BORE COMPLETION REPORT: HODGSON WETLAND SUITE BUNTINE-MARCHAGEE NATURAL DIVERSITY RECOVERY CATCHMENT

Compiled by L. J. Bourke and S. L. Coleman Wetlands Conservation Program

DEPARTMENT OF PARKS AND WILDLIFE HYDROLOGY REPORT WCP-HR-2013-006 December 2014 For more information contact:

Lindsay Bourke Hydrologist Wetlands Conservation Program Department of Parks and Wildlife (DPaW) 17 Dick Perry Avenue Kensington, Western Australia 6151

Disclaimer

While all reasonable care has been taken in the preparation of the information in this document, the Acting Director General of the Department of Parks and Wildlife and its officers and the State of Western Australia accept no responsibility for any errors or omissions it may contain, whether caused by negligence or otherwise, or any loss, however caused, arising from reliance on, or the use or release of, this information or any part of it.

Copyright © Department of Parks and Wildlife, 2014

Recommended Reference

The recommended reference for this publication is:

Bourke, L. J., and Coleman, S. L. (2014). Bore completion report: Hodgson Wetland Suite, Buntine-Marchagee Natural Diversity Recovery Catchment. Department of Parks and Wildlife (DPaW), Wetland Conservation Program Hydrology report WCP-HR-2013-006

Keywords:

Altered hydrology, Yilgarn Craton, wetland, wheatbelt region, groundwater/surface-water interactions

Figure 1. Photograph of wetland W023 taken by Lindsay Bourke on 17 November 2011

Figure 2. Photograph or wetland W024 taken by Lindsay Bourke on 14 December 2010

Bore completion report: Hodgson Wetland Suite, Buntine-Marchagee Natural Diversity Recovery									
Catchment. WCP-HR-2013-006									
Document version: FINAL									
Document version: FINAL									
Author/Position: Lindsay Bourke/Hydrologist									
Shannon Coleman/Technical Officer	Date: 17/12/2014								
Document Reviewed by/Position:	Date:								
Document Authorised by/Position:	Date:								
Document currency: 2014									
Supporting Documents:									

Table of contents

1	Intr	oduc	tion	3
	1.1 1.2 1.3 1.4 1.4	Loc Clir Geo	kground	999
	1.4	.2	Soil-landscapes)
2	1.5 1.6 1.7 Inv	Gro Lan	al surface hydrology	0 0
	2.1 2.2 2.3 2.4 2.4	Purj Dril San	vious work	6 6 6
	2.4	.2	Water quality17	7
	2.4	.3	Regolith logging	7
	2.4	.4	Mapping of outcrop	7
	2.4.	.5	Photography of chip samples	7
3	Geo	ology	v and Regolith)
	3.1 3.2 3.3 3.3	Geo Reg	ing	0 0

	3.3.2	Silcrete hardpans	.20
	3.3.3	Pedolith	.21
4	Hydrog	eology	.21
4 4 5	.2 Sap	ficial aquifer prolite aquifer hemistry	.22
5 6		jor ions and nutrients	
6 6 6 7	.2 Aqu .3 Hyc	golith uifers drochemistry sion	.32 .33
8	Referen	ices	.35
App	endix A		.39
		of previous hydrogeological investigations	
D	-	nd bore construction	
	Bore co	mpletion	.40
	Survey.		.41
App	endix C		.42
N L N	lajor ions aboratory utrients.	mistry sampling and analysis s y EC and pH	.42 .42 .42
R		vrofile EC and pH	
	Quality	Control	.44
	Regolith	$h EC_{1:5}$ and $pH_{1:5}$ summary	.44
App	endix E		.53
		ble photographs	
		hotographs	
L	egend - E	Lithology Bore construction	.65
В	ore logs .		.66

Appendix I	76
Regolith description and field notes Appendix J	76
Appendix K	
Ion ratios	93

List of tables

Table 1. Groundwater monitoring bore coordinates (MGA-94 Zone 50J, AusGeod98) and
piezometer construction summary19
Table 2. Summary of groundwater levels as metres below ground level (mbgl); and metres
Australian height Datum, (mAHD), and difference between potentiometric head and water
table elevation for October 201222
Table 3. Summary of groundwater and surface water water quality measured October 10 and
11, 2012
Table 4. Summary of hydrochemical analytes, relevant laboratories and their level of
reporting (LOR)
Table 5. Summary of relative precent difference (RPD) between parent and blind replicate
(QC26-QC33) samples for soil $EC_{1:5}$ and $pH_{1:5}$ 46
Table 6. Regolith soil:water (1:5) EC and pH47
Table 7. Hydrochemistry data of the HWS for groundwater and wetlands collected in October
2012

Table of figures

Figure 1. Photograph of wetland W023 taken by Lindsay Bourke on 17 November 2011......3 Figure 2. Photograph or wetland W024 taken by Lindsay Bourke on 14 December 20103 Figure 3. Location map of the subcatchment of the Hodgson Wetland Suite (HWS)......12 Figure 4. Aerial photograph of the HWS with interpreted surface water subcatchment Figure 5. The spatial extent of revegetation planted by DPaW in 2010 (figure courtesy of David Pongracz, DPaW Midwest Region)14 Figure 6. The spatial extent of revegetation planted by DPaW in 2010 and 2013 (figure courtesy of David Pongracz, DPaW Midwest Region)15 Figure 7. Plan view of study area subcatchment with locations of wetlands (Wxx) and Figure 9. Conceptual hydrogeological cross section A - A' with water table elevation, Figure 10. Conceptual hydrogeological cross section B - B' with water table elevation,

Figure 11. Conceptual hydrogeological cross section C - C' with water table elevation,
piezometric head and locations of wetlands (Wxx) and piezometers (BMCxx)
Figure 12. Interpolated water table elevation (mAHD) based on water levels observed in
October 2012
Figure 13. Interpolated depth to water table (mbgl) based on water levels observed in October
2012
Figure 14. Piper trilinear plot of major ions in groundwater and wetlands sampled in October
2012
Figure 15. Photographs of sedimentary bedrock exposures, observed in the western extent of
the study area
Figure 16. Laboratory EC versus calculated TDS relationship for groundwater and surface
water sampled in October 2012. Seawater ratio from Hingston and Gailitis (1976)93
Figure 17. Cl versus Br for groundwater and surface water sampled in October 201293
Figure 18. Cl versus K for groundwater and surface water sampled in October 2012. Seawater
ratio from Hingston and Gailitis (1976)94
Figure 19. Cl versus SO ₄ for groundwater and surface water sampled in October 2012.
Seawater ratio from Hingston and Gailitis (1976)94
Figure 20. Cl versus Mg for groundwater and surface water sampled in October 2012.
Seawater ratio from Hingston and Gailitis (1976)95
Figure 21. Cl versus Ca for groundwater and surface water sampled in October 2012.
Seawater ratio from Hingston and Gailitis (1976)

1 Introduction

1.1 Background

Groundwater inflow and outflow fluxes are especially important for wetlands located in semiarid environments. Contributions from this water source commonly supports and sustains aquatic, riparian and terrestrial biological elements during dry seasons, or periods of extended drought. Changes to the hydrology of wetlands either through natural variation or through anthropogenic means, for example via water abstraction or changing land use, can significantly influence the biological composition, structure and function.

The Hodgson Wetland Suite (HWS) consists of 38 wetlands within a topographical catchment area of 2,390 ha (Figure 3). Within the HWS, wetlands W023 and W024 are recognised by the Department of Parks and Wildlife (DPaW) as having high conservation value due to being in relatively good condition with fresher water resulting in high aquatic biodiversity, relatively diverse waterbird populations and good riparian vegetation (Aquatic Research Laboratory, 2009).

Land use history within the HWS is similar to surrounding areas (CALM & Colmar Brunton, 2005), with a large proportion of the subcatchment being cleared last century for agricultural production. Land use changes, specifically the introduction of annual broad-acre cropping systems to the HWS last century, resulted in changes to the water, solute and nutrient status. This altered hydrology is expressed through rising groundwater levels, an altered wetland hydroperiod, rising salinity levels and nutrient enrichment. The native biota of the HWS wetland assemblage is threatened by altered hydrology and DPaW considers this area as the highest priority for management intervention within the Buntine-Marchagee Natural Diversity Recovery Catchment (BMNDRC).

In 2012, 16 groundwater monitoring bores were installed across the subcatchment of the HWS. This report describes the structure and lithology of the surficial and semi-confined saprolite aquifers intersected during this drilling program. This report also presents baseline groundwater level, water quality and hydrochemistry data (major ions and nutrients) in groundwater and wetlands occurring in the HWS. This new information builds upon the priori conceptual hydrogeological model of the catchment and its wetlands developed by Bourke (2012).

An improved knowledge of the HWS gained from this study will form the basis for the assessment of the hydrological (altered water balance) and hydrochemical (solute and nutrient concentrations) threats to the biological values of wetlands W023 and W024. This can in-turn be applied to develop and implement management actions to address these hydrological-derived threats. Fresh to brackish wetlands, which were once a common feature in the wheatbelt of Western Australia, and their associated biodiversity are now poorly represented. This improved knowledge not only has application for the HWS, but also other similar wetlands distributed throughout semi-arid Western Australia.

1.2 Location

The HWS is located within the western boundary of the BMNDRC, about 280 km north-east of Perth (Figure 3). The groundwater monitoring infrastructure and wetlands are all located on private property and are not accessible without explicit permission from landholders.

1.3 Climate

The HWS experiences warm to hot summers and cool wet winters. The long-term (1912 to 2013) average rainfall at the nearby town of Coorow (BoM site number 8037) is 378 mm. The highest monthly rainfall generally occurs in cooler months although significantly high daily rainfall totals can occur from December to March (summer to early autumn) resulting from intense thunderstorms or rain bearing depressions associated with remnants of tropical cyclones (Short, Farmer, Whale, & Coles, 2006). Since the very wet year of 1999 the area has experienced a very dry period with particularly dry years occurring in 2002 (225.5 mm) and 2010 (209.5 mm).

Average annual Class-A pan evaporation rates (based on interpolation from Three Springs, Goodlands and Wongan Hills), are approximately 2,600 mm. Average monthly potential evaporation rates vary from about 390 mm in January to 64 mm in July with rainfall deficits occurring in all but the wettest winter months.

1.4 Geomorphology and soil landscapes

1.4.1 Geomorphology

The HWS lies within the physiographical unit of the Darling Plateau (Carter & Lipple, 1982) with the Darling Scarp forming the western eroded edge. Archaean and Proterozoic crystalline basement rocks have weathered to saprock and saprolite. Cyclic periods of aridity, coinciding with glacial and interglacial periods (Commander, Schoknecht, Verboom, & Caccetta, 2001) and extended exposure of saprolite and saprock to physical and chemical weathering and erosion have created broad valleys. As the energy in these erosional systems declined these broad incised valleys were filled with transported, surficial sediments. These overlying sediments were subsequently reworked and altered through physical and biogeochemical processes.

Long-periods of relative geological stability and weathering in the HWS have resulted in little variation in relief, ranging from 342 mAHD in the western uplands and 285 mAHD in the east near wetland W118 (Figure 4). Topographic gradients are relatively uniform in the upper sandy areas, with slopes typically in the order of <5%. Marked changes in slope (breaks in slope) occur between the valley floor and flanks where slopes of <2% predominate.

1.4.2 Soil-landscapes

The HWS lies within the Balgerbine soil-landscape system with six subsystem phases (Griffin & Goulding, 2004). The mapped units consist of weathered granite, gravel and colluvium on the hillcrest in the west of the catchment (258Bb_6a and 258Bb_6b), which graduate eastwards downslope through deeply weathered granite, sandy duplexes, gravel and deep sand; further downslope to an undulating plain dominated by deep yellow sand

(258Bb_3). The eastern extent of the study area is dominated by sandy depressions with alluvial and lacustrine sediments associated with wetlands and wet soil (258Bb_2a and 258Bb_2b).

1.5 Local surface hydrology

The HWS lies within the Moore-Hill River basin (Basin 617) and the Moore River subcatchment. Topography slopes from the catchment divides towards two major drainage lines which are populated with numerous wetlands. These two drainage lines trend in an easterly and north, north-easterly direction respectively and meet proximal to wetland W118 (Figure 4). With respect to surface water the HWS is assumed to be a closed catchment and wetland W118 is considered to be a terminal wetland.

Surface water conveyance structures were constructed in subcatchment 5, which drain surface water from a number of wetlands eastwards towards Keigherly road. Little is known about their construction, although a review of historical orthophotographs (Coleman, 2013) indicates that these were constructed between the mid 1960's to late 1970's.

Surface water flow in the upper catchment occurs rarely, perhaps only during higher magnitude rainfall events (e.g. 1:10 ARI or greater), due to the dominance of deep yellow sand at the surface. Conversely surface water flows are common on hillside seeps and within drainage lines in areas where soil has limited storage capacity due to the presence of high water tables. These overland surface water flows occur over relatively small areas with local infiltration resulting in additional recharge to the surficial aquifer. Connected catchment-scale surface flow is unlikely to occur due to the discontinuous nature of surface water drainage channels, which are intersected with dunal swales. Keigherly road also forms a barrier to eastward flowing surface water flows.

1.6 Groundwater and surface water use

Aerial photographs, as evidenced by soil erosion and tracks worn down by stock around wetlands, indicate that numerous wetlands within the HWS were historically used as livestock watering points. The reliance of stock upon wetlands has been significantly reduced due to the construction of exclusion fences. Livestock now rely predominantly upon soaks excavated in well-drained sandy soil where fresh shallow groundwater occurs. Water is pumped from a wetland (identified as W130) to a hilltop storage tank to provide supplies for the spraying of agricultural chemicals. Agricultural water use is considered insignificant relative to water losses via evapotranspiration.

1.7 Landuse and vegetation

Broad-acre cropping of rain-fed wheat, canola and lupins is the predominant landuse. The grazing of sheep on fallowed stubble or volunteer pastures occurs across the remainder of available arable land. The timing of land clearing is unknown, although the majority of the perennial vegetation was cleared prior to the acquisition of the earliest aerial imagery in 1959 (Coleman, 2013). Historic aerial photographs (Coleman, 2013) show that the riparian

vegetation surrounding wetland W023 consists predominantly of *Eucalyptus camaldulensis*, that colonised¹ the area in the period between 1969 and 1981.

In 2010, 15.9 ha of local provenance perennial vegetation was planted around wetland W024 by DPaW (Figure 6). In 2013, 63.2 ha of perennial native and non-native perennial species were planted in the paddock immediately to the north of wetland W023 and to the west of wetland W024 (Figure 5). The 2013 planting consisted of oil mallee eucalypts (13.4 ha), mixed local provenance native species (9.3 ha), saltbush (11.1 ha) and mixed perennial pastures (29.4 ha) plus an additional 2 ha of infill planting (Figure 6). Perennial vegetation (native and introduced species) now covers about 266 ha, or 11 % of the HWS subcatchment.

¹ It is unknown whether *Eucalyptus camaldulensis* occurring at the periphery of wetland W023 is naturally occurring (e.g. seed dispersal to the high water mark following a flood event), or was intentionally planted by the landholder. The timing of recruitment follows a particularly wet period in the mid 1960's, and given the presence of a dead tree in the wetland, the former is highly probable.

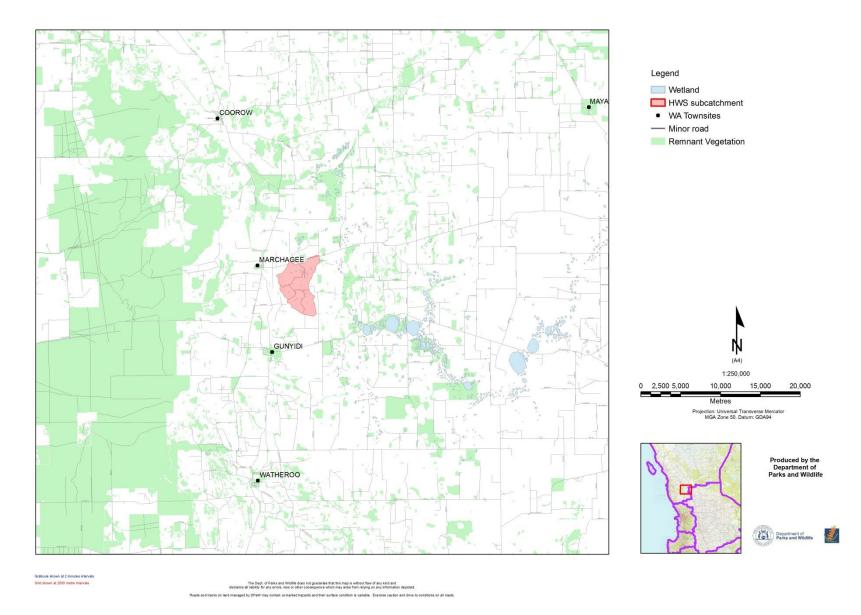


Figure 3. Location map of the subcatchment of the Hodgson Wetland Suite (HWS)

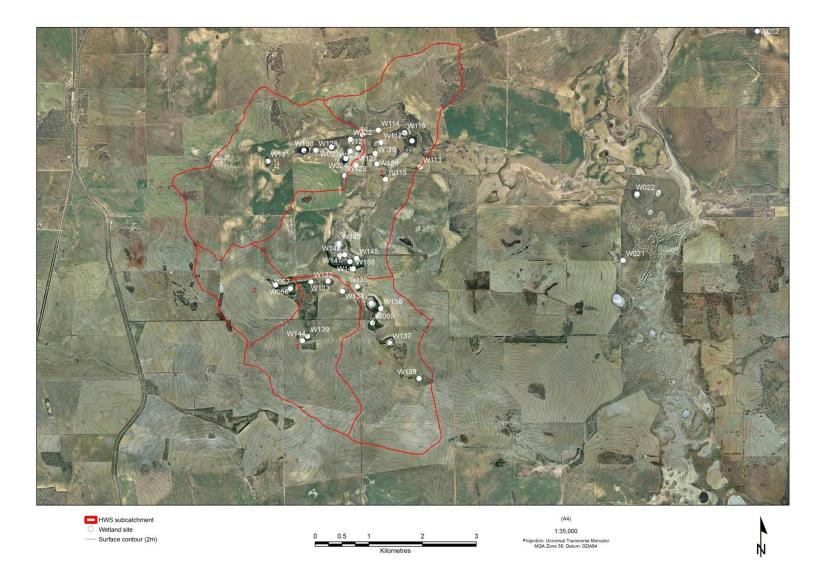


Figure 4. Aerial photograph of the HWS with interpreted surface water subcatchment boundaries, 2.0 m elevation contours and wetlands (Wxx) monitored by DPaW

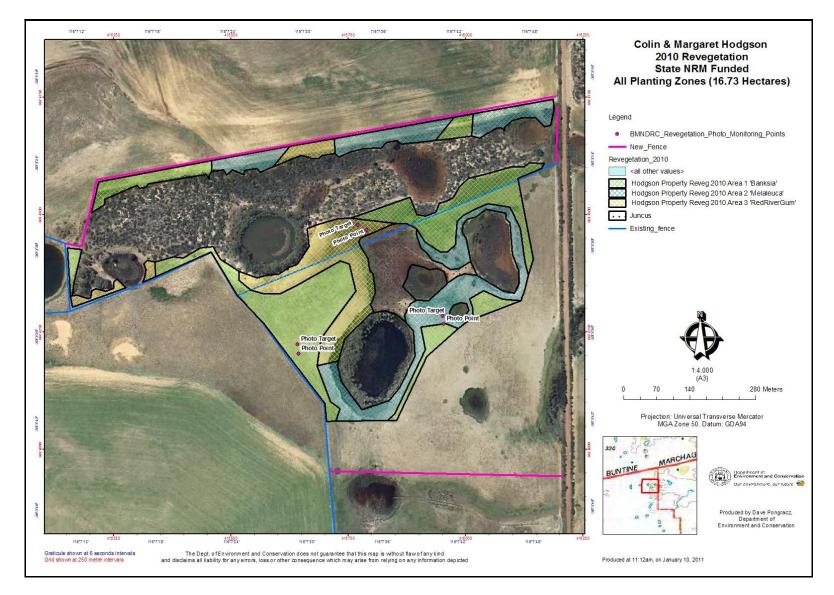


Figure 5. The spatial extent of revegetation planted by DPaW in 2010 (figure courtesy of David Pongracz, DPaW Midwest Region)

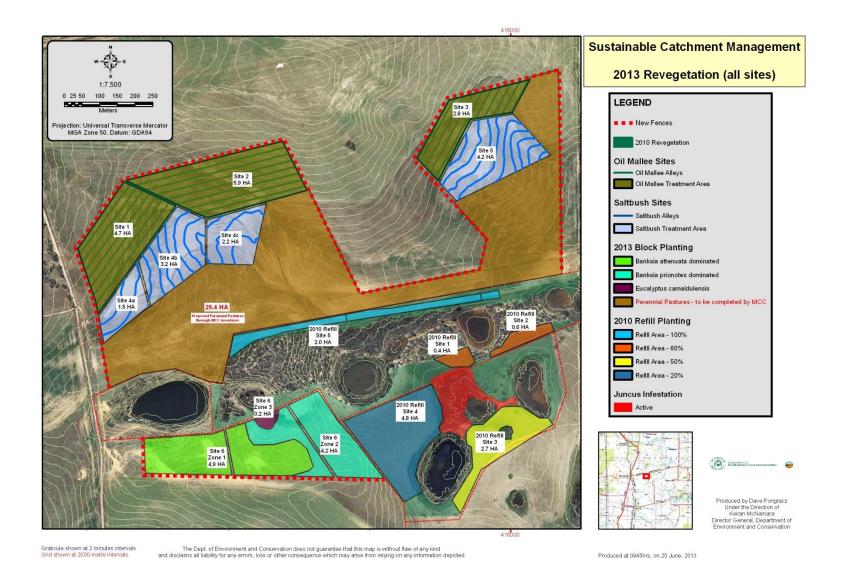


Figure 6. The spatial extent of revegetation planted by DPaW in 2010 and 2013 (figure courtesy of David Pongracz, DPaW Midwest Region)

2 Investigation

2.1 Previous work

A number of hydrogeological and hydro-chemical investigations have occurred within the broader BMNDRC (Bourke, 2003, 2011; Speed & Strelein, 2004; URS, 2008). A brief summary of this work is contained at the end of this document (Appendix A), or see Bourke (2014) for a detailed summary. Historical data within the HWS is limited to wetland water levels and wetland water quality collected by DPaW and the Aquatic Research Laboratory (2009) since 2008 (see Bourke, 2012).

This investigation was preceded by the development of wetland-scale and catchment-scale conceptual hydrogeochemical models for the HWS and wetlands W023 and W024 (Bourke, 2012). Given the absence of groundwater monitoring infrastructure within the HWS, these models were largely speculative, although founded on observations in similar geological and hydrological settings elsewhere in the BMNDRC (Bennett & Goodreid, 2009; Bourke, 2011; Bourke & Coleman, 2013; Speed & Strelein, 2004; URS, 2008).

2.2 Purpose and scope

The conceptual hydrogeochemical models described by Bourke (2012) formed the basis for the planning and design of this investigation, in terms of drill method, location, target depth and bore construction specifications. The priority was to site infrastructure in areas which would lead to an understanding of the aquifers and the groundwater/surface water interactions occurring proximal to wetlands W023 and W024, as well as the broader subcatchment (further details provided in Appendix B).

Infrastructure and baseline data discussed in this study, supported with the ongoing collection of hydrogeochemical datasets and other complimentary data, will form the basis for the assessment of the hydrological (altered water balance) and hydrochemical (solute and nutrient concentrations) threats to the biological values of wetlands W023 and W024.

2.3 Drilling

Piezometers were discretely screened across the surficial and semi-confined saprolite aquifers located up gradient and down-gradient of wetlands W023 and W024, within the assumed groundwater capture and release zones. Piezometers were also sited to document changes in groundwater levels and solute concentrations along a flow path from wetland W130 in the west, to wetland W118 in the east of the catchment (Figure 7). A summary of the piezometer construction details are provided in Table 1, whilst further detail regarding methods for drilling, bore construction and survey are appended (Appendix B).

2.4 Sampling and measurement

2.4.1 Groundwater levels

Water levels were manually measured following bore completion in April/May 2012. Upon commissioning all piezometers were fitted with capacitance probe-type electronic data logger (Odyssey 32k) to record water levels at half-hourly intervals. Barometric pressure

(Schlumberger Baro-diver) is measured half-hourly at the site of the automated weather station (Hobo U30) to correct water levels for barometric pressure. Water level data presented in this report were measured in October 10 and 11, 2012.

2.4.2 Water quality

Groundwater samples were obtained using an impeller pump or stainless-steel bailer on October 10 and 11, 2012. Water quality (EC, pH, Redox and Temperature) was measured using a portable meter (TPS, model 90-FLMV). Results were considered representative of the aquifer once key water quality parameters (pH \pm 0.1, EC \pm 5% and temperature \pm 0.2°C) stabilised. Water samples were analysed for major ions and nutrients (see Appendix C for details). Chain of Custody (COC) documents were submitted to each laboratory along with all water samples. All samples were submitted and analysed within the appropriate holdings times (National Measurement Institute, 2007).

2.4.3 Regolith logging

Regolith samples were taken at one-metre intervals by the DPaW site hydrologist and described by their properties of field texture (N. Hunt & Gilkes, 1992); wetted colour (Munsell Color Company, 2000); sorting and roundness sphericity classification for soil particles (McDonald, Isbell, Speight, Walker, & Hopkins, 1998); grain size according to the Standards Association of Australia (McDonald et al., 1998); and qualitative indication of moisture (e.g. dry, damp or saturated). Bulk samples were stored in plastic bags and subsamples transferred to chip trays. All samples are stored at the DPaW Kensington.

Soil electrical conductivity (EC) and pH were analysed using the soil:water suspension method of Rayment and Higginson (1992), standardised to a 1:5 ratio. Further details regarding soil:water EC and pH methods and analysis is appended (Appendix D).

2.4.4 Mapping of outcrop

Field observations of bedrock outcrop were plotted with a hand-held GPS (Garmin, GPSMap 62) then boundaries qualitatively defined within the aid of a Geographical Information System (ArcGIS V10.1). It was assumed that rock exposures forms a no-flow boundary therefore were excised from water table interpretations.

2.4.5 Photography of chip samples

A tripod mounted SLR camera (Nikon D7000) was used to photograph dry and lightly wetted soil samples stored in chip trays (Appendix E). A colour reference chart (DataColor SpyderChekr) was photographed with samples to enable greyscale and colour calibration if required. Photographs were taken in natural light and the camera settings were ISO 400, aperture priority (F5.6) and automatic metered shutter speed with upper and lower bracketing compensation (\pm 0.7).

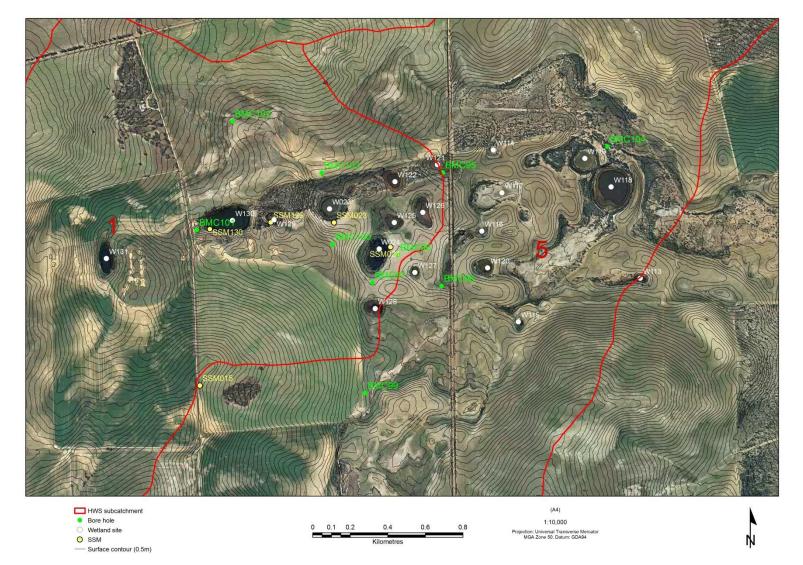


Figure 7. Plan view of study area subcatchment with locations of wetlands (Wxx) and piezometers (BMCxx)

Table 1. Groundwater monitoring bore coordinates (MGA-94 Zone 50J, AusGeod98) and piezometer construction summary

Site ID	Date completed	MGA-94 East	MGA-94 North	Surface elevation (mAHD)	TOC ² (magl)	TOC ² (mAHD)	Concrete collar (magl)	Concrete collar (mAHD)	Headworks (magl)	Drilled depth (m)	Casing depth (mbgl)	Screen interval	Drilling method	Aquifer	Status	Filter sock	Closest wetland
BMC95D	02/05/2012			290.79	0.82	291.61	0.13	290.92	0.76	32.0	30.2	28.2 - 30.2	Air core	Saprolite	Monitoring	Yes	W121
BMC95OB	02/05/2012			290.83	0.54	291.37	0.11	290.94	0.46	6.0	3.9	1.1 – 3.9	Air core	Surficial	Monitoring	No	W121
BMC96D	18/04/2012			293.08	0.62	293.70	0.12	293.19	0.48	36.0	31.3	27.3 - 31.3	Air core	Saprolite	Monitoring	No	W024
BMC96OB	27/11/2012			293.24	0.48	293.72	0.10	293.34	0.41	6.0	3.8	1.0 - 3.8	Hand auger	Surficial	Monitoring	Yes	W024
BMC97D	20/05/2012			293.51	0.65	294.16	0.16	293.67	0.53	27.0	26.1	24.1 - 26.1	Air core	Saprolite	Monitoring	No	W024
BMC97I	20/05/2012			293.53	0.60	294.13	0.13	293.66	0.47	12.0	11.2	9.2 - 11.2	Air core	Surficial	Monitoring	No	W024
BMC98D	23/05/2013			291.76	1.77	293.52	0.16	291.92	0.48	31.0	29.7	27.7 – 29.7	Mud rotary	Saprolite	Monitoring	Yes	W127
BMC98OB	23/05/2013			291.74	0.57	292.30	0.14	291.88	0.45	6.0	5.5	1.5 - 5.5	Air core	Surficial	Monitoring	Yes	W127
BMC99OB	27/04/2012			296.41	0.82	297.23	0.12	296.53	0.72	9.0	7.0	4.0 - 7.0	Mud rotary	Surficial	Monitoring	Yes	W128
BMC100D	27/04/2012			298.27	0.77	299.03	0.11	298.38	0.75	39.0	38.5	36.5 - 38.5	Mud rotary	Saprolite	Monitoring	Yes	W023/W024
BMC1000B	27/04/2012			298.31	0.80	299.11	0.13	298.44	0.74	12.0	6.0	2.0 - 6.0	Air core	Surficial	Monitoring	Yes	W023/W024
BMC1010B	28/04/2012			299.84	0.83	300.67	0.17	300.01	0.86	12.0	11.5	7.5 – 11.5	Air core	Surficial	Monitoring	Yes	W130
BMC102OB	28/04/2012			300.62	0.85	301.47	0.18	300.80	0.80	7.0	5.7	1.7 – 5.7	Air core	Surficial	Monitoring	Yes	W130
BMC103OB	28/04/2012			296.15	0.82	296.96	0.13	296.28	0.79	6.0	5.4	1.4 - 5.4	Air core	Surficial	Monitoring	Yes	W023
BMC104D	01/05/2012			286.66	0.81	287.47	0.12	286.78	0.79	36.0	28.1	22.1 - 28.1	Mud rotary	Saprolite	Monitoring	Yes	W119/W118
BMC104OB	01/05/2012			286.67	0.85	287.51	0.12	286.79	0.83	6.0	5.7	1.7 – 5.7	Mud rotary	Surficial/ sedimentary	Monitoring	Yes	W119/W118

¹ Units are in metres above ground level (magl) and metres Australian Height Datum (mAHD) ² Top of casing (TOC)

3 Geology and Regolith

3.1 Setting

The HWS lies within the zone of ancient drainage where Archaean $(3,084 \pm 191 \text{ my})$ granites and gneisses of the Yilgarn Craton predominate (Carter & Lipple, 1982). The Darling Fault, which marks the western edge of the Yilgarn Craton, is about 17 kilometres west of the BMNDRC boundary (Speed & Strelein, 2004).

3.2 Geology

The Yilgarn Craton contains series of Proterozoic (2,500 to 543 Ma) dolerite dykes that intrude the Archaean basement and increase in abundance westwards towards the Darling fault (McConnell & Pillai, 1995; Speed & Strelein, 2004). These dykes range in thickness between 1 and 10 m and are oriented in a general north to north-westerly direction, the same as the prevailing fracture/joint pattern (Carter & Lipple, 1982). The perpendicular E-W trending dykes of the Widgiemooltha dyke swarm are less prominent.

North, northwest trending mafic dolerite dykes are mapped (Carter & Lipple, 1982) in the western boundary of HWS subcatchment 2. A north, northeast trending fault is mapped immediately west of these dykes (Carter & Lipple, 1982). Outcrops of Archaean crystalline bedrock occur at the boundary between HWS subcatchments 1 and 5 within an area of remnant 'York Gum' vegetation. Younger sedimentary rocks, consisting of chert, siltstone and carbonates, typical of the Middle Proterozoic Moora Group (Carter & Lipple, 1982) were observed at the western boundary of HWS subcatchment 2 and boundary between subcatchments 1 and 2 (sample photographs in Appendix F).

3.3 Regolith

3.3.1 Basement and saprolith

Competent crystalline basement in the HWS was intersected at depths from 27 to 39 metres below ground level (mbgl) (Table 1 and Appendix H). Immediately above the crystalline basement, within the saprolith, the weathering front consisted of saprock, typically comprising of <20 % of weatherable minerals being altered, and above this horizon lay saprolite, where >20% of weatherable minerals being altered (e.g. Anand & Paine, 2002). The proportion of clay increased towards the upper areas of the saprolite and terminated at a sharp boundary with the overlying silcrete hardpan.

3.3.2 Silcrete hardpans

Silcrete hardpans were intersected in all piezometers and were assumed to be the lower boundary of the pedolith. Silcrete hardpans, although differentiating in the thickness, colour and degrees of cementation appeared to have a horizontal alignment and were laterally extensive. Hardpans were typically partially cemented in upper horizons, becoming increasingly consolidated with depth. Silcrete hardpan thickness ranged from 6 m at BMC97 to 19 m at BMC100 (Appendix H and Appendix I).

3.3.3 Pedolith

The upper pedolith in the study area typically consisted of quartz-rich surficial sediments, underlain by a mottled zone and lateritic gravel. Sediments became increasingly cemented at depth, forming completely cemented silcrete hardpans. The exception to this pattern was site BMC104, where the regolith was more typical of a sediment-dominated regolith-landform terrain (e.g. Anand & Paine, 2002). This terrain was characterised by lacustrine, aeolian and/or fluvial sediments and variably cemented horizontal beds, underlain by a variably cemented silcrete hardpan then the saprolith as discussed above.

4 Hydrogeology

Two types of aquifers identified in the HWS are the shallow unconfined surficial aquifer and the deeper saprolite aquifer (Figure 8 to Figure 11). Silcrete hardpans occurred at the base of surficial sediments (e.g. Bennett & Goodreid, 2009; Bennett, Speed, A., & Taylor, 2005). There is low confidence in the defined lower boundary of the surficial aquifer due to the heterogeneous and often 'leaky' nature of these silcrete hardpans. Based on evidence elsewhere in the BMNDRC (Bourke, 2011; Speed & Strelein, 2004; URS, 2008) and presence of low permeability materials in the upper profile, it was assumed that the saprolite aquifer is semi-confined.

4.1 Surficial aquifer

Surficial sediments thickness averaged 8 m, ranging from 4 m at BMC102 (located in a sandplain seep), to 10 m at BMC95, BMC96, BMC97 and BMC98 (Appendix H and Appendix I). Sedimentary sequences encountered at BMC104 were 9 m thick, terminating at a partially cemented hardpan at 13 mbgl. The sedimentary sequences were assumed hydraulically connected to the overlying surficial aquifer and consequently were considered as a single hydrogeological unit.

Saturated aquifer thickness, based on water table observations in October 2012, within the surficial aquifer ranged from 3.5 m (BMC102ob) to 12 m (BMC104ob). The water table generally mimics surface topography, sloping eastwards from 304 metres Australian Height Datum (mAHD) near wetland W131 to 284 mAHD near wetland W118 (Figure 12). The water table gradient falls in a north-easterly direction from wetland W149 towards wetland W118. Depth to the water table ranged from 0.45 metres below ground level (mbgl) at bore hole BMC102ob to 4.75 mbgl at BMC100ob. Shallow depths (<1 mbgl) to the water table were interpolated proximal to all wetlands; within the valley floor east of wetlands W127 and W128; and about 900 m east of BMC102ob associated with a sandplain seep (Figure 13).

Groundwater salinity, as approximated by EC, was generally freshest in the west, increasing in an easterly direction, corresponding with interpreted groundwater flow direction (Figure 12). Salinity was freshest at borehole BMC100ob (EC 0.2 mS/cm) (Table 3), located west of wetland W023, and most saline (EC 11.4 mS/cm) at bore hole BMC104ob immediately east of wetland W118. Groundwater pH ranged from acidic (pH 5.54) to alkaline (pH 8.07) at sites BMC100ob and BMC102ob respectively; groundwater temperature ranged from 17.4 °C to 22.5 °C at sites BMC102ob and BMC1010b respectively (Table 3).

Recharge to the surficial aquifer is assumed to be from rainfall, from leakage via wetlands and leakage from surface water flows along drainage lines. Discharge occurs through transpiration from vegetation and evaporation from surface expressions of water (e.g. wetlands) and areas where high water tables occur (e.g. groundwater discharge areas). The consistent occurrence of upward head differentials (Table 2) indicates potential for upward leakage from the saprolite aquifer.

Site	Date	Water level (mbgl)	Water level (mAHD)	Head difference (m)
BMC95D	10/10/2012	0.74	290.048	0 125
BMC95OB	10/10/2012	0.917	289.913	+0.135
BMC96D	10/10/2012	1.417	291.661	0.046
BMC96OB	10/10/2012	1.622	291.615	+0.046
BMC97D	11/10/2012	1.22	292.286	.0.018
BMC97I	11/10/2012	1.265	292.268	+0.018
BMC98D	11/10/2012	-0.885	292.642	. 1.929
BMC98OB	11/10/2012	0.923	290.814	+1.828
BMC99OB	11/10/2012	0.79	295.623	N/A
BMC100D	10/10/2012	4.732	293.537	.0.024
BMC1000B	10/10/2012	4.75	293.561	+0.024
BMC1010B	10/10/2012	1.007	298.834	N/A
BMC102OB	11/10/2012	0.446	300.171	N/A
BMC103OB	11/10/2012	1.714	294.432	N/A
BMC104OB	10/10/2012	0.493	286.168	0.561
BMC104D	10/10/2012	1.06	285.607	+0.561

 Table 2. Summary of groundwater levels as metres below ground level (mbgl); and metres Australian height Datum, (mAHD), and difference between potentiometric head and water table elevation for October 2012

4.2 Saprolite aquifer

The saprolite aquifer thickness was observed to range from 3 m to 16 m at bore holes BMC98d and BMC96d respectively. Potentiometric head followed a similar trend to water table elevation being highest at bore hole BMC100d (293.5 mAHD), located west of wetland W024, decreasing to 286.2 mAHD immediately east of wetland W118. Artesian conditions were observed at BMC98d where potentiometric head was +0.89 m above ground surface and +1.83 m above the water table (Table 2). At all other sites potentiometric head was below ground level, ranging from 0.5 mbgl at bore hole BMC104d to 4.7 mbgl at bore hole BMC100d. Spatial distribution of groundwater salinity (approximated as EC) was similar to the water table, increasing from west to east, ranging from EC 5.5 mS/cm to 29.4 mS/cm at sites BMC100d and BMC98d respectively (Table 3); groundwater pH ranged from slightly acidic (pH 6.5) to slightly alkaline (pH 7.6) at sites BMC95d and BMC100d respectively; groundwater temperature ranged from 20.7 °C to 23.2 °C at sites BMC97d and BMC100d respectively.

Groundwater quality within the deeper, semi-confined saprolite aquifer was consistently more saline than the water table (Table 3). Recharge and discharge mechanisms for the saprolite aquifer are unknown although there is potential for exchange with the overlying surficial aquifer and wetlands through the 'leaky' silcrete hardpan. The calculated head differences between the unconfined and semi-confined aquifers are likely to be more pronounced if density-corrections are applied (Post, Kooi, & Simmons, 2007).

Site ID	Date	Time (24hr)	EC (mS/cm)	pН	Redox (eh mV)	Temperature (°C)	Turbidity	Colour	Odour	Comment
BMC100D	10/10/2012	12:30:00 PM	5.54	7.49	-262.00	23.20			Strong H2S	75 L removed. Pumping rate reduced at ~60 L
BMC1000B	10/10/2012	11:45:00 AM	0.20	5.54	172.00	21.20	Low	Clear	None	75 L removed. Very high pumping rate (i.e. high K value)
BMC1010B	10/10/2012	1:00:00 PM	4.50	6.95	-13.00	22.50	Low	Clear	None	75 L removed
BMC102OB	11/10/2012	9:00:00 AM	4.16	8.07	96.00	17.40	High		None	20 L removed
BMC103OB	11/10/2012	8:20:00 AM	2.82	6.10	157.00	17.80	Low	Clear	None	200 L removed. High production rates (i.e. high K), although took a little while for WQ to stabilise.
BMC104D	10/10/2012	10:00:00 AM	26.90	7.84	-150.00	21.00	Low	Grey/clea r	Very strong H2S	125 L removed. Still producing sufficient water @100 L (high K)
BMC104OB	10/10/2012	9:30:00 AM	11.43	7.03	-31.00	19.30	Low	Grey/clea r	Slight H2S	28 L removed. Purged dry @28 L, although appeared to recover rapidly
BMC95D	10/10/2012	2:55:00 PM	15.13	6.48	-15.00	21.60	Low	Clear	Strong H2S	90 L removed
BMC95OB	10/10/2012	2:25:00 PM	7.66	6.76	-43.00	19.60	Low	Clear	None	30 L removed
BMC96D	10/10/2012	4:05:00 PM	16.61	7.02	-124.00	21.00	High	Grey/blac k	Very strong H2S	100 L removed
BMC96OB	10/10/2012	3:30:00 PM	3.29	6.81	-16.00	18.15	Low	Clear	None	25 L removed. Pore bore construction has led to bore filling with over 2m of sediments
BMC97D	11/10/2012	9:45:00 AM	18.21	7.01	-42.00	20.70	Medium	Brown	None	115 L removed. Pumping rate reduced significantly after 50 L
BMC98D	11/10/2012	11:20:00 AM	29.40	7.48	110.00	22.70	High	Grey/blac k	Strong H2S	50 L removed. Pump motor blew at 25 L and replacement pump only 13m long. May not be representative
BMC99OB	11/10/2012	10:25:00 AM	8.26	7.59	81.00	18.80	High	Brown/re d	Slight H2S	30 L removed
W023	10/10/2012	1:55:00 PM	4.57	8.37	42.00	22.80	Low	Clear	None	Alkalinity 238.5mg/L using Bromophenol Blue
W024	10/10/2012	4:39:00 PM	1.36	7.47	-65.00	19.20	High	Tannin stained	None	
W129	10/10/2012	1:45:00 PM	3.28	7.73	27.00	20.50	Low	Clear	None	
W130	10/10/2012	1:30:00 PM	2.32	8.80	-3.00	21.60	High		None	

Table 3. Summary of groundwater and surface water water quality measured October 10 and 11, 2012

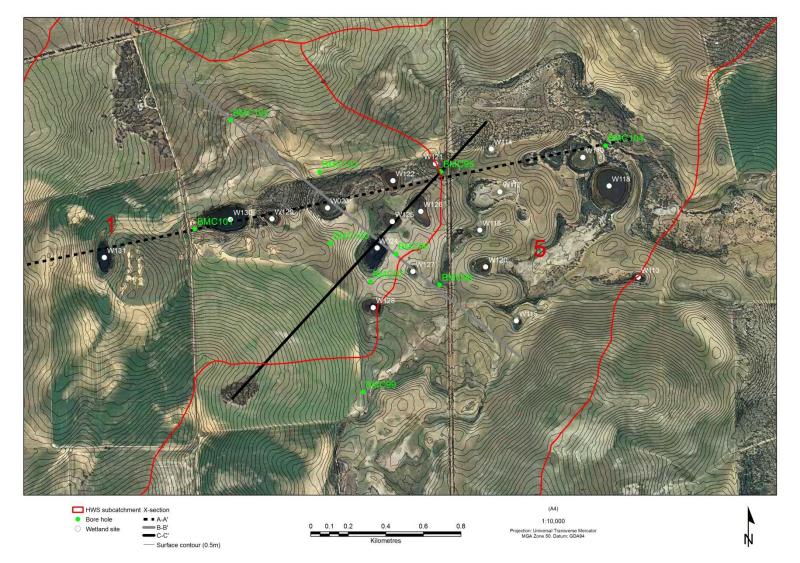


Figure 8. Locations of cross-sections A-A', B-B' and C-C'.

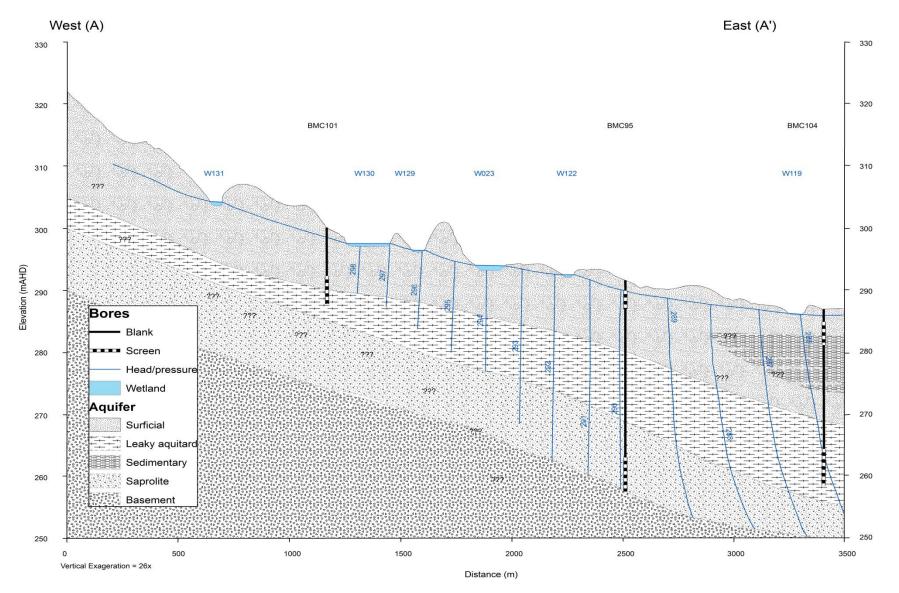


Figure 9. Conceptual hydrogeological cross section A – A' with water table elevation, piezometric head and locations of wetlands (Wxx) and piezometers (BMCxx)

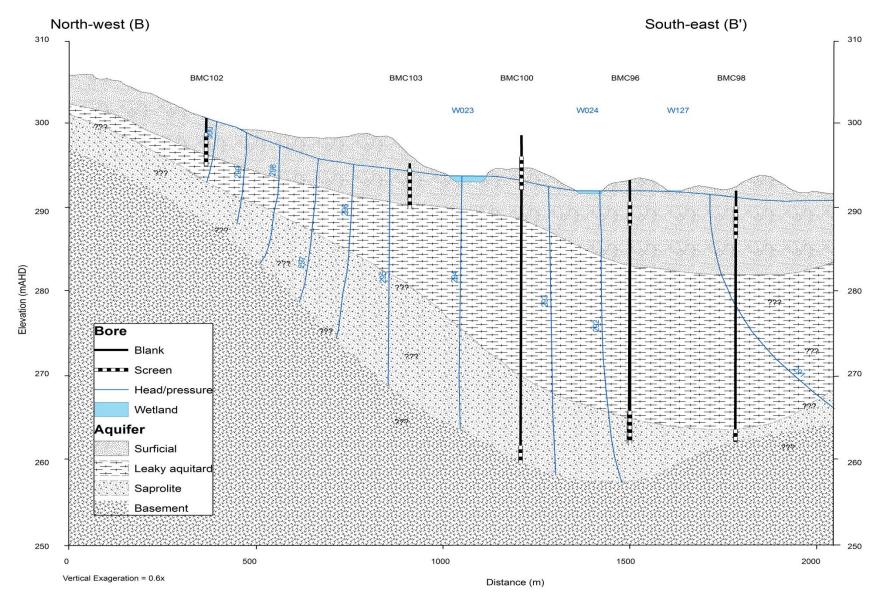


Figure 10. Conceptual hydrogeological cross section B – B' with water table elevation, piezometric head and locations of wetlands (Wxx) and piezometers (BMCxx)

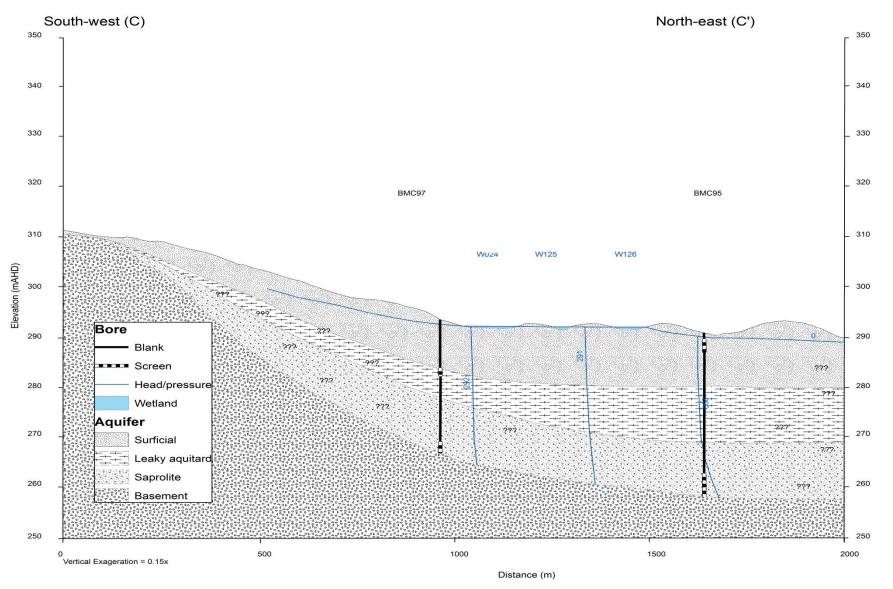


Figure 11. Conceptual hydrogeological cross section C – C' with water table elevation, piezometric head and locations of wetlands (Wxx) and piezometers (BMCxx)

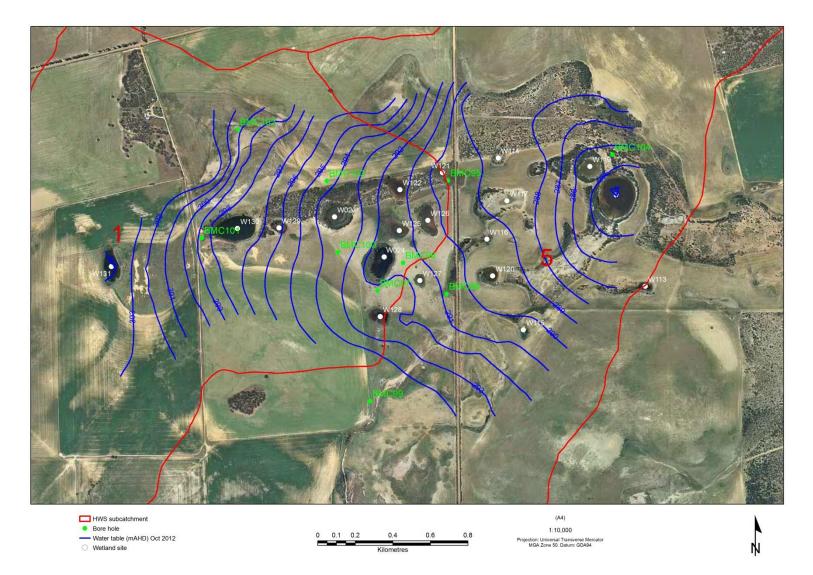


Figure 12. Interpolated water table elevation (mAHD) based on water levels observed in October 2012

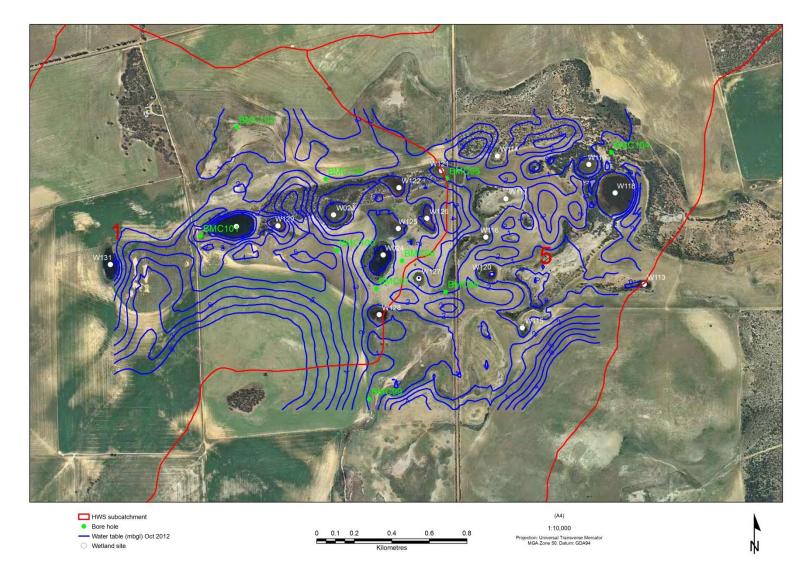


Figure 13. Interpolated depth to water table (mbgl) based on water levels observed in October 2012

5 Hydrochemistry

5.1 Major ions and nutrients

Chemical analysis indicated that groundwater and surface water composition is dominated by Cl⁻ and Na⁺ (average 82%) (Figure 14, Table 7 and Appendix K). A strong correlation between EC and calculated Total Dissolved Solids (TDS) (y = 614.14x-145.83, r² 0.9992) (Figure 16, Appendix K) was observed. Ratios of Cl⁻/Br⁻ ranged from 150 at freshest site BMC100ob to 360 at BMC96ob, with an average of 298.5 (Appendix K). The lowest observed Cl⁻/Br⁻ ratio is likely due to high analytical error for analysis of Br⁻ at low concentrations (Cartwright, Weaver, & Fifield, 2006). The average is a signature typical of rainfall (Cartwright et al., 2006; Davis, Whittemore, & Fabryka-Marton. J., 1998; Mazor & George, 1992).

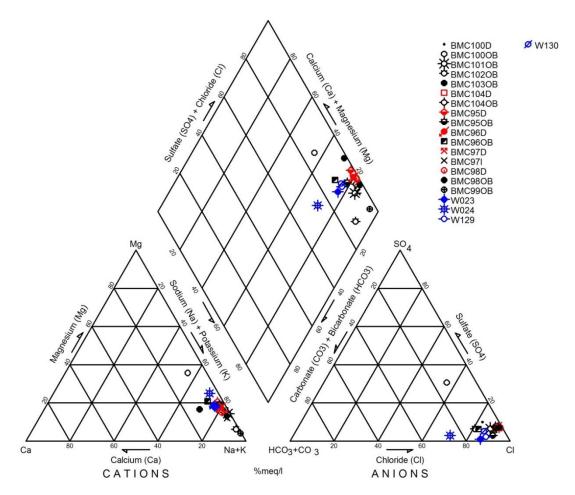


Figure 14. Piper trilinear plot of major ions in groundwater and wetlands sampled in October 2012.

Major ion ratios were observed to differ from seawater (Hingston & Gailitis, 1976). Ratios of K^+ and SO_4^{2-} to Cl^- were depleted relative to seawater (Figure 18 and Figure 19, Appendix K); Cl^-/Mg^{2+} ratios were either equivalent to seawater or depleted relative to seawater; whilst both enrichment and depletion of Cl^-/Ca^{2+} ratios was observed relative to seawater (Figure 20 and Figure 21, Appendix K).

Total Nitrogen (TN) ranged from 0.2 mg/L at BMC104ob to 11 mg/L at BMC103ob (Table 7, Appendix J). Total Phosphorous (TP) ranged from below detection limits (<0.005 mg/L) to 0.34 mg/L at BMC97d (Table 7, Appendix J). The ANZECC/ARMCANZ (2000) default physico-chemical trigger values for slightly disturbed Western Australian ecosystems are 0.35 mg/L for TN and 0.01 mg/L for TP (Aquatic Research Laboratory, 2009). Of the 20 groundwater and wetland sites sampled, 16 sites exceeded the TN threshold, and 15 were equal to or exceeded the TP threshold.

6 Discussion

6.1 Regolith

The regolith of the HWS intersected during the 2012 drilling campaign was typical of a deepweathering profile in the Yilgarn Craton (Anand & Paine, 2002). The observed profile consisted of crystalline bedrock, overlain by the saprolith and quartz-rich pedolith. Silcrete hardpans which are a common feature of the Yilgarn Craton and the BMNDRC (e.g. Bennett & Goodreid, 2009; Speed & Strelein, 2004; URS, 2008) were intersected at all bore holes drilled to crystalline basement. These hardpans appeared to have a horizontal alignment and be laterally extensive which may suggest some water table control over silification (Anand & Paine, 2002). This hardpan was assumed to be the lower boundary of the pedolith.

6.2 Aquifers

Two aquifers were identified in the HWS, which are the shallow surficial aquifer and deeper semi-confined saprolite aquifer. Sedimentary sequences were identified near wetland W118, but were not extensive. The occurrence of these sediments appears to be associated with the lacustrine setting. The shallow unconfined surficial aquifer of the HWS, comprised of sandy quartz-rich sediments, is formed through secondary physical and biogeochemical processes. This aquifer ranged from very fresh to hyposaline (<10,000 mg/L) and is considerably fresher than the aquifers associated with many other wetlands of the BMNDRC (Bourke, 2011; URS, 2008). Hydraulic conductivity of the surficial aquifer was not tested, however in the nearby Nabappie Wetland Suite (NWS), horizontal hydraulic conductivity (K_{hoz}) of 0.15 m/day was adopted for this aquifer (Bourke, 2011). Elsewhere in the BMNDRC K_{hoz} has been found to be considerably higher (URS, 2008).

The saprolite aquifer was assumed to be semi-confined and occurred within the saprock and saprolite immediately above crystalline bedrock. The proportion of clay increased in the upper areas of the weathered profile, terminating at a sharp boundary with the overlying silcrete hardpan. The consistent occurrence of upward heads indicates potential for upward leakage of more saline water from the saprolite aquifer to the surficial aquifer and wetlands. Hydraulic conductivity (K_{hoz}) of this aquifer was not tested within the HWS. Throughout the wheatbelt region K_{hoz} of the saprolite aquifer has been found to be highly variable (Bennett & Goodreid, 2009; George, 1992a, 1992b) and within the BMNDRC K_{hoz} has been found to range from 0.003 m/day (Bourke, 2011) to 2.2 m/day (URS, 2008).

The hydraulic properties of silcrete hardpans is unknown, therefore there is low confidence in interpretations of surficial aquifer thickness. Silcrete hardpans are generally less permeable than the overlying surficial sediments. This decrease in permeability leads to reduced vertical hydraulic conductivity, enhanced lateral interflow and groundwater flow within the surficial aquifer (e.g. Clarke, George, Bennett, & Bell, 2000; George, 1992b). Although fractures and other preferential flow paths, such as root channels, result in hardpans behaving like 'leaky aquitards' enabling vertical exchange of groundwater between the surficial aquifer and the underlying semi-confined saprolite aquifer (Bennett et al., 2005; Wildy, Pate, & Bartle, 2004).

The HWS is considered to be a closed catchment with respect to surface water and wetland W118 is considered to be a terminal wetland. With respect to groundwater, wetland W118 occurs at the catchment outlet and groundwater flow is assumed to continue in an easterly direction towards the main braided drainage line of the BMNDRC. The presence of hypersaline water in this wetland and the likely occurrence of very low hydraulic gradients and low hydraulic conductivities, suggests that groundwater outflow rates are likely to be a minor component of the water balance of the HWS. Further work will be required, particularly with respect to determining the hydraulic conductivity of the aquifers, to validate these assumptions.

6.3 Hydrochemistry

Ion concentrations were observed to increase in a general easterly direction, conforming to groundwater flow direction. This trend may be due to a combination of processes such as the mobilisation of salts stored in the soil profile, evaporation occurring in wetlands (Rich, 2004) or from shallow water tables (e.g. Chen, 1992), dissolution and precipitation of evaporates (Salama, Farrington, Bartle, & Watson, 1993) and the exclusion of Cl⁻ by roots during plant water uptake (Bennetts, Webb, Stone, & Hill, 2006). The climate of the area is typical of the semi-arid environments with very high evaporation rates (see Section 1.3) and rainfall deficits occurring throughout most months of the year. Evaporation is therefore a significant component of the water balance and therefore likely to be a major contributor to the elevation of salinity along the flow path.

The observed Cl⁻/Br⁻ ratio in groundwater and surface water in the HWS is typical of the signature of rainfall observed in the central wheatbelt (Mazor & George, 1992) and elsewhere in Australia (Cartwright et al., 2006). The dissolution of halite significantly increases this ratio by a number of orders of magnitude (1,000 - 10,000) (e.g. Cartwright et al., 2006; Davis et al., 1998), therefore indicating that halite is not a major source of salts in the HWS. Conversely other Cl⁻/ion ratios, particularly Ca⁻, SO₄²⁺, K⁺ and Mg²⁺, in groundwater and wetlands in the HWS deviated from those of seawater, indicating the importance of mineral-water interactions (e.g. Cartwright et al., 2004; Herczeg, Dogramaci, & Leaney, 2001). Further work is required to characterise regolith mineralogy in order to better understand the evolution of water fluxes in the HWS.

Elevated concentrations of both nitrogen and phosphorous, above likely background levels, were observed in groundwater and wetlands. This is consistent with previous studies both

within the HWS and other wetlands of the BMNDRC (Aquatic Research Laboratory, 2009; Bourke, 2011). Nutrient concentrations predominantly exceeded the ANZECC/ARMCANZ (2000) physico-chemical trigger values for slightly disturbed Western Australian ecosystems. Observations of suspended algae in wetland W130 during this study indicate that phosphorous may not be a limiting nutrient, with potential for eutrophication, particularly at the end of spring as wetland levels recede and water temperature rises (Aquatic Research Laboratory, 2009). The spatial and temporal distribution of nutrients in groundwater and wetlands is unknown. The source of nutrients requires further investigation.

7 Conclusion

This study described the structure and lithology of the surficial and semi-confined saprolite aquifers intersected during the drilling and construction of 16 groundwater monitoring bores in the subcatchment of the HWS. The collection of water level, water quality and hydrochemistry data (major ions and nutrients) in groundwater and wetlands occurring in the HWS provides a baseline of current conditions. This new information further advances the initial conceptual hydrogeological model of the catchment and its wetlands developed by Bourke (2012).

The observed regolith and aquifer characteristics are similar to other areas within the BMNDRC, particularly those of the Balgerbine soil system. Groundwater and surface water salinity was observed to increase along a flow path from areas of recharge to discharge. This is due to the combination of a number of processes, although long-term accumulation of salts from rainfall and subsequent evaporation from open water bodies and shallow water tables are the major contributors. Cl⁻/Br⁻ ratios indicated that the precipitation and dissolution of halite was unlikely to be a major source of solutes. Ratios of other major ions indicated the importance of mineral-water interactions to the hydrochemistry of groundwater and surface water, particularly in proximity to wetland W024. Further work is required to characterise regolith mineralogy in order to better understand the evolution of these water fluxes in the HWS.

Nutrient (N and P) concentrations in most cases were observed to exceed the ANZECC/ARMCANZ (2000) trigger values for slightly disturbed Western Australian ecosystems. The presence of suspended algae in one wetland indicates that P may not be a limiting nutrient therefore eutrophication is a potential threat to the biological values of wetlands W023 and W024. Further investigations are therefore recommended to better understand the spatial and temporal distribution of nutrients and their interaction with aquatic and terrestrial biota.

Wetlands W023 and W024 within the HWS are considered by DPaW to be the highest priority area for management intervention within the BMNDRC. The establishment of infrastructure and the interpretation of baseline data derived from this study form the framework for future hydrogeochemical investigations and ongoing monitoring required to assess the risk and likelihood of altered hydrology, resultant from historical land use changes, to these wetlands and their associated biodiversity values.

8 References

- Anand, R. R., & Paine, M. (2002). Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration. *Australian Journal of Earth Sciences*, 49(1), 3-162. doi: 10.1046/j.1440-0952.2002.00912.x
- ANZECC. (2000). Water quality guide: Chapter 3 aquatic ecosystems.
- ANZECC/ARMCANZ. (2000). Australian water quality guidelines for fresh and marine water quality. Trigger values for south-west Australia for slightly disturbed ecosystems (pp. pp 3.3-14 to 13.13-15): Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ).
- APHA. (2005). Standard methods for the examination of water and wastewater: Centennial Edition: American Public Health Association.
- Aquatic Research Laboratory. (2009). Buntine-Marchagee Natural Diversity Recovery Catchment (BMNDRC). Wetland invertebrate sampling 2009. Crawley, Western Australia: Unpublished report by the Aquatic Research Laboratory, The University of Western Australia to the Department of Environment and Conservation. September 2009.
- Bennett, D. L., & Goodreid, A. (2009). Marchagee oil mallee study: Drill completion and preliminary hydrogeological report. Resource Management Technical Report No. 340. Bunbury, Western Australia: Department of Agriculture and Food.
- Bennett, D. L., Speed, R., A., G., & Taylor, P. (2005). Silcrete hardpan in the north-eastern wheatbelt: hydrological implications for Oil Mallees. Resource Management Technical Report No. 297: Department of Agriculture, Western Australia.
- Bennetts, D. A., Webb, J. A., Stone, D. J. M., & Hill, D. M. (2006). Understanding the salinisation process for groundwater in an area of south-eastern Australia, using hydrochemical and isotopic evidence. *Journal of Hydrology*, *323*(1-4), 178.
- Bourke, L. J. (2003). Investigation into the distribution and extent of shallow, saline groundwater using piezometric monitoring bores in the Marchagee Catchment (A subcatchment of the Buntine-Marchagee Recovery Catchment, Western Australia). Perth, Western Australia: Report completed as a component of a Bachelor of Science (Environmental Management) at Edith Cowan University.
- Bourke, L. J. (2011). A hydrogeochemical investigation of the surface water and groundwater interactions of a semi-arid wetland system, Western Australia. Masters of Science (Hydrogeology) Dissertation, University of Western Australia, Crawley, Western Australia. Retrieved from http://catalogue.library.uwa.edu.au/record=b2692850
- Bourke, L. J. (2012). Hydrogeochemical investigation plan for the Hodgson wetland suite: Buntine-Marchagee Natural Diversity Recovery Catchment. Hydrology report (unpublished) NRB-HR-2012-001. Kensington, Western Australia: Department of Environment and Conservation, Natural Resources Branch, Kensington Western Australia.
- Bourke, L. J. (2013). DGPS survey of groundwater monitoring bores and standard survey marks (SSM's) at the Hodgson wetland suite: Buntine-Marchagee Natural Diversity Recovery Catchment. Hydrology report (unpublished) NRB-HR-2013-008. Kensington, Western Australia: Unpublished report for the Department of Environment and Conservation, Natural Resources Branch, Kensington Western Australia.
- Bourke, L. J. (2014). Summary of hydrological monitoring programs 1999 2013: Buntine-Marchagee Natural Diversity Recovery Catchment. *Natural Resources Branch*

hydrology report NRB-HR-2013-012. Kensington, Western Australia: Unpublished report by the Department of Parks and Wildlife, Government of Western Australia.

- Bourke, L. J., & Coleman, S. L. (2013). Nabappie wetland suite bore completion report: Buntine-Marchagee Natural Diversity Recovery Catchment. Hydrology report (unpublished) NRB-HR-2013-006: Department of Environment and Conservation, Natural Resources Branch, Kensington, Western Australia.
- CALM, & Colmar Brunton. (2005). Buntine-Marchagee Natural Diversity Recovery Catchment: Landholder Survey 2005 - 2010 (pp. 90). Geraldton, Western Australia: Report prepared by the Department of Conservation and Land Management and Colmar Brunton.
- Carter, J. D., & Lipple, S. L. (1982). 1: 250 000 Geological series explanatory notes: Moora Western Australia. Sheet SH/50-10 International Index. Perth, Western Australia: Geological Survey of Western Australia.
- Cartwright, I., Weaver, T. R., & Fifield, K. L. (2006). Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: An example from the southeast Murray Basin, Australia. *Chemical Geology*, 231, 38-56.
- Cartwright, I., Weaver, T. R., Fulton, S., Nichol, C., Reid, M., & Cheng, X. (2004). Hydrogeochemical and isotopic constraints on the origins of dryland salinity, Murray Basin, Victoria, Australia. *Applied Geochemistry*, 19(8), 1233-1254. doi: 10.1016/j.apgeochem.2003.12.006
- Chen, X. Y. (1992). Evaporation from a salt-encrusted sediment surface: Field and laboratory studies. *Australian Journal of Soil Research*, *30*, 429-442.
- Clarke, C. J., George, R. J., Bennett, D. L., & Bell, R. W. (2000). Geologically related variations in saturated hydraulic conductivity in the regolith of the western wheatbelt of Western Australia and its implications for the development of dryland salinity. *Australian Journal of Soil Research, 38*, 555-568.
- Coleman, S. L. (2013). Hodgson wetland suite: Mapping of historical orthophotos 1959 2000. Report NRB-HR-2013-009 (pp. 20): Department of Parks and Wildlife, Government of Western Australia.
- Commander, P., Schoknecht, N., Verboom, B., & Caccetta, P. (2001). *The geology, physiography and soils of wheatbelt valleys*. Paper presented at the Dealing with salinity in wheatbelt valleys, processes, prospects and practical options, Merredin, Western Australia. <u>http://www.cmis.csiro.au/rsm/research/pdf/commander.pdf</u>
- Davis, S. N., Whittemore, D. O., & Fabryka-Marton. J. (1998). Uses of Chloride/Bromide ratios in studies of potable water. *Groundwater*, 2(338-350).
- George, R. J. (1992a). Groundwater processes, sandplain seeps and interactions with regional aquifer systems in South-Western Australia. *Journal of Hydrology*, 134(1-4), 247.
- George, R. J. (1992b). Hydraulic properties of groundwater systems in the saprolite and sediments of the wheatbelt, Western Australia. *Journal of Hydrology, 130*.
- Griffin, T., & Goulding, P. (2004). Soil landscape Mapping for the Buntine Marchagee Recovery Catchment. Land Resource and Monitoring. Resource Management Technical Report No. 267: Report produced by the Department of Agriculture for the Department of Conservation and Land Management.
- Herczeg, A. L., Dogramaci, S. S., & Leaney, F. W. J. (2001). Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. *Marine and Freshwater Research*, 52, 41-52.
- Hingston, F. J., & Gailitis, V. (1976). The geographical variation of salt precipitated over Western Australia. *Australian Journal of Soil Research*, 14, 319-335.
- Hunt, L., & Patterson, G. (2004). Technical assessment of natural resource management threats and options in the northern agricultural region of Western Australia. Resources

Management Technical Report No. 289: Compiled by the Department fo Agriculture and Food Western Australia, Geraldton for the Northern Agricultural Region Agricultural Resource Management Group (NACC).

- Hunt, N., & Gilkes, B. (1992). Farm Monitoring Handbook: A practical down-to-earth manual for farmers and other land users. Crawley, Western Australia: University of Western Australia.
- Mazor, E., & George, R. (1992). Marine airborne salts applied to trace evapotranspiration, local recharge and lateral groundwater flow in Western Australia. *Journal of Hydrology*, *139*(1-4), 63.
- McConnell, C., & Pillai, M. (1995). Marchagee Catchment Report. Hydrogeological overview: Marchagee area. Geraldton and Moora, Western Australia: Hydrology Notes, Department of Agriculture.
- McDonald, R. C., Isbell, R. F., Speight, J. G., Walker, J., & Hopkins, M. S. (1998). Australian Soil and Land Survey Field Handbook. Canberra: Department of Primary Industries and Energy and CSIRO, Australian Collaborative Land Evaluation Program.
- Munsell Color Company. (2000). Standard Soil Chart. New Windson, New York USA: GretaMacbeth.
- National Measurement Institute. (2007). Guidelines for the collection and preservation of samples: Western Australia. Perth, Western Australia: Australian Government.
- National Uniform Drillers Licensing Committee. (2012). Minimum construction requirements for water bores in Australia: Third edition.
- Post, V., Kooi, H., & Simmons, C. (2007). Using variable hydraulic head measurements in variable-density groundwater flow analysis. *Groundwater*, 45(6), 664-671.
- Rayment, G. E., & Higginson, F. R. (1992). Australian laboratory of soil and water chemical *methods*. Australia: Incata Press.
- Rhoades, J. D., Chanduvi, F., & Lesch, S. (1999). Soil salinity assessment: methods and interpretation of electrical conductivity measurements. FAO Irrigation and Drainage Paper No. 57. (pp. 150). Rome, Italy: Food and Agriculture Organization of the United Nations.
- Rich, J. F. (2004). Integrated mass, solute, isotopic and thermal balances of a coastal wetland. Murdoch University, Murdoch, Western Australia. Retrieved from http://perrylakes.info/
- Salama, R. B., Farrington, P., Bartle, G. A., & Watson, G. D. (1993). Salinity trends in the wheatbelt of Western Australia: Results of water and salt balance studies from Cuballing catchment. *Journal of Hydrology*, 145, 41-63.
- Short, R., Farmer, D., Whale, P., & Coles, N. A. (2006). Surface water assessment for the Buntine-Marchagee Recovery Catchment: Resource Management Technical Report No. 299. South Perth, Western Australia: Report prepared by the Engineering Water Management Group, Dept. Agriculture for the Department of Conservation and Land Management.
- Speed, R., & Strelein, M. (2004). Groundwater investigation: Buntine-Marchagee Natural Diversity Recovery Catchment. Resource Management Technical Report No. 282 *Resource Management Technical Report*. Geraldton, Western Australia: Department of Agriculture.
- URS. (2008). Hydrogeology investigation Buntine-Marchagee Natural Diversity Recovery Catchment. Perth, Western Australia: Report prepared for the Department of Environment and Conservation, Midwest Region Geraldton.

Wildy, D. T., Pate, J. S., & Bartle, J. R. (2004). Budgets of water use by *Eucalyptus kochii* tree belts in the semi-arid wheatbelt of Western Australia. *Plant and Soil*, 262(1), 129-149. doi: 10.1023/B:PLSO.0000037058.85572.ba

Appendix A

Synthesis of previous hydrogeological investigations

In 1999 approximately 62 groundwater monitoring bores were drilled throughout the western portion of the BMNDRC (Bourke, 2003). These bore were installed on properties of farmers participating in the Marchagee Catchment "Bushcare" Group (MCG), which was supported by funds from the National Heritage Trust. Of these bores, ten were installed nearby the HWS, comprising seven shallow monitoring bores drilled up to seven metres deep and three deep monitoring bores drilled to a maximum depth of 20 m. Groundwater levels were measured monthly by landholders from mid-1999, but largely ceased by late 2002. Groundwater levels and water quality (pH and EC) were measured in April 2003 (Bourke, 2003). DPaW has since collected water level data from these bores on an ad-hoc basis.

In 2002, the DPaW installed 89 groundwater monitoring bores across the BMNDRC as part of a regional-scale hydrogeological investigation (Speed & Strelein, 2004). This investigation included interpretations of the hydrostratigraphy across seven transects. Ongoing monitoring of groundwater levels by DPaW since 2002 provides a historical context to groundwater trends within the HWS.

In 2003, the Department of Agriculture and Food (DAFWA) installed groundwater monitoring bores at 11 sites on the Calecono farm, located ~ 8.5 km east of the HWS (Bennett & Goodreid, 2009). This study consisted of a drilling program, establishment of a piezometer network, ground-based geophysics surveying, silcrete hardpan investigation and preliminary groundwater modelling using Flowtube. Analysis was undertaken to assess the influence of oil mallee plantings upon the hydrology and agricultural productivity of the property.

In 2006, 45 groundwater monitoring bores were installed across five representative wetland areas within the BMNDRC (URS, 2008). Seven bores were installed in a subcatchment located to the immediate north of the HWS containing wetlands W011 and W012. This investigation included hydrostatigraphic interpretations across a number of cross-sections; analysis of major ion chemistry in groundwater; aquifer testing (slug tests and laboratory falling head measurements); and completion of preliminary catchment-scale water balances. DPaW has continued to collect regular 6-hourly water levels from this network of groundwater monitoring bores as well as hourly surface water levels from a number of wetlands, including two wetlands (W011 and W012) within the subcatchment adjacent to the HWS since 2006. Logged data is verified against regular manual measurement of water levels.

A detailed hydrogeochemical investigation was conducted on a subset of bore holes and wetlands at the Nabappie wetland suite (Bourke, 2011), located approximately 10 km north of the HWS. Groundwater chemistry (major ions, stable isotopes (δ^{18} O and δ^{2} H) and nutrient analysis), repeated aquifer testing (slug tests) and measurement of high resolution (hourly) groundwater and surface water levels occurred over a nine month period in 2009.

Appendix B

Drilling and bore construction

Drilling and bore construction

All bore holes were drilled and constructed to meet the minimum requirements for the construction of water bores (National Uniform Drillers Licensing Committee, 2012). Drilling within the study area occurred from April 16 to May 3, 2012. Austral Drilling Services deployed a truck mounted Schramm drilling rig with an on-board 900 cfm x 350 psi compressor using a specially designed ARDLL 114 mm air core system. Air core was the dominant drilling system used. The presence of unstable sand in the upper soil horizons required the use of mud rotary drilling methods. Mud rotary drilling first required a pilot hole (114 mm air core, 8 $\frac{1}{2}$ " spade bit or 9 $\frac{7}{8}$ " spade bit) and emplacement of a 150 mm PVC collar. The PVC collar was cement grouted and allowed to cure overnight. Air-core was again engaged to drill through the cement collar to the end of hole. The drilling fluid "Liqui-Pol" was used as the drilling mud to stabilise the annulus.

Upon reaching the target depth, 50 mm Class 9 uPVC casing was run to the bottom of hole inside the centre of the 68 mm inside diameter (ID) drilling rods. The drill string was then removed leaving the PVC in place. Slotted sections consisted of 50 mm Class 9 uPVC with 1 mm wide machined slots. A 40 mm end cap was glued inside the bottom of each bore casing and a 50 mm cap fitted to the top. Slots were cut in bottom caps of bores installed in the surficial aquifer to permit drainage should the water table fall below the bottom of casing. A geofabric filter-sock was fitted to the slotted section of most bores to prevent ingress of fine sand into the PVC casing (Table 1).

The PVC casing at site BMC96ob was removed and reinstalled by DPaW on 27 November 2012 using hand auger methods. A section of 90 mm storm pipe was augered to the bottom of hole then 50 mm uPVC casing was run inside the outer casing to the bottom of hole. The outer 90 mm casing was removed, leaving the bore casing in place at the target depth.

Bore completion

Sixteen (16) groundwater monitoring bores were installed across the HWS (Table 1 and Figure 7). Six deep bores were drilled to crystalline basement and screened across a discrete portion of the saprolite aquifer. Graded gravel (1.6 - 3.2 mm) was run to the bottom of hole to cover at least 0.5 m above the slotted sections and sealed above with a bentonite plug. An extension was fitted to the casing of site BMC98d due to the occurrence of artesian conditions.

Each deep bore was paired with a shallow piezometer screened across the surficial aquifer immediately above the consolidated, silcrete hardpan. Shallow piezometers were installed in the unconfined surficial aquifer at four additional sites, bringing the total to ten shallow piezometers. Nine shallow piezometers were screened throughout the profile to ~1 m below surface, whilst bore BMC97i was screened at a discrete interval and sealed above with a bentonite plug. The annulus of all piezometers were backfilled with graded gravel (1.6 - 3.2 mm) and natural fill to the surface.

Piezometers were developed using compressed air and completed with lockable galvanised steel headworks (0.1 m x 0.1 m x 1.0 m or 1.3 m high), installed at least 0.4 m into the ground with a cement collar constructed to ensure top tube stability and to prevent surface water inflow down the bore annulus.

Survey

Concrete standard survey markers (SSM's) were installed adjacent to wetlands W023, W024, W125, W129 and W130 and next to an automated weather station (Figure 7). All SSM's, groundwater monitoring bores and graduated marker boards within wetlands were surveyed and projected to Map Grid of Australia (MGA-94, AusGeod98) and levelled relative to Australian Height Datum (AHD) (Bourke, 2013). The accuracy of surveyed elevation is ± 0.02 m or better.

Appendix C

Hydrochemistry sampling and analysis

Major ions

Major Anions (Cl⁻, Br⁻ and SO₄²⁻) and Cations (Li⁺, Na⁺, K⁺, Mg²⁺ and Ca²⁺) were analysed by the Department of Parks and Wildlife, Kensington Western Australia. Anions were determined by High Performance Ion Chromatography (HPIC) using a Dionex® ICS-1000 ion chromatograph equipped with Dionex AS-14, 4 x250 mm anion column and AG-14 guard column. The isocratic run used an eluent of 3.5 mM NaCO₃ and 1.0 mM NaHCO₃ at a flow rate of 1.5 ml /min. The HPIC method employed electronic suppression and conductivity detection. The instrument was calibrated with anion standards made from commercially available 1000 ppm standard solutions (ARC). Sample duplicates were run and reproducibility was better than 3%. Given the high dilutions involved in this analysis a confidence level of 0.1 mg/L is stated (Table 4).

Laboratory EC and pH

EC was determined using a Schott® Handylab LF 11 conductivity meter with calibrated probe. Acidity was determined using a TPS pH meter equipped with a glass Schott® IoLine glass electrode with integrated temperature sensor.

Analyte	LOR (mg/L or ‰)	Field filtered (yes/no)	Laboratory
Cl	0.1	Yes	DEC
Br	0.1	Yes	DEC
SO_4^{2-}	0.1	Yes	DEC
Li ⁺	0.1	Yes	DEC
Na^+	0.1	Yes	DEC
K^+	0.1	Yes	DEC
$\frac{\mathrm{Mg}^{2+}}{\mathrm{Ca}^{2+}}$	0.1	Yes	DEC
Ca ²⁺	0.1	Yes	DEC
TN	0.025	No	NMI
TKN (calc)	0.025	No	NMI
$NO_3^{-}(calc)$	0.010	No	NMI
NO ₂	0.010	No	NMI
NH ₃ -N	0.010	No	NMI
ТР	0.005	No	NMI
PO ₄ -P and SRP	0.005	No	NMI

Table 4. Summary of hydrochemical analytes, relevant laboratories and their level of reporting (LOR)

Nutrients

Nutrients, consisting of Total Nitrogen (TN), Nitrite (NO₂), Ammonia (NH₃-N), Total Phosphorus (TP) and soluble/reactive P (PO₄-P and SRP) were analysed by the National Measurement Institute (NMI), Bentley Western Australia, according to their WL239 methods using a SKALAR autoanalyser, QuAAtro auto analyser and TUTTNAUER 2340 EK Autoclave. Three samples were selected by NMI as quality control replicate samples to validate their analysis methods (samples QC37 to QC39). Nitrate (NO₃) and Total Kjeldahl Nitrogen (TKN) was calculated as the residuals using the following equations:

Equation 1

$$NO_3 = TON - NO_2$$

Equation 2

$$TKN = TN - (NO_3 + NO_2)$$

Where *TN* is total nitrogen; *TON* is total organic nitrogen; and TKN is total Kjeldahl nitrogen.

Appendix D

Regolith profile EC and pH

Methods

Approximately 40 g soil samples were sieved (< 2 mm) and transferred to 120 mL polypropylene containers (Sarstedt part #75.9922.420) then oven dried ~40°C for a minimum of 24 hr until a constant weight was achieved. A 10 g (\pm 0.2 g) subsample of dry soil was then weighed on an analytical balance (Mettler AE100 \pm 0.1 mg) and 50 ml of de-ionised water added. Samples were shaken using a SP Tektator variable speed rocker and by hand for a minimum of one hour. Soil EC and pH were determined on the soil:water suspension with hand-held meters (EC with WTW LF318; and pH with Metrohm 744), calibrated twice daily. Eight blind replicate samples (samples QC33 to QC36) were prepared at a rate of 1:20 to test the repeatability of the laboratory analysis. The relative per cent difference (RPD) between the parent sample and blind replicate was calculated using Equation 3 (APHA, 2005).

Equation 3

$$RPD = \left(\frac{sample \ result - duplicate \ result}{(sample \ result + duplicate \ result) \div 2}\right) \times 100$$

Quality Control

The RPD measures of uncertainty for blind replicate samples ranged from 3.3% to 47.7% for soil EC_{1:5} and 0.5% to 9.7% for soil pH_{1:5} (Table 5). An uncertainty measure <10% is typically considered within acceptable limits, which was the case for pH results, however EC RPD exceeded this tolerance. This large range in error can be attributed to inherent regolith heterogeneity as well as errors associated with the analysis methodology, particularly peptization², hydrolysis³, cation exchange and mineral dissolution (Rhoades, Chanduvi, & Lesch, 1999). Other potential contributors may include the adopted drilling methods, where water and drilling fluids were frequently introduced to the drill string. Therefore the large observed uncertainty in EC_{1:5} means that this dataset and the following section should be considered as qualitative until further validation is undertaken.

Regolith $EC_{1:5}$ and $pH_{1:5}$ summary

Soil EC_{1:5} was observed to range from 11 μ S/cm to 2,380 μ S/cm with a mean of 494 μ S/cm. There was a general trend of lower salinities associated with sand, particularly shallow surficial sediments encountered at sites BMC96, BMC100, BMC101 and BMC103, and higher salinities associated with elevated clay content, cemented horizons which occurred at increased depth. The soil EC trend at site BMC104 differed from other sites with both high and low salinities being observed at a range of depths (refer to Table 6). The observed soil EC trend at this site is likely due to the occurrence of sedimentary sequences of sand, silt and clay, typical of the lacustrine/fluvial setting. Although high measurement uncertainty

² To disperse (a precipitate) to form a colloid

³ Decomposition of a chemical compound by reaction with water

observed for samples taken at BMC104 (up to 43.7%) means that soil EC results be considered as indicative.

Soil $pH_{1:5}$ was observed to be highly variable, ranging from acidic at pH 4.85 to alkaline (pH 10.43) with the mean being slightly alkaline at pH 7.95. Variability was evident across many sites with few consistent relationships evident in the data. A depth versus pH relationship however was evident at site BMC103 where soil pH was most acidic at the surface (pH 5.52), becoming more alkaline with increasing depth. This trend is consistent with surface soil acidification which can be induced through agricultural landuse, resulting from changes to the nitrogen and carbon cycles (L. Hunt & Patterson, 2004).

Site	ID	Sample depth (mbgl)	Paired sample	Colour name	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	EC _{1:5} (μS/cm)	рН	RPD of EC (%)	RPD of pH (%)
BMC95	BMC95_01	1	QC26	Yellow	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Rounded/low	59	5.65	-3.33	-9.71
QC26	QC26	1	BMC95_01						61	6.223		
BMC95	BMC95_28	28	QC27	Yellow	Clay with quartz	Poorly sorted	Clay to cobble	Very angular/low to subangular/low	510	7.96	4.00	-2.70
QC27	QC27	28	BMC95_28						490	8.18		
BMC96	BMC96_31	31	QC28	Light greenish grey	Clay with quartz	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	439	8.83	-47.70	3.64
QC28	QC28	31	BMC96_31						714	8.514		
BMC98	BMC98_01	1	QC29	Light grey	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Subrounded/High	230	7.13	-15.63	-3.72
QC29	QC29	1	BMC98_01						269	7.4		
BMC100	BMC100_02	2	QC30	Yellow	Sand	Well sorted	Very fine to very coarse sand	Very angular/high to Rounded/high	45	7.95	2.25	0.50
QC30	QC30	2	BMC100_02						44	7.91		
BMC101	BMC101_01	1	QC33	Yellow	Sand	Well sorted	Very fine to very coarse sand	Subangular/low to Rounded/high	38	6.66	8.22	-1.34
QC33	QC33	1	BMC101_01						35	6.75		
BMC104	BMC104_06	6	QC31	Light grey	Light sandy clay	Well sorted	Clay to medium sand	Subangular/high to Rounded/high	313	8.03	-43.70	-2.34
QC31	QC31	6	BMC104_06						488	8.22		
BMC104	BMC104_26	26	QC32	Light grey	Partially cemented duricrust	Poorly sorted	Clay to very coarse sand	Angular/low to Rounded/low	1001	8.87	-23.30	0.23
QC32	QC32	26	BMC104_26						1265	8.85		

Table 5. Summary of relative precent difference (RPD) between parent and blind replicate (QC26-QC33) samples for soil EC_{1:5} and pH_{1:5}.

Table 6. Regolith soil:water	• (1:5) EC and pH
------------------------------	-------------------

Site	ID	Depth (m)	EC _{1:5} (μS/cm)	pН
BMC95	BMC95_01	00 - 01m	59	5.65
BMC95	 BMC95_02	01 - 02m	49	5.57
BMC95	 BMC95_03	02 - 03m	116	7.44
BMC95	BMC95_04	03 - 04m	239	7.00
BMC95	 BMC95_05	04 - 05m	339	7.79
BMC95	BMC95_06	05 - 06m	423	4.85
BMC95	BMC95 07	06 - 07m	236	6.20
BMC95	BMC95 08	07 - 08m	412	7.72
BMC95	 BMC95_09	08 - 09m	272	7.60
BMC95	 BMC95_10	09 - 10m	322	7.67
BMC95	 BMC95_11	10 - 11m	249	9.41
BMC95	BMC95_12	11 - 12m		
BMC95	BMC95_13	12 - 13m		
BMC95	 BMC95_14	13 - 14m		
BMC95	BMC95 15	14 - 15m	332	8.22
BMC95	BMC95_16	15 - 16m		
BMC95	BMC95_17	16 - 17m		
BMC95	BMC95_18	17 - 18m		
BMC95	BMC95_19	18 - 19m		
BMC95	BMC95_20	19 - 20m		
BMC95	BMC95 21	20 - 21m		
BMC95	BMC95 22	21 - 22m	616	10.43
BMC95	BMC95_23	22 - 23m	606	7.81
BMC95	BMC95_24	23 - 24m	1549	7.42
BMC95	BMC95_25	24 - 25m	570	7.34
BMC95	BMC95_26	25 - 26m	601	7.44
BMC95	BMC95_27	26 - 27m	689	8.23
BMC95	BMC95_28	27 - 28m	510	7.96
BMC95	BMC95_29	28 - 29m	741	7.26
BMC95	BMC95_30	29 - 30m	1042	6.52
BMC95	BMC95_31	30 - 31m		
BMC95	BMC95 32	31 - 32m		
BMC96	BMC96_01	00 - 01m	87	7.34
BMC96	BMC96 02	01 - 02m	90	5.17
BMC96	BMC96_03	02 - 03m	11	6.66
BMC96	BMC96_04	03 - 04m	62	6.17
BMC96	BMC96 05	04 - 05m	400	6.41
BMC96	BMC96 06	05 - 06m	159	7.91
BMC96	BMC96_07	06 - 07m	237	7.38
BMC96	BMC96_08	07 - 08m	176	6.43
BMC96	BMC96_09	08 - 09m	402	7.45
BMC96	BMC96_10	09 - 10m	196	7.12
BMC96	 BMC96_11	10 - 11m	162	7.58
BMC96	BMC96_12	11 - 12m	191	7.40
BMC96	BMC96_13	12 - 13m	880	7.16
BMC96	BMC96_14	13 - 14m	65	8.37
BMC96	BMC96_15	14 - 15m	145	8.42
BMC96	BMC96_16	15 - 16m		

Site	ID	Depth (m)	EC _{1:5} (µS/cm)	pН
BMC96	BMC96_17	16 - 17m		
BMC96	BMC96_18	17 - 18m		
BMC96	BMC96_19	18 - 19m		
BMC96	BMC96_20	19 - 20m		
BMC96	BMC96_21	20 - 21m	323	7.86
BMC96	BMC96_22	21 - 22m	2200	8.13
BMC96	BMC96_23	22 - 23m	2070	8.47
BMC96	BMC96_24	23 - 24m	1067	7.95
BMC96	BMC96_25	24 - 25m	1339	8.16
BMC96	BMC96_26	25 - 26m	1056	9.07
BMC96	BMC96_27	26 - 27m	117	8.48
BMC96	BMC96_28	27 - 28m	579	8.58
BMC96	BMC96 29	28 - 29m	350	8.68
BMC96	 BMC96_30	29 - 30m		
BMC96	 BMC96_31	30 - 31m	439	8.83
BMC96	 BMC96_32	31 - 32m	37	8.16
BMC96	BMC96_33	32 - 33m	159	8.56
BMC96	 BMC96_34	33 - 34m	82	8.08
BMC96	 BMC96_35	34 - 35m		
BMC96	BMC96_36	35 - 36m		
BMC97	 BMC97_01	00 - 01m	135	7.33
BMC97	BMC97_02	01 - 02m	76	7.2
BMC97	BMC97_03	02 - 03m	91	7.37
BMC97	BMC97_04	03 - 04m	139	6.91
BMC97	BMC97_05	04 - 05m		
BMC97	BMC97_06	05 - 06m	213	7.74
BMC97	BMC97_07	06 - 07m		
BMC97	BMC97_08	07 - 08m	123	7.93
BMC97	BMC97_09	08 - 09m	213	7.63
BMC97	BMC97_10	09 - 10m	139	6.692
BMC97	BMC97_11	10 - 11m	105	7.531
BMC97	BMC97_12	11 - 12m		
BMC97	BMC97_13	12 - 13m		
BMC97	BMC97_14	13 - 14m		
BMC97	BMC97_15	14 - 15m		
BMC97	BMC97_16	15 - 16m	280	7.46
BMC97	BMC97_17	16 - 17m		
BMC97	BMC97_18	17 - 18m	368	8.31
BMC97	BMC97_19	18 - 19m		
BMC97	BMC97_20	19 - 20m	806	8.36
BMC97	BMC97_21	20 - 21m	979	8.34
BMC97	BMC97_22	21 - 22m	625	8.83
BMC97	BMC97_23	22 - 23m	935	7.08
BMC97	BMC97_24	23 - 24m	666	8.42
BMC97	BMC97_25	24 - 25m		
BMC97	BMC97_26	25 - 26m		
BMC97	BMC97_27	26 - 27m		
BMC98	BMC98_01	00 - 01m	230	7.13
BMC98	BMC98_02	01 - 02m	228	7.4

Site	ID	Depth (m)	EC _{1:5} (µS/cm)	pН
BMC98	BMC98_03	02 - 03m		
BMC98	BMC98_04	03 - 04m		
BMC98	BMC98_05	04 - 05m		
BMC98	BMC98_06	05 - 06m		
BMC98	BMC98_07	06 - 07m	1428	7.94
BMC98	BMC98_08	07 - 08m	1131	7.82
BMC98	BMC98_09	08 - 09m		
BMC98	BMC98_10	09 - 10m	1244	8.39
BMC98	BMC98_11	10 - 11m	1256	8.58
BMC98	BMC98_12	11 - 12m	830	8.67
BMC98	BMC98_13	12 - 13m	1092	8.66
BMC98	BMC98_14	13 - 14m	1366	8.28
BMC98	BMC98 15	14 - 15m	857	8.77
BMC98	BMC98 16	15 - 16m	589	
BMC98	 BMC98_17	16 - 17m		
BMC98	BMC98_18	17 - 18m		
BMC98	BMC98_19	18 - 19m		
BMC98	BMC98_20	19 - 20m		
BMC98	BMC98_21	20 - 21m		
BMC98	BMC98 22	21 - 22m		
BMC98	BMC98_23	22 - 23m	1125	8.48
BMC98	 BMC98_24	23 - 24m		
BMC98	BMC98_25	24 - 25m	888	8.18
BMC98	 BMC98_26	25 - 26m	585	8.24
BMC98	 BMC98_27	26 - 27m	594	8.55
BMC98	BMC98_28	27 - 28m	966	9.41
BMC98	BMC98_29	28 - 29m	941	9.53
BMC98	BMC98_30	29 - 30m		
BMC98	BMC98_31	30 - 31m		
BMC99	BMC99_01	00 - 01m	241	6.51
BMC99	BMC99_02	01 - 02m		
BMC99	BMC99_03	02 - 03m		
BMC99	BMC99_04	03 - 04m		
BMC99	BMC99_05	04 - 05m		
BMC99	BMC99_06	05 - 06m		
BMC99	BMC99_07	06 - 07m		
BMC99	BMC99_08	07 - 08m		
BMC99	BMC99_09	08 - 09m		
BMC99	BMC99_10	09 - 10m		
BMC99	BMC99_11	10 - 11m		
BMC99	BMC99_12	11 - 12m		
BMC99	BMC99_13	12 - 13m	2380	9.36
BMC99	BMC99_14	13 - 14m	1577	9.47
BMC99	BMC99_15	14 - 15m		
BMC99	BMC99_16	15 - 16m		
BMC99	BMC99_17	16 - 17m		
BMC100	BMC100_01	00 - 01m	214	9.48
BMC100	 BMC100_02	01 - 02m	45	7.95
BMC100	 BMC100_03	02 - 03m	43	7.72

Site	ID	Depth (m)	EC _{1:5} (μS/cm)	pН
BMC100	BMC100_04	03 - 04m	33	7.35
BMC100	BMC100_05	04 - 05m	33	6.91
BMC100	BMC100_06	05 - 06m	314	7.34
BMC100	BMC100_07	06 - 07m	193	9.17
BMC100	BMC100_08	07 - 08m	79	7.83
BMC100	BMC100_09	08 - 09m	44	7.43
BMC100	BMC100_10	09 - 10m	181	7.96
BMC100	BMC100_11	10 - 11m	133	8.38
BMC100	BMC100_12	11 - 12m	116	8.06
BMC100	BMC100_13	12 - 13m	1224	7.96
BMC100	BMC100_14	13 - 14m	505	8.99
BMC100	BMC100_15	14 - 15m	569	8.9
BMC100	BMC100_16	15 - 16m	245	9.24
BMC100	BMC100_17	16 - 17m	387	8.89
BMC100	BMC100_18	17 - 18m	709	9.1
BMC100	BMC100_19	18 - 19m	434	9.11
BMC100	BMC100_20	19 - 20m	394	9.06
BMC100	BMC100_21	20 - 21m		
BMC100	BMC100_22	21 - 22m		
BMC100	BMC100_23	22 - 23m		
BMC100	BMC100_24	23 - 24m		
BMC100	BMC100_25	24 - 25m	177	8.28
BMC100	BMC100_26	25 - 26m	454	8.53
BMC100	BMC100_27	26 - 27m	99	8.66
BMC100	BMC100_28	27 - 28m	254	8.9
BMC100	BMC100_29	28 - 29m	432	7.6
BMC100	BMC100_30	29 - 30m	321	8.11
BMC100	BMC100_31	30 - 31m		
BMC100	BMC100_32	31 - 32m	639	8.45
BMC100	BMC100_33	32 - 33m		
BMC100	BMC100_34	33 - 34m		
BMC100	BMC100_35	34 - 35m		
BMC100	BMC100_36	35 - 36m		
BMC100	BMC100_37	36 - 37m		
BMC100	BMC100_38	37 - 38m		
BMC100	BMC100_39	38 - 39m		
BMC101	BMC101_01	00 - 01m	38	6.66
BMC101	BMC101_02	01 - 02m	61	8.14
BMC101	BMC101_03	02 - 03m	44	7.15
BMC101	BMC101_04	03 - 04m	19	8.05
BMC101	BMC101_05	04 - 05m	59	5.57
BMC101	BMC101_06	05 - 06m	32	7.65
BMC101	BMC101_07	06 - 07m	17	7.94
BMC101	BMC101_08	07 - 08m	144	7.17
BMC101	BMC101_09	08 - 09m	254	7.6
BMC101	BMC101_10	09 - 10m	259	7.46
BMC101	BMC101_11	10 - 11m	122	8.04
BMC101	BMC101_12	11 - 12m		
BMC102	BMC102_01	00 - 01m	244	6.58

Site	ID	Depth (m)	EC _{1:5} (μS/cm)	pН
BMC102	BMC102_02	01 - 02m	94	8.01
BMC102	BMC102_03	02 - 03m	423	6.81
BMC102	BMC102_04	03 - 04m		8.62
BMC102	BMC102_05	04 - 05m	130	7.99
BMC102	BMC102_06	05 - 06m	125	8.71
BMC102	BMC102_07	06 - 07m		
BMC103	BMC103_01	00 - 01m	19	5.52
BMC103	BMC103_02	01 - 02m	11	6.32
BMC103	BMC103_03	02 - 03m	12	6.85
BMC103	BMC103_04	03 - 04m	19	7.31
BMC103	BMC103_05	04 - 05m	41	7.05
BMC103	BMC103_06	05 - 06m		
BMC104	BMC104_01	00 - 01m	297	7.67
BMC104	BMC104_02	01 - 02m	1698	8.14
BMC104	BMC104_03	02 - 03m	454	7.94
BMC104	BMC104_04	03 - 04m	379	8.03
BMC104	BMC104_05	04 - 05m	158	8.45
BMC104	BMC104_06	05 - 06m	313	8.03
BMC104	BMC104_07	06 - 07m	624	8.09
BMC104	BMC104_08	07 - 08m	554	8.46
BMC104	BMC104_09	08 - 09m	345	8.68
BMC104	BMC104_10	09 - 10m	587	8.92
BMC104	BMC104_11	10 - 11m	694	9.17
BMC104	BMC104_12	11 - 12m	643	8.95
BMC104	BMC104_13	12 - 13m		
BMC104	BMC104_14	13 - 14m	1187	9.08
BMC104	BMC104_15	14 - 15m	2000	9.27
BMC104	BMC104_16	15 - 16m	1011	9.32
BMC104	BMC104_17	16 - 17m		
BMC104	BMC104_18	17 - 18m	776	9.27
BMC104	BMC104_19	18 - 19m	1349	9.14
BMC104	BMC104_20	19 - 20m	893	9.16
BMC104	BMC104_21	20 - 21m	252	8.28
BMC104	BMC104_22	21 - 22m		
BMC104	BMC104_23	22 - 23m	568	7.57
BMC104	BMC104_24	23 - 24m	951	8.37
BMC104	BMC104_25	24 - 25m	1556	8.68
BMC104	BMC104_26	25 - 26m	1001	8.87
BMC104	BMC104_27	26 - 27m	516	8.98
BMC104	BMC104_28	27 - 28m	877	9.05
BMC104	BMC104_29	28 - 29m	599	9.35
BMC104	BMC104_30	29 - 30m		
BMC104	BMC104_31	30 - 31m		
BMC104	BMC104_32	31 - 32m		
BMC104	BMC104_33	32 - 33m		
BMC104	BMC104_34	33 - 34m		
BMC104	BMC104_35	34 - 35m		
BMC104	BMC104_36	35 - 36m		
QC26	QC26		61	6.223

Site	ID	Depth (m)	EC _{1:5} (µS/cm)	pН
QC27	QC27		490	8.18
QC28	QC28		714	8.514
QC29	QC29		269	7.4
QC30	QC30		44	7.91
QC31	QC31		488	8.22
QC32	QC32		1265	8.85
QC33	QC33		35	6.75

Appendix E

Chip sample photographs



Appendix F

Outcrop photographs

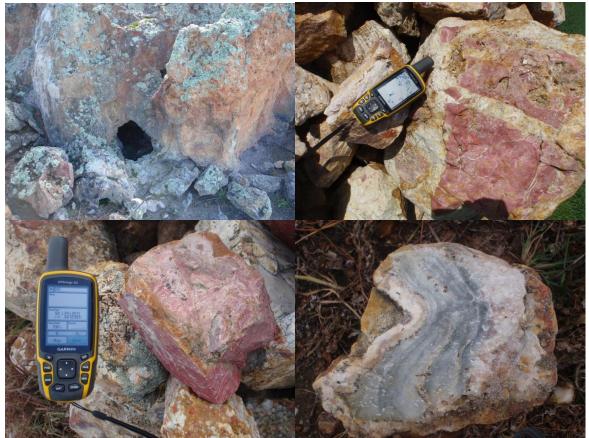
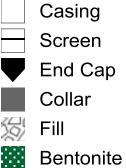


Figure 15. Photographs of sedimentary bedrock exposures, observed in the western extent of the study area.

Appendix G

Legend - Lithology

Sand

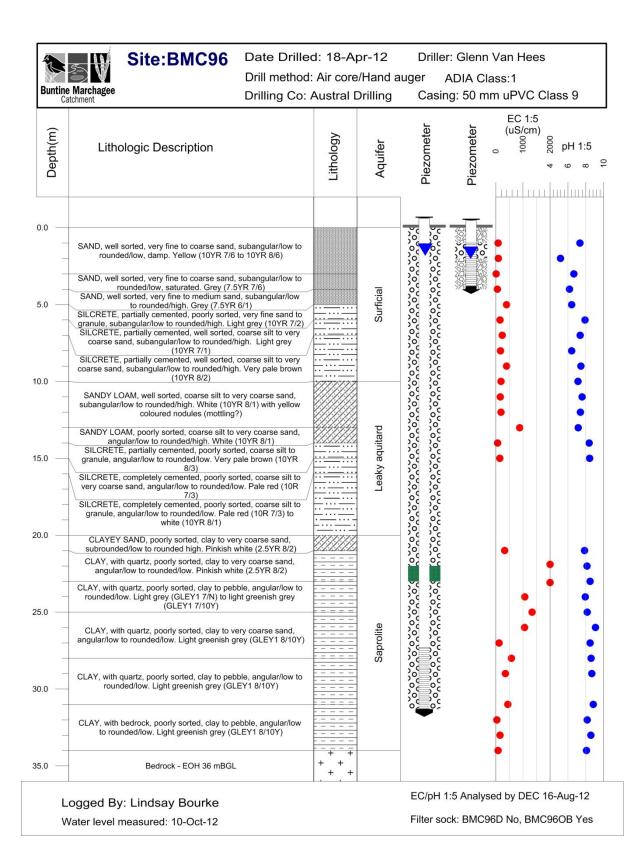

Sandy loam Sand/clay

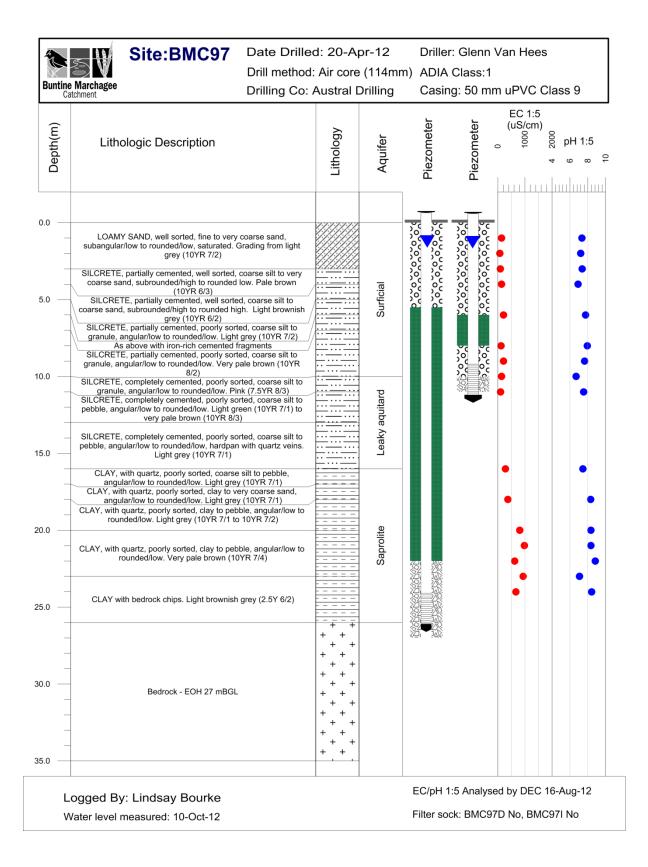
- Sandy clay
- Clayey sand

Clay

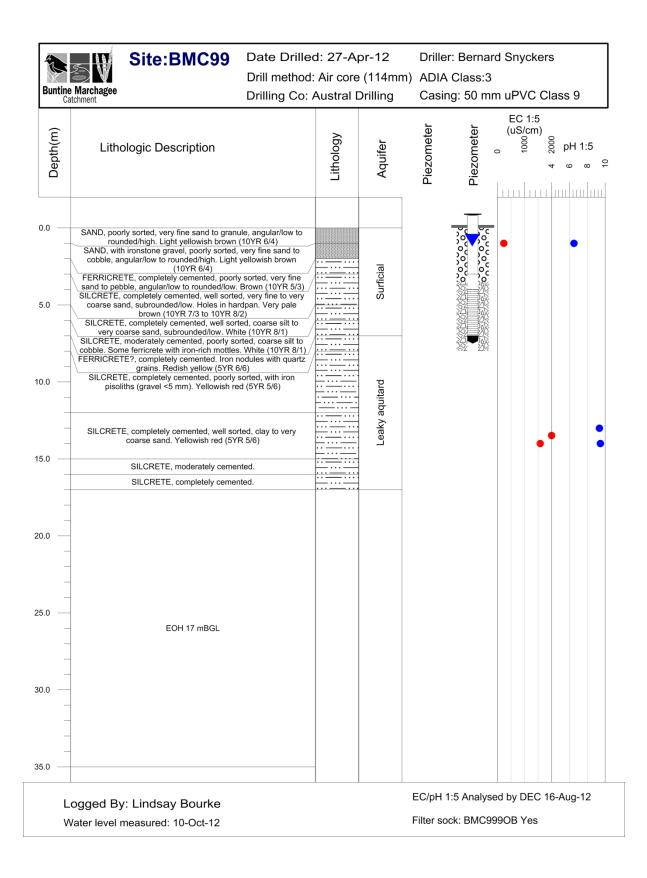
- Hardpan
- + + Granite

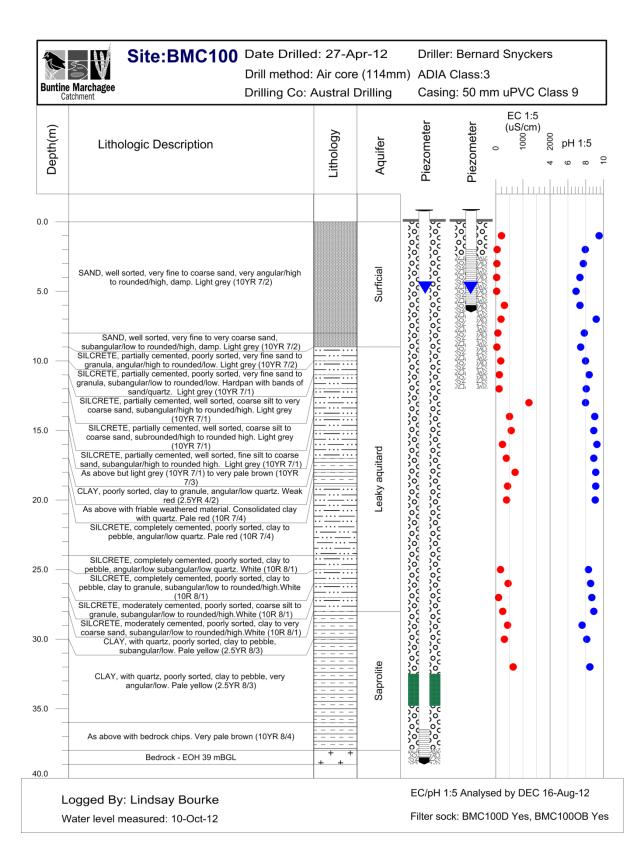
Legend - Bore construction

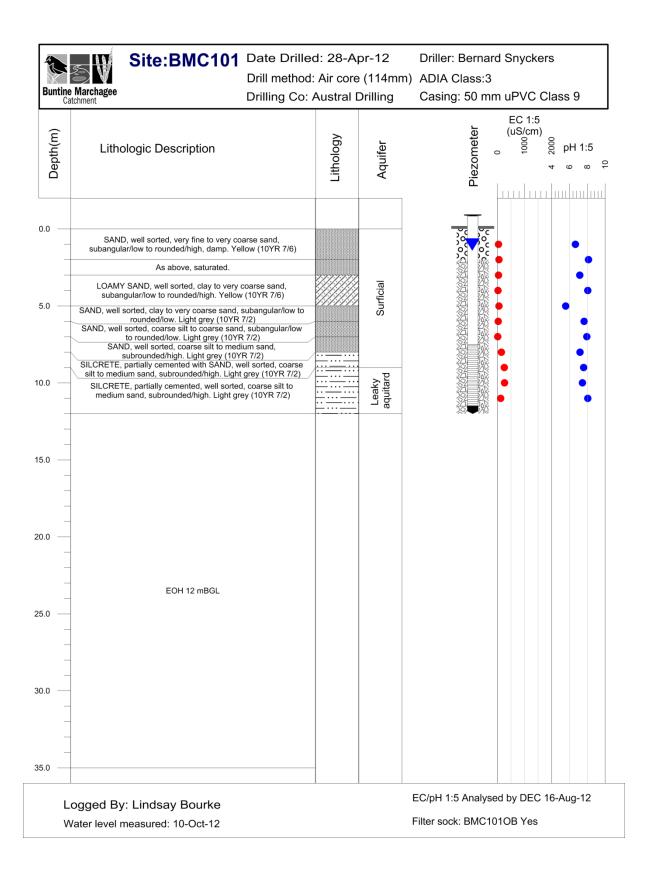


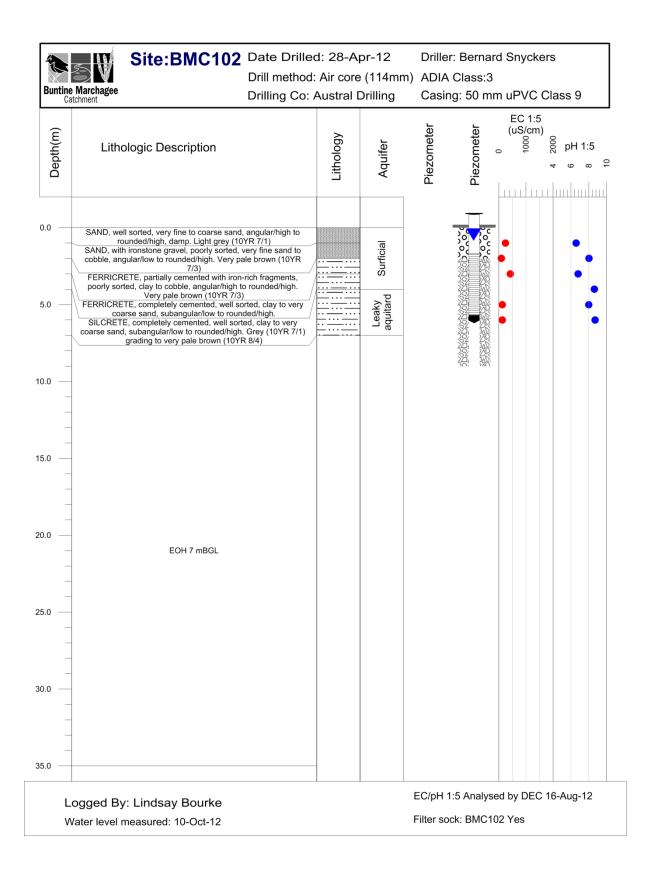

Gravel Pack

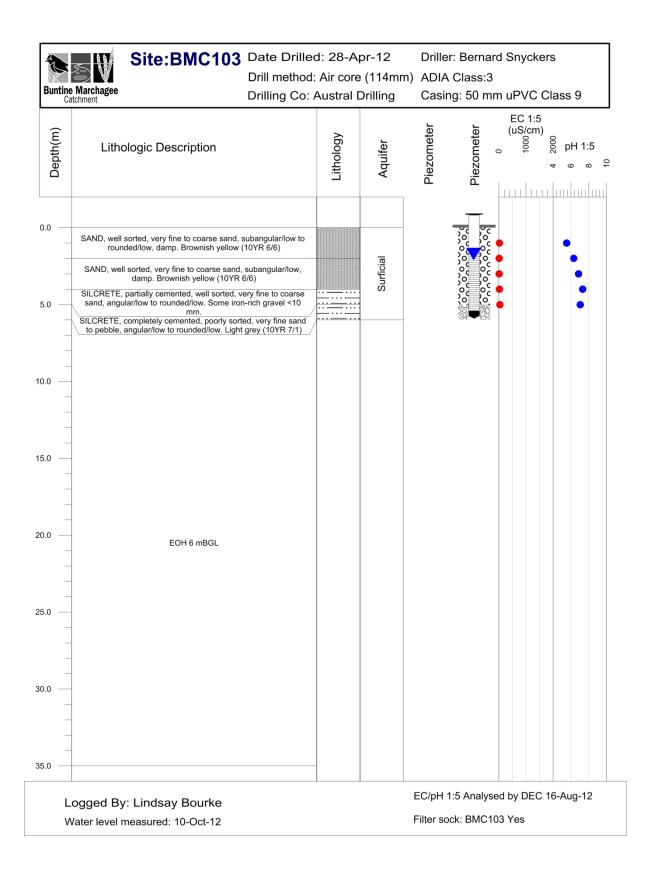
Appendix H


Bore logs


		Date Drilled Drill method: Drilling Co: /	Air core	(114m	m) ADIA	r: Bernar Class:3 ıg: 50 mr	Ĩ	
nepui(iii)	Lithologic Description		Lithology	Aquifer	Piezometer	Piezometer	EC 1:: (uS/cm	n) 000 pH 1:5 + 0 00
	SAND, well sorted, very fine to coarse sand, su rounded/low, slightly damp. Yellow (10 SAND, well sorted, very fine to very coar	YR 7/6) rse sand,						
	subangular/low to rounded/low, saturated. Gr SILCRETE, partially cemented, poorly sorted coarse sand, subrounded/low to rounded/low, (10YR 6/1) SILCRETE, LOAMY SAND, partially cemented very fine to coarse sand, subrounded/low to rou gey (10YR 7/1) to grey (10YR6/	d, very fine to saturated. Grey , poorly sorted, unded/low. Light		Surficial	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•	
	CLAYEY SAND, poorly sorted, coarse silt to subrounded/low to rounded high. Light grey (7. 7/1) CLAYEY SAND, poorly sorted, coarse silt to subrounded/low to rounded high. Light grey (7. 7/1)	5YR 7/1 to 2.5Y			٥,٥,٥,٥,٥,٥ ٥,٥,٥,٥,٥,٥,٥		•	•
_	SILCRETE, partially cemented, poorly sorted pebble, angular/low to rounded/low. Grading i brown (10YR 7/3), light red (2.5YR 6/6), red - w to 10YR 8/1) to red (10R 6/6)	from very pale		Leaky aquitard			•	•
_	SILCRETE, completely cemented sand. Gradir (10R 7/4) to red (10R 5/9)			Leal	,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0			
_	SANDY CLAY LOAM, poorly sorted, clay to cob to rounded/low. Light red (10R 7/ CLAY, with quartz, poorly sorted, very fine sa very angular/low to subangular/low. Pink	6) nd to granule,			,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0		•	•
	CLAY, with quartz, poorly sorted, clay to c angular/low to subangular/low. Grading from 6/6), pinkish white (10R 8/2) to yellow (1	light red (10R		Saprolite			•	
-	Bedrock chips		+++ +++					
_	Bedrock - EOH 32 mBGL		+ + + + + + + +					
	ogged By: Lindsay Bourke /ater level measured: 10-Oct-12		1]		EC/pH 1 Filter so		ed by DE0	C 16-Aug-12






	Site:BMC98	Date Drilled Drill method: Drilling Co: /	Air core	(114mr	n) ADIA	Class:1	Van Hees m uPVC C	lass 9
Depth(m)	Lithologic Description		Lithology	Aquifer	Piezometer	Piezometer	EC 1:5 (uS/cm)	000 pH 1:5 + ω ∞
	SAND, well sorted, very fine to coarse sand, s subrounded/high. Light grey (10YI SILCRETE, partially cemented, well sorted, w sand, rounded/low. Light grey (10Y SILCRETE, partially cemented, well sorted, w sand, subrounded/low to rounded/low. Light SILCRETE, partially cemented, well sorted, (10YR 7/3) SILCRETE, partially cemented, well sorted, coarse sand, rounded/low. Light grey (SILCRETE, partially cemented, well sorted, coarse sand, rounded/low. Light grey (R 7/1) ery fine to coarse (R 7/1) ery fine to coarse grey (10YR 7/1) very fine to very Very pale brown very fine to very (10YR 7/2) ay to very coarse		Surficial			•	:
0 	SILCRETE, partially cemented, well sorted, vo sand, angular/low to rounded/low. Light SILCRETE, partially cemented, well sorted, vo sand, rounded/low. Very pale brown (SILCRETE, partially cemented, well sorted, vo	ery fine to coarse rey (10YR 7/2) ery fine to coarse 10YR 8/2)			,		•	
	granule, angular/low to rounded/low. Light g FERRICRETE, partially cemented, well sorte to granule, angular/low to rounded/low. Very p 7/3) FERRICRETE, partially cemented, poorly sorted, granule, angular/low to rounded/low. grey (10YR 6/2) SILCRETE, partially cemented, poorly sorted, SILCRETE, partially cemented, poorly sorted,	greý (10YR 7/1) d, very fine sand bale brown (10YR orted, very fine . Light brownish very fine sand to grey (10YR 7/1)		Leaky aquitard	৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵৵ ৵৵৵৵৵৵৵৵		•	•
	pebble, angular/low to rounded/low. Light g As above with ironstone inclusions. Light g SILCRETE, partially cemented, poorly sorted, pebble, subangular to rounded/low. Light g SILCRETE, partially cemented, poorly sorted, very coarse sand, subangular to rounded/h (10YR 7/2) SILCRETE, partially cemented, well sorted, v	rey (10YR 7/1) rey (10YR 7/2) very fine sand to rey (10YR 7/2) very fine sand to righ. Light grey			ంగంగంగంగంగం గంగంగంగంగం		•	•
	very coarse sand, subangular to rounded/h brown (10YR 7/3) SILCRETE, partially cemented, poorly sorted, granule, subangular to rounded/high. Very pa 7/4) CLAY, with quartz, poorly sorted, clay to pebb rounded/high. Light brownish grey (2)	high. Very pale very fine sand to ale brown (10YR ale, angular/low to		Saprol ite				
-	CLAY with bedrock chips. Olive grey Bedrock chips. Olive grey (5Y 7 Bedrock - EOH 31 mBGL	(5Y 7/2)	+ + + + + + + + + + + + + + + + + + + +					
)					EC/aLl 4	5 Apolys		6 Aug 12
	ogged By: Lindsay Bourke /ater level measured: 10-Oct-12						ed by DEC 1 3D Yes, BM0	•

	Site:BMC104 Date Drilled Drill method: Drilling Co: A	Air core	(114mi	m) ADIA	Class:3	d Snyckers n uPVC Class 9
Depth(m)	Lithologic Description	Lithology	Aquifer	Piezometer	Piezometer	EC 1:5 (uS/cm) 0 0 0 0 pH 1:5 7 0 0
0.0 — 5.0 — 5.0 — 5.0 — 5.0 — 5.0 — 5.0 —	SAND, well sorted, fine to very coarse sand, subangular/low to rounded/low. Pale brown (10YR 6/3) CLAYEY SAND, well sorted, clay to coarse, subangular/high. Brown (10YR 5/3) SILCRETE, partially cemented, well sorted, very fine to coarse sand, subangular/high. Saturated pores within hardpan. Light grey (10YR 7/1) SAND, well sorted, very fine to very coarse sand, subangular/low to rounded/high. Alluvial sequence. Very pale brown (10YR 7/3) LIGHT SANDY CLAY, well sorted, clay to medium sand, subangular/high to rounded/high. Light grey (10YR 7/2) SAND, well sorted, very dine to coarse sand, subangular/high to rounded/high. Light grey (10YR 7/2) SAND, well sorted, very fine to coarse sand, subangular/high to rounded/low. Light grey (10YR 7/1) SAND, well sorted, very fine to coarse sand, subangular/high to rounded/low. Light grey (10YR 7/1) SAND, well sorted, very fine to coarse sand, subangular/high to rounded/low. Light grey (10YR 7/1)		Surficial			
5.0 — 5.0 — 	SILCRETE, completely cemented, poorly sorted, clay to granule, angular/low to rounded/high. Light grey (2.5YR 7/1) SILCRETE, partially cemented, poorly sorted, clay to granule, angular/low to rounded/high. Yellow with grey (2.5YR 7/6 and 2.5YR 6/1) SILCRETE, completely cemented, poorly sorted, clay to pebble, angular/high to rounded/low. Olive yellow (2.5YR 6/8) SILCRETE, completely cemented, poorly sorted, clay to very coarse sand, angular/low to rounded/low. Light grey (2.5Y 7/2) SILCRETE, partially cemented, poorly sorted, clay to very coarse sand, angular/low to rounded/low. Quartz grain size increasing depth. Light grey (7/1) SILCRETE, partially cemented, poorly sorted, clay to very coarse sand, angular/low to rounded/low. Quartz grain size decreasing with depth. Light grey (7/1) SILCRETE, partially cemented, poorly sorted, clay to very coarse sand, angular/low to rounded/low. Quartz grain size decreasing with depth. Light grey (7/1) SILCRETE, partially cemented, poorly sorted, clay to granule, angular/low to rounded/low. White (10YR 8/1) SILCRETE, partially cemented, poorly sorted, clay to granule, angular/low to subrounded/low. Light greenish grey (GLEY1 6/10Y) As above with bedrock chips. As above. Light grey (GLEY1 6/N) SANDY CLAY, poorly sorted, clay to cobble, very angular/low to subrounded/low. Weathered bedrock chips. Gree (GLEY1 6/10Y)		Saprolite Leaky aquitard			
.0 —	Friable bedrock. Greenish grey (GLEY1 6/10Y) - EOH 36 mBGL					
	ogged By: Lindsay Bourke /ater level measured: 10-Oct-12					ed by DEC 16-Aug-12 04D Yes, BMC104OB `

Appendix I

Regolith description and field notes

		u neiu noico										
ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field no
BMC95_01	00 - 01m	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Rounded/low	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, fi damp
BMC95_02	01 - 02m	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Rounded/low	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, fi damp
BMC95_03	02 - 03m	Sand	Well sorted	Very fine to very coarse sand	Subangular/low to Rounded/low	Grey	10YR 6/1	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Start of fine, dat
BMC95_04	03 - 04m	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Rounded/low	Grey	10YR 6/1	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, fi
BMC95_05	04 - 05m	Partially cemented duricrust	Poorly sorted	Very fine sand to granule	Subrounded/low to Rounded/low	Grey	10YR 6/1	Pedolith	Cementation front	Silcrete	Surficial aquifer	Sand, fir saturate of hardp
BMC95_06	05 - 06m	Loamy sand - Partially cemented duricrust	Poorly sorted	Very fine to coarse sand	Subrounded/low to Rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Clayey s with har
BMC95_07	06 - 07m	Loamy sand - Partially cemented duricrust	Poorly sorted	Very fine to medium sand	Subrounded/low to Rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Clayey with har Predom
BMC95_08	07 - 08m	Clayey sand - Partially cemented duricrust	Poorly sorted	Very fine to coarse sand	Subrounded/low to Rounded/low	Grey	10YR 6/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Clayey s with har saturated content fragmen
BMC95_09	08 - 09m	Clayey sand - Partially cemented duricrust	Poorly sorted	Coarse silt to coarse sand	Subrounded/low to Rounded/low	Grey	10YR 6/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	As abov
BMC95_10	09 - 10m	Clayey sand	Poorly sorted	Coarse silt to coarse sand	Subrounded/low to Rounded/low	Light grey	7.5YR 7/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Clayey s coarse. I no hardj
BMC95_11	10 - 11m	Clayey sand	Poorly sorted	Coarse silt to pebble	Subrounded/low to Rounded/high	Light grey	2.5Y 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Sandy c sorted, v
BMC95_12	11 - 12m	Partially cemented duricrust	Poorly sorted	Coarse silt to pebble	Angular/low to Rounded/low	Very pale brown	10YR 7/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Friable poorly s (<2mm)
BMC95_13	12 - 13m	Partially cemented duricrust	Poorly sorted	Coarse silt to cobble	Angular/low to Rounded/low	Light red	2.5YR 6/6	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Friable Increasi
BMC95_14	13 - 14m	Partially cemented duricrust	Poorly sorted	Coarse silt to pebble	Angular/low to Rounded/low	Red - White	2.5YR 5/6 - 10YR 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Friable white sa

notes	Comments
fine well sorted, slightly	
fine well sorted, slightly	
of new horizon - Sand, amp, below water table?	
fine, saturated	
fine to very fine (silt?), ted. Large >8cm blocks dpan (silcrete?)	
y sand, fine to very fine ardpan (silcrete?) blocks	
y sand, fine to very fine ardpan (silcrete?) blocks. minantly hardpan	
y sand, fine to very fine ardpan (silcrete?) blocks, ted. Increasing clay at with larger hardpan ents	
ove	
y sand, very fine to very . Increased clay content, dpan (silcrete)	
clay hardpan, well , very fine	
e hardpan - sandy clay, sorted with quartz n)	
e hardpan as above. singly red (iron?)	
e hardpan as above - with sandy clay	

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field notes	Comments
BMC95_15	14 - 15m	Partially cemented duricrust	Poorly sorted	Coarse silt to pebble	Angular/low to Rounded/low	Red	10R 6/6	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Friable hardpan as above	
BMC95_16	15 - 16m	Completely cemented duricrust	N/A	N/A	N/A	Pale red	10R 7/4	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan (silcrete?). Very hard cores of cemented sand with variable colour (white, red and yellow)	
BMC95_17	16 - 17m	Completely cemented duricrust	N/A	N/A	N/A	Red	10R 5/9	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan (silcrete?). Very hard cores of cemented sand with variable colour (white, red and yellow)	
BMC95_18	17 - 18m	Completely cemented duricrust	N/A	N/A	N/A	Red	10R 5/9	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan (silcrete?). Very hard cores of cemented sand with variable colour (white, red and yellow)	
BMC95_19	18 - 19m	Completely cemented duricrust	N/A	N/A	N/A	Red	10R 5/9	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan (silcrete?). Very hard cores of cemented sand with variable colour (white, red and yellow)	
BMC95_20	19 - 20m	Completely cemented duricrust	N/A	N/A	N/A	Red	10R 5/9	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan (silcrete?). Very hard cores of cemented sand with variable colour (white, red and yellow)	
BMC95_21	20 - 21m	Completely cemented duricrust	N/A	N/A	N/A	Red	10R 5/9	Pedolith	Pedoplasmation front	Silicified weathered saprolite	Aquitard	Hardpan (silcrete?). Very hard cores of cemented sand with variable colour (white, red and yellow)	
BMC95_22	21 - 22m	Sandy clay loam	Poorly sorted	Clay to cobble	Angular/high to Rounded/low	Light red	10R 7/6	Pedolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	End of hardpan (silcrete?). Clay, very fine to very coarse (>5mm), some chips with quartz-rich hardpan	
BMC95_23	22 - 23m	Clay with quartz	Poorly sorted	Very fine sand to granule	Angular/low to Rounded/low	Pink	10R 8/4	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay, very fine to very coarse (>5mm), some chips with quartz-rich blocks	Saprolite
BMC95_24	23 - 24m	Clay with quartz	Poorly sorted	Clay to granule	Very angular/low to subangular/low	Light red	10R 6/6	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay, very fine to very coarse (>5mm), some chips with quartz-rich blocks	Saprolite
BMC95_25	24 - 25m	Clay with quartz	Poorly sorted	Clay to cobble	Very angular/low to subangular/low	Pinkish white	10R 8/2	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay, very fine to very coarse (>5mm), some chips with quartz-rich blocks	Saprolite
BMC95_26	25 - 26m	Clay with quartz	Poorly sorted	Clay to cobble	Very angular/low to subangular/low	Yellow	10YR 7/6	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay, very fine to very coarse (>5mm), some chips with quartz-rich blocks	Saprolite
BMC95_27	26 - 27m	Clay with quartz	Poorly sorted	Clay to cobble	Very angular/low to subangular/low	Yellow	10YR 7/6	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay, very fine to very coarse (>5mm), some chips with quartz-rich blocks	Saprolite, some quartz and feldspar chips <15mm
BMC95_28	27 - 28m	Clay with quartz	Poorly sorted	Clay to cobble	Very angular/low to subangular/low	Yellow	10YR 7/6	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay, very fine to very coarse (>5mm), some chips with quartz-rich blocks	Saprolite, some igneous bedrock chips <15mm
BMC95_29	28 - 29m	Clay with quartz	Poorly sorted	Clay to cobble	Very angular/low to subangular/low	Yellow	10YR 7/6	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay, very fine to very coarse (>5mm), some chips with quartz-rich blocks	Saprolite, some igneous bedrock chips <30mm
BMC95_30	29 - 30m	Clay with quartz	Poorly sorted	Clay to cobble	Very angular/low to subangular/low	Yellow	10YR 7/6	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay, very fine to very coarse (>5mm), some chips with quartz-rich blocks	Saprolite, some igneous bedrock chips <50mm

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field notes	Comments
BMC95_31	30 - 31m	Bedrock						Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay, very fine to very coarse (>5mm), some chips with quartz-rich blocks	Igneous (granite?) bedrock
BMC95_32	31 - 32m	Bedrock						Saprolith	Quartz-rich bedrock	Fresh granitoid gneiss		EOH - competent igneous (granite?) basement	Igneous (granite?) bedrock
BMC96_01	00 - 01m	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Rounded/low	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, fine, subangular to rounded, well sorted, damp	
BMC96_02	01 - 02m	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Rounded/low	Yellow	10YR 8/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, fine, subangular to rounded, well sorted, damp	
BMC96_03	02 - 03m	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Rounded/low	Yellow	10YR 8/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, fine, subangular to rounded, well sorted, damp	
BMC96_04	03 - 04m	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Rounded/low	Grey	7.5YR 6/1	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, fine, subangular to rounded, well sorted, saturated - below water table	
BMC96_05	04 - 05m	Sand	Well sorted	Very fine to medium sand	Subangular/low to Rounded/high	Grey	7.5YR 6/1	Pedolith	Cementation front	Tertiary sandplain	Surficial aquifer	Hardpan at 4.8m - Sand, fine, subangular to rounded, well sorted, saturated - below water table	
BMC96_06	05 - 06m	Partially cemented duricrust	Poorly sorted	Very fine sand to granule	Subangular/low to Rounded/high	Light grey	10YR 7/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan with clayey sand	
BMC96_07	06 - 07m	Partially cemented duricrust	Well sorted	Coarse silt to Very coarse sand	Subangular/low to Rounded/high	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan with clayey sand, well sorted - increasing clay content	
BMC96_08	07 - 08m	Partially cemented duricrust	Well sorted	Coarse silt to Very coarse sand	Subangular/low to Rounded/high	Very pale brown	10YR 8/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan with clayey sand, well sorted - increasing clay content	
BMC96_09	08 - 09m	Partially cemented duricrust	Well sorted	Coarse silt to Very coarse sand	Subangular/low to Rounded/high	Very pale brown	10YR 8/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan with clayey sand, well sorted - increasing clay content	
BMC96_10	09 - 10m	Partially cemented duricrust	Well sorted	Coarse silt to Very coarse sand	Subangular/low to Rounded/high	Very pale brown	10YR 8/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan with clayey sand, well sorted - increasing clay content. Reduced number of hardpan boulders	
BMC96_11	10 - 11m	Sandy loam	Well sorted	Very fine silt to Very fine sand	Subangular/low to Rounded/high	White	10YR 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Sandy clay with yellow coloured nodiles (not ferricrete)	
BMC96_12	11 - 12m	Sandy loam	Well sorted	Very fine silt to Very fine sand	Subangular/low to Rounded/high	White	10YR 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Sandy clay. Water added during drilling - saturated	
BMC96_13	12 - 13m	Sandy loam	Well sorted	Very fine silt to Very fine sand	Subangular/low to Rounded/high	White	10YR 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Sandy clay. Water added during drilling - saturated	
BMC96_14	13 - 14m	Sandy loam	Poorly sorted	Coarse silt to Very coarse sand	Angular/low to Rounded/low	White	10YR 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Sandy clay with some friable hardpan. Water added during drilling - saturated	
BMC96_15	14 - 15m	Partially cemented duricrust	Poorly sorted	Coarse silt to granule	Angular/low to Rounded/low	Very pale brown	10YR 8/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Clay with Hardpan (silcrete/ferricrete?). Sandy quartz-rich conglomerate. Clay is very pale brown	

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field notes	Comments
BMC96_16	15 - 16m	Completely cemented duricrust	Poorly sorted	Coarse silt to Very coarse sand	Angular/low to Rounded/low	Pale red	10R 7/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Change in hardpan (ferricrete?). Some samples with saprolite?	
BMC96_17	16 - 17m	Completely cemented duricrust	Poorly sorted	Coarse silt to granule	Angular/low to Rounded/low	Pale red to White	10R 7/3 - 10YR 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan as above with variable colour and structure	
BMC96_18	17 - 18m	Completely cemented duricrust	Poorly sorted	Coarse silt to granule	Angular/low to Rounded/low	Pale red	10R 7/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan as above with variable colour and structure	Minimal sample return - Ferricrete?
BMC96_19	18 - 19m	Completely cemented duricrust	Poorly sorted	Coarse silt to granule	Angular/low to Rounded/low	Pale red to White	10R 7/3 - 10YR 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan as above with variable colour and structure	
BMC96_20	19 - 20m	Completely cemented duricrust	Poorly sorted	Coarse silt to granule	Angular/low to Rounded/low	Pale red to White	10R 7/3 - 10YR 8/1	Pedolith	Pedoplasmation front	Silicified weathered saprolite	Aquitard	Very hard drilling - saprock/silcrete?	
BMC96_21	20 - 21m	Clayey sand	Well sorted	Coarse silt to pebble	Angular/low to Rounded/low	Pinkish white	2.5YR 8/2	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	End of hardpan. Clay with quartz (>5mm), broken hardpan fragments from above. Very wet sample	
BMC96_22	21 - 22m	Clay with quartz	Poorly sorted	Clay to very coarse sand	Angular/low to Rounded/low	Pinkish white	2.5YR 8/2	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay with sand, very fine to coarse (~2mm)	
BMC96_23	22 - 23m	Clay with quartz	Poorly sorted	Clay to very coarse sand	Angular/low to Rounded/low	Pinkish white	2.5YR 8/2	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay with sand, very fine to coarse (~2mm)	
BMC96_24	23 - 24m	Clay with quartz	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Light grey	GLEY 1 7/N	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Sandy clay, very fine to very coarse (>2mm)	Some unweathered feldspar in sample
BMC96_25	24 - 25m	Clay with quartz	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Light greenish grey	GLEY 1 7/10Y	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Sandy clay, very fine to very coarse (>2mm)	Some unweathered feldspar in sample
BMC96_26	25 - 26m	Clay with quartz	Poorly sorted	Clay to very coarse sand	Angular/low to Rounded/low	Light greenish grey	GLEY 1 8/10Y	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay - very wet sample	Some unweathered feldspar in sample
BMC96_27	26 - 27m	Clay with quartz	Poorly sorted	Clay to granule	Angular/low to Rounded/low	Light greenish grey	GLEY 1 8/10Y	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay - very wet sample	Some unweathered feldspar in sample
BMC96_28	27 - 28m	Clay with quartz	Poorly sorted	Clay to granule	Angular/low to Rounded/low	Light greenish grey	GLEY 1 8/10Y	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay - very wet sample	
BMC96_29	28 - 29m	Clay with quartz	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Light greenish grey	GLEY 1 8/10Y	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay - very wet sample	
BMC96_30	29 - 30m	Clay with quartz	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Light greenish grey	GLEY 1 8/10Y	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay - very wet sample	
BMC96_31	30 - 31m	Clay with quartz	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Light greenish grey	GLEY 1 8/10Y	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay - very wet sample	
BMC96_32	31 - 32m	Clay with igneous bedrock	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Light greenish grey	GLEY 1 8/10Y	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay - very wet sample. Some minor igneous fragments	

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field notes	Comments
BMC96_33	32 - 33m	Clay with igneous bedrock	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Light greenish grey	GLEY 1 8/10Y	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay - very wet sample. Some minor igneous fragments	
BMC96_34	33 - 34m	Clay with igneous bedrock	Poorly sorted	Clay to pebble	Angular/low to Rounded/low			Saprolith	Saprock	Weathered granitic saprolite	Saprolite aquifer	Weathered igneous (granite?) bedrock	Saprock
BMC96_35	34 - 35m							Saprolith	Saprock	Weathered granitic saprolite		Igneous (granite?) bedrock	Igneous (granite?) bedrock
BMC96_36	35 - 36m							Saprolith	Quartz-rich bedrock	Fresh granitoid gneiss		Igneous (granite?) bedrock	Igneous (granite?) bedrock
BMC97_01	00 - 01m	Loamy sand	Well sorted	Fine to very coarse sand	Subangular/low to Rounded low	Light grey	10YR 7/2	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Clayey sand, saturated, well sorted, very fine to coarse <10% clay. Shallow water table	
BMC97_02	01 - 02m	Loamy sand	Well sorted	Fine to very coarse sand	Subangular/low to Rounded low	Light brownish grey	10YR 6/2	Pedolith	Cementation front	Silcrete	Surficial aquifer	Clayey sand, well sorted, very fine to coarse <10% clay, some fragments of friable hardpan	
BMC97_03	02 - 03m	Loamy sand	Well sorted	Fine to very coarse sand	Subangular/low to Rounded low	Very pale brown	10YR 7/3	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Clayey sand, well sorted, very fine to coarse <10% clay, with hardpan blocks in sample	
BMC97_04	03 - 04m	Partially cemented duricrust	Well sorted	Coarse silt to Very coarse sand	Subangular/high to Rounded/low	Pale brown	10YR 6/3	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Clayey sand, well sorted, very fine to coarse <10% clay, with hardpan blocks in sample. Consolidated hardpan at 4mbgl	Grain size decreasing with depth
BMC97_05	04 - 05m	Partially cemented duricrust	Well sorted	Coarse silt to coarse sand	Subrounded/high to Rounded/high	Light brownish grey	10YR 6/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Liquipol and water added - Poor sample return. Clayey sand, very fine to coarse with hardpan fragments	Not representative - Liquipol added
BMC97_06	05 - 06m	Partially cemented duricrust	Poorly sorted	Coarse silt to granule	Angular/low to Rounded/low	Light grey	10YR 7/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan (silcrete?). Clayey sand ~10% clay, very fine to coarse	
BMC97_07	06 - 07m	Partially cemented duricrust	Poorly sorted	Coarse silt to granule	Angular/low to Rounded/low	Light grey	10YR 7/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan (silcrete?)/ Sandy clay ~10% clay, very fine to coarse with some iron-rich cemented fragments	
BMC97_08	07 - 08m	Partially cemented duricrust	Poorly sorted	Coarse silt to granule	Angular/low to Rounded/low	Very pale brown	10YR 8/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan (silcrete?) Much coarser (angular?) quartz grains, quartz larger in size than above. Very fine to very coarse	
BMC97_09	08 - 09m	Partially cemented duricrust	Poorly sorted	Coarse silt to granule	Angular/low to Rounded/low	Very pale brown	10YR 8/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan (silcrete?). Poor sample recovery. Some iron- staining in hardpan	
BMC97_10	09 - 10m	Partially cemented duricrust	Poorly sorted	Coarse silt to granule	Angular/low to Rounded/low	Very pale brown	10YR 8/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan (silcrete?). Poor sample recovery	
BMC97_11	10 - 11m	Completely cemented duricrust	Poorly sorted	Coarse silt to granule	Angular/low to Rounded/low	Pink	7.5YR 8/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan (ferricrete?) Sandy clay with hardpan, quartz >2mm, very angular, poorly sorted. High quartz content	Iron-rich ferricrete???

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field notes	Comments
BMC97_12	11 - 12m	Completely cemented duricrust	Poorly sorted	Coarse silt to pebble	Very angular/low to rounded/low	Light green	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan (silcrete?) with quartz >3mm in clay cement, poorly sorted, change in colour to red (iron-rich layer?), quartz very angular	
BMC97_13	12 - 13m	Completely cemented duricrust	Poorly sorted	Coarse silt to pebble	Very angular/low to rounded/low	Very pale brown	10YR 8/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Poor sample recovery. Hardpan (silcrete?) with quartz >4mm, very angular with sandy clay	Veins (secondary cementation?) evident in consolidated hardpan
BMC97_14	13 - 14m	Completely cemented duricrust	Poorly sorted	Coarse silt to pebble	Very angular/low to rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Poor sample recovery. Hardpan (silcrete?) with quartz >4mm, very angular with sandy clay. Hardpan with quartz veins	Predominantly quartz
BMC97_15	14 - 15m					Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan (silcrete?) with quartz ~2mm with sandy clay	No sample
BMC97_16	15 - 16m	Completely cemented duricrust	Poorly sorted	Coarse silt to pebble	Very angular/low to rounded/low	Light grey	10YR 7/1	Pedolith	Pedoplasmation front	Silcrete	Leaky aquitard	Hardpan (silcrete?), quartz grains >4mm. Very poor sample recovery	
BMC97_17	16 - 17m	Clay with quartz	Poorly sorted	Clay to granule	Angular/low to Rounded/low	Light grey	10YR 7/1	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Very poor sample return - Clay with quartz <2mm	Start of saprolite/weathering fron
BMC97_18	17 - 18m	Clay with quartz	Poorly sorted	Clay to very coarse sand	Angular/low to Rounded/low	Light grey	10YR 7/1	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Very poor sample return - Clay with quartz <2mm	Saprolite/weathering fron
BMC97_19	18 - 19m	Clay with quartz	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Light grey	10YR 7/1	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Poor sample return. Washed quartz (<4mm), poorly sorted, very angular	Saprolite/weathering fron
BMC97_20	19 - 20m	Clay with quartz	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Light grey	10YR 7/2	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Poor sample return. Washed quartz (<4mm), poorly sorted, very angular	Saprolite/weathering fron
BMC97_21	20 - 21m	Clay with quartz	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Very pale brown	10YR 7/4	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay with quartz (<4mm), poorly sorted, very angular	Saprolite/weathering from
BMC97_22	21 - 22m	Clay with quartz	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Very pale brown	10YR 7/4	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay with quartz (<10mm), poorly sorted, very angular	Saprolite/weathering fron
BMC97_23	22 - 23m	Clay with bedrock chips	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Very pale brown	10YR 7/4	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay with igneous chips (>10mm), poorly sorted, very angular	Saprock
BMC97_24	23 - 24m	Igneous (granite?) bedrock				Light brownish grey	2.5Y 6/2	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay with igneous (granite?) chips (>10mm), poorly sorted, very angular	Saprock
BMC97_25	24 - 25m	Igneous (granite?) bedrock				Light brownish grey	2.5Y 6/2	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Igneous (granite?) bedrock chips at 25m	Saprock
BMC97_26	25 - 26m	Igneous (granite?) bedrock				Light brownish grey	2.5Y 6/2	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Igneous (granite?) bedrock chips	Igneous (granite?) bedrock
BMC97_27	26 - 27m	Igneous (granite?) bedrock				Light brownish grey	2.5Y 6/2	Saprolith	Quartz-rich bedrock	Fresh granitoid gneiss		EOH - Igneous (granite?) bedrock chips	Igneous (granite?) bedrock

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field notes	Comments
BMC98_01	00 - 01m	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Subrounded/High	Light grey	10YR 7/1	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Liquipol contaminated sample - Sand, well sorted	
BMC98_02	01 - 02m	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Subrounded/High	Light grey	10YR 7/1	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Liquipol contaminated sample - Sand, well sorted	
BMC98_03	02 - 03m	Partially cemented duricrust	Well sorted	Very fine to coarse sand	Rounded/low	Light grey	10YR 7/1	Pedolith	Cementation front	Silcrete	Surficial aquifer	Liquipol contaminated sample - Hardpan, very fine to fine quartz. Water added at 3m	
BMC98_04	03 - 04m	Partially cemented duricrust	Well sorted	Very fine to coarse sand	Subrounded/low to Rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Liquipol contaminated sample - Hardpan, very fine to fine quartz, iron-oxide nodules in sample	
BMC98_05	04 - 05m	Partially cemented duricrust	Well sorted	Very fine to very coarse sand	Subrounded/low to Rounded/low	Very pale brown	10YR 7/3	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Liquipol contaminated sample - Hardpan with very fine to coarse quartz	
BMC98_06	05 - 06m	Partially cemented duricrust	Well sorted	Very fine to very coarse sand	Rounded/low	Light grey	10YR 7/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan with very fine to coarse quartz	
BMC98_07	06 - 07m	Partially cemented duricrust	Well sorted	Clay to very coarse sand	Subrounded/low to Rounded/low	Light grey	10YR 7/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan with very fine to coarse quartz	
BMC98_08	07 - 08m	Partially cemented duricrust	Well sorted	Very fine to coarse sand	Angular/low to Rounded/low	Light grey	10YR 7/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Poor sample return - Hardpan absent	
BMC98_09	08 - 09m	Partially cemented duricrust	Well sorted	Very fine to coarse sand	Rounded/low	Very pale brown	10YR 8/2	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan, quartz very fine to coarse	
BMC98_10	09 - 10m	Partially cemented duricrust	Well sorted	Very fine to coarse sand	Rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Sandy clay, very fine to coarse	Hardpan ground-up with drilling
BMC98_11	10 - 11m	Partially cemented duricrust	Well sorted	Very fine to coarse sand	Rounded/low	Light grey	2.5Y 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan sample ground from drilling, is very fine to coarse	Hardpan ground-up with drilling
BMC98_12	11 - 12m	Partially cemented duricrust	Well sorted	Very fine to coarse sand	Rounded/low	Light grey	2.5Y 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan sample ground from drilling, is very fine to coarse	Hardpan ground-up with drilling
BMC98_13	12 - 13m	Partially cemented duricrust	Well sorted	Very fine to coarse sand	Rounded/low	Light grey	5Y 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan sample ground from drilling, is very fine to coarse	Hardpan ground-up with drilling
BMC98_14	13 - 14m	Partially cemented duricrust	Well sorted	Very fine sand to granule	Angular/low to Rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan sample ground from drilling, is very fine to coarse	Hardpan ground-up with drilling
BMC98_15	14 - 15m	Partially cemented duricrust	Well sorted	Very fine sand to granule	Angular/low to Rounded/low	Light grey	10YR 7/2	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan sample ground from drilling, is very fine to coarse	Hardpan ground-up with drilling
BMC98_16	15 - 16m	Partially cemented duricrust	Well sorted	Very fine sand to granule	Angular/low to Rounded/low	Very pale brown	10YR 7/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan sample ground from drilling, is very fine to coarse. Some iron-rich (ferricrete?) in sample	Horizon more coarse (larger quartz) than above

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field notes	Comments
BMC98_17	16 - 17m	Partially cemented duricrust	Poorly sorted	Very fine sand to granule	Angular/low to Rounded/low	Light brownish grey	10YR 6/2	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Very hard hardpan at 17m. Hardpan sample ground from drilling, is very fine to coarse. Some iron-rich (ferricrete?) in sample	
BMC98_18	17 - 18m	Partially cemented duricrust	Poorly sorted	Very fine sand to granule	Angular/low to Rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan (silcrete?) - as above	
BMC98_19	18 - 19m	Partially cemented duricrust	Poorly sorted	Very fine sand to granule	Subangular/low Rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan (silcrete?) - as above	
BMC98_20	19 - 20m	Partially cemented duricrust	Poorly sorted	Very fine sand to pebble	Subangular/low Rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan (silcrete?), very fine to very coarse. Very angular quartz	Some feldspar in sample also
BMC98_21	20 - 21m	Partially cemented duricrust	Poorly sorted	Very fine sand to pebble	Subangular/low Rounded/low	Light grey	10YR 7/2	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan with much more quartz than above, some ironstone inclusions	
BMC98_22	21 - 22m	Partially cemented duricrust	Poorly sorted	Very fine sand to pebble	Subangular/low Rounded/low	Light grey	10YR 7/2	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan	
BMC98_23	22 - 23m	Partially cemented duricrust	Poorly sorted	Very fine sand to pebble	Subangular/low Rounded/low	Light grey	10YR 7/2	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan	Hardpan ground-up with drilling
BMC98_24	23 - 24m	Partially cemented duricrust	Poorly sorted	Very fine to very coarse sand	Subangular/low to Rounded/high	Light grey	10YR 7/2	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan	
BMC98_25	24 - 25m	Partially cemented duricrust	Well sorted	Very fine to coarse sand	Subangular/low to Rounded/high	Very pale brown	10YR 7/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan	
BMC98_26	25 - 26m	Partially cemented duricrust	Poorly sorted	Very fine sand to granule	Subangular/low to Rounded/high	Very pale brown	10YR 7/4	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan	Increased proportion of quartz
BMC98_27	26 - 27m	Partially cemented duricrust	Poorly sorted	Very fine sand to granule	Subangular/low to Rounded/high	Yellow	10YR 7/6	Pedolith	Pedoplasmation front	Silcrete	Leaky aquitard	Hardpan	
BMC98_28	27 - 28m	Clay with quartz	Poorly sorted	Clay to pebble	Angular/low to Rounded/high	Light brownish grey	2.5Y 6/2	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Hardpan	Some clumps of organic material in matrix - preferential pathway?
BMC98_29	28 - 29m	Clay with igneous bedrock	Poorly sorted	Clay to pebble	Angular/low to Rounded/high	Olive grey	5Y 7/2	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Gritty clay with igneous (granite?) chips	Saprock?
BMC98_30	29 - 30m	Igneous (granite?) bedrock				Olive grey	5Y 7/2	Saprolith	Saprock	Weathered granitic saprolite		Top of igneous (granite?) bedrock, bedrock fragments	
BMC98_31	30 - 31m	Igneous (granite?) bedrock						Saprolith	Quartz-rich bedrock	Fresh granitoid gneiss		EOH - Igneous (granite?) bedrock	

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field no
BMC99_01	00 - 01m	Sand	Poorly sorted	Very fine sand to granule	Angular/low to Subrounded/low	Light yellowish brown	10YR 6/4	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Logs fro Well so
BMC99_02	01 - 02m	Sand with ironstone gravel	Poorly sorted	Very fine sand to cobble	Angular/low to Rounded/high	Light yellowish brown	10YR 6/4	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Logs fro Poorly s ferricret >10mm
BMC99_03	02 - 03m	Completely cemented duricrust	Poorly sorted	Very fine sand to pebble	Angular/low to Rounded/low	Brown	10YR 5/3	Pedolith	Cementation front	Silcrete	Surficial aquifer	Logs fro poorly s variable and sand
BMC99_04	03 - 04m	Completely cemented duricrust	Well sorted	Very fine to very coarse sand	Subrounded/low	Very pale brown	10YR 7/3	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Logs fro sandstor hardpan
BMC99_05	04 - 05m	Completely cemented duricrust	Well sorted	Very fine to very coarse sand	Subrounded/low	Very pale brown	10YR 8/2	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Logs fro sandstor
BMC99_06	05 - 06m	Completely cemented duricrust	Well sorted	Coarse silt to Very coarse sand	Subrounded/low	White	10YR 8/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Logs fro sandstor
BMC99_07	06 - 07m	Moderately cemented duricrust	Poorly sorted	Coarse silt to cobble		White	10YR 8/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Logs fro sandstor rich nod Some ir ferricret
BMC99_08	07 - 08m	Completely cemented duricrust				Redish yellow	5YR 6/6	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Logs fro ferricret Iron noo quartz g
BMC99_09	08 - 09m	Completely cemented duricrust	Poorly sorted					Pedolith	Arenose zone	Silcrete	Leaky aquitard	Quartz- gravel <
BMC99_10	09 - 10m							Pedolith	Arenose zone	Silcrete	Leaky aquitard	
BMC99_11	10 - 11m		Poorly sorted			Yellowish red	5YR 5/6	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Log from Quartz gravel <
BMC99_12	11 - 12m	Completely cemented duricrust						Pedolith	Arenose zone	Silcrete	Leaky aquitard	Log from Quartz-1 gravel <
BMC99_13	12 - 13m	Clayey sand	Well sorted	Clay to very coarse sand	Subangular/low to subrounded/low	Yellowish red	5YR 5/6	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Log from Ferricre
BMC99_14	13 - 14m	Completely cemented duricrust						Pedolith	Arenose zone	Silcrete	Leaky aquitard	Log from Ferricre
BMC99_15	14 - 15m	Completely cemented duricrust						Pedolith	Arenose zone	Silcrete	Leaky aquitard	Log from Ferricre
BMC99_16	15 - 16m	Moderately cemented duricrust						Pedolith	Arenose zone	Silcrete	Leaky aquitard	Log fro Ferricre
BMC99_17	16 - 17m	Completely cemented duricrust						Pedolith	Arenose zone	Silcrete	Leaky aquitard	Log from Silcrete

notes	Comments
rom abandoned hole - orted sand	
rom abandoned hole - y sorted sand with ete nodules <2mm to m	
From abandoned hole - y sorted sand with le hardpan - ferricrete ndstone?	
rom abandoned hole - one hardpan. Holes in an	
rom abandoned hole - one hardpan	
rom abandoned hole - one hardpan	
from abandoned hole - one hardpan with iron- odules (not pisoliths). iron-rich mottling with ete	
rom abandoned hole - ete hardpan, EOH @8m. odules with angular grains	
z-rich hardpan with <5mm	
om abandoned hole - z-rich hardpan with <5mm. Ferricrete also?	
om abandoned hole - z-rich hardpan with <5mm. Ferricrete also?	
om abandoned hole - rete?	
om abandoned hole - e?	

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field notes	Comments
BMC100_01	00 - 01m	Sand	Well sorted	Very fine to very coarse sand	Very angular/high to Rounded/high	Light grey	10YR 7/2	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, well sorted, damp	
BMC100_02	01 - 02m	Sand	Well sorted	Very fine to very coarse sand	Very angular/high to Rounded/high	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, well sorted, damp	
BMC100_03	02 - 03m	Sand	Well sorted	Very fine to very coarse sand	Very angular/high to Rounded/high	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, well sorted, damp	
BMC100_04	03 - 04m	Sand	Well sorted	Very fine to very coarse sand	Very angular/high to Rounded/high	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, well sorted, damp	
BMC100_05	04 - 05m	Sand	Well sorted	Very fine to very coarse sand	Very angular/high to Rounded/high	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, well sorted, damp	
BMC100_06	05 - 06m	Sand	Well sorted	Very fine to very coarse sand	Very angular/high to Rounded/high	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, well sorted, damp	
BMC100_07	06 - 07m	Sand	Well sorted	Very fine to very coarse sand	Very angular/high to Rounded/high	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, well sorted, damp	
BMC100_08	07 - 08m	Sand	Well sorted	Very fine to very coarse sand	Very angular/high to Rounded/high	Very pale brown	10YR 7/3	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, well sorted, damp	Sample missing
BMC100_09	08 - 09m	Partially cemented duricrust	Well sorted	Very fine to very coarse sand	Subangular/low to Rounded/high	Light grey	10YR 7/2	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, well sorted, damp - hardpan at ~9m. Water added during drilling	Hardpan ground-up with drilling
BMC100_10	09 - 10m	Partially cemented duricrust	Poorly sorted	Very fine sand to granule	Angular/high to Rounded/low	Light grey	10YR 7/2	Pedolith	Cementation front	Silcrete	Leaky aquitard	Hardpan	Friable, ground-up hardpan of small quartz grains <5mm.
BMC100_11	10 - 11m	Partially cemented duricrust	Poorly sorted	Very fine sand to pebble	Subangular/low to Rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan, with bands of sand/quartz	Friable, ground-up hardpan of small quartz grains <10mm.
BMC100_12	11 - 12m	Partially cemented duricrust	Well sorted	Coarse silt to Very coarse sand	Subangular/high to Rounded/high	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Initial hole abonadoned due to hole colapsing	Friable, ground-up hardpan of small quartz grains.
BMC100_13	12 - 13m	Partially cemented duricrust	Well sorted	Coarse silt to coarse sand	Subangular/high to Rounded/high	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Sand - Sample contaminated with liquipol	Friable, ground-up hardpan of small quartz grains.
BMC100_14	13 - 14m	Partially cemented duricrust	Well sorted	Coarse silt to coarse sand	Subangular/high to Rounded/high	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Sand - Sample contaminated with liquipol	Friable, ground-up hardpan of small quartz grains, mostly <0.5mm, and silt/clay
BMC100_15	14 - 15m	Partially cemented duricrust	Well sorted	Fine silt to Coarse sand	Subangular/high to Rounded/high	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Sand - Sample contaminated with liquipol	Friable hardpan of small quartz grains, mostly <0.5mm
BMC100_16	15 - 16m	Partially cemented duricrust	Well sorted	Fine silt to Coarse sand	Subangular/high to Rounded/high	Light grey to very pale brown	10YR 7/1 - 10YR 7/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan layer, cemented sand. Rods getting stuck on return. Sandy clay with pulverised hardpan >15% clay	Clumps of clay matrix containing angular quartz <3mm

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field notes	Comments
BMC100_17	16 - 17m	Partially cemented duricrust	Well sorted	Fine silt to Coarse sand	Subangular/high to Rounded/high	Light grey to very pale brown	10YR 7/1 - 10YR 7/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan as above - Sandy clay with some quartz fragments. Sample contaminated with liquipol	Clumps of clay matrix containing angular quartz <3mm
BMC100_18	17 - 18m	Clay matrix	Poorly sorted	Clay to granule	Angular/low quartz	Weak red	2.5YR 4/2	Pedolith	Mottled zone	Silcrete	Leaky aquitard	Sample contaminated with liquipol - sandy clay with >20% clay	
BMC100_19	18 - 19m	Clay matrix	Poorly sorted	Clay to granule	Angular/low quartz	Pale red	10R 7/4	Pedolith	Mottled zone	Silcrete	Leaky aquitard	Clay with some fragments of friable weathered material, consolidated clay with angular to very angular quartz	
BMC100_20	19 - 20m	Completely cemented duricrust	Poorly sorted	Clay to pebble	Angular/low quartz	Pale red	10R 7/4	Pedolith	Mottled zone	Silcrete	Leaky aquitard	As above - Large >5cm fragments with variable colour from white to yellow to red. Water added during drilling	
BMC100_21	20 - 21m	Completely cemented duricrust	Poorly sorted	Clay to pebble	Angular/low quartz	Pale red	10R 7/4	Pedolith	Mottled zone	Silcrete	Leaky aquitard	As above with hardpan (saprock??)	Red (iron-oxide?) stained hardpan
BMC100_22	21 - 22m	Completely cemented duricrust	Poorly sorted	Clay to pebble	Angular/low quartz	Pink	10R 8/3	Pedolith	Mottled zone	Silcrete	Leaky aquitard	As above with pink clay	Red (iron-oxide?) stained hardpan
BMC100_23	22 - 23m	Completely cemented duricrust	Poorly sorted	Clay to pebble	Angular/low quartz	Pinkish white	10R 8/2	Pedolith	Mottled zone	Silcrete	Leaky aquitard	As above with pinkish white clay	Red (iron-oxide?) stained hardpan
BMC100_24	23 - 24m	Completely cemented duricrust	Poorly sorted	Clay to pebble	Angular/low quartz	White	10R 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	As above with white clay - less iron oxide in samples	As above, although less iron staining and Quartz <10mm - insitu formation???
BMC100_25	24 - 25m	Completely cemented duricrust	Poorly sorted	Clay to pebble	Angular/low to Subangular/low	White	10R 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan - Sandy clay, quartz <5mm grain size, very angular	Quartz <5mm
BMC100_26	25 - 26m	Completely cemented duricrust	Poorly sorted	Clay to pebble	Angular/low	White	10R 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan - sandy clay, quartz <10mm, poorly sorted	Quartz <10mm
BMC100_27	26 - 27m	Moderately cemented	Poorly sorted	Clay to granule	Subangular/low to Rounded/high	White	10R 8/1	Pedolith	Pedoplasmation front	Silicified weathered saprolite	Aquitard	Hardpan - sandy clay, quartz <5mm, poorly sorted	Much finer and more rounded quartz than above
BMC100_28	27 - 28m	Moderately cemented	Poorly sorted	Clay to very coarse sand	Subangular/low to Rounded/high	White	10R 8/1	Pedolith	Pedoplasmation front	Silicified weathered saprolite	Aquitard	Hardpan - sandy clay, quartz <5mm, poorly sorted. Water added during drilling	
BMC100_29	28 - 29m	Clay with quartz	Poorly sorted	Clay to pebble	Subangular/low	Pale yellow	2.5YR 8/3	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Sandy clay, quartz poorly sorted, very angular <2mm to >5mm	
BMC100_30	29 - 30m	Clay with quartz	Poorly sorted	Clay to pebble	Subangular/low	Pale yellow	2.5YR 8/3	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Sandy clay, quartz poorly sorted, very angular <2mm to >5mm	
BMC100_31	30 - 31m	Clay with quartz	Poorly sorted	Clay to pebble	Very angular/low	Pale yellow	2.5YR 8/3	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Sandy clay, quartz poorly sorted, very angular <2mm to >5mm. Quartz grains becoming larger than 5mm	
BMC100_32	31 - 32m	Clay with quartz	Poorly sorted	Clay to pebble	Very angular/low	Pale yellow	2.5YR 8/3	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Sandy clay, quartz poorly sorted, very angular <2mm to >5mm. Quartz grains becoming larger than 5mm	

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field notes	Comments
BMC100_33	32 - 33m	Clay with quartz	Poorly sorted	Clay to pebble	Very angular/low	Pale yellow	2.5YR 8/3	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Sandy clay, quartz poorly sorted, very angular <2mm to >5mm. Quartz grains becoming larger than 5mm	
BMC100_34	33 - 34m							Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Samples contaminated from cyclone	Insufficient sample
BMC100_35	34 - 35m	Clay with quartz	Poorly sorted	Clay to pebble	Very angular/low			Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Samples contaminated from cyclone	
BMC100_36	35 - 36m	Clay with bedrock chips	Poorly sorted	Clay to pebble	Very angular/low	Very pale brown	10YR 8/4	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Clay with quartz, very angular, poorly sorted <2mm to >5mm	
BMC100_37	36 - 37m	Clay with bedrock chips				Very pale brown	10YR 8/4	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Weathering front? Clay with quartz, very angular, poorly sorted quartz fragments <1mm to >5mm	
BMC100_38	37 - 38m	Igneous (granite?) bedrock						Saprolith	Saprock	Weathered granitic saprolite	Saprolite aquifer	Fragments of igneous (granite?) basement - quartz- rich igneous rock	
BMC100_39	38 - 39m	Igneous (granite?) bedrock						Saprolith	Quartz-rich bedrock	Fresh granitoid gneiss		Quartz-rich basement fragments, competant basement - EOH. Difficulties extracting rods	
BMC101_01	00 - 01m	Sand	Well sorted	Very fine to very coarse sand	Subangular/low to Rounded/high	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Well sorted sand - damp. <5% clay	
BMC101_02	01 - 02m	Sand	Well sorted	Very fine to very coarse sand	Subangular/low to Rounded/high	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Well sorted sand - damp. <5% clay	
BMC101_03	02 - 03m	Sand	Well sorted	Very fine to very coarse sand	Subangular/low to Rounded/high	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Well sorted sand - damp. <5% clay Below the water table	
BMC101_04	03 - 04m	Loamy sand	Well sorted	Clay to very coarse sand	Subangular/low to Rounded/high	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Well sorted sand - damp. <10% clay Below the water table	
BMC101_05	04 - 05m	Loamy sand	Well sorted	Clay to very coarse sand	Subangular/low to Rounded/high	Yellow	10YR 7/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Well sorted sand - damp. <10% clay Below the water table	
BMC101_06	05 - 06m	Sand	Well sorted	Very fine to coarse sand	Subrounded/high	Light grey	10YR 7/2	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Well sorted washed sand, no evidence of hardpan	
BMC101_07	06 - 07m	Sand	Well sorted	Coarse silt to coarse sand	Subangular/low to Rounded/low	Light grey	10YR 7/2	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Well sorted washed sand, no evidence of hardpan	
BMC101_08	07 - 08m	Sand	Well sorted	Coarse silt to medium sand	Subrounded/high	Light grey	10YR 7/2	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Well sorted washed sand, no evidence of hardpan	
BMC101_09	08 - 09m	Partially cemented duricrust	Well sorted	Coarse silt to medium sand	Subrounded/high	Light grey	10YR 7/2	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Well sorted washed sand, some evidence of hardpan	
BMC101_10	09 - 10m	Partially cemented duricrust	Well sorted	Coarse silt to medium sand	Subrounded/high	Light grey	10YR 7/2	Pedolith	Cementation front	Silcrete	Leaky aquitard	Hardpan - sand-rich hardpan	

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field no
BMC101_11	10 - 11m	Partially cemented duricrust	Well sorted	Coarse silt to medium sand	Subrounded/high	Very pale brown	10YR 7/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpar Clay pro with de
BMC101_12	11 - 12m	Partially cemented duricrust	Well sorted	Coarse silt to medium sand	Subrounded/high	Very pale brown	10YR 7/3	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpar Clay pro with de
BMC102_01	00 - 01m	Sand	Well sorted	Very fine to coarse sand	Angular/high to Rounded/high	Light grey	10YR 7/1	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Well so
BMC102_02	01 - 02m	Sand	Poorly sorted	Very fine sand to cobble	Angular/high to Rounded/high	Very pale brown	10YR 7/3	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Poorly s oxide gr through
BMC102_03	02 - 03m	Partially cemented duricrust	Poorly sorted	Clay to cobble	Angular/high to Rounded/high	Very pale brown	10YR 7/3	Pedolith	Cementation front	Silcrete	Surficial aquifer	Poorly s damp. I <5mm t
BMC102_04	03 - 04m	Completely cemented duricrust	Well sorted	Clay to very coarse sand	Subangular/low to Rounded/high			Pedolith	Arenose zone	Silcrete	Surficial aquifer	Ferricre rich har
BMC102_05	04 - 05m	Completely cemented duricrust	Well sorted	Clay to very coarse sand	Subangular/low to Rounded/high	Grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpar hardpar brown) drilling
BMC102_06	05 - 06m	Completely cemented duricrust	Well sorted	Clay to very coarse sand	Subangular/low to Rounded/high	Very pale brown	10YR 8/4	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpa
BMC102_07	06 - 07m	Completely cemented duricrust				Very pale brown	10YR 8/4	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpar Hole co EOH @
BMC103_01	00 - 01m	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Rounded/low	Brownish yellow	10YR 6/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, w
BMC103_02	01 - 02m	Sand	Well sorted	Very fine to coarse sand	Subangular/low to Rounded/low	Brownish yellow	10YR 6/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, w
BMC103_03	02 - 03m	Sand	Well sorted	Very fine to coarse sand	Subangular/low	Brownish yellow	10YR 6/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, w
BMC103_04	03 - 04m	Sand	Well sorted	Very fine to coarse sand	Subangular/low	Brownish yellow	10YR 6/6	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Sand, w
BMC103_05	04 - 05m	Partially cemented duricrust	Poorly sorted	Very fine to very coarse sand	Subangular/low	Light grey	10YR 7/2	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Hardpar sorted v sandstor Iron-ric
BMC103_06	05 - 06m	Completely cemented duricrust	Poorly sorted	Very fine sand to pebble	Angular/low to Rounded/low	Light grey	10YR 7/1	Pedolith	Cementation front	Silcrete	Surficial aquifer	Quartz- Quartz poorly s consolid core san

notes	Comments
an with sand and clay. proportion increasing epth	
an with sand and clay. proportion increasing epth - EOH	
orted sand, damp	
v sorted sand, damp. Iron gravel <20mm hout	
y sorted sandy clay, Iron-rich fragments to >10mm throughout	
rete hardpan and sand- ardpan	
an - Sandstone-rich an. Hardpan (very pale) ground up during g	
an - sandstone hardpan	
an - sandstone hardpan. colapsing during drilling, @6m	
well sorted, damp	
an @5m - Sand, well with fragments of one (consolidated sand). ich gravel <10mm	
z-rich hardpan (silcrete?). z <5mm, very angular, y sorted with fragments of lidated sediments. Good ample taken	

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field no
BMC104_01	00 - 01m	Sand	Well sorted	Fine to very coarse sand	Subangular/low to rounded/low	Pale brown	10YR 6/3	Pedolith	Soil	Tertiary sandplain	Surficial aquifer	Well so the end
BMC104_02	01 - 02m	Clayey sand	Well sorted	Clay to coarse	Subangular/high	Brown	10YR 5/3	Pedolith	Cementation front	Silcrete	Surficial aquifer	Hardpa clay (< cement
BMC104_03	02 - 03m	Partially cemented duricrust	Well sorted	Very fine to coarse sand	Subangular/high	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpa sand/cla hardpar
BMC104_04	03 - 04m	Partially cemented duricrust	Well sorted	Very fine to very coarse sand	Subangular/high to Rounded/high	Light grey	10YR 7/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpa sand/cla hardpar
BMC104_05	04 - 05m	Sand	Well sorted	Very fine to very coarse sand	Subangular/low to Rounded/high	Very pale brown	10YR 7/3	Pedolith	Arenose zone	Sedimentary sequence	Surficial aquifer	Alluvia hardpar mostly (well ro
BMC104_06	05 - 06m	Light sandy clay	Well sorted	Clay to medium sand	Subangular/high to Rounded/high	Light grey	10YR 7/2	Pedolith	Arenose zone	Sedimentary sequence	Surficial aquifer	Sandy c saturate during c
BMC104_07	06 - 07m	Sand	Well sorted	Very fine to coarse sand	Subangular/high to Rounded/high	Light grey	10YR 7/2	Pedolith	Arenose zone	Sedimentary sequence	Surficial aquifer	Sample liquipol
BMC104_08	07 - 08m	Sand	Well sorted	Very fine to coarse sand	Subangular/high to Rounded/high	Very pale brown	10YR 8/2	Pedolith	Arenose zone	Sedimentary sequence	Surficial aquifer	Bulk sa samples
BMC104_09	08 - 09m	Sand	Well sorted	Very fine to very coarse sand	Subangular/low to rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Sedimentary sequence	Surficial aquifer	Bulk sa samples
BMC104_10	09 - 10m	Sand	Well sorted	Very fine to Coarse sand	Angular/high to Rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Sedimentary sequence	Surficial aquifer	Bulk sa samples
BMC104_11	10 - 11m	Sand	Well sorted	Coarse silt to coarse sand	Subangular/low to Rounded/high	Light grey	10YR 7/1	Pedolith	Arenose zone	Sedimentary sequence	Surficial aquifer	Well so
BMC104_12	11 - 12m	Sand	Well sorted	Coarse silt to coarse sand	Subangular/high to Rounded/low	Light grey	10YR 7/1	Pedolith	Arenose zone	Sedimentary sequence	Surficial aquifer	Well so
BMC104_13	12 - 13m							Pedolith	Arenose zone	Sedimentary sequence	Surficial aquifer	Not a re (cement sample)
BMC104_14	13 - 14m	Partially cemented duricrust	Well sorted	Clay to medium sand	Angular/low to Rounded/low	Grey	2.5YR 6/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpar ground-
BMC104_15	14 - 15m	Partially cemented duricrust	Poorly sorted	Clay to pebble	Very angular/low to Rounded/high	Grey	2.5YR 6/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan hard cen Mixture yellow
BMC104_16	15 - 16m	Partially cemented duricrust	Poorly sorted	Clay to granule	Angular/low to Rounded/high	Light grey	2.5YR 7/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan 16m, no to grind clay sar

notes	Comments
orted sand, some clay at d of the rod	
an (sandstone) - Sandy <15% clay) also with ted sand	
an - Hardpan of lay. Broken pieces of an appear wet inside	
an - Hardpan of lay. Broken pieces of an appear wet inside	
al sequence - some an fragmets, however well sorted alluvial rounded) sand	
clay (clay >20%), ted. Water also added drilling.	
e contaminated with bl - well sorted sand	
amples only - no chip es. Well sorted sand	
amples only - no chip es. Well sorted sand	
amples only - no chip es. Well sorted sand	
orted sand	
orted sand	
representative sample nt grout contaminated e)	
an - Sandy clay with d-up hardpan	
an - Fragments of very emented sandstone. re of grey and pale	
an - very hard drilling at no hardpan samples due iding of hardpan - sandy- amples recovered	

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field no
BMC104_17	16 - 17m	Completely cemented duricrust	Poorly sorted	Clay to granule	Angular/low to Rounded/high	Light grey	2.5YR 7/1	Pedolith	Arenose zone	Silcrete	Surficial aquifer	Hardpan of hardp layer
BMC104_18	17 - 18m	Partially cemented duricrust	Poorly sorted	Clay to granule	Angular/low to Rounded/high	Yellow with grey	2.5YR 7/6 - 2.5YR 6/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Sandy-cl clay/silt of clay v <2mm
BMC104_19	18 - 19m	Completely cemented duricrust	Poorly sorted	Clay to pebble	Angular/high to Rounded/low	Olive yellow	2.5Y 6/8	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan fine sand
BMC104_20	19 - 20m	Completely cemented duricrust	Poorly sorted	Clay to very coarse sand	Angular/low to Rounded/low	Light grey	2.5Y 7/2	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan hardpan
BMC104_21	20 - 21m	Partially cemented duricrust	Poorly sorted	Clay to very coarse sand	Angular/low to Rounded/low	Light grey	2.5Y 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan hardpan grains in depth
BMC104_22	21 - 22m	Partially cemented duricrust	Poorly sorted	Clay to granule	Angular/low to Subangular/high	Light grey	2.5Y 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan hardpan grains in depth
BMC104_23	22 - 23m	Partially cemented duricrust	Poorly sorted	Clay to pebble	Angular/low to Rounded/low	Light grey	2.5Y 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan hardpan grains in depth
BMC104_24	23 - 24m	Partially cemented duricrust	Poorly sorted	Clay to very coarse sand	Angular/low to Rounded/low	Light grey	2.5Y 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan hardpan grains d e depth
BMC104_25	24 - 25m	Partially cemented duricrust	Poorly sorted	Clay to very coarse sand	Angular/low to Rounded/low	Light grey	2.5Y 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan hardpan grains d depth
BMC104_26	25 - 26m	Partially cemented duricrust	Poorly sorted	Clay to very coarse sand	Angular/low to Rounded/low	Light grey	2.5Y 7/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan hardpan grains d e depth
BMC104_27	26 - 27m	Partially cemented duricrust	Poorly sorted	Clay to very coarse sand	Angular/low to Rounded/low	White	10YR 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan hardpan grains <2 poorly se
BMC104_28	27 - 28m	Partially cemented duricrust	Poorly sorted	Clay to granule	Angular/low to Rounded/low	White	10YR 8/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan hardpan grains <- poorly se
BMC104_29	28 - 29m	Partially cemented duricrust	Poorly sorted	Clay to cobble	Very angular/low to subrounded/low	Grey	5Y 6/1	Pedolith	Arenose zone	Silcrete	Leaky aquitard	Hardpan
BMC104_30	29 - 30m	Completely cemented duricrust	Poorly sorted	Clay to cobble	Very angular/low to subrounded/low	Light greenish grey	GLEY 1 6/10Y	Pedolith	Pedoplasmation front	Silicified weathered saprolite	Aquitard	Hardpan Quartz-r

notes	Comments
	Comments
pan - Numerous biscuits rdpan in sample, sand-rich	
y-clay - Sample mostly silt liquid with some balls ay with some quartz m	
pan - Bands of cemented sand , sandy clay hardpan	
pan - Very fine sandy clay pan layers	
pan - Very fine sandy clay pan layers. Sand quartz is increasing in size with	
pan - Very fine sandy clay pan layers. Sand quartz is increasing in size with	
pan - Very fine sandy clay pan layers. Sand quartz is increasing in size with	
pan - Very fine sandy clay pan layers. Sand quartz is decreasing in size with	
pan - Very fine sandy clay pan layers. Sand quartz is decreasing in size with	
pan - Very fine sandy clay pan layers. Sand quartz as decreasing in size with	
pan - Very fine sandy clay pan layers. Sand quartz s <2mm, very angular, ly sorted	
pan - Very fine sandy clay pan layers. Sand quartz is <4mm, very angular, ly sorted	
pan	
pan - very hard drilling - tz-rich hardpan <10mm	

ID	Depth (m)	Texture	Sorting	Grain size	Dominant grain roundness/sphericity	Colour name	Munsell colour	Stratigraphy	Horizon (Anand & Paine, 2002)	DAFWA terms	Hydrostratigraphy	Field notes	Comments
BMC104_31	30 - 31m	Saprolite?	Poorly sorted	Clay to cobble	Very angular/low to subrounded/low			Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Hardpan - Hardpan ground-up in sample, quartz-rich hardpan, very angular, poorly sorted quartz <2mm to >5mm. Some unweathered basement chips	
BMC104_32	31 - 32m	Saprolite?				Light grey	GLEY 1 6/N	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Insufficient bulk sample - chip sample only. Sample as above	
BMC104_33	32 - 33m	Saprock - Igneous bedrock (granite?)	Poorly sorted	Clay to cobble	Very angular/low to subrounded/low	Grey	GLEY 1 5/N	Saprolith	Saprolite	Weathered granitic saprolite	Saprolite aquifer	Weathering front - Sandy clay, poorly sorted, quartz <2mm	
BMC104_34	33 - 34m	Saprock - Igneous bedrock (granite?)	Poorly sorted	Clay to cobble	Very angular/low to subrounded/low	Greenish grey	GLEY 1 6/10Y	Saprolith	Saprock	Weathered granitic saprolite	Saprolite aquifer	Igneous (granite?) bedrock. Large biscuits of igneous basement, very fine grained, friable basement	
BMC104_35	34 - 35m	Saprock - Igneous bedrock (granite?)						Saprolith	Saprock	Weathered granitic saprolite	Saprolite aquifer	Igneous (granite?) bedrock. Large biscuits of igneous basement, very fine grained, friable basement	
BMC104_36	35 - 36m	Saprock - Igneous bedrock (granite?)				Greenish grey	GLEY 1 6/10Y	Saprolith	Quartz-rich bedrock	Fresh granitoid gneiss		EOH 36m. Still able to penetrate basement, although still considered as competant basement. Very greenish (dolerite or granite???)	

Appendix J Table 7. Hydrochemistry data of the HWS for groundwater and wetlands collected in October 2012

Site ID	Date	Lab EC (mS/cm)	Cl (mg/L)	Br (mg/L)	Cl/Br	SO4 (mg/L)	Na (mg/L)	K (mg/L)	Mg (mg/L)	Ca (mg/L)	TDS sum (mg/L)	Ion balance (%)	Total Alkalinity (CaCO3 mg/L)	Lab - CO3 (mg/l)	Lab - HCO3 (mg/L)	TN (mg/L)	TP (mg/L)
BMC100D	10/10/2012	5.6	1616	6.60	244.85	264.00	1018.00	19.80	106.00	62.70	3350.60	-3.42	211.00	0.39	256.63	0.50*	0.08*
BMC1000B	10/10/2012	0.2	30	0.20	150.00	22.30	23.10	0.90	8.00	3.20	100.20	-11.81	10.25	0.00	12.50	4.70*	0.01
BMC101OB	10/10/2012	4.5	1307	4.30	303.95	131.00	837.00	16.00	76.00	9.20	2530.20	-2.61	121.42	0.07	148.00	1.80*	0.01
BMC102OB	11/10/2012	4	1138	3.70	307.57	121.00	843.00	10.60	29.90	11.80	2470.20	-1.26	256.17	1.79	308.89	0.62*	0.08*
BMC103OB	11/10/2012	2.6	833	2.40	347.08	100.00	429.00	6.50	53.90	68.40	1516.10	-5.41	18.75	0.00	22.87	11.00*	0.01
BMC104D	10/10/2012	29.5	9913	27.70	357.87	997.00	5678.00	105.00	693.00	223.00	17919.60	-3.55	232.17	0.96	281.29	0.39*	
BMC104OB	10/10/2012	12.6	3833	11.70	327.61	443.00	2311.00	38.50	225.00	50.50	7125.70	-3.88	174.08	0.11	212.15	0.20	0.01
BMC95D	10/10/2012	16.7	5663	16.10	351.74	569.00	2998.00	47.50	429.00	91.40	9991.90	-7.67	144.75	0.03	176.54	0.20	0.02*
BMC95OB	10/10/2012	8.5	2758	8.80	313.41	119.00	1535.00	29.00	199.00	45.80	5034.60	-5.79	278.13	0.10	339.12	1.60*	0.02*
BMC96D	10/10/2012	18	6117	21.00	291.29	680.00	3408.00	51.20	400.00	100.00	11036.80	-6.56	212.67	0.13	259.18	1.10*	
BMC96OB	10/10/2012	2.7	829	2.30	360.43	86.00	460.00	15.20	71.60	39.80	1699.00	-6.19	160.00	0.06	195.07	1.20*	0.04*
BMC97D	11/10/2012	18.9	6287	21.80	288.39	676.00	3833.00	58.50	360.00	94.80	11556.70	-2.63	182.83	0.11	222.83	0.30	0.34*
BMC97I	11/10/2012	3.6	1121	3.60	311.39	99.10	689.00	17.40	52.00	18.10	2094.90	-2.44	76.67	0.02	93.49	0.34	0.08*
BMC98D	11/10/2012	30.2	10335	34.50	299.57	1112.00	6011.00	97.40	587.00	230.00	18598.00	-3.64	155.92	0.28	189.64	0.46*	0.05*
BMC98OB	11/10/2012	14.4	4866	16.20	300.37	513.00	2836.00	41.00	234.00	63.50	8694.40	-5.00	101.92	0.03	124.27	0.54*	
BMC99OB	11/10/2012	8.2	2581	8.60	300.12	258.00	1758.00	31.10	39.50	7.50	4839.70	-0.33	126.58	0.30	153.83	0.79*	0.05*
W023	10/10/2012	5	1366	4.80	284.58	20.50	820.00	18.90	105.00	48.40	2737.60	-2.95	293.25	4.04	349.55	1.30*	0.02*
W024	10/10/2012	1.3	296	1.20	246.67	16.20	195.00	7.30	37.10	9.90	748.10	-5.57	151.67	0.27	184.49	1.40*	0.04*
W129	10/10/2012	3.5	1000	3.50	285.71	34.60	563.00	15.50	68.90	34.70	1914.40	-4.74	159.33	0.51	193.35	0.89*	0.02*
W130	10/10/2012	2.5	686	2.30	298.26	56.30	389.00	11.20	51.40	24.80	1347.00	-5.39	106.42	3.80	122.11	2.10*	0.02*

*exceeding ANZECC/ARMCANZ (2000) default physico-chemical trigger values, for slightly disturbed Western Australian ecosystems (0.35 mg/L for TN and 0.01 mg/L for TP)

Appendix K

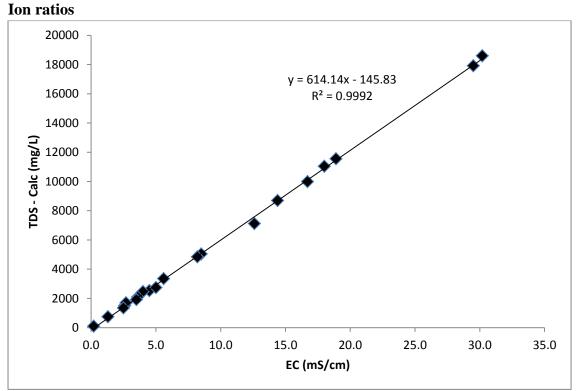


Figure 16. Laboratory EC versus calculated TDS relationship for groundwater and surface water sampled in October 2012. Seawater ratio from Hingston and Gailitis (1976).

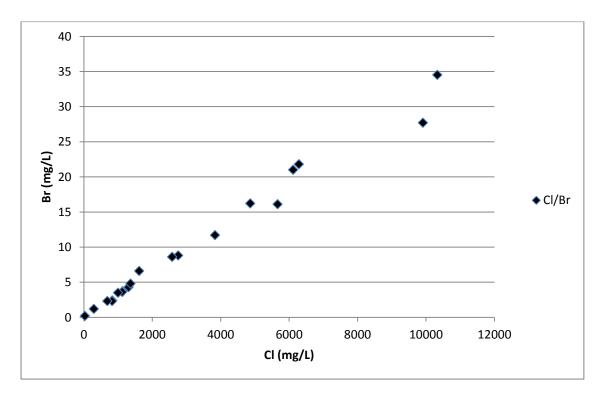


Figure 17. Cl versus Br for groundwater and surface water sampled in October 2012.

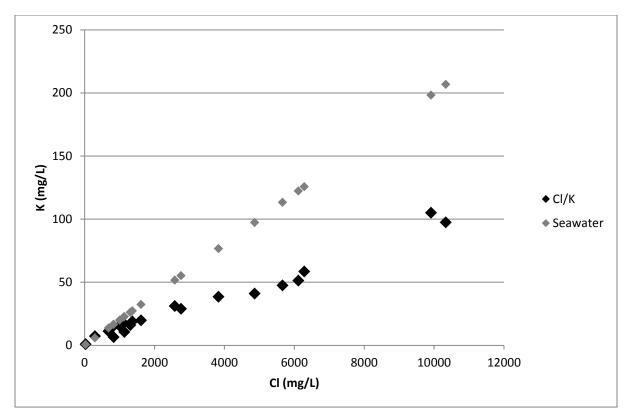


Figure 18. Cl versus K for groundwater and surface water sampled in October 2012. Seawater ratio from Hingston and Gailitis (1976).

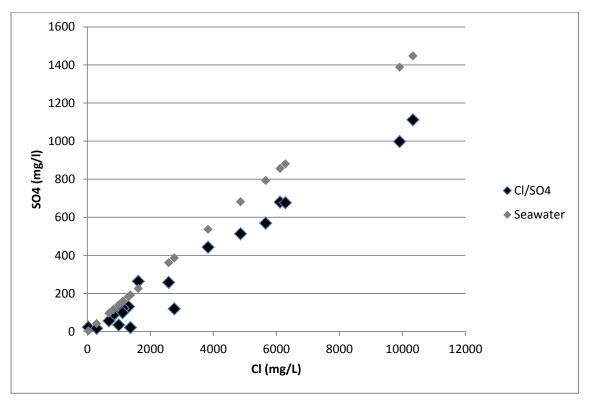


Figure 19. Cl versus SO₄ for groundwater and surface water sampled in October 2012. Seawater ratio from Hingston and Gailitis (1976).

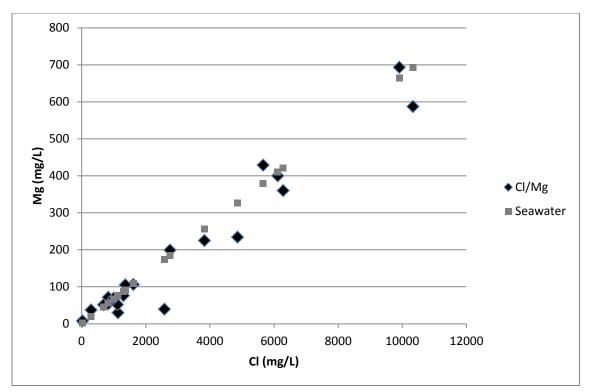


Figure 20. Cl versus Mg for groundwater and surface water sampled in October 2012. Seawater ratio from Hingston and Gailitis (1976).

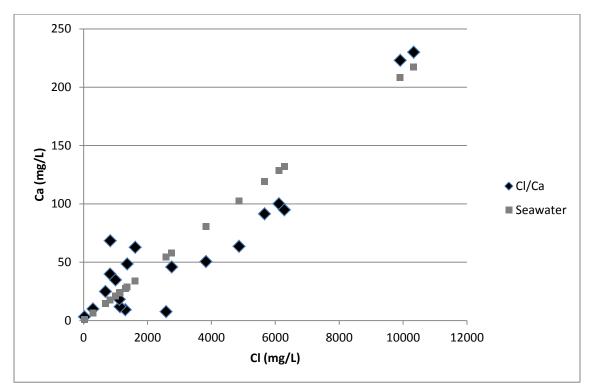


Figure 21. Cl versus Ca for groundwater and surface water sampled in October 2012. Seawater ratio from Hingston and Gailitis (1976).