# Land use and land cover mapping in the Swan and Canning River Catchments: Technical Report

Ricky van Dongen

April 2020



Department of **Biodiversity**, **Conservation and Attractions** 

Department of Biodiversity, Conservation and Attractions Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: (08) 9219 9000 Fax: (08) 9334 0498

www.dbca.wa.gov.au

© Department of Biodiversity, Conservation and Attractions on behalf of the State of Western Australia 2019 April 2020

This work is copyright. You may download, display, print and reproduce this material in unaltered form (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the *Copyright Act 1968*, all other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to the Department of Biodiversity, Conservation and Attractions.

This report/document/publication was prepared by Ricky van Dongen

Questions regarding the use of this material should be directed to:

Ricky van Dongen

Research Officer (Remote Sensing) Remote Sensing and Spatial Analysis Department of Parks and Wildlife Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: 9219 9571 Email: Ricky.vanDongen@dbca.wa.gov.au

The recommended reference for this publication is:

Department Biodiversity, Conservation and Attractions, 2019, *Land use and land cover mapping in the Swan and Canning River Catchments: 2019*, Department of Biodiversity, Conservation and Attractions, Perth.

This document is available in alternative formats on request.

Please note: urls in this document which conclude a sentence are followed by a full point. If copying the url please do not include the full point.

# Contents

| Sur | nmary     |                                        | v  |
|-----|-----------|----------------------------------------|----|
| 1 I | ntroduct  | ion                                    | 7  |
| 2 N | /lethodo  | logy                                   | 9  |
| 2.1 | Land      | use mapping                            | 9  |
|     | 2.1.1     | DPIRD mapping                          | 9  |
|     | 2.1.2     | Roads                                  | 9  |
|     | 2.1.3     | Unchanged parcels                      | 9  |
|     | 2.1.4     | Digital aerial photography predictions | 10 |
| 2.2 | Land      | cover classification                   | 14 |
| 3 F | Results   |                                        | 16 |
| 3.1 | Land      | use classes from classification        | 16 |
| 3.2 | Land      | Cover                                  | 19 |
| 4 C | Discussio | on                                     | 21 |
| Арр | endices   | 5                                      | 22 |
| Ref | erences   |                                        | 25 |
| Ap  | pendi     | ces                                    |    |
| App | pendix 1  | DPIRD Land Use Metadata Statement      | 22 |

# Figures

| Figure 1: Swan and Canning River catchment boundary.                | . 8 |
|---------------------------------------------------------------------|-----|
| Figure 2: The land use dataset over the Gin Gin and Chittering LGAs | 16  |
| Figure 3: An example of the land cover dataset                      | 19  |

## Tables

| Table 1: Original and merged land use classes                                              | 12 |
|--------------------------------------------------------------------------------------------|----|
| Table 2: Land cover classes with technical definitions                                     | 15 |
| Table 3: Classification accuracy per cover class                                           | 17 |
| Table 4: Overall model accuracy against the test data and from the out of bag calculation. | 17 |
| Table 5: Land use composition of the Swan and Canning River catchments                     | 18 |
| Table 6: Land cover accuracy by class                                                      | 20 |
| Table 7: Land cover confusion matrix                                                       | 20 |
|                                                                                            |    |

# Summary

Land use and land cover datasets were created for the Swan and Canning river catchments. These datasets will be inputs for nutrient modelling being carried out by the University of Western Australia.

To create the land use and land cover datasets digital aerial photography (captured in 2016) was used along with supplementary datasets including agricultural land use mapping and cadastral layers. The datasets achieved a high degree of accuracy (land use = 91.81% and land cover = 80.7%).

# 1 Introduction

A land use dataset for the Swan and Canning River catchments was produced by the then Department of Water in 2005. This dataset is an input for nutrient models. Updated nutrient modelling is currently being carried out by UWA and as such updated land use and land cover datasets are required. The extent of the catchments is shown in Figure 1.

Assessing land use in the catchments is a complex task with over 400 000 land parcels to assess. In order to cover this volume, parcels were prioritised according to whether the parcel Id or shape had changed (indicating a likely change in land use). Agricultural land use mapping from the Department of Primary Industries and Regional Development (DPIRD) was utilised and digital aerial photography was used to predict land use. The digital aerial photography was also used to map land cover.



Figure 1: Swan and Canning River catchment boundary.

## 2 Methodology

### 2.1 Land use mapping

To handle the volume of land parcels the 2016 cadastre was subset by Local Government Area (LGA). All processing, unless stated otherwise, was carried out in the R statistical environment (R Core Team 2017).

### 2.1.1 DPIRD mapping

The Department of Primary Industries and Regional Development produced spatial datasets of agricultural land used and remnant vegetation across the south west. See Appendix 1 for DPIRD metadata statement. The remnant vegetation dataset was created through aerial photography interpretations.

Processing steps:

- 1. For each LGA all parcels (area with a cadastral boundary) which overlapped with a DPIRD land use polygon were selected.
- 2. The DPIRD mapping was added to the land parcel.
- 3. Any remnant vegetation within the parcel was also added.
- 4. The updated parcel attribution was then added to the final 2016 land use dataset.

#### 2.1.2 Roads

The 2016 cadastre has many roads attributed.

Processing steps:

- 1. Parcels in the 2016 cadastre attributed as roads were selected by LGA.
- 2. These "road" parcels were added to the final 2016 land use dataset.

#### 2.1.3 Unchanged parcels

Land parcels which did not overlap with the DPIRD mapping were assessed for change. This was done by looking for changes in the physical dimensions of the parcel. Ideally the 2005 cadastre would have been used for this purpose, but it could not be located. A copy of the 2007 cadastre, archived by DBCA, was acquired. The differing time between 2005 and 2007 means that parcels changed (subdivided) between this time were not detected. Many of these errors were corrected in the first round of QA.

Processing steps:

1. Parcels from the 2007 cadastre which the PIN or Parcel ID were different in the 2016 cadastre were selected (parcels which had changed).

- 2. Of these "changed" parcels, the location of the centroid, area and perimeter (dimensions) of each of these parcels was assessed against all intersecting parcels in the 2007 cadastre.
- 3. Those with differing dimensions were selected as "changed" and the remainder "unchanged".
- 4. Unchanged 2016 parcels were then attributed with the same land use as 2005 and added to the final 2016 land use dataset.

### 2.1.4 Digital aerial photography predictions

The land use of parcels which have changed between 2007 and 2016 and do not overlap with the DPIRD mapping were predicted using digital aerial photography and sentinel imagery.

Digital aerial photography (captured in 2016) across the Swan coastal plain (including the Swan and Canning river catchments) is available in the form of Urban Monitor (UM) data. Urban Monitor (Caccetta et al. 2015) is a program run by CSIRO which produces calibrated digital imagery across four spectral bands, along with a normalised surface model (NSM). The data is capture across the summer months. The NSM is a raster dataset with each pixel representing the height of objects above ground level.

Sentinel 2 satellite imagery, captured 29/9/2016 was also used. The red and nearinfrared bands were used to create a normalised difference vegetation index (NDVI). This dataset was used to complement the UM data and provide a measure of spring vegetation cover. Processing steps:

- 1. Produce urban monitor and Sentinel 2 imagery tiles for each parcel.
- 2. Classify and calculate compositional and geometry variables for each parcel using R and eCognition. Variables are listed below.
  - Catchment name
  - area of small buildings
  - area of medium sized buildings
  - area of large buildings
  - area of single trees
  - area of tree patches
  - area of bare ground
  - area of grass
  - number of small buildings
  - number of medium sized buildings
  - number of large buildings
  - building maximum height
  - number of single trees
  - number of tree patches
  - percentage of parcel area covered by buildings
  - percentage of parcel area covered by trees
  - percentage of parcel area covered by bare ground
  - percentage of parcel area covered by grass
  - total area of parcel
  - percentage green in spring (satellite)
  - length/width of parcel
  - rectangular fit of parcel
  - shape index of parcel
  - radius of smallest enclosed ellipse of parcel
  - compactness of parcel

3. Land use classes which were likely to have a similar composition were consolidated as follows:

Original (n = 27)Merged classes (n = 18) Animal keeping - non-farming Animal keeping - non-farming Office - without parkland Commercial Storage / distribution Commercial Manufacturing / processing Commercial Commercial / service - centre Commercial Commercial / service - residential Commercial Community facility - education Community facility - education Community facility - non-education Community facility - non-education Drainage Drainage Farm Farm Horticulture Horticulture Lifestyle block / hobby farm Lifestyle block / hobby farm **Recreation - turf** Recreation - turf/grass **Recreation - grass** Recreation - turf/grass Residential - multiple dwelling Residential - multiple dwelling Residential - aged persons Residential - multiple dwelling Residential - temporary accommodation Residential - multiple dwelling Residential - single / duplex dwelling Residential - single / duplex dwelling Rural residential / bush block Rural residential / bush block Transport / access - non-airport Transport / access - non-airport Trees / shrubs Recreation / conservation - trees / shrubs Trees / shrubs Unused - uncleared - trees / shrubs Unused - cleared - bare soil Unused - cleared Unused - cleared - grass Unused - cleared Utility Utility Viticulture Viticulture Water body Water body

Table 1: Original and merged land use classes.

- 4. Training data was generated by:
  - a. Attributing parcels in the 2007 cadastre with land use from the 2005 dataset.
  - b. Randomly selecting 400 parcels from within each land use class. Where less than 400 existed, all were selected. This resulted in 8894 parcels.
  - c. Variables for these parcels were calculated from the 2007 UM data. This provided a compositional "signature" for each land use.
- 5. The training data was supplemented with 2060 manually selected parcels from the 2016 cadastre with parameters from the 2016 UM data. This was required to add property types not present in the 2007 sample primarily parcels in the small block and house estates now seen.
- 6. This training data was then split into a training and test set and run in the ranger random forest model (Wright and Ziegler 2017). The overall accuracy against test data was 92.4%.
- 7. The output was applied to the parcels then added to the final 2016 land use dataset.

## 2.2 Land cover classification

The land cover classification was carried out in eCognition and R using digital aerial photography (Urban Monitor) and supplementary polygon datasets. The supplementary datasets included roads datasets from the 2016 cadastre and waterbodies from the "Hydro Polygons" dataset on SLIP (<u>https://catalogue.data.wa.gov.au/dataset/medium-scale-topo-water-polygon-lgate-016</u>). Permeable and non-permeable ground was also identified using the land use classifications.

Land uses where ground was classified as non-permeable

- Transport / access non-airport
- Transport / access airport
- Commercial
- Residential multiple dwelling
- Manufacturing / processing
- Storage / distribution
- Commercial / service centre
- Community facility non-education
- Office without parkland
- Residential aged persons
- Residential temporary accommodation
- Commercial / service residential
- Office with parkland
- Yacht facilities

Land cover classes with technical descriptions are shown in Table 2. The NSM is a raster where pixel values represent the height of objects above ground level. However small amounts of noise in the datasets and general difficulties in determining if a feature is ground or above ground mean that a threshold of 400 mm was set to separate ground from above ground.

| Class         | Technical definition                                          |
|---------------|---------------------------------------------------------------|
| Trees/shrubs  | Green vegetation above ground level                           |
|               | NSM > 400 mm and NDVI > 0.3 and brightness (sum of all        |
|               | spectral bands) < 3000 and NIR – Red > 0                      |
| Grass         | Green vegetation at ground level                              |
|               | NSM < 400 mm and NDVI > 0.3 and (Sentinel 2) NDVI > 0.35      |
| Buildings     | Above ground level (> 400 mm) that are not trees/shrubs       |
| permeable     | Ground level (< 400 mm) that is not grass and not in a "non-  |
| ground        | permeable" land use                                           |
| Non-permeable | Ground level (< 400 mm) that is not grass and is in a "non-   |
| ground        | permeable" land use                                           |
| Roads         | Any classes, except Trees/shrubs, that overlap with the roads |
|               | dataset                                                       |
| Waterbodies   | Buildings and unclassified areas that overlap with the        |
|               | waterbodies dataset                                           |

Table 2: Land cover classes with technical definitions

To assess the accuracy of the land cover classes 50 points were systematically placed in each class using aerial photography as a reference. Theses actual classes were then compared with the modelled classes.

# 3 Results

## 3.1 Land use classes from classification

An example of the land use dataset is shown in Figure 2.



Figure 2: The land use dataset over the Gin Gin and Chittering LGAs.

From the land use classification "water bodies" were mapped to the highest degree of accuracy followed by "residential – single/duplex dwelling" (Table 3). The number of training samples from the "residential – single" class dominate the training dataset

with 69% of samples in this class. This is however representative of the proportion of this class in the land use dataset.

| Class                                  | Accuracy | Number of training samples |
|----------------------------------------|----------|----------------------------|
| Water body                             | 98.56    | 355                        |
| Residential - single / duplex dwelling | 97.23    | 7608                       |
| Unused - cleared - bare soil           | 89.15    | 721                        |
| Commercial                             | 87.03    | 763                        |
| Rural residential / bush block         | 84.71    | 441                        |
| Trees / shrubs                         | 76.12    | 317                        |
| Lifestyle block / hobby farm           | 67.97    | 116                        |
| Unused - cleared - grass               | 67.17    | 182                        |
| Transport / access - non-airport       | 66.18    | 186                        |
| Residential - multiple dwelling        | 66.14    | 145                        |
| Community facility - education         | 46.67    | 32                         |
| Recreation - turf/grass                | 35.71    | 53                         |
| Community facility - non-education*    |          | 17                         |
| Drainage*                              |          | 6                          |
| Farm*                                  |          | 8                          |

\*insufficient number of training samples to include in the model

The accuracy of the random forest model as assessed within the model on "out of bag" (OOB) data was 91.81% (Table 4). The OOB data is withheld for testing in each fold (split, n = 10) within the model. This figure can be considered a good representation of the model performance. The model was also tested against a test set of data, which was excluded from the training process. The assessments of accuracy using the test data and OOB against overall accuracy and kappa score are high (> 0.8).

Table 4: Overall model accuracy against the test data and from the out of bag calculation.

| Measure  | Against test data | out of bag |
|----------|-------------------|------------|
| Accuracy | 0.928             | 0.918      |
| Карра    | 0.853             | 0.829      |

In total there were 304871 parcels which did not change their pin or shape between 2007 and 2016. These parcels were allocated the 2005 land use as it was assumed that their land use had not changed. The validity of this assumption has not been tested as it would require extensive field checking.

Parcels which changed land use between 2005 and 2007 were manually identified using aerial photography and the appropriate class was allocated. These occurred at several developments on the urban fringe.

In total 60 classes were generated. The composition of these classes is shown in Table 5.

| Land use class                   | Area (Ha) | %      | Land use class               | Area (Ha) | %     |
|----------------------------------|-----------|--------|------------------------------|-----------|-------|
| Unused - uncleared - trees /     |           |        |                              |           |       |
| shrubs                           | 47259.75  | 21.85  | Irrigated land in transition | 265.935   | 0.123 |
| Farm                             | 36805.97  | 17.017 | Office - without parkland    | 220.464   | 0.102 |
| Recreation / conservation -      |           |        |                              |           |       |
| trees / shrubs                   | 22833.34  | 10.557 | Residential - aged persons   | 213.758   | 0.099 |
| Residential - single / duplex    | 24752.4   | 10.057 |                              | 200.220   | 0.000 |
|                                  | 21/53.4   | 10.057 | Recreation - turt/grass      | 200.329   | 0.093 |
| Iransport / access - non-airport | 1/480.58  | 8.082  | Poultry                      | 185.477   | 0.086 |
| trees / shrubs                   | 14777.33  | 6.832  | Unused and unfertilized      | 185.718   | 0.086 |
| Lifestyle block / hobby farm     | 11273.02  | 5.212  | Utility                      | 167.651   | 0.078 |
| Rural residential / bush block   | 8857.684  | 4.095  | Stockyards/saleyards         | 126.987   | 0.059 |
| Unused - cleared - grass         | 6352.974  | 2.937  | Woody fodder plants          | 119.932   | 0.055 |
| Animal keeping - non-farming     | 2647.772  | 1.224  | Feedlots                     | 114.863   | 0.053 |
| Transport / access - airport     | 2531.437  | 1.17   | Garden centre / nursery      | 85.58     | 0.04  |
|                                  |           |        | Residential - temporary      |           |       |
| Recreation - grass               | 2040.48   | 0.943  | accommodation                | 74.263    | 0.034 |
| Unused - cleared - bare soil     | 1693.868  | 0.783  | Turf farm                    | 74.15     | 0.034 |
| - · ·                            |           |        | Commercial / service -       |           |       |
| Recreation - turf                | 1665.049  | 0.77   | residential                  | 62.513    | 0.029 |
| Commercial                       | 1656.311  | 0.766  | Office - with parkland       | 55.46     | 0.026 |
| Residential - multiple dwelling  | 1627.321  | 0.752  | Landfill                     | 54.081    | 0.025 |
| Manufacturing / processing       | 1559.443  | 0.721  | Plantation                   | 54.809    | 0.025 |
| Community facility - education   | 1496.296  | 0.692  | Irrigated sown grasses       | 38.066    | 0.018 |
| Tree plantation                  | 1440.184  | 0.666  | Glasshouse horticulture      | 26.412    | 0.012 |
| Perennial Horticulture           | 1254.938  | 0.58   | Turf Farm                    | 24.484    | 0.011 |
| Viticulture                      | 1253.544  | 0.58   | Cropping                     | 21.241    | 0.01  |
| Storage / distribution           | 1245.439  | 0.576  | Abattoirs                    | 15.33     | 0.007 |
| Commercial / service - centre    | 895.175   | 0.414  | Mixed grazing                | 15.822    | 0.007 |
| Community facility - non-        |           |        |                              |           |       |
| education                        | 640.145   | 0.296  | Intensive animal husbandry   | 13.535    | 0.006 |
| Water body                       | 525.178   | 0.243  | Sewage - treatment plant     | 11.641    | 0.005 |
| Horticulture                     | 512.395   | 0.237  | Yacht facilities             | 8.681     | 0.004 |
| Animal keeping - non-            |           |        |                              |           |       |
| farming(horses)                  | 493.077   | 0.228  | Aquaculture                  | 7.261     | 0.003 |
| Quarry / extraction              | 440.599   | 0.204  | Land in transition           | 7.158     | 0.003 |
|                                  |           |        | Sewage - non-treatment       |           |       |
| Drainage                         | 373.649   | 0.173  | plant                        | 2.354     | 0.001 |
| Annual horticulture              | 336.385   | 0.156  | Piggery                      | 0.675     | 0     |

Table 5: Land use composition of the Swan and Canning River catchments.

| NA 116.501 0.05 |  |  |    |         |       |
|-----------------|--|--|----|---------|-------|
|                 |  |  | NA | 116.501 | 0.054 |

### 3.2 Land Cover

An example of the land cover dataset is shown in Figure 3.



Figure 3: An example of the land cover dataset.

The land cover classification achieved an overall accuracy of 80.7%. Classes with the highest accuracy were trees/shrubs, buildings and roads (Table 6). Non - permeable ground and waterbodies recorded the lowest accuracies. These two classes also occupy the smallest proportions of the study area. The trees/shrubs (33.14%) and grass (37.52 %) classes occupied the largest proportions.

| Class                  | Accuracy | % of study area |
|------------------------|----------|-----------------|
| Trees/shrubs           | 0.936    | 33.14           |
| Buildings              | 0.94     | 9.16            |
| Grass                  | 0.886    | 37.52           |
| Permeable ground       | 0.844    | 12.26           |
| Roads                  | 0.957    | 5.77            |
| Waterbodies            | 0.835    | 0.25            |
| Non - Permeable ground | 0.813    | 1.9             |

Table 6: Land cover accuracy by class.

A confusion matrix of land cover classes is shown in were also classified as buildings. This appears mainly due to variable topography, where areas of raised land are classified as above ground (Table 7).

The largest source of error appears to be waterbodies being mapped as trees/shrub. This may be due to emergent vegetation within waterbodies, or due to anomalous reflectance and height values that occur over water in Urban Monitor imagery. In terms of the overall dataset this error is quite small as waterbodies only account for 0.25 % of the study area.

Errors in the roads class include misclassification as trees/shrubs and buildings. The misclassification of roads as buildings is due to a combination of slight errors in the NSM and roads visible in the imagery which are not in the cadastre. A number of the non-permeable ground points (n = 9) were also classified as buildings. This appears mainly due to variable topography, where areas of raised land are classified as above ground.

|              | Trees/shrubs | Buildings | Grass | Permeable | Roads | Waterbodies | Non -  |
|--------------|--------------|-----------|-------|-----------|-------|-------------|--------|
|              |              |           |       | ground    |       |             | ground |
| Trees/shrubs | 46           | 3         | 1     | 0         | 1     | 15          | 0      |
| Buildings    | 0            | 46        | 0     | 0         | 3     | 0           | 9      |
| Grass        | 3            | 1         | 41    | 8         | 0     | 1           | 1      |
| Permeable    | 0            | 0         | 6     | 36        | 0     | 0           | 8      |
| ground       |              |           |       |           |       |             |        |
| Roads        | 0            | 0         | 2     | 0         | 46    | 0           | 0      |
| Waterbodies  | 0            | 0         | 0     | 1         | 0     | 33          | 0      |

Table 7: Land cover confusion matrix.

| Non-      | 0 | 0 | 0 | 4 | 0 | 0 | 32 |
|-----------|---|---|---|---|---|---|----|
| permeable |   |   |   |   |   |   |    |
| ground    |   |   |   |   |   |   |    |

## 4 Discussion

Identifying unchanged parcels is a crucial part of the analysis. Processing speeds and similarities between many of the classes mean that classifying all parcels using the Urban Monitor imagery is not feasible. The accuracy achieved by assigning unchanged parcels an unchanged land use has not been assessed but it is assumed to be greater than what could be achieved if the UM modelling method could be applied.

The overall model accuracy (92.4%) is dominated by the "Residential - single / duplex dwelling" class (69% of training data). This is representative of the changed land parcels – the major change is to residential dwellings.

Sources of error include:

- Land parcels which were assumed to have not changed in land use but have.
- Error in the DPIRD land use mapping.
- Parcels attributed as road in the cadastre which are not yet road.
- Classification error in the prediction using UM data.

The classification accuracy of the land cover map was high (80%). This accuracy figure is quite conservative given that the classes with the lowest accuracy, waterbodies and non-permeable ground, occupy the smallest proportions of the study area. The dominant sources of error appear to be due to the variable reflectance of waterbodies, which can be influenced by algae, emergent vegetation and sun glint. Variability in the NSM where raised features are considered above ground is also a source of error in the roads and non-permeable ground classes.

## Appendices

### Appendix 1 DPIRD Land Use Metadata Statement

#### Department of Agriculture and Food, Western Australia

Title: Intensive Agricultural Land Use in Western Australia ALUM v7 Job Number: 2015003, 2015151 Custodian: Department of Agriculture and Food, Western Australia (DAFWA) Jurisdiction: Western Australia

**Abstract:** This dataset provides a major revision to the DAFWA Land Use in Western Australia Australian Land Use and Management (ALUM) v6 dataset for intensive horticultural classes under perennial and seasonal horticulture classifications 3.4, 3.5, 4.4 and 4.5 and under classification 5.2 – Intensive Animal Husbandry - and class 5.3.5 - Abattoirs. This is the first attempt using ALUM methodology to map specific land use classes rather than mapping a complete region or catchment at one time.

**Recommendation:** It is recommended that any land use area figures derived from the data be used only as a preliminary guide due to land use capture being undertaken primarily by aerial photo interpretation and at various scales of capture.

Geographic Extent: Western Australia, as is made available.

Beginning Date: January 2015 Ending Date: Current Photography Date: Various – from 2008 to 2015 depending on the region.

**Progress:** The capture process has been completed, however potential future projects may update / refine the data further or expand the classification captured in this dataset.

**Maintenance and Update Frequency:** At this stage this is a static dataset but this may change depending on demand for updates. Updates would be most likely to be undertaken as new imagery becomes available so timeframes and frequency will be region dependant. Potential future projects may update / refine the data further or expand the classification captured in this dataset.

Stored Data Formats: Oracle Spatial Database UTM Zone 50 GDA94 Available Data Formats: On request Access Constraint: License on request

**Lineage:** A preliminary base dataset was derived by extracting data from the DAFWA Client, Property and Event (CPE) database and existing ALUM v6 data overlaid on aerial photography.

An area of interest (AOI) was digitised for specified land uses and an ALUM v7 code was assigned by the land use mapping project team.

Land not involved in Intensive Agriculture land uses was not captured.

Aerial photography dates vary across geographic extent and are incorporated into individual polygons in the final dataset.

Positional Accuracy: ~ + or - 50 m.

#### **Attribute Accuracy:**

Land Use interpretation is subjective and based on experience and knowledge of the GIS operator capturing land use.

Land Use coding interpretation is open to discrepancies based on the GIS operators' interpretation of the coding system used (ALUM).

The ALUM code is a generalised coding system and does not allow for 'variety' level information to be incorporated into defining horticultural activity. Where more information was available and was deemed relevant it was added as a comment in the Description field or as a DAFWA Activity Code.

Spatial and Attribute verification of the dataset was undertaken via:

- aerial photography interpretation
- industry expert confirmation
- some comparison of custodial/corporate data

#### **Completeness:**

The dataset covers all intensive agriculture and abattoir sites in the state of WA of which DAFWA staff are aware.

#### Supplemental Information:

Database Fields:

- 1. AOI ID Area of Interest Identifier
- 2. ALUM Code Australian Land Use and Management (ALUM) v7 classification code
- 3. Description Additional Descriptive Information
- 4. Reliability Reliability of attribute
- 5. Audit Comments Additional comments made during audit process
- 6. Orthophoto Date Year of run if not in file name
- 7. Orthophoto Filename Orthophoto name
- 8. Area (ha) size of AOI in hectares (autopopulated)
- 9. Created by Autopopulated field through Oracle
- 10. Creation Date Autopopulated field through Oracle
- 11. Last Update by Autopopulated field through Oracle
- 12. Last Update date Autopopulated field through Oracle
- 13. Activity Code DAFWA activity code

Reference Tables:

- 1. ALUM Classification
- 2. Reliability
- 3. DAFWA Property Activity Codes

Contact Organisation: Geographic Information Services Group Department of Agriculture and Food, Western Australia Contact Project Person: Avril Russell-Brown / Jeff Watson Mail Address: 3 Baron-Hay Court Locality: South Perth State: Western Australia Country: AUSTRALIA Postcode: 6151 Telephone: (08) 9368 3728 Email Address: gis@agric.wa.gov.au

Metadata Date: 26th April 2016

## References

- Caccetta, P, S Collings, A Deveraux, K Hingee, D McFarlane, A Traylen, X Wu, and Zheng-Shu Zhou. 2015. "Monitoring Land Surface and Cover in Urban and Peri-Urban Environments Using Digital Aerial Photography." *International Journal of Digital Earth*. https://doi.org/10.1080/17538947.2015.1046510.
- R Core Team. 2017. *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing. https://www.Rproject.org/.
- Wright, Marvin N., and Andreas Ziegler. 2017. "Ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R." *Journal of Statistical Software* 77 (1): 1–17. https://doi.org/10.18637/jss.v077.i01.