Adam **Survey Date** 11/11/2007

Vegetation Acacia xiphophylla high shrubland over A. bivenosa scattered shrubs over Triodia wiseana

hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes High cover of *Triodia wiseana* compared to other *Acacia xiphophylla* sites

 $\textbf{West Pilbara Iron} \qquad \textbf{Site} \qquad \text{CP350} \qquad \qquad \textbf{Relev\'e} \, \sim 50 \, \text{x} \, 50 \, \text{m}$

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Alluvial plain

Vegetation Corymbia hamersleyana scattered low trees over Acacia ancistrocarpa and A. bivenosa

open scrub over Triodia wiseana hummock grassland

Veg Condition Very good

Fire Age Unknown

Notes Site is an *Acacia ancistrocarpa* and *Corymbia hamersleyana* thicket. Adjacent to this is a

more open vegetation type (Corymbia hamersleyana scattered low trees, over Acacia

bivenosa open shrubland, over Triodia wiseana hummock grassland).

West Pilbara Iron Site CP351 Relevé $\sim 50 \times 50 \text{ m}$

Described Cassie Adam **Survey Date** 11/11/2007

Habitat Stony plain

Soil Red-brown, clay loam soils

Vegetation Acacia atkinsiana high open shrubland over A. bivenosa scattered shrubs over Triodia

wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP353 **Relevé** ~ 50 x 50 m

Described Cassie Adam Survey Date 11/11/2007

Habitat Low rocky hill

Vegetation Acacia atkinsiana and A. bivenosa open shrubland over Triodia wiseana and T. sp. Robe

River open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP354 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Alluvial plain

Vegetation Acacia ancistrocarpa open heath over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Edge of *Acacia xiphophylla* community

West Pilbara Iron Site CP355 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Cassie Adam **Survey Date** 11/11/2007

Habitat Drainage line

Vegetation *Corymbia hamersleyana* scattered low trees over *Acacia bivenosa* and *A. atkinsiana* open

shrubland over Triodia wiseana scattered hummock grasses over *Cenchrus ciliaris open

tussock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Series of low mesas and low rolling hills

 $\textbf{West Pilbara Iron} \qquad \textbf{Site} \qquad \text{CP356} \qquad \qquad \textbf{Relev\'e} \, \sim \! 50 \, \text{x} \, 50 \, \text{m}$

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Drainage line with a stony creek bed

Vegetation Acacia arida and A. trachycarpa open heath over Triodia wiseana scattered hummock

grasses over *Cenchrus ciliaris scattered tussock grasses

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP358

Described Amy Douglas **Survey Date** 23/09/2007 **Relevé** ~50 x 50 m

Habitat Alluvial plain

Vegetation Acacia pyrifolia var. pyrifolia and Grevillea pyramidalis ssp. leucadendron high open

shrubland over A. bivenosa open shrubland over Triodia wiseana very open hummock

grassland over *Cenchrus ciliaris very open tussock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP359 Relevé $\sim 50 \times 50 \text{ m}$

Described Cassie Adam **Survey Date** 11/11/2007

Habitat Drainage lineSoil Silty soils

Vegetation Acacia aneura var. intermedia low open woodland over A. tumida var. pilbarensis, A.

bivenosa, A. atkinsiana and A. xiphophylla high open shrubland over Triodia wiseana

scattered hummock grasses over *Cenchrus ciliaris very open grassland

Veg Condition Very good **Fire Age** 5-10 years

West Pilbara Iron Site CP361 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 12/11/2007

Habitat Range

Vegetation Acacia bivenosa and A. atkinsiana open shrubland over Triodia wiseana open hummock

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP362 **Relevé** ~50 x 50 m

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Shallow valley

Vegetation Acacia ancistrocarpa and Acacia bivenosa open heath over *Cenchrus ciliaris open tussock

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP363 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 12/11/2007

Habitat Flat plain with drainage line

Vegetation *Acacia xiphophylla* high open shrubland over *A. bivenosa, A. ancistrocarpa* and *A.*

synchronicia open shrubland over Triodia wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP364 Relevé ~50 x 50 m

Described Amy Douglas **Survey Date** 23/09/2007

Vegetation Acacia ancistrocarpa open heath over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP367 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 12/11/2007

Habitat Stony plain

Vegetation Acacia atkinsiana, A. bivenosa and A. synchronicia open shrubland over Triodia wiseana

open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP368 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Alluvial plain

Vegetation Acacia ancistrocarpa shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP372 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Drainage line.

Vegetation Corymbia hamersleyana scattered low trees over Acacia ancistrocarpa open heath over

Triodia wiseana scattered hummock grasses

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP373 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 12/11/2007

Habitat Drainage lineSoil Silty clay loam

Vegetation Corymbia candida ssp. candida and C. hamersleyana low open woodland over Acacia

trachycarpa high open shrubland over *Cenchrus ciliaris very open tussock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP374 Relevé ~50 x 50 m

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Upper slope of a hill

Vegetation Acacia inaequilatera scattered tall shrubs over A. ancistrocarpa and A. bivenosa shrubland

over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP376 Relevé ~50 x 50 m

Described Amy Douglas **Survey Date** 23/09/2007

Vegetation Acacia bivenosa open heath over Triodia wiseana very open hummock grassland

Veg Condition Very good

Fire Age Unknown

West Pilbara Iron Site CP377 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 12/11/2007

Habitat Drainage lineSoil Silty soils

Vegetation *Corymbia hamersleyana* scattered low trees over *Acacia tumida* var. *pilbarensis* and *A.*

bivenosa high open shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP378 Relevé ~50 x 50 m

Described Amy Douglas **Survey Date** 23/09/2007

Vegetation Corymbia hamerslevana low open woodland over Acacia bivenosa open heath

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP382 Relevé ∼50 x 50 m

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Drainage line with a stony creek bed

Vegetation Eucalyptus victrix scattered low trees over Acacia trachycarpa open scrub over A. tumida

var. pilbarensis open shrubland over Triodia epactia very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP384 Relevé ∼50 x 50 m

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Lower slope of hill

Rock Basalt

Vegetation Acacia ancistrocarpa and A. pyrifolia var. pyrifolia open shrubland over Tephrosia

uniovulata low shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP387 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 12/11/2007

Habitat Plain

Vegetation Acacia atkinsiana and A. bivenosa open shrubland over Triodia wiseana hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP393 Relevé $\sim 50 \times 50 \text{ m}$

Described Denise True **Survey Date** 12/11/2007

Habitat Gully with range on either side

Vegetation Eremophila fraseri ssp. fraseri open shrubland over Triodia wiseana open hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP397 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Denise True **Survey Date** 12/11/2007

Habitat PedimentSoil Brown, silty soil

Vegetation Acacia bivenosa, Corchorus parviflorus and Solanum sp. low shrubland over Triodia

wiseana very open hummock grassland

Veg Condition Very good **Fire Age** < 5 years

West Pilbara Iron Site CP399 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas **Survey Date** 25/09/2007

Habitat Hill top

Vegetation Acacia bivenosa shrubland over Tephrosia uniovulata low shrubland over Triodia wiseana

hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP400 Relevé ~50 x 50 m

Described Amy Douglas **Survey Date** 23/09/2007

Habitat Adjacent to drainage line

Vegetation Acacia citrinoviridis closed scrub over A. ancistrocarpa open shrubland over Triodia

wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP401 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Amy Douglas **Survey Date** 25/09/2007

Habitat Hill top

Vegetation Senna glutinosa ssp. pruinosa open shrubland over Acacia bivenosa low shrubland over

 ${\it Triodia\ wise ana\ open\ hummock\ grassland}$

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP405 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Amy Douglas **Survey Date** 25/09/2007

Habitat Lower hill slope

Vegetation Acacia bivenosa open shrubland over Triodia wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP406 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 24/09/2007

Habitat Plain/pediment

Vegetation Acacia bivenosa, A. arida and A. pyrifolia var. pyrifolia open heath over Triodia wiseana

hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Acacia shrubland, with all species quite patchy in their distribution across the landscape.

West Pilbara Iron Site CP407

Described Amy Douglas **Survey Date** 25/09/2007 **Relevé** $\sim 50 \times 50 \text{ m}$

Habitat Drainage line off large hill, located on the pediment of the hill

Vegetation Acacia ancistrocarpa shrubland over Tephrosia uniovulata low shrubland over Triodia

wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP408 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 24/09/2007

Habitat Plain/pediment

Vegetation Acacia bivenosa shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes *Cenchrus ciliaris* replaces *Triodia wiseana* in a narrow band of this vegetation type running

along side a creek

West Pilbara Iron Site CP409 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas **Survey Date** 25/09/2007

Vegetation Acacia bivenosa and A. synchronicia open shrubland over Triodia wiseana open hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP413 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas **Survey Date** 25/09/2007

Habitat Gravel pit

Vegetation Acacia bivenosa and A. synchronicia high shrubland over Triodia wiseana scattered

hummock grasses

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP414

Described Daniel Brassington **Survey Date** 24/09/2007 **Relevé** ∼50 x 50 m

Habitat Flat plain

Vegetation Acacia bivenosa open heath over Triodia wiseana and T. epactia very open hummock

grassland over *Cenchrus ciliaris very open tussock grassland

Veg Condition Heavily grazed

Fire Age Unknown

West Pilbara Iron Site CP415 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Amy Douglas **Survey Date** 25/09/2007

Habitat Small drainage line

Vegetation Acacia ancistrocarpa open heath over Ptilotus calostachyus var. calostachyus shrubland

over

Triodia wiseana scattered hummock grasses

Veg Condition Very good **Fire Age** Unknown

Notes Lots of *Ptilotus calostachyus* var. *calostachyus* in between drainage lines

West Pilbara Iron Site CP417 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas **Survey Date** 25/09/2007

Habitat

Vegetation Ptilotus calostachyus var. calostachyus shrubland over Triodia wiseana open hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP420 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 24/09/2007

Habitat Flat plain dissected by drainage lines

Soil Well drained soils

Vegetation Corymbia hamersleyana scattered low trees over Acacia bivenosa and A. ancistrocarpa

shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Spinifex in drainage lines is long unburnt, however, charring is still evident on dead

branches of shrubs nearby.

West Pilbara Iron Site CP426 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 24/09/2007

Habitat Drainage line

Vegetation Acacia arida and A. ancistrocarpa open heath over Triodia wiseana scattered hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP428 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Daniel Brassington **Survey Date** 24/09/2007

Habitat Wide drainage line

Vegetation Acacia ancistrocarpa shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP433 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Amy Douglas **Survey Date** 25/09/2007

Habitat Small hill between drainage lines

Vegetation Ptilotus calostachyus var. calostachyus open heath over Triodia wiseana very open

hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP434 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 24/09/2007

Habitat Wide drainage line

Vegetation Corymbia hamersleyana low open woodland over Acacia tumida var. pilbarensis open

scrub

over *Cenchrus ciliaris tussock grassland

Veg Condition Site is heavily grazed by cattle

Fire Age Unknown

West Pilbara Iron Site CP436 Relevé ∼50 x 50 m

Described Daniel Brassington **Survey Date** 24/09/2007

Habitat Alluvial plain

Vegetation Acacia synchronicia open shrubland over Triodia epactia very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Site is between a river and an area of *Acacia xiphophylla*

West Pilbara Iron Site CP437 Relevé ~50 x 50 m

Described Amy Douglas **Survey Date** 25/09/2007

Habitat Drainage line

Vegetation Eucalyptus leucophloia ssp. leucophloia scattered low trees over Acacia bivenosa and

Senna

glutinosa ssp. pruinosa scattered shrubs over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP438

Described Daniel Brassington **Survey Date** 24/09/2007 **Relevé** ∼50 x 50 m

Habitat Alluvial plain

Vegetation Acacia bivenosa and A. tumida var. pilbarensis shrubland over Triodia epactia open

hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Triodia epactia drops out at the edge of this vegetation type

West Pilbara Iron Site CP439 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas **Survey Date** 25/09/2007

Habitat Foothill pediment and slope

Vegetation Acacia bivenosa and A. ancistrocarpa scattered tall shrubs over A. pyrifolia var. pyrifolia

scattered shrubs over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP441 Relevé $\sim 50 \times 50 \text{ m}$

Described Shapelle McNee **Survey Date** 26/09/2007

Vegetation Acacia synchronicia and *Vachellia farnesiana high open shrubland over *Ptilotus* astrolasius var. astrolasius open shrubland over *Triodia wiseana* very open hummock grassland over *Cenchrus ciliaris very open tussock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP444 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 24/09/2007

Habitat Drainage system

Vegetation Corymbia hamersleyana scattered low trees over Acacia ancistrocarpa open shrubland

over

Triodia wiseana and T. epactia very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP446 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 24/09/2007

Habitat Drainage line

Vegetation Corymbia hamersleyana low open woodland over A. ancistrocarpa, A. arida, A. bivenosa, A.

pyrifolia var. pyrifolia and A. tumida var. pilbarensis shrubland over Triodia wiseana and T.

epactia open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP447 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Amy Douglas **Survey Date** 25/09/2007

Vegetation *Corymbia hamersleyana* scattered low trees over *Acacia bivenosa, Senna artemisioides* ssp.

oligophylla and A. pyrifolia var. pyrifolia open shrubland over Triodia wiseana hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP449 Relevé ∼50 x 50 m

Described Amy Douglas **Survey Date** 25/09/2007

Vegetation Acacia bivenosa open scrub over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes *Acacia bivenosa* thicket

West Pilbara Iron Site CP452 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Daniel Brassington **Survey Date** 24/09/2007

Habitat Alluvial plain

Vegetation Corymbia hamersleyana scattered low trees over Acacia inaequilatera high open

shrubland over A. bivenosa open shrubland over Triodia wiseana very open hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP454 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 24/09/2007

Habitat Alluvial plain

Vegetation Corymbia hamersleyana scattered low trees over Acacia bivenosa and A. ancistrocarpa

shrubland over Triodia wiseana open hummock grassland over *Cenchrus ciliaris open

tussock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP458 Relevé $\sim 50 \times 50 \text{ m}$

Described Shapelle McNee **Survey Date** 26/09/2007

Habitat River bank edge

Vegetation Grevillea wickhamii ssp. hispidula and Senna glutinosa ssp. glutinosa high open shrubland

over *Triodia wiseana* hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP459

Described Amy Douglas **Survey Date** 25/09/2007 **Relevé** ~ 50 x 50 m

Vegetation Grevillea wickhamii ssp. hispidula, Acacia arida and A. tumida var. pilbarensis high

shrubland over A. pyrifolia var. pyrifolia and Senna artemisioides ssp. oligophylla open

shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP460 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington Survey Date 26/09/2007

Habitat Small hill

Vegetation *Triodia wiseana* open hummock grassland

Veg Condition Very good

Fire Age Unknown

West Pilbara Iron Site CP462 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Drainage line

Vegetation Acacia bivenosa open heath over Triodia wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP463 Relevé $\sim 50 \times 50 \text{ m}$

Described Amy Douglas **Survey Date** 25/09/2007

Vegetation Acacia ancistrocarpa open scrub over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP464 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Drainage basin

Soil Mainly brown, clay loam

Vegetation Acacia coriacea, A. inaequilatera and *Vachellia farnesiana high shrubland over Capparis

spinosa var. nummularia open shrubland over *Cenchrus ciliaris very open tussock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP465

Described Shapelle McNee **Survey Date** 26/09/2007 **Relevé** $\sim 50 \times 50 \text{ m}$

Habitat River edge leading out onto flat plain

Vegetation *Acacia synchronicia* open scrub over *A. pyrifolia* var. *pyrifolia* scattered shrubs over

Triodia

wiseana hummock grassland

Veg Condition Very good Fire Age Unknown

Notes 20 m cliff face on opposite side of river

West Pilbara Iron Site CP466 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Drainage line

Vegetation *Acacia tumida* var. *pilbarensis* high shrubland over *A. bivenosa* open shrubland over

Triodia

wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP467 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Upper end of a broad valley

Vegetation Grevillea wickhamii ssp. hispidula and Acacia inaequilatera scattered tall shrubs over A.

bivenosa shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP469 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Drainage line

Vegetation *Terminalia canescens* scattered low trees over *Grevillea wickhamii* ssp. *hispidula* open

scrub

over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP470 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007 **Habitat** Tip of a valley, on a hill after passing through a gorge

Vegetation Terminalia canescens low open woodland over Acacia arida open shrubland over Triodia

wiseana very open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP471 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Vegetation Acacia arida open shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP472 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat South facing slope and ridgeline

Vegetation Eucalyptus leucophloia ssp. leucophloia scattered low trees over Acacia arida shrubland

over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Slope terminates in an *Acacia bivenosa* and *Acacia arida* drainage line.

West Pilbara Iron Site CP473 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Beginnings of plains/ pediment

Vegetation Acacia bivenosa and A. arida open shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP474 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Base of gorge

Vegetation Ficus brachypoda low open woodland over Triodia wiseana and T. sp. Robe River

hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Acacia atkinsiana, A. arida, A. bivenosa, and A. inaequilatera over Triodia wiseana near the

base of pediment

West Pilbara Iron Site CP475 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Low stony hill

Vegetation Acacia bivenosa open shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP476 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat South-East facing slope

Vegetation Senna glutinosa ssp. glutinosa scattered shrubs over Triodia wiseana open hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP477 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Vegetation Acacia ancistrocarpa open shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** < 10 years

West Pilbara Iron Site CP478 Relevé ~50 x 50 m

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Drainage line

Vegetation Acacia tumida var. pilbarensis open scrub over A. atkinsiana and A. ancistrocarpa open

shrubland over Triodia wiseana scattered hummock grasses

Veg Condition Very good **Fire Age** < 10 years

West Pilbara Iron Site CP479 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Top of a hill

Vegetation Corchorus sp. and Senna glutinosa ssp. glutinosa open shrubland over Triodia wiseana

open hummock grassland

Veg Condition Very good **Fire Age** < 10 years

West Pilbara Iron Site CP480 Relevé $\sim 50 \text{ x } 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat West facing slope, just up from drainage line

Soil Stony soils

Vegetation Acacia aneura var. intermedia low woodland over Triodia wiseana open hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP481 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Rocky southern slope

Vegetation Senna glutinosa ssp. glutinosa open shrubland over Acacia bivenosa and A. citrinoviridis

low

open shrubland over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP482 Relevé $\sim 50 \times 50 \text{ m}$

Described Daniel Brassington **Survey Date** 26/09/2007

Habitat Entering drainage system

Vegetation Corymbia hamersleyana low open woodland over Acacia tumida var. pilbarensis open

heath

over *Triodia wiseana* very open hummock grassland over very open *Cenchrus *ciliaris*

tussock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP483 Relevé ~50 x 50 m

Described Shapelle McNee **Survey Date** 26/09/2007

Habitat Low rises between drainage lines

Vegetation Mixed scattered Acacia shrubs over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP487 Relevé ∼50 x 50 m

Described Shapelle McNee **Survey Date** 26/09/2007

Habitat Drainage line and lower slope of hill.

Rock The lower slope of hill has lots of exposed mud-like rock

Vegetation Acacia trachycarpa shrubland over Triodia wiseana hummock grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP488 Relevé $\sim 50 \times 50 \text{ m}$

Described Shapelle McNee **Survey Date** 26/09/2007

Habitat Hill, near the top

Vegetation Acacia arida and A. trachycarpa open shrubland over Triodia wiseana very open hummock

grassland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP490 Relevé ~50 x 50 m

Described Shapelle McNee **Survey Date** 26/09/2007

Habitat Near base of small hill

Vegetation Corymbia hamersleyana low open woodland over Acacia citrinoviridis and A. bivenosa high

open shrubland over Senna glutinosa ssp. glutinosa open shrubland

Veg Condition Very good **Fire Age** Unknown

West Pilbara Iron Site CP491 Relevé $\sim 50 \times 50 \text{ m}$

Described Shapelle McNee **Survey Date** 26/09/2007

Vegetation Acacia bivenosa high open scrub over Triodia wiseana open hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes Vegetation type continues over undulating foothills and small hills

West Pilbara Iron Site CP508 **Quadrat size** 120 x 10 m

DescribedRebecca GrahamSurvey Date 22/06/2008**Habitat**Robe River bed, with some small pools of water

Soil Firm

Rock River bed rocks

Vegetation Eucalyptus camaldulensis var. obtusa open forest over Melaleuca glomerata high open

shrubland over *Cyperus vaginatus, C. bifax* and *C. difformis* very open sedgeland over *Eragrostis tenellula* scattered grasses over *Ammannia auriculata* and *Stemodia grossa* very

open herbland

Veg Condition Excellent **Fire Age** >10 years

West Pilbara Iron Site CP509 **Quadrat size** 50 x 50 m

Described Denise True **Survey Date** 22/06/2008 **Habitat** Flat in the bottom third of the landform element

Soil Firm

Vegetation Corymbia candida low open woodland over mixed low scattered shrubs over mixed very

open herbland

Veg Condition Good **Fire Age** 18 months

Notes Re-growth after 2007 fire

West Pilbara Iron Site CP531 **Relevé** ~50 x 50 m

Described Denise True **Survey Date** 22/06/2008

Habitat Drainage line

Vegetation Eucalyptus camaldulensis open forest over Corymbia candida ssp. candida low open

woodland over Acacia bivenosa, A. ancistrocarpa and Senna artemisioides ssp. oligophylla

open shrubland over Triodia epactia hummock grassland

Veg Condition Very good **Fire Age** Unknown

Notes This is a description of the unburnt area next to quadrat CP060.

Appendix 5 Locations of all vegetation sampling sites (WGS 84, Zone 50)

Site	Easting	Northing	Latitude	Longitude
API-3000	402086	7636111	-21.37442	116.05553
API-3002	402324	7635911	-21.37624	116.057814
API-3003	402453	7635831	-21.37697	116.059054
API-3004	402574	7635735	-21.377844	116.060215
API-3005	402357	7635816	-21.3771	116.058127
CP012	422895	7664784	-21.116381	116.257536
CP013	420633	7660810	-21.1521925	116.2355675
CP014	422554	7663246	-21.13025975	116.2541815
CP015	419910	7659880	-21.160561	116.2285633
CP016	419008	7659016	-21.16832275	116.2198325
CP017	417308	7656181	-21.193866	116.203321
CP018	417393	7656163	-21.194028	116.2041438
CP019	416553	7655341	-21.201418	116.1960065
CP019	416648	7655301	-21.20178625	116.1969273
CP020	415074	7652069	-21.230908	116.181595
CP021	414050	7650921	-21.24122925	116.1716773
CP022	408103	7639383	-21.34518175	116.1137445
CP023	407255	7579554	-21.88561775	116.1137443
CP037	405915		-21.86361773	116.1022293
		7581111		
CP039	405390	7581935	-21.86401375	116.084318
CP040	405033	7583606	-21.84889975	116.0809645
CP041	404489	7586979	-21.8184025	116.0758938
CP042	404531	7592385	-21.769569	116.076613
CP050	396780	7616871	-21.547934	116.0031763
CP051	397829	7614786	-21.56683175	116.013173
CP052	406925	7638144	-21.35630825	116.1023145
CP053	401827	7632613	-21.40600475	116.0528265
CP054	401865	7632729	-21.404959	116.0531978
CP055	402269	7635948	-21.375903	116.057281
CP056	401172	7630547	-21.4246375	116.0463915
CP057	396752	7616162	-21.55433925	116.002862
CP058	403833	7597920	-21.71953	116.070187
CP111	412390	7645321	-21.291745	116.15539
CP113	412382	7645278	-21.292133	116.15531
CP115	412413	7644939	-21.295197	116.155592
CP117	412461	7644940	-21.29519	116.156054
CP119	412494	7644863	-21.295887	116.156369
CP121	412313	7644376	-21.300278	116.154599
CP123	412273	7644304	-21.300927	116.154209
CP125	412359	7643776	-21.305701	116.155011
CP127	407729	7639157	-21.3472	116.110123
CP129	407599	7639039	-21.348259	116.108863
CP131	407096	7638321	-21.35472	116.103973
CP133	406711	7637641	-21.360843	116.100223
CP135	406835	7637542	-21.361744	116.101413

Site	Easting	Northing	Latitude	Longitude
CP150	407780	7579081	-21.88992	116.107289
CP152	407657	7579082	-21.889905	116.106099
CP154	407446	7579393	-21.887084	116.104074
CP156	404559	7586535	-21.822413	116.076545
CP158	404587	7587431	-21.81432	116.076868
CP160	404582	7587551	-21.813236	116.076827
CP162	404652	7587985	-21.809319	116.077529
CP164	398264	7611829	-21.593567	116.017196
CP166	398174	7611942	-21.592541	116.016334
CP168	398098	7612108	-21.591037	116.01561
CP170	398067	7612802	-21.584766	116.015353
CP172	398048	7612709	-21.585605	116.015164
CP174	398044	7613494	-21.578513	116.015173
CP176	398361	7610205	-21.608243	116.018034
CP178	398391	7609967	-21.610395	116.01831
CP180	398394	7609869	-21.61128	116.018333
CP182	397087	7618851	-21.530065	116.00626
CP184	397144	7619070	-21.52809	116.006824
CP186	397306	7619305	-21.525976	116.008402
CP188	397406	7619392	-21.525196	116.009373
CP190	397480	7619491	-21.524306	116.010093
CP192	397594	7619615	-21.523192	116.011202
CP192	397824	7619013	-21.520261	116.013442
CP194	397824	7620051	-21.519271	116.014144
CP198	398022	7620237	-21.517598	116.015372
CP200	398313	7620930	-21.511354	116.018223
CP202	398719	7623485	-21.488296	116.022297
CP204	398719	7623592	-21.487329	116.022303
CP204	398829	7623596	-21.487299	116.023365
CP208	398744	7623997	-21.483672	116.022569
CP210	398747	7624100	-21.482742	116.022604
CP212	398793	7624477	-21.479338	116.023071
CP214	398879	7625180	-21.472993	116.023943
CP216	398918	7625550	-21.469652	116.024342
CP217	407218	7579549	-21.885663	116.101876
CP218	398919	7625636	-21.468875	116.024357
CP219	405972	7580925	-21.873167	116.089895
CP220	398944	7625818	-21.467233	116.024609
CP221	406022	7580966	-21.872799	116.090381
CP222	400022	7628755	-21.440808	116.043399
CP224	400927	7628915	-21.439365	116.043929
CP224 CP226	400927	7629913	-21.439363	
				116.043577
CP228 CP230	400974 401052	7629363 7629447	-21.435321 -21.434566	116.044409 116.045167
CP230 CP232	401052			
		7629637	-21.43285	116.045323
CP234	401017	7629732	-21.43199	116.044846
CP236	401127	7630327	-21.42662	116.045942
CP238	401146	7630525	-21.424833	116.046137

Site	Easting	Northing	Latitude	Longitude
CP240	401163	7630646	-21.423741	116.046308
CP242	401217	7630720	-21.423075	116.046833
CP243	405396	7581777	-21.865439	116.084369
CP244	401217	7630720	-21.423075	116.046833
CP245	405442	7581760	-21.865595	116.084814
CP246	401222	7631090	-21.419733	116.046903
CP247	405255	7582476	-21.859117	116.083045
CP248	401222	7631090	-21.419733	116.046903
CP249	405213	7582714	-21.856965	116.082652
CP250	413970	7650875	-21.2416435	116.1709015
CP251	405120	7583238	-21.852227	116.081783
CP253	405113	7583332	-21.851377	116.08172
CP255	404975	7584119	-21.84426	116.080431
CP257	404875	7584629	-21.839648	116.079492
CP259	404803	7585120	-21.835208	116.078824
CP261	404678	7585821	-21.828869	116.077655
CP263	404217	7592030	-21.772755	116.073556
CP265	404464	7592383	-21.769579	116.075965
CP267	404268	7592646	-21.767193	116.074085
CP269	404048	7593808	-21.756684	116.072025
CP271	404048	7593808	-21.756684	116.072025
CP275	404931	7584300	-21.842623	116.080015
CP277	397988	7613841	-21.575375	116.014653
CP279	397786	7614206	-21.572067	116.012725
CP281	397842	7614718	-21.567445	116.013297
CP283	397645	7615221	-21.562889	116.011425
CP285	397267	7615513	-21.56023	116.007793
CP287	397211	7615695	-21.558582	116.007263
CP289	402762	7606211	-21.644569	116.060316
CP291	401224	7606197	-21.644611	116.045454
CP293	400278	7606517	-21.641667	116.036332
CP295	396899	7615894	-21.556767	116.004263
CP297	396760	7616362	-21.552531	116.0029495
CP299	396809	7616792	-21.548649	116.003449
CP301	396848	7617310	-21.543972	116.003857
CP303	396899	7617672	-21.540705	116.004372
CP305	396910	7617880	-21.538827	116.004491
CP307	396951	7618178	-21.536137	116.004905
CP309	396975	7618314	-21.53491	116.005145
CP311	397002	7618574	-21.532562	116.005422
CP313	399124	7626411	-21.461886	116.026382
CP315	399257	7626531	-21.460809	116.027672
CP317	399380	7626654	-21.459705	116.028867
CP318	422825	7663948	-21.123931	116.256825
CP319	399492	7626717	-21.459142	116.029951
CP320	422726	7663669	-21.126448	116.255859
CP321	399569	7626770	-21.458667	116.030698
CP322	422666	7663668	-21.126454	116.255281

Site	Easting	Northing	Latitude	Longitude
CP323	399729	7626873	-21.457746	116.032248
CP324	422474	7663289	-21.12987	116.253415
CP325	400363	7627451	-21.45256	116.0384
CP326	422101	7662886	-21.133495	116.249805
CP327	400435	7627669	-21.450594	116.039108
CP328	421913	7662584	-21.136216	116.247981
CP329	400597	7628067	-21.447008	116.040695
CP330	421892	7662536	-21.136649	116.247776
CP331	400766	7628470	-21.443376	116.04235
CP332	421673	7662210	-21.139589	116.2456525
CP333	401432	7632201	-21.409708	116.048994
CP334	421600	7662106	-21.140521	116.244945
CP335	401550	7632296	-21.408856	116.050138
CP336	421577	7662081	-21.140746	116.244722
CP337	401722	7632583	-21.406272	116.051814
CP338	421528	7662029	-21.141214	116.244248
CP339	402111	7633059	-21.401993	116.055595
CP340	421401	7661815	-21.143141	116.243015
CP341	402190	7633143	-21.401239	116.056362
CP342	421331	7661678	-21.144376	116.242335
CP343	402279	7633280	-21.400006	116.057228
CP344	421291	7661700	-21.144176	116.24195
CP345	402337	7633474	-21.398257	116.057799
CP346	421180	7661541	-21.145607	116.240874
CP347	402485	7634643	-21.387704	116.059294
CP348	421076	7661428	-21.146624	116.239867
CP349	402473	7635096	-21.383611	116.059204
CP350	421058	7661356	-21.147274	116.239691
CP351	402507	7635357	-21.381255	116.059547
CP352	420907	7661154	-21.149092	116.238227
CP353	402532	7635542	-21.379585	116.059799
CP354	420765	7661077	-21.149782	116.236856
CP355	402604	7635695	-21.378207	116.060503
CP356	420687	7660933	-21.151079	116.236098
CP357	402745	7635912	-21.376254	116.061875
CP358	420669	7660901	-21.151367	116.235923
CP359	402511	7635923	-21.376142	116.059619
CP360	420641	7660818	-21.152116	116.23565
CP361	402745	7635912	-21.376254	116.061875
CP362	420473	7660669	-21.153455	116.234025
CP363	403232	7623172	-21.491373	116.06584
CP364	420399	7660529	-21.154717	116.233306
CP365	403861	7636343	-21.37242	116.072663
CP366	420350	7660474	-21.155211	116.232831
CP367	404024	7636406	-21.37186	116.074239
CP368	420182	7660315	-21.156641	116.231206
CP369	404357	7636491	-21.371109	116.077456
CP370	420118	7660200	-21.157677	116.230584

Site	Easting	Northing	Latitude	Longitude
CP371	404557	7636538	-21.370695	116.079387
CP372	419896	7659925	-21.160152	116.228433
CP373	405189	7636688	-21.369374	116.085491
CP374	419844	7659909	-21.160294	116.227931
CP375	405272	7636728	-21.369017	116.086294
CP376	419655	7659607	-21.163014	116.226097
CP377	406179	7637178	-21.364999	116.095067
CP378	419608	7659584	-21.16322	116.225643
CP379	406306	7637266	-21.36421	116.096296
CP380	419388	7659172	-21.166932	116.223505
CP381	406306	7637266	-21.36421	116.096296
CP382	419278	7659059	-21.167948	116.22244
CP383	404118	7595105	-21.744971	116.072777
CP384	419229	7659089	-21.167675	116.221969
CP385	404152	7595347	-21.742787	116.07312
CP386	419210	7659084	-21.167719	116.221786
CP387	403612	7598004	-21.718755	116.068053
CP388	418792	7658727	-21.170926	116.217743
CP389	403386	7598629	-21.713097	116.065904
CP390	418396	7658409	-21.173781	116.213914
CP391	403303	7598995	-21.709786	116.065123
CP392	418390	7658377	-21.17407	116.213854
CP392	401856	7600209	-21.698739	116.051207
CP393	417907	7658031	-21.1771795	116.20918
CP394	401724	7600542	-21.695724	116.049951
CP396	417527	7657694	-21.180202	116.205509
CP390	401646	7600320	-21.697725	116.049184
CP398	417405	7656707	-21.189114	116.204286
CP399	413468	7650576	-21.244321	116.166049
CP400	417338	7656219	-21.193519	116.203617
CP401	413388	7650314	-21.246684	116.165265
CP402	417120	7656129	-21.194323	116.201512
CP403	413258	7650193	-21.247771	116.164006
CP404	417257	7656096	-21.194627	116.20283
CP405	413295	7650209	-21.247628	116.164363
CP406	416869	7655484	-21.200138	116.199063
CP400	413139	7650160	-21.248063	116.162857
CP407	416814	7655383	-21.201048	116.198528
CP409	413017	7650143	-21.248211	116.161681
CP410				
	416703	7655334	-21.201486	116.197456
CP411	412941	7650082	-21.248759	116.160945
CP412	416587	7655448	-21.200451	116.196344
CP413	412943	7650010	-21.249409	116.160961
CP414	416486	7655415	-21.200744	116.19537
CP415	412854	7649536	-21.253687	116.160079
CP416	416281	7655313	-21.201656	116.19339
CP417	412732	7649311	-21.255714	116.158891
CP418	416207	7654830	-21.206017	116.192653

Site	Easting	Northing	Latitude	Longitude
CP419	412697	7649143	-21.25723	116.158545
CP420	415829	7654644	-21.20768	116.189002
CP421	412610	7649114	-21.257488	116.157705
CP422	415805	7654399	-21.209892	116.188759
CP423	412546	7649022	-21.258316	116.157084
CP424	415566	7653928	-21.214136	116.186433
CP425	412438	7648775	-21.260542	116.15603
CP426	415554	7653417	-21.218752	116.186292
CP427	412420	7648698	-21.261237	116.155853
CP428	415549	7653155	-21.221119	116.186231
CP429	412330	7648453	-21.263446	116.154973
CP430	415542	7653058	-21.221995	116.186158
CP431	412284	7648381	-21.264094	116.154526
CP432	415502	7652936	-21.223095	116.185767
CP433	412285	7648180	-21.26591	116.154525
CP434	415156	7652178	-21.229927	116.182395
CP435	412201	7648044	-21.267135	116.153708
CP436	415054	7652113	-21.23051	116.181409
CP437	412181	7647875	-21.268661	116.153507
CP437	415164	7651948	-21.232006	116.182461
CP439	412100	7647577	-21.271349	116.152711
CP440				
CP440 CP441	414930 411844	7651788	-21.23344 -21.306552	116.180198 116.150041
CP441 CP442	411844	7643679 7651686	-21.234359	
CP442 CP443	412307	7646938	-21.234339	116.179538 116.154673
CP444	414799 412301	7651602 7646859	-21.235114	116.178927
CP445	414141		-21.277846	116.154611
CP446		7650972	-21.240775	116.172554
CP447	412239	7646846	-21.27796	116.154013
CP448	414053	7650948	-21.240988	116.171705
CP449	412333	7646696	-21.27932	116.154911
CP450	413986	7650943	-21.24103	116.171059
CP451	412338	7646604	-21.280151	116.154955
CP452	413814	7650681	-21.243389	116.169388
CP453	412354	7646482	-21.281254	116.155103
CP454	413642	7650635	-21.243796	116.167729
CP455	412370	7646388	-21.282104	116.155252
CP456	413572	7650441	-21.245545	116.167044
CP457	412374	7646317	-21.282746	116.155287
CP458	412006	7643411	-21.308986	116.1515885
CP459	412339	7646276	-21.283114	116.154947
CP460	411944	7643382	-21.309241	116.15099
CP461	412320	7646260	-21.283258	116.154763
CP462	411779	7643302	-21.309955	116.149395
CP463	412386	7646022	-21.285411	116.155387
CP464	411646	7643452	-21.308594	116.14812
CP465	411710	7643831	-21.305173	116.148757
CP466	411448	7643291	-21.310038	116.146203

Site	Easting	Northing	Latitude	Longitude
CP467	411401	7642869	-21.313853	116.145723
CP469	411104	7642678	-21.31556	116.142854
CP470	410859	7642625	-21.316026	116.14049
CP471	410756	7642584	-21.316392	116.139494
CP472	410724	7642564	-21.316571	116.139185
CP473	410518	7642444	-21.317645	116.137192
CP474	410600	7642291	-21.319031	116.137975
CP475	410252	7642141	-21.320369	116.134612
CP476	409919	7641876	-21.322746	116.131387
CP477	409803	7641779	-21.323617	116.130263
CP478	409482	7641457	-21.32651	116.127151
CP479	409375	7641368	-21.327309	116.126115
CP480	409273	7641023	-21.33042	116.125113
CP481	409213	7640802	-21.332414	116.124522
CP482	409213	7640802	-21.332414	116.124522
CP483	409137	7640536	-21.334813	116.123775
CP484	409076	7640334	-21.336635	116.123176
CP485	408900	7640033	-21.339345	116.121463
CP486	408647	7639751	-21.34188	116.119008
CP487	408469	7639667	-21.34263	116.117287
CP488	408360	7639588	-21.343338	116.116232
CP489	408076	7639404	-21.344986	116.113483
CP469 CP490	407901	7639309	-21.345836	116.11179
CP490	407856	7639372	-21.345264	116.11136
CP508	404286	7592930	-21.7646325	116.0742705
CP509	404558	7588476	-21.8048805	116.0766458
CP531	404570	7588321	-21.806279	116.076755
CP532	401620	7600940	-21.692123	116.048969
CP539	404448	7590628	-21.785432	116.075709
CP540	402087	7602279	-21.680053	116.053562
CP541	401850	7603794	-21.666354	116.051361
CP542	400638	7607604	-21.631868	116.039876
CP543	399987	7607837	-21.629727	116.0336
CP544	399454	7607922	-21.628929	116.028455
CP545	398316	7621624	-21.505085	116.018294
CP546	398459	7622507	-21.497116	116.019728
CP547	410801	7642582	-21.316412	116.139928
CP548	411474	7643457	-21.30854	116.146462
WPI-147	422645	7663321	-21.129588	116.255063
WPI-147	412407	7647146	-21.275258	116.155648
WPI-192 WPI-198	412343 412319	7646519 7646261	-21.280919 -21.283249	116.154998
	412319			116.154754
WPI-199 WPI-300	412319	7646261 7647146	-21.283249 -21.275258	116.154754 116.155648
WPI-300 WPI-318				
	416884	7656331	-21.192487	116.199249
WPI-441	406961	7638074	-21.356945	116.102658
WPI-473	405300	7581725	-21.865904	116.083437
WPI-494	397947	7614025	-21.573711	116.014269

Site	Easting	Northing	Latitude	Longitude
WPI-495	397930	7614092	-21.573105	116.014109
WPI-507	396846	7617229	-21.544704	116.003833
WPI-508	396874	7617488	-21.542366	116.004119
WPI-536	401790	7600395	-21.697056	116.05058
WPI-700	412314	7645634	-21.288913	116.154673
WPI-701	412289	7645536	-21.289797	116.154427
WPI-702	412274	7645516	-21.289977	116.154281
WPI-703	412352	7645392	-21.291101	116.155027
WPI-704	412352	7645392	-21.291101	116.155027
WPI-718	409642	7641611	-21.325127	116.128702
WPI-722	406475	7639482	-21.344199	116.098049
WPI-758	398029	7612425	-21.588169	116.014963
WPI-760	398058	7613293	-21.58033	116.015296
CP036	408419	7578539	-21.89485225	116.1134445
CP140	409094	7577932	-21.900368	116.119944
CP142	408857	7578187	-21.898053	116.117664
CP144	408750	7578295	-21.897071	116.116635
CP146	408353	7578620	-21.894115	116.11281
CP148	408013	7578792	-21.892543	116.109528
WPI-738	408673	7578391	-21.8962	116.115895

Appendix 6 Species Representation in Vegetation Types for the Study Area

			Ston	y Pla	ins					Ston	y Hill	s and	Breal	kawa	iys								Mino	r Cre	eklir	ies						Ma	jor	Creek	kline	s			Claye	ey Pla	ain	
	a a	e e	ı,	q.	a ib	o p	e	La	SZa S4a	ра	7a 7b	b72	, <u>-</u>	7	S/m S7n	p8S	13b	.1a	p	ф.	q p	. e	9 h	a .	o o	e	9 4	=	а	o c	т п	A1b	3a	A3c A3e	44a	a c	32c	C2e	p	C5a	qç	C/a C7b
Vegetation Type:	P1a P2a	P2e	P2f P3b	P4b	PSb PSb	P5c P5d	P5	S1a	S4a	S5a	S7a S7b	b72	S7i	S7 _j	Sils	SS	S1	11a	IId	12b	13b	13e	13g 13h	I4a	15b	15	159	iSI		1 1	I8a	3	A3a	A3c A3e	A	A5a	<u>{ ()</u>	19 8	3 8	8	8 1	3 0
																							U						EcchGpApyAtrTEsppTeTw EcevMaMIAcoCE/s	,			A I									4
	2 3	.≥	ChAlAb1w AsAbAaTwPTc	Ė	<u>×</u>	.≥		> 1	≥ .≥	E	ပူ			į	≥			3	6/	ш.	≲ ا به		GwAtAbTw ERcAtrAarTwCEc	6/	ွှုပွဲ	≥	0 1	3 >	spp]	اخ	.≥ ⊔	ا چ ا ز	a Te	5 3				0)	0	ج	×	
	AatkAbAaTw \aAbAiAsTeTv	Tyd :	AD IV	ChAaTw	AxAbTw	AxAsAatkTw AxTw	AxTwTe	ţ.	AarAbApy Iw AarAbAtrTw	Tsp	AatkAaTwPTc AaTw	AbTw	3	ChAbTw	ERFTESPD IW TW	AaneTw	CTw	AaAarAbIw AbAaTw	ChAaAbTw/g	JWC.	CcAcPTaTe	aAtT	GwAtAbTw	AbAsTeTw/g	CcChAtrAtPICc	'Ab	ChAiAatk	Chatabtw	trTE	AaneERfoTw	TERCABLTW	VfAsApyTw	CcChAcolAaTe	ChAaAtr le/g EIChCcGwTw	COPI	EcAtrCEc	AIAATe	CcAaAbTe	<u>ه</u> ا	ERAXDSXI/h	ERA	ApyGpTe
	tkal	Ab/	AbAg	ChA	AxA	AsA	AXT	bAa.	rab Irab	arīw	kAa.	Abj	A	ChA		Aan	TER.	AbA	AaA	yAb	SAC JAb	ΑpA	WAt	AsT	CAB	Aatl	ChAi.	hAt	PyA MaM	neE	ERC/	FASA	JPAC :	AaA ChC	ECA	CAt	¥ ¥	CAa	AS	. XX	×I×	ApyC
	Aa/	5	As/		AX	¥		⋖ .	Aa	Ä	Aa			- 1	ž		1	Š	ಕ	Ap (ا ا		ERC	A C		5	3	5	GpA	PA	4		S	5 🖁						12	4	
																							-						l Co	,												
Species Abutilon aff. dioicum (HD72-14)	-																1												ш		_		#		-		#		+	#	7	-
Abutilon aff. dioicum (HD72-14) Abutilon aff. lepidum (1) (MET 15 352)																	Î			1				1						1			工	1	П		ፗ	耳	I	ш	#	
Abutilon amplum Abutilon dioicum	\vdash	++			+				+	1	-		1		1		1				1	1				-	+	1		1			+	+	H	+	+	++	+	++	+	1
Abutilon fraseri							1										1																#		Ш		Ŧ	\blacksquare	1	Į	4	
Abutilon malvifolium Abutilon oxycarpum	\vdash	t																		1		+								+	-		+		H		+	++	+	++	\pm	+
Abutilon sp. (inadequate material)				_													-			-											_		4		\Box	1	Τ,		4	11	4	
Abutilon trudgenii MS Acacia ampliceps																	1			1								1 1		1			1		Ħ		1		士	$\pm \pm$	⇉	
Acacia ancistrocarpa Acacia aneura var. intermedia	1 1	. 1	1 1	1	1 1		1	1		1	1 1	1	1	1	1	. 1	$-\mathbb{F}$	1 1	. 1	1	1 1	1 1	1	1	1 1	1	$-\Gamma$	1 1	1	1		$+ \top$	1	1	H	$-\Gamma$	1	1	1	47	1	1 1
Acacia arida								_	1 1	1		1						1	1		1	1	1 1	1				1	1		1	1	1		口		t	世	ᆂ	\Box	⇉	
Acacia atkinsiana Acacia bivenosa	1 1	1	1 1	1	1 1	1	1	1	1 1	1	1 1	1	1 1	1	1 1	+	1	1 1	1	1	1 1	1 1	1 1	1	1 1	1	_	1 1 1 1		1 1	- -	1	+	1 1	\vdash	+	1		1	-	+	1 1
Acacia bivenosa x sclerosperma			1 1	_	1 1	1		_	1 1	1			1 1		1 1		1	1 1		1		1	1 1				1	1 1	1 .	1		1	_				#		ľ			
Acacia citrinoviridis Acacia coriacea	1	++	1	-	1						-	1						+		1	1				1	. 1	-	1	Η,	1		1	+		1	-	+	++	+	+	+	
Acacia coriacea subsp. coriacea	1																			Ĩ								1					#		1		ᆂ		ᆂ	\blacksquare	二	
Acacia coriacea subsp. pendens Acacia elachantha	\vdash	1																		1									1	1	_		+		H		+	++	+	+	+	
Acacia inaequilatera	1 1	. 1	1 1	1	1	1	1	1		1	1	1	1 1	1	1 1		1	1	1	1	1 1	1	1	1		1	1	1 1		1		1	1		Ħ		1	. 1	1	Ħ	_	1 1
Acacia pruinocarpa Acacia pyrifolia var. pyrifolia	-	1	1	-			1		1		1	1						1 1	. 1	1	1 1	ı	1 1	1	1			1 1	1 1	1	-	1 1	+	1	1	1	+	+	1	+	+	1
Acacia sclerosperma subsp. sclerosperma	<u> </u>																				1												#		П		1	1	1	11	#	
Acacia sericophylla Acacia sp. (inadequate material)	1		1																		1	1	1										\pm					世	\pm			
Acacia synchronicia	1 1	+	1	1	1 1	1	1	1	_		1	1	1	1					1	1	1 1	i .		1	1	1	1	1 1	1	1	_	1	4	_	Н		1	\vdash	1 1	Ĺ	1	1 1
Acacia tenuissima Acacia trachycarpa	1	1	1					1	1			1		1	1				1	1			1	1	1				1 1	1		1 1	士	1 1		1	1	. 1	1	\pm	士	1
Acacia trachycarpa x tumida var. pilbarensis Acacia tumida var. pilbarensis	1	++	1 1	-				1	1		_	1			1			1 1		-	1 1	1 1	1 1	1	1	. 1	-	1 1	1	1			+	1	H	-	+	++	+	+	+	
Acacia wanyu								_							Ť			Ì					1		Í	1			_				#	Ť			ᆂ	世	ᆂ		二	
Acacia xiphophylla Adriana urticoides var. urticoides	1	+	1		1 1	1 1	1				1	1												1					1	1	_		+		H	1	+	1	+	+	_1_	
Alternanthera nana																				1									1 1	1			#		Ħ		1	ш	#	\blacksquare	_	1
Alysicarpus muelleri Amaranthus cuspidifolius	1	+					1												1	1										1	_		+		H		1	.++	+	+	\pm	1
Amaranthus undulatus	—	H															1			1			1]	1			#		\blacksquare		Ŧ	T.	4	Ŧ	4	\equiv
* Argemone ochroleuca subsp. ochroleuca	E																						1									1	士		H	1	士	世	土	\pm	士	
Aristida contorta Aristida holathera var. holathera	1	++	1		1				-		1					\vdash	1	+	1		1	1		1	_	1	_	1 1		1		++	+	-	-	_	+-		+	+	+	
Aristida holathera var. latifolia																					1	1						1					#	1		1			1	\pm	士	
Aristida latifolia Aristida sp. (inadequate material)	Η,	+	+						+				+		-	\vdash	+	-			+	+		\vdash	+		_			+		++	+	1	-	_	+	++	+	1	+	+
* Asphodelus fistulosus																																	#		ш		1		ᆂ	\blacksquare	二	
Boerhavia burbidgeana Boerhavia coccinea	1	+							-						-	+	1				1	+	1	1	\dashv		+		1 1	1		++	+	-	+	+	1	1	+	1	+	+
Boerhavia gardneri											1		1																				#		Ħ		I	苴	#	II.	_	\equiv
Boerhavia sp. (inadequate material) Bonamia media var. villosa	1	+									1	1	1											1					1		_		+		H		+	++	+	1	+	
Bonamia pannosa		H	. 1	1						П		ΠÌ	Ħ	1		H	_	1.	H					1		H		1 1		H				1	Ħ		Ŧ.	丰	#	##	#	〓
Bonamia rosea Brachyachne convergens	1	+	1	+	+	+	+	+	+		1			+	+	+		1	1	+	1	1		+	-	1	+	1 1	1	+	-	+	+	1	\forall	+	+1	++	+	1	+	+
Brachyachne prostrata				4			1	4			١.										1			1				١.					#	1	H		1	\Box	#	\blacksquare	4	_
Bulbostylis barbata Cajanus cinereus	1	Ш	1				Ш		ᆂ		\perp	Ш						±	H		1			1	_	1		1					\pm	1	H		士	世		士	_	1
Capparis spinosa var. nummularia	H	H		4				1				1				Ħ												1		1		1	4		1		\perp	##	Ŧ	\blacksquare	7	\perp
Cassytha capillaris * Cenchrus ciliaris	1	1	1	1	1		1	1	t		1	1		\pm	╘	H		t	1	1	1		1	1	1	1		1 1		1 1	±	1 1	1	1 1	Ħ	1	1	廿	1 !	1 1	Ŧ	1
* Cenchrus setiger	$\vdash \vdash$			Ŧ				Ŧ	-[-		Ŧ	H		Ŧ	1		1	Ŧ	П	\blacksquare		П					Ŧ		1	1	1	П	Ŧ	-[-	H	Ŧ	+	$+$ \mp	Ŧ	+	Ŧ	
Cheilanthes austrotenuifolia	.——						\perp	L		ш		$\perp \perp$		L	1	ш	1		Ш	L							L						ᆚ		$\perp \perp$			ㅗㅗ		ᆚᆜ		اللل

Appendix 7 Area of Vegetation Types across the Study Area and Proposed Impact Area

AatkAbAaTw ChAatkAbTwTe AaAbAiAsTeTw ChAbApyTw ChAiAbTw AsAbAaTwPTc ChAaTw	area (ha) 532.5 1.2 4.5 26.3 25.6	22.2 0.1 0.2 1.1	area (ha) 197.6 0.0 1.0	Impact area 21.3 0.0
ChAatkAbTwTe AaAbAiAsTeTw ChAbApyTw ChAiAbTw AsAbAaTwPTc	1.2 4.5 26.3 25.6	0.1 0.2	0.0	0.0
AaAbAiAsTeTw ChAbApyTw ChAiAbTw AsAbAaTwPTc	4.5 26.3 25.6	0.2		
ChAbApyTw ChAiAbTw AsAbAaTwPTc	26.3 25.6		1.0	1 04
ChAiAbTw AsAbAaTwPTc	25.6	1.1		0.1
AsAbAaTwPTc			9.8	1.1
		1.1	8.2	0.9
ChAaTw	74.9	3.1	24.2	2.6
	13.9	0.6	6.9	0.7
				1.1
				4.0
				0.4
				0.3
				5.4
	7.0	0.3	5.1	0.6
AbAatkTw	55.0	2.3	17.8	1.9
	4.3	0.2	0.3	0.0
AarAbAtrTw	18.1	0.8	8.9	1.0
AtAbSgpTwPTc	0.6	0.0		0.0
AarTwTsprr	11.1	0.5	4.4	0.5
AsTw	11.1	0.5		0.0
AatkAaTwPTc	3.5	0.1	2.1	0.2
AaTw	202.3	8.4	70.7	7.6
AbTw	347.6	14.5	135.4	14.6
AiAbTw	0.6	0.0	0.0	0.0
AiTw	26.7	1.1	16.0	1.7
ChAbTw	32.6	1.4	15.9	1.7
ERfTEspbTw		0.6	6.8	0.7
Tw	23.6	1.0	6.5	0.7
AaneTw	0.4	0.0	0.1	0.0
TERcTw				0.0
ERsGwCOpSOlTw				0.0
•			2.0	0.2
				0.8
				0.4
				0.2
				1.3
				0.3
				0.4
				0.3
				0.2
				0.3
				0.3
				0.2
				1.4
				0.9
				2.6
	AarAbApyTw AarAbAtrTw AtAbSgpTwPTc AarTwTsprr AsTw AatkAaTwPTc AaTw AbTw AiAbTw AiTw ChAbTw ERfTEspbTw Tw AaneTw	AxAbTw 107.1 AxAsAatkTw 5.7 AxTw 13.6 AxTwTe 119.6 ChApyGpTe 7.0 AbAatkTw 55.0 AarAbApyTw 4.3 AarAbApyTw 4.3 AarAbApyTw 18.1 AtAbSgpTwPTc 0.6 AarTwTsprr 11.1 Astw 11.1 AatAarwPTc 3.5 AaTw 202.3 AbTw 347.6 AiAbTw 0.6 AiTw 26.7 ChAbTw 32.6 ERfTEspbTw 14.6 Tw 23.6 AaneTw 0.4 TERcTw 1.6 ERsGwC0pS0lTw 0.9 AaAarAbTw 6.2 AbAaTw 20.4 ChAaAbTw/g 9.5 ApyAbTwCEc 3.6 CcAcPTaTe 29.7 ChAbAarTw 7.4 ElAbAaAtTw 6.6 GwAtAbTw 13.1<	AxAbTw 107.1 4.5 AxASAAtkTw 5.7 0.2 AxTW 13.6 0.6 AxTWTe 119.6 5.0 ChApyGpTe 7.0 0.3 AbAatkTw 55.0 2.3 AarAbApyTw 4.3 0.2 AarAbApyTw 4.3 0.2 AarAbApyTw 18.1 0.8 AtAbSgpTwPTc 0.6 0.0 AarTwTsprr 11.1 0.5 AsTw 11.1 0.5 AatkAaTwPTc 3.5 0.1 Aatw 202.3 8.4 AbTw 347.6 14.5 AiAbTw 32.6 1.4 ERfTespbTw 14.6 0.6 Tw 23.6 1.0 AaneTw 0.4 0.0 TERcTw 1.6 0.1 ERSGwCOpSolTw 0.9 0.0 AaAarAbTw/g 9.5 0.4 ApyAbTwCEc 3.6 0.1 CcAcPTa	AxAbTw 107.1 4.5 36.7 AxAsAatkTw 5.7 0.2 3.8 AxTw 13.6 0.6 2.5 AxTwTe 119.6 5.0 50.2 ChApyGpTe 7.0 0.3 5.1 AbAatkTw 55.0 2.3 17.8 AarAbApyTw 4.3 0.2 0.3 AarAbAtrTw 18.1 0.8 8.9 AtAbSgpTwPTc 0.6 0.0 0.0 AarTwTsprr 11.1 0.5 4.4 AsTw 11.1 0.5 4.4 AsTw 11.1 0.5 4.4 AatkAaTwPTc 3.5 0.1 2.1 Aatw 20.3 8.4 70.7 AbTw 347.6 14.5 135.4 AiAbTw 0.6 0.0 0.0 AiTw 26.7 1.1 16.0 ChAbTw 32.6 1.4 15.9 ERfTEspbTw 14.6 0.6

Vegetation	Vegetation	Study	% in	Impact	% in
code	abbreviation	area (ha)	Study area	area (ha)	Impact area
I5i	ChAtAbTw	25.5	1.1	9.4	1.0
I6a	EcChGpApyAtrTEsppTeTw	5.9	0.2	2.6	0.3
I6b	EcEvMgMlAcoCE/s	8.2	0.3	2.5	0.3
I7a	AaneERfoTw	0.7	0.0	0.5	0.0
I8a	TERcAarTw	3.1	0.1	1.8	0.2
A1a	AtrApyTeCEc	2.7	0.1	2.1	0.2
A1b	VfAsApyTw	16.6	0.7	2.8	0.3
A3a	CcChAcolAaTe	3.6	0.2	1.3	0.1
A3c	ChAaAtrTe/g	4.8	0.2	2.4	0.3
A3e	ElChCcGwTw	22.9	1.0	10.2	1.1
A4a	EcAcoPl	13.5	0.6	2.6	0.3
A4b	EcMgERAt/S/H	41.0	1.7	12.3	1.3
A5a	EcAtrCEc	5.5	0.2	3.2	0.3
A5b	EcCcChAsppTwTeCEc/H	20.5	0.9	3.3	0.4
A6a	PlTRz	21.3	0.9	4.8	0.5
C2c	AiAaTe	80.4	3.4	42.3	4.6
C2d	AiAsTwTe	46.7	1.9	9.0	1.0
C2e	СсАаАbТе	76.3	3.2	46.6	5.0
СЗа	AsTe	16.2	0.7	6.9	0.7
C5a	ERAxDsXi/h	0.8	0.0	0.3	0.0
C6b	AxTwERAx	29.3	1.2	18.3	2.0
C7a	AiTe	2.3	0.1	1.5	0.2
C7b	АруСрТе	17.8	0.7	8.0	0.9

Appendix 8 List of Vascular Flora Recorded in the Study Area

Family	Species
Adiantaceae	
	Cheilanthes austrotenuifolia
Marsileaceae	,
	Marsilea exarata
	Marsilea hirsuta
	Marsilea sp. (inadequate material)
Typhaceae	
	Typha domingensis
Poaceae	
	Aristida contorta
	Aristida holathera var. holathera
	Aristida holathera var. latifolia
	Aristida latifolia
	Aristida sp. (inadequate material)
	Brachyachne prostrata
	Brachyachne convergens
	*Cenchrus ciliaris
	*Cenchrus setiger
	Chloris pectinata
	Chrysopogon fallax
	Cymbopogon ambiguus
	Cymbopogon obtectus
	*Cynodon dactylon
	Dactyloctenium radulans
	Dichanthium sericeum ssp. humilius
	Digitaria brownii
	*Echinochloa colona
	Enneapogon caerulescens var. caerulescens
	Enneapogon lindleyanus
	Enneapogon polyphyllus
	Eragrostis aff. eriopoda (WAS site 963)
	Eragrostis cumingii
	Eragrostis exigua
	Eragrostis laniflora
	Eragrostis tenellula
	Eragrostis xerophila
	Eriachne aff. festucacea
	Eriachne aristidea
	Eriachne benthamii
	Eriachne helmsii
	Eriachne mucronata (typical form)
	Eriachne obtusa
	Eriachne pulchella ssp. dominii
	Eriachne pulchella ssp. pulchella
	Eriachne tenuiculmis
	Eriochloa pseudoacrotricha
	Eulalia aurea

	7 -1 11-1 1
	Iseilema dolichotrichum
	Iseilema macratherum
	Panicum laevinode
	Paraneurachne muelleri
	Paspalidium clementii
	Paspalidium tabulatum (Whim Creek form)
	Poaceae sp. (inadequate material)
	Setaria dielsii
	*Setaria verticillata
	Sorghum plumosum
	Sporobolus australasicus
	Themeda triandra
	Triodia angusta
	Triodia epactia
	<i>Triodia</i> sp. Robe River
	Triodia wiseana
	Triraphis mollis
	Urochloa occidentalis
	Urochloa pubigera
	Xerochloa imberbis
	Yakirra australiensis var. australiensis
Cyperaceae	
	Bulbostylis barbata
	Cyperus bifax
	Cyperus cunninghamii ssp. cunninghamii
	Cyperus difformis
	Cyperus hesperius
	Cyperus vaginatus
	Fimbristylis dichotoma
Asphodelaceae	
115011501010000	*Asphodelus fistulosus
Moraceae	The productive years and
Fioraccac	Ficus brachypoda
Proteaceae	Troub Drucity pour
Troccaceae	Grevillea eriostachya
	Grevillea pyramidalis ssp. leucadendron
	Grevillea wickhamii ssp. hispidula
	Hakea lorea ssp. lorea
Loranthaceae	Transactor ou superior ou
Loranthateae	Amyema preissii
	Lysiana casuarinae
Chenopodiaceae	Dysiana casaarmac
Shehopoulaceae	Dysphania kalpari
	Dysphania melanocarpa forma leucocarpa
	Dysphania rhadinostachya ssp. rhadinostachya
	Maireana georgei
	Maireana melanocoma
	Maireana planifolia Maireana villosa
	Rhagodia eremaea
	Salsola tragus ssp. tragus

	Sclerolaena costata
	Sclerolaena densiflora
	Sclerolaena diacantha
	Tecticornia sp. (inadequate material)
Amaranthaceae	
	*Aerva javanica
	Alternanthera nana
	Amaranthus cuspidifolius
	Amaranthus undulatus
	Gomphrena affinis ssp. pilbarensis
	Gomphrena cunninghamii
	Gomphrena sp. (inadequate material)
	Ptilotus aervoides
	Ptilotus appendiculatus var. appendiculatus
	Ptilotus astrolasius var. astrolasius
	Ptilotus auriculifolius
	Ptilotus axillaris
	Ptilotus calostachyus var. calostachyus
	Ptilotus carinatus
	Ptilotus exaltatus var. exaltatus
	Ptilotus fusiformis var. fusiformis
	Ptilotus gomphrenoides var. gomphrenoides
	Ptilotus helipteroides var. helipteroides
	Ptilotus incanus var. elongatus
	Ptilotus macrocephalus
	Ptilotus obovatus var. obovatus
	Ptilotus polystachyus var. arthrotrichus
	Ptilotus polystachyus var. polystachyus
	Ptilotus roei
	Ptilotus sp. (inadequate material)
Nyctaginaceae	Tototas sp. (madequate material)
Hyeraginaeeae	Boerhavia burbidgeana
	Boerhavia coccinea
	Boerhavia gardneri
	Boerhavia garaneri Boerhavia paludosa
Gyrostemonaceae	σοσπανία ραταμοσά
ayr ostemonateae	Codonocarpus cotinifolius
Aizoaceae	Godonocui pus counijoitus
11120uccac	Trianthema aff. triquetra (M3.35)
	Trianthema pilosa
	Trianthema triquetra
Molluginaceae	Triansiona diqueda
Monuginaceae	Mollugo molluginea
Portulacaceae	monago monaginea
1 01 tuiatatede	Calandrinia ntuchosnorma
	Calandrinia ptychosperma Portulaca conspicua
	Portulaca intraterranea
	Portulaca sp. (inadequate material)
Carranalanilla	*Portulaca oleracea
Caryophyllaceae	
	Polycarpaea holtzei

Polycarpaea longiflora
Polycarpaea longiflora (White form, M13-7)

Menispermaceae	
	Tinospora smilacina
Lauraceae	
	Cassytha capillaris
Papaveraceae	
	*Argemone ochroleuca ssp. ochroleuca
Capparaceae	
	Capparis spinosa var. nummularia
	Cleome viscosa
Brassicaceae	
	Lepidium platypetalum
Surianaceae	
	Stylobasium spathulatum
Mimosaceae	
	Acacia ampliceps
	Acacia ancistrocarpa
	Acacia aneura var. intermedia
	Acacia arida
	Acacia atkinsiana
	Acacia bivenosa
	Acacia bivenosa x sclerosperma
	Acacia citrinoviridis
	Acacia colei var. colei
	Acacia coriacea
	Acacia coriacea ssp. coriacea
	Acacia coriacea ssp. pendens
	Acacia elachantha
	Acacia inaequilatera
	Acacia ligulata
	Acacia pruinocarpa
	Acacia pyrifolia var. pyrifolia
	Acacia sclerosperma ssp. sclerosperma
	Acacia sericophylla
	Acacia sp. (inadequate material)
	Acacia synchronicia
	Acacia tenuissima
	Acacia trachycarpa
	Acacia trachycarpa x tumida var. pilbarensis
	Acacia tumida var. pilbarensis
	Acacia wanyu
	Acacia xiphophylla
	Neptunia dimorphantha
	*Vachellia farnesiana
Caesalpiniaceae	
_	Petalostylis labicheoides
	Senna artemisioides aff. ssp. oligophylla (thinly sericeous)
	Senna artemisioides ssp. helmsii
	Senna artemisioides ssp. oligophylla

ssp. oligophylla x helmsii ssp. x sturtii glutinosa glutinosa x stricta pruinosa x luerssenii e material) mii a ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
glutinosa glutinosa x stricta pruinosa x luerssenii e material) mii a ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
glutinosa x stricta pruinosa x luerssenii e material) mii a ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
pruinosa x luerssenii e material) mii x ssp. benthamiana rea (Burrup form; B65-11) ea var. neglecta
e material) mii ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
e material) amii a ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
amii a ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
amii a ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
a ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
a ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
a ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
a ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
a ssp. benthamiana ea (Burrup form; B65-11) ea var. neglecta
ea (Burrup form; B65-11) ea var. neglecta
ea var. neglecta
1
rum
riim
rum (Cape Preston form; M23-12)
ssp. boviperda
la
la (Burrup form)
la (Cape Preston form)
la (grey/green leaflet form)
quate material)
roo Creek (S. van Leeuwen 4301) PN
еа
ar. australis
tii (8) (HD106)
(06BP45-006)
(MET 12,357)
clementii
glabrior
quate material)
erley Flora (C.A. Gardner 7300)
, ,
lanceolata
ia
1

	Tribulus suberosus
Polygalaceae	
	Polygala aff. isingii

Euphorbiaceae	
	Adriana urticoides var. urticoides
	Euphorbia australis
	Euphorbia biconvexa
	Euphorbia boophthona
	Euphorbia boophthona (Large seed form)
	Euphorbia coghlanii
	*Euphorbia hirta
	Euphorbia sp. (B170-4)
	Euphorbia sp. (inadequate material)
	Euphorbia sp. (M80-1)
	Euphorbia sp. (site 1089)
	Euphorbia tannensis ssp. eremophila (Burrup form)
	Euphorbia wheeleri
	Flueggea virosa ssp. melanthesoides
	Leptopus decaisnei var. orbicularis
	Phyllanthus erwinii
	Phyllanthus maderaspatensis
	Phyllanthus reticulatus
Sapindaceae	
	Dodonaea coriacea
Tiliaceae	
	Corchorus aff. parviflorus
	Corchorus aff. walcotti (K.J. Atkins 570)
	Corchorus incanus ssp. incanus
	Corchorus laniflorus
	Corchorus parviflorus
	Corchorus sidoides ssp. aff. vermicularis (GLD NIM17-16)
	Corchorus sidoides ssp. sidoides
	Corchorus sp. (inadequate material)
	Corchorus tridens
	Triumfetta appendiculata
	Triumfetta appendiculata (Burrup Form)
	Triumfetta appendiculata (Mardie form)
	Triumfetta appendiculata (Red Hill form)
	Triumfetta clementii
	Triumfetta johnstonii
	Triumfetta sp. (inadequate material)
Malvaceae	, , , , , , , , , , , , , , , , , , , ,
-	Abutilon aff. dioicum (HD72-14)
	Abutilon aff. lepidum (1) (MET 15 352)
	Abutilon amplum
	Abutilon dioicum
	Abutilon fraseri
	Abutilon malvifolium
	Abutilon oxycarpum
	Abutilon sp. (inadequate material)

	Abutilon trudgenii MS
	Gossypium australe (Burrup Peninsula form)
	Gossypium australe (Whim Creek form)
	Gossypium robinsonii
	Hibiscus aff. sturtii (site 1209)
	Hibiscus brachychlaenus
	Hibiscus burtonii
	Hibiscus goldsworthii
	Hibiscus leptocladus
	Hibiscus sturtii (Site 1209)
	Hibiscus sturtii var. aff. grandiflorus
	Hibiscus sturtii var. campylochlamys
	Hibiscus sturtii var. platychlamys
	Hibiscus sturtii var. platychlamys (MET 15067)
	*Malvastrum americanum
	Sida aff. echinocarpa (MET 15,350)
	Sida aff. fibulifera (B64-13B)
	Sida aff. fibulifera (FMG 125-20)
	Sida aff. fibulifera (HD200-6)
	Sida arsiniata
	Sida cardiophylla
	Sida clementii
	Sida echinocarpa
	Sida pilbarensis (green form)
	Sida rhytidocarpa
	Sida sp. (inadequate material)
	Sida sp. (madequate material) Sida sp. spiciform panicles (E. Leyland s.n. 14/8/90)
	Sida spinosa
Sterculiaceae	orau spiriosu
Bter curiaceae	Keraudrenia nephrosperma
	Keraudrenia velutina ssp. elliptica
	Melhania sp. (CH15-39)
	*Melochia pyramidata
	Waltheria indica
Violaceae	יי מוטוטרוע וועוכע
· iviaceae	Hybanthus aurantiacus
Passifloraceae	Trybunchus uuruncucus
1 assilioi aceae	*Passiflora foetida var. hispida
Lythraceae	1 ussifioi a foetiaa vai. nispiaa
Lytinaceae	Ammannia auriculata
Combretaceae	Animannia duricalata
Combietaceae	Terminalia canescens
Myrtagogo	Terminalia supranitifolia
Myrtaceae	Corumbia candida sen candida
	Corymbia candida ssp. candida
	Corymbia hamersleyana
	Eucalyptus camaldulensis var. obtusa
	Eucalyptus leucophloia ssp. leucophloia
	Eucalyptus victrix
	Melaleuca argentea
	Melaleuca bracteata

Melaleuca glomerata
Melaleuca linophylla

Haloragaceae	
	Haloragis gossei var. inflata
Apiaceae	
	Trachymene oleracea ssp. oleracea
Oleaceae	
	Jasminum didymum ssp. lineare
Asclepiadaceae	
	Sarcostemma viminale ssp. australe
Convolvulaceae	
	Bonamia media var. villosa
	Bonamia pannosa
	Bonamia rosea
	Convolvulus angustissimus ssp. angustissimus
	Duperreya commixta
	Evolvulus alsinoides var. decumbens
	Evolvulus alsinoides var. villosicalyx
	Ipomoea coptica
	Ipomoea costata
	Ipomoea muelleri
	Ipomoea plebeia
	Operculina aequisepala
	Polymeria aff. ambigua (MET 12302)
	Polymeria calycina
	Polymeria sp. (site 1365)
Boraginaceae	
	Ehretia saligna var. saligna
	Heliotropium conocarpum
	Heliotropium crispatum
	Heliotropium heteranthum
	Heliotropium inexplicitum
	Heliotropium ovalifolium
	Trichodesma zeylanicum var. zeylanicum
Verbenaceae	
	Clerodendrum floribundum var. angustifolium
Calana	Clerodendrum tomentosum var. lanceolatum
Solanaceae	Ni saki wa kanthawi sa sa
	Nicotiana benthamiana
	Nicotiana rosulata ssp. rosulata
	Nicotiana sp. (inadequate material)
	Solanum diversiflorum
	Solanum ellipticum
	Solanum gabrielae Solanum horridum
	Solanum lasiophyllum Solanum an (inadaguata material)
Cananhulariasas	Solanum sp. (inadequate material)
Scrophulariaceae	Stomodia kinaji
	Stemodia kingii
	Stemodia grossa

Acanthaceae	
	Dicliptera armata
	Rostellularia adscendens var. clementii

Myoporaceae	
Пуброгиссис	Eremophila forrestii ssp. forrestii
	Eremophila fraseri ssp. fraseri
	Eremophila longifolia
Rubiaceae	Li Chiophila longijolia
Rubiaceae	Oldenlandia crouchiana
Cucurbitaceae	Oldenianala croachiana
Cucui bitaceae	*Citrullus colocynthis
	Cucumis maderaspatanus
	*Cucumis melo ssp. agrestis
	Trichosanthes cucumerina
Goodeniaceae	Trichosunthes cucumerinu
Goodemateae	Coodenia formactii
	Goodenia forrestii
	Goodenia lamprosperma
	Goodenia microptera
	Goodenia nuda
	Goodenia stobbsiana
	Scaevola spinescens (broad form)
Asteraceae	DI , II
	Blumea tenella
	Centipeda minima ssp. macrocephala
	Flaveria australasica ssp. gilgae
	Flaveria australasica ssp. australasica
	Flaveria australasica ssp. gilgae
	Helichrysum luteoalbum
	Pentalepis trichodesmoides
	Pluchea dentex
	Pluchea dunlopii
	Pluchea rubelliflora
	Pterocaulon sp. (inadequate material)
	Pterocaulon sphacelatum
	Pterocaulon sphaeranthoides
	Streptoglossa bubakii
	Streptoglossa cylindriceps
	Streptoglossa decurrens
	Streptoglossa liatroides
	Streptoglossa odora
	Streptoglossa tenuiflora
	*Sonchus oleraceus

Appendix 9 Location of Introduced Species from the Study Area

*Argemone ochroleuca ssp. ochroleuca

Easting	Northing	Date	Cover	Habitat
404226	7592921	22/6/08	+	Robe River bed. Some small pools of water
404587	7587431	23/10/07	+	River/ Drainage line

*Asphodelus fistulosus

E	asting	Northing	Date	Cover	Habitat	
4	12273	7644304	25/9/07	+	Stony river and flood plain	

*Cenchrus ciliaris

Easting	Northing	Date	Cover		
396760	7616846	9/11/07	+	Drainage line	
397144	7619070	9/11/07	+	Drainage line	
398022	7620237	9/11/07	+	Dissected drainage with an associated flood plain	
398264	7611829	8/11/07	+	Broad drainage line	
398313	7620930	9/11/07	5%	Dissected river bed	
399380	7626654	10/11/07	1%	Wide, broad drainage line sloping towards an alluvial plain	
399569	7626770	10/11/07		Incised drainage line	
400890	7629003	11/11/07	+	Top of a low mesa	
400927	7628915	11/11/07	1%	Pediment	
400974	7629363	11/11/07	+	Broad alluvial plain	
401017	7629732	11/11/07	+	Very shallow drainage within an alluvial plain	
401052	7629447	11/11/07	+	Alluvial plain	
401127	7630327	11/11/07	+	Open alluvial plain	
401146	7630525	11/11/07	1%	Broad drainage line/system	
401163	7630646	11/11/07	10%	Deeply incised stony river bed	
401190	7630577	13/11/07	2%	Alluvial plain just above a broad river	
401222	7631090	11/11/07	+	Drainage line	
401829	7632742	12/11/07	+	Pediment drainage between snakewood community sites	
402214	7635978	25/5/08	+	Drainage line coming down from mesa through pediment	
402337	7633474	11/11/07			
402511	7635923	11/11/07	3%	Drainage line	
402604	7635695	11/11/07	11%	Drainage line	
402762	7606211	8/11/07	+	Alluvial plain and drainage line	
404048	7593808	24/10/07	+	Drainage line, North bank of the Robe River	
404226	7592921	22/6/08	+	Robe river bed. Some small pools of water	
404357	7636491	12/11/07		Incised drainage line, 1.5 m drop	
404453	7586983	24/10/07	+	Pediment, alluvial plain and low rolling hills	
404464	7592383	24/10/07	1%	Drainage line	
404472	7592374	24/10/07	32%	Woodland in drainage line	
404559	7586535	23/10/07	OUT	Alluvial plain	
404582	7587551	23/10/07	3%	Alluvial plain	
404587	7587431	23/10/07	5%	River/ Drainage line	
405189	7636688	12/11/07	2%	Drainage line	
408380	7578535	20/6/08	+	Wide drainage line on an alluvial plain	
409213	7640802	26/9/07	2%	Entering drainage system	
411646	7643452	26/9/07	4%	Drainage basin	
411710	7643831	26/9/07		River edge leading out onto flat plain	
411844	7643679	26/9/07	2%		
413572	7650441	24/9/07		Ridge line	
413642	7650635	24/9/07	15%	Alluvial plain	

413981	7650942	25/9/07		Drainage line in alluvial plain
413986	7650943	24/9/07		River bed
414053	7650948	24/9/07		Wide bank of a river system
414066	7650952	25/9/07	4%	Low flat rise between two dissected drainages
415105	7652064	23/5/08	+	Alluvial flood plain
415156	7652178	24/9/07	35%	Wide drainage line
416486	7655415	24/9/07	3%	Plain
416587	7655448	24/9/07		Raised area within a river bed
416587	7655335	25/5/08	1.5%	Slight rise to the SW of a riverbed in undulating country
416620	7655323	25/9/07	15%	Densely vegetated riverbed
416703	7655334	24/9/07		River bed
416814	7655383	24/9/07		Plain/ pediment
417357	7656211	22/5/08	+	Drainage line between two hummock grasslands
419874	7659890	23/9/07	1%	Flat broad drainage between low hills
420473	7660669	23/9/07	12%	Shallow valley
420599	7660853	22/9/07	5%	Stony creek bed
420641	7660818	23/9/07		Drainage line
420669	7660901	23/9/07	4%	Alluvial plain
420687	7660933	23/9/07	+	Drainage line with a stony creek bed
421180	7661541	23/9/07	15%	Drainage line
421291	7661700	23/9/07		Drainage line
421401	7661815	23/9/07	+	Alluvial plain/ pediment
421577	7662081	22/9/07		Drainage line
421717	7662247	22/9/07		Alluvial plain/ pediment
421913	7662584	22/9/07		Flat plain
422474	7663289	22/9/07	10%	Drainage line
422529	7663263	22/5/08	3%	Flat plain between two snakewood communities (<i>Acacia xiphophylla</i>)
422895	7664784	22/9/07	+	Flat open alluvial plain

*Cenchrus setiger

Easting	Northing	Date	Cover	Habitat
404472	7592374	20/6/08	+	Woodland in drainage line
416620	7655323	23/5/08	50%	Densely vegetated riverbed

*Citrullus colocynthis

Easting	Northing	Date	Cover	Habitat
404226	7592921	22/6/08	+	Robe river bed. Some small pools of water

*Cucumis melo ssp. agrestis

Cacamis	tucums meto ssp. ugresus						
Easting	Northing	Date	Cover Habitat				
401190	7630577	24/5/08	+	Alluvial plain just above a broad river			
401829	7632742	24/5/08	+ Pediment drainage between snakewood community site				
404226	7592921	22/6/08	+ Robe river bed. Some small pools of water				
404472	7592374	20/6/08	+ Woodland in drainage line				
405010	7583631	20/6/08	+ Flat, alluvial plain				
416620	7655323	23/5/08	+ Densely vegetated riverbed				
417357	7656211	22/5/08	+ Drainage line between two hummock grasslands				
			Flat plain between two snakewood communities (Acacia				
422529	7663263	23/9/07	+	xiphophylla)			

*Cynodon dactylon

<u>y y</u>				
Easting	Northing	Date	Cover	Habitat
416620	7655323	23/5/08	+	Densely vegetated riverbed

*Echinochloa colona

Easting	Northing	Date	Cover	Habitat
404472	7592374	20/6/08	+	Woodland in drainage line
416620	7655323	23/5/08		Densely vegetated riverbed

*Euphorbia hirta

Easting	Northing	Date	Cover	Habitat	
404472	7592374	20/6/08	+	Woodland in drainage line	

*Malvastrum americanum

Easting	Northing	Date	Cover Habitat		
404472	7592374	20/6/08	1%	Woodland in drainage line	
			Wide drainage line on an alluvial plain		
408380	7578535	20/6/08	+		
416620	7655323	23/5/08	+ Densely vegetated riverbed		
			Plain between two snakewood communities (Acacia		
422529	7663263	22/5/08	+ xiphophylla)		
422895	7664784	22/9/07	+	+ Flat open alluvial plain	

*Portulaca oleracea

Easting	Northing	Date	Cover	Habitat
397801	7614765	24/05/08	+	Wide, flat drainage line
			+	Drainage line coming down from a hogback/old
402214	7635978	25/05/08	т	mesa through pediment
404453	7586983	20/06/08	+	Pediment, alluvial plain and low rolling hills
404472	7592374	20/06/08	+	Woodland in drainage line
404579	7588451		+	
405010	7583631	20/06/08	+	Flat, alluvial plain
408380	7578535	20/06/08	+	Wide drainage line on an alluvial plain
414066	7650952	23/05/08	+	Low flat rise between two dissected drainages
			+	Slight rise to the southwest of a riverbed in
416587	7655335	25/05/08	-	undulating country
			+	Flat sparse area between drainage lines in slightly
417366	7656185	22/05/08	•	hilly country, alluvial plain or pediment
419033	7658992	22/05/08	+	Upper slope of low stony rise in an alluvial plain
419874	7659890	22/05/08	+	Flat broad drainage between low hills
			+	Flat plain between two snakewood communities
422529	7663263	22/05/08	7	(Acacia xiphophylla)

*Melochia pyramidata

Easting	Northing	Date	Cover	Habitat
416620	7655323	23/5/08	+	Densely vegetated riverbed

*Passiflora foetida var. hispida

Easting	Northing	Date	Cover	Habitat
				Community on dolomite on the crest and upper slope of a
405915	7581111	20/6/08	+	low mesa featuring outcropping

*Setaria verticillata

Easting	Northing	Date	Cover	Habitat
408380	7578535	20/6/08	+	Wide drainage line on an alluvial plain
				Flat plain between two snakewood communities
422529	7663263	22/5/08	+	(Acacia xiphophylla)

*Sonchus oleraceus

Easting	Northing	Date	Cover	Habitat
416620	7655323	23/5/08	+	Densely vegetated riverbed

*Vachellia farnesiana

Vacnemi	vachema jai nesiana					
Easting	Northing	Date	Cover	Habitat		
398264	7611829	8/11/07	+	Broad drainage line		
402762	7606211	8/11/07	+	Alluvial plain and drainage line		
404048	7593808	24/10/07	+	Drainage line, North bank of the Robe River		
404464	7592383	24/10/07	+	Drainage line		
404472	7592374	20/6/08	+	Woodland in drainage line		
409094	7577932	23/10/07	+	Low rocky rise		
411646	7643452	26/9/07	+ to 4%	Drainage basin		
411779	7643302	26/9/07	+	Drainage line		
411844	7643679	26/9/07	3%			
412382	7645278	25/9/07	+	Alluvial plain between 80 m high ranges		
413981	7650942	25/9/07		Drainage line in alluvial plain		
413986	7650943	24/9/07		River bed		
416587	7655335	25/5/08	+	Slight rise to the SW of a riverbed in undulating country		
416620	7655323	23/5/08	+	Densely vegetated riverbed		
420599	7660853	22/9/07	+	Stony creek bed		
422895	7664784	22/9/07	+	Flat open alluvial plain		