

VIII International Conference on Forest Fire Research

Coimbra, Portugal 9 to 16 Nov. 2018

Drivers of wildland fire behaviour variation across the Earth

Paulo M. Fernandes*, Ângelo Sil, Davide Ascoli, Miguel G. Cruz, Martin E. Alexander, Carlos G. Rossa, Jaime Baeza, Neil Burrows, G. Matt Davies, Alessandra Fidelis, James S. Gould, Navashni Govender, Musa Kilinc, Lachlan McCaw

Introduction

Global **fire behaviour patterns and drivers** are incompletely understood and systematized, constraining:

- Fire activity prediction at different temporal and spatial scales
- Anticipation of fire activity response to global change
- Formulation of fire management policies to cope with fire regime changes

B N F N F R E – gloBal-scale analysis and mOdelliNg of FIRE behaviour potential

- Worldwide compilation of fire behaviour data
- Integrated analysis of variation in fire behaviour characteristics to describe patterns, identify and quantify drivers, and improve models.

BONFIRE Data collection

- Scientific publications, technical reports, case studies, online databases, unpublished data
- Outdoors experimental fires, wildfires, and prescribed fires
 - -Natural fuels: flaming, smouldering (peat)
 - -Anthropic fuels (slash, mastication, crop stubble)
- Headfires, point- or line-ignited, no interaction between fire fronts

Predicting fire behaviour in dry eucalypt forest in southern Australi N. Phillig Chengy⁺, James S. Gould^{Ads}, W. Lachan McCaw^{b,A}, Wendy R. Anderson⁺ ⁽²⁾ Collongene mission and Coll Chen default in the South Park of the Anderson⁺ ⁽²⁾ Default in the Coll Chen default is a start of the Anderson Act 2014. Anderso ⁽²⁾ Default is a start of the Anderson Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ ⁽²⁾ Default is a start of the Anderson⁺ and Act 2014 Anderson⁺ and Ac Wendy R. Andenson⁶, Miguel G. Cruz^{B,N}, Paulo M. Fernandes^C, Lachlan McCaw^O, Jose Antonio Vega^T, Ross A. Bracktock^{*}, Liam Fogary^C, Jim Could⁰, Greg McCarthy¹¹, Jon B. Marsden-Smedley^{*}, Stuart Matthewä Greg Mattingley^{*}, H. Crant Pearce^{*} and Brian W. van Wilgen^{**} inc pros of 12 forward 1971 in The western ofsirief of of of cictoria 1 for the wester 1 for the second 1 f

Variables

- Ancillary data (country, location, fire typology, climate- and vegetation-related, ...)
- Weather variables and fuel moisture contents or surrogates
- Terrain slope
- Fuel characteristics (type, heights/depths, cover, loads, % curing, % dead)
- Fire behaviour characteristics: forward rate of spread, flame characteristics, fireline intensity
- Fuels consumption (absolute and relative)

BONFIRE Data collection

Koppen-Geiger climate type

WorldClim Version 2.0 (Fick & Hijmans, 2017): gridded global **climate data** at 1 km² resolution

Biomes and Ecoregions (Olson et al., 2001)

Broad Vegetation Type (Forest, Woodland, Shrubland, Grassland)

Cover Types (Plant Functional Types) Combined NCAR LSM surface types with IGBP DISCover cover types (Bonan et al., 2002)

Broad Fuel Type (e.g. Eucalypt Forest)

Dominant species

Fuel Complex (e.g. Litter-Shrub)

	Fire typology	n		n	Biome	n
ata	Exporimontal	1212		5000	Boreal Forests/Taiga	311
ala	Experimental	4313	Fire observations	5920	Deserts and Xeric Shrublands	187
	Prescribed fire	695	Data of aproad	E11E	Flooded grasslands and savannas	15
	NA CLUC	040	Rate of spread	5115	Mediterranean Forests, Woodlands, and Scrub	831
	vvildtire	912	Flame height	1368	Montane Grasslands and Shrublands	24
					Temperate Broadleaf and Mixed Forests	1647
	Broad Vegetation Type	n	Flame length	1275	Temperate Coniferous Forests	814
	Forest	2490		1210	Temperate Grasslands, Savannas, and Shrublands	289
		2100	Fireline intensity	4414	Tropical and Subtropical Coniferous Forests	46
	Grassland	1220			Tropical and Subtropical Dry Broadleaf Forests	14
	Shrubland	735	Fine fuel consumption	3533	Tropical and subtropical grasslands, savannas and shrublands	1615
			Total fuel as powerties	1157	Tropical and Subtropical Moist Broadleaf Forests	119
	Woodland	1475	Total fuel consumption	4157	Tundra	8

.1.2.3.4.5.6.7.8.9 Quantile Density Contours

Objective

How do fire behaviour characteristics vary globally and respond to environmental drivers?

Data pre-treatment

- Wind speed adjustment (2m, 6m, 10m heights)
- Dead fine fuel moisture content estimation
- Rate of spread (*R*) correction for 0° slope (Van Wagner 1977; Sullivan et al. 2014)
- *R* adjusted for an ignition line length *W* of 100 m after fitting

 $R = 2.564 U_{10}^{1.094} * \exp(-0.102 M_{f})$ (**1-exp (-0.048 W**)) where $U_{10} = 10$ -m open wind speed (km h⁻¹) and M_{f} = fine dead fuel moisture content (%)

 Byram's fireline intensity (kW m⁻¹) standardized as R * w_f * 18,000 kJ kg⁻¹ with R in m s⁻¹ and w_f = fine fuel consumption (kg m⁻²)

Data analysis

- Exploration: descriptive stats and regression tree analysis
- Generalized linear models sequentially fitted to log-transformed fire behaviour variables (R, w_f) from climate, weather and fuel descriptors*:

Climate:

Temperature + Precipitation + Biome

Temperature + Precipitation + Broad Vegetation Type

Temperature + Precipitation + Cover Type

Climate + Weather:

Temperature + Precipitation + Cover Type + $U + M_d / M_{d+l}$

Climate + Weather + Fuel:

Temperature + Precipitation + Broad Fuel Type + Fuel Complex + $U + M_d / M_{d+l}$ Temperature + Precipitation + Broad Fuel Type + Fuel Complex + Fuel Depth + Fine Dead % + $U + M_d / M_{d+l}$

Temperature + Precipitation + Broad Fuel Type + Fuel Complex + Fine Fuel Load + Fine Dead % + $U + M_d / M_{d+l}$

* Fuel metrics were log-transformed, except moisture content

Results

Broad vegetation types

Results

Fire spread rate

Relative amount of explained variability (%)

Independent variables		Climate		Climate +	Weather	Climate + Weather + Fuel			uel
Temperature	31.3	5.8	3.2	0.8	4.6	0.6	4.0	5.8	9.2
Precipitation	22.4	9.8	11.9	n.s.	2.7	n.s.	1.1	n.s.	1.0
Biome	46.3								
Broad Vegetation Type		84.3							
Cover Type			84.9	22.1	39.5				
Broad Fuel Type						12.9	28.5	16.1	17.8
Fuel Complex						9.5	11.6	12.6	15.2
Fuel Depth								5.1	9.4
Fine Dead %								13.3	15.3
Dead Fuel Moisture				20.5		21.3		11.4	
Weight. Dead+Live Fuel Moisture					12.8		14.8		0.5
Wind Speed				56.6	40.3	55.6	40.0	35.6	31.6
	0.173	0.216	0.238	0.503	0.468	0.531	0.504	0.697	0.629

Relative explanations (%) Best (most complete) model Climate = 5.8 Weather = 47.0 Climate-Fuel = 28.7 Fuel = 18.5

Results

Fine fuel consumption

Relative amount of explained variability (%)

Independent variables		Climate		Climate +	+ Weather	Climate + Weather + Fuel			uel
Temperature	n.s.	7.3	2.5	5.9	2.2	4.1	1.0	n.s.	n.s.
Precipitation	20.1	12.7	3.8	6.0	4.3	4.6	3.7	0.5	0.8
Biome	79.9								
Broad Vegetation Type		80.1							
Cover Type			93.7	87.3	86.5				
Broad Fuel Type						72.0	68.0	4.0	4.7
Fuel Complex						17.8	21.4	7.3	5.8
Fine Fuel Load								85.1	87.4
Fine Dead %								2.7	1.3
Dead Fuel Moisture				n.s		n.s.		0.4	
Weight. Dead+Live Fuel Moisture					7.0		5.9		n.s.
Wind Speed				0.7	n.s.	1.5	n.s.	n.s.	n.s.
R ²	0.172	0.282	0.391	0.405	0.412	0.445	0.460	0.829	0.840

Relative explanations (%) Best (most complete) model

Climate = 0.5 Weather = 0.4 Climate-Fuel = 11.3 Fuel = 87.8

Fireline intensity

Climate = 4.6 Weather = 31.3 Climate-Fuel = 30.3 Fuel = 33.8

Conclusion

- We globally assessed how the continuum of top-down to bottom-up environmental drivers determine the spread and fuel consumed by a moving fire front.
- Disparate data sources and highly variable data (in methods, completeness, and reliability) did not preclude attainment of consistent results.
- While variation in fire spread rate is mostly determined by climate (indirectly) and weather (directly), variation in fine fuel consumption is governed by local fuel conditions.
- Results are useful for fire research and fire management applications and increase the understanding of fire behaviour changes in relation to global change.
- Further work with the BONFIRE project database:
 - Empirically-based modelling of fire behaviour characteristics and fuel consumption for generic/specific vegetation/fuel types.
 - Development of calibrated fuel models for global use.
 - Improved fire danger rating.

Thank you!

Work financed by FEDER – Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operacional Programme for Competitiveness and Internationalisation (POCI), and by Portuguese funds through FCT- FCT – Fundação para a Ciência e a Tecnologia in the framework of the project POCI-01-0145-FEDER-016727 (PTDC/AAG-MAA/2656/2014).

Cofinanciado por:

