

## Swan Canning Estuary - Indicators and Targets

Supporting document to the Swan Canning River Protection Strategy Five Year Review – 2022.

Baker, J. Trayler, K., Cosgrove, J. Thompson, S and Muller, S.

2023

Department of Biodiversity, Conservation and Attractions Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: (08) 9219 9000

Phone: (08) 9219 900 Fax: (08) 9334 0498



Department of **Biodiversity**, **Conservation and Attractions** 

#### www.dbca.wa.gov.au

© Department of Biodiversity, Conservation and Attractions on behalf of the State of Western Australia 2023

This work is copyright. You may download, display, print and reproduce this material in unaltered form (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the *Copyright Act 1968*, all other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to the Department of Biodiversity, Conservation and Attractions.

This report/document/publication was prepared by Joshua Baker, Kerry Trayler, Jeff Cosgrove, Suzanne Thompson and Sarah Muller

Questions regarding the use of this material should be directed to: Kerry Trayler

Principal Scientist

Rivers and Estuaries Science

Department of Biodiversity, Conservation and Attractions

Locked Bag 104

Bentley Delivery Centre WA 6983

Phone: 9278 0900

Email: riversandestuariesscience@dbca.wa.gov.au

The recommended reference for this publication is:

Department Biodiversity, Conservation and Attractions, 2023. Swan Canning Estuary Indicators and Targets: Supporting document to the Swan Canning River Protection Strategy Five Year Review – 2022. Department of Biodiversity, Conservation and Attractions, Perth.

This document is available in alternative formats on request.

## Contents

| R  | eporti         | ng on Indicators and Targets                                                                                                                                                                                       | 5    |
|----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1  | Back           | ground and overview                                                                                                                                                                                                | 5    |
| 2  | Catc           | hment Water Quality                                                                                                                                                                                                | 6    |
|    | 2.1            | Method for target calculation                                                                                                                                                                                      | 6    |
|    | 2.2            | Compliance summary for 5 years and application to RPS                                                                                                                                                              | 6    |
| 3  | Estu           | arine Water Quality                                                                                                                                                                                                | 9    |
|    | 3.1            | Method for target calculation                                                                                                                                                                                      | 9    |
|    | 3.2<br>applic  | Dissolved oxygen and chlorophyll a KPI compliance summary and cation to five-year report on the River Protection Strategy                                                                                          | 9    |
| 4  | Cond           | litions in oxygenation zone                                                                                                                                                                                        | . 11 |
|    | 4.1            | Method for target calculation                                                                                                                                                                                      | . 11 |
|    | 4.2<br>applio  | Dissolved oxygen and chlorophyll a KPI compliance summary and cation to five -year report on the River Protection Strategy                                                                                         | . 12 |
| 5  | Seag           | rass Health                                                                                                                                                                                                        |      |
|    | 5.1            | Method for target calculation                                                                                                                                                                                      | . 13 |
|    | 5.2<br>year    | Seagrass performance KPI compliance summary and application to five-<br>report on the River Protection Strategy                                                                                                    | . 13 |
| 6  | Fish           | Communities                                                                                                                                                                                                        | . 14 |
|    | 6.1            | Method for target calculation                                                                                                                                                                                      | . 14 |
|    | 6.2            | Compliance for 5 year and application to RPS                                                                                                                                                                       | . 15 |
| A  | ppei           | ndices                                                                                                                                                                                                             |      |
|    | Appe           | ndix 1: Catchment compliance                                                                                                                                                                                       | . 18 |
|    | Appe           | ndix 2: Estuarine compliance                                                                                                                                                                                       | . 20 |
| F  | igure          | es es                                                                                                                                                                                                              |      |
| Fi | _              | 1 Using the Random Number Generation tool in Microsoft Excel to random st sites used for the KPI assessment process.                                                                                               | -    |
| Fi |                | 2 Using an identifier to select the data for the randomly selected sites within EMZ and for each unique sample event                                                                                               |      |
| Fi | calcu<br>Statu | B Using the COUNT, COUNTIF and IF functions in Microsoft Excel to late the number of samples (n), Number of exceedances (e) and the KPI is by assessing e against the maximum number of allowable exceedances ix). |      |

#### **Tables**

| Table 1 Summary of overall ecosystem health within the Swan-Canning Estuary 5                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2 Swan-Canning Catchment targets for total nitrogen (TN (mg L-1) and total phosphorus (TP (mg L-1) for the 2016-2020 reporting period                                                                                                                              |
| Table 3 KPI status based on exceedances of TN targets (as shown in Appendix 1).  ND= no data                                                                                                                                                                             |
| Table 4 KPI status based on exceedances of TP targets (as shown in Appendix 1).  ND= no data                                                                                                                                                                             |
| Table 5 Swan-Canning Catchment KPI compliance summary for 2016-2020. Trend over time was determined as not significant (ns) for all catchments                                                                                                                           |
| Table 6 Swan-Canning Estuary targets for surface chlorophyll a (Chl-a (ug L-1)) and dissolved oxygen (DO (%)) for the 2016-2020 reporting period                                                                                                                         |
| Table 7 The number of acceptable exceedances (eMax) and the number of actual exceedances (e) of targets for and surface dissolved oxygen (DO (%)) and chlorophyll a (Chl-a ((mg L-1)) for the 2016-2020 reporting period. KPIs were passed where e <emax< td=""></emax<> |
| Table 8 Compliance summary of the Swan-Canning Estuary KPI status for each Ecological Management Zone. Trend in parameters over time were shown as not significant (ns)                                                                                                  |
| Table 9 Operational targets for management of oxygenation zone and parameters for calculation11                                                                                                                                                                          |
| Table 10 Percentage of data in any one oxygenation season/year that was above thresholds in the two oxygenation zones                                                                                                                                                    |
| Table 11 Compliance summary of KPI status for each Oxygenation Zone                                                                                                                                                                                                      |
| Table 12 Seagrass health index values based on seagrass performance in 2015-16.                                                                                                                                                                                          |
| Table 13 Swan-Canning Estuary seagrass health from 2015-201613                                                                                                                                                                                                           |
| Table 14 Fish Community Index scores for shallow and deep areas of four ecological management zones in the Swan Canning estuary. Scores are shown for both summer (S) and autumn (A) in each year 2016-202014                                                            |
| Table 15 Fish Community Index scores for shallow and deep areas of four ecological management zones in the Swan Canning estuary. Scores are shown for both summer (S) and autumn (A) in each year 2016-2020. Shading shows the condition grade based on Table 14         |
| Table 16 Fish Community Index scores for shallow and deep areas of four ecological management zones in the Swan Canning estuary. Scores are shown for both summer (S) and autumn (A) in each year 2016-202015                                                            |
| Table 17 Fish community index performance for nearshore and offshore communities within the Swan-Canning Estuary between 2016 and 2020                                                                                                                                   |

## Reporting on Indicators and Targets

## 1 Background and overview

Under the Swan and Canning Rivers Management Act 2006, the Swan River Trust is required to monitor and report to the Minister of Environment on a series of performance indicators as part of a five-yearly review of the River Protection Strategy (RPS; 2015). One of those indicators is that 75% of monitored ecosystem health data meets respective targets required for a healthy and functioning ecosystem. Consistent with the biennial review of the RPS (Swan River Trust, 2018), the ecosystem health targets were comprised of both biophysical and ecological indicators, which included:

- catchment water quality
- estuarine water quality
- · conditions in the oxygenation zones; and
- · the fish community index.

In addition, the five-year review includes an additional indicator, seagrass health, which was added following the development of a health index collaboration with the Department of Water and Environmental Regulation (DWER, 2018).

The performance indicator for ecological health in 2020 was determined by comparing data collected between 2015 and 2020 against prescribed targets and pooling those to arrive at an overall score (Table 1). Thereby in 2020 it was determined that 72% of ecosystem health data met the target for a healthy and functioning ecosystem.

Information in this report underpins the RPS five year review (SRT, 2022).

Table 1 Summary of overall ecosystem health within the Swan-Canning Estuary.

| Ecosystem<br>Health Indicators |                                                                                                                                                          | Maximum<br>Score | Actual<br>Score |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|
| Catchment Water<br>Quality     | Total Nitrogen and Total Phosphorus meets Short Term and Long Term targets specified by the Swan Canning Cleanup Program (Swan River Trust, 2001)        | 296              | 224             |
| Estuary Water<br>Quality       | For each Ecological Management Zone, chlorophyll a and dissolved oxygen meet targets prescribed by Swan Canning Cleanup Program (Swan River Trust, 2001) | 40               | 5               |
| Oxygenation<br>Conditions      | > 80% of all individual DO measurements (data points) collected for each Oxygenation Zone during the oxygenation season to be above 4 mg/L               | 10               | 10              |
| Seagrass Health                | Seagrass performance index is 2.25 or better in each seagrass zone                                                                                       | 6                | 6               |
| Fish Communities               | Fish Community Index score is "fair" or better for each ecological management zone.                                                                      | 80               | 67              |
| TOTAL                          |                                                                                                                                                          | 432              | 312             |
|                                |                                                                                                                                                          |                  | 72.2%           |

The derivation of these scores are described in the sections below.

## 2 Catchment Water Quality

#### 2.1 Method for target calculation

The Swan-Canning Catchment water quality targets for total nitrogen (TN) and total phosphorus (TP) were established by Donohue et al. (2001; Table 2) and the methodology for calculating the compliance of the TN and TP concentrations against these short- and long-term targets follow those of the same report and of the Swan River Trust' (2001) Swan-Canning Clean-up Program report. These apply a binomial method to account for variability in analyte concentrations and sampling method.

Table 2 Swan-Canning Catchment targets for total nitrogen (TN (mg L-1) and total phosphorus (TP (mg L-1) for the 2016-2020 reporting period.

| Analyte     | Short-term target | Long-term target |
|-------------|-------------------|------------------|
| TN (mg L-1) | 2.0               | 1.0              |
| TP (mg L-1) | 0.2               | 0.1              |

This approach uses the number of sampling events (*n*) to establish a maximum number of allowable exceedances (*eMax*) to both the short- and long-term catchment nutrient targets, with this value influenced by past Key Performance Indicator (KPI) assessments (see Appendix 1)

In any one year, the KPI is evaluated using data on analyte concentration collected in weeks 22-43 for the previous three years. Thus, to establish the KPI status of 2020, data collected in weeks 22-43 of years 2017-2019 was used.

#### 2.2 Compliance summary for 5 years and application to RPS

For each KPI year, a pass or fail status was dependent on the assessment of the count of exceedances (e) against the eMax value, with the long-term targets only being able to be assessed if the short-term targets were first passed (see Appendix 1). KPI status against TN and TP targets in any one year was then summarized for each catchment (Table 3 and Table 4).

Table 3 KPI status based on exceedances of TN targets (as shown in Appendix 1). ND= no data.

|                          | 20                      | 16                     | 20                      | 17                     | 20                      | 18                     | 20                      | 19                     | 2020                    |                        |  |
|--------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|--|
| Catalamant               | Total N                 | itrogen                |  |
| Catchment                | Short<br>Term<br>Target | Long<br>Term<br>Target |  |
| Avon River               | pass                    | pass                   | pass                    | pass                   | pass                    | fail                   | pass                    | fail                   | pass                    | fail                   |  |
| Bannister Creek          | pass                    | fail                   |  |
| Bayswater Brook          | pass                    | fail                   |  |
| Bennett Brook            | pass                    | fail                   |  |
| Bickley Brook            | pass                    | fail                   |  |
| Blackadder Creek         | pass                    | pass                   | pass                    | fail                   | pass                    | fail                   | pass                    | fail                   | pass                    | fail                   |  |
| Canning River            | pass                    | pass                   |  |
| Ellen Brook              | fail                    | fail                   |  |
| Helena River             | pass                    | pass                   |  |
| Jane Brook               | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | fail                   | pass                    | pass                   |  |
| Mills Street Main Drain  | pass                    | fail                   |  |
| South Belmont Main Drain | pass                    | pass                   | pass                    | pass                   | nd                      | nd                     | pass                    | fail                   | pass                    | fail                   |  |
| Southern River           | pass                    | fail                   |  |
| Susannah Brook           | pass                    | pass                   |  |
| Yule Brook               | pass                    | pass                   | pass                    | pass                   | pass                    | fail                   | pass                    | fail                   | pass                    | fail                   |  |

Table 4 KPI status based on exceedances of TP targets (as shown in Appendix 1). ND= no data.

|                  | 20   | 16                     | 201                     | 7                      | 20                      | 18                     | 20                      | 19                     | 20                      | 20                     |
|------------------|------|------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|
| Catchment        | _    | otal<br>ohorus         | Tot<br>Phospl           |                        | _                       | tal<br>horus           | To<br>Phosp             |                        | Total<br>Phosphorus     |                        |
| Caterinicin      | Term | Long<br>Term<br>Target | Short<br>Term<br>Target | Long<br>Term<br>Target | Short<br>Term<br>Target | Long<br>Term<br>Target | Short<br>Term<br>Target | Long<br>Term<br>Target | Short<br>Term<br>Target | Long<br>Term<br>Target |
| Avon River       | pass | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   |
| Bannister Creek  | pass | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   |
| Bayswater Brook  | pass | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   |
| Bennett Brook    | pass | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   |
| Bickley Brook    | pass | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   |
| Blackadder Creek | pass | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   |
| Canning River    | pass | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   |
| Ellen Brook      | fail | fail                   | fail                    | fail                   | fail                    | fail                   | fail                    | fail                   | fail                    | fail                   |
| Helena River     | pass | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   |
| Jane Brook       | pass | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   | pass                    | pass                   |

|                          | 20   | 16                     | 201                     | 7                      | 20          | 18                     | 20                      | 19                     | 2020                    |                        |  |
|--------------------------|------|------------------------|-------------------------|------------------------|-------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|--|
| Catchment                | _    | otal<br>ohorus         | Tot<br>Phospl           |                        | To<br>Phosp |                        | To<br>Phosp             |                        | Total<br>Phosphorus     |                        |  |
| Catomicin                | Term | Long<br>Term<br>Target | Short<br>Term<br>Target | Long<br>Term<br>Target | Term        | Long<br>Term<br>Target | Short<br>Term<br>Target | Long<br>Term<br>Target | Short<br>Term<br>Target | Long<br>Term<br>Target |  |
| Mills Street Main Drain  | pass | pass                   | pass                    | pass                   | pass        | pass                   | pass                    | fail                   | pass                    | fail                   |  |
| South Belmont Main Drain | pass | pass                   | pass                    | pass                   | nd          | nd                     | pass                    | fail                   | pass                    | fail                   |  |
| Southern River           | pass | fail                   | pass                    | fail                   | pass        | fail                   | pass                    | fail                   | pass                    | fail                   |  |
| Susannah Brook           | pass | pass                   | pass                    | pass                   | pass        | pass                   | pass                    | pass                   | pass                    | pass                   |  |
| Yule Brook               | pass | pass                   | pass                    | pass                   | pass        | pass                   | pass                    | pass                   | pass                    | pass                   |  |

The KPI determination for catchment water quality is determined by the information contained in Table 3 and Table 4. Of the potential total KPI score of 296, there were 224 pass scores. The information was summarized for reporting on the River Protection Strategy as shown in Table 5. Trend determination for TN and TP in subcatchments was assessed as not significant over the 5 years (see Appendix 3)

Table 5 Swan-Canning Catchment KPI compliance summary for 2016-2020. Trend over time was determined as not significant (ns) for all catchments.

| Catchment Water Quality         |      |      |         |       |      |       |      |      |        |       |        |       |
|---------------------------------|------|------|---------|-------|------|-------|------|------|--------|-------|--------|-------|
| Catalymant                      |      | To   | tal Nit | rogen | (TN) |       |      | Tota | al Pho | sphor | us (TP | )     |
| Catchment                       | 2016 | 2017 | 2018    | 2019  | 2020 | Trend | 2016 | 2017 | 2018   | 2019  | 2020   | Trend |
| Avon River                      |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Bannister Creek                 |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Bayswater Brook                 |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Bennett Brook                   |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Bickley Brook                   |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Blackadder Creek                |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Canning River                   |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Ellen Brook                     |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Helena River                    |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Jane Brook                      |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Mills Street Main Drain         |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| South Belmont Main Drain        |      |      | ND      |       |      | ns    |      |      | ND     |       |        | ns    |
| Southern River                  |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Susannah Brook                  |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| Yule Brook                      |      |      |         |       |      | ns    |      |      |        |       |        | ns    |
| No available data               | ١    | ID   |         |       |      |       |      |      |        |       |        |       |
| Met all targets                 |      |      |         |       |      |       |      |      |        |       |        |       |
| Met short-term but not long-ter |      |      |         |       |      |       |      |      |        |       |        |       |
| Did not meet targets            |      |      |         |       |      |       |      |      |        |       |        |       |
|                                 |      |      |         | _     |      |       |      |      |        |       |        |       |

### 3 Estuarine Water Quality

The performance of the Swan-Canning Estuary water quality is determined for each Ecological Management Zone (EMZ) within the estuary from compliance data (2016-2020).

#### 3.1 Method for target calculation

The Swan-Canning Estuary water quality targets chlorophyll-a (Chl-a) and dissolved oxygen (DO) were established in the Swan River Trust (2001) "Swan-Canning Clean-up Program". The methodology for calculating the estuary targets and for calculating the compliance against these targets follow those of the same report using a binomial approach to account for not just the variability in analyte concentrations, but also the sampling methodology associated with data collection.

Table 6 Swan-Canning Estuary targets for surface chlorophyll a (Chl-a (ug L-1)) and dissolved oxygen (DO (%)) for the 2016-2020 reporting period.

| Ecological Management Zone | Chl-a (ug L-1) | DO (%) |
|----------------------------|----------------|--------|
| Lower Swan-Canning Estuary | 3.55           | 82.1   |
| Middle Swan Estuary        | 8.75           | 75.1   |
| Upper Swan Estuary         | 1.982          | 81.2   |
| Canning Estuary            | 1.167          | 49.1   |

This approach uses the number of sampling events (*n*) to establish a maximum number of allowable exceedances (*eMax*) of the estuary targets. The Key Performance Indicator (KPI) status (pass or fail) for each EMZ is dependent on the assessment of the count of target exceedances (*e*) against the *eMax* value. This assessment uses water quality data (surface DO (%), surface Chl-a (mg L<sup>-1</sup>) collected between the target period of January and May of each year comprising each KPI period and assesses each concentration value from randomly selected sites within each EMZ against the targets detailed in Table 6.

# 3.2 Dissolved oxygen and chlorophyll a KPI compliance summary and application to five-year report on the River Protection Strategy.

For each KPI year, a pass or fail status was dependent on the assessment of the count of exceedances (e) of targets against the eMax values. The raw data used to comprise Table 7 are detailed within Appendix 2 (Table - Table). The KPI status for each EMZ for the KPI periods between 2016 and 2020 are detailed within Table 7. Of the potential total KPI score of 40, there were 5 pass scores.

Table 7 The number of acceptable exceedances (eMax) and the number of actual exceedances (e) of targets for and surface dissolved oxygen (DO (%)) and chlorophyll a (Chl-a ((mg L-1)) for the 2016-2020 reporting period. KPIs were passed where e<eMax.

| Surface DO (%)             | 2016 |             |      |    | 2017        |      |    | 2018        |     |    | 2019        |      |    | 2020        |      |  |
|----------------------------|------|-------------|------|----|-------------|------|----|-------------|-----|----|-------------|------|----|-------------|------|--|
| Ecological Management Zone | n    | eMax<br>(e) | KPI  | n  | eMax<br>(e) | KPI  | n  | eMax<br>(e) | KPI | n  | eMax<br>(e) | KPI  | n  | eMax<br>(e) | KPI  |  |
| Lower Swan-Canning Estuary | 63   | 6(0)        | pass | 64 | 6(3)        | pass | 66 | 6(3)        | 3   | 66 | 6(3)        | pass | 66 | 6(1)        | pass |  |
| Middle Swan Estuary        | 64   | 1(3)        | fail | 65 | 1(6)        | fail | 66 | 1(11)       | 11  | 66 | 1(9)        | fail | 66 | 1(8)        | fail |  |
| Upper Swan Estuary         | 64   | 1(20)       | fail | 65 | 1(18)       | fail | 65 | 1(19)       | 19  | 65 | 1(15)       | fail | 63 | 1(18)       | fail |  |
| Canning Estuary            | 64   | 1(11)       | fail | 65 | 1(13)       | fail | 66 | 1(11)       | 11  | 56 | 0(9)        | fail | 45 | 0(5)        | fail |  |

| Surface Chl-a              | 2016 |             |      |    | 2017        |      |    | 2018        |      |    | 2019        |      |    | 2020        |      |  |
|----------------------------|------|-------------|------|----|-------------|------|----|-------------|------|----|-------------|------|----|-------------|------|--|
| Ecological Management Zone | n    | eMax<br>(e) | KPI  | n  | eMax<br>(e) | KPI  | n  | eMax<br>(e) | KPI  | n  | eMax<br>(e) | KPI  | n  | eMax<br>(e) | KPI  |  |
| Lower Swan-Canning Estuary | 63   | 3 (10)      | fail | 64 | 3 (21)      | fail | 64 | 3 (22)      | fail | 64 | 3 (15)      | fail | 64 | 3(4)        | fail |  |
| Middle Swan Estuary        | 62   | 3 (27)      | fail | 63 | 3 (38)      | fail | 65 | 3 (49)      | fail | 66 | 3 (47)      | fail | 66 | 3 (45)      | fail |  |
| Upper Swan Estuary         | 64   | 3 (14)      | fail | 65 | 3 (25)      | fail | 65 | 3 (34)      | fail | 65 | 3 (35)      | fail | 65 | 3 (26)      | fail |  |
| Canning Estuary            | 64   | 3 (29)      | fail | 65 | 3 (29)      | fail | 66 | 3 (30)      | fail | 56 | 2 (21)      | fail | 45 | 2 (10)      | fail |  |

The information was summarized for reporting on the River Protection Strategy as shown in Table 8. There was no significant trend in dissolved oxygen and chlorophylla collected over a 5 year period (July 2015-June 2020; see Appendix 2).

Table 8 Compliance summary of the Swan-Canning Estuary KPI status for each Ecological Management Zone. Trend in parameters over time were shown as not significant (ns).

| Estuarine Water Quality Targets |      |      |        |       |      |       |         |      |      |      |        |       |  |
|---------------------------------|------|------|--------|-------|------|-------|---------|------|------|------|--------|-------|--|
| Ecological Management Zone      |      | Dis  | ssolve | d Oxy | /gen |       | Chlorop |      |      |      | hyll-a |       |  |
| Ecological Management Zone      | 2016 | 2017 | 2018   | 2019  | 2020 | Trend | 2016    | 2017 | 2018 | 2019 | 2020   | Trend |  |
| Lower Swan                      |      |      |        |       |      | ns    |         |      |      |      |        | ns    |  |
| Middle Swan                     |      |      |        |       |      | ns    |         |      |      |      |        | ns    |  |
| Upper Swan                      |      |      |        |       |      | ns    |         |      |      |      |        | ns    |  |
| Canning Estuary                 |      |      |        |       |      | ns    |         |      |      |      |        | ns    |  |
| Met target                      |      |      |        |       |      |       |         |      |      |      |        |       |  |
| Did not meet target             |      |      |        |       |      |       |         |      |      |      |        |       |  |

## 4 Conditions in oxygenation zone

#### 4.1 Method for target calculation

Four oxygenation plants operate in the Swan Canning. The effectiveness of these plants at maintaining suitable dissolved oxygen in the Upper Swan River and the Lower Canning River is evaluated annually in accordance with parameters outlined in Table 9 and management of the oxygenation plants is adjusted accordingly.

Table 9 Operational targets for management of oxygenation zone and parameters for calculation

| Oxygenation targets       | Lower Canning River                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Upper Swan River                                                                            |  |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|
| Target zone               | All standard profiling sites in the Kent St weir pool, ie KEN to ELL inclusive.                                                                                                                                                                                                                                                                                                                                                                                                                            | All standard profiling sites from Kingsley Drive (KIN) to Reg Bond Reserve (REG) inclusive. |  |  |  |  |  |
| Calculation period        | Oxygenation season – when Kent<br>Street Weir gates are operational,<br>typically October to August.                                                                                                                                                                                                                                                                                                                                                                                                       | All year                                                                                    |  |  |  |  |  |
| Method                    | Dissolved oxygen data (mg/L) is collected as part of a routine weekly water quality monitoring, with a vertical profile at each nominated site using a multiprobe sonde.  The target is produced by pooling all data points within the target zone for the calculation period to determine the proportion of data above the threshold as a percentage of the pool of data.                                                                                                                                 |                                                                                             |  |  |  |  |  |
| Annual management targets | 2mg/L threshold -Cumulative annual target: requires >90% of all dissolved oxygen measurements from the target zone during the oxygenation seasor be above 2 mg/L (>90% = Good; >80% = acceptable; ≤80% = review of operational strategy required); and  4mg/L threshold Cumulative annual target: requires > 80% of all dissolved oxygen measurements from the target zone during the oxygenation seasor be above 4 mg/L (>80% = Good; >70% = acceptable; ≤70% = review of operational strategy required). |                                                                                             |  |  |  |  |  |

The KPI target for the River Protection Strategy requires that > 80% of all individual dissolved oxygen measurements collected for each Oxygenation Zone during the oxygenation season to be above 4 mg/L.

#### 4.2 Dissolved oxygen and chlorophyll a KPI compliance summary and application to five -year report on the River Protection Strategy.

Results for the oxygenation targets are shown in

Table 10 and shows that the majority of measurements were above 2mg/L and >80% of data measurements were above 4mg/L. Therefore, the KPI target was met for both zones in all years and the maximum KPI score of 10 was achieved. The information was summarized for reporting on the River Protection Strategy as shown in Table 11.

Table 10 Percentage of data in any one oxygenation season/year that was above thresholds in the two oxygenation zones.

| Year    | Lower Can | ning River | Upper Swan River |        |  |  |
|---------|-----------|------------|------------------|--------|--|--|
|         | 2 mg/L    | 4 mg/L     | 2 mg/L           | 4 mg/L |  |  |
| 2015-16 | 97.15     | 94.24      | 94.54            | 82.54  |  |  |
| 2016-17 | 96.75     | 86.69      | 94.77            | 86.86  |  |  |
| 2017-18 | 98.93     | 94.41      | 93.65            | 81.50  |  |  |
| 2018-19 | 98.26     | 95.86      | 98.53            | 88.90  |  |  |
| 2019-20 | 98.93     | 96.81      | 97.50            | 87.90  |  |  |

Table 11 Compliance summary of KPI status for each Oxygenation Zone.

| Oxygenation Zone Conditions |      |      |      |      |      |  |  |  |  |  |
|-----------------------------|------|------|------|------|------|--|--|--|--|--|
| Oxygenation Zone            | 2016 | 2017 | 2018 | 2019 | 2020 |  |  |  |  |  |
| Upper Swan Estuary          |      |      |      |      |      |  |  |  |  |  |
| Lower Canning River         |      |      |      |      |      |  |  |  |  |  |
| Met target                  |      |      | -    |      |      |  |  |  |  |  |
| Did not meet target         |      |      |      |      |      |  |  |  |  |  |

### 6 Seagrass Health

#### 6.1 Method for target calculation

The health of seagrass in the lower Swan and Canning estuaries is assessed based on a range of seagrass metrics including seagrass presence, % cover, productivity and reproduction (see Kilminster et.al 2018) that are combined to generate a seagrass performance index. Due to the intensive nature of monitoring for all metrics in any one year, full assessment and determination of the performance index occurs once every 5 years. Full assessment occurred during the first year 2015-16 (DWER, 2018) and is reported here. Seagrass performance was graded poor, low, fair or good for each of 6 sites (poor: <2, low: 2-2.5, fair: >2.5-3, good: >3) for each of six sites. The seagrass performance (KPI) target is set at 2.25.

## 6.2 Seagrass performance KPI compliance summary and application to five-year report on the River Protection Strategy

All sites achieved or exceeded the target, with the lowest seagrass performance scores (3.0) being recorded at the Lucky Bay and Canning sites and the highest (3.75) at the Rocky Bay and Heathcote sites (Table 12). Therefore, the maximum KPI score of 6 was achieved and the information was summarized for 5-year reporting on the River Protection Strategy as shown in Table 13.

Table 12 Seagrass health index values based on seagrass performance in 2015-16.

| Sites         | 2015-16 | KPI status |
|---------------|---------|------------|
| Rocky Bay     | 3.75    | pass       |
| Dalkeith      | 3.5     | pass       |
| Lucky Bay     | 3       | pass       |
| Pelican Point | 3.25    | pass       |
| Heathcote     | 3.75    | pass       |
| Canning       | 3       | pass       |

Table 13 Swan-Canning Estuary seagrass health from 2015-2016.

| Seagrass Health     |         |  |  |  |  |  |  |
|---------------------|---------|--|--|--|--|--|--|
| Sites               | 2015-16 |  |  |  |  |  |  |
| Rocky Bay           |         |  |  |  |  |  |  |
| Dalkeith            |         |  |  |  |  |  |  |
| Lucky Bay           |         |  |  |  |  |  |  |
| Pelican Point       |         |  |  |  |  |  |  |
| Heathcote           |         |  |  |  |  |  |  |
| Canning             |         |  |  |  |  |  |  |
| Met target          |         |  |  |  |  |  |  |
| Did not meet target |         |  |  |  |  |  |  |

#### 7 Fish Communities

#### 7.1 Method for target calculation

The Fish Community Index provide an ecological indicator of estuary condition that complements existing water quality monitoring and evaluation. The index has been applied annually since 2012 as part of an on-going monitoring effort in collaboration between Murdoch University. The index is calculated separately for shallow nearshore and deeper offshore waters, with condition graded based on criteria in Table 14. Index condition grade criteria differ for the nearshore and offshore indices

Table 14 Fish Community Index scores for shallow and deep areas of four ecological management zones in the Swan Canning estuary. Scores are shown for both summer (S) and autumn (A) in each year 2016-2020.

|   | Condition grade | Nearshore FCI scores | Offshore FCI<br>scores |
|---|-----------------|----------------------|------------------------|
| Α | (very good)     | >74.5                | >70.7                  |
| В | (good)          | 64.6-74.5            | 58.4-70.7              |
| С | (fair)          | 57.1-64.6            | 50.6-58.4              |
| D | (poor)          | 45.5-57.1            | 36.8-50.6              |
| E | (very poor)     | <45.5                | <36.8                  |

Results for nearshore and offshore waters for the period 2016-2020 are shown in *Table 15* with a full reports found in Hallett 2016, 2017, 2018, 2019 and Tweedley et.al, 2020.

Table 15 Fish Community Index scores for shallow and deep areas of four ecological management zones in the Swan Canning estuary. Scores are shown for both summer (S) and autumn (A) in each year 2016-2020. Shading shows the condition grade based on Table 14

|                            | 2016                           |    |                              |    | 2017                           |    |                              |    | 2018                           |    |                              |    |
|----------------------------|--------------------------------|----|------------------------------|----|--------------------------------|----|------------------------------|----|--------------------------------|----|------------------------------|----|
| Ecological Management Zone | Shallow<br>nearshore<br>waters |    | Deeper<br>offshore<br>waters |    | Shallow<br>nearshore<br>waters |    | Deeper<br>offshore<br>waters |    | Shallow<br>nearshore<br>waters |    | Deeper<br>offshore<br>waters |    |
|                            | S                              | Α  | S                            | Α  | S                              | Α  | S                            | Α  | S                              | Α  | S                            | Α  |
| Lower Swan Canning estuary | 69                             | 66 | 54                           | 57 | 62                             | 70 | 61                           | 64 | 59                             | 67 | 64                           | 53 |
| Middle Swan estuary        | 62                             | 65 | 60                           | 43 | 61                             | 65 | 62                           | 43 | 62                             | 55 | 63                           | 46 |
| Upper Swan estuary         | 76                             | 77 | 70                           | 55 | 60                             | 68 | 51                           | 49 | 68                             | 68 | 69                           | 62 |
| Canning estuary            | 68                             | 63 | 51                           | 56 | 60                             | 63 | 45                           | 39 | 68                             | 72 | 49                           | 53 |

|                            |                                | 20 | 19 |                  | 2020  |                      |                        |    |  |
|----------------------------|--------------------------------|----|----|------------------|-------|----------------------|------------------------|----|--|
| Ecological Management Zone | Shallow<br>nearshore<br>waters |    |    | eper<br>e waters | nears | llow<br>shore<br>ers | Deeper offshore waters |    |  |
|                            | S                              | Α  | S  | Α                | S     | Α                    | S                      | Α  |  |
| Lower Swan Canning estuary | 62                             | 60 | 64 | 61               | 53    | 67                   | 64                     | 59 |  |
| Middle Swan estuary        | 59                             | 64 | 57 | 49               | 64    | 62                   | 69                     | 58 |  |
| Upper Swan estuary         | 70                             | 62 | 63 | 61               | 76    | 66                   | 69                     | 61 |  |
| Canning estuary            | 63                             | 64 | 50 | 44               | 58    | 67                   | 49                     | 53 |  |

#### 7.2 Compliance for 5 year and application to RPS

Achievement of the KPI target was determined by whether the fish community index scores achieved a grade of Fair or better. Scores that were poor or very poor were determined to have not met the KPI. Therefore, based on the scores and grades show in Table 2 the KPI status are shown in Table 16. Of a possible total score of 80 there were 67 occasions when the KPI was met and 13 occasions when it was not met. Scores were summarized in the RPS 5-year report document as shown in Table 17.

Table 16 Fish Community Index scores for shallow and deep areas of four ecological management zones in the Swan Canning estuary. Scores are shown for both summer (S) and autumn (A) in each year 2016-2020.

|                               |       | 2016                                            |      |            |      | 2017        |      |                              |      | 2018                           |      |                              |  |
|-------------------------------|-------|-------------------------------------------------|------|------------|------|-------------|------|------------------------------|------|--------------------------------|------|------------------------------|--|
| Ecological Management<br>Zone | nears | Shallow Deep<br>nearshore offsh<br>waters water |      | hore nears |      | shore offsl |      | Deeper<br>offshore<br>waters |      | Shallow<br>nearshore<br>waters |      | Deeper<br>offshore<br>waters |  |
|                               | s     | Α                                               | S    | Α          | s    | Α           | s    | Α                            | s    | Α                              | s    | Α                            |  |
| Lower Swan Canning estuary    | pass  | pass                                            | pass | pass       | pass | pass        | pass | pass                         | pass | pass                           | pass | pass                         |  |
| Middle Swan estuary           | pass  | pass                                            | pass | fail       | pass | pass        | pass | fail                         | pass | fail                           | pass | fail                         |  |
| Upper Swan estuary            | pass  | pass                                            | pass | pass       | pass | pass        | pass | fail                         | pass | pass                           | pass | pass                         |  |
| Canning estuary               | pass  | pass                                            | pass | pass       | pass | pass        | fail | fail                         | pass | pass                           | fail | pass                         |  |

|                            |       | 2                     | 019  |                   | 2020  |                       |                        |      |  |
|----------------------------|-------|-----------------------|------|-------------------|-------|-----------------------|------------------------|------|--|
| Ecological Management Zone | nears | llow<br>shore<br>ters |      | offshore<br>aters | nears | llow<br>shore<br>ters | Deeper offshore waters |      |  |
|                            | S     | Α                     | S    | Α                 | S     | Α                     | S                      | Α    |  |
| Lower Swan Canning estuary | pass  | pass                  | pass | pass              | fail  | pass                  | pass                   | pass |  |
| Middle Swan estuary        | pass  | pass                  | pass | pass              | pass  | pass                  | pass                   | pass |  |
| Upper Swan estuary         | pass  | pass                  | pass | pass              | pass  | pass                  | pass                   | pass |  |
| Canning estuary            | pass  | pas                   | fail | fail              | pass  | pass                  | fail                   | pass |  |

Table 17 Fish community index performance for nearshore and offshore communities within the Swan-Canning Estuary between 2016 and 2020.

| Fish Communities              |          |          |          |          |  |          |          |          |                                 |          |
|-------------------------------|----------|----------|----------|----------|--|----------|----------|----------|---------------------------------|----------|
|                               | 20       | 16       | 20       | 2017     |  | 2018     |          | 2019     |                                 | 20       |
| Ecological Management<br>Zone | nearshor | offshore | nearshor | offshore |  | offshore | nearshor | offshore | Shallow<br>nearshor<br>e waters | offshore |
| Lower Swan                    |          |          |          |          |  |          |          |          |                                 |          |
| Middle Swan                   |          |          |          |          |  |          |          |          |                                 |          |
| Upper Swan                    |          |          |          |          |  |          |          |          |                                 |          |
| Canning Estuary               |          |          |          |          |  |          |          |          |                                 |          |
| Met target in both seasons    |          |          |          |          |  |          |          |          |                                 |          |
| Met target in one season      |          |          |          |          |  |          |          |          |                                 |          |
| Did not meet targets          |          |          |          |          |  |          |          |          |                                 |          |

#### 8 References

Donohue, R., van Looij, E., Tracey, D., and Shotter, V. (2001). Nutrient Targets for Tributary Inflows to the Swan-Canning Estuary. Aquatic Sciences Branch, Department of Water and Environmental Regulation.

Hallett, C. (2016). Assessment of the condition of the Swan Canning Estuary in 2016, based on the Fish Community Index of estuarine condition. Murdoch University report to the Department Parks and Wildlife.

Hallett, C. (2017). Assessment of the condition of the Swan Canning Estuary in 2017, based on the Fish Community Index of estuarine condition. Murdoch University report to the Department Biodiversity, Conservation and Attractions.

Hallett, C. (2018). Assessment of the condition of the Swan Canning Estuary in 2017, based on the Fish Community Index of estuarine condition. Murdoch University report to the Department Biodiversity, Conservation and Attractions.

Hallett, C. (2019). Assessment of the condition of the Swan Canning Estuary in 2017, based on the Fish Community Index of estuarine condition. Murdoch University report to the Department Biodiversity, Conservation and Attractions.

Kilminster K., Sanchez Alarcon M., and Bennett K. (2018). Seagrass indicator validation and refinement. Department of Water and Environmental Regulation, Western Australia unpublished report to Department of Biodiversity, Conservation and Attractions.

Swan River Trust (2001). Swan-Canning Cleanup Program. The Deprivation of Percentile Quality Criteria for the Swan-Canning Estuary. A Binomial Approach. Swan River Trust, Perth, Australia, October 2001. Swan River Trust (2018)

Swan River Trust (2015). Swan Canning River Protection Strategy. Swan River Trust, Perth, Australia, September 2015.

Swan River Trust (2022) Swan Canning River Protection Strategy Five Year Review, Department of Biodiversity, Conservation and Attractions, Perth.

Tweedley, J, Krispyn, K and Hallet, C (2020). Swan Canning Estuary condition assessment based on fish communities, 2020. Murdoch University report to the Department Biodiversity, Conservation and Attractions.

#### **Appendix 1: Catchment compliance**

The KPI assessment of catchment water quality data for total nitrogen and total phosphorus is conducted by assessing the number of exceedances (e) against the number of allowable exceedances (eMax) of the short- and long-term KPI targets (Table 2) for each analyte. The table of eMax values used in the assessment (Table A1.1) was previously generated by the Department of Water and Swan River Trust and detailed in Donohue et al. (2001). Each catchment is initially assessed against the more conservative fail-safe (FS) eMax value based on the number of sample events for each KPI period (n). To calculate e for each catchment the count of analyte concentrations exceeding their respective short- and long-term targets for each sampling events that fall within weeks 22-43 of the previous three years is to be established.

If e remains below the FS eMax value for the short-term targets the catchment being assessed will pass the short-term target KPI assessment. Conversely, if e exceeds the FS eMax value then the catchment will fail the assessment. If the catchment passes the short-term KPI target assessment it can then be assessed against the long-term target FS eMax value. If e remains below the long-term FS eMax value then the catchment will pass the long-term KPI assessment. Any exceedances to this FS eMax value will cause the catchment to fail the assessment.

Where a catchment passes an assessment against the FS *eMax* value, the benefit of the doubt (BoD) *eMax* value can be used as a less-conservative maintenance value during the subsequent year's assessment. If the catchment passes the assessment using this BoD *eMax* value then it can be used for the following assessments unless a fail occurs. If the catchment fails the assessment against this BoD *eMax* value the assessment must revert to using the FS *eMax* value.

#### Allowable exceedances

Table A1.1: Allowable exceedances (eMaxs) to the catchment nutrient targets for total nitrogen (TN) and total phosphorus (TP). The eMax value used is determined by the sample size (n) and the previous KPI status (Pass or Fail). For catchments where they have continued to fail meeting the short and long term targets the fail-safe (FS) value is used and where they have previously passed these targets the benefit of the doubt (BoD) value is to be used.

| n  | BoD | FS | n  | BoD | FS |
|----|-----|----|----|-----|----|
| 12 | 9   | 3  | 37 | 23  | 14 |
| 13 | 9   | 4  | 38 | 24  | 14 |
| 14 | 10  | 4  | 39 | 25  | 14 |
| 15 | 11  | 4  | 40 | 25  | 15 |
| 16 | 11  | 5  | 41 | 26  | 15 |
| 17 | 12  | 5  | 42 | 26  | 16 |
| 18 | 12  | 6  | 43 | 27  | 16 |
| 19 | 13  | 6  | 44 | 27  | 17 |
| 20 | 14  | 6  | 45 | 28  | 17 |
| 21 | 14  | 7  | 46 | 29  | 17 |
| 22 | 15  | 7  | 47 | 29  | 18 |
| 23 | 15  | 8  | 48 | 30  | 18 |
| 24 | 16  | 8  | 49 | 30  | 19 |
| 25 | 17  | 8  | 50 | 31  | 19 |
| 26 | 17  | 9  | 51 | 31  | 20 |
| 27 | 18  | 9  | 52 | 32  | 20 |
| 28 | 18  | 10 | 53 | 32  | 21 |
| 29 | 19  | 10 | 54 | 33  | 21 |
| 30 | 19  | 11 | 55 | 34  | 21 |
| 31 | 20  | 11 | 56 | 34  | 22 |
| 32 | 21  | 11 | 57 | 35  | 22 |
| 33 | 21  | 12 | 58 | 35  | 23 |
| 34 | 22  | 12 | 59 | 36  | 23 |
| 35 | 22  | 13 | 60 | 36  | 24 |

#### **Appendix 2: Estuarine compliance**

#### Calculating KPI assessment

The KPI assessment of estuarine water quality data for chlorophyll a and dissolved oxygen is conducted by assessing e against the FS eMax values of the KPI targets (Table 6) for each analyte within each EMZ. The table of eMax values used in the assessment (Table and Table was previously generated by the Department of Water and Swan River Trust and detailed in Donohue et al. (2001).

Similarly to the catchment KPI assessment, if an EMZ passes the assessment of the subsequent year is assessed against the BoD *eMax* value.

The assessment of estuarine water quality data is dependent on data from one site per EMZ per sample event. The process of achieving each site has been modified with following changes to the monitoring routine overtime.

Until 2016, the compliance project SG-E-SWANCOMP was used to pre-determine a list of randomly selected additional monitoring sites (site names prefixed with "SWL") to be sampled weekly within the Lower Swan-Canning Estuary over the KPI target period between January and May. Within the Middle and Upper Swan Estuary analyte data from randomly selected SG-E-SWANEST sites were used for the same purpose, and within the Canning Estuary data from the SG-E-CANEST site RIV was used.

After the termination of the SG-E-SWANCOMP in 2016, between 2016 and 2018 the same site selection process was applied within the Lower Swan-Canning Estuary to that of the Middle and Upper Swan Estuary. At the end of 2018 the weekly nutrient sampling across both the SG-E-SWANEST and SG-E-CANEST projects was reduced to fortnightly sampling.

Following the termination of SG-E-SWANCOMP and the reduction in sampling frequency there is the requirement to use two randomly selected SG-E-SWANEST sites from each EMZ to ensure that the sample size (*n*) is large enough to fall within the range of the list of allowable exceedances detailed in Table and Table .

The random selection of sites is achieved the using the Random Number Generation (RNG) tool in Microsoft Excel. To run the RNG a table listing the four sites that comprise each EMZ is to be created. Each site is to be allocated a Site number of 1-4 (Figure ) and probability score of 0.25 (25%). The RNG tool can then be run. The Number of Variables equates to the number of weeks between January and May (for example 11 between January 2019 and May 2019 due to the fortnightly sampling), the amount of Random Numbers is 4 (one for each of the comprising sites) and the Parameters is the value and probability input range. Once ran a matrix of 11 x 4 values is created.

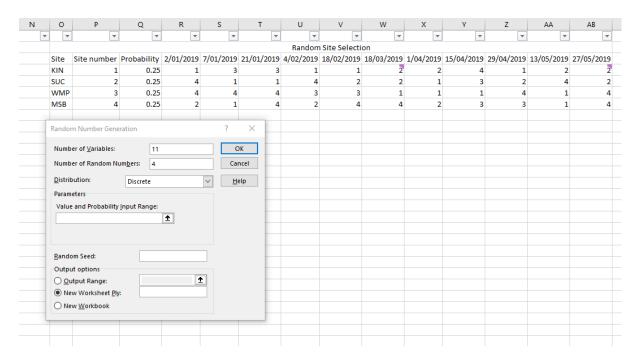



Figure A2.1: Using the Random Number Generation tool in Microsoft Excel to randomly select sites used for the KPI assessment process.

To make the allocation of sites easier the dates of the unique sample events can be transposed along the top of the matrix. For this example, where fortnightly sampling has occurred, the top two site numbers are selected. On the 02/01/2019 sites 1 and 4 (KIN and MSB) are the two random sites used. Where the top two numbers are the same, the next different number down the list is to be used. This has occurred on the 18/03/2019, in this instance SUC (2) and KIN (1) were used. Should all four of the numbers be the same then the top number from the previous column (or next in the case of the first column) is to be used to ensure that the two sites being used remain unique.

An additional column (in this case, "Use data") is added to the end of the original data set (Figure A2.1). In this column, an identifier "Y" is placed into the cells for each of the corresponding randomly selected sites at each sample event from the Random Site Selection table (Figure ).

| Α     | R           | C             | U    | E     | F      | G    | Н     | l l  | J     | K                  | L        |
|-------|-------------|---------------|------|-------|--------|------|-------|------|-------|--------------------|----------|
| Site▼ | Site Numb ▼ | Date <b>▼</b> | Ye ▼ | Mon ▼ | chla 🔻 | TN≖  | Sat⊏  | DO ▼ | TP ▼  | EMZ ▼              | Use da ▼ |
| KIN   | 1           | 2/01/2019     | 2019 | 1     | 0.036  | 1.3  | 126   | 9.23 | 0.14  | Upper Swan Estuary | Υ        |
| MSB   | 4           | 2/01/2019     | 2019 | 1     | 0.0015 | 0.71 | 50.2  | 3.84 | 0.025 | Upper Swan Estuary | Υ        |
| SUC   | 2           | 2/01/2019     | 2019 | 1     | 0.038  | 1.2  | 106.9 | 7.94 | 0.11  | Upper Swan Estuary |          |
| WMP   | 3           | 2/01/2019     | 2019 | 1     | 0.016  | 0.91 | 104.1 | 7.86 | 0.049 | Upper Swan Estuary |          |
| KIN   | 1           | 7/01/2019     | 2019 | 1     | 0.017  | 1.1  | 123.1 | 8.81 | 0.098 | Upper Swan Estuary | Υ        |
| MSB   | 4           | 7/01/2019     | 2019 | 1     | 0.0033 | 0.76 | 62.5  | 4.79 | 0.027 | Upper Swan Estuary |          |
| SUC   | 2           | 7/01/2019     | 2019 | 1     | 0.012  | 0.87 | 105.5 | 7.73 | 0.05  | Upper Swan Estuary |          |
| WMP   | 3           | 7/01/2019     | 2019 | 1     | 0.0058 | 0.8  | 107.7 | 8.16 | 0.037 | Upper Swan Estuary | Υ        |
| KIN   | 1           | 21/01/2019    | 2019 | 1     | 0.016  | 0.98 | 103.8 | 7.17 | 0.096 | Upper Swan Estuary | Υ        |
| MSB   | 4           | 21/01/2019    | 2019 | 1     | 0.0029 | 0.71 | 59.2  | 4.41 | 0.019 | Upper Swan Estuary |          |
| SUC   | 2           | 21/01/2019    | 2019 | 1     | 0.02   | 0.98 | 88.7  | 6.27 | 0.069 | Upper Swan Estuary |          |
| WMP   | 3           | 21/01/2019    | 2019 | 1     | 0.025  | 0.95 | 111.3 | 8.04 | 0.051 | Upper Swan Estuary | Υ        |
| KIN   | 1           | 4/02/2019     | 2019 | 2     | 0.053  | 1.2  | 130.3 | 9.47 | 0.14  | Upper Swan Estuary | Y        |
| MSB   | 4           | 4/02/2019     | 2019 | 2     | 0.0025 | 0.6  | 63.2  | 4.98 | 0.017 | Upper Swan Estuary | Y        |
| SUC   | 2           | 4/02/2019     | 2019 | 2     | 0.0086 | 0.94 | 73    | 5.41 | 0.076 | Upper Swan Estuary |          |
| WMP   | 3           | 4/02/2019     | 2019 | 2     | 0.027  | 0.96 | 104.1 | 7.86 | 0.056 | Upper Swan Estuary |          |
| KIN   | 1           | 18/02/2019    | 2019 | 2     | 0.02   | 1.1  | 141   | 9.94 | 0.094 | Upper Swan Estuary | Y        |

Figure A2.1 Using an identifier to select the data for the randomly selected sites within each EMZ and for each unique sample event.

The filter tool is then used to select the cells marked "Y" and the data for the three years is to be copied into a separate table which comprises the data for that specific KPI period.

The number of samples (*n*) can then be calculated (using the COUNT function: =COUNT(E2:E67)) along with the number of exceedances (*e*) of the targets for each analyte concentration (using the COUNTIF function: =COUNTIF(E2:E67,E70)). The COUNT function requires numeric values within the chosen cells and fails to count non-numeric symbols, thus where required concentrations that fell below the limit of reporting (LoR) were halved for analysis (for example a chlorophyll a concentration of <0.001 mg/L would be halved to 0.0005 mg/L). Subsequently the KPI status of "Pass" or "Fail" can be determined by assessing *e* against the maximum number of allowable exceedances (*eMax*) for each analyte (using the IF function:

=IF(E71>E72,"Fail","Pass")) (Figure A2.2). Where a KPI status has passed for a particular period e for the following period(s) should be then assessed against the BoD which is a more conservative value designed to help maintain the KPI status.

| $\Delta$ | Α        | В           | С         | D                                              | E           | F           | G         | Н         |
|----------|----------|-------------|-----------|------------------------------------------------|-------------|-------------|-----------|-----------|
| 1        | Location | Sample date | Site Code | Surface/Bottom                                 | %DO (% sat) | CHLA (mg/L) | TN (mg/L) | TP (mg/L) |
| 46       | Lower    | 6/01/2020   | HEA       | S                                              | 101.6       | 0.0015      | 0.26      | 0.026     |
| 47       | Lower    | 6/01/2020   | NAR       | S                                              | 95.9        | 0.0014      | 0.3       | 0.037     |
| 48       | Lower    | 20/01/2020  | ARM       | S                                              | 97.4        | 0.0017      | 0.24      | 0.013     |
| 49       | Lower    | 20/01/2020  | BLA       | S                                              | 100.3       | 0.0025      | 0.18      | NA        |
| 50       | Lower    | 3/02/2020   | ARM       | S                                              | 94.3        | 0.0021      | 0.26      | 0.025     |
| 51       | Lower    | 3/02/2020   | BLA       | S                                              | 96          | 0.0018      | 0.23      | 0.02      |
| 52       | Lower    | 17/02/2020  | BLA       | S                                              | 91          | 0.0029      | 0.23      | 0.022     |
| 53       | Lower    | 17/02/2020  | NAR       | S                                              | 88.4        | 0.0027      | 0.36      | 0.055     |
| 54       | Lower    | 3/03/2020   | HEA       | S                                              | 94.7        | 0.0021      | 0.28      | 0.036     |
| 55       | Lower    | 3/03/2020   | NAR       | S                                              | 92.8        | 0.0023      | 0.51      | 0.063     |
| 56       | Lower    | 16/03/2020  | BLA       | S                                              | 86.7        | 0.0015      | 0.18      | 0.016     |
| 57       | Lower    | 16/03/2020  | HEA       | S                                              | 92.3        | 0.0023      | 0.27      | 0.036     |
| 58       | Lower    | 30/03/2020  | ARM       | S                                              | 95.7        | 0.0032      | 0.28      | 0.027     |
| 59       | Lower    | 30/03/2020  | BLA       | S                                              | 80.5        | 0.0031      | 0.25      | 0.023     |
| 60       | Lower    | 14/04/2020  | ARM       | S                                              | 98.6        | 0.0017      | 0.2       | 0.017     |
| 61       | Lower    | 14/04/2020  | BLA       | S                                              | 84.3        | 0.0017      | 0.2       | 0.02      |
| 62       | Lower    | 28/04/2020  | HEA       | S                                              | 93.9        | 0.0029      | 0.23      | 0.027     |
| 63       | Lower    | 28/04/2020  | NAR       | S                                              | 88.9        | 0.0019      | 0.22      | 0.026     |
| 64       | Lower    | 11/05/2020  | HEA       | S                                              | 94.8        | 0.0025      | 0.28      | 0.029     |
| 65       | Lower    | 11/05/2020  | NAR       | S                                              | 89.3        | 0.0022      | 0.3       | 0.034     |
| 66       | Lower    | 26/05/2020  | BLA       | S                                              | 92.3        | 0.0012      | 0.25      | 0.014     |
| 67       | Lower    | 26/05/2020  | HEA       | S                                              | 92.1        | 0.0007      | 0.27      | 0.025     |
| 68       |          |             |           |                                                |             |             |           |           |
| 69       |          |             |           | number of samples (n)                          | 66          | 64          | 66        | 65        |
| 70       |          |             |           | Analyte Target                                 | <82.1       | >0.00355    | >0.509    | >0.058    |
| 71       |          |             |           | Number of exceedences (e)                      | 1           | 4           | 1         | 1         |
| 72       |          |             |           | Maximum allowable number of exceedances (eMax) | 6           | 3           | 3         | 3         |
| 73       |          |             |           | KPI Status (Pass/Fail)                         | Pass        | Fail        | Pass      | Pass      |
| 74       |          |             |           |                                                |             |             |           |           |
| 75       |          |             |           |                                                |             |             |           |           |

Figure A2.2 Using the COUNT, COUNTIF and IF functions in Microsoft Excel to calculate the number of samples (n), Number of exceedances (e) and the KPI Status by assessing e against the maximum number of allowable exceedances (eMax).

#### Allowable exceedances

Table A2.1: Allowable exceedances (eMaxs) to the estuarine nutrient targets for chlorophyll a (Chl-a). The eMax value used is determined by the sample size (n) and the previous KPI status (Pass or Fail). For EMZs where they have continued to fail the fail-safe (FS) value is used and where they have previously passed the benefit of the doubt (BoD) value is to be used.

| п  | BoD | FV | FS | n  | BoD | FV | FS |
|----|-----|----|----|----|-----|----|----|
| 50 | 9   | 5  | 2  | 60 | 10  | 6  | 2  |
| 51 | 9   | 5  | 2  | 61 | 10  | 6  | 3  |
| 52 | 9   | 5  | 2  | 62 | 10  | 6  | 3  |
| 53 | 9   | 5  | 2  | 63 | 10  | 6  | 3  |
| 54 | 9   | 5  | 2  | 64 | 11  | 6  | 3  |
| 55 | 9   | 6  | 2  | 65 | 11  | 7  | 3  |
| 56 | 9   | 6  | 2  | 66 | 11  | 7  | 3  |
| 57 | 10  | 6  | 2  | 67 | 11  | 7  | 3  |
| 58 | 10  | 6  | 2  | 68 | 11  | 7  | 3  |
| 59 | 10  | 6  | 2  | 69 | 11  | 7  | 3  |
| 60 | 10  | 6  | 2  | 70 | 11  | 7  | 3  |

Table A2.2: Allowable exceedances (eMaxs) to the estuarine targets for dissolved oxygen (DO). The eMax value used is determined by the sample size (n) and the previous KPI status (Pass or Fail). For EMZs where they have continued to fail the fail-safe (FS) value is used and where they have previously passed the benefit of the doubt (BoD) value is to be used.

| n  | BoD | FV | FS | n  | BoD | FV | FS |
|----|-----|----|----|----|-----|----|----|
| 50 | 5   | 3  | 0  | 60 | 6   | 3  | 1  |
| 51 | 5   | 3  | 0  | 61 | 6   | 3  | 1  |
| 52 | 5   | 3  | 0  | 62 | 6   | 3  | 1  |
| 53 | 5   | 3  | 0  | 63 | 6   | 3  | 1  |
| 54 | 6   | 3  | 0  | 64 | 6   | 3  | 1  |
| 55 | 6   | 3  | 0  | 65 | 6   | 3  | 1  |
| 56 | 6   | 3  | 0  | 66 | 6   | 3  | 1  |
| 57 | 6   | 3  | 0  | 67 | 6   | 3  | 1  |
| 58 | 6   | 3  | 0  | 68 | 7   | 3  | 1  |
| 59 | 6   | 3  | 1  | 69 | 7   | 3  | 1  |
| 60 | 6   | 3  | 1  | 70 | 7   | 4  | 1  |

#### Raw estuarine compliance data

Table A2.3: Raw surface chlorophyll-a (Chl-a (mg L-1)) and surface dissolved oxygen (DO (%)) compliance data for the 2016 KPI period for the Lower-Swan Canning (Lower), Middle (Middle) and Upper Swan Estuary (Upper).

| EMZ   | Date       |        | DO (%) |        | EMZ    | Date       | Site |       | Chl-a (mg L <sup>-1</sup> ) | EMZ   | Date       | Site | DO (%) |        |
|-------|------------|--------|--------|--------|--------|------------|------|-------|-----------------------------|-------|------------|------|--------|--------|
| Lower | 6/01/2014  | SWL055 | 96.9   | 0.0005 | Middle | 6/01/2014  | NIL  | 95.1  | 0.0026                      | Upper | 6/01/2014  | SUC  | 88.1   | 0.019  |
| Lower | 13/01/2014 | SWL139 | 96.9   | 0.002  |        | 13/01/2014 | NIL  | 94    | 0.0026                      | Upper | 13/01/2014 | SUC  | 83.3   | 0.012  |
| Lower | 20/01/2014 | SWL156 | 96.5   | 0.002  | Middle | 20/01/2014 | MAY  | 89.2  | 0.0025                      | Upper | 20/01/2014 | KIN  | 135.6  | 0.014  |
| Lower | 28/01/2014 | SWL192 | 95.5   | 0.003  | Middle | 28/01/2014 | STJ  | 90.7  | 0.0036                      | Upper | 28/01/2014 | SUC  | 85.8   | 0.016  |
| Lower | 3/02/2014  | SWL182 | 94.5   | 0.002  | Middle | 3/02/2014  | MAY  | 86    | 0.003                       | Upper | 3/02/2014  | SUC  | 72     | 0.018  |
| Lower | 10/02/2014 | SWL121 | 98     | 0.003  | Middle | 10/02/2014 | NIL  | 99.7  | 0.0035                      | Upper | 10/02/2014 | SUC  | 106.1  | 0.021  |
| Lower | 17/02/2014 | SWL157 | 95.1   | 0.002  | Middle | 17/02/2014 | NIL  | 85.6  | 0.0035                      | Upper | 17/02/2014 | SUC  | 86.2   | 0.0066 |
| Lower | 24/02/2014 | SWL025 | 96.4   | 0.002  | Middle | 24/02/2014 | NIL  | 102   | 0.0052                      | Upper | 24/02/2014 | SUC  | 102.7  | 0.013  |
| Lower | 4/03/2014  | SWL154 | 96.9   | 0.001  | Middle | 4/03/2014  | NIL  | 91.4  | 0.0059                      | Upper | 4/03/2014  | KIN  | 94.6   | 0.018  |
| Lower | 10/03/2014 | SWL148 | 96.6   | 0.002  | Middle | 10/03/2014 | MAY  | 96.7  | 0.0056                      | Upper | 10/03/2014 | KIN  | 76.7   | 0.0058 |
| Lower | 17/03/2014 | SWL156 | 95.9   | 0.0005 | Middle | 17/03/2014 | NIL  | 93.4  | 0.0041                      | Upper | 17/03/2014 | RON  | 89.3   | 0.02   |
| Lower | 24/03/2014 | SWL156 | 96.3   | 0.003  | Middle | 24/03/2014 | NIL  | 100.3 | 0.0034                      | Upper | 24/03/2014 | RON  | 109.3  | 0.021  |
| Lower | 31/03/2014 | SWL256 | 92.8   | 0.003  | Middle | 31/03/2014 | MAY  | 73.2  | 0.0047                      | Upper | 31/03/2014 | KIN  | 56.2   | 0.0068 |
| Lower | 7/04/2014  | SWL259 | 100.6  | 0.001  | Middle | 7/04/2014  | MAY  | 100.6 | 0.01                        | Upper | 7/04/2014  | SUC  | 84.8   | 0.011  |
| Lower | 14/04/2014 | SWL046 | 91.5   | 0.0005 | Middle | 14/04/2014 | STJ  | 99.8  | 0.0019                      | Upper | 14/04/2014 | SUC  | 129.9  | 0.0067 |
| Lower | 23/04/2014 | SWL121 | 93.7   | 0.0005 | Middle | 23/04/2014 | STJ  | 98.4  | 0.0075                      | Upper | 23/04/2014 | RON  | 81.6   | 0.009  |
| Lower | 29/04/2014 | SWL222 | 87.6   | 0.002  | Middle | 29/04/2014 | STJ  | 93.7  | 0.014                       | Upper | 29/04/2014 | KIN  | 79.5   | 0.009  |
| Lower | 5/05/2014  | SWL176 | 98.9   | 0.003  | Middle | 5/05/2014  | STJ  | 104.3 | 0.015                       | Upper | 5/05/2014  | KIN  | 74.9   | 0.01   |
| Lower | 12/05/2014 | SWL262 | 103.2  | 0.002  | Middle | 12/05/2014 | NIL  | 109.5 | 0.0087                      | Upper | 12/05/2014 | RON  | 84.6   | 0.012  |
| Lower | 19/05/2014 | SWL073 | 92.5   | 0.002  | Middle | 19/05/2014 | MAY  | 104.9 | 0.028                       | Upper | 19/05/2014 | KIN  | 74.3   | 0.015  |
| Lower | 26/05/2014 | SWL150 | 90.5   | 0.002  | Middle | 26/05/2014 | MAY  | 93.2  | 0.084                       | Upper | 26/05/2014 | KIN  | 59.7   | 0.0072 |
| Lower | 5/01/2015  | SWL065 | 96.8   | 0.0005 | Middle | 5/01/2015  | MAY  | 94.8  | 0.011                       | Upper | 5/01/2015  | KIN  | 92     | 0.0099 |
| Lower | 12/01/2015 | SWL113 | 93.7   | 0.0005 | Middle | 12/01/2015 | MAY  | 100.1 | 0.005                       | Upper | 12/01/2015 | KIN  | 147.2  | 0.036  |
| Lower | 19/01/2015 | SWL065 | 95.5   | 0.002  | Middle | 19/01/2015 | NIL  | 90.2  | 0.0033                      | Upper | 19/01/2015 | SUC  | 103.7  | 0.015  |
| Lower | 27/01/2015 | SWL012 | 95.3   | 0.003  | Middle | 27/01/2015 | STJ  | 94.9  | 0.0066                      | Upper | 27/01/2015 | SUC  | 120.8  | 0.021  |
| Lower | 9/02/2015  | SWL236 | 106.8  | 0.002  | Middle | 2/02/2015  | NIL  | 87.2  | 0.0042                      | Upper | 2/02/2015  | SUC  | 80.4   | 0.022  |
| Lower | 16/02/2015 | SWL012 | 88.7   | 0.003  | Middle | 9/02/2015  | STJ  | 99.4  | 0.004                       | Upper | 9/02/2015  | RON  | 113.8  | 0.013  |
| Lower | 3/03/2015  | SWL254 | 94.2   | 0.0005 | Middle | 16/02/2015 | NIL  | 85    | 0.0032                      | Upper | 16/02/2015 | KIN  | 84.8   | 0.0087 |
| Lower | 9/03/2015  | SWL222 | 98.3   | 0.003  | Middle | 23/02/2015 | NIL  | 92    | 0.0039                      | Upper | 23/02/2015 | SUC  | 90     | 0.01   |
| Lower | 16/03/2015 | SWL148 | 96.5   | 0.002  | Middle | 3/03/2015  | STJ  | 86.6  | 0.012                       | Upper | 3/03/2015  | SUC  | 91.8   | 0.0056 |
| Lower | 23/03/2015 | SWL171 | 95.4   | 0.004  | Middle | 9/03/2015  | MAY  | 94.7  | 0.0062                      | Upper | 9/03/2015  | SUC  | 70.7   | 0.011  |
| Lower | 30/03/2015 | SWL045 | 91.3   | 0.001  | Middle | 16/03/2015 | STJ  | 100.7 | 0.019                       | Upper | 16/03/2015 | SUC  | 95.6   | 0.02   |
| Lower | 7/04/2015  | SWL282 | 95     | 0.003  | Middle | 23/03/2015 | STJ  | 89.9  | 0.004                       | Upper | 23/03/2015 | SUC  | 88.2   | 0.0078 |
| Lower | 13/04/2015 | SWL284 | 100    | 0.002  | Middle | 30/03/2015 | MAY  | 108.8 | 0.012                       | Upper | 30/03/2015 | KIN  | 135.2  | 0.032  |
| Lower | 16/04/2015 | SWL133 | 92.6   | 0.005  | Middle | 7/04/2015  | NIL  | 90.5  | 0.0046                      | Upper | 7/04/2015  | SUC  | 78.7   | 0.0088 |
| Lower | 20/04/2015 | SWL259 | 101.2  | 0.002  | Middle | 13/04/2015 | STJ  | 109.7 | 0.018                       | Upper | 13/04/2015 | KIN  | 99.8   | 0.018  |
| Lower | 28/04/2015 | SWL201 | 97.1   | 0.001  | Middle | 20/04/2015 | STJ  | 105.4 | 0.014                       | Upper | 20/04/2015 | SUC  | 92.7   | 0.011  |
| Lower | 4/05/2015  | SWL284 | 99.5   | 0.0005 | Middle | 28/04/2015 | STJ  | 88.1  | 0.0045                      | Upper | 28/04/2015 | KIN  | 94.5   | 0.0062 |
| Lower | 11/05/2015 | SWL221 | 98.2   | 0.002  | Middle | 4/05/2015  | MAY  | 79.1  | 0.00025                     | Upper | 4/05/2015  | SUC  | 82.8   | 0.0055 |

| Lower | 18/05/2015 | SWL260 | 95.5  | 0.002  | Middle | 11/05/2015 | MAY | 84.1  | 0.0041 | Upper | 11/05/2015 | KIN | 74.1  | 0.0021 |
|-------|------------|--------|-------|--------|--------|------------|-----|-------|--------|-------|------------|-----|-------|--------|
| Lower | 25/05/2015 | SWL026 | 101.9 | 0.003  | Middle | 18/05/2015 | NIL | 93.4  | 0.0062 | Upper | 18/05/2015 | KIN | 77    | 0.0028 |
| Lower | 4/01/2016  | SWL161 | 94.3  | 0.0005 | Middle | 25/05/2015 | STJ | 91.4  | 0.0087 | Upper | 25/05/2015 | KIN | 127.8 | 0.0086 |
| Lower | 13/01/2016 | SWL157 | 94.6  | 0.007  | Middle | 4/01/2016  | MAY | 92.6  | 0.019  | Upper | 4/01/2016  | KIN | 123.3 | 0.031  |
| Lower | 18/01/2016 | SWL184 | 90.9  | 0.002  | Middle | 13/01/2016 | STJ | 92.3  | 0.0051 | Upper | 13/01/2016 | SUC | 84.3  | 0.016  |
| Lower | 25/01/2016 | SWL135 | 93.3  | 0.003  | Middle | 18/01/2016 | STJ | 84.9  | 0.012  | Upper | 18/01/2016 | SUC | 110.3 | 0.016  |
| Lower | 1/02/2016  | SWL229 | 93.4  | 0.003  | Middle | 25/01/2016 | NIL | 87.7  | 0.01   | Upper | 25/01/2016 | SUC | 89.2  | 0.015  |
| Lower | 8/02/2016  | SWL054 | 93.5  | 0.002  | Middle | 1/02/2016  | MAY | 85.1  | 0.0098 | Upper | 1/02/2016  | RON | 72.6  | 0.0074 |
| Lower | 15/02/2016 | SWL135 | 85.7  | 0.0005 | Middle | 8/02/2016  | NIL | 98    | 0.0059 | Upper | 8/02/2016  | RON | 95.5  | 0.011  |
| Lower | 22/02/2016 | SWL102 | 92.8  | 0.003  | Middle | 15/02/2016 | MAY | 90.7  | 0.0072 | Upper | 15/02/2016 | SUC | 107.7 | 0.018  |
| Lower | 29/02/2016 | SWL033 | 89.8  | 0.003  | Middle | 22/02/2016 | STJ | 84.8  | 0.0085 | Upper | 22/02/2016 | SUC | 84.3  | 0.021  |
| Lower | 8/03/2016  | SWL120 | 94.7  | 0.002  | Middle | 29/02/2016 | NIL | 96.2  | 0.0086 | Upper | 29/02/2016 | SUC | 92.2  | 0.016  |
| Lower | 14/03/2016 | SWL043 | 88.4  | 0.002  | Middle | 8/03/2016  | STJ | 95.2  | 0.0099 | Upper | 8/03/2016  | SUC | 91    | 0.0098 |
| Lower | 21/03/2016 | SWL261 | 102.3 | 0.002  | Middle | 14/03/2016 | MAY | 96.3  | 0.011  | Upper | 14/03/2016 | RON | 93    | 0.013  |
| Lower | 30/03/2016 | SWL046 | 94.4  | 0.004  | Middle | 21/03/2016 | STJ | 125   | 0.015  | Upper | 21/03/2016 | RON | 133.1 | 0.018  |
| Lower | 4/04/2016  | SWL120 | 109.8 | 0.008  | Middle | 30/03/2016 | MAY | 54.8  | 0.017  | Upper | 30/03/2016 | RON | 29.3  | 0.053  |
| Lower | 11/04/2016 | SWL300 | 93.3  | 0.003  | Middle | 4/04/2016  | MAY | 57.3  | 0.018  | Upper | 4/04/2016  | SUC | 45    | 0.0053 |
| Lower | 18/04/2016 | SWL181 | 100.2 | 0.004  | Middle | 11/04/2016 | NIL | 90.7  | 0.015  | Upper | 11/04/2016 | SUC | 82.4  | 0.015  |
| Lower | 26/04/2016 | SWL181 | 99.5  | 0.002  | Middle | 18/04/2016 | NIL | 110.1 | 0.024  | Upper | 18/04/2016 | SUC | 68.5  | 0.017  |
| Lower | 2/05/2016  | SWL228 | 117.4 | 0.013  | Middle | 26/04/2016 | STJ | 79.4  | 0.021  | Upper | 26/04/2016 | SUC | 110.4 | 0.085  |
| Lower | 9/05/2016  | SWL259 | 90.3  | 0.008  | Middle | 2/05/2016  | STJ | 155.8 | 0.075  | Upper | 2/05/2016  | KIN | 110.5 | 0.059  |
| Lower | 16/05/2016 | SWL134 | 98.1  | 0.003  | Middle | 9/05/2016  | NIL | 97.6  | 0.023  | Upper | 9/05/2016  | KIN | 56.8  | 0.0083 |
| Lower | 23/05/2016 | SWL274 | 92.1  | 0.004  | Middle | 16/05/2016 | NIL | 197.9 | 0.046  | Upper | 16/05/2016 | KIN | 71.9  | 0.01   |
| Lower | 30/05/2016 | SWL279 | 101.7 | 0.093  | Middle | 23/05/2016 | NIL | 89.2  | NS     | Upper | 23/05/2016 | SUC | 78.6  | 0.026  |
|       |            |        |       |        | Middle | 30/05/2016 | MAY | 75.2  | 0.011  | Upper | 30/05/2016 | KIN | 74.4  | 0.0021 |

Table A2.4: Raw surface chlorophyll-a (Chl-a (mg L-1)) and surface dissolved oxygen (DO (%)) compliance data for the 2016 KPI period for the Canning Estuary (Canning)

| EMZ     | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) | EMZ     | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) |
|---------|------------|------|--------|-----------------------------|---------|------------|------|--------|-----------------------------|
| Canning | 7/01/2014  | RIV  | 91.8   | 0.012                       | Canning | 24/03/2015 | RIV  | 65.3   | 0.012                       |
| Canning | 14/01/2014 | RIV  | 85.3   | 0.014                       | Canning | 31/03/2015 | RIV  | 46     | 0.006                       |
| Canning | 21/01/2014 | RIV  | 97.5   | 0.013                       | Canning | 8/04/2015  | RIV  | 65.2   | 0.0049                      |
| Canning | 29/01/2014 | RIV  | 103    | 0.011                       | Canning | 14/04/2015 | RIV  | 43.5   | 0.034                       |
| Canning | 4/02/2014  | RIV  | 111.9  | 0.019                       | Canning | 21/04/2015 | RIV  | 73     | 0.032                       |
| Canning | 11/02/2014 | RIV  | 94     | 0.013                       | Canning | 29/04/2015 | RIV  | 68.2   | 0.0069                      |
| Canning | 18/02/2014 | RIV  | 94.3   | 0.0091                      | Canning | 5/05/2015  | RIV  | 48.5   | 0.0082                      |
| Canning | 25/02/2014 | RIV  | 72.8   | 0.011                       | Canning | 12/05/2015 | RIV  | 58.7   | 0.0013                      |
| Canning | 5/03/2014  | RIV  | 91.6   | 0.0098                      | Canning | 19/05/2015 | RIV  | 48.2   | 0.0023                      |
| Canning | 11/03/2014 | RIV  | 86.8   | 0.012                       | Canning | 26/05/2015 | RIV  | 42.8   | 0.0024                      |
| Canning | 18/03/2014 | RIV  | 93.5   | 0.011                       | Canning | 5/01/2016  | RIV  | 54.7   | 0.012                       |
| Canning | 25/03/2014 | RIV  | 70.4   | 0.004                       | Canning | 12/01/2016 | RIV  | 81.4   | 0.012                       |
| Canning | 1/04/2014  | RIV  | 85.3   | 0.035                       | Canning | 19/01/2016 | RIV  | 89.1   | 0.02                        |
| Canning | 8/04/2014  | RIV  | 82.1   | 0.009                       | Canning | 27/01/2016 | RIV  | 78.4   | 0.013                       |
| Canning | 15/04/2014 | RIV  | 101.8  | 0.0021                      | Canning | 2/02/2016  | RIV  | 66.5   | 0.0032                      |
| Canning | 22/04/2014 | RIV  | 91     | 0.0098                      | Canning | 9/02/2016  | RIV  | 87.7   | 0.013                       |
| Canning | 28/04/2014 | RIV  | 71.4   | 0.034                       | Canning | 16/02/2016 | RIV  | 81.4   | 0.0074                      |
| Canning | 6/05/2014  | RIV  | 39.3   | 0.012                       | Canning | 23/02/2016 | RIV  | 65.5   | 0.015                       |
| Canning | 13/05/2014 | RIV  | 86.5   | 0.048                       | Canning | 1/03/2016  | RIV  | 56.7   | 0.0099                      |
| Canning | 20/05/2014 | RIV  | 42.4   | 0.012                       | Canning | 9/03/2016  | RIV  | 81.2   | 0.0077                      |
| Canning | 27/05/2014 | RIV  | 59.8   | 0.0021                      | Canning | 15/03/2016 | RIV  | 56.3   | 0.0052                      |
| Canning | 6/01/2015  | RIV  | 75.6   | 0.0077                      | Canning | 22/03/2016 | RIV  | 52.5   | 0.014                       |
| Canning | 13/01/2015 | RIV  | 52.2   | 0.0083                      | Canning | 29/03/2016 | RIV  | 64.4   | 0.014                       |
| Canning | 20/01/2015 | RIV  | 56.8   | 0.012                       | Canning | 5/04/2016  | RIV  | 62.3   | 0.011                       |
| Canning | 28/01/2015 | RIV  | 50.6   | 0.011                       | Canning | 12/04/2016 | RIV  | 55.2   | 0.0037                      |
| Canning | 3/02/2015  | RIV  | 36.8   | 0.0028                      | Canning | 19/04/2016 | RIV  | 42.7   | 0.02                        |
| Canning | 10/02/2015 | RIV  | 54.1   | 0.011                       | Canning | 27/04/2016 | RIV  | 44.2   | 0.011                       |
| Canning | 17/02/2015 | RIV  | 66.8   | 0.0096                      | Canning | 3/05/2016  | RIV  | 70.6   | 0.015                       |
| Canning | 24/02/2015 | RIV  | 63.5   | 0.01                        | Canning | 10/05/2016 | RIV  | 55.3   | 0.0081                      |
| Canning | 4/03/2015  | RIV  | 66.1   | 0.016                       | Canning | 17/05/2016 | RIV  | 58.8   | 0.0053                      |
| Canning | 10/03/2015 | RIV  | 58.4   | 0.012                       | Canning | 24/05/2016 | RIV  | 50.6   | 0.064                       |
| Canning | 17/03/2015 | RIV  | 33.8   | 0.0085                      | Canning | 31/05/2016 | RIV  | 63.6   | 0.012                       |

Table A2.5: Raw surface chlorophyll-a (Chl-a (mg L-1)) and surface dissolved oxygen (DO (%)) compliance data for the 2017 KPI period for the Lower-Swan Canning (Lower), Middle (Middle) and Upper Swan Estuary (Upper).

| EMZ   | Date       | Site   | DO (%) | Chl-a (mg L <sup>-1</sup> ) | EMZ    | Date       | Site | DO (%) | Chl-a (mg/L) | EMZ   | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) |
|-------|------------|--------|--------|-----------------------------|--------|------------|------|--------|--------------|-------|------------|------|--------|-----------------------------|
| Lower | 5/01/2015  |        | ` ′    | 0.0005                      | Middle |            | MAY  | 94.8   | 0.011        | Upper | 5/01/2015  | KIN  | 92     | 0.0099                      |
| Lower | 12/01/2015 |        | 93.7   | 0.0005                      |        | 12/01/2015 |      | 100.1  | 0.005        | Upper | 12/01/2015 | KIN  | 147.2  | 0.036                       |
| Lower | 19/01/2015 |        | 95.5   | 0.002                       |        | 19/01/2015 | NIL  | 90.2   | 0.0033       | Upper | 19/01/2015 | SUC  | 103.7  | 0.015                       |
| Lower | 27/01/2015 |        |        | 0.003                       |        | 27/01/2015 | STJ  | 94.9   | 0.0066       | Upper | 27/01/2015 | SUC  | 120.8  | 0.021                       |
| Lower | 9/02/2015  |        |        | 0.002                       | Middle |            | NIL  | 87.2   | 0.0042       | Upper | 2/02/2015  | SUC  | 80.4   | 0.022                       |
| Lower | 16/02/2015 |        |        | 0.003                       | Middle |            | STJ  | 99.4   | 0.004        | Upper | 9/02/2015  | RON  | 113.8  | 0.013                       |
| Lower | 3/03/2015  |        | 94.2   | 0.0005                      |        | 16/02/2015 | NIL  | 85     | 0.0032       | Upper | 16/02/2015 | KIN  | 84.8   | 0.0087                      |
| Lower | 9/03/2015  |        | 98.3   | 0.003                       | Middle | 23/02/2015 | NIL  | 92     | 0.0039       | Upper | 23/02/2015 | SUC  | 90     | 0.01                        |
| Lower | 16/03/2015 | SWL148 | 96.5   | 0.002                       | Middle | 3/03/2015  | STJ  | 86.6   | 0.012        | Upper | 3/03/2015  | SUC  | 91.8   | 0.0056                      |
| Lower | 23/03/2015 | SWL171 | 95.4   | 0.004                       | Middle | 9/03/2015  | MAY  | 94.7   | 0.0062       | Upper | 9/03/2015  | SUC  | 70.7   | 0.011                       |
| Lower | 30/03/2015 | SWL045 | 91.3   | 0.001                       | Middle | 16/03/2015 | STJ  | 100.7  | 0.019        | Upper | 16/03/2015 | SUC  | 95.6   | 0.02                        |
| Lower | 7/04/2015  | SWL282 | 95     | 0.003                       | Middle | 23/03/2015 | STJ  | 89.9   | 0.004        | Upper | 23/03/2015 | SUC  | 88.2   | 0.0078                      |
| Lower | 13/04/2015 | SWL284 | 100    | 0.002                       | Middle | 30/03/2015 | MAY  | 108.8  | 0.012        | Upper | 30/03/2015 | KIN  | 135.2  | 0.032                       |
| Lower | 16/04/2015 | SWL133 | 92.6   | 0.005                       | Middle | 7/04/2015  | NIL  | 90.5   | 0.0046       | Upper | 7/04/2015  | SUC  | 78.7   | 0.0088                      |
| Lower | 20/04/2015 | SWL259 | 101.2  | 0.002                       | Middle | 13/04/2015 | STJ  | 109.7  | 0.018        | Upper | 13/04/2015 | KIN  | 99.8   | 0.018                       |
| Lower | 28/04/2015 | SWL201 | 97.1   | 0.001                       | Middle | 20/04/2015 | STJ  | 105.4  | 0.014        | Upper | 20/04/2015 | SUC  | 92.7   | 0.011                       |
| Lower | 4/05/2015  | SWL284 | 99.5   | 0.0005                      | Middle | 28/04/2015 | STJ  | 88.1   | 0.0045       | Upper | 28/04/2015 | KIN  | 94.5   | 0.0062                      |
| Lower | 11/05/2015 | SWL221 | 98.2   | 0.002                       | Middle | 4/05/2015  | MAY  | 79.1   | 0.00025      | Upper | 4/05/2015  | SUC  | 82.8   | 0.0055                      |
| Lower | 18/05/2015 | SWL260 | 95.5   | 0.002                       | Middle | 11/05/2015 | MAY  | 84.1   | 0.0041       | Upper | 11/05/2015 | KIN  | 74.1   | 0.0021                      |
| Lower | 25/05/2015 | SWL026 | 101.9  | 0.003                       | Middle | 18/05/2015 | NIL  | 93.4   | 0.0062       | Upper | 18/05/2015 | KIN  | 77     | 0.0028                      |
| Lower | 4/01/2016  | SWL161 | 94.3   | 0.0005                      | Middle | 25/05/2015 | STJ  | 91.4   | 0.0087       | Upper | 25/05/2015 | KIN  | 127.8  | 0.0086                      |
| Lower | 13/01/2016 | SWL157 | 94.6   | 0.007                       | Middle | 4/01/2016  | MAY  | 92.6   | 0.019        | Upper | 4/01/2016  | KIN  | 123.3  | 0.031                       |
| Lower | 18/01/2016 | SWL184 | 90.9   | 0.002                       | Middle | 13/01/2016 | STJ  | 92.3   | 0.0051       | Upper | 13/01/2016 | SUC  | 84.3   | 0.016                       |
| Lower | 25/01/2016 | SWL135 | 93.3   | 0.003                       | Middle | 18/01/2016 | STJ  | 84.9   | 0.012        | Upper | 18/01/2016 | SUC  | 110.3  | 0.016                       |
| Lower | 1/02/2016  | SWL229 | 93.4   | 0.003                       | Middle | 25/01/2016 | NIL  | 87.7   | 0.01         | Upper | 25/01/2016 | SUC  | 89.2   | 0.015                       |
| Lower | 8/02/2016  | SWL054 | 93.5   | 0.002                       | Middle | 1/02/2016  | MAY  | 85.1   | 0.0098       | Upper | 1/02/2016  | RON  | 72.6   | 0.0074                      |
| Lower | 15/02/2016 | SWL135 | 85.7   | 0.0005                      | Middle | 8/02/2016  | NIL  | 98     | 0.0059       | Upper | 8/02/2016  | RON  | 95.5   | 0.011                       |
| Lower | 22/02/2016 | SWL102 | 92.8   | 0.003                       | Middle | 15/02/2016 | MAY  | 90.7   | 0.0072       | Upper | 15/02/2016 | SUC  | 107.7  | 0.018                       |
| Lower | 29/02/2016 | SWL033 | 89.8   | 0.003                       | Middle | 22/02/2016 | STJ  | 84.8   | 0.0085       | Upper | 22/02/2016 | SUC  | 84.3   | 0.021                       |
| Lower | 8/03/2016  | SWL120 | 94.7   | 0.002                       | Middle | 29/02/2016 | NIL  | 96.2   | 0.0086       | Upper | 29/02/2016 | SUC  | 92.2   | 0.016                       |
| Lower | 14/03/2016 | SWL043 | 88.4   | 0.002                       | Middle | 8/03/2016  | STJ  | 95.2   | 0.0099       | Upper | 8/03/2016  | SUC  | 91     | 0.0098                      |
| Lower | 21/03/2016 | SWL261 | 102.3  | 0.002                       | Middle | 14/03/2016 | MAY  | 96.3   | 0.011        | Upper | 14/03/2016 | RON  | 93     | 0.013                       |
| Lower | 30/03/2016 | SWL046 | 94.4   | 0.004                       | Middle | 21/03/2016 | STJ  | 125    | 0.015        | Upper | 21/03/2016 | RON  | 133.1  | 0.018                       |
| Lower | 4/04/2016  | SWL120 | 109.8  | 0.008                       | Middle | 30/03/2016 | MAY  | 54.8   | 0.017        | Upper | 30/03/2016 | RON  | 29.3   | 0.053                       |
| Lower | 11/04/2016 | SWL300 | 93.3   | 0.003                       | Middle | 4/04/2016  | MAY  | 57.3   | 0.018        | Upper | 4/04/2016  | SUC  | 45     | 0.0053                      |
| Lower | 18/04/2016 | SWL181 | 100.2  | 0.004                       | Middle | 11/04/2016 | NIL  | 90.7   | 0.015        | Upper | 11/04/2016 | SUC  | 82.4   | 0.015                       |
| Lower | 26/04/2016 | SWL181 | 99.5   | 0.002                       | Middle | 18/04/2016 | NIL  | 110.1  | 0.024        | Upper | 18/04/2016 | SUC  | 68.5   | 0.017                       |
| Lower | 2/05/2016  | SWL228 | 117.4  | 0.013                       | Middle | 26/04/2016 | STJ  | 79.4   | 0.021        | Upper | 26/04/2016 | SUC  | 110.4  | 0.085                       |
| Lower | 9/05/2016  | SWL259 | 90.3   | 0.008                       | Middle | 2/05/2016  | STJ  | 155.8  | 0.075        | Upper | 2/05/2016  | KIN  | 110.5  | 0.059                       |
| Lower | 16/05/2016 |        |        | 0.003                       | Middle |            | NIL  | 97.6   | 0.023        | Upper | 9/05/2016  | KIN  | 56.8   | 0.0083                      |
| Lower | 23/05/2016 | SWL274 | 92.1   | 0.004                       | Middle | 16/05/2016 | NIL  | 197.9  | 0.046        | Upper | 16/05/2016 | KIN  | 71.9   | 0.01                        |

| Lower | 30/05/2016 | SWL279 | 101.7 | 0.093  | Middle | 23/05/2016 | NIL | 89.2  | NS     | Upper | 23/05/2016 | SUC | 78.6  | 0.026  |
|-------|------------|--------|-------|--------|--------|------------|-----|-------|--------|-------|------------|-----|-------|--------|
| Lower | 03/01/2017 | SWL276 | 99.8  | 0.0005 | Middle | 30/05/2016 | MAY | 75.2  | 0.011  | Upper | 30/05/2016 | KIN | 74.4  | 0.0021 |
| Lower | 09/01/2017 | SWL300 | 97    | 0.003  | Middle | 3/01/2017  | NIL | 99.4  | 0.0047 | Upper | 03/01/2017 | SUC | 97.8  | 0.011  |
| Lower | 16/01/2017 | SWL301 | 90.3  | 0.002  | Middle | 9/01/2017  | NIL | 105.3 | 0.0036 | Upper | 09/01/2017 | RON | 98.6  | 0.013  |
| Lower | 23/01/2017 | SWL270 | 109.2 | 0.001  | Middle | 16/01/2017 | STJ | 85.1  | 0.019  | Upper | 16/01/2017 | SUC | 83.1  | 0.013  |
| Lower | 30/01/2017 | SWL140 | 90.1  | 0.004  | Middle | 23/01/2017 | STJ | 105.9 | 0.021  | Upper | 23/01/2017 | RON | 96.2  | 0.017  |
| Lower | 06/02/2017 | SWL182 | 94    | 0.013  | Middle | 30/01/2017 | NIL | 85.7  | 0.013  | Upper | 30/01/2017 | SUC | 74.8  | 0.036  |
| Lower | 15/02/2017 | SWL177 | 66.4  | 0.003  | Middle | 6/02/2017  | MAY | 51.1  | 0.0007 | Upper | 06/02/2017 | SUC | 90.1  | 0.0024 |
| Lower | 20/02/2017 | SWL192 | 80.3  | 0.004  | Middle | 15/02/2017 | NIL | 57.1  | 0.0032 | Upper | 15/02/2017 | SUC | 68    | 0.0048 |
| Lower | 27/02/2017 | SWL284 | 95.1  | 0.025  | Middle | 20/02/2017 | STJ | 62.9  | 0.0083 | Upper | 20/02/2017 | RON | 76.8  | 0.007  |
| Lower | 07/03/2017 | SWL257 | 125.9 | 0.039  | Middle | 27/02/2017 | STJ | 79.1  | 0.022  | Upper | 27/02/2017 | SUC | 77.6  | 0.023  |
| Lower | 13/03/2017 | SWL258 | 84.5  | 0.006  | Middle | 7/03/2017  | MAY | 104.9 | 0.063  | Upper | 07/03/2017 | KIN | 157   | 0.052  |
| Lower | 20/03/2017 | SWL153 | 116.7 | 0.03   | Middle | 13/03/2017 | MAY | 107.3 | 0.027  | Upper | 13/03/2017 | KIN | 88.9  | 0.042  |
| Lower | 27/03/2017 | SWL139 | 74.1  | 0.025  | Middle | 20/03/2017 | STJ | 87    | 0.022  | Upper | 20/03/2017 | RON | 114.7 | 0.028  |
| Lower | 03/04/2017 | SWL053 | 97.6  | 0.003  | Middle | 27/03/2017 | STJ | 72.9  | 0.027  | Upper | 27/03/2017 | RON | 164.6 | 0.057  |
| Lower | 10/04/2017 | SWL204 | 84.4  | 0.002  | Middle | 3/04/2017  | MAY | 151.8 | 0.041  | Upper | 03/04/2017 | RON | 95.9  | 0.028  |
| Lower | 18/04/2017 | SWL149 | 90.2  | 0.002  | Middle | 10/04/2017 | MAY | 127.4 | 0.036  | Upper | 10/04/2017 | SUC | 75    | 0.036  |
| Lower | 24/04/2017 | SWL247 | 103.3 | 0.002  | Middle | 18/04/2017 | MAY | 98.6  | 0.065  | Upper | 18/04/2017 | KIN | 148.4 | 0.051  |
| Lower | 01/05/2017 | SWL170 | 94.9  | 0.003  | Middle | 24/04/2017 | NIL | 85.5  | 0.018  | Upper | 24/04/2017 | SUC | 99.6  | 0.03   |
| Lower | 08/05/2017 | SWL252 | 111.4 | 0.006  | Middle | 1/05/2017  | NIL | 75.2  | 0.0043 | Upper | 01/05/2017 | RON | 90.9  | 0.027  |
| Lower | 15/05/2017 | SWL153 | 99.2  | 0.005  | Middle | 8/05/2017  | STJ | 102.3 | 0.022  | Upper | 08/05/2017 | KIN | 138.5 | 0.3    |
| Lower | 22/05/2017 | SWL252 | 91.2  | 0.001  | Middle | 15/05/2017 | NIL | 91.2  | 0.011  | Upper | 15/05/2017 | KIN | 92.5  | 0.045  |
| Lower | 29/05/2017 | WL278  | 103.4 | 0.004  | Middle | 22/05/2017 | NIL | 93.8  | 0.015  | Upper | 22/05/2017 | KIN | 84.4  | 0.019  |
|       |            |        |       |        | Middle | 29/05/2017 | NIL | 117.7 | 0.041  | Upper | 29/05/2017 | KIN | 90.1  | 0.031  |
|       |            |        |       |        |        |            |     |       |        |       |            |     |       |        |

Table A.6: Raw surface chlorophyll-a (Chl-a (mg L<sup>-1</sup>)) and surface dissolved oxygen (DO (%)) compliance data for the 2017 KPI period for the Canning Estuary (Canning).

| EMZ     | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) | EMZ     | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) |
|---------|------------|------|--------|-----------------------------|---------|------------|------|--------|-----------------------------|
| Canning | 6/01/2015  | RIV  | 75.6   | 0.0077                      | Canning | 29/03/2016 | RIV  | 64.4   | 0.014                       |
| Canning | 13/01/2015 | RIV  | 52.2   | 0.0083                      | Canning | 5/04/2016  | RIV  | 62.3   | 0.011                       |
| Canning | 20/01/2015 | RIV  | 56.8   | 0.012                       | Canning | 12/04/2016 | RIV  | 55.2   | 0.0037                      |
| Canning | 28/01/2015 | RIV  | 50.6   | 0.011                       | Canning | 19/04/2016 | RIV  | 42.7   | 0.02                        |
| Canning | 3/02/2015  | RIV  | 36.8   | 0.0028                      | Canning | 27/04/2016 | RIV  | 44.2   | 0.011                       |
| Canning | 10/02/2015 | RIV  | 54.1   | 0.011                       | Canning | 3/05/2016  | RIV  | 70.6   | 0.015                       |
| Canning | 17/02/2015 | RIV  | 66.8   | 0.0096                      | Canning | 10/05/2016 | RIV  | 55.3   | 0.0081                      |
| Canning | 24/02/2015 | RIV  | 63.5   | 0.01                        | Canning | 17/05/2016 | RIV  | 58.8   | 0.0053                      |
| Canning | 4/03/2015  | RIV  | 66.1   | 0.016                       | Canning | 24/05/2016 | RIV  | 50.6   | 0.064                       |
| Canning | 10/03/2015 | RIV  | 58.4   | 0.012                       | Canning | 31/05/2016 | RIV  | 63.6   | 0.012                       |
| Canning | 17/03/2015 | RIV  | 33.8   | 0.0085                      | Canning | 4/01/2017  | RIV  | 108.6  | 0.0097                      |
| Canning | 24/03/2015 | RIV  | 65.3   | 0.012                       | Canning | 10/01/2017 | RIV  | 107.9  | 0.02                        |
| Canning | 31/03/2015 | RIV  | 46     | 0.006                       | Canning | 17/01/2017 | RIV  | 126.2  | 0.018                       |
| Canning | 8/04/2015  | RIV  | 65.2   | 0.0049                      | Canning | 24/01/2017 | RIV  | 82.1   | 0.0076                      |
| Canning | 14/04/2015 | RIV  | 43.5   | 0.034                       | Canning | 31/01/2017 | RIV  | 58.9   | 0.029                       |
| Canning | 21/04/2015 | RIV  | 73     | 0.032                       | Canning | 7/02/2017  | RIV  | 100.2  | 0.0094                      |
| Canning | 29/04/2015 | RIV  | 68.2   | 0.0069                      | Canning | 14/02/2017 | RIV  | 45.4   | 0.0024                      |
| Canning | 5/05/2015  | RIV  | 48.5   | 0.0082                      | Canning | 21/02/2017 | RIV  | 70.8   | 0.011                       |
| Canning | 12/05/2015 | RIV  | 58.7   | 0.0013                      | Canning | 28/02/2017 | RIV  | 83.6   | 0.0078                      |
| Canning | 19/05/2015 | RIV  | 48.2   | 0.0023                      | Canning | 8/03/2017  | RIV  | 70.1   | 0.013                       |
| Canning | 26/05/2015 | RIV  | 42.8   | 0.0024                      | Canning | 14/03/2017 | RIV  | 66.8   | 0.042                       |
| Canning | 5/01/2016  | RIV  | 54.7   | 0.012                       | Canning | 21/03/2017 | RIV  | 75.7   | 0.056                       |
| Canning | 12/01/2016 | RIV  | 81.4   | 0.012                       | Canning | 28/03/2017 | RIV  | 55.2   | 0.012                       |
| Canning | 19/01/2016 | RIV  | 89.1   | 0.02                        | Canning | 4/04/2017  | RIV  | 76.2   | 0.011                       |
| Canning | 27/01/2016 | RIV  | 78.4   | 0.013                       | Canning | 11/04/2017 | RIV  | 68.2   | 0.0041                      |
| Canning | 2/02/2016  | RIV  | 66.5   | 0.0032                      | Canning | 19/04/2017 | RIV  | 68.8   | 0.0074                      |
| Canning | 9/02/2016  | RIV  | 87.7   | 0.013                       | Canning | 26/04/2017 | RIV  | 78.1   | 0.013                       |
| Canning | 16/02/2016 | RIV  | 81.4   | 0.0074                      | Canning | 2/05/2017  | RIV  | 66.8   | 0.0033                      |
| Canning | 23/02/2016 | RIV  | 65.5   | 0.015                       | Canning | 9/05/2017  | RIV  | 41.7   | 0.011                       |
| Canning | 1/03/2016  | RIV  | 56.7   | 0.0099                      | Canning | 16/05/2017 | RIV  | 38.4   | 0.014                       |
| Canning | 9/03/2016  | RIV  | 81.2   | 0.0077                      | Canning | 23/05/2017 | RIV  | 51.8   | 0.033                       |
| Canning | 15/03/2016 | RIV  | 56.3   | 0.0052                      | Canning | 30/05/2017 | RIV  | 41.8   | 0.019                       |
| Canning | 22/03/2016 | RIV  | 52.5   | 0.014                       |         |            |      |        |                             |
|         |            |      |        |                             |         |            |      |        |                             |

Table A2.7: Raw surface chlorophyll-a (Chl-a (mg L<sup>-1</sup>)) and surface dissolved oxygen (DO (%)) compliance data for the 2018 KPI period for the Lower-Swan Canning (Lower), Middle (Middle) and Upper Swan Estuary (Upper).

|       |            |        |        |                             |        |            |      |        | (Oppor       |           |            |      |        |                             |
|-------|------------|--------|--------|-----------------------------|--------|------------|------|--------|--------------|-----------|------------|------|--------|-----------------------------|
| EMZ   | Date       | Site   | DO (%) | Chl-a (mg L <sup>-1</sup> ) | EMZ    | Date       | Site | DO (%) | Chl-a (mg/L) | EMZ       | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) |
| Lower | 4/01/2016  | SWL161 | 94.3   | 0.0005                      | Middle | 4/01/2016  | MAY  | 92.6   | 0.019        | Upper     | 4/01/2016  | KIN  | 123.3  | 0.031                       |
| Lower | 13/01/2016 | SWL157 | 94.6   | 0.007                       | Middle | 13/01/2016 | STJ  | 92.3   | 0.0051       | Upper     | 13/01/2016 | SUC  | 84.3   | 0.016                       |
| Lower | 18/01/2016 | SWL184 | 90.9   | 0.002                       | Middle | 18/01/2016 | STJ  | 84.9   | 0.012        | Upper     | 18/01/2016 | SUC  | 110.3  | 0.016                       |
| Lower | 25/01/2016 | SWL135 | 93.3   | 0.003                       | Middle | 25/01/2016 | NIL  | 87.7   | 0.01         | Upper     | 25/01/2016 | SUC  | 89.2   | 0.015                       |
| Lower | 1/02/2016  | SWL229 | 93.4   | 0.003                       | Middle | 1/02/2016  | MAY  | 85.1   | 0.0098       | Upper     | 1/02/2016  | RON  | 72.6   | 0.0074                      |
| Lower | 8/02/2016  | SWL054 | 93.5   | 0.002                       | Middle | 8/02/2016  | NIL  | 98     | 0.0059       | Upper     | 8/02/2016  | RON  | 95.5   | 0.011                       |
| Lower | 15/02/2016 | SWL135 | 85.7   | 0.0005                      | Middle | 15/02/2016 | MAY  | 90.7   | 0.0072       | Upper     | 15/02/2016 | SUC  | 107.7  | 0.018                       |
| Lower | 22/02/2016 | SWL102 | 92.8   | 0.003                       | Middle | 22/02/2016 | STJ  | 84.8   | 0.0085       | Upper     | 22/02/2016 | SUC  | 84.3   | 0.021                       |
| Lower | 29/02/2016 | SWL033 | 89.8   | 0.003                       | Middle | 29/02/2016 | NIL  | 96.2   | 0.0086       | Upper     | 29/02/2016 | SUC  | 92.2   | 0.016                       |
| Lower | 8/03/2016  | SWL120 | 94.7   | 0.002                       | Middle | 8/03/2016  | STJ  | 95.2   | 0.0099       | Upper     | 8/03/2016  | SUC  | 91     | 0.0098                      |
| Lower | 14/03/2016 | SWL043 | 88.4   | 0.002                       | Middle | 14/03/2016 | MAY  | 96.3   | 0.011        | Upper     | 14/03/2016 | RON  | 93     | 0.013                       |
| Lower | 21/03/2016 | SWL261 | 102.3  | 0.002                       | Middle | 21/03/2016 | STJ  | 125    | 0.015        | Upper     | 21/03/2016 | RON  | 133.1  | 0.018                       |
| Lower | 30/03/2016 | SWL046 | 94.4   | 0.004                       | Middle | 30/03/2016 | MAY  | 54.8   | 0.017        | Upper     | 30/03/2016 | RON  | 29.3   | 0.053                       |
| Lower |            |        | 109.8  | 0.008                       | Middle | 4/04/2016  | MAY  | 57.3   | 0.018        | Upper     | 4/04/2016  | SUC  | 45     | 0.0053                      |
|       | 11/04/2016 |        | 93.3   | 0.003                       | Middle | 11/04/2016 | NIL  | 90.7   | 0.015        | Upper     | 11/04/2016 | SUC  | 82.4   | 0.015                       |
| Lower | 18/04/2016 | SWL181 | 100.2  | 0.004                       | Middle | 18/04/2016 | NIL  | 110.1  | 0.024        | Upper     | 18/04/2016 | SUC  | 68.5   | 0.017                       |
| Lower | 26/04/2016 |        | 99.5   | 0.002                       | Middle | 26/04/2016 | STJ  | 79.4   | 0.021        | Upper     | 26/04/2016 | SUC  | 110.4  | 0.085                       |
| Lower | 2/05/2016  | SWL228 | 117.4  | 0.013                       | Middle | 2/05/2016  | STJ  | 155.8  | 0.075        | Upper     | 2/05/2016  | KIN  | 110.5  | 0.059                       |
| Lower | 9/05/2016  | SWL259 | 90.3   | 0.008                       | Middle | 9/05/2016  | NIL  | 97.6   | 0.023        | Upper     | 9/05/2016  | KIN  | 56.8   | 0.0083                      |
| Lower | 16/05/2016 | SWL134 | 98.1   | 0.003                       | Middle | 16/05/2016 | NIL  | 197.9  | 0.046        | Upper     | 16/05/2016 | KIN  | 71.9   | 0.01                        |
| Lower | 23/05/2016 | SWL274 | 92.1   | 0.004                       | Middle | 23/05/2016 | NIL  | 89.2   | no data      | Upper     | 23/05/2016 | SUC  | 78.6   | 0.026                       |
| Lower | 30/05/2016 | SWL279 | 101.7  | 0.093                       | Middle | 30/05/2016 | MAY  | 75.2   | 0.011        | Upper     | 30/05/2016 | KIN  | 74.4   | 0.0021                      |
| Lower | 3/01/2017  | SWL276 | 99.8   | 0.0005                      | Middle | 3/01/2017  | NIL  | 99.4   | 0.0047       | Upper     | 03/01/2017 | SUC  | 97.8   | 0.011                       |
| Lower | 9/01/2017  | SWL300 | 97     | 0.003                       | Middle | 9/01/2017  | NIL  | 105.3  | 0.0036       | Upper     | 09/01/2017 | RON  | 98.6   | 0.013                       |
| Lower | 16/01/2017 | SWL301 | 90.3   | 0.002                       | Middle | 16/01/2017 | STJ  | 85.1   | 0.019        | Upper     | 16/01/2017 | SUC  | 83.1   | 0.013                       |
|       | 23/01/2017 |        | 109.2  | 0.001                       | Middle | 23/01/2017 | STJ  | 105.9  | 0.021        | Upper     | 23/01/2017 | RON  | 96.2   | 0.017                       |
| Lower | 30/01/2017 |        | 90.1   | 0.004                       | Middle | 30/01/2017 | NIL  | 85.7   | 0.013        | Upper     | 30/01/2017 | SUC  | 74.8   | 0.036                       |
| Lower |            |        | 94     | 0.013                       | Middle | 6/02/2017  | MAY  | 51.1   | 0.0007       | Upper     | 06/02/2017 | SUC  | 90.1   | 0.0024                      |
|       | 15/02/2017 |        | 66.4   | 0.003                       | Middle | 15/02/2017 | NIL  | 57.1   | 0.0032       | Upper     | 15/02/2017 | SUC  | 68     | 0.0048                      |
|       | 20/02/2017 |        | 80.3   | 0.004                       | Middle | 20/02/2017 | STJ  | 62.9   | 0.0083       | Upper     | 20/02/2017 | RON  | 76.8   | 0.007                       |
|       | 27/02/2017 |        | 95.1   | 0.025                       | Middle | 27/02/2017 | STJ  | 79.1   | 0.022        | Upper     | 27/02/2017 | SUC  | 77.6   | 0.023                       |
|       | 7/03/2017  |        | 125.9  | 0.039                       | Middle | 7/03/2017  | MAY  | 104.9  | 0.063        | Upper     | 07/03/2017 | KIN  | 157    | 0.052                       |
|       | 13/03/2017 |        | 84.5   | 0.006                       | Middle |            | MAY  | 107.3  | 0.027        | Upper     | 13/03/2017 | KIN  | 88.9   | 0.042                       |
|       | 20/03/2017 |        | 116.7  | 0.03                        | Middle |            | STJ  | 87     | 0.022        | Upper     | 20/03/2017 | RON  | 114.7  | 0.028                       |
|       | 27/03/2017 |        | 74.1   | 0.025                       | Middle |            | STJ  | 72.9   | 0.027        | Upper<br> | 27/03/2017 | RON  | 164.6  | 0.057                       |
| Lower | 3/04/2017  |        | 97.6   | 0.003                       | Middle | 3/04/2017  | MAY  | 151.8  | 0.041        | Upper     | 03/04/2017 | RON  | 95.9   | 0.028                       |
| Lower | 10/04/2017 |        | 84.4   | 0.002                       | Middle | 10/04/2017 | MAY  | 127.4  | 0.036        | Upper     | 10/04/2017 | SUC  | 75     | 0.036                       |
|       | 18/04/2017 |        | 90.2   | 0.002                       | Middle |            | MAY  | 98.6   | 0.065        | Upper     | 18/04/2017 | KIN  | 148.4  | 0.051                       |
| Lower | 24/04/2017 |        | 103.3  | 0.002                       | Middle | 24/04/2017 | NIL  | 85.5   | 0.018        | Upper     | 24/04/2017 | SUC  | 99.6   | 0.03                        |
| Lower | 1/05/2017  |        | 94.9   | 0.003                       | Middle | 1/05/2017  | NIL  | 75.2   | 0.0043       | Upper     | 01/05/2017 | RON  | 90.9   | 0.027                       |
| Lower | 8/05/2017  |        | 111.4  | 0.006                       | Middle | 8/05/2017  | STJ  | 102.3  | 0.022        | Upper     | 08/05/2017 | KIN  | 138.5  | 0.3                         |
|       | 15/05/2017 |        | 99.2   | 0.005                       | Middle | 15/05/2017 | NIL  | 91.2   | 0.011        | Upper     | 15/05/2017 | KIN  | 92.5   | 0.045                       |
|       | 22/05/2017 |        | 91.2   | 0.001                       |        | 22/05/2017 | NIL  | 93.8   | 0.015        | Upper     | 22/05/2017 | KIN  | 84.4   | 0.019                       |
| Lower | 29/05/2017 |        | 103.4  | 0.004                       | Middle |            | NIL  | 117.7  | 0.041        | Upper     | 29/05/2017 | KIN  | 90.1   | 0.031                       |
| Lower | 2/01/2018  | 1      | 83.5   | 0.0005                      | Middle |            | MAY  | 96.1   | 0.012        | Upper     | 02/01/2018 | KIN  | 127.2  | 0.005                       |
| Lower | 8/01/2018  |        | 95.5   | 0.002                       | Middle |            | MAY  | 96     | 0.011        | Upper     | 08/01/2018 | SUC  | 106.5  | 0.041                       |
|       | 15/01/2018 |        | 88.6   | 0.004                       | Middle |            | STJ  | 73.6   | 0.0073       | Upper     | 22/01/2018 | SUC  | 137.6  | 0.019                       |
| Lower | 22/01/2018 | SWL233 | 98.8   | 0.002                       | Middle | 22/01/2018 | STJ  | 60     | 0.0057       | Upper     | 29/01/2018 | SUC  | 103.4  | 0.033                       |

| Lower | 29/01/2018 | SWL161 | 87.9  | 0.003  | Middle | 29/01/2018 | STJ | 88.3  | 0.027 | Upper | 05/02/2018 | RON | 88.8  | 0.028  |
|-------|------------|--------|-------|--------|--------|------------|-----|-------|-------|-------|------------|-----|-------|--------|
| Lower | 5/02/2018  | SWL225 | 106.2 | 0.001  | Middle | 05/02/2018 | STJ | 89.4  | 0.02  | Upper | 12/02/2018 | KIN | 114.9 | 0.024  |
| Lower | 12/02/2018 | SWL232 | 96    | 0.003  | Middle | 12/02/2018 | STJ | 85.2  | 0.013 | Upper | 19/02/2018 | RON | 101.3 | 0.03   |
| Lower | 19/02/2018 | SWL262 | 96.8  | 0.003  | Middle | 19/02/2018 | STJ | 83.5  | 0.013 | Upper | 26/02/2018 | SUC | 73.5  | 0.02   |
| Lower | 26/02/2018 | SWL183 | 90.4  | 0.003  | Middle | 26/02/2018 | MAY | 87.6  | 0.015 | Upper | 06/03/2018 | KIN | 109.7 | 0.021  |
| Lower | 6/03/2018  | SWL227 | 101.6 | 0.003  | Middle | 06/03/2018 | STJ | 129.2 | 0.025 | Upper | 12/03/2018 | KIN | 109.2 | 0.0078 |
| Lower | 12/03/2018 | SWL301 | 91    | 0.002  | Middle | 12/03/2018 | NIL | 107.9 | 0.022 | Upper | 19/03/2018 | RON | 103.3 | 0.034  |
| Lower | 19/03/2018 | SWL142 | 94.8  | 0.003  | Middle | 19/03/2018 | STJ | 82.3  | 0.012 | Upper | 26/03/2018 | KIN | 79.9  | 0.021  |
| Lower | 26/03/2018 | SWL221 | 98.5  | 0.002  | Middle | 26/03/2018 | NIL | 87    | 0.011 | Upper | 03/04/2018 | KIN | 121.2 | 0.032  |
| Lower | 3/04/2018  | SWL043 | 98.8  | 0.001  | Middle | 03/04/2018 | NIL | 101.5 | 0.008 | Upper | 09/04/2018 | KIN | 82.7  | 0.031  |
| Lower | 9/04/2018  | SWL253 | 93.4  | 0.001  | Middle | 09/04/2018 | NIL | 126.8 | 0.056 | Upper | 16/04/2018 | SUC | 102.9 | 0.031  |
| Lower | 16/04/2018 | SWL276 | 89.7  | 0.012  | Middle | 16/04/2018 | MAY | 124.3 | 0.026 | Upper | 23/04/2018 | SUC | 100.5 | 0.032  |
| Lower | 23/04/2018 | SWL299 | 92.2  | 0.003  | Middle | 23/04/2018 | MAY | 69.8  | 0.017 | Upper | 30/04/2018 | RON | 68.1  | 0.0077 |
| Lower | 30/04/2018 | SWL024 | 98.8  | 0.003  | Middle | 30/04/2018 | STJ | 98.3  | 0.012 | Upper | 07/05/2018 | SUC | 71.8  | 0.0064 |
| Lower | 7/05/2018  | SWL201 | 93.1  | 0.003  | Middle | 07/05/2018 | MAY | 92.8  | 0.028 | Upper | 14/05/2018 | SUC | 95.6  | 0.025  |
| Lower | 14/05/2018 | SWL035 | 88    | 0.0005 | Middle | 14/05/2018 | NIL | 119.3 | 0.017 | Upper | 21/05/2018 | KIN | 61.4  | 0.0011 |
| Lower | 21/05/2018 | SWL053 | 85.1  | 0.002  | Middle | 21/05/2018 | MAY | 54.6  | 0.002 | Upper | 28/05/2018 | RON | 79.9  | 0.017  |
| Lower | 28/05/2018 | SWL221 | 93.6  | 0.013  | Middle | 28/05/2018 | STJ | 69.9  | 0.007 |       |            |     |       | _      |

Table A2.8: Raw surface chlorophyll-a (Chl-a (mg L<sup>-1</sup>)) and surface dissolved oxygen (DO (%)) compliance data for the 2018 KPI period for the Canning Estuary (Canning).

| ( //    | •          |      |        |                             | •       |            | J    | <i>,</i> ( | Ο,                          |
|---------|------------|------|--------|-----------------------------|---------|------------|------|------------|-----------------------------|
| EMZ     | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) | EMZ     | Date       | Site | DO (%)     | Chl-a (mg L <sup>-1</sup> ) |
| Canning | 5/01/2016  | RIV  | 54.7   | 0.012                       | Canning | 21/03/2017 | RIV  | 75.7       | 0.056                       |
| Canning | 12/01/2016 | RIV  | 81.4   | 0.012                       | Canning | 28/03/2017 | RIV  | 55.2       | 0.012                       |
| Canning | 19/01/2016 | RIV  | 89.1   | 0.02                        | Canning | 04/04/2017 | RIV  | 76.2       | 0.011                       |
| Canning | 27/01/2016 | RIV  | 78.4   | 0.013                       | Canning | 11/04/2017 | RIV  | 68.2       | 0.0041                      |
| Canning | 2/02/2016  | RIV  | 66.5   | 0.0032                      | Canning | 19/04/2017 | RIV  | 68.8       | 0.0074                      |
| Canning | 9/02/2016  | RIV  | 87.7   | 0.013                       | Canning | 26/04/2017 | RIV  | 78.1       | 0.013                       |
| Canning | 16/02/2016 | RIV  | 81.4   | 0.0074                      | Canning | 02/05/2017 | RIV  | 66.8       | 0.0033                      |
| Canning | 23/02/2016 | RIV  | 65.5   | 0.015                       | Canning | 09/05/2017 | RIV  | 41.7       | 0.011                       |
| Canning | 1/03/2016  | RIV  | 56.7   | 0.0099                      | Canning | 16/05/2017 | RIV  | 38.4       | 0.014                       |
| Canning | 9/03/2016  | RIV  | 81.2   | 0.0077                      | Canning | 23/05/2017 | RIV  | 51.8       | 0.033                       |
| Canning | 15/03/2016 | RIV  | 56.3   | 0.0052                      | Canning | 30/05/2017 | RIV  | 41.8       | 0.019                       |
| Canning | 22/03/2016 | RIV  | 52.5   | 0.014                       | Canning | 03/01/2018 | RIV  | 79         | 0.012                       |
| Canning | 29/03/2016 | RIV  | 64.4   | 0.014                       | Canning | 09/01/2018 | RIV  | 88.3       | 0.01                        |
| Canning | 5/04/2016  | RIV  | 62.3   | 0.011                       | Canning | 16/01/2018 | RIV  | 56.5       | 0.023                       |
| Canning | 12/04/2016 | RIV  | 55.2   | 0.0037                      | Canning | 23/01/2018 | RIV  | 72.8       | 0.013                       |
| Canning | 19/04/2016 | RIV  | 42.7   | 0.02                        | Canning | 30/01/2018 | RIV  | 82.8       | 0.015                       |
| Canning | 27/04/2016 | RIV  | 44.2   | 0.011                       | Canning | 06/02/2018 | RIV  | 73.4       | 0.0046                      |
| Canning | 3/05/2016  | RIV  | 70.6   | 0.015                       | Canning | 13/02/2018 | RIV  | 85.7       | 0.022                       |
| Canning | 10/05/2016 | RIV  | 55.3   | 0.0081                      | Canning | 20/02/2018 | RIV  | 36.2       | 0.0084                      |
| Canning | 17/05/2016 | RIV  | 58.8   | 0.0053                      | Canning | 27/02/2018 | RIV  | 52.5       | 0.0055                      |
| Canning | 24/05/2016 | RIV  | 50.6   | 0.064                       | Canning | 07/03/2018 | RIV  | 43.5       | 0.0086                      |
| Canning | 31/05/2016 | RIV  | 63.6   | 0.012                       | Canning | 13/03/2018 | RIV  | 71.8       | 0.0059                      |
| Canning | 04/01/2017 | RIV  | 108.6  | 0.0097                      | Canning | 20/03/2018 | RIV  | 81.5       | 0.011                       |
| Canning | 10/01/2017 | RIV  | 107.9  | 0.02                        | Canning | 27/03/2018 | RIV  | 42.7       | 0.0075                      |
| Canning | 17/01/2017 | RIV  | 126.2  | 0.018                       | Canning | 04/04/2018 | RIV  | 69.5       | 0.0091                      |
| Canning | 24/01/2017 | RIV  | 82.1   | 0.0076                      | Canning | 10/04/2018 | RIV  | 68.6       | 0.0068                      |
| Canning | 31/01/2017 | RIV  | 58.9   | 0.029                       | Canning | 17/04/2018 | RIV  | 80.8       | 0.027                       |
| Canning | 07/02/2017 | RIV  | 100.2  | 0.0094                      | Canning | 24/04/2018 | RIV  | 45.5       | 0.0036                      |
| Canning | 14/02/2017 | RIV  | 45.4   | 0.0024                      | Canning | 01/05/2018 | RIV  | 50         | 0.016                       |
| Canning | 21/02/2017 | RIV  | 70.8   | 0.011                       | Canning | 08/05/2018 | RIV  | 58.9       | 0.0078                      |
| Canning | 28/02/2017 | RIV  | 83.6   | 0.0078                      | Canning | 15/05/2018 | RIV  | 56.3       | 0.0061                      |
| Canning | 08/03/2017 | RIV  | 70.1   | 0.013                       | Canning | 22/05/2018 | RIV  | 50.7       | 0.0052                      |
| Canning | 14/03/2017 | RIV  | 66.8   | 0.042                       | Canning | 29/05/2018 | RIV  | 41.6       | 0.0068                      |
|         |            |      |        |                             |         |            |      |            |                             |

Table A2.9: Raw surface chlorophyll-a (Chl-a (mg L<sup>-1</sup>)) and surface dissolved oxygen (DO (%)) compliance data for the 2019 KPI period for the Lower-Swan Canning (Lower), Middle (Middle) and Upper Swan Estuary (Upper).

| EMZ   | Date       | Site   | DO (%) | Chl-a (mg L <sup>-1</sup> ) | EMZ    | Date       | Site | DO (%) | Chl-a (mg/L) | EMZ   | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) |
|-------|------------|--------|--------|-----------------------------|--------|------------|------|--------|--------------|-------|------------|------|--------|-----------------------------|
| Lower | 03/01/2017 | SWL276 | 99.8   |                             | Middle | 3/01/2017  | NIL  | 99.4   | 0.0047       | Upper | 03/01/2017 | SUC  | 97.8   | 0.011                       |
| Lower | 09/01/2017 | SWL300 | 97     | 0.003                       | Middle | 9/01/2017  | NIL  | 105.3  | 0.0036       | Upper | 09/01/2017 | RON  | 98.6   | 0.013                       |
| Lower | 16/01/2017 | SWL301 | 90.3   | 0.002                       | Middle | 16/01/2017 | STJ  | 85.1   | 0.019        | Upper | 16/01/2017 | SUC  | 83.1   | 0.013                       |
| Lower | 23/01/2017 | SWL270 | 109.2  | 0.001                       | Middle | 23/01/2017 | STJ  | 105.9  | 0.021        |       | 23/01/2017 | RON  | 96.2   | 0.017                       |
| Lower | 30/01/2017 | SWL140 | 90.1   | 0.004                       | Middle | 30/01/2017 | NIL  | 85.7   | 0.013        |       | 30/01/2017 | SUC  | 74.8   | 0.036                       |
| Lower | 06/02/2017 | SWL182 | 94     | 0.013                       | Middle | 6/02/2017  | MAY  | 51.1   | 0.0007       |       | 06/02/2017 | SUC  | 90.1   | 0.0024                      |
| Lower | 15/02/2017 | SWL177 | 66.4   | 0.003                       | Middle | 15/02/2017 | NIL  | 57.1   | 0.0032       | Upper | 15/02/2017 | SUC  | 68     | 0.0048                      |
| Lower | 20/02/2017 | SWL192 | 80.3   | 0.004                       | Middle | 20/02/2017 | STJ  | 62.9   | 0.0083       | Upper | 20/02/2017 | RON  | 76.8   | 0.007                       |
| Lower | 27/02/2017 | SWL284 | 95.1   | 0.025                       | Middle | 27/02/2017 | STJ  | 79.1   | 0.022        | Upper | 27/02/2017 | SUC  | 77.6   | 0.023                       |
| Lower | 07/03/2017 | SWL257 | 125.9  | 0.039                       | Middle | 7/03/2017  | MAY  | 104.9  | 0.063        | Upper | 07/03/2017 | KIN  | 157    | 0.052                       |
| Lower | 13/03/2017 | SWL258 | 84.5   | 0.006                       | Middle | 13/03/2017 | MAY  | 107.3  | 0.027        | Upper | 13/03/2017 | KIN  | 88.9   | 0.042                       |
| Lower | 20/03/2017 | SWL153 | 116.7  | 0.03                        | Middle | 20/03/2017 | STJ  | 87     | 0.022        | Upper | 20/03/2017 | RON  | 114.7  | 0.028                       |
| Lower | 27/03/2017 | SWL139 | 74.1   | 0.025                       | Middle | 27/03/2017 | STJ  | 72.9   | 0.027        | Upper | 27/03/2017 | RON  | 164.6  | 0.057                       |
| Lower | 03/04/2017 | SWL053 | 97.6   | 0.003                       | Middle | 3/04/2017  | MAY  | 151.8  | 0.041        | Upper | 03/04/2017 | RON  | 95.9   | 0.028                       |
| Lower | 10/04/2017 | SWL204 | 84.4   | 0.002                       | Middle | 10/04/2017 | MAY  | 127.4  | 0.036        | Upper | 10/04/2017 | SUC  | 75     | 0.036                       |
| Lower | 18/04/2017 | SWL149 | 90.2   | 0.002                       | Middle | 18/04/2017 | MAY  | 98.6   | 0.065        | Upper | 18/04/2017 | KIN  | 148.4  | 0.051                       |
| Lower | 24/04/2017 | SWL247 | 103.3  | 0.002                       | Middle | 24/04/2017 | NIL  | 85.5   | 0.018        | Upper | 24/04/2017 | SUC  | 99.6   | 0.03                        |
| Lower | 01/05/2017 | SWL170 | 94.9   | 0.003                       | Middle | 1/05/2017  | NIL  | 75.2   | 0.0043       | Upper | 01/05/2017 | RON  | 90.9   | 0.027                       |
| Lower | 08/05/2017 | SWL252 | 111.4  | 0.006                       | Middle | 8/05/2017  | STJ  | 102.3  | 0.022        | Upper | 08/05/2017 | KIN  | 138.5  | 0.3                         |
| Lower | 15/05/2017 | SWL153 | 99.2   | 0.005                       | Middle | 15/05/2017 | NIL  | 91.2   | 0.011        | Upper | 15/05/2017 | KIN  | 92.5   | 0.045                       |
| Lower | 22/05/2017 | SWL252 | 91.2   | 0.001                       | Middle | 22/05/2017 | NIL  | 93.8   | 0.015        | Upper | 22/05/2017 | KIN  | 84.4   | 0.019                       |
| Lower | 29/05/2017 | SWL278 | 103.4  | 0.004                       | Middle | 29/05/2017 | NIL  | 117.7  | 0.041        | Upper | 29/05/2017 | KIN  | 90.1   | 0.031                       |
| Lower | 02/01/2018 | SWL113 | 83.5   | <0.001                      | Middle | 02/01/2018 | MAY  | 96.1   | 0.012        | Upper | 02/01/2018 | KIN  | 127.2  | 0.005                       |
| Lower | 08/01/2018 | SWL284 | 95.5   | 0.002                       | Middle | 08/01/2018 | MAY  | 96     | 0.011        | Upper | 08/01/2018 | SUC  | 106.5  | 0.041                       |
| Lower | 15/01/2018 | SWL055 | 88.6   | 0.004                       | Middle | 15/01/2018 | STJ  | 73.6   | 0.0073       | Upper | 22/01/2018 | SUC  | 137.6  | 0.019                       |
| Lower | 22/01/2018 | SWL233 | 98.8   | 0.002                       | Middle | 22/01/2018 | STJ  | 60     | 0.0057       | Upper | 29/01/2018 | SUC  | 103.4  | 0.033                       |
| Lower | 29/01/2018 | SWL161 | 87.9   | 0.003                       | Middle | 29/01/2018 | STJ  | 88.3   | 0.027        | Upper | 05/02/2018 | RON  | 88.8   | 0.028                       |
| Lower | 05/02/2018 | SWL225 | 106.2  | 0.001                       | Middle | 05/02/2018 | STJ  | 89.4   | 0.02         | Upper | 12/02/2018 | KIN  | 114.9  | 0.024                       |
| Lower | 12/02/2018 | SWL232 | 96     | 0.003                       | Middle | 12/02/2018 | STJ  | 85.2   | 0.013        | Upper | 19/02/2018 | RON  | 101.3  | 0.03                        |
| Lower | 19/02/2018 | SWL262 | 96.8   | 0.003                       | Middle | 19/02/2018 | STJ  | 83.5   | 0.013        | Upper | 26/02/2018 | SUC  | 73.5   | 0.02                        |
| Lower | 26/02/2018 | SWL183 | 90.4   | 0.003                       | Middle | 26/02/2018 | MAY  | 87.6   | 0.015        | Upper | 06/03/2018 | KIN  | 109.7  | 0.021                       |
| Lower | 06/03/2018 | SWL227 | 101.6  | 0.003                       | Middle | 06/03/2018 | STJ  | 129.2  | 0.025        | Upper | 12/03/2018 | KIN  | 109.2  | 0.0078                      |
| Lower | 12/03/2018 | SWL301 | 91     | 0.002                       | Middle | 12/03/2018 | NIL  | 107.9  | 0.022        | Upper | 19/03/2018 | RON  | 103.3  | 0.034                       |
| Lower | 19/03/2018 | SWL142 | 94.8   | 0.003                       | Middle | 19/03/2018 | STJ  | 82.3   | 0.012        | Upper | 26/03/2018 | KIN  | 79.9   | 0.021                       |
| Lower | 26/03/2018 | SWL221 | 98.5   | 0.002                       | Middle | 26/03/2018 | NIL  | 87     | 0.011        | Upper | 03/04/2018 | KIN  | 121.2  | 0.032                       |
| Lower | 03/04/2018 | SWL043 | 98.8   | 0.001                       | Middle | 03/04/2018 | NIL  | 101.5  | 0.008        | Upper | 09/04/2018 | KIN  | 82.7   | 0.031                       |
| Lower | 09/04/2018 | SWL253 | 93.4   | 0.001                       | Middle | 09/04/2018 | NIL  | 126.8  | 0.056        | Upper | 16/04/2018 | SUC  | 102.9  | 0.031                       |
| Lower | 16/04/2018 | SWL276 | 89.7   | 0.012                       | Middle | 16/04/2018 | MAY  | 124.3  | 0.026        | Upper | 23/04/2018 | SUC  | 100.5  | 0.032                       |
| Lower | 23/04/2018 | SWL299 | 92.2   | 0.003                       | Middle | 23/04/2018 | MAY  | 69.8   | 0.017        | Upper | 30/04/2018 | RON  | 68.1   | 0.0077                      |
| Lower | 30/04/2018 | SWL024 | 98.8   | 0.003                       | Middle | 30/04/2018 | STJ  | 98.3   | 0.012        | Upper | 07/05/2018 | SUC  | 71.8   | 0.0064                      |
| Lower | 07/05/2018 | SWL201 | 93.1   | 0.003                       | Middle | 07/05/2018 | MAY  | 92.8   | 0.028        | Upper | 14/05/2018 | SUC  | 95.6   | 0.025                       |

|       |            |        |       |        |        | 1          |     |       |        |       | 1          |     |       |        |
|-------|------------|--------|-------|--------|--------|------------|-----|-------|--------|-------|------------|-----|-------|--------|
| Lower | 14/05/2018 | SWL035 | 88    | <0.001 | Middle | 14/05/2018 | NIL | 119.3 | 0.017  | Upper | 21/05/2018 | KIN | 61.4  | 0.0011 |
| Lower | 21/05/2018 | SWL053 | 85.1  | 0.002  | Middle | 21/05/2018 | MAY | 54.6  | 0.002  | Upper | 28/05/2018 | RON | 79.9  | 0.017  |
| Lower | 28/05/2018 | SWL221 | 93.6  | 0.013  | Middle | 28/05/2018 | STJ | 69.9  | 0.007  | Upper | 02/01/2019 | KIN | 126   | 0.036  |
| Lower | 2/01/2019  | BLA    | 96.5  | 0.0021 | Middle | 02/01/2019 | MAY | 96.7  | 0.027  | Upper | 02/01/2019 | MSB | 50.2  | 0.0015 |
| Lower | 2/01/2019  | HEA    | 96.1  | 0.0027 | Middle | 02/01/2019 | NIL | 93.7  | 0.0054 | Upper | 07/01/2019 | KIN | 123.1 | 0.017  |
| Lower | 7/01/2019  | ARM    | 99.3  | 0.001  | Middle | 07/01/2019 | NIL | 93.7  | 0.0038 | Upper | 07/01/2019 | WMP | 107.7 | 0.0058 |
| Lower | 7/01/2019  | HEA    | 96.4  | 0.0013 | Middle | 07/01/2019 | STJ | 106.9 | 0.017  | Upper | 21/01/2019 | KIN | 103.8 | 0.016  |
| Lower | 21/01/2019 | ARM    | 100.6 | 0.0011 | Middle | 21/01/2019 | MAY | 135.8 | 0.026  | Upper | 21/01/2019 | WMP | 111.3 | 0.025  |
| Lower | 21/01/2019 | BLA    | 98.9  | 0.0015 | Middle | 21/01/2019 | NIL | 105.8 | 0.0017 | Upper | 04/02/2019 | KIN | 130.3 | 0.053  |
| Lower | 4/02/2019  | ARM    | 93.7  | 0.0022 | Middle | 04/02/2019 | MAY | 90.1  | 0.013  | Upper | 04/02/2019 | MSB | 63.2  | 0.0025 |
| Lower | 4/02/2019  | BLA    | 97.9  | 0.0026 | Middle | 04/02/2019 | RON | 113.1 | 0.0036 | Upper | 18/02/2019 | KIN | 141   | 0.02   |
| Lower | 18/02/2019 | ARM    | 92.8  | 0.0015 | Middle | 18/02/2019 | MAY | 92.7  | 0.015  | Upper | 18/02/2019 | SUC | 85.6  | 0.0061 |
| Lower | 18/02/2019 | NAR    | 93.8  | 0.0031 | Middle | 18/02/2019 | STJ | 111.5 | 0.025  | Upper | 18/03/2019 | KIN | 149.8 | 0.045  |
| Lower | 18/03/2019 | ARM    | 96    | 0.0024 | Middle | 18/03/2019 | MAY | 113.2 | 0.017  | Upper | 18/03/2019 | SUC | 102   | 0.018  |
| Lower | 18/03/2019 | HEA    | 94.2  | 0.0008 | Middle | 18/03/2019 | NIL | 97    | 0.0048 | Upper | 01/04/2019 | KIN | 122.8 | 0.016  |
| Lower | 1/04/2019  | ARM    | 99.2  | 0.0077 | Middle | 01/04/2019 | NIL | 105.2 | 0.0087 | Upper | 01/04/2019 | SUC | 97.7  | 0.013  |
| Lower | 1/04/2019  | NAR    | 88.8  | 0.0022 | Middle | 01/04/2019 | RON | 107.9 | 0.011  | Upper | 15/04/2019 | MSB | 82.3  | 0.032  |
| Lower | 15/04/2019 | HEA    | 92.2  | 0.0021 | Middle | 15/04/2019 | RON | 103.4 | 0.013  | Upper | 15/04/2019 | WMP | 124.1 | 0.02   |
| Lower | 15/04/2019 | NAR    | 90.7  | 0.0005 | Middle | 15/04/2019 | STJ | 89.2  | 0.025  | Upper | 29/04/2019 | KIN | 78.7  | 0.013  |
| Lower | 29/04/2019 | ARM    | 99    | 0.0021 | Middle | 29/04/2019 | NIL | 103.6 | 0.011  | Upper | 29/04/2019 | SUC | 79.4  | 0.015  |
| Lower | 29/04/2019 | HEA    | 95.9  | 0.0022 | Middle | 29/04/2019 | STJ | 109.8 | 0.017  | Upper | 13/05/2019 | MSB | 83.1  | 0.016  |
| Lower | 13/05/2019 | ARM    | 102.3 | 0.001  | Middle | 13/05/2019 | MAY | 76.7  | 0.0029 | Upper | 13/05/2019 | SUC | 105.7 | 0.012  |
| Lower | 13/05/2019 | BLA    | 95.3  | 0.0008 | Middle | 13/05/2019 | NIL | 86.5  | 0.0033 | Upper | 27/05/2019 | MSB | 82    | 0.019  |
| Lower | 27/05/2019 | ARM    | 96    | 0.0033 | Middle | 27/05/2019 | MAY | 141.1 | 0.039  | Upper | 27/05/2019 | SUC | 87.4  | 0.0093 |
| Lower | 27/05/2019 | NAR    | 91.7  | 0.002  | Middle | 27/05/2019 | STJ | 108.8 | 0.022  |       |            |     |       |        |

Table A2.10: Raw surface chlorophyll-a (Chl-a (mg L<sup>-1</sup>)) and surface dissolved oxygen (DO (%)) compliance data for the 2019 KPI period for the Canning Estuary (Canning).

|         |            | •    |        |                             |         |            |      | ·      |                             |
|---------|------------|------|--------|-----------------------------|---------|------------|------|--------|-----------------------------|
| EMZ     | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) | EMZ     | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) |
| Canning | 04/01/2017 | RIV  | 108.6  | 0.0097                      | Canning | 13/02/2018 | RIV  | 85.7   | 0.022                       |
| Canning | 10/01/2017 | RIV  | 107.9  | 0.02                        | Canning | 20/02/2018 | RIV  | 36.2   | 0.0084                      |
| Canning | 17/01/2017 | RIV  | 126.2  | 0.018                       | Canning | 27/02/2018 | RIV  | 52.5   | 0.0055                      |
| Canning | 24/01/2017 | RIV  | 82.1   | 0.0076                      | Canning | 07/03/2018 | RIV  | 43.5   | 0.0086                      |
| Canning | 31/01/2017 | RIV  | 58.9   | 0.029                       | Canning | 13/03/2018 | RIV  | 71.8   | 0.0059                      |
| Canning | 07/02/2017 | RIV  | 100.2  | 0.0094                      | Canning | 20/03/2018 | RIV  | 81.5   | 0.011                       |
| Canning | 14/02/2017 | RIV  | 45.4   | 0.0024                      | Canning | 27/03/2018 | RIV  | 42.7   | 0.0075                      |
| Canning | 21/02/2017 | RIV  | 70.8   | 0.011                       | Canning | 04/04/2018 | RIV  | 69.5   | 0.0091                      |
| Canning | 28/02/2017 | RIV  | 83.6   | 0.0078                      | Canning | 10/04/2018 | RIV  | 68.6   | 0.0068                      |
| Canning | 08/03/2017 | RIV  | 70.1   | 0.013                       | Canning | 17/04/2018 | RIV  | 80.8   | 0.027                       |
| Canning | 14/03/2017 | RIV  | 66.8   | 0.042                       | Canning | 24/04/2018 | RIV  | 45.5   | 0.0036                      |
| Canning | 21/03/2017 | RIV  | 75.7   | 0.056                       | Canning | 01/05/2018 | RIV  | 50     | 0.016                       |
| Canning | 28/03/2017 | RIV  | 55.2   | 0.012                       | Canning | 08/05/2018 | RIV  | 58.9   | 0.0078                      |
| Canning | 04/04/2017 | RIV  | 76.2   | 0.011                       | Canning | 15/05/2018 | RIV  | 56.3   | 0.0061                      |
| Canning | 11/04/2017 | RIV  | 68.2   | 0.0041                      | Canning | 22/05/2018 | RIV  | 50.7   | 0.0052                      |
| Canning | 19/04/2017 | RIV  | 68.8   | 0.0074                      | Canning | 29/05/2018 | RIV  | 41.6   | 0.0068                      |
| Canning | 26/04/2017 | RIV  | 78.1   | 0.013                       | Canning | 3/01/2019  | RIV  | 54.6   | 0.0063                      |
| Canning | 02/05/2017 | RIV  | 66.8   | 0.0033                      | Canning | 8/01/2019  | RIV  | 82.5   | 0.0099                      |
| Canning | 09/05/2017 | RIV  | 41.7   | 0.011                       | Canning | 22/01/2019 | RIV  | 54.9   | 0.014                       |
| Canning | 16/05/2017 | RIV  | 38.4   | 0.014                       | Canning | 5/02/2019  | RIV  | 86.5   | 0.0086                      |
| Canning | 23/05/2017 | RIV  | 51.8   | 0.033                       | Canning | 19/02/2019 | RIV  | 80.2   | 0.0052                      |
| Canning | 30/05/2017 | RIV  | 41.8   | 0.019                       | Canning | 6/03/2019  | RIV  | 75.9   | 0.014                       |
| Canning | 03/01/2018 | RIV  | 79     | 0.012                       | Canning | 19/03/2019 | RIV  | 57.2   | 0.007                       |
| Canning | 09/01/2018 | RIV  | 88.3   | 0.01                        | Canning | 2/04/2019  | RIV  | 51.3   | 0.0093                      |
| Canning | 16/01/2018 | RIV  | 56.5   | 0.023                       | Canning | 16/04/2019 | RIV  | 52.6   | 0.011                       |
| Canning | 23/01/2018 | RIV  | 72.8   | 0.013                       | Canning | 30/04/2019 | RIV  | 56.8   | 0.0079                      |
| Canning | 30/01/2018 | RIV  | 82.8   | 0.015                       | Canning | 14/05/2019 | RIV  | 71.2   | 0.0097                      |
| Canning | 06/02/2018 | RIV  | 73.4   | 0.0046                      | Canning | 28/05/2019 | RIV  | 61.5   | 0.019                       |

Table 18: Raw surface chlorophyll-a (Chl-a (mg L<sup>-1</sup>)) and surface dissolved oxygen (DO (%)) compliance data for the 2020 KPI period for the Lower-Swan Canning (Lower), Middle (Middle) and Upper Swan Estuary (Upper).

| EMZ   | Date       | Site   | DO (%) | Chl-a (mg L <sup>-1</sup> ) | EMZ    | Date       | Site | DO (%) | Chl-a (mg/L) | EMZ   | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) |
|-------|------------|--------|--------|-----------------------------|--------|------------|------|--------|--------------|-------|------------|------|--------|-----------------------------|
| Lower | 02/01/2018 | SWL113 | 83.5   | <0.001                      | Middle | 02/01/2018 | MAY  | 96.1   | 0.012        | Upper | 02/01/2018 | KIN  | 127.2  | 0.005                       |
| Lower | 08/01/2018 | SWL284 | 95.5   | 0.002                       | Middle | 08/01/2018 | MAY  | 96     | 0.011        | Upper | 08/01/2018 | SUC  | 106.5  | 0.041                       |
| Lower | 15/01/2018 | SWL055 | 88.6   | 0.004                       | Middle | 15/01/2018 | STJ  | 73.6   | 0.0073       | Upper | 22/01/2018 | SUC  | 137.6  | 0.019                       |
| Lower | 22/01/2018 | SWL233 | 98.8   | 0.002                       | Middle | 22/01/2018 | STJ  | 60     | 0.0057       | Upper | 29/01/2018 | SUC  | 103.4  | 0.033                       |
| Lower | 29/01/2018 | SWL161 | 87.9   | 0.003                       | Middle | 29/01/2018 | STJ  | 88.3   | 0.027        | Upper | 05/02/2018 | RON  | 88.8   | 0.028                       |
| Lower | 05/02/2018 | SWL225 | 106.2  | 0.001                       | Middle | 05/02/2018 | STJ  | 89.4   | 0.02         | Upper | 12/02/2018 | KIN  | 114.9  | 0.024                       |
| Lower | 12/02/2018 | SWL232 | 96     | 0.003                       | Middle | 12/02/2018 | STJ  | 85.2   | 0.013        | Upper | 19/02/2018 | RON  | 101.3  | 0.03                        |
| Lower | 19/02/2018 | SWL262 | 96.8   | 0.003                       | Middle | 19/02/2018 | STJ  | 83.5   | 0.013        | Upper | 26/02/2018 | SUC  | 73.5   | 0.02                        |
| Lower | 26/02/2018 | SWL183 | 90.4   | 0.003                       | Middle | 26/02/2018 | MAY  | 87.6   | 0.015        | Upper | 06/03/2018 | KIN  | 109.7  | 0.021                       |
| Lower | 06/03/2018 | SWL227 | 101.6  | 0.003                       | Middle | 06/03/2018 | STJ  | 129.2  | 0.025        | Upper | 12/03/2018 | KIN  | 109.2  | 0.0078                      |
| Lower | 12/03/2018 | SWL301 | 91     | 0.002                       | Middle | 12/03/2018 | NIL  | 107.9  | 0.022        | Upper | 19/03/2018 | RON  | 103.3  | 0.034                       |
| Lower | 19/03/2018 | SWL142 | 94.8   | 0.003                       | Middle | 19/03/2018 | STJ  | 82.3   | 0.012        | Upper | 26/03/2018 | KIN  | 79.9   | 0.021                       |
| Lower | 26/03/2018 | SWL221 | 98.5   | 0.002                       | Middle | 26/03/2018 | NIL  | 87     | 0.011        | Upper | 03/04/2018 | KIN  | 121.2  | 0.032                       |
| Lower | 03/04/2018 | SWL043 | 98.8   | 0.001                       | Middle | 03/04/2018 | NIL  | 101.5  | 0.008        | Upper | 09/04/2018 | KIN  | 82.7   | 0.031                       |
| Lower | 09/04/2018 | SWL253 | 93.4   | 0.001                       | Middle | 09/04/2018 | NIL  | 126.8  | 0.056        | Upper | 16/04/2018 | SUC  | 102.9  | 0.031                       |
| Lower | 16/04/2018 | SWL276 | 89.7   | 0.012                       | Middle | 16/04/2018 | MAY  | 124.3  | 0.026        | Upper | 23/04/2018 | SUC  | 100.5  | 0.032                       |
| Lower | 23/04/2018 | SWL299 | 92.2   | 0.003                       | Middle | 23/04/2018 | MAY  | 69.8   | 0.017        | Upper | 30/04/2018 | RON  | 68.1   | 0.0077                      |
| Lower | 30/04/2018 | SWL024 | 98.8   | 0.003                       | Middle | 30/04/2018 | STJ  | 98.3   | 0.012        | Upper | 07/05/2018 | SUC  | 71.8   | 0.0064                      |
| Lower | 07/05/2018 | SWL201 | 93.1   | 0.003                       | Middle | 07/05/2018 | MAY  | 92.8   | 0.028        | Upper | 14/05/2018 | SUC  | 95.6   | 0.025                       |
| Lower | 14/05/2018 | SWL035 | 88     | <0.001                      | Middle | 14/05/2018 | NIL  | 119.3  | 0.017        | Upper | 21/05/2018 | KIN  | 61.4   | 0.0011                      |
| Lower | 21/05/2018 | SWL053 | 85.1   | 0.002                       | Middle | 21/05/2018 | MAY  | 54.6   | 0.002        | Upper | 28/05/2018 | RON  | 79.9   | 0.017                       |
| Lower | 28/05/2018 | SWL221 | 93.6   | 0.013                       | Middle | 28/05/2018 | STJ  | 69.9   | 0.007        | Upper | 02/01/2019 | KIN  | 126    | 0.036                       |
| Lower | 2/01/2019  | BLA    | 96.5   | 0.0021                      | Middle | 02/01/2019 | MAY  | 96.7   | 0.027        | Upper | 02/01/2019 | MSB  | 50.2   | 0.0015                      |
| Lower | 2/01/2019  | HEA    | 96.1   | 0.0027                      | Middle | 02/01/2019 | NIL  | 93.7   | 0.0054       | Upper | 07/01/2019 | KIN  | 123.1  | 0.017                       |
| Lower | 7/01/2019  | ARM    | 99.3   | 0.001                       | Middle | 07/01/2019 | NIL  | 93.7   | 0.0038       | Upper | 07/01/2019 | WMP  | 107.7  | 0.0058                      |
| Lower | 7/01/2019  | HEA    | 96.4   | 0.0013                      | Middle | 07/01/2019 | STJ  | 106.9  | 0.017        | Upper | 21/01/2019 | KIN  | 103.8  | 0.016                       |
| Lower | 21/01/2019 | ARM    | 100.6  | 0.0011                      | Middle | 21/01/2019 | MAY  | 135.8  | 0.026        | Upper | 21/01/2019 | WMP  | 111.3  | 0.025                       |
| Lower | 21/01/2019 | BLA    | 98.9   | 0.0015                      | Middle | 21/01/2019 | NIL  | 105.8  | 0.0017       | Upper | 04/02/2019 | KIN  | 130.3  | 0.053                       |
| Lower | 4/02/2019  | ARM    | 93.7   | 0.0022                      | Middle | 04/02/2019 | MAY  | 90.1   | 0.013        | Upper | 04/02/2019 | MSB  | 63.2   | 0.0025                      |
| Lower | 4/02/2019  | BLA    | 97.9   | 0.0026                      | Middle | 04/02/2019 | RON  | 113.1  | 0.0036       | Upper | 18/02/2019 | KIN  | 141    | 0.02                        |
| Lower | 18/02/2019 | ARM    | 92.8   | 0.0015                      | Middle | 18/02/2019 | MAY  | 92.7   | 0.015        | Upper | 18/02/2019 | SUC  | 85.6   | 0.0061                      |
| Lower | 18/02/2019 | NAR    | 93.8   | 0.0031                      | Middle | 18/02/2019 | STJ  | 111.5  | 0.025        | Upper | 18/03/2019 | KIN  | 149.8  | 0.045                       |
| Lower | 18/03/2019 | ARM    | 96     | 0.0024                      | Middle | 18/03/2019 | MAY  | 113.2  | 0.017        | Upper | 18/03/2019 | SUC  | 102    | 0.018                       |
| Lower | 18/03/2019 | HEA    | 94.2   | 0.0008                      | Middle | 18/03/2019 | NIL  | 97     | 0.0048       | Upper | 01/04/2019 | KIN  | 122.8  | 0.016                       |
| Lower | 1/04/2019  | ARM    | 99.2   | 0.0077                      | Middle | 01/04/2019 | NIL  | 105.2  | 0.0087       | Upper | 01/04/2019 | SUC  | 97.7   | 0.013                       |
| Lower | 1/04/2019  | NAR    | 88.8   | 0.0022                      | Middle | 01/04/2019 | RON  | 107.9  | 0.011        | Upper | 15/04/2019 | MSB  | 82.3   | 0.032                       |
| Lower | 15/04/2019 | HEA    | 92.2   | 0.0021                      | Middle | 15/04/2019 | RON  | 103.4  | 0.013        | Upper | 15/04/2019 | WMP  | 124.1  | 0.02                        |
| Lower | 15/04/2019 | NAR    | 90.7   | 0.0005                      | Middle | 15/04/2019 | STJ  | 89.2   | 0.025        | Upper | 29/04/2019 | KIN  | 78.7   | 0.013                       |
| Lower | 29/04/2019 | ARM    | 99     | 0.0021                      | Middle | 29/04/2019 | NIL  | 103.6  | 0.011        | Upper | 29/04/2019 | SUC  | 79.4   | 0.015                       |
| Lower | 29/04/2019 | HEA    | 95.9   | 0.0022                      | Middle | 29/04/2019 | STJ  | 109.8  | 0.017        | Upper | 13/05/2019 | MSB  | 83.1   | 0.016                       |
| Lower | 13/05/2019 | ARM    | 102.3  | 0.001                       | Middle | 13/05/2019 | MAY  | 76.7   | 0.0029       | Upper | 13/05/2019 | SUC  | 105.7  | 0.012                       |

| Lower | 13/05/2019 | BLA | 95.3  | 0.0008 | Middle | 13/05/2019 | NIL | 86.5  | 0.0033 | Upper | 27/05/2019 | MSB | 82    | 0.019  |
|-------|------------|-----|-------|--------|--------|------------|-----|-------|--------|-------|------------|-----|-------|--------|
| Lower | 27/05/2019 | ARM | 96    | 0.0033 | Middle | 27/05/2019 | MAY | 141.1 | 0.039  | Upper | 27/05/2019 | SUC | 87.4  | 0.0093 |
| Lower | 27/05/2019 | NAR | 91.7  | 0.002  | Middle | 27/05/2019 | STJ | 108.8 | 0.022  | Upper | 6/01/2020  | KIN | 130.5 | 0.01   |
| Lower | 6/01/2020  | HEA | 101.6 | 0.0015 | Middle | 6/01/2020  | NIL | 110.3 | 0.0041 | Upper | 6/01/2020  | SUC | 132.6 | 0.013  |
| Lower | 6/01/2020  | NAR | 95.9  | 0.0014 | Middle | 6/01/2020  | STJ | 108.6 | 0.009  | Upper | 20/01/2020 | SUC | 141   | 0.015  |
| Lower | 20/01/2020 | ARM | 97.4  | 0.0017 | Middle | 20/01/2020 | MAY | 107.4 | 0.024  | Upper | 20/01/2020 | WMP | 157.1 | 0.05   |
| Lower | 20/01/2020 | BLA | 100.3 | 0.0025 | Middle | 20/01/2020 | RON | 98.6  | 0.017  | Upper | 3/02/2020  | KIN | 122   | 0.016  |
| Lower | 3/02/2020  | ARM | 94.3  | 0.0021 | Middle | 3/02/2020  | NIL | 104.2 | 0.0055 | Upper | 3/02/2020  | WMP | 121.6 | 0.017  |
| Lower | 3/02/2020  | BLA | 96    | 0.0018 | Middle | 3/02/2020  | STJ | 102   | 0.0083 | Upper | 17/02/2020 | KIN | 109.9 | 0.016  |
| Lower | 17/02/2020 | BLA | 91    | 0.0029 | Middle | 17/02/2020 | MAY | 106.5 | 0.0084 | Upper | 17/02/2020 | SUC | 110   | 0.01   |
| Lower | 17/02/2020 | NAR | 88.4  | 0.0027 | Middle | 17/02/2020 | NIL | 117.2 | 0.0035 | Upper | 3/03/2020  | MSB | 69.3  | 0.012  |
| Lower | 3/03/2020  | HEA | 94.7  | 0.0021 | Middle | 3/03/2020  | MAY | 119.7 | 0.016  | Upper | 3/03/2020  | WMP | 132.6 | 0.015  |
| Lower | 3/03/2020  | NAR | 92.8  | 0.0023 | Middle | 3/03/2020  | NIL | 134.9 | 0.013  | Upper | 16/03/2020 | KIN | 101.9 | 0.033  |
| Lower | 16/03/2020 | BLA | 86.7  | 0.0015 | Middle | 16/03/2020 | NIL | 146.8 | 0.022  | Upper | 16/03/2020 | WMP | 93.3  | 0.01   |
| Lower | 16/03/2020 | HEA | 92.3  | 0.0023 | Middle | 16/03/2020 | RON | 115.5 | 0.026  | Upper | 30/03/2020 | MSB | 44.7  | 0.0046 |
| Lower | 30/03/2020 | ARM | 95.7  | 0.0032 | Middle | 30/03/2020 | MAY | 124.8 | 0.072  | Upper | 30/03/2020 | SUC | 102.9 | 0.021  |
| Lower | 30/03/2020 | BLA | 80.5  | 0.0031 | Middle | 30/03/2020 | STJ | 119.2 | 0.015  | Upper | 14/04/2020 | MSB | NS    | 0.029  |
| Lower | 14/04/2020 | ARM | 98.6  | 0.0017 | Middle | 14/04/2020 | MAY | 68.1  | 0.015  | Upper | 14/04/2020 | SUC | NS    | 0.045  |
| Lower | 14/04/2020 | BLA | 84.3  | 0.0017 | Middle | 14/04/2020 | NIL | 83.7  | 0.0069 | Upper | 28/04/2020 | KIN | 43.9  | 0.0036 |
| Lower | 28/04/2020 | HEA | 93.9  | 0.0029 | Middle | 28/04/2020 | NIL | 96.9  | 0.0098 | Upper | 28/04/2020 | SUC | 62.8  | 0.0033 |
| Lower | 28/04/2020 | NAR | 88.9  | 0.0019 | Middle | 28/04/2020 | RON | 71.8  | 0.017  | Upper | 11/05/2020 | MSB | 77.1  | 0.011  |
| Lower | 11/05/2020 | HEA | 94.8  | 0.0025 | Middle | 11/05/2020 | NIL | 103.9 | 0.011  | Upper | 11/05/2020 | WMP | 41.5  | 0.0017 |
| Lower | 11/05/2020 | NAR | 89.3  | 0.0022 | Middle | 11/05/2020 | STJ | 102.4 | 0.016  | Upper | 26/05/2020 | SUC | 72.5  | 0.0027 |
| Lower | 26/05/2020 | BLA | 92.3  | 0.0012 | Middle | 26/05/2020 | MAY | 73.8  | 0.0072 | Upper | 26/05/2020 | WMP | 61.5  | 0.0021 |
| Lower | 26/05/2020 | HEA | 92.1  | 0.0007 | Middle | 26/05/2020 | STJ | 80.1  | 0.0046 |       |            |     |       |        |

Table A2.12: Raw surface chlorophyll-a (Chl-a (mg L<sup>-1</sup>)) and surface dissolved oxygen (DO (%)) compliance data for the 2020 KPI period for the Canning Estuary (Canning).

| EMZ     | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) | EMZ     | Date       | Site | DO (%) | Chl-a (mg L <sup>-1</sup> ) |
|---------|------------|------|--------|-----------------------------|---------|------------|------|--------|-----------------------------|
| Canning | 03/01/2018 | RIV  | 79     | 0.012                       | Canning | 8/01/2019  | RIV  | 82.5   | 0.0099                      |
| Canning | 09/01/2018 | RIV  | 88.3   | 0.01                        | Canning | 22/01/2019 | RIV  | 54.9   | 0.014                       |
| Canning | 16/01/2018 | RIV  | 56.5   | 0.023                       | Canning | 5/02/2019  | RIV  | 86.5   | 0.0086                      |
| Canning | 23/01/2018 | RIV  | 72.8   | 0.013                       | Canning | 19/02/2019 | RIV  | 80.2   | 0.0052                      |
| Canning | 30/01/2018 | RIV  | 82.8   | 0.015                       | Canning | 6/03/2019  | RIV  | 75.9   | 0.014                       |
| Canning | 06/02/2018 | RIV  | 73.4   | 0.0046                      | Canning | 19/03/2019 | RIV  | 57.2   | 0.007                       |
| Canning | 13/02/2018 | RIV  | 85.7   | 0.022                       | Canning | 2/04/2019  | RIV  | 51.3   | 0.0093                      |
| Canning | 20/02/2018 | RIV  | 36.2   | 0.0084                      | Canning | 16/04/2019 | RIV  | 52.6   | 0.011                       |
| Canning | 27/02/2018 | RIV  | 52.5   | 0.0055                      | Canning | 30/04/2019 | RIV  | 56.8   | 0.0079                      |
| Canning | 07/03/2018 | RIV  | 43.5   | 0.0086                      | Canning | 14/05/2019 | RIV  | 71.2   | 0.0097                      |
| Canning | 13/03/2018 | RIV  | 71.8   | 0.0059                      | Canning | 28/05/2019 | RIV  | 61.5   | 0.019                       |
| Canning | 20/03/2018 | RIV  | 81.5   | 0.011                       | Canning | 7/01/2020  | RIV  | 67.5   | 0.022                       |
| Canning | 27/03/2018 | RIV  | 42.7   | 0.0075                      | Canning | 21/01/2020 | RIV  | 58.6   | 0.02                        |
| Canning | 04/04/2018 | RIV  | 69.5   | 0.0091                      | Canning | 4/02/2020  | RIV  | 73.9   | 0.0084                      |
| Canning | 10/04/2018 | RIV  | 68.6   | 0.0068                      | Canning | 18/02/2020 | RIV  | 165.8  | 0.0092                      |
| Canning | 17/04/2018 | RIV  | 80.8   | 0.027                       | Canning | 4/03/2020  | RIV  | 60.6   | 0.0042                      |
| Canning | 24/04/2018 | RIV  | 45.5   | 0.0036                      | Canning | 17/03/2020 | RIV  | 34.6   | 0.0048                      |
| Canning | 01/05/2018 | RIV  | 50     | 0.016                       | Canning | 31/03/2020 | RIV  | 59.2   | 0.012                       |
| Canning | 08/05/2018 | RIV  | 58.9   | 0.0078                      | Canning | 15/04/2020 | RIV  | 40.9   | 0.0095                      |
| Canning | 15/05/2018 | RIV  | 56.3   | 0.0061                      | Canning | 29/04/2020 | RIV  | 48.7   | 0.0033                      |
| Canning | 22/05/2018 | RIV  | 50.7   | 0.0052                      | Canning | 12/05/2020 | RIV  | 38.1   | 0.0039                      |
| Canning | 29/05/2018 | RIV  | 41.6   | 0.0068                      | Canning | 27/05/2020 | RIV  | 50     | 0.0044                      |
| Canning | 3/01/2019  | RIV  | 54.6   | 0.0063                      |         |            | -    |        | -                           |

## **Appendix 3: Swan Canning catchment trend analyses**

Trend analyses was performed each catchment analyte using the package *mgcv* in the statistical software R. The following generalised additive model (GAM) was fitted to the total nitrogen (TN) and total phosphorus (TP) data for each of catchment site during the peak-flow period from June to November of each year between 01/06/2015-30/11/2019:

## Gam (analyte concentration $\sim$ Year + s(Month, bs = 'tp', k = 6), family = 'gaussian', method = 'REML')

gam = generalised additive model applied through mgcv package

s = smoothing term set up to model spline-based smooths

bs = smoothing basis used within s and set to 'cp'

*tp* = thin plate regression spline – low rank isotropic smoother

k = knots, the internal breakpoints that define the spline. With 6 being the number of months (covariates) analysed.

family = object specifying the distribution and link to use in fitting. Set to 'gaussian'

gaussian = assuming normal distribution of data

method = smoothing parameter estimation method set to 'REML'

REML= restricted maximum likelihood

Peak-flow period was selected to reduce the effect of inconsistencies in the number of sampling events across the ephemeral catchment sites, which generally cease to flow in summer months.

Estimated marginal means (EMMs) for each year with upper and lower 95% confidence intervals were then calculated for each site using month as a factor in the package *emmeans*. Simultaneous tests for general linear hypotheses were subsequently conducted and overlain on the EMMs using Compact Letter Display (CLD) to assess and illustrate the significance in difference between years at each site (EMMs with the same letter are not significantly different between periods) with an overall trend determined based on these findings. See Figures A3.1 to A3.6 for TN and A4.7 to A4.13 for TP.

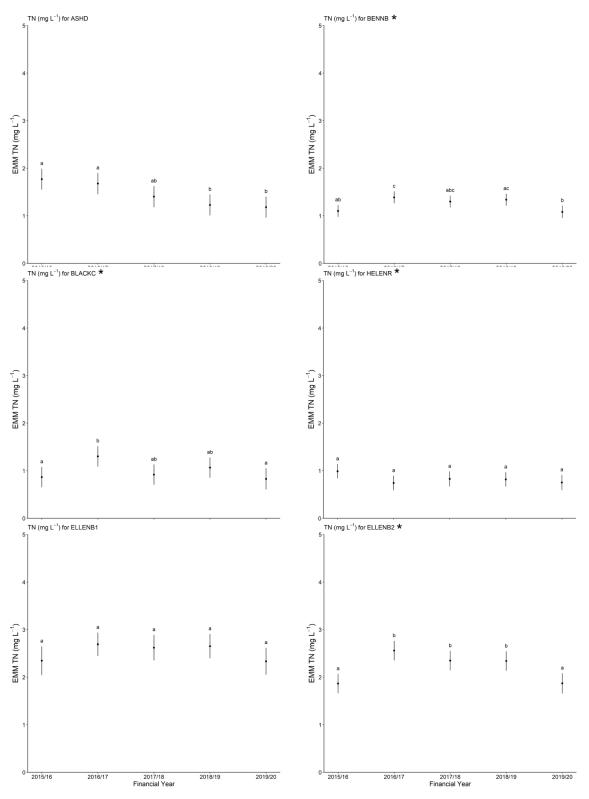



Figure A3.1: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total nitrogen (TN mg L-1) at Ashfield Drain (ASHD), Bennett Brook (BENNB), Blackadder Creek (BLACKC), Helena River (HELENR), and Ellen Brook (ELLENB1 and ELLENB2) within the Upper Swan Catchment with 95% confidence intervals between 2015/16 – 2019/20.

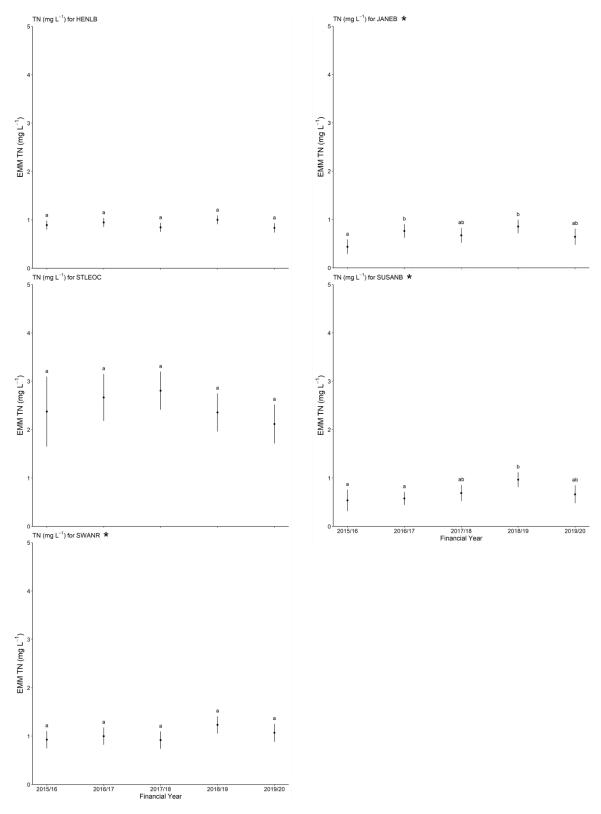



Figure A3.2 Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total nitrogen (TN mg L-1) at Henley Brook (HENLB), Jane Brook (JANEB), St. Leonards Creek (STLEOC), Susannah Brook (SUSANB), and Avon River (SWANR) within the Upper Swan Catchment with 95% confidence intervals between 2015/16 – 2019/20.

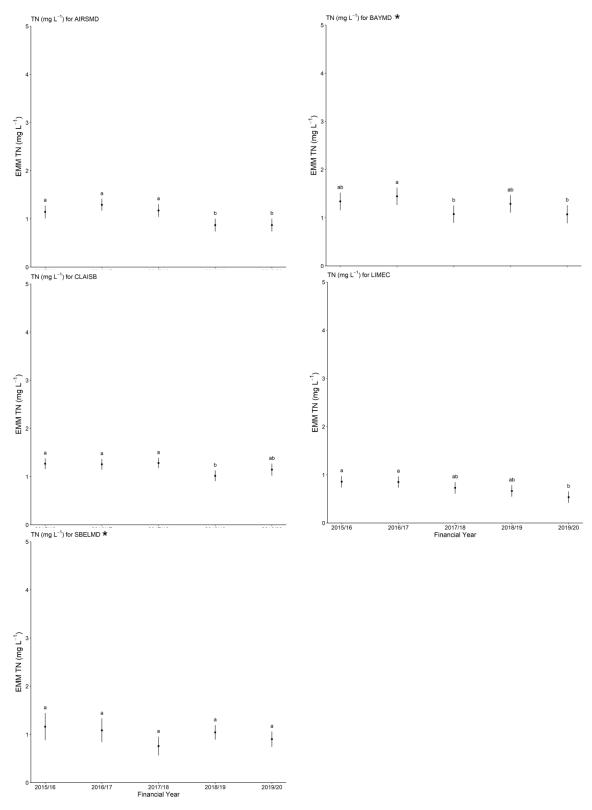



Figure A3.3: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total nitrogen (TN mg L-1) at Perth Airport South Main Drain (AIRSMD), Bayswater Brook Main Drain (BAYMD), Claise Brook (CLAISB), Limestone Creek (LIMEC) and at South Belmont Main Drain (SBELMD) within the Middle Swan Catchment with 95% confidence intervals between 2015/16 – 2019/20.

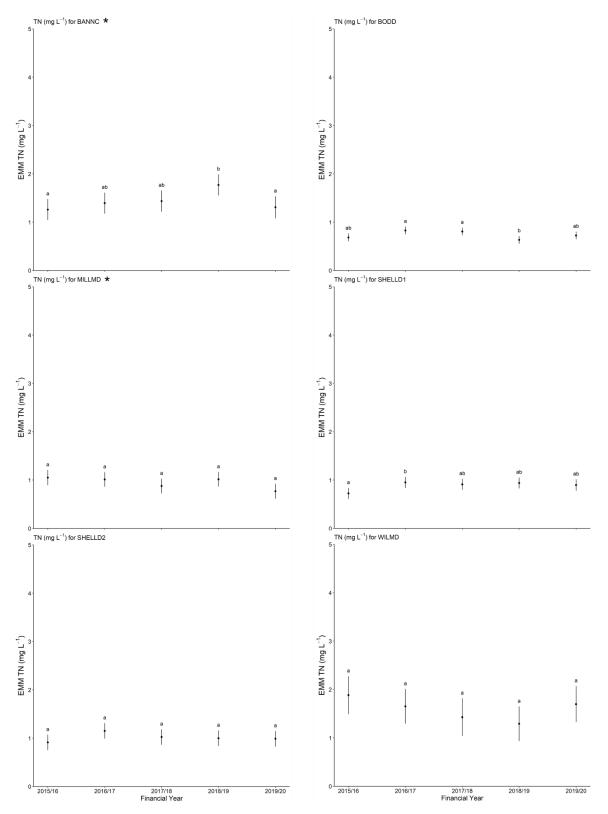



Figure A3.4: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total nitrogen (TN mg L-1) at Bannister Creek (BANNC), South Perth (BODD), Mills Street Main Drain (MILLMD), Bullcreek (SHELLD1 and SHELLD2) and Wilson Main Drain (WILMD) within the Canning Estuary Catchment with 95% confidence intervals between 2015/16 – 2019/20.

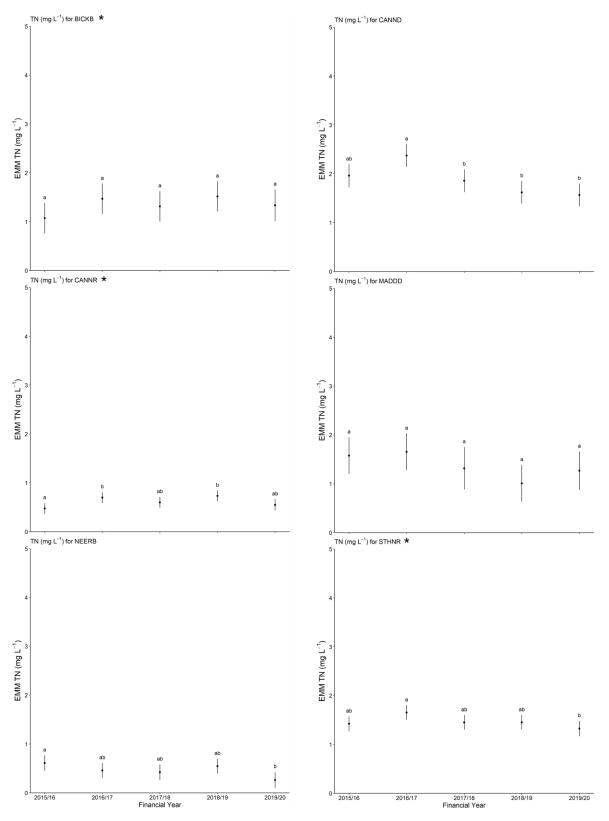



Figure A3.5: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total nitrogen (TN mg L-1) at Bickley Brook (BICKB), Cannington Drain (CANND), Canning River (CANNR), Maddington Main Drain (MADDD), Neerigen Brook (NEERB) and at Southern River (STHNR) within the Canning River Catchment with 95% confidence intervals between 2015/16 – 2019/20.

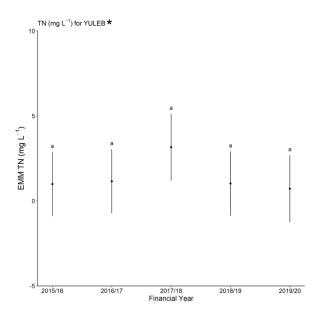



Figure A3.6: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total nitrogen (TN mg L-1) at Yule Brook (YULEB) within the Canning River Catchment with 95% confidence intervals between 2015/16 – 2019/20. Note y-axis scaling differs for YULEB due to increased TN concentrations at this site sites.

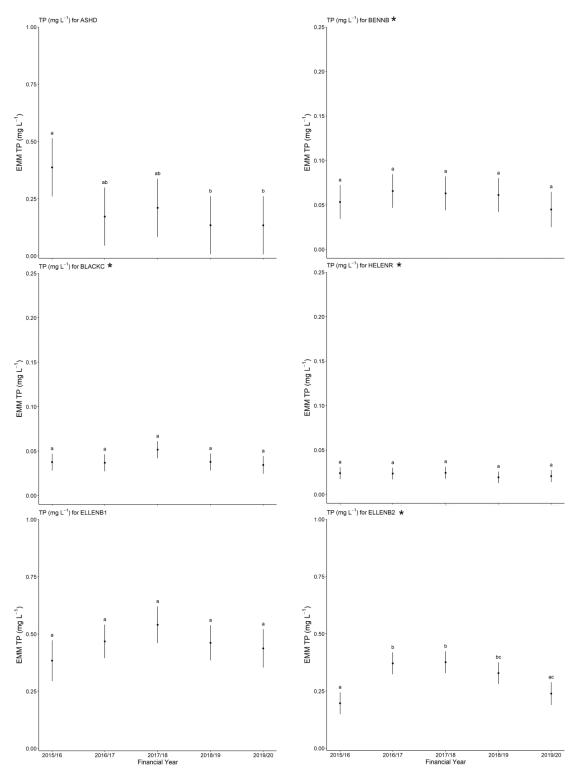



Figure A3.7: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total phosphorus (TP mg L-1) at Ashfield Drain (ASHD), Bennett Brook (BENNB), Blackadder Creek (BLACKC), Helena River (HELENR), and Ellen Brook (ELLENB1 and ELLENB2) within the Upper Swan Catchment with 95% confidence intervals between 2015/16 – 2019/20. Note y-axis scaling differs for ASHD, ELLENB1 and ELLENB2 due to increased TP concentrations at these sites.

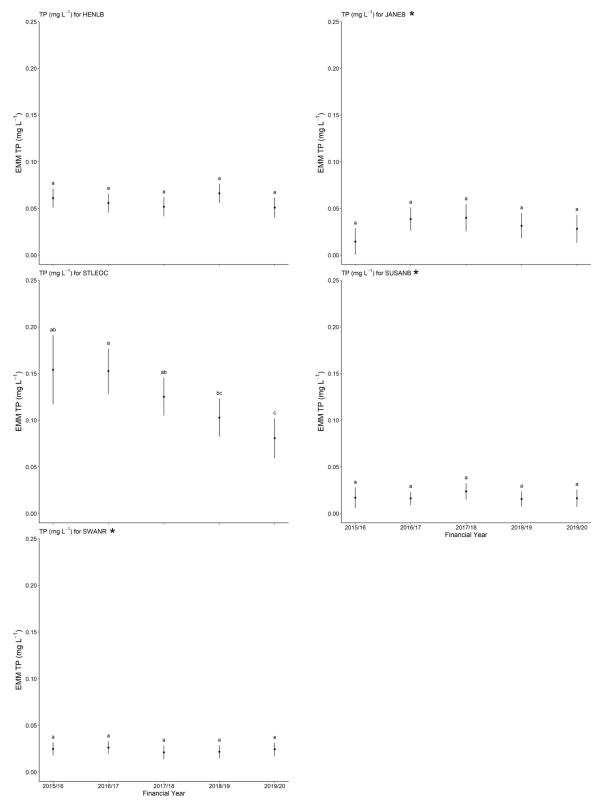



Figure A3.8: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total phosphorus (TP mg L-1) at Henley Brook (HENLB), Jane Brook (JANEB), St. Leonards Creek (STLEOC), Susannah Brook (SUSANB), and Avon River (SWANR) within the Upper Swan Catchment with 95% confidence intervals between 2015/16 – 2019/20.

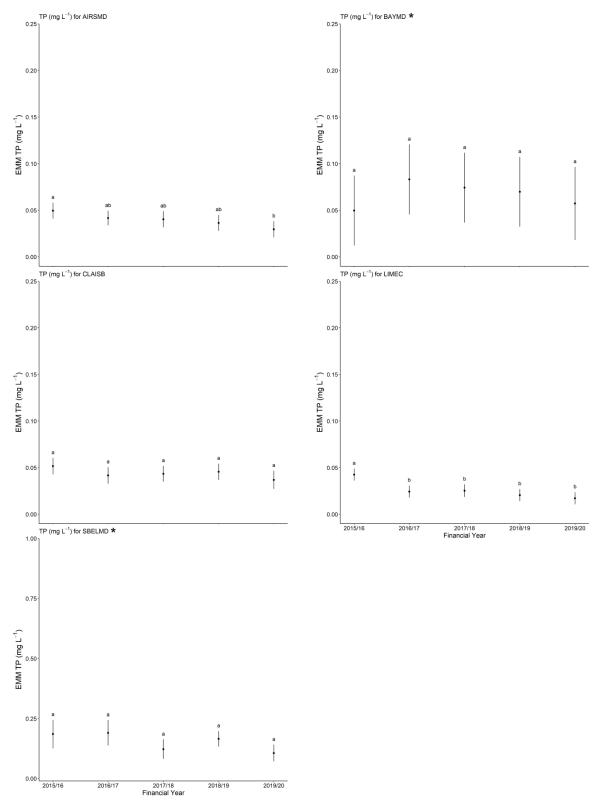



Figure A3.9: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total phosphorus (TP mg L-1) at Perth Airport South Main Drain (AIRSMD), Bayswater Brook Main Drain (BAYMD), Claise Brook (CLAISB), Limestone Creek (LIMEC) and at South Belmont Main Drain (SBELMD) within the Middle Swan Catchment with 95% confidence intervals between 2015/16 – 2019/20. Note y-axis scaling differs for SBELMD due to increased TP concentrations at this site.

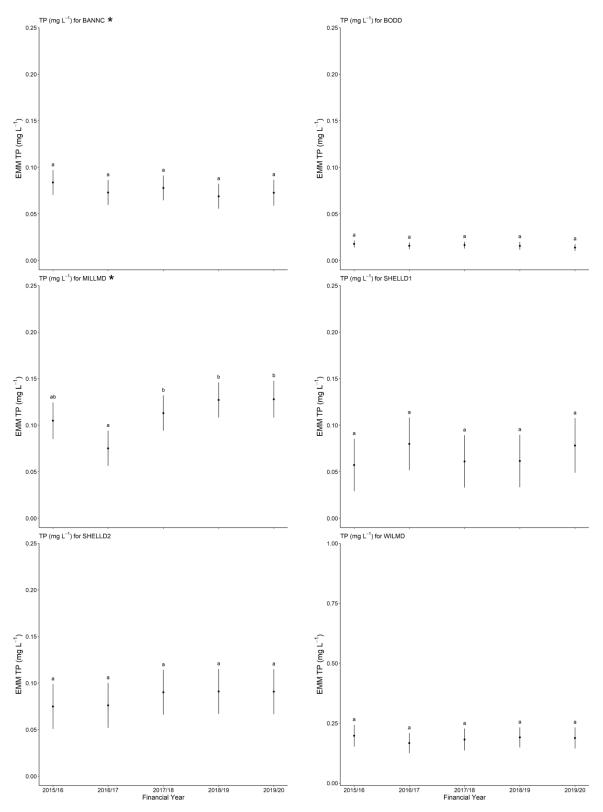



Figure A3.10: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total phosphorus (TP mg L-1) at Bannister Creek (BANNC), South Perth (BODD), Mills Street Main Drain (MILLMD), Bullcreek (SHELLD1 and SHELLD2) and Wilson Main Drain (WILMD) within the Canning Estuary Catchment with 95% confidence intervals between 2015/16 – 2019/20. Note y-axis scaling differs for WILLMD due to increased TP concentrations at this site.

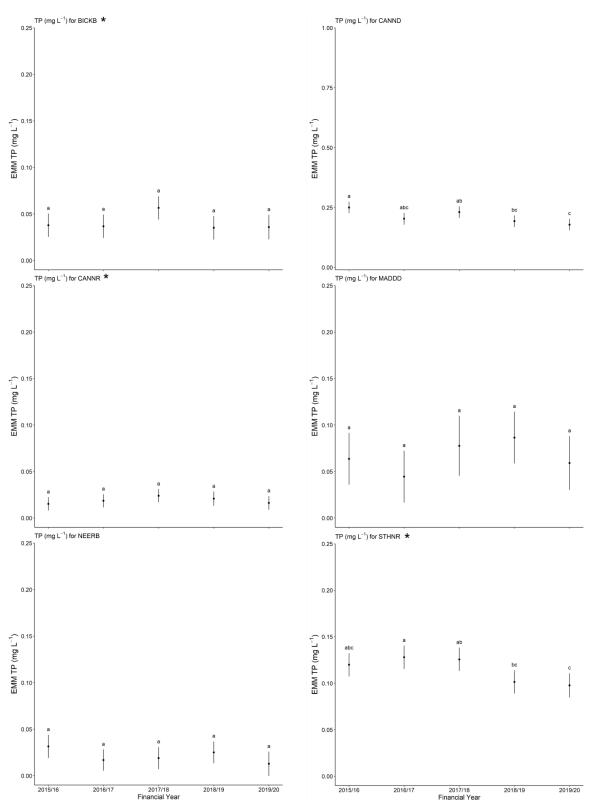



Figure A3.11: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total phosphorus (TP mg L-1) at Bickley Brook (BICKB), Cannington Drain (CANND), Canning River (CANNR), Maddington Main Drain (MADDD), Neerigen Brook (NEERB) and at Southern River (STHNR) within the Canning River Catchment with 95% confidence intervals between 2015/16 – 2019/20. Note y-axis scaling differs for CANND due to increased TP concentrations at this site.

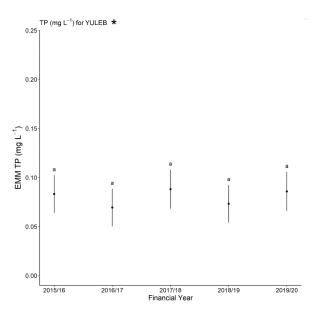



Figure A3.12: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of total phosphorus (TP mg L-1) at Yule Brook (YULEB) within the Canning River Catchment with 95% confidence intervals between 2015/16 – 2019/20.

## Appendix 4: Swan-Canning estuarine data trend analysis

Trend analyses was performed on each analytes sampled using the package *mgcv* in the statistical software R. The following generalised additive model (GAM) was fitted to the five-year dissolved oxygen (DO), chlorophyll-a (Chl-a) data (01/07/2015-30/06/2020) for each ecological management zone (EMZ):

gam(analyte concentration ~ Year + s(Month, bs = 'cp') + Site, family = 'gaussian', method = 'REML')

gam = generalised additive model applied through mgcv package
s = smoothing term set up to model spline-based smooths
bs = smoothing basis used within s and set to 'cp'
cp = cyclical P-spline
family = object specifying the distribution and link to use in fitting. Set to 'gaussian'
gaussian = assuming normal distribution of data
method = smoothing parameter estimation method set to 'REML'
REML= restricted maximum likelihood

Estimated marginal means (EMMs) for each year with upper and lower 95% confidence intervals were then calculated for each EMZ, using site and month as factors in the package *emmeans*. Simultaneous tests for general linear hypotheses were subsequently conducted and overlain on the EMMs using CLD to assess and illustrate the significance in difference between years (EMMs with the same letter are not significantly different between years) at each EMZ with an overall trend determined based on the level of these findings. See Figures A4.1 and A4.2 for chla and A4.3 and A4.4 for dissolved oxygen.

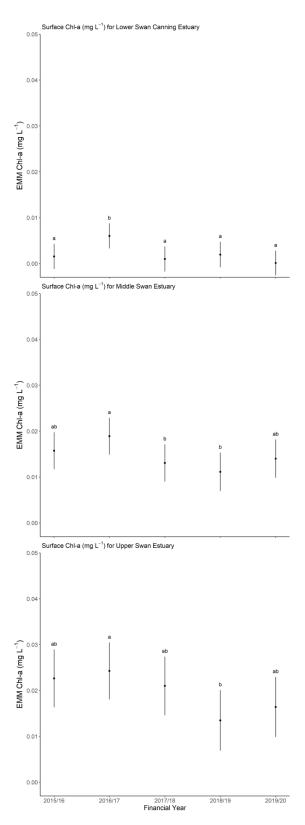



Figure A4.1 Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of chlorophyll a (Chl-a mg L-1) within surface waters of the Lower Swan-Canning Estuary, Middle Swan Estuary and the Upper Swan Estuary with 95% confidence intervals between 2015/16 – 2019/20.

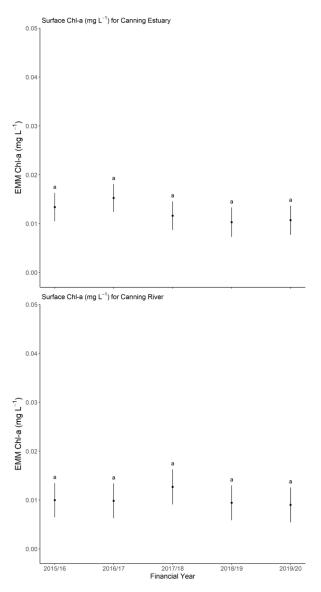



Figure A4.2 Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of chlorophyll a (Chl-a mg L-1) within surface waters of the Canning Estuary and Canning River with 95% confidence intervals between 2015/16 – 2019/20.

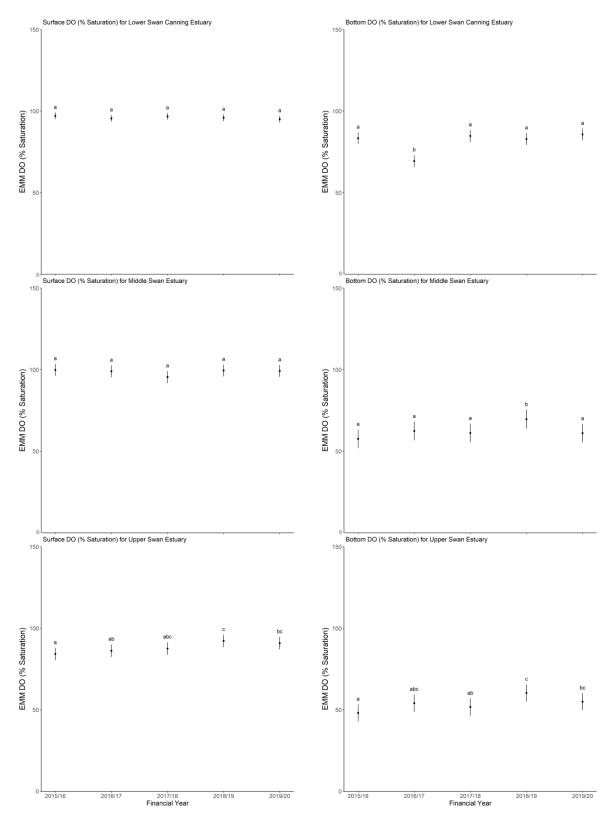



Figure A4.3 Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of dissolved oxygen (% saturation) within surface and bottom waters of the Lower Swan-Canning Estuary, Middle Swan Estuary and the Upper Swan Estuary with 95% confidence intervals between 2015/16 – 2019/20.

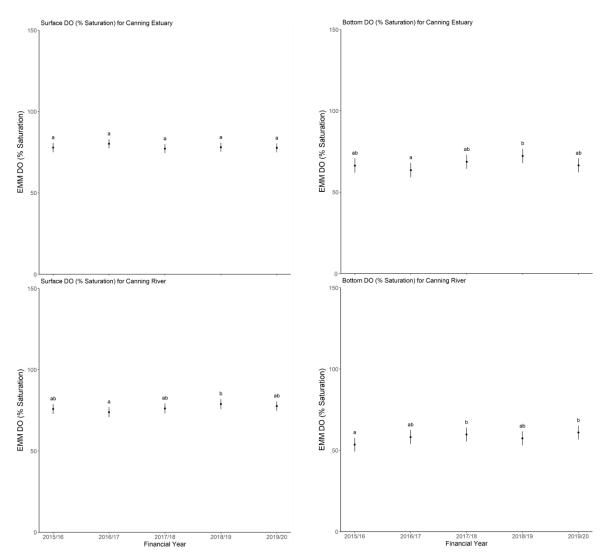



Figure A4.4: Estimated marginal means overlain with a simultaneous test for general linear hypothesis shown as the Compact Letter Display (CLD) of dissolved oxygen (% saturation) within surface and bottom waters of the Canning Estuary and Canning River with 95% confidence intervals between 2015/16 - 2019/20.