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Executive Summary 

BACKGROUND 

The northern quoll (Dasyurus hallucatus) is an endangered, medium-sized marsupial carnivore 
once widespread across northern Australia, but now restricted to several disjunct populations 
within its former range. This decline is largely attributed to invasion by the introduced cane toad 
(Rhinella marina). The cane toad emits a lethal toxin, and when the quoll naïvely predates on the 
toad, it succumbs to this toxin. Subsequently, the northern quoll is now classified as an 
endangered species.  

The Pilbara population of the northern quoll is isolated and disjunct differentiating strongly from 
other populations in that: 

1. There are marked genetic, behavioural and ecological differences from other populations,  
 

2. Habitats are largely intact, giving a high probability of persistence, and  
 

3. To date, it has been spared the devastation that cane toad invasion has brought to other 
populations. 

OBJECTIVE 

In this project we have used a variety of spatial modelling tools to develop a predictive model 
identifying northern quoll refugia within the Pilbara and to determine how impacts such as cane 
toad invasion and climate change will impact on that refugia. 

METHODS 

a) Identifying potential distribution for the northern quoll 
At the Pilbara scale, from an initial group of 48 bioclimatic, topographic, geological and biotic 
potential predictive variables, a combination of statistical tests were used to identify nine 
variables to be used in the development of a species distribution model (SDM) for the northern 
quoll. This model was developed using MaxEnt software. To account for sample bias (a common 
problem with MaxEnt modelling) a pseudo-absence bias layer was developed from presence 
records for critical weight range non-volant mammals. This resulting model was then tested 
using an ensemble process, where five other models were constructed using a group of 
modelling packages and an ensemble package was created by combining these models. This 
ensemble model was then compared with the MaxEnt model and conclusions drawn. The 
resulting preferred model is presented below (Figure 1). 
 
b) Climate change impacts on the northern quoll 
MaxEnt models were run at the national scale using a suite of eight bioclimatic variables. We 
elected to use the Australian Community Climate and Earth-System Simulator (ACCESS) 1.0 
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coupled model. Coupled models evaluate individual climate models and combine them. In this 
instance it combines 46 largely conflicting CMIP 5 models. The timeframes selected were 2050 
and 2070 as it was felt that lower timeframes would not show significant changes in the quolls 
potential distribution and timeframes beyond 2070 gave ample opportunity to create SDMs with 
improved tools and projections. All modelled changes are measured against baseline of 1986–
2005 averages using medium and high emission scenarios. 
 
c) Can the cane toad reach the Pilbara? 
There have been quite a few predictive, national scale, national scale SDMs constructed to 
demonstrate the potential distribution of the cane toad and how this will change with the 
predicted impacts of climate change. These SDMs vary greatly both in methodology and in the 
sophistication of their design and implementation. Therefore, it is not surprising to find that their 
outputs vary enormously, both in current and predicted future potential distributions. 
 
The cane toad is also a range shifting species in Australia, therefore a successful SDM must 
account for the following limitations. 

1. We do not have a historical distribution of this species in Australia. 
 

2. Potential distribution appears to be largely defined by “cryptic” variables. 
 

3. The cane toad has been known to “hitch hike” to overcome barriers. 
 

4. The Olympic village phenomenon. 
 

5. Previous SDMs used outdated climate scenarios.  

To determine the cane toad’s capacity to invade the Pilbara, and the impacts of climate change 
on this species, a simple sum overlay model was constructed in a GIS environment, where the 
parameters of this species actual distribution within ten different variables were derived and 
scores given to 1km2 pixels based on the number of times variable parameters were met 
nationally. This SDM was then repeated using the ACCESS 1.0 climate scenarios. 

CONCLUSIONS 

• The Pilbara population of the northern quoll is an appropriate subject for species 
distribution modelling in that it multiple modelling tools provide consistent outputs given 
an appropriate suite of predictive variables. 
 

• Our models indicate that, under the scenarios identified in the ACCESS 1.0 model, the 
potential distribution of northern quoll will shift inland and while that of the cane toad 
will contract towards the coast. This will bring about a divergence in the distributions of 
these two species. 
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• Modelling habitat for the northern quoll at a very fine scale remains beyond the capacity 
of this project 

 
• Our understanding of the cane toad’s capacity to adapt remains inadequate. 

 
• The outputs of this project should be tested and refined through field studies.  

 
• The capacity to model the effects of threats to the Pilbara population of the northern 

quoll in response to impacts associated with mining activities, inappropriate fire regimes, 
pastoral activities and feral predators, requires additional data capable of quantifying the 
impacts of these threats. 

  
RECOMMENDATIONS 
  

• Targeted research should be undertaken to address knowledge gaps in regard to the 
habitat preferences of the northern quoll and the impacts of threatening processes on this 
species. 

 
• There remains significant conflict between climate models. It is recommended that these 

exercises be repeated and re-evaluated using the best available models as they come to 
hand. 

 
• It is expected that new and improved spatial modelling tools and methodologies should 

also be applied to the conservation of the Pilbara population of the northern quoll as they 
come to hand. 

 
• Quarantine activities such as blocking toad access to key bodies of permanent fresh water 

and public awareness programs of the dangers of transporting cane toads may prove 
effective in delaying their invasion of the Pilbara, thereby diminishing their impact on the 
Pilbara population of the northern quoll. 
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Figure 1: The current potential distribution for the Northern Quoll in the Pilbara (Preferred model)
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1 Introduction 

1.1 Project background  

In 2011 the Department of Parks and Wildlife embarked on a ten year northern quoll regional 
monitoring project within the Pilbara. In 2012, a workshop hosted a workshop to define 
research priorities for the northern quoll (Cramer et al., 2015). The workshop was attended by 
researchers from universities and government, environmental consultants, mining industry 
representatives and representatives of Western Australian and Australian government 
departments responsible for environmental regulation and approvals. This conference identified 
the need for a better understanding of northern quoll distribution as a priority action. This 
reflected a general consensus that effective management of this endangered species relies on a 
good baseline knowledge of the distribution of this species, an understanding of how and why 
that distribution has changed, the extent of that change, and how it may be altered by 
threatening processes in the future.  

As a consequence of the findings of the northern quoll workshop, a collaboration was entered 
into between Department of Parks and Wildlife and research staff with the Edith Cowan 
University School of Natural Sciences on ways by which the School apply its expertise in 
species distribution modelling to the conservation of the northern quoll. To that end, a 
conceptual model was developed that demonstrated the potential application of species 
distribution modelling to northern quoll conservation in the Pilbara (Figure 2) and this model 
was used as a basis for the development and implementation of this project. 

 
Figure 2: A conceptual model for the application of species distribution modelling to the conservation of northern 

quoll in the Pilbara 
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1.2 Objectives 

The objective of this project is the development of tools to facilitate the ongoing in-situ 
conservation of this species in response to a set of recognised and potential threats, namely; 
mining and pastoral impacts, cane toads, global warming, feral predators and currently 
unforeseen ecological impacts. 

To that end, we aimed to concentrate our activities in the following areas: 

• Develop a predictive model of Northern Quoll habitat on a finer scale than is currently 
available based on a combination of DPaW monitoring data, existing survey data, 
improved habitat data and dispersal estimates. 
 

• Evaluate known threats to this species, such as climate change, fire regimes, 
pastoralism, mining infrastructure and cane toads, and, where appropriate, incorporate 
these threats into models to identify important future/core habitat.  
 

• Develop a data set which identifies areas of key/core habitat to support conservation 
planning and mining offsets. 

 

1.3 Outputs  

In response to the above this project has delivered the following: 

• A suite of landscape attributes (predictive variables) which define northern quoll habitat 
and the degree to which these attributes contribute to habitat value. 
 

• A predictive species distribution model (SDM) to quantify northern quoll habitat value 
within the Pilbara. 
 

• SDMs which quantify how impacts such as cane toad invasion and climate change will 
affect northern quoll habitats. 
 

• Future research directions. 

 

1.4 The northern quoll (Dasyurus hallucatus) 

Weighing only 300-1200g the northern quoll Dasyurus hallucatus is the smallest of Australia’s 
four quoll species, it is the largest predatory marsupial left in northern Australia (Cooper & 
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Withers, 2010; Cramer et al., 2015; Oakwood, 2008). It is an opportunistic carnivore that 
consumes a wide variety of fruit, insect, and vertebrate species (Pollock, 1999; Schmitt et al., 
1989). Both males and females mature at approximately six months of age with females 
breeding during their first year, with mean litter sizes of seven young (Nelson & Gemmell, 
2003; Oakwood, 2000). The northern quoll is considered to be largely semelparous, having one 
breeding season each year (Fisher et al., 2013). Although females may live for several years, 
many females and almost all males die following reproduction in their first year (Begg, 1981; 
Cooper & Withers, 2010; Dickman, 1996; Oakwood, 2008). Northern quolls are largely 
nocturnal, denning inside rock crevices, tree hollows, logs, termite mounds, grasses and in the 
burrows of other animals, during daylight hours (Oakwood 1997). 

Once widely distributed from the Western Australian Pilbara across northern Australia to 
southern Queensland (Figure 3), the mainland distribution of the northern quoll has contracted 
to several disjunct populations in recent years (Burbidge et al., 2009; Oakwood, 2008). For 
some time this collapse has largely been linked to cane toad Rhinella marina invasion 
(Braithwaite & Griffiths, 1994; How et al., 2009; Oakwood, 2004; Woinarski, 2010). Where 
these species coincide northern quolls naively predate on cane toads and succumb to toxins 
exuded from glands behind the cane toad’s head (Woinarski et al., 2015). Although the Pilbara 
region and its offshore islands were once thought likely to remain free of cane toads, thereby 
providing a sanctuary for the northern quoll, it is now predicted that cane toads are capable of 
invading this region (Elith et al., 2010; Kearney et al., 2008; Tingley et al., 2013). 

 
Figure 3: Northern Quoll presences with Pilbara population shaded. Presence data sourced from Atlas of Living 

Australia (2015). 
 
Other impacts currently causing rapid and severe declines in northern Australia’s critical 
weight range mammal fauna are also likely to be impacting on the northern quoll (Burbidge et 
al., 2009). These include: altered fire regimes, the grazing impacts of introduced herbivores, 
climate change and predation by introduced predators, in particular the feral cat Felis catus 
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(Burbidge & McKenzie, 1989; Cook, 2010; Woinarski et al., 2015; Woinarski et al., 2011). As 
a consequence of all these impacts and recent declines, the northern quoll is listed as 
Endangered under both the Commonwealth’s Environment Protection and Biodiversity 
Conservation Act 1999 (EPBC Act 1999) and the Western Australian Wildlife Conservation Act 
1950.  

A further activity that is likely to impact upon the northern quoll in the Pilbara is the removal 
or alteration of habitat through mining activities and associated infrastructure development. 
The northern quoll is therefore a key consideration in the majority of mining project 
assessments under the EPBC Act 1999 in the Pilbara (Cramer et al., 2015). Furthermore, 
northern quolls have a strong habitat affiliation with rugged rocky habitat, often in close 
association with permanent water (Begg, 1981; Braithwaite & Griffiths, 1994; Oakwood, 1997; 
Pollock, 1999; Schmitt et al., 1989). In the Pilbara, this habitat affiliation aligns with ridges and 
mesas of channel-iron deposits and banded iron formation ranges that are often the primary 
focus of iron-ore extraction, while exposed granite outcrops are quarried for road and rail beds 
(Ramanaidou & Morris, 2010). 

The main Western Australian populations of the northern quoll occur in two discrete mainland 
regions, the Kimberley and Pilbara, which are separated by the arid Great Sandy Desert. Both 
mitochondrial DNA sequences and nuclear microsatellite loci reveal clear differentiation 
between these two populations and a greater distinction between these populations and those in 
the Northern Territory and Queensland (Spencer et al., 2013). Populations on Western 
Australian offshore islands show and even further genetic distinction (Cardoso et al., 2009; 
How et al., 2009). There is also a marked variation in sexual dimorphism between the two 
Western Australian populations and those in the other states. These Western Australian 
populations also differ from those remaining in Queensland and the Northern Territory, in 
regard to both genetic structure and demographic parameters and represent the last intact 
populations in Australia that have not experienced major declines subsequent to the spread of 
the cane toad and consequently display the highest levels of genetic integrity (How et al., 2009; 
Spencer, 2010; Spencer et al., 2013). However, cane toads have now reached the Kimberley, 
and are rapidly spreading into the region, and are seen as a major potential impact on this 
northern quoll population (Doody et al., 2015).  

Given that the Pilbara population of the northern quoll:  

1) is genetically and demographically distinct from all other populations,  
 

2) retains its pre-European genetic diversity,  
 

3) is currently outside of cane toad distribution, and  
 

4) has much of its habitat still intact,  
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this population has been afforded a high conservation and management priority (Cramer et al., 
2015). 
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2 Variable selection 

2.1 Species distribution models, an introduction 

Species distribution models (SDMs) combine species presence or abundance data with 
information about environmental variables to predict species’ potential distributions across 
landscapes (Pliscoff & Fuentes-Castillo, 2011).  

Spatially explicit maps showing a predicted probability of occurrence generated by SDM tools 
have been used in conservation planning and for the management of habitat at finer scales. For 
example, models can identify critical habitats and predict how different scenarios, e.g., climate 
change scenarios, might alter the potential distribution (PD) of a target species or community 
(Elith et al., 2010; Kearney et al., 2008; Loehle & Eschenbach, 2012; Manel et al., 1999; 
Radosavljevic & Anderson, 2014). They do this by statistically identifying and quantifying the 
influence of particular environmental variables (e.g., climate and geomorphology) or 
management practices (e.g., fire regimes, pest control, forestry practices) on the probability that 
a species will occupy a given area that is, might be, may become, or cease to be, habitat for a 
target species or community (Reside et al., 2014). 

The accuracy of the SDM depends on such factors as: the quality and appropriateness (in 
regard to sample size and representativeness) of the presence and/or absence data for the target 
species or community, the capacity of the modeller, the selection of an appropriate modelling 
tool (or software package), the selection of an appropriate suite of predictive/independent 
variables, the quality of the variable data used, and an acknowledgement of the strengths and 
limitations of the SDM (Elith et al., 2010).  

 

2.2 Independent variables. 

As each SDM uses different algorithms and species inputs, they also require the use of 
differing sets of variables in their respective analyses (Fordham et al., 2012; Guo & Liu, 2010). 
This requires a relatively broad suite of variables. However, to obtain optimum efficiency, 
minimize multicollinearity and prevent overfitting, the suite variables used should be kept 
compact (≤10 in number) and should be composed of group of independent variables (i.e. the 
target’s presence, abundance or absence does not impact on the properties, or values, of that 
variable) which can best define the potential distribution (PD) of the target species or 
community (Beaumont et al., 2005; Elith et al., 2011; Hijmans, 2012; Van Gils et al., 2012). To 
accomplish this, we reviewed the literature for potential independent variables from the 
literature that may be suitable for producing an SDM for the Pilbara population of the northern 
quoll (Table 1) and commenced a stepwise process to select an appropriate suite of variables 
for this purpose. 
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Although most SDMs apportion contribution values to each variable, and extra variables may 
make a model appear statistically stronger, too many variables add “noise” to the model, i.e. 
there is a tendency for the model to become more reliant on coincidence and covariance rather 
than reflect the model’s true predictive capacity. This is called over-fitting the model 
(Radosavljevic & Anderson, 2014; Van der Aalst et al., 2010). This means that modellers need 
to undertake a balancing act to minimise the number of variables used while still maintaining a 
statistically strong model. Most recent modelling exercises endeavour to keep the number of 
variables used to preferred maximum of ten in number (Elith et al., 2010; McInerny & Purves, 
2011; Van Gils et al., 2012). 

2.3 Data collection 

There were 53 data sets using in this modelling exercise, 44 of which were assessed as 
potential independent variables. These are listed in Table 1, along with the databases from 
which they have been sourced (dark cells). The GIS layers named in italics were created from 
the preceding GIS data set using tools and functions in ArcGIS 10.3. All data sets were 
downloaded at, or adapted to (CLIMOND data), a pixel resolution of 30 seconds (~1km2) using 
the WGS 1984 datum. Data descriptions and, where available, meta-data statements can be 
found at the links provided in this table.

Table 1: GIS data sets used in variables assessments. Darkened cells indicate that source data base. Italics indicate 
derived data. Data sets marked in bold script were assessed as potential predictive variables for the northern quoll. 

WorldClim 
http://www.worldclim.org/ 
BIO1 = Annual Mean Temperature 
BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) 
BIO3 = Isothermality (BIO2/BIO7) (* 100) 
BIO4 = Temperature Seasonality (standard deviation *100) 
BIO5 = Max Temperature of Warmest Month 
BIO6 = Min Temperature of Coldest Month 
BIO7 = Temperature Annual Range (BIO5-BIO6) 
BIO8 = Mean Temperature of Wettest Quarter 
BIO9 = Mean Temperature of Driest Quarter 
BIO10 = Mean Temperature of Warmest Quarter 
BIO11 = Mean Temperature of Coldest Quarter 
BIO12 = Annual Precipitation 
BIO13 = Precipitation of Wettest Month 
BIO14 = Precipitation of Driest Month 
BIO15 = Precipitation Seasonality (Coefficient of Variation) 
BIO16 = Precipitation of Wettest Quarter 
BIO17 = Precipitation of Driest Quarter 
BIO18 = Precipitation of Warmest Quarter 
BIO19 = Precipitation of Coldest Quarter 
Climond 
https://www.climond.org/ 
BIO34=Mean moisture index of warmest quarter 
Climate Change in Australia (CSIRO) 
http://www.climatechangeinaustralia.gov.au/en/ 
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Relative Humidity Wettest Quarter 
ESRI Online Databases  
http://www.esri.com/software/arcgis/arcgisonline/arcgis-open-data 
Background mapping, i.e. topographic imagery, boundaries and 
placenames 
Landgate 
https://www2.landgate.wa.gov.au/bmvf/app/waatlas/ 
Western Australian Fire Frequency 
Pastoral Property (vesting) 
Modis 
https://earthdata.nasa.gov/ 
Fire Scar 
Modis Burndate 
Noramalised Digital Vegetation Index (NDVI) 
Near Infrared Spectrography (NIRS) 
Geoscience Australia  
http://www.ga.gov.au/search/index.html#/ 
Total Magnetic Intensity 
Gravity Anomaly 
Land Tenure 
Digital Elevation Model 
Slope  
Ruggedness 
Water Courses 
Euclidean Distance to Water Courses 
Water Bodies 
Euclidean Distance to Water Bodies 
Geology 
Land cover 
Hydrology of Australia 
Soils Mapping of Australia 
Naturemap 
http://naturemap.dpaw.wa.gov.au/ 
NQ Presences 
CWR Terrestrial Mammal Presences 
NQ Absences 
Unites States Geological Survey (USGS) 
http://earthexplorer.usgs.gov/ 
Landsat Mosaic 
NDVI Colourised 
Department of Agriculture and Food WA (DAFWA) 
https://www.agric.wa.gov.au/land-use-planning/maps-and-data 
Beards Vegetation Associations 
Rangelands Vegetation Mapping 

 

2.4 First cut 

The purpose of the initial variable assessments took the form of a relatively rapid cut process to 
halve the number of variables for detailed assessment by identifying and removing those with a 
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poor statistical relationship to northern quoll presence. To do this all data was converted to GIS 
raster-files and clipped using a Pilbara shapefile as a mask, then three assessments were 
undertaken:   

1.  A pairwise Pearson correlation coefficient test was run to reduce multicollinearity in 
the bioclimatic variables (Phillips & Dudík, 2008). 
 

2. Stepwise univariate logistic regressions for all predictive variables using the R 
statistical software platform (Baayen, 2008), 
 

3. Scalar variables were also reviewed as Generalised Additive Models (GAMs) using the 
GG plot package in the R statistical software platform (Wickham, 2009) (Figure 4). 

To reduce multicollinearity in the 19 original bioclimatic variables, we calculated the Pearson 
correlation coefficient between each pair of variables using data from the location of each 
species occurrence (Phillips & Dudík, 2008). For each pair of highly correlated variables 
(r>.80), we selected only the single variable that was most biologically relevant for northern 
quoll. After this procedure, nine bioclimatic variables remained. Multicollinearity between the 
two vegetation association data sets was assumed to be high and a decision was made to only 
use the best performing one in the final data suite of variables. 

Simple univariate plots were then run plotting remaining predictive variables against northern 
quoll presences in the R platform. In each plot the “cor()” function was then used to determine 
the correlation coefficient value of each plot. Variables were then ranked by this value (Baayen, 
2008). 

Using the R package ggplot2, we randomly selected 9,999 x ~1km2 grid squares within the 
study area and created a Generalised Additive Model (GAM) output for quoll presence against 
all predictive variables. For the continuous variables we plotted predicted habitat suitability 
against each presence using a generalised additive smooth function (Wickham, 2009). Each 
variable was then ranked in accordance with its predictive capacity.  

All remaining variables were ranked in each of the last two assessments. Rankings were then 
averaged and the 22 best performing variables were retained for further testing (Table 2). 

 



  

 

 

 10 

 

Figure 4: Relationship between habitat suitability and scalar predictive variables in logistic outputs using GGPlot. 
The black line is a generalised additive model curve predicting the relationship between habitat suitability and 

independent variables, with the grey area representing the 95% confidence interval. 
 

Table 2: Variables by ranking, 1st cut. 
Variable Ran  
Veg Rangelands Vegetation Mapping (Vegag) 1 
Digital Elevation Model (DEM) 2 
BIO1 = Annual Mean Temperature 3 
Slope 4 
Beard’s Vegetation Mapping 5 
BIO18= Precipitation of Warmest Quarter 6 
Water (Euclidean Distance to Water Courses) 7 
BIO19= Precipitation of Coldest Quarter 8 
Soils 9 
BIO9 = Mean Temperature of Driest Quarter 10 
Ruggedness 11 
Euclidean Distance to Water Bodies 12 
BIO17 = Precipitation of Driest Quarter 13 
BIO14 = Precipitation of Driest Month 14 
BIO2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) 15 
BIO10 = Mean Temperature of Warmest Quarter 16 
BIO12 = Annual Precipitation 17 
Land Tenure 18 
BIO16 = Precipitation of Wettest Quarter 19 
NDVI Colourised 20 
BIO4 = Temperature Seasonality (standard deviation *100) 21 
BIO8 = Mean Temperature of Wettest Quarter 22 
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2.5 Final cut 

The final cut was undertaken through a step-wise elimination process in MaxEnt (Phillips et 
al., 2006) looking at both the contribution of each variable and the consequences of its 
omission. This was done by examining changes in variable contribution analysis and jack-knife 
tests in comparison to changes in regularised training gain, test gain and area under curve 
(AUC) values using. To do this, MaxEnt was run against northern quoll presence data using the 
24 variables identified through the first cut process (section 2.4). The results of this SDM were 
then examined in light of the above tests and the process repeated with the worst performing 
variable removed from the model. A minimum target AUC value of 0.9 was set, indicating a 
suite of variables capable of delivering a very strong model (Elith et al., 2011), and this process 
was repeated until this value was consistently achieved. This process resulted in a final suite of 
nine variables. Jack-knife analyses results for the final suite of variables are given below 
(Figure 5) as are the contribution values and permutation importances of each selected variable 
(Table 3).  
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Figure 5: Logistic response of categorical variables as determined through MaxEnt. 

 

To reduce multicollinearity in the 19 original bioclimatic variables, we calculated the Pearson 
correlation coefficient between each pair of variables using data from the location of each 
species occurrence. For each pair of highly correlated variables (r>0.75), we selected only the 
single variable that was most biologically relevant for spadefoot toads. After this procedure, 
nine bioclimatic variables remained (Table 3). This suite of variables was then used for all 
further distribution modelling for the Pilbara population of the northern quoll. 

 

Table 3: Final suite of variables with % contribution and permutation importance as determined through step-wise 
MaxEnt analyses. All contribution and importance values reflect positive relationships to northern quoll presence. 

Variable % Contribution Permutation 
Importance 

Vegag (Rangelands Vegetation Mapping) 34.8 14.2 
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DEM (Digital Elevation Model) 16.8 35.4 

BIO1 = Annual Mean Temperature 16.7 7.7 
Slope 10.8 11.3 
BIO18= Precipitation of Warmest Quarter 9.0  14.9 
Water (Euclidean Distance to Water Courses) 3.7 5.7 
BIO19= Precipitation of Coldest Quarter 3.5 4.4 
Soils 2.8 4.7 
BIO9 = Mean Temperature of Driest Quarter 1.9 1.6 
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3 Constructing the Species Distribution Model (SDM) 

3.1 Previous modelling 

As shown in Figure 6, one of the main reasons for undertaking this modelling exercise is 
because there have been previous SDM exercises conducted for the Pilbara population of the 
northern quoll in the past and the results of these exercises conflict markedly with each other 
(Biologic, 2012; Eco Logical, 2012; Van der Wal, 2014). This appears to be a consequence of 
methodologies using different modelling tools, independent variables, and presence data sets, 
and of a failure to adequately test model outputs.  

A review of the Biologic (2012) and Eco Logical (2012) SDMs found that, although both 
examples were based on sound and proven methodologies, there were significant shortfalls in 
their delivery. Both SDMs were constructed as part of multiple species modelling projects 
within which a standard set of methods and variables were used to model a suite of species 
within the Pilbara. This means that, to varying degrees, both modelling exercises were generic 
and not totally focussed on the particular needs of the Pilbara population of the northern quoll 
alone. Furthermore, according to Fisher (2012), in both methodologies that are serious 
concerns in regard to variable selection and model bias which are not adequately addressed in 
their respective literature. 

The CLIMAS example (Van der Wal, 2014) was accessed online from a national climate 
change modelling tool. Presence data came from a broad national data base modelled against a 
generic suite of solely bioclimatic variables. This overlooks the potential influence of a large 
number of geological, topographical, hydrological and biotic factors which are recognised as 
being influential in determining habitat for the northern quoll (Begg, 1981; Braithwaite & 
Griffiths, 1994; Cook, 2010; How et al., 2009; Johnson & Anderson, 2014; Meri, 2000; 
Oakwood, 1997; Turpin & Bamford, 2014). Consequently, other than using this tool as 
intended, as a broad scale indicator of the degree to which bioclimatic variables determine PD 
for this species, this SDM can justifiably be viewed with caution. 

In light of the above, there is a strong argument for the construction of an SDM for the Pilbara 
population of the northern quoll independent of the above exercises. Such a model should use, 
an effective modelling tool, the best available data, be tailored to meet the needs of the target 
population alone, and should be evaluated and substantiated through a suite of proven tools and 
methodologies. Furthermore, we recognise that the evaluation of such a model would also 
benefit from a comparison between its outputs with those of its predecessors. 



  

 

 

 15 

 
 

Figure 6: Northern quoll SDM for the Pilbara using: a) Maximum Entropy modelling (MaxEnt) (red-blue, highest 
to lowest probability of presence) (Biologic, 2012), b) Generalised Additive Model (GAM) (red-blue, highest to 
lowest probability of presence)  (Eco Logical, 2012), c) CLIMAS climate change modelling (red-pink, highest to 

lowest probability of presence ) (Van der Wal, 2014). 
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3.2 Modelling with MaxEnt 

3.2.1 Creating a basic SDM 

For our primary modelling tool we have chosen to use MaxEnt. MaxEnt uses a general-purpose 
machine learning method called maximum entropy modelling. This is a simple and precise 
mathematical formulation, which makes it well-suited for species distribution modelling 
(Phillips et al., 2006). This is a popular and effective species distribution modelling tool which 
has been shown to be capable of modelling PDs using both presence only and presence/absence 
data (Booth et al., 2014; Yackulic et al., 2013). Some limitations have been recognised with 
MaxEnt, notably a tendency for it to underperform where there is a biased sample, poorly 
chosen predictive variables or inadequate testing of results. However, where these limitations 
are addressed it remains a well-supported modelling tool because it is relatively easy to use and 
has a capacity to link fine-scale bioclimatic data to species distributions to produce accurate 
probability-based outputs, suitable for informing conservation management actions 
(Bystriakova et al., 2012; Elith et al., 2011; Kramer-Schadt et al., 2013; Syfert et al., 2013; 
Williams et al., 2012).  

Maximum entropy modelling seeks to estimate a target probability distribution by finding the 
probability distribution of maximum entropy (i.e. where variable parameters are most 
stochastic, or closest to homogenous), subject to a set of constraints that represent the 
limitations of the data used. The information available about the target distribution often 
presents itself as a set of real-valued variables, called “features”, and the constraints are that the 
expected value of each feature should match its empirical average (average value for a set of 
sample points taken from the target distribution, i.e. the training data). When MaxEnt is applied 
to presence-only species distribution modelling, the pixels of the study area make up the space 
on which the MaxEnt probability distribution is defined, pixels with known species occurrence 
records constitute the sample points, and the predictive variables, or features, are climatic 
variables, elevation, soil category, vegetation type or other environmental variables judged 
appropriate (Phillips et al., 2006). 

MaxEnt is a very popular modelling tool, e.g. at the time of writing, a search of Google Scholar 
for “MaxEnt” yielded 10,600 results. Properly used and with its limitations addressed, it has 
been used successfully to construct SDMs which, like this exercise, combine the use of 
bioclimatic, abiotic and biotic predictive variables against presence only data (Adams-Hosking 
et al., 2012; Guerin & Lowe, 2012; Molloy et al., 2014; Prober et al., 2012; Yates et al., 2010). 
It is capable of being run in both R and Java platforms and can be run as part of an ensemble 
model in the BIOMOD2 R package (Thuiller et al., 2015). Although it has been used in the 
previously discussed Biologic (2012) SDM (Figure 6a), many questions pertaining to this 
example remain, i.e. has the model been tested for sample bias, what was the variable selection 
method, how was the model tested, how many repetitions were used, and what scale/resolution 
used and how was it selected? A failure to answer any, or all, of these questions casts doubt on 
the integrity of the SDM. Therefore, if we use MaxEnt to develop an SDM for the Pilbara 
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northern quoll population, it falls to us to explain how we will address these issues. To that end 
we undertook the following activities: 

1. Sample bias: Initial models were run without any compensation for bias (Figure 7). A 
second SDM was then constructed using a bias grid (Figure 9) constructed from 
pseudo-absence data (Figure 8). Furthermore, in the ensemble modelling, undertaken to 
test the MaxEnt SDMs (sections 3.2.4-3.4), pseudo-absence data is applied directly as a 
second way of compensating for potential bias. The outputs of all SDMs are then 
compared and the results discussed (section 3.2.3).  
 

2. Inappropriate variables: A rigorous process has been undertaken to select an 
appropriate suite of variables, (section 2). This suite of variables has been tested 
throughout the modelling exercise and would have changed if it had not allowed the 
development of accurate and effective SDMs. 
 

3. Repetitions: When using MaxEnt, we withheld a random 20% of presences for testing 
purposes. This means that the results of each run may vary. To compensate for this, in 
each SDM the software was run ten times (repetitions), and the results of all ten 
repetitions cross-validated to produce the final SDM. 
 

4. Scale: The scale used for all modelling in this exercise is 30 second or ~1km2 as this is 
both the finest resolution available for the bioclimatic variables and an effective 
management scale for a target landscape the size of the Pilbara due to a lack of very 
fine scale data for the whole of this region.  
 
Note: MaxEnt only recognises presence or absence once in a pixel. As nearly all 
samples are coming from a comparatively few ~1km2 grid squares the number of 
presences used in the SDM becomes smaller than the actual number of records 
available. Consequently, the use of a larger scale could greatly exacerbate this problem 
to the point that it may impair model accuracy. 
 

5. Testing: In addition to the MaxEnt testing described above (point 3), a series of other 
models are constructed using different modelling tools and are compared individually 
and as an ensemble model with the MaxEnt SDM, and the results of this comparison 
discussed (section 3.4). 

3.2.2 MaxEnt SDM, without bias compensation 

As described above, the first MaxEnt SDM was constructed in the Java platform using the full 
suite of nine predictive variables, without any bias compensation, with 500 iterations per run 
and with 20% presences withheld for testing. Ten repetitions were run and cross-validated to 
produce the SDM given below (Figure 7). As presences can only be recorded once in every 
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pixel the original data set of 1984 presences is reduced to only 324, of which 260 are used for 
training, and 64 used for testing. 

The result is statistically strong model with a training AUC value of 0.899 and an average test 
AUC value of 0.859. The omission plot complies strongly with expected trends. Tests statistics 
given on the model readout also indicate a robust model. The level of model resolution appears 
good with areas of a high probability of northern quoll presence not being overly generous in 
expanding around areas where there are recorded presences, yet there are numerous areas 
without presences still being given a high probability value. This indicates that this model is 
not simply mimicking presence data, it is actively identifying areas which meet its criteria for 
potential northern quoll habitat where presence records are absent. It therefore appears that this 
is a very good SDM. 

Although this SDM appears to achieve our objectives, there is cause for concern. Much of the 
modelled landscape shows a very low probability value, particularly in the south, east and far 
west of the modelled landscape. This invites the question, does this SDM accurately reflect the 
potential PD of the target population or is this the result of sample bias. To that end we attempt 
to address the issue of sample bias through the construction and incorporation of a bias grid 
GIS layer.  
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Figure 7: MaxEnt output using predictive variables developed in section 2 (Table 3). Average omission and test AUC plots inset
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3.2.3 Incorporating a bias grid GIS layer. 

In lieu of actual northern quoll absence data from which a bias grid could be manufactured and 
knowing that were many records for other non-volant critical weight range (CWR) mammals 
(defined by Burbidge and McKenzie (1989) as being between 35g and 4200g) obtained 
throughout the Pilbara, four assumptions were made:  

1. Presence records reflect sampling effort.  
 

2. Sampling for non-volant CWR mammals would probably result in northern quoll 
presence records (e.g., capture, sighting, tracks, scats, or other physical evidence such 
as remains), if indeed they were present.  
 

3. Therefore presence records for non-volant CWR mammals may be suitable for use as 
pseudo-absence data. 
 

4. A point density analysis (PDA) of non-volant CWR mammal presences for the whole 
of the Pilbara would indicate the degree of bias present in the northern quoll presence 
records and could therefore be used as a bias grid in the MaxEnt model. 

To construct the bias grid, presence records for all non-volant CWR mammals (including 
northern quoll) in the Pilbara were gathered from the Department of Parks and Wildlife Fauna 
Base data base (DPaW, 2007-) and categorised into northern quoll presences and pseudo 
absences (Figure 8). All records were then used to conduct a PDA using the PDA function in 
ArcGIS 10.3 using the Pilbara shapefile as a mask and with all (Figure 9). The method for 
producing the SDM described in section 3.2.2 was repeated with the only change being the 
inclusion of this PDA as the bias grid. The results of this process are displayed in Figure 10. 
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Figure 8: Northern quoll presences (1) and pseudo absences (0) 
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Figure 9: Bias grid GIS file created from pseudo absence data (Figure 8)  
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Figure 10: Preferred Model. MaxEnt output using the same settings and predictive variables used in Figure 7 and bias grid (Figure 9).  
Average omission and test AUC plots inset. 
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3.2.4 Results 

In comparing the SDMs constructed with and without a bias grid, we found that with the 
addition of the bias grid the model remains fundamentally unchanged in the areas selected. 
However, there are minor changes in probability values of some areas, most notably an 
increase in habitat value in the eastern Pilbara, and a reduction in the average training AUC 
(from 90 to 88) and the test AUC (from 89 to 86). Despite this small drop, AUC values remain 
very high. Under these circumstances a small drop in AUC values is to be expected as the SDM 
previously assumed that sampling had been uniform and we have demonstrated that this 
assumption was false as there was a relatively small sampling bias effect. This represents a 
constraint in the development of the SDM. Model resolution remains very good as does the 
MaxEnt statistical analysis given in the model readout. 

Of particular concern is the reduction in presence sample size when incorporated into the 
modelling process from 1984 to 324. This represents a relatively small area within the context 
of the Pilbara. This may result in weakness in the SDM, and may also cause a greater variation 
between runs because the test data becomes a random 64 presences, a small sample number 
and therefore one subject to potential random influences. 

For the reasons mentioned above we assume the SDM incorporating the bias grid (Figure 10) 
to be the more accurate model. However, although this is the preferred SDM, it must be 
remembered that this is the output of a single modelling tool in a desktop environment. 
Therefore it should be substantiated and refined by the use of other modelling tools and these 
results, in turn, tested and enhanced through field studies on ground sampling activities. 

 

3.3 Testing the SDM with an ensemble package 

In section 3.2, MaxEnt has been used to develop a statistically, and apparently successful, 
preferred SDM (Figure 10). However, it should remembered that this SDM was compiled using 
just one modelling tool and methodology and that, as previously demonstrated (section 3.1), 
different tools and methodologies can yield very different, and often contradictory, results. 
Therefore, to test the rigour of the preferred SDM, we chose to use an ensemble modelling 
technique. In such a technique, a suite of different modelling tools are used to compile SDMs 
for a target species or community within a single platform and these SDMs combined to 
produce a single ensemble, or composite, SDM (Crimmins et al., 2013; Grenouillet et al., 
2011). To test the preferred SDM, it was compared with individual and ensemble model 
outputs and differences investigated and discussed. Comparisons and observations on the 
modelling processes and their outputs were then discussed and conclusions drawn on the 
degree on the validity of the ensemble modelling process and the degree to which it supports, 
or conflicts with the preferred SDM. 
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The ensemble modelling was undertaken using the BIOMOD2 package in the R platform 
(Thuiller et al., 2015). This package allowed the use of the same variable, presence and pseudo 
absence data used to develop the preferred MaxEnt SDM. The BIOMOD2 modelling was 
undertaken using the following parameters: 

• There were five different modelling tools available within the BIOMOD2 package 
which were capable of modelling accepting the model data in regard to sample sizes, 
categorical and scalar variables. These are described in section 3.4. 
 

• A random 20% of presences could be withheld for testing with modelling tool, and 
four runs (Figure 11-14) used to add rigour to results. 
 

• No weighting was applied in the construction of the ensemble outputs as no previous 
testing had indicated a need for weighting. 
 

• All model runs and ensemble variations were set to provide graphic and statistical 
outputs for ease of comparison with each other and the preferred MaxEnt SDM. 
 

• Presence and pseudo/absence species inputs are both given as simple grid data sets to 
compensate for bias. Bias grids were not used for any modelling tool. 
 

• Six ensemble models were developed from all model twenty model runs (four runs for 
each of the five modelling tools) through different statistical and the most appropriate 
chosen on the basis of statistical accuracy and comparison with observations on habitat 
in the literature.  
 

• All outputs are evaluated with a True Skill Statistic (TSS), Receiver Operator 
Characteristic (ROC) (a test comparable with the MaxEnt’s AUC statistic) and a Kappa 
test. 
 

• Consequently, all runs in all models applied the predictive variables differently.  

 

3.4 The modelling packages 

The following modelling packages were used for the Biomod2 ensemble: 

3.4.1 Maximum entropy (MaxEnt) 

MaxEnt is previously described in section 3.2.1. Although MaxEnt was previously used in a 
Java platform to develop the preferred SDM, the methodology for its use in the ensemble 
model has been altered in that: 
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• It is being run in the R platform, which will use TSS test to make evaluations as 
opposed to the AUC statistic in Java and may make marginal variations to other 
statistical analyses as recommended by Thuiller et al. (2015). 
 

• Psuedo-absences are being used to account for sample bias effects rather than a bias 
layer. 
 

• Multiple runs are kept independent until incorporated into the ensemble model and not 
averaged out. 

As any of the above could have a significant impact on model outputs we considered the 
incorporation of MaxEnt into the ensemble model not to be a simple replication of the previous 
exercises. 

The result of the MaxEnt runs (Figure 11) shows a variation in probability values between runs 
and the preferred model. However, the landscapes selected as PD remain largely unchanged.  

 

Figure 11: Predicted area outputs for all four MaxEnt runs in BIOMOD2 
 

The test data Tables (Table 4-8) give; the Test-data (the proportion of presences included in the 
test data in a binary model), the Cut-off (the value applied to a probability model to make 
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binary, i.e. areas with values below this score are not considered PD), Sensitivity (the 
percentage of training data absences excluded below the Cut-off value) and Specificity (the 
percentage of training data presences included at, or above, the Cut-off value), in all four runs. 
The Test data for the MaxEnt model (Table 4) shows a group of statistically strong runs which 
remain comparable with the outputs of the preferred SDM in regard to both Sensitivity and 
Specificity. Statistically, there appears to be an appreciable variation in evident model runs. 

Table 4: MaxEnt test results using TSS by run 
Run    Test-data Cut-off Sensitivity Specificity 
1   0.728 61 86.685 85.841 
2   0.691 131 77.717 91.387 
3    0.740 71 83.696 90.533 
4  0.705 111 76.902 93.153 

 

3.4.2 Generalised boosted model (GBM) 

Whereas a Generalised Linear Model (GLM) seeks to fit the single most parsimonious model 
that best explains the relationship between species distribution and a set of ecological 
predictors, boosting methods fit a large number of relatively simple models whose predictions 
are then combined to give more robust estimates of the response. The algorithm used by 
BIOMOD2 is a boosted regression tree where each of the individual models consists of a 
simple classification or regression trees, i.e. a rule based classifier that consists of recursive 
partitions of the dimensional space defined by the predictors into groups that are as 
homogeneous as possible in terms of response. The tree is built by repeatedly splitting the data, 
defined by a simple rule based on a single explanatory variable (Elith et al., 2006). 
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Figure 12: Predicted area outputs for all four GBM runs in BIOMOD2 
 

In comparison to the MaxEnt SDMs, the GBM models (Figure 12) appear much courser, 
selecting a much greater area to produce slightly lower Sensitivity and Specificity scores and a 
marginally higher Test-data score (Table 5). The landscapes selected compare are generally 
comparable with the preferred SDM, however a much higher scores are applied across those 
landscapes. To that end, the GBM runs appear to support the MaxEnt outputs but seem, in this 
instance, unable to produce the level of resolution required. The GBM runs appear very 
consistent in outputs showing very little difference between model runs, both in extent and 
statistically. 

Table 5: GBM test results using TSS by run 
Run    Test-data Cut-off Sensitivity Specificity 
1   0.795 388 92.663 86.813 
2   0.798 580 89.130 90.702 
3    0.805 397 92.120 88.335 
3  0.788 532 88.043 90.736 
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3.4.3 Generalised additive model (GAM) 

Used in ecology to deal with various species response shapes to environmental variables, 
GAMs are designed to capitalise on the strengths of GLMs without requiring the problematic 
steps of postulating a response curve shape or specific parametric response function. They use 
a class of equations called “smoothers” that attempt to generalise data into smooth curves by 
local fitting to subsections of the data. GAMs are therefore useful when the relationship 
between the variables are expected to be of a more complex form, not easily fitted by standard 
linear or non-linear models, or where there is no a priori reason for using a particular model. 
The is to ‘plot’ the value of the dependent variables (occurrences) along a single environmental 
variable, and then to calculate a smooth curve that fits the data as closely as possible while 
being parsimonious (Elith et al., 2006).  

 
Figure 13: Predicted area outputs for all four GAM runs in BIOMOD 2 

 

The GAM outputs (Figure 13) also identify similar landscapes to those identified in the 
MaxEnt and GBM runs. Like the GBM results they identify a much greater area while 
delivering no appreciable improvement in model performance (Table 6) in comparison to the 
MaxEnt outputs, although the GAM runs are statistically very consistent. The predictive power 
of the GAM package appears greater than that of GBM in that areas further away from known 
presences are identified as habitat (particularly in regard to the south and west). In those areas 
in the central north of the region where all three modelling tools predict the greater habitat 
values, the GAM package appears to give a greater level of resolution than the GBM, though 
not as great as that given by MaxEnt. 
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Table 6: GAM test results using TSS by run 
Run    Test data Cut-off Sensitivity Specificity 
1   0.760 483 88.043 87.954 
2   0.774 482 89.674 87.701 
3    0.783 407 91.033 87.278 
4 0.780 427 89.943 88.039 

 

3.4.4 Flexible discriminant analysis (FDA) 

FDA is a method for supervised classification based on mixture models. It is an extension of 
the well-known linear discriminant analysis which is closely related to analysis of variance 
(ANOVA) and regression analysis. However, ANOVA uses categorical independent variables 
and a continuous dependent variable, whereas discriminant analyses have continuous 
independent variables and a categorical dependent variable. FDA is an older modelling tool 
which has been used for multi-group classification used since the 90s. It can use a large number 
of predictors to identify a reduced number of discriminant coordinate functions for 
classification purposes and can produce a classification map that partitions the reduced space 
into regions that are identified with group membership, and the decision boundaries are linear 
(Manel et al., 1999). 

In regard to the high priority areas identified, the FDA runs (Figure 14) are similar to those 
produced by the GAM package and are therefore largely subject to the same observations. 
However in comparison to all other modelling packages used it assigns a low PD value to 
many areas not identified by other packages. Because of this, it can be said that these 
differences, are largely scalar in nature. Statistically, the FDA package produces noticeably 
lower values than the other packages, particularly in the areas of Test-data, Sensitivity and 
Specificity (Table 7). This is a counterintuitive result given the comparatively large area 
selected by this package as being PD. Statistical variation between runs is also comparatively 
high. 
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Figure 14: Predicted area outputs for all four FDA runs in BIOMOD2 
 

Table 7: FDA test results using TSS by run 
Run    Test-data Cut-off Sensitivity Specificity 
1   0.613 354 80.707 80.517 
2   0.678 367 83.152 84.573 
3    0.634 401 77.717 85.630 
3  0.597 400 72.554 87.067 

 

3.4.5 Classification tree analysis (CTA) 

This method consists of recursive partitions of the dimensional space defined by the predictors 
into groups that are as homogeneous as possible in terms of response. The tree is built by 
repeatedly splitting the data, defined by a simple rule based on a single explanatory variable. At 
each split, the data are partitioned into two exclusive groups, each of which is as homogeneous 
as possible. The algorithm seeks to decrease the variance within the subset as much as possible. 
The heterogeneity of a node can be interpreted as a deviance of a Gaussian model (regression 
tree) or of a multinomial model (classification tree) (Vayssières et al., 2000). 

The CTA package has produced four quite varied runs which, generally, comply well with the 
MaxEnt runs and the preferred. However, values for identified areas remain generally high, 



    

 32 

giving the appearance of an almost binary SDM (Figure 15). In the extent of the area selected it 
has produced results closer to those produced by MaxEnt than any other model, but still lacks 
the definition displayed in the MaxEnt runs or in the preferred model. 

 

Figure 15: Predicted area outputs for all four CTA runs in BIOMOD 2 
 

Statistically the CTA has consistently produced the highest values in re Test-data, Sensitivity 
and Specificity, although Cut-off values vary wildly in order to produce these results. This 
appears to be a characteristic of this modelling package. 

Table 8: CTA test results using TSS by run 
Run    Test data Cut-off Sensitivity Specificity 
1   0.867 477.5 93.476 93.238 
2   0.841 156.0 89.986 94.167 
3    0.863 795.5 91.033 95.224 
4 0.822 1253 99.315 93.873 

 

3.4.6 Ensemble model 

It should be noted that, in running the five different modelling tools to create the ensemble 
model, predictive variable contributions altered not only for each tool, but for each tool in each 
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run (Table 9). This demonstrates both the differences in the modelling tools and the impact of 
the random 20% of presences withheld for testing purposes. 

Table 9: Variable contribution for each package over four runs 
Run 1 

 MaxEnt    GBM    CTA    FDA    GAM 
bio_1   0.07 0.076 0.525 0.401 0.146 
bio_19   0.142 0.024 0.242 0.076 0.209 
bio_18   0.362 0.193 0.277 0.228 0.256 
bio_9    0.33 0.108 0.283 0.202 0.211 
dem      0.564 0.264 0.447 1.000 0.620 
slope    0.017 0.017 0.158 0.066 0.086 
water    0.005 0.003 0.095 0.000 0.021 
soil     0.041 0.015 0.055 0.273 0.145 
vegag    0.094 0.084 0.242 0.080 0.201 

Run 2 
 MaxEnt    GBM    CTA    FDA    GAM 
bio_1    0.021 0.113 0.674 0.403 0.095 
bio_19   0.142 0.020 0.169 0.083 0.171 
bio_18   0.297 0.188 0.383 0.200 0.266 
bio_9    0.281 0.118 0.248 0.174 0.207 
dem      0.424 0.221 0.479 1.000 0.606 
slope    0.033 0.016 0.140 0.076 0.081 
water    0.006 0.004 0.050 0.000 0.020 
soil     0.055 0.011 0.002 0.230 0.111 
vegag    0.090 0.082 0.229 0.145 0.196 
 Run 3 
        MaxEnt  GBM    CTA    FDA    GAM 
bio_1    0.018 0.162 0.643 0.286 0.088 
bio_19   0.126 0.030 0.133 0.051 0.190 
bio_18   0.313 0.171 0.412 0.185 0.263 
bio_9    0.282 0.141 0.427 0.156 0.236 
dem      0.363 0.154 0.444 0.999 0.601 
slope    0.017 0.017 0.137 0.065 0.074 
water    0.004 0.003 0.067 0.000 0.020 
soil     0.042 0.013 0.063 0.263 0.129 
vegag    0.135 0.087 0.207 0.216 0.208 

Run 4 
        MaxEnt    GBM    CTA    FDA    GAM 
bio_1    0.029 0.157 0.673 0.107 0.157 
bio_19   0.179 0.022 0.110 0.165 0.171 
bio_18   0.296 0.194 0.440 0.118 0.268 
bio_9    0.338 0.113 0.289 0.244 0.195 
dem      0.261 0.161 0.473 0.530 0.558 
slope    0.015 0.017 0.159 0.083 0.074 
water    0.008 0.002 0.083 0.000 0.015 
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soil     0.049 0.012 0.014 0.305 0.111 
vegag 0.131 0.084 0.070 0.026 0.200 

 
 

     

Figure 16: BIOMOD2 output. Ensemble models for the northern quoll created by: a) mean of probabilities, b) 
confidence interval, quantile inferior, c) confidence interval, quantile superior, d) median of probabilities, e) 

committee averaging, and f) weighted mean (Thuiller et al., 2015). 

 

The outputs for the ensemble models, like those for the individual tools, show a general 
congruence (Figure 16). Across all six outputs there is little difference in the landscapes 
recognised as being northern quoll habitat. The difference again appears to be in the habitat 
values applied to these landscapes. To select which of the ensemble models to use for more 
detailed testing against the preferred model from the statistical tests given below (Table 10) for 
all ensemble models. Overall statistical values remain similarly high with the weighted mean 
ensemble model (Figure 16f) being the best performer overall in regard to all values in all tests. 
Consequently this SDM was chosen for further comparison with the preferred MaxEnt model. 

Table 10: Statistical analyses of ensemble models 
a) EM mean by TSS 

 Test data Cut-off Sensitivity Specificity 
KAPPA 0.840 803.0 88.363 97.421 
TSS 0.898 363.0 95.922 93.854 
ROC 0.980 363.5 95.922 93.862 

  

b) EM cilnf by TSS 
 Test data Cut-off Sensitivity Specificity 

KAPPA 0.845 424.0 89.233 97.369 
TSS 0.890 67.0 92.985 96.026 
ROC 0.944 63.5 93.094 95.925 

c) EM ciSup by TSS 
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 Test data Cut-off Sensitivity Specificity 
KAPPA 0.806 942.0 94.182 95.046 
TSS 0.898 807.0 95.867 93.904 
ROC 0.961 811.5 95.867 93.913 

 

d) EM median by TSS 
 Test data Cut-off Sensitivity Specificity 

KAPPA 0.830 880.0 91.408 96.483 
TSS 0.896 166.0 95.215 94.327 
ROC 0.975 668.0 93.692 95.891 

 

e) EM ca by TSS 
 Test data Cut-off Sensitivity Specificity 

KAPPA 0.838 899.0 88.309 97.371 
TSS 0.890 500.0 94.073 94.961 
ROC 0.972 500.0 94.073 94.961 

 

f) EM wmean by TSS 
 Test data Cut-off Sensitivity Specificity 

KAPPA 0.844 776.0 89.179 97.371 
TSS 0.898 354.0 96.085 93.642 
ROC 0.980 403.5 93.324 94.479 

 

3.5 Results 

The mean weighted ensemble SDM (Figure 16f) is displayed as given in the BIOMOD2 
readout, while the preferred MaxEnt SDM (Figure 10) is displayed in ArcGIS 10.3 with a 
different scale, resolution and symbology. To make an initial visual comparison possible the 
ensemble model must first be projected at the same settings as the preferred model (Figure 17). 
Having done this, a visual comparison shows a strong general similarity between the 
landscapes selected by both models with the differences, again, being more the habitat value of 
the landscapes selected rather than which areas are actually selected.  

Visually, scalar model lack categorical definitions making them difficult to compare. This 
effect can be minimised by making models binary (i.e. pixels are given no other value than 
habitat of not habitat) and overlaying the results. In this comparison both models are made 
binary by use of a cut-off value, i.e. the score at which a pixel with a value below the cut-off is 
classified as not habitat (0) and a pixel with a score equal to, or above the cut-off is classified 
as habitat, or as part of the PD (1). Cut-off values are derived from the equal 
specificity/sensitivity P values (Figure 18) given for both model in their respective readouts. 
Cut-off values are 363 for ensemble SDM and 0.291 for MaxEnt preferred SDM. The results of 
this exercise, binary models for both SDMs and an overlay of both models is shown below 
(Figure 19).  
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Figure 17: Weighted mean ensemble model (f) projected in ArcGIS 10.3 as per the preferred MaxEnt model 
(Figure 10). 

 

 

Figure 18: Threshold to convert to binary using equal sensitivity specificity cut off 
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Figure 19: Binary representation of: a) ensemble median SDM, b) MaxEnt model using bias grid and c) both 

models overlaid. 
 

3.6 Conclusions 

The overlay (Figure 19c) shows a very strong general correlation between the preferred 
MaxEnt SDM and the ensemble model with conflicting predictions mostly bordering 
landscapes identified by both models as habitat. This supports our earlier observation that the 
difference between the two models is largely one of resolution rather than conflict. Given that 
three of the modelling tools used in the ensemble package, namely GBM, FDA and, to a lesser 
extent, GAM, lacked resolution, consequently overestimating PD for the northern quoll, this 
result is not surprising. With this in mind, we cautiously conclude that the ensemble modelling 
process validates our choice of the MaxEnt model with bias file as the preferred SDM. 
However, we reiterate that this remains a desktop process that should be validated and refined 
through on ground sampling and research.   
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4 Threats 

4.1 Overview 

As previously discussed (section 1.4) there are numerous threats to the Pilbara population of 
the northern quoll. Some of these threats have been scoped, during the variable evaluation and 
literature review process of this research and with no further modelling. The reasons for these 
decisions are discussed below (sections 4.1.1-4).  

The two major threats to the Pilbara northern quoll population which do respond to species 
distribution modelling and further analyses are climate change (section 4.2) and cane toad 
invasion (section 0). These are discussed in detail below. 

4.1.1 Mining 

Models of northern quoll presence responded most strongly to bioclimatic, geomorphic and 
vegetation based independent variables. Mining activities are also strongly aligned with similar 
geomorphic features, and therefore the potential modification or destruction of features upon 
which the quoll depends. However, although we are able to nominate suitable landscapes for 
quoll presence, the identification of the actual geological assets which define habitat at a very 
fine scale (< 1km2) currently requires on-ground surveys by appropriately qualified personnel 
and an improved understanding of the biotic and abiotic variables which define habitat at this 
scale.  

4.1.2 Fire 

Although fire is recognised as a major threat to northern quoll in the literature (Cook, 2010; 
Meri, 2000; Woinarski, 2010), neither the use of the Modis fire scare mapping or NDVI data 
sets (also an indicator of previous fire impacts) showed any real predictive power for the 
Pilbara population of northern quoll (AUC on single variable models showed at 0.57 and 0.55 
respectively and no improvement in multivariable models). That is not to say the frequency or 
intensity of fire does not impact on this population, it only indicates that the modelling doesn’t 
reflect any change the probability of presence. This is not surprising as nearly all presences are 
recorded in land used for pastoral activities over the time frame within which (nearly all) 
northern quoll presences have been recorded. Hence, northern quoll presences within most of 
the Pilbara have only been recorded within the context of what has been a, comparatively, 
consistent and uniform fire and management regime (Nano et al., 2012; van Etten, 2013). 
Consequently, the question of how this fire regime effects the Pilbara population of the 
northern quoll, be it good, bad or indifferent, remains (in the absence of specific on-ground 
trials) beyond the scope of this project. Furthermore, it is quite possible that climate change 
may well impact on the intensity, frequency and seasonality of fire within the Pilbara (Edwards 
et al., 2015). Addressing knowledge gaps on regard to the northern quoll’s response to different 
fire regimes will enable the Pilbara population’s response to various climate change fire 
scenarios to be better understood and, where required, managed. 
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4.1.3 Pastoral activities 

As previously stated, most of the area from which northern quoll records come from have 
historically been pastoral land (van Etten, 2013). Although this management scenario is 
becoming much less heterogeneous than it once was, it, like fire, remains fairly ubiquitous 
throughout most of the landscape from which our northern quoll presences were obtained. This 
does not enable us to demonstrate that there is a good, bad or indifferent link between 
pastoralism and quoll presence. It merely shows that the pastoral industry and northern quoll 
both prefer similar landscapes and vegetation associations, and that northern quolls can persist 
within the context of a pastoral management regime. Therefore, it is recommended that 
targeted research be undertaken to determine the impacts of pastoralism on the Pilbara 
population of the northern quoll. 

4.1.4 Feral predators 

Exotic predators, in particular feral cats, dingoes and, to a lesser extent, foxes are known to 
predate on the northern quoll and are ubiquitous throughout the Pilbara (Burbidge & 
McKenzie, 1989; Pavey & Bastin, 2014). Records of feral cats in the Pilbara go back to 1959 
(DPaW, 2007-). Therefore, it can be assumed that northern quoll have managed to co-exist with 
these predators across much of the Pilbara for over 60 years. Furthermore, despite an absence 
of data, there is no obvious decrease in the density or extent of the Pilbara northern quoll 
population. This is not to say that feral predators have had no detrimental impact on this 
population. It is quite possible that this population has already undergone a major reduction in 
number and extent due to exotic predators (Burbidge & McKenzie, 1989; Hill & Ward, 2010). 
We only note that this northern quoll population has persisted in spite of the presence of feral 
predators since at least 1959 and we have seen no evidence to suggest that, if there is no major 
shift in the ecology of this region, the northern quoll will not persist in the Pilbara just as they 
persisted in spite of exotic predators in many other regions prior to cane toad invasion, albeit 
with significantly reduced ranges and populations (Dickman, 1996). However, it is also 
possible that this capacity to persist may well be upset by either climate change, changes in 
land management practices or the introduction of another major threat, e.g., cane toad invasion. 
In light of these significant knowledge gaps on the impacts of exotic predators on the Pilbara 
northern quoll population, further targeted research is strongly recommended.  

 

4.2 Climate change 

4.2.1 Used climate change model/scenario 

There are major conflicts between the climate change models used by the International Panel 
on Climate Change (IPCC) for its report to policy makers on the current status of climate 
change (IPCC, 2013). These conflicts are particularly evident in modelling the Rangelands 
biogeographical region (Figure 20) (Watterson et al., 2015). To compensate for this, we elected 
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to use the Australian Community Climate and Earth-System Simulator (ACCESS) 1.0 coupled 
model, (CSIRO & BoM, 2015). The ACCESS model was chosen as it is Australia’s preferred 
Earth System Model, and the 1.0 version chosen because it is described as being the less 
aspirational of the two versions and for that reason it was seen by the authors as being 
potentially more reliable. 

The ACCESS 1.0 model has differing outputs for different resource concentration pathway 
(RCP) or emission scenarios and timeframes. As the literature indicates that achieving the low 
emission scenario is very unlikely (Schaeffer et al., 2015), we opted to model with the RCP 4.5 
(medium) and 8.5 (high) emission scenarios. The timeframes selected were 2050 and 2070 as it 
was felt that lower timeframes would not show significant changes in PDs and timeframes 
beyond 2070 gave ample opportunity to create SDMs with improved tools and projections. All 
modelled changes are measured against baseline of 1986–2005 averages. 

 

 

Figure 20: Cross evaluation of climate change models for the Rangelands by annual rainfall and annual mean 
temperature (CSIRO & BoM, 2015) 
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4.2.2 Overview of predicted climate change in the Northern Rangelands 

The key messages on climate change in the Northern Rangelands (the biogeographical sub 
region which includes the Pilbara) as given by Watterson et al. (2015) are: 

• Average temperatures will continue to increase in all seasons (very high confidence). 
 

• More hot days and warm spells are projected with very high confidence. Fewer frosts 
are projected with high confidence. 
 

• Changes to rainfall are possible but unclear. 
 

• Increased intensity of extreme rainfall events is projected, with high confidence. 
 

• Mean sea level will continue to rise and height of extreme sea-level events will also 
increase (very high confidence). 
 

• On annual and decadal basis, natural variability in the climate system can act to either 
mask or enhance any long-term human induced trend, particularly in the next 20 years 
and for rainfall. 

 

4.2.3 Detailed predicted changes for the Northern Rangelands  

As given by CSIRO and BoM (2015): 

Rainfall: Changes to summer rainfall are possible but unclear. Winter rainfall is projected to 
decrease in the south with high confidence. For the near future, natural variability will 
dominate any projected changes. 

Changes to annual and summer rainfall for late in the century are possible, but the direction of 
change cannot be confidently projected given the spread of model results. Impact assessment in 
this region should consider the risk of both a drier and wetter climate. 

Temperature: Average temperatures will continue to increase in all seasons (very high 
confidence). 

There is very high confidence in continued substantial increases in projected mean, maximum 
and minimum temperatures in line with our understanding of the effect of further increases in 
greenhouse gas concentrations. 

For the near future (2030), the annually averaged warming across all emission scenarios is 
projected to be around 0.6 to 1.4 °C above the climate of 1986–2005. 
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By late in the century (2090), for a high emission scenario (RCP8.5) the projected range of 
warming is 2.9 to 5.3 °C. Under an intermediate scenario (RCP4.5) the projected warming is 
1.5 to 2.9 °C. 

Extreme temperatures: More hot days and warm spells are projected with very high 
confidence. Fewer frosts are projected with high confidence. 

Extreme temperatures are projected to increase at a similar rate to mean temperature, with a 
substantial increase in the temperature reached on hot days, the frequency of hot days, and the 
duration of warm spells (very high confidence). 

Extreme rainfall: Increased intensity of extreme rainfall events is projected, with high 
confidence. 

Understanding of the physical processes that cause extreme rainfall, coupled with modelled 
projections, indicate with high confidence a future increase in the intensity of extreme rainfall 
events, although the magnitude of the increases cannot be confidently projected. 

Time spent in drought is projected, with medium confidence, to increase over the course of the 
century. 

Marine and coast: Mean sea levels will continue to rise and height of extreme sea-level events 
will also increase (very high confidence). 

There is very high confidence in future sea-level rise. By 2030 the projected range of sea-level 
rise at Port Hedland is 0.07 to 0.17 m above the 1986–2005 level, with only minor differences 
between emission scenarios. As the century progresses projections are sensitive to 
concentration pathways. By 2090, the intermediate emissions case (RCP4.5) is associated with 
a rise of 0.28 to 0.65 m and the high case (RCP8.5) a rise of 0.40 to 0.85 m.  

Fire weather: Bushfire in the Rangelands depends highly on fuel availability, which mainly 
depends on rainfall. A tendency toward increased fire weather risk is expected in future, due to 
higher temperature and lower rainfall, but there is low confidence in the magnitude of fire 
weather projections. 

Humidity: Little change in relative humidity is projected for the near future (2030) while later 
in the century a decrease is projected in winter and spring (high confidence) and in summer and 
autumn (medium confidence). 

Solar radiation: There is little change projected for solar radiation in the near future (2030), 
and for later in the century, increased radiation is projected in the south in winter (medium 
confidence). 

Evaporation: Potential evapotranspiration is projected to increase in all seasons as warming 
progresses (high confidence).  
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4.2.4 MaxEnt climate change modelling 

To model climate change impacts on the Pilbara population of the northern quoll it is necessary 
to understand the full set of bioclimatic variables which define the PD for the species, not just 
for the Pilbara population. The model must be able to demonstrate how northern quoll 
populations may enter or leave, as well as move within, the Pilbara as a result of climate 
change impacts. As we have already developed a high resolution SDM for this population, and 
as this exercise is only being undertaken to demonstrate climate change impacts, it was decided 
that the SDM would only use bioclimatic independent variables in this exercise. 

4.2.5 Climate change modelling, results 

Bioclimatic data for the set of 19 variables at 30 second resolution was obtained the WorldClim 
(2015) portal clipped to Australia. Scenario’s used are RCP 4.5 and 8.5 at baseline, 2050 and 
2070. Nationwide presence data for the northern quoll (n=2,487) was obtained from Atlas of 
Living Australia (2015) and shown in Figure 2. MaxEnt was used to produce the SDM running 
at 500 iterations, averaged over ten runs, with 20% of presences withheld for testing in each 
run. Bioclimatic variables were reduced from 19 to a suite of eight using a stepwise reduction 
method as described in section 2.5 (Table 11). 

Table 11: %Contribution and permutation importance for national scale MaxEnt model 
Variable % Contribution Permutation 

Importance 
BIO16 = Precipitation of Wettest Quarter 48.0 1.4 
BIO6  = Min Temperature of Coldest Month 19.5 4.0 
BIO12 = Annual Precipitation 9.8 49.8 
BIO11 = Mean Temperature of Coldest Quarter 7.2 13.4 
BIO15 = Precipitation Seasonality (Coefficient of Variation) 6.3  12.2 
BIO18 = Precipitation of Warmest Quarter 3.8 9.0 
BIO3  = Isothermality (BIO2/BIO7) (* 100) 2.8 1.8 
BIO9  = Mean Temperature of Driest Quarter 2.5 8.4 

 

This has resulted in an SDM with an exceptionally high training AUC of 0.97 and an average 
test AUC of 0.95 and a very good omission plot (Figure 21). However, it should be 
remembered that this is a national scale SDM lacking the fine species specific variables used 
preferred model. Therefore, these figures may be inferring a greater level of resolution at the 
regional (Pilbara) scale than should be expected from this SDM. 
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Figure 21: Omission and AUC/specificity plots for MaxEnt analysis 

 

The baseline national model (Figure 22) shows a predictable PD for the northern quoll which 
complies well with other national models (Atlas of Living Australia, 2015; Van der Wal, 2014). 
To better demonstrate how this SDM compares with the preferred model and to allow a better 
comparison between predicted climate change scenarios, a binary PD has been extracted using 
an equal sensitivity/specificity cut off and overlaid on an outline of the Pilbara (Figure 23).  

In the RCP 4.5 2050 scenario (Figure 24) there is a very small difference in the PD of the 
northern quoll overall, although there is a large expansion of PD into the Great Sandy Desert 
(the area directly north east of the Pilbara) and habitat value in the Kimberley increases. In the 
Pilbara overlay (Figure 25), a general expansion and small easterly movement in PD is evident. 
However, in this scenario very little of the baseline PD is lost.  

In the RCP 4.5 2070 scenario (Figure 26) there is a little discernible difference in the PD of the 
northern quoll in comparison to the previous scenario with the expansion of PD into the Great 
Sandy Desert and Kimberley persisting. In the Pilbara overlay a general expansion and larger 
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south-easterly movement is evident (Figure 27). Although most of the baseline PD is retained, 
areas of PD in the north of the Pilbara with high habitat value may be lost. 

In the RCP 8.5 2050 scenario (Figure 28) there is a small discernible difference in the PD of 
the northern quoll in comparison to the previous scenario with the expansion into the Great 
Sandy Desert less evident and the expansion into the Kimberley persisting. In the Pilbara 
overlay the south-easterly movement in PD has increased substantially (Figure 29). Less than 
half of the baseline PD is retained with substantial areas of PD in the west and north of the 
Pilbara with high habitat value likely to be lost. 

In the RCP 8.5 2070 scenario (Figure 30) the trends of the RCP 8.5 2050 scenario continue 
strongly. There is a discernible difference in the PD of the northern quoll in comparison to the 
previous scenario with the expansion into the Great Sandy Desert again comparable with that 
predicted in the RCP 4.5 scenarios, very high PD values for the Kimberley and a general 
contraction in PD in the north and east of the country. In the Pilbara overlay the south-easterly 
movement evident in the previous scenarios continues (Figure 31). Although most of the 
baseline PD in the north and west is now lost with approximately 25% retained.   
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Figure 22: MaxEnt projection for the baseline scenario 
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Figure 23: Pilbara baseline preferred MaxEnt SDM thresholded using equal sensitivity specificity. 
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Figure 24: MaxEnt projection for the Accessm1.0 RCP 4.5 2050 scenario 
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Figure 25: Pilbara baseline thresholded overlaid with Access 1.0 RCP 4.5 2050 scenario thresholded 

(Green “Overlaid” areas indicate where northern quoll habitat is identified in both scenarios, i.e. areas where quolls should persist) 
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Figure 26: MaxEnt projection for the Access 1.0 RCP 4.5 2070 scenario 
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Figure 27: Pilbara baseline thresholded overlaid with Access 1.0 RCP 4.5 2070 scenario thresholded  

(Green “Overlaid” areas indicate where northern quoll habitat is identified in both scenarios, i.e. areas where quolls should persist) 
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Figure 28: MaxEnt projection for the Access 1.0 RCP 8.5 2050 scenario 
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Figure 29: Pilbara baseline thresholded overlaid with Access 1.0 RCP 8.5 2050 scenario thresholded   

(Green “Overlaid” areas indicate where northern quoll habitat is identified in both scenarios, i.e. areas where quolls should persist) 
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Figure 30: MaxEnt projection for the Access 1.0 RCP 8.5 2070 scenario 
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Figure 31: Pilbara baseline thresholded overlaid with Access 1.0 RCP 8.5 2070 scenario thresholded 

(Green “Overlaid” areas indicate where northern quoll habitat is identified in both scenarios, i.e. areas where quolls should persist) 
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4.2.6 Conclusions 

In making conclusions on this exercise it is necessary to consider the limitations of this 
exercise, i.e.: 

• It has been undertaken at a national scale with a proportionately smaller presence data 
set. Consequently, when looking at a landscape the size of the Pilbara the model will 
lack the resolution of the finer scale preferred SDM. 
 

• The influence of population specific variables such as vegetation type, soil type and 
topography have not been used. This too will cost the SDM resolution. 
 

• The certainty of the climate change scenarios used for the northern Rangelands is 
relatively low. There is a high level of conflict in the CMIP5 models from which the 
Access 1.0 coupled model is derived. 
 

• No bias compensation was used in the development of this SDM. 

Having acknowledged these limitations the following conclusions can be drawn: 

• The northern quoll bioclimatic envelope appears to be moving in a north-easterly 
direction. 
 

• The magnitude of this movement appears to be directly influenced by magnitude of the 
emission scenario and time-frame. 
 

• It represents a spread of PD into the Great Sandy Desert, where a new population have 
recently been found (Turpin and Bamford 2014). It should be noted that, although PD 
spreads into this largely sandy area, actual distribution will still rely on the availability 
of suitable terrain and resources within in these landscapes. 
 

• Under the worst-case scenarios, much of the current PD in the eastern Pilbara, 
including many areas known to support comparatively high northern quoll densities, 
may no longer be able to support this species. However, other areas may become more 
suitable for this species. 
 

• High emission/longer term scenarios depict the greatest disruption to northern quoll 
populations in the western Pilbara. 
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4.3 Cane toads 

There have been quite a few predictive, national scale, national scale SDMs constructed to 
demonstrate the PD of the cane toad and how this will change with the predicted impacts of 
climate change (Figure 32-36). These SDMs vary greatly both in methodology and in the 
sophistication of their design and implementation. Therefore, it is not surprising to find that 
their outputs vary enormously both in current and predicted PDs. It should be noted that 
modelling for central Western Australia and the Pilbara is particularly conflicting. 

 

Figure 32: A comparison of Cane Toad Rhinella marina SDMs from Kearney et al. (2008). The 2008 distribution 
(a) and four predictions of its potential final distribution under average climatic conditions (b-e), and Kearney’s 

(2008) model (f). The heavy, black line defines the approximate 2008 PD. 
 

 
Figure 33: A comparison between current distribution and estimated distribution under the RCP8.5 2075 scenario 

from James Cook University CLIMAS data base (Van der Wal, 2014) 
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Figure 34: Multiple tool modelling undertaken by Elith et al. (2010). Current and future predictions of the 
distribution of the cane toad, for various model types and data treatments. Predictions are coded white (low) to 

orange–yellow–green–blue (high) 
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Figure 35: Cane toad habitat suitability modelling under climate change by Pavey and Bastin (2014). 
 

 

Figure 36: Cane toad predictive SDM as provided by Department of Environment and Heritage (2005) 
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Figure 37: Test bioclimatic modelling using MaxEnt and the methodology described in section 3.2.2 

 

A review of the cane toad SDMs leads to two questions: 1) why is modelling the cane toad so 
difficult, and 2) which of these SDMs is most likely to be the more accurate? 

4.3.1 Why is modelling the cane toad so difficult? 

When building SDMs, it should be remembered that not all subjects are equal when it comes to 
suitability. This is particularly so when modelling range shifting species such as the cane toad 
(Elith et al., 2010). In modelling the cane toad we have to account for the following limitations: 

• We do not have a historical distribution of this species in this country, nor have they as 
yet reached their full PD. Therefore, those areas where they are present do not fully 
reflect their potential distribution (Elith et al., 2010). This is particularly so in Western 
Australia, a state into which they have only recently invaded and into which they are 
currently and rapidly expanding (Doody et al., 2015). 
 

• PD for the cane toad might well be largely defined by such cryptic independent 
variables as humidity (Kearney et al., 2008) and non-bioclimatic variables such as 
access to permanent water (Tingley et al., 2013). 
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• This species has demonstrated a capacity to “hitch” rides on commercial and private 
transport, thereby enabling it to bypass barriers such are large areas of unsuitable 
habitat (Shukla et al., 2004). 
 

• The Olympic Village phenomenon (i.e. Where organisms living at the edge of their 
range have a tendency to be phenotypically better able to adapt to their ‘frontier’ 
environment, than others of their species. Furthermore, frontier environments provide 
significant evolutionary incentives to individuals that demonstrate these adaptations) 
means that the capacity for this species to adapt to new ecological niches and its 
responses to changes in predictive variables are difficult to predict (Phillips et al., 
2010). 
 

• In light of the above, there are strong indications that the ecological niche of the cane 
toad has shifted, and that this process is continuing (Tingley et al., 2014). 
 

• Many of the previous SDMS were constructed using outdated climate scenarios. In this 
exercise we are using the Access 1.0 climate model, a coupled model based on the more 
recent CMIP5 models  (Bi et al., 2013).  

In undertaking a simple MaxEnt SDM (Figure 37) these shortcomings became evident. In that 
this model does not expand PD much further than historical presences nor does is allow for 
humidity, a variable identified as intrinsic for the survival of non-burrowing amphibians as 
moist air buffers amphibians from temperature variation effects and helps to maintain skin 
moisture and respiration (Child et al., 2008; Elith et al., 2010; Kearney et al., 2008). 
Furthermore, one of the major factors limiting the movement of cane toads into arid areas is the 
lack of permanent water, which allows cane toads to breed and to persist in drought conditions. 
This model does not account for the fact that there are enough permanent water bodies, both 
natural and man-made, throughout the north-west to facilitate the persistence and movement of 
cane toads south, through the Pilbara and beyond (Tingley et al., 2013).  

In light of the above conversation, and in recognition that many of the cane toad SDMs have 
been constructed through major specialist projects with resources beyond those of this exercise 
using current best practice methodologies, we opted to review and evaluate existing projects 
rather than replicate their methodologies. It was decided that to undertake such a review it 
should be based on variables identified through the literature, using a new methodology to 
gather a new insight into the PD of the cane toad and how it may respond to climate change 
and that the methodology should be comparatively simple to undertake and understand. 

To that end it was decided to construct a sum overlay GIS SDM.  

4.3.2 Constructing a sum overlay/GIS SDM 

Simple sum overlay models are basic applications of logic, in that the more parameters that are 
met the higher the value. We chose to adopt an approach similar to that used by Lenton et al. 
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(2000), in that through a review of the literature a suite of ten bioclimatic variables were 
chosen. In this example, a suite of predictive variables are nominated and maximum and 
minimum values for each of these variables are identified. Where a pixel in each variable data 
set falls between these parameter values a score of one is give. If the value falls outside of these 
parameters a score of 0 is given. Once a score is given for all pixels in all data sets, the data 
sets are overlaid and the scores for each pixel are added up. The underlying assumption being 
that the more often parameters are met, the greater the likelihood that the pixel represents 
potential distribution. Through this process an SDM was developed was compared with 
existing cane toad models and conclusions drawn. 

In a GIS environment a national dataset of cane toad presences were taken from the Atlas of 
Living Australia (2015) (n= 6,069). This data set was compared with each of the ten 
bioclimatic variable data sets gathered through a review of the literature. Parameters were 
defined using the geostatistical analyst tool in ArcGIS 10.3 to define a set of maximum and 
minimum parameters using a 95% confidence interval as a cut-off to diminish outlier effects. 
Variables and parameter values are given below (Table 12). 

No maximum values were set for maximum temperature and moisture related variables, as both 
the literature and data, examined and tested during the modelling process, suggest that you 
can’t have too much water for cane toad persistence and that very high temperatures are not a 
problem for cane toads where there is adequate moisture. 

Table 12: Variables and parameters used in the sum overlay SDM. Blacked lines indicate data set source. 
WorldClim Parameter values 
BIO1 = Annual Mean Temperature >186 & <290 
BIO3 = Isothermality (BIO2/BIO7) x 100 >45.2 & <62.8 
BIO4 = Temperature Seasonality (standard deviation x 100) >1847.7 & <4368.38 
BIO5 = Max Temperature of Warmest Month >238.5 
BIO8 = Mean Temperature of Wettest Quarter >201 
BIO11 = Mean Temperature of Coldest Quarter >136 
BIO12 = Annual Precipitation >675.7 
BIO18 = Precipitation of Warmest Quarter >230.4 
Climond   
BIO34=Mean moisture index of warmest quarter >34 
CSIRO    
Relative Humidity Wettest Quarter >0.424 

The result of this exercise are given below and compared with the generally accepted cane toad 
SDMs (Figure 38). This comparison shows a high degree of similarity at the sum overlay 
model score of ≥seven with the models produced by Elith et al. (2010), Kearney et al. (2008) 
and Tingley et al. (2014). It should also be noted that in when cane toad presences (with 
outliers removed at a 95% confidence interval) are overlaid on this SDM, cane toads appear 
occur at, and above, this value. There are rare occurrences at a score of six but there are no 
presences below this value (Figure 39). This supports or finding, i.e. if current trends persist 
cane toads will probably invade the western half of Pilbara. Further, it enables us to 
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demonstrate how changes in these variables due to climate change may impact on the PD of the 
cane toad in the Pilbara. 

To demonstrate how climate change would impact on cane toad PD, the above method (using 
the same parameters) was repeated using the Access 1.0 coupled model using both the RCP4.5 
and 8.5 emission scenarios over the 2050 and 2070 timeframes. 

 
 

Figure 38: At a threshold of  ≥7 the sum overlay model (left) complies strongly with the Elith et al. (2010), 
Tingley et al. (2014) and Kearney et al. (2008) models.  

 

4.3.3 Cane toad SDM, results 

A summary of all results for the risk presented by cane toad invasion comparative to the 
baseline northern quoll distribution given in the preferred MaxEnt model is given below (Table 
13):  

Table 13: Percentage of Pilbara northern quoll habitat (baseline MaxEnt preferred model, thresholded) within each 
cane toad invasion risk score by Access 1.0 climate change scenario. 

Climate  
Change Scenario 

Probable  
(Score 7) 

Possible  
(Score 6) 

Unlikely  
(Score 5) 

Baseline 100   
RCP4.5 2050 52 48  
RCP4.5 2070 36 64  
RCP8.5 2050 38 51 11 
RCP8.5 2070 32 55 13 

 

Baseline: The national scale sum overlay baseline SDM for cane toad presence with recorded 
presences overlaid (with outliers removed) is given shown in Figure 39. As previously stated, 
this model complies with, and substantiates, the  SDMs  developed by Elith et al. (2010), 
Kearney et al. (2008) and Tingley et al. (2014). Correlating most strongly with the SDM 
developed by Elith et al. (2010). In Western Australia it shows that, under current bioclimatic 



   

 65 

conditions and unchanged management actions, it is probable that the cane toad has the 
capacity to invade an, approximately, 300km wide strip along the north-west coast, through the 
Pilbara, and a possibility that this invasion will spread further inland and to the south. A Pilbara 
scale overlay of this SDM over the thresholded preferred MaxEnt model (Figure 40) shows that 
nearly all of identified as baseline PD for the northern quoll will be within pixels with a score 
of seven in the sum overlay SDM, i.e. probably vulnerable to cane toad invasion. 

RCP4.5 2050: The national scale SDM cane toad presence with for this climate change 
scenario (Figure 41) shows a small general contraction in cane toad PD towards wetter and 
coastal areas compared to the baseline model. In Western Australia it shows, under this climate 
scenario, a small contraction in cane toad PD towards the coast compared to the baseline SDM.  
The Pilbara scale overlay shows a reduction from the baseline model from 100% to 52% of 
northern quoll PD being probably vulnerable to cane toad invasion and the remaining 48% of 
quoll PD being within a pixels with a score of six, i.e. potentially vulnerable to cane toad 
invasion (Figure 42). 

RCP4.5 2070: The national scale SDM cane toad presence with for this climate change 
scenario (Figure 43) shows a further small but general contraction in cane toad PD towards 
wetter and coastal areas in comparison to the RCP4.5 2050 model. In Western Australia it 
shows that, under this climate scenario, the contraction in cane toad PD compared to the 
baseline model observed in the previous model will continue. The Pilbara scale overlay shows 
a reduction in cane toad PD in comparison to that given in the RCP4.5 2050 from 52% to 36% 
of the northern quoll distribution probably vulnerable to cane toad invasion, and the remaining 
64% of quoll PD remaining potentially vulnerable to cane toad invasion (Figure 44). Of note is 
an anomalous increase in cane toad PD score from six to seven in a substantial part of the 
Hamersley Ranges. 

RCP8.5 2050: The national scale SDM cane toad presence with for this climate change 
scenario (Figure 45) shows that the general contraction in cane toad PD towards wetter and 
coastal observed in previous scenarios will continue. In Western Australia it shows that, under 
this climate scenario, trending contractions observed in previous models will also continue. 
The Pilbara scale overlay shows a small increase in probable cane toad PD, in comparison to 
that given in the RCP4.5 2070 scenario, from 36% to 38% of the area identified as baseline PD 
for the northern quoll. Approximately 51% of northern quoll baseline is potentially vulnerable 
to cane toad invasion and 11% of quoll PD is now within the now has a score of cane toad PD 
score of 5, i.e. the threat of cane toad invasion is unlikely (Figure 46). The anomaly previous 
noted in the Hamersley Ranges has disappeared in this scenario. 

RCP8.5 2070: The national scale SDM cane toad presence with for this climate change 
scenario (Figure 47) shows the general contraction in cane toad PD towards wetter and coastal 
observed in previous scenarios will continue with a southerly movement on the east coast 
becoming more pronounced. In Western Australia it shows that, under this climate scenario, 
trending contractions observed in previous models will continue. The Pilbara scale overlay 
shows a decreased area subject to probable cane toad invasion, in comparison to that given in 
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the RCP8.5 2050, from approximately 38% to 32% of northern quoll PD. Approximately 55% 
of quoll PD remains potentially vulnerable to cane toad invasion and 13% of quoll PD, remains 
unlikely to be impacted by cane toad invasion (Figure 48).  
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Figure 39: Sum overlay SDM baseline potential distribution, Australia wide 
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Figure 40: Sum overlay SDM baseline potential distribution for Pilbara overlaid on thresholded NQ extent (Figure 23) in blue 
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Figure 41: Sum overlay SDM Access1.0 RCP 4.5 2050 scenario potential distribution, Australia wide
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Figure 42: Sum overlay SDM Access1.0 RCP 4.5 2050 scenario potential distribution overlaid on thresholded NQ extent (Figure 23) in blue 
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Figure 43: Sum overlay SDM Access1.0 RCP 4.5 2070 scenario potential distribution, Australia wide 
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Figure 44: Sum overlay SDM Access1.0 RCP 4.5 2070 scenario potential distribution overlaid on thresholded NQ extent (Figure 23) in blue 
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Figure 45: Sum overlay SDM Access1.0 RCP 8.5 2050 scenario potential distribution, Australia wide 



   

 74 

 
Figure 46: Sum overlay SDM Access1.0 RCP 8.5 2050 scenario potential distribution overlaid on thresholded NQ extent (Figure 23) in blue 
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Figure 47: Sum overlay SDM Access1.0 RCP 8.5 2070 scenario potential distribution, Australia wide 
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Figure 48: Sum overlay SDM Access1.0 RCP 8.5 2070 scenario potential distribution overlaid on thresholded NQ extent (Figure 23) in blue 
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4.3.4 Conclusions 

In recognising the limitations of this exercise, i.e. that it is a broad scale modelling exercise of 
a range shifting species undertaken with uncertain climate modelling and using comparisons 
with previous modelling exercises as its main substantiation, we can still draw the following 
conclusions: 

• Models indicate that under current climatic conditions it is probable that cane toads can 
invade the Pilbara and, if they do, they should be able to persist in much of the Pilbara. 
 

• Across north-western Australia this, like other cane toad modelling exercises that we 
examined, shows that climate change will probably result in a westerly contraction in 
cane toad PD towards the coast, and that is contraction will be greater with more severe 
emission scenarios and greater timeframes. 

 

4.4 Cane toad and northern quoll interaction 

The models shown in section 4.3.3 demonstrate that, within the Pilbara, cane toad PD under 
baseline bioclimatic conditions coincides strongly with the preferred MaxEnt SDM for the PD 
of northern quoll. This indicates that, under current climatic conditions, interaction between 
these two species is also probable. Given that where these two species have interacted in the 
past, the impacts on northern quoll have generally been calamitous (Burnett, 1997; Oakwood, 
2004; Woinarski, 2010). Such an interaction could potentially result in the extinction of the 
Pilbara population of the northern quoll. However, our modelling also shows that with climate 
change there will be a strong trend for cane toad PD to contract westerly towards the coast and 
that this contraction will become more pronounced given higher emission scenarios and greater 
timeframes. This juxtaposes our climate change modelling for the Pilbara population of the 
northern quoll (section 4.2.5). These SDMs indicate trending easterly movement in northern 
quoll PD which also become more pronounced with higher emission scenarios and greater 
timeframes. 

To demonstrate how climate change will cause the potential distributions of these two species 
to diverge we have overlaid the SDM for the northern quoll RCP8.5 2070/baseline climate 
change comparison given in Figure 31 over the cane toad SDM for the same climate change 
scenario as given in Figure 48 (Figure 49). This shows that within the Pilbara and under the 
baseline northern quoll scenario 52% of northern quoll PD will probably be subjected to cane 
toad invasion, 46% of quoll PD remains potentially vulnerable to cane toad invasion and 2% of 
quoll PD, remains unlikely to be impacted by cane toad invasion. However, under the future 
climate change scenario, only 8% of future PD will probably be subject to cane toad, 56% will 
be potentially vulnerable to cane toad distribution and 36% will be unlikely to be effected. 
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Figure 49: Cane toad SDM for RCP8.5 2070 with northern quoll baseline and RCP8.5 2070 PDs overlaid. 
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5 Discussion 

In this report we have developed a preferred high resolution PD map for the Pilbara population 
of the northern quoll. To do this we have used the MaxEnt software and developed a 
methodology which addresses the known shortcomings of this software. This SDM is of a high 
quality, statistically speaking, and has been further evaluated through an ensemble model 
process where SDMs developed through a suite of five modelling tools were combined into an 
ensemble model. Our preferred model was then compared with all outputs from this process, 
including all individual modelling tool outputs as well as the ensemble output. Congruence 
between the ensemble model outputs and the preferred model remained high. Further 
indicating that the preferred model was accurate. 

PD as identified in the climate change SDM for the northern quoll differed in minor respects to 
the preferred PD SDM but this was to be expected as the model was developed at a much 
coarser scale using bioclimatic predictive variables alone and a much larger and more diverse 
presence data set. However, in comparing these models it must be remembered that the purpose 
of the climate change modelling exercise was not to provide a fine scale SDM as had been 
done with the preferred model. Rather, it had been undertaken to demonstrate how climate 
change trends may impact on the PD for the Pilbara population of the northern quoll. This 
exercise indicated that PD for the northern quoll will probably contract in an easterly direction 
and this movement will become more pronounced with higher emission scenarios and greater 
timeframes. 

To investigate the threat the cane toad invasion may represent to the Pilbara population of the 
northern quoll, a simple sum overlay model was constructed and compared with more complex 
and specialised SDMs undertaken to investigate the PD of this pest species. This was done 
because the cane toad is a highly adaptable range shifting species whose limiting parameters 
are not well understood hence many of the existing SDM’s were highly conflicted in their 
predictions. To do this we constructed a sum overlay model which complied well with the more 
accepted SDMs for this species. Consequently, we used this SDM as a basis for determining 
how climate change may impact upon the PD for the cane toad in the Pilbara. This process 
found that cane toads probably have the capacity to invade and persist in the Pilbara under 
current climatic and management conditions. However, modelled climate change scenarios did 
indicate that, within the Pilbara, the PD for the cane toad will contract westerly towards the 
coast and that this trend will also increase with higher emissions scenarios and greater 
timeframes. 

A comparison between the potential distributions of both species in the Pilbara indicated that 
under current conditions PD for both species is nearly totally overlapped representing a 
potentially threat to the persistence of the northern quoll in the Pilbara. However, apply climate 
change scenarios both SDM indicates that PDs for these two species will diverge and that this 
divergence will increase with higher emission scenarios and greater timeframes, thereby 
lessening the threat to this population of the northern quoll. 
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It must be noted that in looking at the impacts of climate change in the Pilbara, that the CMIP5 
GCMs for this region have a low level of certainty in regard to many parameters which may 
affect both northern quoll and the cane toad PDs. We readily acknowledge these limitations and 
advise caution in applying the findings of this report. 

6 Conclusions 
In light of the previous discussion we make the following conclusions: 

• Our models indicate that, under the scenarios predicted in the ACCESS 1.0 models, and 
over the 2050/70 timeframes, northern quoll PD will shift inland and cane toad PD will 
contract towards the coast, causing a divergence in the distributions of these two 
species. 
 

• The outputs of this project should be tested and refined through field studies. Modelling 
habitat for the northern quoll at a very fine scale remains beyond the capacity of this 
project. Furthermore, our understanding of the cane toad’s capacity to adapt remains 
inadequate.  
 

• The capacity to model the effects of threats to the Pilbara population of the northern 
quoll in response to impacts associated with mining activities, inappropriate fire 
regimes, pastoral activities and feral predators, requires additional data quantifying the 
impacts of these threats.  
 

• It is expected that new and improved spatial modelling tools and climate change data 
should also be applied to the conservation of the Pilbara population of the northern 
quoll as they come to hand. 
 

• A combination of quarantine measures and blocking toad access to key bodies of 
permanent fresh water may prove effective in delaying their invasion of the Pilbara, 
thereby diminishing their impact. 
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7  Recommendations 

It is considered axiomatic amongst modellers and statisticians that: ‘The greater the sample 
size and diversity, the more likely it is the sample will represent the true nature of the subject’. 
Therefore the larger and more diverse a sample is, the more accurate the SDM (MacCallum et 
al., 1996). It must be remembered that this has been a desktop modelling exercise undertaken 
with generic data and a relatively small (in terms of diversity) sample. Consequently the 
outputs of this project should be tested and refined through field studies. For example, 
sampling for northern quoll presences in areas identified in the SDMs as current high priority 
northern quoll refugia, but which have not been adequately sampled on previous occasions, 
whether successful or not, will provide data which can be used to refine and improve future 
SDMs. Conversely, finding presences in areas identified as low value northern quoll habitat 
will also facilitate the development of more accurate SDMs. 

Modelling habitat for the northern quoll at a very fine scale (e.g. ≤100m2 (10m x 10m) pixel 
resolution) remains beyond the capacity of this project because of incomplete records on the 
habitat requirements of this species, particularly in regard to very fine scale floristic 
community, geomorphological and topographical preferences. This is exacerbated by an 
absence of similar variable data sets which record this information at such a scale for most of 
the Pilbara. The ability to conduct very fine scale modelling is reliant on meeting these data 
requirements. 

Our understanding of the capacity of the cane toad to invade the Pilbara remains inadequate. 
Ongoing research into this area is highly recommended. 

The capacity to model the effects of threats to the Pilbara population of the northern quoll in 
response to the threats associated with mining activities, inappropriate fire regimes, pastoral 
activities and feral predators, requires additional data capable of quantifying the impacts of 
these threats. Although some of this data could be obtained through desktop studies, a better 
understanding would require on-ground studies which would employ activities such as ongoing 
monitoring, selective sampling and treatments applied to selected populations. 

There remains significant conflict between GCMs, this is particularly true in the case of the 
Pilbara. Advances in climate modelling continue in line with new tools, technologies and a 
greater understanding of the effects of anthropogenically caused global warming. As changes in 
climate modelling have the capacity to effect the outputs of all the exercises discussed in this 
report, it is recommended that these exercises be repeated and re-evaluated using the best 
available GCMs as the come to hand. 

It is expected that new and improved spatial modelling tools and methodologies will also 
become available in the foreseeable future. These tools should also be applied to the 
conservation of the Pilbara population of the northern quoll, and their outputs evaluated for 
further application. 
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Models show that there is a reasonable probability that cane toad and northern quoll 
populations will diverge (spatially) as a result of climate change. As an extension of this 
hypothesis, given that climate change will most likely continue, it can be assumed that the 
longer cane toad invasion of the Pilbara is delayed, the lower its impact on the northern quoll. 
Therefore, finding means by which such an invasion can be delayed, if not prevented, should 
be considered a major priority for conserving this northern quoll population. Blocking toad 
access to key bodies of permanent fresh water may prove pivotal in achieving this objective. 
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Glossary 

ACCESS 1.0: Australian Community Climate and Earth-System Simulator 1.0. A coupled 
climate model based on the CMIP5 suite of bioclimatic models (Bi et al., 2013). 

AUC:   Area Under Curve (a statistical test used in MaxEnt comparable to ROC). 

Bioclimatic:  Predictive variables derived from topographic, temperature and rainfall values. 
These are often used in ecological niche modelling. 

Biomod2: Software used in the EM process. 

BoM:   Bureau of Meteorology. 

CMIP5:  Coupled Model Intercomparison Project Phase 5. The latest set of climate 
change models based on a standard experimental protocol for studying the 
output of coupled atmosphere-ocean general circulation models (Taylor et al., 
2012). 

CSIRO:  Commonwealth Scientific and Industrial Research Organisation. 

CTA:   Classification Tree Analysis (a spatial modelling tool). 

CWR: Critical Weight Range (the weight range of native species most vulnerable to 
feral predation). 

Dependent variables: A value that changes in response to a change in an independent 
variable. It usually refers to the subject of the modelling exercise. With SDMs 
this refers to the p value or probability of presence. 

DPaW:  Department of Parks and Wildlife (Western Australia) 

ECU:   Edith Cowan University 

EM:  Ensemble Model (an SDM compiled from a group of related SDMs) 

FDA:  Flexible Discriminant Analysis (a spatial modelling tool) 

GAM:  Generalised Additive Model (a spatial modelling tool) 

GBM:  Generalised Boosted Model (a spatial modelling tool) 

Independent variables: An independent, or predictive, variable is landscape feature 
where a change in value will indicate, but not necessarily cause, a change in the 
value of the dependent variable.  

IPCC:  Intergovernmental Panel on Climate Change, 
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Kappa:  A statistical test used in the EM process. 

MaxEnt: Maximum Entropy Modelling (a spatial modelling tool). 

Parameters: Those independent variable values which define PD. 

PD:   Potential Distribution. 

PDA:  Point Density Analysis. 

RCP:  Representative Concentration Pathway. 

ROC:  Receiver Operator Characteristic (a statistical test comparable to AUC). 

SDM:   Species Distribution Model. 

Sensitivity: The percentage of absences above the ROC/AUC curve before the cut-off value. 

Specificity: The percentage of presences below the ROC/AUC curve after the cut-off value. 

TSS:  True Skill Statistic (a statistical test used in the EM process). 

 

 

 

 

 

 

  



   

 85 

References 

Adams-Hosking, McAlpine, Rhodes, Grantham, & Moss. (2012). Modelling changes in the 
distribution of the critical food resources of a specialist folivore in response to climate change. 
Diversity and Distributions, 18(9), 847-860. 

Atlas of Living Australia. (2015). Atlas of Living Australia.   Retrieved 9/06/215, 
from http://www.ala.org.au/ 

Baayen. (2008). Analyzing linguistic data: A practical introduction to statistics using R: 
Cambridge University Press. 

Beaumont, Hughes, & Poulsen. (2005). Predicting species distributions: use of climatic 
parameters in BIOCLIM and its impact on predictions of species’ current and future 
distributions. Ecological Modelling, 186(2), 251-270. 

Begg. (1981). The Small Mammals of Little Nourlangie Rock, N.T III. Ecology of Dasyurus 
hallucatus, the Northern Quoll (Marsupialia : Dasyuridae). Wildlife Research, 8(1), 73-85. 

Bi, Dix, Marsland, O’Farrell, Rashid, Uotila, et al. (2013). The ACCESS coupled model: 
description, control climate and evaluation. Aust. Meteorol. Oceanogr. J, 63(1), 41-64. 

Biologic. (2012). Habitat Modelling for Selected Species of Conservation Significance in the 
Pilbara. Perth: Biologic. 

Booth, Nix, Busby, & Hutchinson. (2014). BIOCLIM: the first species distribution modelling 
package, its early applications and relevance to most current MAXENT studies. Diversity and 
Distributions, 20(1), 1-9. 

Braithwaite, & Griffiths. (1994). Demographic variation and range contraction in the northern 
quoll, Dasyurus hallucatus (Marsupialia : Dasyuridae). Wildlife Research, 21(2), 203-217. 

Burbidge, & McKenzie. (1989). Patterns in the modern decline of western Australia's 
vertebrate fauna: Causes and conservation implications. Biological Conservation, 50(1–4), 
143-198. 

Burbidge, McKenzie, Brennan, Woinarski, Dickman, Baynes, et al. (2009). Conservation status 
and biogeography of Australia’s terrestrial mammals. Australian Journal of Zoology, 56(6), 
411-422. 

Burnett. (1997). Colonizing cane toads cause population declines in native predators: Reliable 
anecdotal information and management implications. Pacific Conservation Biology, 3(1), 65-
72. 

Bystriakova, Peregrym, Erkens, Bezsmertna, & Schneider. (2012). Sampling bias in geographic 
and environmental space and its effect on the predictive power of species distribution models. 
Systematics and Biodiversity, 10(3), 305-315. 

http://www.ala.org.au/


   

 86 

Cardoso, Eldridge, Oakwood, Rankmore, Sherwin, & Firestone. (2009). Effects of founder 
events on the genetic variation of translocated island populations: implications for conservation 
management of the northern quoll. Conservation Genetics, 10(6), 1719-1733. 

Child, Phillips, & Shine. (2008). Abiotic and biotic influences on the dispersal behavior of 
metamorph cane toads (Bufo marinus) in tropical Australia. Journal of Experimental Zoology 
Part A: Ecological Genetics and Physiology, 309(4), 215-224. 

Cook. (2010). Habitat use and home-range of the Northern Quoll: effects of fire. University of 
Western Australia. 

Cooper, & Withers. (2010). Comparative physiology of Australian quolls (Dasyurus; 
Marsupialia). Journal of Comparative Physiology B, 180(6), 857-868. 

Cramer, Barnett, Cook, Davis, Dunlop, Ellis, et al. (2015). Research priorities for the 
conservation and management of the northern quoll (Dasyurus hallucatus) in the Pilbara region 
of Western Australia. Submitted to Australian Journal of Mammalogy, 26. 

Crimmins, Dobrowski, & Mynsberge. (2013). Evaluating ensemble forecasts of plant species 
distributions under climate change. Ecological Modelling, 266, 126-130. 

CSIRO, & BoM. (2015). Climate Change in Australia.   Retrieved 5/05/2015, 2015, 
from http://www.climatechangeinaustralia.gov.au/en/ 

Department of Environment and Heritage. (2005). Cane Toad Distribution.   Retrieved 
27/06/2015, from http://cutlass.deh.gov.au/soe/2006/publications/drs/indicator/208/ 

Dickman. (1996). Impact of exotic generalist predators on the native fauna of Australia. 
Wildlife Biology, 2(3), 185-195. 

Doody, Soanes, Castellano, Rhind, Green, McHenry, et al. (2015). Invasive Toads Shift 
Predator-prey Densities in Animal Communities by Removing Top Predators. Ecology. 

DPaW. (2007-). NatureMap: Mapping Western Australia's Biodiversity.   Retrieved 10/06/2015, 
from http://naturemap.dpaw.wa.gov.au/ 

Eco Logical. (2012). Predictive species habitat modelling for four species across the Pilbara 
IBRA. Prepared for BHP Billiton Iron Ore Pty. Ltd. (Prepared for BHP Billiton Iron Ore Pty. 
Ltd.). Perth: Biologic. 

Edwards, Russell-Smith, & Meyer. (2015). Contemporary fire regime risks to key ecological 
assets and processes in north Australian savannas. International Journal of Wildland Fire. 

Elith, Graham, Anderson, Dudík, Ferrier, Guisan, et al. (2006). Novel methods improve 
prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. 

Elith, Kearney, & Phillips. (2010). The art of modelling range-shifting species. Methods in 
Ecology and Evolution, 1(4), 330-342. 

Elith, Phillips, Hastie, Dudík, Chee, & Yates. (2011). A statistical explanation of MaxEnt for 
ecologists. Diversity and Distributions, 17(1), 43-57. 

http://www.climatechangeinaustralia.gov.au/en/
http://cutlass.deh.gov.au/soe/2006/publications/drs/indicator/208/
http://naturemap.dpaw.wa.gov.au/


   

 87 

Fisher. (2012). Technical Review: Pilbara IBRA species distribution modelling. A comparison 
of two alternative modelling exercises. NT: Ecoscience. 

Fisher, Dickman, Jones, & Blomberg. (2013). Sperm competition drives the evolution of 
suicidal reproduction in mammals. Proceedings of the National Academy of Sciences, 110(44), 
17910-17914. 

Fordham, Regan, Tozer, Watts, White, Wintle, et al. (2012). Plant extinction risk under climate 
change: are forecast range shifts alone a good indicator of species vulnerability to global 
warming? Global Change Biology, 18(4), 1357-1371. 

Grenouillet, Buisson, Casajus, & Lek. (2011). Ensemble modelling of species distribution: the 
effects of geographical and environmental ranges. Ecography, 34(1), 9-17. 

Guerin, & Lowe. (2012). Multi-species distribution modelling highlights the Adelaide 
Geosyncline, South Australia, as an important continental-scale arid-zone refugium. Austral 
Ecology, 1442-9985. 

Guo, & Liu. (2010). ModEco: an integrated software package for ecological niche modeling. 
Ecography, 33(4), 637-642. 

Hijmans. (2012). Cross-validation of species distribution models: removing spatial sorting bias 
and calibration with a null model. Ecology, 93(3), 679-688. 

Hill, & Ward. (2010). National recovery plan for the northern quoll Dasyurus hallucatus. 
Department of Natural Resources, Environment, The Arts and Sport, Darwin. 

How, Spencer, & Schmitt. (2009). Island populations have high conservation value for northern 
Australia's top marsupial predator ahead of a threatening process. Journal of Zoology, 278(3), 
206. 

IPCC. (2013). Summary for policymakers. In Lisa Alexander, Simon Allen, Nathaniel L. 
Bindoff, François-Marie Bréon, John Church, Ulrich Cubasch, Seita Emori, Piers Forster, 
Pierre Friedlingstein, J. G. Nathan Gillett, Dennis Hartmann, Eystein Jansen, Ben Kirtman, 
Reto Knutti, Krishna Kumar Kanikicharla, Peter Lemke, Jochem Marotzke, Valérie Masson-
Delmotte, Gerald Meehl, Igor Mokhov, Shilong Piao, Gian-Kasper Plattner, Qin Dahe, 
Venkatachalam Ramaswamy, David Randall, Monika Rhein, & C. S. Maisa Rojas, Drew 
Shindell, Thomas F. Stocker, Lynne Talley, David Vaughan, Shang-Ping Xie, (Eds.), Climate 
Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fith 
Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New 
York: Cambridge University Press. 

Johnson, & Anderson. (2014). Northern Quoll (Dasyurus hallucatus) Baseline Remote Camera 
and Trapping Survey throughout the central and eastern Chichester Ranges, Pilbara region of 
Western Australia: Department of Parks and Wildlife, Perth. 

Kearney, Phillips, Tracy, Christian, Betts, & Porter. (2008). Modelling species distributions 
without using species distributions: the cane toad in Australia under current and future 
climates. Ecography, 31(4), 423-434. 



   

 88 

Kramer-Schadt, Niedballa, Pilgrim, Schröder, Lindenborn, Reinfelder, et al. (2013). The 
importance of correcting for sampling bias in MaxEnt species distribution models. Diversity 
and Distributions, 19(11), 1366-1379. 

Lenton, Fa, & Del Val. (2000). A simple non-parametric GIS model for predicting species 
distribution: endemic birds in Bioko Island, West Africa. Biodiversity and Conservation, 9(7), 
869-885. 

Loehle, & Eschenbach. (2012). Historical bird and terrestrial mammal extinction rates and 
causes. Diversity and Distributions, 18(1), 84-91. 

MacCallum, Browne, & Sugawara. (1996). Power analysis and determination of sample size 
for covariance structure modeling. Psychological methods, 1(2), 130. 

Manel, Dias, Buckton, & Ormerod. (1999). Alternative methods for predicting species 
distribution: an illustration with Himalayan river birds. Journal of Applied Ecology, 36(5), 734-
747. 

McInerny, & Purves. (2011). Fine-scale environmental variation in species distribution 
modelling: regression dilution, latent variables and neighbourly advice. Methods in Ecology 
and Evolution, 2(3), 248-257. 

Meri. (2000). Reproduction and demography of the northern quoll, , in the lowland savanna of 
northern Australia. Australian Journal of Zoology 48(5), 519-539. 

Molloy, Davis, & Van Etten. (2014). Species distribution modelling using bioclimatic variables 
to determine the impacts of a changing climate on the western ringtail possum (Pseudocheirus 
occidentalis; Pseudocheiridae). Environmental Conservation, 41(2), 176. 

Nano, Clarke, & Pavey. (2012). Fire regimes in arid hummock grasslands and Acacia 
shrublands. Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing 
World’.(Eds RA Bradstock, AM Gill and RJ Williams.) pp, 195-214. 

Nelson, & Gemmell. (2003). Birth in the northern quoll, Dasyurus hallucatus (Marsupialia : 
Dasyuridae). Australian Journal of Zoology, 51(2), 187. 

Oakwood. (1997). The ecology of the northern quoll, Dasyurus hallucatus. ANU, Canberra. 

Oakwood. (2000). Reproduction and demography of the northern quoll, Dasyurus hallucatus, 
in the lowland savanna of northern Australia. Australian Journal of Zoology, 48(5), 519-539. 

Oakwood. (2004). The effect of cane toads on a marsupialcarnivore, the northern quoll, 
Dasyurus hallucatus: Envirotek: Ecological Research, Survey and Education. 

Oakwood. (2008). Northern Quoll. In S. Van Dyck & R. Strahan (Eds.), The Mammals of 
Australia (Third ed., pp. 57-59). Sydney: Reed New Holland. 

Pavey, & Bastin. (2014). Australian rangelannds and climate change - invasive animals. Alice 
Springs: Ninti One Limited and CSIRO. 



   

 89 

Phillips, Anderson, & Schapire. (2006). Maximum entropy modeling of species geographic 
distributions. Ecological Modelling, 190(3), 231-259. 

Phillips, Brown, & Shine. (2010). Life-history evolution in range-shifting populations. 
Ecology, 91(6), 1617-1627. 

Phillips, & Dudík. (2008). Modeling of Species Distributions with Maxent: New Extensions 
and a Comprehensive Evaluation. Ecography, 31(2), 161-175. 

Pliscoff, & Fuentes-Castillo. (2011). Modeling of the species distribution and ecosystems in 
time and space: an review of new available tools and approaches. Revista De Geografia Norte 
Grande(48), 61-79. 

Pollock. (1999). Notes on status, distribution and diet of Northern Quoll Dasyurus hallucatus in 
the Mackay-Bowen area, mideastern Queensland. Australian Zoologist, 31(2), 388-395. 

Prober, Lemson, Lyons, Macfarlane, O’Connor, Scott, et al. (2012). Facilitating adaptation of 
biodiversity to climate change: a conceptual framework applied to the world’s largest 
Mediterranean-climate woodland. Climatic Change, 110(1), 227-248. 

Radosavljevic, & Anderson. (2014). Making better Maxent models of species distributions: 
complexity, overfitting and evaluation. Journal of biogeography, 41(4), 629-643. 

Ramanaidou, & Morris. (2010). A synopsis of the channel iron deposits of the Hamersley 
Province, Western Australia. Applied Earth Science: Transactions of the Institutions of Mining 
and Metallurgy: Section B, 119(1), 56-59. 

Reside, Welbergen, Phillips, Wardell-Johnson, Keppel, Ferrier, et al. (2014). Characteristics of 
climate change refugia for Australian biodiversity. Austral Ecology, 39(8), 887-897. 

Schaeffer, Gohar, Kriegler, Lowe, Riahi, & van Vuuren. (2015). Mid-and long-term climate 
projections for fragmented and delayed-action scenarios. Technological Forecasting and Social 
Change, 90, 257-268. 

Schmitt, Bradley, Kemper, Kitchener, Humphreys, & How. (1989). Ecology and physiology of 
the northern quoll, Dasyurus hallucatus (Marsupialia, Dasyuridae), at Mitchell Plateau, 
Kimberley, Western Australia. Journal of Zoology, 217(4), 539-558. 

Shukla, Bulusu, & Jha. (2004). Cane-toad monitoring in kakadu national park using wireless 
sensor networks. Paper presented at the Proceedings of APAN. 

Spencer. (2010). The Northern Quoll Population on Koolan Island: Molecular and 
Demographic Analysis. Retrieved. from. 

Spencer, How, Hillyer, Cook, Morris, Stevenson, et al. (2013). Genetic analysis of northern 
quolls from the Pilbara Region of Western Australia. Year one – final report: Unpublished 
report prepared for Department of Sustainability, Environment, Water, Population and 
Communities, Canberra and Department of Parks and Wildlife. Perth Western Australia. 

Syfert, Smith, & Coomes. (2013). The effects of sampling bias and model complexity on the 
predictive performance of MaxEnt species distribution models. PloS one, 8(2), e55158. 



   

 90 

Taylor, Stouffer, & Meehl. (2012). An overview of CMIP5 and the experiment design. Bulletin 
of the American Meteorological Society, 93(4), 485-498. 

Thuiller, Georges, & Engler. (2015). biomod2: Ensemble platform for species distribution 
modeling. R package version   Retrieved 21/07/2015, from https://cran.r-
project.org/web/packages/biomod2/biomod2.pdf 

Tingley, Phillips, Letnic, Brown, Shine, Baird, et al. (2013). Identifying optimal barriers to halt 
the invasion of cane toads Rhinella marina in arid Australia. Journal of Applied Ecology, 50(1), 
129-137. 

Tingley, Vallinoto, Sequeira, & Kearney. (2014). Realized niche shift during a global biological 
invasion. Proceedings of the National Academy of Sciences, 111(28), 10233-10238. 

Turpin, & Bamford. (2014). A new population of the northern quoll (Dasyurus hallucatus) on 
the edge of the Little Sandy Desert, Western Australia. Australian Mammalogy. 

Van der Aalst, Rubin, Verbeek, van Dongen, Kindler, & Günther. (2010). Process mining: a 
two-step approach to balance between underfitting and overfitting. Software & Systems 
Modeling, 9(1), 87-111. 

Van der Wal. (2014). CliMAS, Climate Change and Biodiversity in Australia.   Retrieved 
10/06/2015, from http://climas.hpc.jcu.edu.au/ 

van Etten. (2013). Changes to land tenure and pastoral lease ownership in Western Australia’s 
central rangelands: implications for co-operative, landscape-scale management. The Rangeland 
Journal, 35(1), 37-46. 

Van Gils, Conti, Ciaschetti, & Westinga. (2012). Fine resolution distribution modelling of 
endemics in Majella National Park, Central Italy. Plant Biosystems-An International Journal 
Dealing with all Aspects of Plant Biology, 146(sup1), 276-287. 

Vayssières, Plant, & Allen-Diaz. (2000). Classification trees: An alternative non-parametric 
approach for predicting species distributions. Journal of vegetation science, 11(5), 679-694. 

Watterson, Abbs, Bhend, Chiew, Church, Ekström, et al. (2015). Rangelands Cluster Report 
Australia: CSIRO and Bureau of Meteorology. 

Wickham. (2009). ggplot2: elegant graphics for data analysis: Springer Science & Business 
Media. 

Williams, Belbin, Austin, Stein, & Ferrier. (2012). Which environmental variables should I use 
in my biodiversity model? International Journal of Geographical Information Science, 26(11), 
2009-2047. 

Woinarski. (2010). Monitoring indicates rapid and severe decline of native small mammals in 
Kakadu National Park, northern Australia. Wildlife Research, 37(2), 116. 

Woinarski, Burbidge, & Harrison. (2015). Ongoing unraveling of a continental fauna: Decline 
and extinction of Australian mammals since European settlement. Proceedings of the National 
Academy of Sciences. 

https://cran.r-project.org/web/packages/biomod2/biomod2.pdf
https://cran.r-project.org/web/packages/biomod2/biomod2.pdf
http://climas.hpc.jcu.edu.au/


   

 91 

Woinarski, Legge, Fitzsimons, Traill, Burbidge, Fisher, et al. (2011). The disappearing mammal 
fauna of northern Australia: context, cause, and response. Conservation Letters, 4(3), 192-201. 

WorldClim. (2015). Global Climate Data Base.   Retrieved 18 October 2012, 
from http://worldclim.org/ 

Yackulic, Chandler, Zipkin, Royle, Nichols, Campbell Grant, et al. (2013). Presence-only 
modelling using MAXENT: when can we trust the inferences? Methods in Ecology and 
Evolution, 4(3), 236-243. 

Yates, Elith, Latimer, Le Maitre, Midgley, Schurr, et al. (2010). Projecting climate change 
impacts on species distributions in megadiverse South African Cape and Southwest Australian 
Floristic Regions: Opportunities and challenges. Austral Ecology, 35(4), 374-374. 

 

http://worldclim.org/

	Acknowledgements 
	Executive Summary
	Contents
	Figures
	Tables
	1 Introduction
	1.1 Project background 
	1.2 Objectives
	1.3 Outputs 
	1.4 The northern quoll (Dasyurus hallucatus)

	2 Variable selection
	2.1 Species distribution models, an introduction
	2.2 Independent variables.
	2.3 Data collection
	2.4 First cut
	2.5 Final cut

	3 Constructing the Species Distribution Model (SDM)
	3.1 Previous modelling
	3.2 Modelling with MaxEnt
	3.2.1 Creating a basic SDM
	3.2.2 MaxEnt SDM, without bias compensation
	3.2.3 Incorporating a bias grid GIS layer.
	3.2.4 Results

	3.3 Testing the SDM with an ensemble package
	3.4 The modelling packages
	3.4.1 Maximum entropy (MaxEnt)
	3.4.2 Generalised boosted model (GBM)
	3.4.3 Generalised additive model (GAM)
	3.4.4 Flexible discriminant analysis (FDA)
	3.4.5 Classification tree analysis (CTA)
	3.4.6 Ensemble model

	3.5 Results
	3.6 Conclusions

	4 Threats
	4.1 Overview
	4.1.1 Mining
	4.1.2 Fire
	4.1.3 Pastoral activities
	4.1.4 Feral predators

	4.2 Climate change
	4.2.1 Used climate change model/scenario
	4.2.2 Overview of predicted climate change in the Northern Rangelands
	4.2.3 Detailed predicted changes for the Northern Rangelands 
	4.2.4 MaxEnt climate change modelling
	4.2.5 Climate change modelling, results
	4.2.6 Conclusions

	4.3 Cane toads
	4.3.1 Why is modelling the cane toad so difficult?
	4.3.2 Constructing a sum overlay/GIS SDM
	4.3.3 Cane toad SDM, results
	4.3.4 Conclusions

	4.4 Cane toad and northern quoll interaction

	5 Discussion
	6 Conclusions
	7  Recommendations
	Glossary
	References

