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Abstract 

Over the last 10 years, Dirk Hartog Island (DHI), located off the coast of Western Australia, 

has ceased being a pastoral lease and re-established as a national park. Introduced feral animals such 

as goats and cats have been eradicated as goats are notorious for land degradation and cats feed on 

small mammals. The DBCA subsequently introduced two hare-wallabies (rufous and banded) to the 

island in 2017, which are extinct on mainland Australia. Rufous and banded hare-wallabies are 

considered ecosystem engineers as their digging behaviour creates a physical state change to the 

environment and modulates resource availability to other organisms. This report aims to provide a 

base-line dataset for long-term monitoring of the translocated fauna.  

 

To this end, very high-resolution (c. 5mm) Remotely Piloted Aircraft (RPA) imagery was 

collected with a DJI Phantom 4 over two exclusion plots. Exclusion plots were constructed to protect 

areas of vegetation from ground-dwelling fauna. RPA data was classified to a species level using a 

stratified, systematic random sampling of vegetation. Object-based modelling using a machine learning 

algorithm was employed to classify species. Scale parameterisation of segments was tested for 20, 50, 

and 100 values. This measure controls the segment object size. Segmentation of RPA imagery derived 

21 variables comprising spectral reflectance, green leaf algorithm measures, textures, and shape 

metrics.  

 

A novel dimension reduction technique was implemented using box plot analysis and Multi-

variate Analysis of Variance (MANOVA) assumption testing. Classification scenarios tested were a 

scale of 20 with all variables, scale of 50 with untransformed selected variables, scale of 50 with selected 

variables transformed to fit the normal distribution, scale of 50 with all variables, and scale of 100 with 

all variables. The Random Forest machine learning algorithm was tested for 10 iterations per scenario 

to ensure stability of predicted classes with mean accuracy and Kappa values recorded for the final 

result. A 15 x 15 m quadrat was estimated within and external to the constructed exclusion plots on 

DHI for the purpose of comparing vegetation cover.  

 

The MANOVA and each of the final 5 individual subset variables per a post-hoc univariate 

test were found to be significant (p<0.05) for both exclusion plot sites. Random Forest out-of-bag 

estimates showed accuracy for x01 to be 75%, 74%, 69%, and 59% for the 20 - all variables, 50 - all 

variables, 100 - all variables, and 50 - subset variables respectively. Out-of-bag accuracy calculation for 
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x06 were 78%, 74%, 66%, and 63% for the 20 - all variables, 50 - all variables, 100 - all variables, and 

50 - untransformed subset variables respectively. Dimension reduction was shown to improve 

computational performance by 63.64% and 68.18% for x01 and x06 respectively. Species percentage 

cover showed a negligible change in vegetation for both exclusion plot sites. This preliminary 

investigation has shown that RPA imagery derived variables may be used to monitor plant species and 

small scale faunal impacts using object-based classification techniques. 
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1. Introduction 

1.1. Ecosystem engineers, the object-based paradigm, and machine learning 

Detrimental human impacts on the environment are a global phenomenon (Ceballos et al., 

2015; Ceballos, Ehrlich, & Dirzo, 2017; Ehrlich & Ehrlich, 2013; Hooper et al., 2012; Turney et al., 

2008; Vitousek, Mooney, Lubchenco, & Melillo, 1997). One example is the transference of a 

population into a novel habitat (Garnett, Latch, Lindenmayer, & Woinarksi, 2018). Historically, many 

Australian species introductions have been unintended or implemented for conservation, however the 

flow on consequences for the ecosystem they are introduced into has often been deleterious (Campbell 

et al., 2016; Clarke, Crossland, & Shine, 2016; Hobbs, 1993; Hobbs & Hopkins, 1990; Iannella, 

Peacock, Cassey, & Schwensow, 2019; Matthew L Brooks et al., 2004; Pittock, Finlayson, & Howitt, 

2013; Russo et al., 2018; Taylor & Goldingay, 2010). These impacts are usually due to a limited 

understanding around how the ecosystem functions holistically (Lindenmayer, 2007). Future 

threatened species management plans may be improved if we are informed of the interplay between 

individual behaviours and ecosystem function. 

 

Anthropogenic global warming is likely to strain environmental restoration efforts via climatic 

stressors such as water scarcity and an increase in extreme weather events (Hoegh-Guldberg et al., 

2018). Protecting our endangered species through captive breeding programs, translocations and other 

conservation efforts is fundamental for the survival of our endemic landscape (Molles, 2009). A 

thorough understanding of ecosystem processes and long-term monitoring programs are required to 

ensure conservation efforts are efficacious.  

 

Dirk Hartog Island (DHI), Western Australia was reclaimed from pastoralists by the 

Department of Biodiversity, Conservation and Attraction and established as a national park in 2009 

(Asher & Morris, 2015). The purpose of converting the area into a national park was to create a refuge 

for native Australian fauna that are extinct on mainland Australia (Asher & Morris, 2015). Mechanisms 

for Australian species population decline include alien species competition, hard-hoof trampling, and 

introduced predators (Garnett et al., 2018; Mulligan, Buxton, Lane, Neave, & Richardson, 2015). Feral 

goats, sheep, and cats were recognised as potential threats to biodiversity on DHI (Asher & Morris, 

2015). Exotic ungulates (sheep and goats) were completely removed or eradicated from DHI in 2017 

as were feral cats in 2018 (Heriot, Asher, Williams, & Moro, 2019). The removal of invasive fauna 

species is suggested to alleviate predation and completion pressures to native macropods, which may 
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impact the success of introducing fauna for conservation purposes (Bode et al., 2013; Hilmer, Algar, 

& Johnston, 2010).  

 

Banded (Lagostrophus fasciatus) and rufous (Lagorchestes hirsutus) hare-wallaby populations were 

translocated to DHI in 2017 (DBCA, 2017). These species are extinct on mainland Australia. The 

banded hare wallaby is known to create nests within dense bush thickets, particularly in association 

with Acacia ligulata, commonly known as the umbrella bush (Burbidge & Woinarski, 2016b; Cowen, 

Rayner, Sims, & Morris, 2018). Similarly, the rufous hare-wallaby shelters and digs small burrows 

within dense thickets/spinifex hummocks such as Acacia ligulata and Triodia plurinervata (Burbidge & 

Woinarski, 2016a; Cowen et al., 2018). The digging behaviours of both species may alter the structure 

of coastal dune ecosystems found on DHI, which could result in the modulation of resources to locally 

established taxa (Munro et al., 2019; Valentine et al., 2016). For example burrows may create habitat 

or refugia for other organisms or alter the soil chemistry and increase leaching to promote plant 

growth (Crooks, 2002). This process is known as ecosystem engineering (Jones, Lawton, & Shachak, 

1994). Both of the translocated endangered species to DHI have been recognised as ecosystem 

engineers (Manning, Eldridge, & Jones, 2015). However, there is an absence of empirical evidence on 

the potential influences ecosystem engineers have on coastal landscapes.  

 

Burrowing impacts of faunal ecosystem engineers on vegetation cover has shown an increase 

in both animal and plant species heterogeneity (Louw, Roux, Meyer-Milne, & Haussmann, 2017; 

Streitberger & Fartmann, 2016). However, these estimates are based on gradual distances from known 

burrowing sites. There are limited examples within the literature which use a discrete exclusion zone 

to minimise the potential for stochastic species migrations to confound the outcome. Furthermore, 

there is also a need for studies calculating the flow-on effects digging mammals have on overall 

vegetation cover. These findings may allow scientist to better understand the broader implications of 

introducing a species into a novel habitat for conservation purposes. 

 

Further benefits of faunal digging processes include reducing soil hydrophobicity (Eldridge & 

Mensinga, 2007; Valentine et al., 2017); increased soil nutrient content (Eldridge & James, 2009; James, 

Eldridge, & Hill, 2009; Mallen‐Cooper, Nakagawa, & Eldridge, 2019; Travers, Eldridge, Koen, & 

Soliveres, 2012; Valentine et al., 2018); improve soil density (Cuevas, Mastrantonio, Ojeda, & Jaksic, 

2012; Travers et al., 2012); restore species heterogeneity (Grossman, Hayward, & Gibb, 2019; Louw 
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et al., 2017; Streitberger & Fartmann, 2016); and influence seed germination through the creation of 

microhabitats (James et al., 2009; Sandom, Hughes, & Macdonald, 2013; Valentine et al., 2016). 

Ecosystem engineering by digging fauna may also improve plant establishment and development. 

Valentine et al. (2018) found that biopedturbation of the quenda bandicoot (Isoodon fuscicenter) lead to 

an increase in plant growth. However, studies measuring digging impacts on species cover and richness 

have predominately focused on localised sampling from known burrowing sites (Louw et al., 2017; 

Streitberger & Fartmann, 2016). Research on species cover and richness using remotely sensed 

imagery may improve conservation recovery efforts through informed decisions of the flow-on effects 

across a wider observation area. 

 

 Remotely sensed aerial imagery provides a valuable data source for earth observation and 

geoinformatics (Belward & Skøien, 2015; Kelly, Blanchard, Kersten, & Koy, 2011; Lillesand, Kiefer, 

& Chipman, 2015; Melesse, Weng, Thenkabail, & Senay, 2007). Assessment of vegetation may be 

conducted using imagery acquired from a satellite or Remotely Piloted Aircraft (RPA) also referred to 

as an Unmanned Aerial Vehicle or UAV (Ali, Qazi, & Aslam, 2018; Bolyn, Michez, Gaucher, Lejeune, 

& Bonnet, 2018; Dronova, 2015; Ghosh, Fassnacht, Joshi, & Koch, 2014; Ochoa & Guo, 2019; 

Silveira et al., 2019; Waldner et al., 2016; Zhang, Denka, Cooper, & Mishra, 2018). Advances in remote 

sensing technology has enabled scientists to capture sub-centimeter aerial imagery (Ochoa & Guo, 

2019). The development of aerial imagery capture allows for classification to be made across a range 

of scales between land use and land cover to delineating tree species (Belgiu & Dra˘gut, 2016; Chen 

et al., 2018; McInerney, Kempeneers, Marron, & McRoberts, 2019; Wu, Zhong, Zhao, Fu, & Song, 

2017; Zhou et al., 2018). These studies require different spatial resolutions depending on what is an 

appropriate scale level for the class types being assessed (Lu, Hetrick, & Moran, 2011; Phillips, 2013).  

 

Resolution is dependent on the distance between the instrument capturing the aerial imagery 

and the ground (Tang & Shao, 2015). Aerial imagery on DHI is estimated to have a spatial resolution 

of between 5-6mm based on a pre-recorded flight plan. This was the selected method of capture as 

measuring vegetation to a species level is a fine-scale study requiring detailed aerial imagery. There 

have been limited studies using sub-centimeter spatial resolution (Ochoa & Guo, 2019). Furthermore, 

there are no papers quantifying coastal heathland vegetation to a species level using object-based 

methods. Determining an accurate delineation of the endemic flora mosaic found on DHI using fine-

scale imagery is valuable for shaping future vegetation monitoring approaches. 
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Traditional methods of classifying aerial imagery focus on the spectral reflectance per pixel 

(Bolyn et al., 2018; Kumar, Dasgupta, Mukhopadhyay, & Ramachandra, 2018; Zhang, Xiao, & Feng, 

2012). Pixel based approaches may be limited when measuring imagery with high spectral variability 

within classes as found in RPA capture (Dronova, 2015; Lu & Weng, 2007; Zhang, 2016; Zhou et al., 

2018). Furthermore, contextual information such as texture and pixel adjacency is not factored into 

the classification output (Ali et al., 2018; Blaschke, 2010; Townshend et al., 2000). Inclusion of these 

variables through an object-based imagery analysis may improve the classification outcome. 

 

An object-based image analysis groups pixels into homogenous segments (Kim, Madden, & 

Warner, 2009; Pu & Landry, 2012; Sherba, Blesius, & Davis, 2014). These segments are also commonly 

referred to as image objects and may be used in aerial imagery classification (Ye, Pontius, & Rakshit, 

2018). Using image objects mitigates issues arising from individual pixel classification techniques as it 

allows for geospatial variables to be measured, pixel adjacency considerations, and spectral 

heterogeneity to be encapsulated into polygon areas (Benz, Hofmann, Willhauck, Lingenfelder, & 

Heynen, 2004; Kawakubo, Morato, & Luchiari, 2013; Silveira et al., 2019; Zhang et al., 2012). Another 

benefit to an object-based imagery analysis is that uncertainties arising from positional discrepancies 

are likely to be reduced (Congalton & Green, 2009). Plant samples have a higher probability of being 

located within a segment then a pixel (Addink, Jong, & Pebesma, 2007). Therefore, spatial accuracy 

of the classification may also be improved.  

 

Machine learning techniques are rapidly emerging as an effective method to accurately classify 

big imagery datasets (Chapman, Bonn, Kunin, & Cornell, 2010; Jordan & Mitchell, 2015; Teluguntla 

et al., 2018). It is a method of automating data analysis based on the computer assimilating and 

adapting from data, recognising patterns, anticipating responses, and making strategic decisions 

(Mitchell, 1997). 

 

Random Forest (RF) is a widely used machine learning algorithm as the technique is 

insusceptible to overfitting and may compute multidimensional variables (Chen et al., 2018). Initially 

proposed by Breiman (2001), RF is a non-parametric algorithm which utilises a ‘forest’ of decision 

trees to predict a surface based on individually trained classes. The strength of the outcome is derived 

from the ability for RF to apply more than one classifier, it does not prune the data, and randomly 
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selects training samples to split nodes (Breiman, 2001; Cutler, Edwards, Beard, & Cutler, 2007; Duro, 

Franklin, & Dubé, 2012; Ho, 1998). Therefore, it is expected that RF will be suitable as a long-term 

method for classifying remotely sensed aerial imagery at a species level. 

 

1.2. Problem statement 

 Australia has experienced strong negative effects from our efforts to restore declining 

environmental conditions (Campbell et al., 2016; Clarke et al., 2016; Hobbs, 1993; Hobbs & Hopkins, 

1990; Iannella et al., 2019; Matthew L Brooks et al., 2004; Pittock et al., 2013; Russo et al., 2018; Taylor 

& Goldingay, 2010). It is evident that our efforts to preserve the endemic Australian landscape may 

be improved through informed decisions. This is especially pertinent when considering the 

anthropogenic introduction of animals into a novel habit (Garnett et al., 2018). Ecosystem engineering 

is a relatively underdeveloped area of biological study (Jones et al., 2010). There are a myriad of 

unknowns and lurking variables surrounding the consequences of fauna modulating resources for 

other organisms. Furthermore, there has been limited studies quantifying the impacts digging 

behaviours have on the broader distribution of vegetation cover. Understanding how translocating 

species impact landscapes via ecosystem engineering may improve environmental conservation 

outcomes. 

 

Determining whether ecosystem engineers broadly affect vegetation requires sound species 

level data capture and classification methods. Especially when considering the refined spatial 

resolution RPA imagery captured on DHI. However, there is limited research utilising sub-centimeter 

remotely sensed imagery. The broader theory has shown that traditional per-pixel approaches are inept 

when dealing with high-resolution, multi-model datasets which are known to contain increased 

spectral heterogeneity (Belgiu & Csillik, 2018; Jebur, Shafri, Pradhan, & Tehrany, 2014; Lu, Hetrick, 

& Moran, 2010; Ma et al., 2017; Malahlela, Cho, & Mutanga, 2014; Myint, Gober, Brazel, Grossman-

Clarke, & Weng, 2011; Niphadkar, Nagendra, Tarantino, Adamo, & Blonda, 2017; Radoux, Bogaert, 

Fasbender, & Defourny, 2011; Silveira et al., 2019; Wu et al., 2017; Zhang et al., 2018). Object-based 

approaches which apply a machine learning classifier may handle the complexities embedded in fine 

scale data. (Adam, Mutanga, Odindi, & Abdel-Rahman, 2014; Du, Samat, Waske, Liu, & Li, 2015; 

Jhonnerie, Siregar, Nababan, Prasetyo, & Wouthuyzen, 2015; Noi & Kappas, 2017; Pantaleoni, 

Wynne, Galbraith, & Campbell, 2009; Raczko & Zagajewski, 2017; Rodriguez-Galiano, Chica-Olmo, 

Abarca-Hernandez, Atkinson, & Jeganathan, 2012). Within the mosaic of sub-centimeter studies, there 
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are none which classify coastal dune communities to a species level. Delineating viable methods for 

classifying RPA capture to a species level is important in determining effective long-term vegetation 

monitoring. 

 

1.3. Study objectives 

The aim of this research is to implement an object-based approach using remotely piloted 

aircraft imagery to measure the ecosystem engineered impacts of translocated fauna on DHI. Five 

objectives have been developed to achieve this aim: a) construct and test a framework of sampling 

vegetation for the purpose of classifying high-resolution aerial imagery b) segmentation of aerial 

imagery and implementation of the RF algorithm to classify segmented data, c) dimension reduction 

to obtain variables offering the greatest degree of species level separation, d) accuracy assessment of 

the RF classifier, and e) determining if translocated fauna are having an ecosystem engineered impact 

on DHI. A comparison of vegetation cover between areas within and external to the 40 x 40 m 

exclusion plots may determine if the introduced burrowing fauna are influencing plant growth and/or 

species richness. Understanding the flow on effects translocating digging fauna may have on 

vegetation could improve the success of future attempts to bio-remedy the environment and preserve 

critically endangered species. The methods delineated in this paper may provide a long-term vegetation 

monitoring framework for conservation managers. 

 

1.4. Thesis structure 

This thesis consists of nine chapters in total. Chapter one introduces the importance of the 

study including the current global trend of environmental degradation; the history of DHI; the 

potential for the introduced fauna to act as ecosystem engineers; advances in remotely sensed data 

capture; techniques to classify aerial imagery; and the aims and objectives of this paper. 

 

Secondly, a comprehensive review of the scientific literature will be conducted in chapter two. 

Research gaps within the available scientific literature will be identified. The chapter will begin with a 

detailed explanation of ecosystem engineering and the specific benefits of digging behaviours. The 

inference that ecosystem engineering behaviours may correlate with differences in percentage cover 

between exclusion plots and proximal areas will be supported per the breadth of studies measuring 

direct engineering impacts. The importance of developing ecosystem engineering theory will be 

defined. Methods to quantify remotely sensed data capture to a species level for long-term vegetation 
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monitoring may be guided per analysis of previous object-based approaches. Studies implementing 

segment parameterisation comparisons, machine learning approaches, and auxiliary variables to 

classify remotely sensed imagery will be scrutinized in order to facilitate an accurate depiction of the 

mosaic of vegetation on DHI. 

 

Chapter three comprises the methods and materials applied within this research paper. The 

characteristics for both exclusion plot study areas will be provided along with the means of sampling 

plant and aerial imagery within the study sites. This chapter will also detail the process of segmenting 

remotely piloted aircraft data, statistically quantifying pertinent variables which will allow for the 

measurement of vegetation to a species level, and the application of RF to classify the remotely sensed 

dataset. Lastly the technique to estimate differences in vegetation cover between the exclusion plot 

and proximal areas will be outlined. 

 

Results detailed in chapter four will directly align with the methods from the previous chapter. 

This study will address the results from the vegetation samples identified, segmentation parameters, 

descriptive and inferential statistics determining remotely sensed variables to delineate plant species, 

the RF classification output, an accuracy assessment error matrix, and the comparisons of percentage 

vegetation cover. 

 

The discussion may be found in chapter five and concluding remarks and recommendations 

for further studies will be provided in chapter six. Discussion topics include survey methodologies 

and improved sampling for future vegetation monitoring programs; reducing the ‘curse of 

dimensionality’; segment parameterisation; alternative independent accuracy assessments e.g. a 

confusion matrix; and small scale faunal impacts on DHI vegetation. 

 

Lastly, chapter seven shows the bibliography which outlines the references cited within this 

thesis and chapter eight is the appendix. The appendices in this instance details the R code 

implemented within the methods section and supplementary data to the results section. The R code 

may be replicated for future studies which require statistical analytics of segmented data and 

classification using the RF machine learning algorithm. 
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2. Scientific literature review 

 This chapter critically analyses the current body of scientific literature surrounding the 

following topics: 2.1) Ecosystem Engineers, 2.2) comparisons of per-pixel and object-based 

classification, 2.3) segmenting Remotely Piloted Aircraft (RPA) capture, 2.4) classifying segments 

using methods derived for per-pixel approaches, 2.5) machine learning algorithms, 2.6) additional 

variables that may compliment spectral reflectance for species level classification, and 2.7) measuring 

the engineering impacts of digging fauna. An understanding of what we currently know will assist in 

determining the best method for a species level classification of RPA imagery. Research gaps for the 

aforementioned topics are identified. Disadvantages of per-pixel based methods for classifying aerial 

imagery will be compared with studies incorporating an object-based approach.  

 

2.1. Ecosystem engineering 

Ecosystem engineering processes are characterised by species whom directly or indirectly 

create a physical state change within their environment, resulting in the modulation of resources to 

other organisms (Figure 2.1)(Jones et al., 1994). Modulation in this instance does not refer to the 

provision of edible carrion, leaves, fruits, and other food resources as this would constitute a trophic 

interaction (Linder et al., 2012). An ecosystem engineer alters biotic and abiotic materials for the 

subsequent modification, creation, maintenance, and/or destruction of habitat (Jones, Lawton, & 

Shachak, 1997). Recognizing the consequences of these impacts and their involvement within complex 

interaction webs may enable a greater understanding of ecosystem function in its entirety (Eisenhauer, 

Milcu, Sabais, & Scheu, 2008). 

 

 

Figure 2.1. Conceptual diagram showing the process of a physical state change within an environment 
caused by an ecosystem engineer. 

 

In Western Australia, Leptospermum laevigatum has naturalized beyond its native range 

(Queensland Government, 2016). Whilst locally invasive, the species is recognised for the ecosystem 

services provided in stabilising coastal dune systems and buffeting sea spray (Paczkowska, 1995b). 

Effective engineering of harsh coastal environments as a direct consequence of the taxon’s physical 
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impact allows for the colonisation of further plant life (Reubens, Poesen, Danjon, Geudens, & Muys, 

2007). This habitat creation constitutes an ecosystem engineered process. Other commonly cited 

examples of ecosystem engineering include beavers (Castor Canadensis) constructing dams thus altering 

the local hydrology, which effects the composition and diversity of aquatic inhabitants (Pollock et al., 

1995); earthworm seed digestion functioning as a secondary disperser (Eisenhauer et al., 2008); the 

creation of micro-habitats from flora debris (Hedin, Mayer, & Likens, 1988); and the role of microbial 

communities in engineering soil crusts (Xiao, Sun, Hu, & Kidrond, 2019). 

 

At some level every organism may engineer their environment (Jones et al., 1994). The ubiquity 

of impacts across all biomes and environmental scales is a fundamental reason why ecosystem 

engineering has historically been overlooked by environmental scientists (Jones et al., 2010). 

Ecosystem engineering theory has been absent from biological text-books which traditionally focus 

on well-established concepts (population dynamics, species interactions, niche adaptations, nutrient 

cycles, succession and stability, etc.) (Levin, 2009; Molles, 2009). Therefore, it is imperative that there 

is a research focus to develop the body of literature comprising the theory. 

 

Faunal digging has been established as a method of ecosystem engineering (Manning et al., 

2015; Munro et al., 2019). Digging processes improve water filtration (Eldridge & Mensinga, 2007; 

Valentine et al., 2017); increase nutrients and/or nutrient cycling (Eldridge & James, 2009; James et 

al., 2009; Mallen‐Cooper et al., 2019; Travers et al., 2012); reduce soil bulk-density (Cuevas et al., 2012; 

Travers et al., 2012); restore landscape heterogeneity (Grossman et al., 2019; Louw et al., 2017; 

Streitberger & Fartmann, 2016); and create microhabitats for seed germination (James et al., 2009; 

Sandom et al., 2013; Valentine et al., 2016). Recognising these ecosystem engineered impacts may 

improve conservation efforts. Munro et al. (2019) found that returning the locally extinct eastern 

bettong (Bettongia gaimardi) to Mulligans Flat Woodland Sanctuary, Canberra had a significant impact 

on the soil composition. Biopedturbation (animal driven soil disturbance) by the eastern bettong was 

predicted at a rate of 985 kg of soil per hectare annually. This was significantly higher than comparative 

soil turnover rates of the rabbit, echidna and bird samples at 622, 159, and 66kg/ha/year respectively 

(Munro et al., 2019). This shows that Australian digging fauna have traditionally provided a greater 

ecological service than exotic species and non-digging animals in tilling soils. 
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The intrinsic characteristics of faunal derived pits may also affect the delivery of ecosystem 

services. Ross et al. (2019) compared eastern bettong and rabbit pits in relation to their morphology, 

longevity, temperature, and nutrients. They found eastern bettong pit dimensions to be narrower and 

deeper than rabbits, persist in the environment for over 2 years, moderate diurnal temperatures by up 

to 25°C, and contain greater carbon and nitrogen amounts than a control site as a result of increased 

organic litter collection (Ross et al., 2019). However, many digging mammals have experienced severe 

range contractions and population declines predominately due to habitat loss/fragmentation, disease, 

and introduced predators, resulting in a loss of the ecosystem services they provide (Davidson, 

Detling, & Brown, 2012; Fleming et al., 2014; Woinarski, Burbidge, & Harrison, 2015). The 

translocation of native species may restore lost ecological functions via ecosystem engineering.  

 

Verdon, Gibb, and Leonard (2016) studied the role of the bridled nailtail wallaby, greater bilby, 

brush-tailed bettong, burrowing bettong, numbat, and greater stick-nest rat have on restoring 

ecosystem function in Scotia Sanctuary, New South Wales. They found that exclusion plots had a 

higher abundance of naturally established seedlings (MEAN 4 ± 1.11SE), subshrubs (MEAN 4.03 ± 

0.08SE) and perennial forbs (MEAN 1.96 ± 0.27SE) compared with a control plot (MEAN and SE 

of 1.5 ± 0.5, 3.55 ± 0.11, and 1.22 ± 0.15 respectively) (Verdon, Gibb, & Leonard, 2016). However, 

they recognise that these differences may be the result of both soil disturbance and herbivory. 

 

Valentine et al. (2018) examined whether biopedturbation of the quenda bandicoot (Isoodon 

fuscicenter) due to foraging behaviours promoted plant growth in foraging pits, associated spoil heaps, 

and a control area. Measurements were solely on the pit characteristics and therefore herbivory was 

removed as a potential confounding variable. They found that the spoil heap had the greatest level of 

conductivity, phosphorus, potassium, sulphur, and microbial activity when compared with foraging 

pits and control areas (Valentine et al., 2018). Sub-sequent seedling growth from the spoils heaps were 

1.5 to 2 times faster than the control or foraging pit. Test samples were taken from fresh pits rather 

than those which had been extant for elongated periods of time. Foraging pits may experience inertia 

when providing beneficial growing conditions through organic litter build up and altered abiotic 

conditions for microhabitat creation as found in other studies (Eldridge & James, 2009; James et al., 

2009; Mallen‐Cooper et al., 2019; Sandom et al., 2013; Travers et al., 2012; Valentine et al., 2016). 

Overall the research found that quenda digging behaviours are conducive to promoting plant growth. 
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Digging behaviours show an have shown to increase both animal and plant species 

heterogeneity from known burrowing sites (Louw et al., 2017; Streitberger & Fartmann, 2016).  

However, evidence-based research implementing exclusion plot controls to reduce bias are limited. 

There is also a literature gap for studies on how soil biopedturbation may affect overall vegetation 

cover. These findings may allow scientist to better understand the broader implications of introducing 

a species to a novel habitat for conservation purposes. 

 

2.2. Per-pixel vs. object-based image classification 

RPA data capture results in the earth’s surface being represented as a raster layer (Lillesand et 

al., 2015; Melesse et al., 2007). Raster images are comprised of individual pixels that denote the spatial 

resolution and ascribe a radiance value in the form of a Digital Number (DN) (Pavlidis, 2017; Richards, 

2013). Classification of aerial imagery into feature types may be orchestrated by a per-pixel or object-

based approach (Arbiol, Zhang, & Palà, 2006; Ma et al., 2017). Common per-pixel methods of 

classification incorporate a moving window or kernal to average the surrounding DN values (Chavez 

& Bauer, 1982). 

 

Maximum-Likelihood (ML) is a frequently implemented classification algorithm which assigns 

classes based on the variance and co-variance of signatures or training samples (Lillesand et al., 2015). 

Parametric classifiers such as ML rely on distributional referencing when modelling training groups 

(McInerney et al., 2019). ML may have difficulty classifying ground surface features that are not 

homogenous (Bischof, Schneider, & Pinz, 1992). Where the spread of training sample classes are not 

Gaussian, the ML classification technique may not accurately represent surface features (Ali et al., 

2018). Therefore, the distinction between the ground surface features is diminished where spatial 

heterogeneity is high and may contribute to ‘salt and pepper’ noise.  

 

High-resolution capture classified by applying a per-pixel approach may result in the ‘salt and 

pepper’ phenomena (Lu et al., 2011). When the instantenous field of view of the sensor is smaller than 

the size of the object being record, or the object is highly heterogenous, the classifier may not be able 

to determine the accurate class (Kelly et al., 2011). In this instance the value assigned to the pixel is 

either indeterminate or incorrect. The level of detail found in fine-scale datasets may contribute to 

‘salt and pepper’ effects as the pixel spectral heterogeneity cannot be accounted for (Zhang, 2016). 
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Inaccuracies resulting from high-resolution aerial imagery per-pixel classification may be mitigated 

using an object-based paradigm (Blaschke, 2010; Dronova, 2015; Zhou et al., 2018).  

 

Silveira et al. (2019) compared object-based modelling using Random Forest (RF) to a pixel 

based approach. Their methodology measured Landsat-5 TM spectral reflectance, Shuttle Radar 

Topography Mission digital elevation model, and bioclimatic variables. Results show that the above-

ground forest biomass calculations using RF returned a lower mean absolute error (20.95%) than the 

pixel-based unit (28.64%) (Silveira et al., 2019). Lu, Hetrick, and Moran (2011) also found that when 

comparing classified segmented imagery to a pixel based approach, an object-based approach reduced 

speckle resulting from the ‘salt and pepper’ phenomena. An object-based study of the fine-scale RPA 

capture on Dirk Hartog Island (DHI) may reduce probably pixelated noise and provide a reliable 

outcome for long-term vegetation monitoring. 

 

The object-based paradigm takes raster imagery pixels and clusters them into homogenous 

areas. (Kim et al., 2009; Pu & Landry, 2012; Sherba et al., 2014). These object areas or segments are 

used as the unit for classifying remotely sensed data (Ye et al., 2018). After segmenting a remotely 

sensed dataset, the final output is a contiguous layer of object areas (Benz et al., 2004). Image objects 

reduces noise arising from the ‘salt and pepper’ phenomenon (Blaschke, 2010; Dronova, 2015; Silveira 

et al., 2019; Zhang, 2016; Zhou et al., 2018). Another advantage is that segmented regions may hold 

additional information such as shape and texture which are not accessible in a per-pixel approach 

(Chen et al., 2018; Niphadkar et al., 2017). An object-based image analysis may also improve 

classification through pixel adjacency considerations and the ability to encapsulate spatial 

heterogeneity into polygon areas (Benz et al., 2004; Kawakubo et al., 2013; Silveira et al., 2019; Wu et 

al., 2017; Zhang et al., 2012).  

 

Comparisons between the two paradigms have repeatedly shown that the object-based method 

outperforms a per-pixel analysis (Belgiu & Csillik, 2018; Jebur et al., 2014; Lu et al., 2010; Ma et al., 

2017; Malahlela et al., 2014; Myint et al., 2011; Niphadkar et al., 2017; Radoux et al., 2011; Silveira et 

al., 2019; Wu et al., 2017; Zhang et al., 2018).  However, more rarely is a higher accuracy achieved 

from the per-pixel methods (Adam, Csaplovics, & Elhaja, 2016; Duro et al., 2012). Duro, Franklin, 

and Dube (2012) used a McNemar statistical test to compare pixel and object-based approaches using 

the same decision tree classification method on the South Saskatchewan River, Canada. They found 
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that there was no statistical difference between the accuracy of the per-pixel and object-based decision 

tree classifiers (p > 0.05). However, when they compared the object-based decision tree result with 

Support Vector Machine (SVM) and RF, both achieved a significant difference (p < 0.01). This 

suggests that decision tree used to compare the per-pixel and object-based approaches may have been 

ill-suited to quantifying segmented imagery.  

 

A similar experiment to Duro, Franklin and Dube (2012) using the McNemar statistical test 

to compare per-pixel and object-based image classification was conducted by Yan et al. (2007).  They 

classified potential surface coal fire areas in Wuda, China from ASTER (Advanced Spaceborne 

Thermal Emission and Reflection Radiometer) satellite imagery (Yan, Mas, Maathuis, Xiangmin, & 

Dijk, 2007). There was a statistical significance between the per-pixel and object-based classification 

with the latter returning a 36.77% increase in overall accuracy. 

 

Lu, Hetrick, and Moran (2010) compared a per-pixel classification to segmentation using the 

ML method and an object-based approach called Extraction and Classification of Homogenous 

Objects (ECHO) partitioning. Overall classification accuracy achieved by the segmentation method 

(88.33%) outperformed both per-pixel and ECHO by 1% and 6.66% respectively. Furthermore, the 

per-pixel method resulted in a large number of misclassification due to the ‘salt-and-pepper’ problem.  

 

Comparisons may be improved through the recognition of structural differences between per-

pixel and object-based methods. Radoux, Bogaert, Fasbender, & Defourny (2011) compared pixel and 

segment classification methods using mathematical simulations. Estimates for 1,000 and 10,000 

sample units suggest that both bias and variance can be reduced in an object-based study (Radoux et 

al., 2011). They also recognise that pixel dimensions define the resolution and can be directly equated 

to comparable area (Radoux et al., 2011). Calculating accuracy for segmented outputs using an 

equation based on the assumption of equal area units may introduce uncertainty (Radoux & Bogaert, 

2017). Therefore overall accuracy should be measured per the number of correctly classified segments 

(Congalton & Green, 2009). 

 

Further benefits to an object-based imagery analysis is that uncertainties arising from 

positional discrepancies are likely to be reduced (Congalton & Green, 2009; Radoux et al., 2011). 

Geospatial locational errors may reduce the thematic maps quality due to an underestimation of the 



Department of Spatial Sciences | 2019 

25 

root mean square error (Smith, Stehman, Wickham, & Yang, 2003). A point being measured in the 

real-world has higher probability of being located within a segment over being located within a pixel 

(Addink et al., 2007). Overall, the majority of comparative research suggests that an object-based 

image classification is superior to traditional per-pixel methods (Belgiu & Csillik, 2018; Jebur et al., 

2014; Lu et al., 2010; Ma et al., 2017; Malahlela et al., 2014; Myint et al., 2011; Niphadkar et al., 2017; 

Radoux et al., 2011; Silveira et al., 2019; Wu et al., 2017; Zhang et al., 2018). Therefore the vegetation 

samples on DHI may be more accurately delineated using segments as the unit of classification.  

 

2.3. Aerial imagery segmentation 

Segmentation is the preliminary step for an object-based imagery classification which involves 

pre-determined shape thresholds to be set (Arbiol et al., 2006; Kawakubo et al., 2013). Meaningful 

classification of aerial imagery is achieved through segments which mimic the real-world features they 

are modelling (Burnett & Blaschke, 2003). The quality of the segmented output is correlated with the 

image object geometry and has been shown to influence the accuracy of the final classification 

outcome (Benz et al., 2004; Niphadkar et al., 2017; Zhang et al., 2012). Ma et al. (2017) conducted a 

systematic literature review of 254 object-based experiments within 173 scientific papers. They found 

that an optimal segmentation scale was significantly correlated (p < 0.05) with the spatial resolution 

of the imagery. Therefore high-resolution aerial imagery captured on DHI may provide a robust 

solution to object-based modelling. Whilst the potential for substandard segmentation is reduced due 

to level of detail captured using RPA imagery, we acknowledge that an unsuitable object area surface 

may skew the classification results. It is pertinent to pre-determine the segmentation method best 

suited for modelling vegetation at a species level to ensure confounding variables are mitigated. 

 

The three main parameters for multi-resolution segmentation in eCognition are scale, colour, 

and shape (El-naggar, 2018; Fugara, Pradhan, & Mohamed, 2009; Johnson, Bragais, Endo, Magcale-

Macandog, & Macandog, 2015; Möllera, Lymburner, & M.Volkc, 2007; Sertel & Alganci, 2015; Shao, 

Long, Liang, Chen, & Yuan, 2015). The scale parameter is related to the homogeny and heterogeneity 

of image features per the size of the object area calculated. A greater scale will result in a larger object 

size and vice versa. Scale tends to be the most ambiguous of the three parameters and therefore is the 

predominate focus of ‘trial and error’ classification assessments (El-naggar, 2018). Secondly, the colour 

parameter refers to the pixel values of the image and sets the threshold for clustering within the 

segmentation algorithm. Lastly, shape is a parameter that controls how tightly each discrete object will 
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be defined per the underlying raster image (Dekavalla & Argialas, 2018). This relates to the smoothness 

of the segment borders and their similarity to a bounding box and compactness as a function of the 

pixel clusters to perimeter edge (Zhang & Maxwell, 2006).  

 

Attempts have been made to automate and semi-automate the process of segmentation and 

optimal parameter selection. Examples include region growing using spatial autocorrelation 

(Espindola, Câmara, Reis, Leonardo, & Monteiro, 2006; Zhang, Xiao, Song, & She, 2013), multi-band 

spectral angle (JianYang, Li, & He, 2014), iterative local variance measures (Drăguţ, Csillik, Eisank, & 

Tiede, 2014; Drǎguţ, Tiede, & Levick, 2010), global heterogeneity and homogeneity measures 

(Johnson & Xie, 2011; Zhu, Cai, Liu, & Huang, 2016), Gaussian edge detection (Jing, Hu, Noland, & 

Li, 2012; Wang, Gong, & Biging, 2004), and multi-scale segmentation (Arbiol et al., 2006; Kim, 

Madden, & Warner, 2008; Salembier & Garrido, 1998; Tabb & Ahuja, 1997; Zhang, Jia, Li, Yuan, & 

Zhao, 2014). For each of the aforementioned examples, partitioning of imagery is dependent on the 

aerial image features and still requires some level of expertise to determine suitability of the segment 

calculation. There is no clear, definitive method that applies to every dataset (Singh, Singh, & Partridge, 

2005). Determination of the segmentation algorithm applied will need to be based on the inherent 

qualities of the imagery being assessed. 

 

Another identified issue with automated object area calculation is that the output may result 

in over- or under-segmentation (Jing et al., 2012; Kawakubo et al., 2013). Over-segmentation is the 

process of dividing a feature on the earth surface into an unreasonably large number of segments. 

Conversely, under-segmentation is when a real-world features is merged with proximal areas. For 

example a scale parameter of 200 and greater may generalise classes indistinctly whilst a scale of 20 

may lose the inherent properties of the surface being modelled. Even if a final classification is 

numerically accurate, the rendered classes may not depict the underlying aerial imagery. 

 

Multi-scale segmentation has been cited as the most common automated method for 

segmenting an image with the purpose of optimizing the segmentation scale (Ma et al., 2017). This 

method reduces over-segmentation of homogenous and under-segmentation of heterogeneous 

features associated with regional and local scales respectively (Johnson et al., 2015). However it 

requires remotely sensed capture to comprise both local and regional features (Arbiol et al., 2006; Kim 

et al., 2008; Zhang et al., 2014).  
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High-resolution RPA imagery classified to a species level is solely a localised study. The multi-

resolution segmentation method in eCognition attempts to balance the diversity of image scale ranges 

by concentrating on the homogeny of local scales first before expanding to larger regions (Liu, Xu, 

Zhao, Yong, & Xin, 2015). Therefore, we propose a supervised semi-automated approach where user 

defined parameters in eCognition set thresholds for a “bottom-up” multi-resolution segmentation.  

 

Research has shown that there may be a ‘sweet-spot’ for combinations of segment parameters 

and the accuracy they can achieve (Kavzoglu & Yildiz, 2014). Kavzoglu and Yildiz (2014) tested 

segment parameterisation for scales of 5, 10, 20, 35, 50, and 70; shape values of 0.1, 0.3, 0.5, 0.7, and 

0.9; and compactness for 0.1, 0.3, 0.5, 0.7, and 0.9. Their aerial photo classification resulted in a 

maximum accuracy (94.13%) for scale and shape values of 20 and 0.2 respectively. However, 

combinations returned a pattern within the matrix where the top left boxes from an approximate 

diagonal line between a shape value of 0.7 and a scale value of 30 all returned a classification accuracy 

greater than 90%. The bottom right boxes showed an approximately linear reduction in accuracy until 

a scale of 70 and shape of 0.9 was reached. The scale of 70 and shape of 0.9 parameters showed the 

lowest accuracy value of 48.28%. Therefore, the method proposed in this paper to set the shape and 

compactness at a central point and adjusting the scale parameter may achieve a similar result to the 

time consuming alternative of adjusting all three independently.  

 

A visual assessment of the object area’s fit in relation to user-defined parametrisation has 

shown to provide a reliable form of segmentation suitability validation (Adam et al., 2016; Juniati & 

Arrofiqoh, 2017; Mathieu, Aryal, & Chong, 2007; Myint et al., 2011; Sertel & Alganci, 2015; 

Sibaruddin, Shafri, Pradhan, & Haron, 2018; Yan et al., 2007; Yu et al., 2006). For the purposes of 

assessing RPA capture on DHI we will compare determine the suitability of scale parameters from 

both a visual assessment and the statistical outcomes. This will allow conservation managers to discern 

the most appropriate scale of measurement and replicate the process for future vegetation monitoring. 

 

2.4. Classification of segments using per-pixel based methods 

Researchers have proposed a method to classify remotely sensed data by applying the per-

pixel derived ML algorithm to segmented imagery (Liu & Yetik, 2010). Robinson et al. (2016) applied 

ML for detecting mesquite (Prosopis spp.) using segmented WorldView2 imagery captured along the 

Fortescue River Delta, north-west Pilbara, Australia. They found the method was effective for 



Department of Spatial Sciences | 2019 

28 

measuring larger samples (overall accuracy of 93.2%), once smaller samples (e.g. seedlings and 

juveniles) had been removed (Robinson et al., 2016). However, the findings may be improved using a 

machine learning algorithm to classify the satellite imagery. 

 

Studies have attempted to combine machine learning and ML methods for improved 

classification outcomes. Man, Dong, and Guo (2015) measured urban land use for the University of 

Houston using 0.74m spatial resolution Light Detection and Ranging data and 2.5m hyperspectral 

CASI satellite imagery (Man, Dong, & Guo, 2015). The results show that a mixed-model with both 

ML and SVM could outcompete a classification using solely SVM (94.7% to 87.6% overall accuracy 

respectively).  

 

However, the ML classifier was developed for per-pixel based analysis and therefore is suitable 

for uni-modal datasets (Farrag, Megahed, & Darwish, 2019). Both the mesquite detection and urban 

land use assessment utilised high resolution satellite imagery. Remotely piloted aircraft imagery 

captured on Dirk Hartog Island may exhibit a different distribution of values due to capturing very 

high resolution data. When the spread of data is multi-model or collinearly distributed ML may not 

be a suitable classifier (Liua, Shia, & Zhang, 2011). A machine learning algorithm may be more 

equipped to process the high within class spectral variability found in sub-centimeter spatial resolution 

remotely sensed capture (Díaz-Varela, Iglesias, Castro, & Varelad, 2018). 

 

2.5. Machine learning algorithms 

 In recent decades there has been a rise in machine learning algorithms within object-based 

imagery classification (Belgiu & Dra˘gut, 2016). Machine learning algorithms enable the ability for 

multi-variate predictions through the use of data driven decisions (Jordan & Mitchell, 2015; 

Magnussen, McRoberts, & Tomppo, 2009; Teluguntla et al., 2018; Thessen, 2016). Commonly cited 

machine learning techniques for imagery classification include neural networks (Sabanci, Kayabasi, & 

Toktas, 2017; Shao & Lunetta, 2012), decision tree algorithms (Waldner et al., 2016), Support Vector 

Machines (Alberto et al., 2016; Müllerová, Bartaloš, Brůna, Dvořák, & Vítková, 2017; Wu et al., 2017), 

Random Forest (Basukala, Oldenburg, Schellberg, Sultanov, & Dubovyk, 2017; Feng, Liu, & Gong, 

2015), K-Nearest Neighbour (Tehrany, Pradhan, & Jebuv, 2013; Yu et al., 2006), phenological 

approaches (Czernecki, Nowosad, & Jabłońska, 2018; Klosterman et al., 2018; Nogueira et al., 2019), 

and mixed methods (Saboori, Torahi, & Bakhtayari, 2019; Salehi, Zhang, & Zhong, 2013). Here we 



Department of Spatial Sciences | 2019 

29 

will assess the potential application of Convolutional Neural Network (CNN), SVM, and RF for 

analysing high-resolution aerial imagery captured on DHI. 

 

A CNN is a deep learning algorithm which resembles the connectedness of data through end-

to-end classification utilising supervised backpropagation for training (Wang et al., 2018). Ochoa and 

Guo (2019) applied CNN to measuring trees in high-resolution aerial imagery. The algorithm returned 

a classification accuracy of 98% (Ochoa & Guo, 2019). Whilst CNN was able to effectively classify 

vegetation, they found that the classification required large datasets and an extensive training time for 

the parameters. Object recognition may be achieved using CNN at the mercy of extensive 

parameterisation (Mostafa & Wang, 2019). The connectedness of a large parameter space in CNN 

may lead to overfitting (Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2014). To overcome this 

issue Pelt and Sethian (2018) factored a multi-scale approach by running simulations that incorporate 

dilated convolutions and dense connections. However, to achieve a multi-scale approach the imagery 

available requires both local and regional capture (Pelt & Sethian, 2018). This technique is not suitable 

when applied to high-resolution, localised aerial imagery.  

 

Another non-parametric learning algorithm used to classify segmented imagery is the SVM. 

SVM is a supervised optimisation algorithm that builds a probabilistic model based upon an inputted 

training set (Burges, 1998; Vapnik, 1995). Studies have shown that the SVM method may handle multi-

dimensional data and classify complex landscapes (Ghosh et al., 2014; Melgani & Bruzzone, 2004; Pal, 

2005). There are some issues associated with the use of this machine learning algorithm. As the output 

quality directly relates to selection of appropriate training samples, human error may be unintentionally 

introduced into the model (Kumar et al., 2017; Mountrakis, Im, & Ogole, 2011). Furthermore, if 

classes are not linearly separable then additional kernelling is required (Mishra, Prasad, Kumar, Gupta, 

& Srivastava, 2017). This means that the methods required to achieve a suitable classification outcome 

may become unnecessarily complicated and incur higher time costs. 

 

Numerous studies have compared SVM and the RF ensemble learning technique. Chen et al. 

(2018) used 2m resolution panchromatic and 8m resolution multi-spectral image captured by the 

Gaofen-1 satellite to compare SVM and RF. The results showed that RF computes the classification 

46.61% faster than SVM. RF also equated a higher overall accuracy (88.16%) and Kappa co-efficient 

(0.827) than SVM (overall accuracy = 84.89% and Kappa co-efficient = 0.781) (Chen et al., 2018). 
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These findings are supported by Sesnie et al. (2008) who used Landsat TM bands and spectral indices 

to quantify forest types in northern Costa Rica. For both spectral reflectance and reflectance with 

indices, RF returned a higher accuracy than SVM (Sesnie et al., 2010). Adam, Mutanga, Odindi, and 

Abdel-Rahman (2014) studied the ability to derive thematic maps of coastal landscapes in KwaZulu-

Natal, South Africa. RapidEye satellite imagery was clustered and then classified using RF and SVM 

techniques. Evaluation of the predicted outputs showed that both RF and SVM returned the same 

Kappa co-efficient of 0.92 (Adam et al., 2014). However, RF produced a slightly higher accuracy 

(93.07%) than the SVM algorithm (91.8%).  

 

A few scientific papers have shown SVM to outperform RF when classifying regional areas 

using moderate to low-resolution satellite imagery (Noi & Kappas, 2017; Raczko & Zagajewski, 2017). 

However these studies were conducted on satellite imagery with a spatial resolution greater than 3m. 

The inherent complexity and heterogeneity of sub-centimeter resolution imagery may lend itself to 

overfitting and difficulties in parameterisation which is a known limitation of SVM (Breiman, 1984; 

Foody, 2004; Rodriguez-Galiano et al., 2012). The broader research outcomes shown suggest that RF 

may be more favourable than SVM for measuring the coastal vegetation found on DHI. 

 

The RF algorithm is an ensemble classifier consisting of bootstrapped samples implemented 

in a Classification and Regression Tree (CART) analysis (Breiman, 2001; Cutler et al., 2007; Ho, 1998). 

This aggregate approach initially selects, at random, a subset of the training samples to develop 

individual classification rules. The ensembles then split the data into binary categorical predictions. 

Recursive partitioning of data into nodes occurs so that classes become increasingly homogenised as 

the most likely class is voted for. The extratrees split rule is a method of partitioning data based on 

the ‘extremely randomised tree’ principle which randomises the attribute and cut-point at each node 

(Geurts, Ernst, & Wehenkel, 2006). The strength of this method is based on the principle that the tree 

structure is independent of the output value. Forest structure will be completed once the CART has 

constructed a final decision on the majority class candidate. 

 

  An advantage of RF is that the algorithm uses adaptive bagging which may reduce bias through 

the ability to change the training set as it progresses (Breiman, 2001). Furthermore, convergence of 

the generalization error negates issues arising from overfitting (Breiman, 2001). Multiple studies have 

shown the effectiveness in computing aerial imagery classification using RF (Du et al., 2015; Jhonnerie 
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et al., 2015; Pantaleoni et al., 2009; Rodriguez-Galiano et al., 2012). Chapman, Bonn, Kunin and 

Cornell (2010) used RF to monitor vegetation in Peak District National Park, England using 5m 

spectral remotely sensed imagery. Their studied found that 97% of the 2,783 training points were 

accurately classified (Chapman et al., 2010). Studies classifying vegetation using RF have 

predominately analysed satellite imagery. Scientific literature applying an object-based paradigm with 

RF classification to sub-centimeter resolution RPA capture is scarce. As remotely sensed technology 

advances the capability to capture fine-details, so does the potential to derive geospatial information. 

Therefore, it is important that we determine suitable methods for extracting meaningful information 

from high-resolution aerial imagery for long-term monitoring of vegetation on DHI. 

 

2.6. Ancillary variables 

 Remotely sensed imagery analysis may be improved via the exploitation of ancillary variables 

to multi-spectral capture. Multi-spectral in this instance refers to both the near-infrared band and the 

visual spectrum which comprises red, green, and blue wavelengths as individual bands (Olsen, 2007). 

These bands may be combined as a ratio or function to extract a greater understanding of the earth’s 

surface (Babar, Ginkel, Klatt, Prasad, & Reynolds, 2006). The Green Leaf Area (GLA) algorithm 

exploits spectral reflectance information for delineating vegetation types and ground cover (Booth, 

Cox, Fifield, Phillips, & Williamson, 2005; Louhaichi, Borman, & Johnson, 2001). GLA values for an 

aerial image are calculated by the ratio of green, red, and blue wavelengths with additional weighting 

given to the green band (Macfarlane & Ogden, 2012).  

 

Vegetation classification studies have traditionally leveraged the near-infrared band to 

delineate vegetation from other class types (Akar & Güngör, 2015; Fern, Foxley, Bruno, & Morrison, 

2018; Huang, Liu, Li, Yan, & Ou, 2018; Jin, Liu, Chen, & Liang, 2018; Redowan, Akter, & Islam, 

2014). However, not all RPA equipment has the ability to capture near-infrared wavelengths. 

Furthermore, whilst the near-infrared is beneficial for differentiating vegetation from other land cover 

types, it may not be as effective in separating plant species per their unique chlorophyll pigment 

reflectance properties. There is a research gap for studies testing the ability of GLA to classify high-

resolution remotely sensed data compared to near-infrared indices. The GLA algorithm may provide 

scientists a suitable alternative for delineating a species level classification of RPA imagery. 
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In recent decades there have been a number of studies showing the effectiveness of GLA to 

classify remotely sensed imagery (Booth et al., 2005; Chianucci et al., 2016; Louhaichi et al., 2001; 

Macfarlane & Ogden, 2012). Chianucci et al. (2016) applied the GLA colour model to estimating 

Italian beech forest canopies using true colour RPA imagery with a 7.5cm spatial resolution. They 

found that the relationship between the RPA GLA planophile leaf angle distributions against a fisheye 

control image to validate the algorithm returned a coefficient of determination (R2) of 0.7 (Chianucci 

et al., 2016). This suggests that GLA may provide a sound metric for estimating vegetation. The 

strength of the GLA algorithm in classifying vegetation per nadir pole camera images has been 

supported for estimates of Jarrah forest foliage cover (R2 = 0.99) (Macfarlane & Ogden, 2012) and 

differentiating bare ground from plant communities to determine vegetation health across Colorado 

and Wyoming (Booth et al., 2005). However, there have not been any applications of the GLA 

algorithm in determining a species level classification of vegetation using high-resolution RPA 

imagery. The theory of using the GLA calculation as a substitute for near-infrared indices may be 

supported through further studies utilising the algorithm. 

 

Height measurements may also improve accuracy outcomes when quantifying RPA imagery 

to a species level (Gleason, Shihavuddin, Gracias, Schultz, & Gintert, 2015). Studies have shown the 

usefulness of spot height data to discriminate between ground surfaces and other classes (Kluckner, 

Mauthner, Roth, & Bischof, 2009; Salehi, Zhang, Zhong, & Dey, 2012). Räsänen, Kuitunen, Tomppo, 

& Lensu (2014) tested whether a canopy height model was an important variable for determining 

boreal forest habitat types. Their method overlaid an airborne laser scanning canopy height model 

onto World-View 2 satellite multi-spectral imagery for an object-based classification using RF. 

Variable importance outcomes showed that the canopy height and canopy height standard deviation 

were highly ranked, especially when combined with texture measures (Räsänen, Kuitunen, Tomppo, 

& Lensu, 2014). However, there have been limited research classifying high-resolution imagery with 

height data where species is the unit of study. The height of a plant is also a characteristic field botanists 

employ when identifying vegetation to a species level (Barrett, 2016; Falster & Westoby, 2003). It is a 

logical step to apply tangible identification techniques to remotely sensed species classification. 

 

 Object-based methods allow for opportunities to utilise geospatial attributes when defining 

real-world entities. These may include the texture of an aerial image and the inherent geometric 

properties of imagery segments (Chen et al., 2018; Niphadkar et al., 2017). A common method to 
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determine the texture of an aerial image is by calculating a Grey-Level Co-occurrence Matrix (GLCM) 

(Davis, 2018; Wang et al., 2004). The GLCM recognises the X,Y spatial domain of a raster dataset and 

assigns an intensity value to each cell within the array (Coburn & Roberts, 2004; Haralick, Shanmugam, 

& Dinstein, 1973). It is based on the theory that texture and tone are inextricably linked (Haralick et 

al., 1973). Furthermore, the pixel distance and direction within an image kernel may hold additional 

information to extract spatial feature characteristics (Haralick et al., 1973). Incorporating texture into 

an object-based experimental design has shown to improve the classification results (Champion, 

Germain, Costa, Alborini, & Dubois-Fernandez, 2013; Feng et al., 2015; Kim, Warner, Madden, & 

Atkinson, 2011; Liu, Zhou, Zhou, Shao, & Yang, 2013; Wang et al., 2004). 

 

Harlick et al. (1973) initially proposed 14 metrics for measuring texture using kernel based 

distance and direction to derive a classified land use map. Feng, Liu and Gong (2015) calculated six 

texture layers as ancillary data to the spectral reflectance values for classification of moderate 

resolution (0.07m) RPA capture. They found the inclusion of homogeneity, standard deviation, 

dissimilarity, entropy, mean, and angular second moment significantly improved the accuracy of 

classifying vegetation (Feng et al., 2015). The variable range for texture was not limited prior to 

classification. Incorporating a myriad of parameters for measuring texture may not always be feasible 

as texture calculations are computationally intensive (Shahbahrami, Pham, & Bertels, 2012). Temporal 

limitations within a project necessitates an apt selection of texture measures to mitigate the additional 

time taken to compute potentially redundant variables. 

 

Kim et al. (2011) measured the spatial distribution of grey levels to determine salt marsh 

dieback using the Leica ADS40 RPA. Landscape capture measured features at a 0.3m pixel size. The 

method used a directional invariant kernel to calculate angular second moment, contrast, correlation, 

dissimilarity, entropy, homogeneity, mean, and variance. They found that only mean provided a 

dissimilarity between the features. Incorporation of the mean GLCM calculation improved the 

classification accuracy by 3-12% when compared with spectral bands alone. Mean may provide a 

reliable texture surface to discriminate plant features on DHI. 

 

The use of mean calculations may be complemented by additional textures to ensure an 

exhaustive extraction of information from a remotely sensed image. Clausi (2002) used synthetic 

aperture radar to test the ability of GLCM statistics to classify sea-ice. The study showed contrast, 
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correlation, and entropy provided a comprehensive texture range and minimal variable set when 

compared with the use of one or all of the following: dissimilarity, uniformity, maximum probability, 

inverse difference, inverse difference normalized, inverse difference moment normalized, and inverse 

difference motion (Clausi, 2002). Deriving mean, correlation, contrast, homogeneity, and entropy 

texture features along with the spectral reflectance for classifying aerial imagery may improve 

classification accuracy. 

 

Geometric spatial information may provide insights into dissimilarities between segment 

classes and improve the classification accuracy. Geometry or shape in an object-based image analysis 

is defined by the edge of the segment (Lillesand et al., 2015). Jiao and Liu (2012) propose that shape 

metric signatures may function similarly to spectral reflectance signatures when classifying land use 

class segments. Studies showing the pertinence of shape in delineating real-world features include 

classifying urban vegetation communities using Ikonos satellite imagery (Mathieu et al., 2007) and 

mixed land use segments from SPOT-5 imagery (Jiao & Liu, 2012; Memarian, Balasundram, & Khosla, 

2013). 

 

The incorporation of GLA, height, texture, and shape to complement spectral reflectance 

values for RPA classification may improve the accuracy of the object-based modelling. Therefore, 

these measures have been incorporated into the methods for deriving a species level classification on 

DHI. 
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3. Materials and methods 

 This chapter outlines the study area and data collection methods using a remotely piloted 

aircraft. The full framework for achieving the aim of very high-resolution species mapping from multi-

spectral imagery is also provided. 

 

3.1. Study area 

Dirk Hartog Island (DHI) is located approximately 850km north of Perth and forms the 

western barrier of Shark Bay, Western Australia (Figure 3.1). The island geometry is elongated 

measuring approximately 80 km from the northernmost to southernmost point, 12.5 km greatest 

south to west width, and comprising 630km2 of land. Two exclusion plots measuring 40 x 40 m were 

constructed in May 2018 to protect an area of vegetation from ground-dwelling fauna for the purpose 

of testing their impacts in comparison to external vegetation (Figures 3.2-3.3). This ensured the hare-

wallabies would not interact with the experimental control (exclusion plot vegetation) and influence 

the results. Sites for the exclusion plots were located in the central and southern sections of the island 

denoted as plot x01 and x06 respectively. These sites were within areas of representative local 

vegetation. The materials used to construct the exclusion plots were star pickets and chicken wire 

standing at approximately 1 m high and extending 0.5 m outwards to ensure the perimeter is secure 

from ground-dwelling fauna. Assessments were conducted during autumn between the 29th of April, 

2019 and 1st of May, 2019. 

 

3.2. Geology, climate and vegetation 

The island is topographically low-lying with an approximate maximal elevation of 180m above 

sea level (Whitlock, 1921). Geological assessments show the land comprises of predominately sandy 

dune systems with interdunal depressions and Tamala aeolian limestone outcrops (Guern & Davaud, 

2005). Wind transported sand contains carbonate grains resulting from biogenic materials (shells, red 

algae, sea urchin spines, and foraminers) (Guern & Davaud, 2005). The climate is semi-arid with a 

strong southerly wind (Bowder, 1990; Harvey, Johnson, & Harvey, 2018). The closest weather station 

is Denham, WA estimating the average 1989-2018 rainfall to be 216.7mm per year (Bureau of 

Meteorology, 2019). During this period the mean minimum and maximum annual temperature was 

recorded as 17.8°C and 26.8°C respectively (Bureau of Meteorology, 2019). These conditions support 

five vegetation communities including tall open-heath, low closed-heath, low open-heath, hummock 

grassland, and low open shrublands (Maryan, 1996).  
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Figure 3.1. Map showing the location of Dirk Hartog Island and exclusion plot sampling sites. White square 
= exclusion plot 01, and black square = exclusion plot 06. 
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Figure 3.2. Northernmost exclusion plot site (ID=x01) map with remotely piloted aircraft capture. Red polygon = exclusion plot. 
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Figure 3.3. Southernmost exclusion plot site (ID=x06) map with remotely piloted aircraft capture. Red polygon = exclusion plot. 
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3.3. Research workflow 

The framework for processing the Remotely Piloted Aircraft (RPA) imagery for detecting 

plant species is illustrated in Figure 3.4. This conceptual diagram shows the steps taken to derive a 

species level classification from the initial sampling of vegetation and RPA capture to producing a 

final classified output. 

 

3.4. Field data capture 

3.4.1. Geospatially locate and identify species 

 Flora species sampling was conducted between the 29th of April, 2019 and the 1st of May, 2019. 

Field researchers sampled within the exclusion plots and proximal areas. Plants were sampled from 

each study site on an incidental basis with the aim to capture at least 10 individuals per species, thus 

ensuring a viable sample size. Photographs were taken for each individual and the associative photo 

numbers were recorded. Approximate maximum height was measured using a graduated touch pole.  

 

Attribute data for each sample (unique identifier, photo number, species, height (cm), and 

additional notes) were recorded using tangible field survey sheets. Samples were geospatially located 

using the Geocentric Datum of Australia (GDA) 1994, Map Grid of Australia (MGA) zone 49 co-

ordinate system (Figure 4.3). Geospatially located sample centroids were estimated using a Samsung 

Android tablet. The unique identifier documented on the field survey sheet was also associatively 

recorded against the geospatially located sample. Field survey sheets were digitized into a Comma-

Separated Value (CSV) file using Microsoft Excel version 15.0.5179.1000 ex-situ (Corporation, 2013). 

Additional records (20 for each exclusion plot site) were created in the CSV for the purpose of 

assigning a bare ground, seedlings, and juveniles class to samples at a later stage of the study. Each 

‘ground’ record was assigned a unique identifier and given a height (cm) value of 0. 

 

Identification of the vegetation to a species level was achieved using field guides provided 

from previous vegetation surveys. The field guides detailed likely species found within the selected 

sites and their biological characteristics. Diagnostic photographs of unknown individuals were sent to 

two individual botanists specializing in Western Australian taxa. A double blind approach was 

implemented to reduce bias and improve the reliability of their correct identification. 
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Figure 3.4. Conceptual diagram showing the workflow for classifying field data and measuring ecosystem 
engineered impacts. 
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3.4.2. Capture remotely piloted aircraft imagery 

 Images were captured using a DJI Phantom RPA on the 16th of September, 2018. Litchi 

version 4.14.0-g was used to determine a pre-recorded flight plan over the exclusion plot sites and to 

control the drone in the field (VC Technology, 2019). The flight plan sets the altitude of capture as 

the initial distance from the ground. For plot x01 and x06 the flying altitude was 11.9m and 25m 

respectively. Small surface undulations may impact the distance and provide slightly varying spatial 

resolution values. Due to the relatively flat surface found across both exclusion plot sites, these 

variations were deemed to be minimal and therefore would not affect the overall data quality. Ground 

resolution was captured as 5.49mm and 6.06mm per pixel across exclusion plot 01 and 06 respectively. 

Multi-spectral imagery was captured with an 8-bit radiometric resolution and centimeter positioning 

precision. Spectral reflectance was recorded for red, green, and blue wavelength bands. A Normalised 

Surface Model (NSM) was calculated during the post-processing phase of the study per height 

measurements captured by the drone. NSM values were assigned to each individual pixel in the form 

of a radiometric quantisation level (0-255) for x01 and an absolute height value for x06. 

 

The RPA stored the capture as individual tiles using the World Geodetic System 1984 datum. 

Tiles were post-processed in Photoscan-pro version 1.4.2 (Agisoft, 2018). This allowed for a single 

mosaic image to be created for each site. The post-processed images were re-projected into the GDA 

1994, MGA zone 49 spatial co-ordinate system. 

 

3.5. Digitised sample boundaries 

 Geospatially located DHI vegetation sample points were overlaid onto the remotely piloted 

aircraft imagery in ArcGIS Pro version 2.4.0 (ESRI, 2019). Any species with less than 10 samples were 

removed from further modelling. Plant boundaries were digitised into polygons based on the 

approximated extent (without exceeding the boundary) shown in the aerial imagery. The plant 

boundary polygon was projected using the GDA 1994, MGA zone 49 spatial co-ordinate system. A 

total of 20 areas of ground, seedlings, and juveniles were digitised for each exclusion plot site and 

categorized as ‘ground’ within the plant boundary shapefile. A spatial join was implemented to 

associate the unique identifier of each geospatially located sample point captured in the field with a 

plant boundary polygon. ‘Ground’ polygons were manually assigned the unique identifier recorded in 

the comma-separated value file attributes previously mentioned. 
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3.6. Segmentation and variable extraction 

 Remotely piloted aircraft imagery was segmented using eCognition version 9.5.1 (Trimble, 

2019). The extent of the segmentation was defined using a relative bounding box encapsulating the 

digitised plant boundaries. Shape and compactness parameters were set at 0.5 whilst variations of scale 

were assessed. Segment scale parameters were set at 20, 50, and 100, 200, and 400. A visual assessment 

of the parameterisation suitability was applied, in line with other studies segmenting aerial imagery 

(Adam et al., 2016; Juniati & Arrofiqoh, 2017; Mathieu et al., 2007; Myint et al., 2011; Sertel & Alganci, 

2015; Sibaruddin et al., 2018; Yan et al., 2007; Yu et al., 2006). The scale value which best represented 

the underlying aerial imagery was selected for further statistical testing. 

 

 Spectral reflectance was derived from the aerial imagery and the mean red, green, and blue 

band values were calculated for each segment (Table 3.1). Reflectance was then used to derive the 

Green Leaf Algorithm (GLA) which is calculated by: 

 GLA = 
(2G – R – B) 

(3.1) (2G + R + B) 

Where R = red wavelength value, G = green wavelength value, and B =blue wavelength value. This 

algorithm was applied to the RGB imagery and the result filtered using an 11x11 median filter to each 

pixel. The purpose of the filter was to smooth the GLA image to aid the segmentation of individual 

plant crowns. The object-based process calculates the maximum, median, and mean GLA value for 

each segment per the internal pixel values. Possible outliers were mitigated by calculating the 90th GLA 

percentile value per segment. 

 

Class height was measured using mean, median, minimum, and maximum NSM values per 

each segment. Possible outliers were mitigated by calculating the 90th NSM percentile value per 

segment. 

 

 eCognition segmentation processing was used to compute the texture and shape metrics. 

Mean, correlation, contrast, homogeneity, and entropy grey-level co-occurrence matrices were 

computed in all directions as ancillary variables to the spectral reflectance, GLA, and NSM values 

(Haralick et al., 1973). Ancillary shape values calculated were the ratio of length and width, area per 

the number of pixels in each segment, roundness, and compactness for each segment.  
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Table 3.1. Variables derived per segment for classifying aerial imagery on Dirk Hartog Island. 

Type Variable Field name 

 

Spectral reflectance 

Mean red band Mean_red 

Mean green band Mean_green 

Mean blue band Mean_blue 

   

NSM 

Mean NSM Mean_nsm 

Median NSM Med_nsm 

Minimum NSM Min_nsm 

Maximum NSM Max_nsm 

NSM 90th percentile value quan90nsm 

   

GLA 

Median GLA Med_gla 

Mean GLA Mean_gla 

Maximum GLA Max_gla 

GLA 90th percentile value quan90gla 

   

Texture 

Mean texture feature GLCM_Mean_ 

Correlation texture feature GLCM_Corre 

Entropy texture feature GLCM_Entro 

Contrast texture feature GLCM_Contr 

Homogeneity texture feature GLCM_Homog 

   

Shape 

Roundness Roundness 

Compactness Compactnes 

Length / width LengthWidt 

Area per pixel Area 

 

In total there were 21 initial variables derived to delineate species within the exclusion plot 

sites. The final segmented shapefile consisted of segments in the form of contiguous polygons and 

the supporting aspatial data. 
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3.7. Data processing 

 Plant boundary polygons, CSV files containing field survey attributes, and the segment 

polygons for x01 and x06 were imported into R studio version 1.2.1335 implementing the R version 

3.6.1 ‘Action of the Toes’ coding language (R Studio, 2019; The R Foundation, 2019). A left join was 

applied from the CSV files to plant boundaries per the unique identifier captured in the field. Data 

was filtered into x01 samples and x06 samples. The library packages dplyr, stringr, sf, tidyr, raster were 

installed to process the inputted data (Hijmans, 2019; Pebesma, 2019; Wickham, 2019a, 2019c, 2019d). 

This process removed any additional note points not applicable to the study. The complete R code 

may be found in Appendix 9.1. 

 

3.8. Statistical variable selection 

3.8.1. Descriptive statistics 

 To summarise the dataset, the descriptive statistics calculated for each segment variable across 

both exclusions plot sites were range, mean, standard deviation, standard error, and skew. A visual 

comparison between species per variable was conducted via box and whisker plots, more commonly 

referred to as box plots. Box plots were created using the ggplot2 R library package (Wickham, 2019b). 

 

3.8.2. Assumption testing 

 The underlying data contained multiple vectors of means and therefore a Multi-variate 

Analysis of Variance (MANOVA) was chosen. This statistical mechanism was proposed to test if the 

reduced variables, after assumption testing refinement, were significantly associated to species/ground 

types in order for the null hypothesis to be refuted. To determine if the data is suitable for a MANOVA 

test and to reduce the number of variables for machine learning classification, three assumptions 

needed to be met: 1) there were no correlations of greater than 0.6 between variables, 2) the data 

followed an approximately Gaussian distribution, and 3) the data relationships were approximately 

linear. 

 

A correlation chart was derived to test assumptions 1, 2, and 3 per the Pearson method using 

the PerformanceAnalytics R library package (Nettleton, 2014; Peterson, 2019). Absolute Pearson 

correlation coefficient values show whether there is a correlation between two variables and the 

direction (±) of the correlation. A correlation greater 0.6, regardless of direction, was deemed to negate 

assumption 1. Where a correlation exists, the variable that is most dissimilar for species types per the 
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box plot comparison was chosen for analysis, under the assumption that it would provide the most 

unique information. 

 

After assumption 1 testing was complete, skewness values of the remaining variable set were 

analysed to determine if assumption 2 had been met. If a variable returned a numerical skew value of 

>0.5 or <-0.5 a transformation was required. Variables with a skew value of <-0.5 were reflected prior 

to transformation. To apply a reflection, values were converted to negative numerals which created 

an inverse histogram. However, the logarithmic transformation requires that values are positive. 

Therefore, the maximum value plus 1 was added to each individual value within the variables where 

an inverse histogram had been calculated as seen in the following equation: 

 Vi = (V1, V2… Vn) + (Vm + 1) (3.2) 

 Where Vi is the calculated value, Vn is the reflected value, and Vm is the maximum value for 

the variable.  

 

A square root transformation was applied where the skew value was between 0.5 and 1 and a 

logarithmic transformation was applied to variables with a numerical skewness of greater than 1 

(Webster & Oliver, 2001). The logarithmic transformation may not be applied to variables that contain 

zero values. For variables which require logarithmic transformation and contain the numeral zero, a 

constant of 1 was added to each individual value in the dataset. 

 

The suffix ‘_TranF’ was appended to the field title nomenclature for representation of 

transformed variables in this study. If both the square root and logarithmic transformation were 

unsuccessful for skew values of 0.5-1, the variable remained untransformed for further testing and the 

minor increase in the level of MANOVA uncertainty was accepted. If a logarithmic transformation 

could not stabilize a variable with a greater that 1 skew value, it was removed from further statistical 

testing. Data was stored in Microsoft excel spreadsheets using the xlsx R library package (Dragulescu 

& Arendt, 2018). 

 

If a relationship did not meet the linearity assumption, the most dissimilar variable was 

removed from further statistical testing and classification per the box plot analysis. 
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Finally, to ensure there were no outliers confounding the outcome, an outlier plot was 

generated. 

 

3.8.3. Multi-variate Analysis of Variance with post-hoc univariate test 

 A one-way MANOVA statistical test for significance was applied to the species/ground classes 

and the refined variables after assumption testing (Bray & Maxwell, 1985).  The MANOVA was 

calculated per the Pillai’s trace test (Pillai, 1955). If the MANOVA was found to be significant a post-

hoc test was required. To determine which individual variables were significant for delineating 

vegetation on DHI, a univariate post-hoc test was applied through a Summarise Analysis of Variance 

model. Significance was tested at a P < 0.05 level throughout the analysis. 

 

3.9. Random Forest classification 

 Random Forest (RF) was the machine learning algorithm chosen for high-resolution remotely 

piloted aircraft imagery classification. This is due to the algorithms ability to compute complex inputs 

and the inbuilt convergence of generalization error which mitigates overfitting issues (Breiman, 1984; 

Foody, 2004; Rodriguez-Galiano et al., 2012). Parameterisation of the model required an mtry value, 

minimum node size, and the number of folds. For comparison of dataset inputs the parameters for 

each run were set as mtry = 2, minimum node size = 1, and number of folds = 10. The number of 

folds value of 10 determines that 10% of the data would be portioned for the out of bag error estimate. 

The model was coded using the ranger and caret R library packages (Kuhn, 2019; Wright, 2019). 

 

The machine learning ensemble classifier was run on the selected scale segmented x01 and x06 

data for all variables, the selected raw variables per the MANOVA calculation, and the selected dataset 

with transformed variables per the MANOVA compare methodological outcomes. The RF algorithm 

was also run on the segmentation scales directly below and above the chosen segment scale parameter 

per all variables for both exclusion plot sites. Ten iterations per scenario was calculated and the out of 

bag error estimates quantified per mean Kappa and accuracy values were recorded for each. The 

approximate time to compute the scenario was also recorded. 

 

 The final iteration for the best suited accuracy outcome was exported as a shapefile with a 

populated predicted class field. 
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3.10. Exclusion plot and proximal area comparisons  

 Quadrat dimensions of 15 x 15 m were derived, both within the exclusion plot area and a 

proximal area, for each of the exclusion plot sites. The purpose of measuring quadrats is to compare 

vegetation cover per the predicted segment classes. Vegetation cover was used as a proxy for testing 

if the re-introduced fauna are acting as ecosystem engineers. The quadrat locations were determined 

by the segmentation bounding box in relation to the exclusion plot boundary. The cardinal direction 

with the maximum proximity testing area of segments was chosen as the location of the proximal 

quadrat area. A quadrat was calculated within the exclusion plot and the mirrored external area. 

Quadrats were measured 1 m from the exclusion plot fence line. The position along the fence line was 

chosen using a randomly generated longitudinal ordinate for the north/south fence line boundaries 

and latitudinal ordinate for the east/west fence line boundaries. The segmentation shapefile containing 

the predicted field for each site was intersected with the quadrat to calculates class cover (area per 

pixel and %) and compare outcomes. 
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4. Results 

4.1. Remotely piloted aircraft imagery 

  A total of 284 and 314 individual photos were captured across exclusion plot x01 and x06 

respectively. There was a visible increase in vegetation density and cover for exclusion plot site x06. 

In contrast, exclusion plot site x01 had a greater level of bare ground coverage per a visual analysis. 

 

4.2. Vegetation samples 

 Incidental surveying of vegetation on Dirk Hartog Island (DHI) was found to be a proficient 

sampling method (Figure 4.1-2). Flora species sampling for x01 was conducted on the 29/04/2019, 

30/04/2019, and 1/05/2019. Site x06 was sampled on the 30/04/2019. A total of 179 and 82 plant 

individuals were sampled across x01 and x06 respectively (Figure 4.3, Appendix 9.2). 

 

The species found at x01 were Acacia ligulata, Acanthocarpus preissii, Alyogyne cuneiformis, Atriplex 

vesicaria, Cenchrus ciliaris, Exocarpus aphyllus, Santalum acuminatum, Threlkeldia diffusa, Triodia plurinervata, 

Westringia dampieri, and an unknown plant recorded as x01-008. Vegetation samples recorded as x01-

008 were unable to be identified visually by trained botanists due to an absence of fruit or flowers. 

The plant structure and leaf morphology suggest that the samples were related. For the purposes of a 

species level grouping to classify aerial imagery the vegetation set x01-008 was deemed acceptable for 

inclusion in the object-based model.  

 

S. acuminatum returned 1 individual specimen and W. dampieri had a total of 4 samples for 

exclusion plot site x01. S. acuminatum and W. dampieri were removed from further modelling due to 

falling beneath the 10 samples per species threshold.   

 

There was a decrease in richness found at x01 with the four species identified being Scaevola 

spinescens, A. ligulata, A. vesicaria, and T. plurinervata. All species had a total sample count of >= 20.  
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Figure 4.1. Sampling effort map for the northernmost exclusion plot (x01) with remotely piloted aircraft capture. Red polygon = exclusion plot, green 
polygon = segment area, yellow points = individual sampled on the 29th of April 2019, blue points = individual sampled on the 30th of April 2019, and 
pink points = individual sampled on the 1st of May 2019. 
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Figure 4.2. Sampling effort map for the southernmost exclusion plot (x06) with remotely piloted aircraft capture. Red polygon = exclusion plot, green 
polygon = segment area, and blue points = individual sampled on the 30th of April 2019. 
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a)  

 

b) 

 

Figure 4.3. Distribution of samples captured from exclusion plot sites 1 and 6 where the x axis = species 

name/ground class and y axis = total number of individuals sampled. a) ex01 and b) ex06. 

 

4.3. Segmentation output 

 The visual inspection of segmentation outputs showed that a scale of 50 best represented the 

underlying imagery for both exclusion plot sites. Segmentation for exclusion plot sites 1 had a total 

area of 4,215.1m2 and exclusion plot 6 had a total area of 3,000.66m2. There were 165,935 and 104,800 

polygons delineated for x01 and x06 respectively.  
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Segment data intersected with known plant boundaries showed A. ligulata and A. cuneiformis 

presented the highest number of segments for x01 totaling 2,962 and 2,783 respectively (Table 4.1). 

A. vesicaria followed as the third most segments for x01 with a total of 1,233. A. ligulata segments for 

x06 also showed the highest count with 2,098 in total. A. cuneiformis was not found at x06. The 

subsequent segmentation total after A. ligulata was S. spinescens with 1,467 segments for x06. A. vesicaria 

had the second lowest segmentation count for x06 with 790 in total. C. ciliaris showed the lowest 

number of segments with 230 in total for x01. This species was not found at x06. T. plurinervata 

returned the lowest segmentation count for x06 with 524 polygons and the third least for x01 with 

310 polygons. 

 

Table 4.1. Segmentation counts per plant species/ground classes for x01 and x06. 

Class 
Total number of segments 

x01 x06 

Acacia ligulata 2,962 2,098 

Acanthocarpus preissii 903 - 

Alyogyne cuneiformis 2,783 - 

Atriplex vesicaria 1,233 790 

Cenchrus ciliaris 230 - 

Exocarpus aphyllus 1,637 - 

Ground 2,707 899 

Scaevola spinescens - 1,467 

Threlkeldia diffusa 585 - 

Triodia plurinervata 310 703 

X01-008 308 - 

 

4.4. Descriptive statistics variable comparison 

 Spectral reflectance were considered as the Mean_Red, Mean_Green, and Mean_Blue 

variables and shared similar class distributions for both x01 and x06 (Figures 4.4-5). A. ligulata, A. 

cuneiformis, and E. aphyllus spectral reflectance centers were positioned at relative intervals to each other 

and lower than the other plant species types for exclusion plot x01. The Mean_green variable for x01 

species A. ligulata, A. cuneiformis, and E. aphyllus had a median value which was positioned slightly lower 

than other classes.  
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Figure 4.4. Box and whisker plot comparisons showing the spread of segment variables quantified per 

species and ground classes for x01. The whiskers encompass samples within 10% to 90% of each distribution 

with points representing values outside of this range. a) Mean_blue, b) Mean_green, c) Mean_red, d) 

Max_gla, e) Mean_gla, f) Med_gla, g)Mean_nsm, h) Med_nsm, i) Min_nsm, j) Max_nsm, k) quan90gla, and 

l) quan90nsm. 

 

d) a) b) c) e) 

g) 

f) 

h) i) j) k) l) 
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Figure 4.5. Box and whisker plot comparisons showing the spread of segment variables quantified per 

species and ground classes for x06. The whiskers encompass samples within 10% to 90% of each 

distribution with points representing values outside of this range. a) Mean_blue, b) Mean_green, c) 

Mean_red, d) Max_gla, e) Mean_gla, f) Med_gla, g)Mean_nsm, h) Med_nsm, i) Min_nsm, j) Max_nsm, k) 

quan90gla, and l) quan90nsm. 

a) b) c) e) 

g) 

f) 

h) 

d) 

i) j) k) l) 
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A. ligulata, A. cuneiformis, and E. aphyllus did share considerable interquartile range overlap with 

other classes. Alternatively, Mean_red and Mean_blue A. ligulata, A. cuneiformis, and E. aphyllus 

interquartile ranges were positioned slightly lower and shared minimal overlap with other classes for 

x01.  

 

  A. ligulata centers measured for x06 were slightly lower for each of the spectral reflectance 

variables. The third quartile of A. ligulata overlapped entirely with the second quartiles of other plant 

classes for all x06 spectral reflectance variables. 

 

A. vesicaria has a slightly greater spread of interquartile range values and slightly higher center 

when compared with other plant species for both x01 and x06. The x01 spectral reflectance variables 

for A. vesicaria, A. preissii, C. ciliaris, T. diffusa, T. plurinervata and x01-008 showed an approximately 

Gaussian distribution with overlap between their interquartile ranges. Plant class x01-008 sampled in 

x01 showed a center positioned slightly lower than other mid-ranged plant species (A. preissii, A. 

vesicaria, C. ciliaris, T. diffusa, and T. plurinervata) for Mean_red. x01-008 shared a similar middle 

positioning interquartile range and center when compared to the other plant species for Mean_green 

and Mean_blue. 

 

A normal distribution pattern across all spectral reflectance variables with an overlap between 

their interquartile ranges was found for the following x06 plant species: S. spinescens, A. vesicaria, and T. 

plurinervata. The latter two species shared an approximate center for Mean_blue and Mean_green. 

However, the center for x06 S. spinescens was slightly higher than T. plurimervata for Mean_red. The 

median value for A. vesicaria was positioned slightly higher than that of S. spinescens or T. plurinervata 

for all spectral reflectance variables. 

 

Ground was the most dissimilar class with a notably higher inner quartile range (above 150) 

for all spectral reflectance variables across both exclusion plot sites. The spectral reflectance variable 

Mean_red followed closely by Mean_blue showed the most prominent dissimilarity for both exclusion 

plots. 

 

It was noted that A. ligulata showed outliers at the upper tail for the spectral reflectance 

variables across both x01 and x06. A. cuneiformis followed the same spectral reflectance outlier pattern 
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for x01. These were most likely related to the presence of a possible skew. Further skew testing is 

required to test this assumption. 

 

The Green Leaf Algorithm (GLA) calculations incorporated the variables Med_GLA, 

Mean_gla, Max_gla, and quan90gla. Each calculation appeared to contain numerous outliers for x01. 

There was a presence of outliers across each of the x06 GLA variables for all species excluding S. 

spinescens, and T. plurinervata. The index calculates the maximum value into the thousands and therefore 

creates a sparsity of data within the range. This sparsity may interpret data positioned along whiskers 

as outliers.  

 

A. ligulata, A. cuneiformis, and E. aphyllus classes had higher interquartile ranges with no overlap 

when compared with the other classes for all x01 GLA variables except Med_gla. A. ligulata, A. 

cuneiformis, and E. aphyllus had higher centers for x01 Med_gla when compared with other classes. 

However, there was some x01 Med_gla overlap between the second quartiles of A. ligulata and A. 

cuneiformis and the third quartile of x01-008. Furthermore, there was no difference between the centers 

of A. preissii, A. vesicaria, C. ciliaris, T. diffusa, T. plurinervata and x01-008 for x01 Med_gla.  

 

A. preissii, A. vesicaria, C. ciliaris, T. diffusa, T. plurinervata and x01-008 showed overlap between 

the interquartile ranges for all x01 GLA variables. The ground class was positioned relative to A. 

preissii, A. vesicaria, C. ciliaris, T. diffusa, T. plurinervata and x01-008 for all x01 GLA variables except for 

Max_gla. Max_gla which showed the ground interquartile range was lower than the other plant species 

with no overlap for x01. 

 

There was some quartile range overlap between the plant classes for each GLA variable across 

x06. A. ligulata had the highest center for all x06 GLA variables followed by S. spinescens. The ground 

class was moderately positioned relative to other plant species for all x06 GLA variables excluding 

Max_gla and quan90gla. Max_gla and quan90gla for x06 showed the ground interquartile range was 

lower than the other plant species with no overlap. 

 

The distribution of Max_gla and Mean_gla values appeared approximately Gaussian for all 

classes with the exception of A. ligulata, A. cuneiformis, and E. aphyllus for x01 and A. ligulata and S. 

spinescens for x06. Med_gla for both exclusion plots showed the least similarity. Max_gla followed by 



Department of Spatial Sciences | 2019 

57 

Mean_gla were visually determined to portray the most dissimilarity between classes for both x01 and 

x06 GLA variables. 

 

The Normalised Surface Model (NSM) variables included Med_nsm, Mean_nsm, Min_nsm, 

Max_nsm, and quan90nsm which had differences in values between x01 and x06. NSM variables 

showed similar overall class distributions for both x01 and x06. However, distribution of values shared 

similar characteristics between the exclusion plot sites. A. ligulata showed a normal distribution and 

the highest upper whisker across each NSM variable for x06. Similarly, A. ligulata had one of the 

highest upper whiskers for x01 along with A. cuneiformis and E. aphyllus across each of the NSM 

variables. The spread of A. ligulata and E. aphyllus was relatively normal across Med_nsm, Mean_nsm, 

Max_nsm, and quan90nsm for x01. However, A. ligulata showed a strong positive skew for Min_nsm 

in x01. E. aphyllus was approximately normally distributed for Min_nsm in x01. A. cuneiformis showed 

a strong positive skew in all NSM variables except Max_nsm and quan90nsm for x01.  

 

Across exclusion plot site x06 A. vesicaria and S. spinescens followed an approximately parallel 

interquartile range for all NSM variables. However, for all x06 NSM variables A. vesicaria showed a 

slightly lower upper whisker compared to S. spinescens. T. plurinervata showed minimal interquartile 

range overlap when compared with A. vesicaria, S. spinescens, and ground across all x06 NSM variables 

except Min_nsm. The ground class, which also incorporates seedlings and juveniles, shows the best 

representation of values within the Med_nsm and Min_nsm variables for both exclusion plot sites. 

Based on the overall distribution of values and the representation of the ground class, Med_nsm may 

be most suitable for RPA imagery classification followed closely by Min_nsm for both x01 and x06. 

 

Texture surfaces calculated were the GLCM_Mean_, GLCM_Corre, GLCM_Entro, 

GLCM_Contr, and GLCM_Homog variable set (Figure 4.6-7). GLCM_Mean_ shows similar 

Gaussian distributions across all classes for both exclusion plot sites.  
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Figure 4.6. Box and whisker plot comparisons showing the spread of segment variables quantified per 

species and ground classes for x01. The whiskers encompass samples within 10% to 90% of each 

distribution with points representing values outside of this range. a) GLCM_Contr, b) GLCM_Corre, 

c) Roundness, d) GLCM_Entro, e) GLCM_Homog, f) GLCM_Mean_, g) Area, h) Compactnes, and i) 

LengthWidt. 

 

a) b) d) e) f) 

g) 

c) 

h) i) 
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Figure 4.7. Box and whisker plot comparisons showing the spread of segment variables quantified per 

species and ground classes for x06. The whiskers encompass samples within 10% to 90% of each 

distribution with points representing values outside of this range. a) GLCM_Contr, b) GLCM_Corre, 

c) Roundness, d) GLCM_Entro, e) GLCM_Homog, f) GLCM_Mean_, g) Area, h) Compactnes, and i) 

LengthWidt. 

a) b) d) e) f) 

g) 

c) 

h) i) 
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GLCM_Homog showed a strong positive skew for both x01 and x06. There was no 

conspicuous GLCM_Homog difference between the interquartile range and spread between plant 

species for both x01 and x06. However, the ground class may be discerned from plant species for 

both exclusion plot sites per a non-overlapping GLCM_Homog interquartile range. GLCM_Homog 

may delineate ground to surrounding vegetation for both exclusion plot sites. 

 

GLCM_Corre and GLCM_Contr showed no discernable difference between classes for x01. 

Plant species distributions were relatively similar across both GLCM_Corre and GLCM_Contr for 

x06. However, the median and interquartile range for the ground class were discrete from the plant 

species center values. GLCM_Corre and GLCM_Contr had slightly varying plant species centers for 

x06. GLCM_Contr showed a slightly greater dissimilarity between interquartile ranges when compared 

with GLCM_Corre for x06. GLCM_Contr and GLCM_Corre for x06 may assist in improving the 

classification accuracy for species delineation on Dirk Hartog Island. 

 

Both exclusion plot sites showed a similar partitioning of plant species values for 

GLCM_Entro. GLCM_Entro showed an extended lower whisker for the ground class with minimal 

interquartile range overlap when compared with the plant species classes for x01. The subtle 

differences between ground and plant species found in GLCM_Entro for x01. 

 

Auxiliary shape variables include Roundness, Compactnes, LengthWidt, and Area. Roundness 

showed relatively no differences between the centers and ranges of classes for both x01 and x06. There 

was a presence of Roundness outliers for all x01 and x06 classes with the exception of A. ligulata 

sampled for x06. Compactnes values were approximately normally distributed across plant species 

with a minor positive skew shown in the ground class for both exclusion plot sites. Compactnes 

showed minimal variation between class centers for both exclusion plots. Furthermore, there was a 

moderate decrease in the ground class center compared with plant species for both x01 and x06. A. 

vesicaria and X01-008 Compactnes box plots showed a slightly higher center when compared with 

other x01 classes. Compactnes values for x06 show S. spinescens as having the highest center.  

 

Area box plot calculations for both exclusion plots sites show a strong positive skew across 

all classes. There did appear to be some Area variation in the interquartile range and upper whiskers 

between classes for both x01 and x06. However, the skew made it difficult to determine if Area could 
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differentiate classes within the Random Forest algorithm. The Area variable for both exclusion plot 

sites may improve classification accuracy is data is transformed and becomes normally distributed.  

 

LengthWidt showed a strong positive skew for all classes in x01 and x06. It was determined 

that LengthWidt showed no difference in interquartile range and center between classes for x01 or 

x06. 

 

From the geometry variables available, Compactnes may complement other non-shape 

variables when classifying segments derived from aerial imagery capture across x01 and x06. Area for 

both exclusion plots may provide useful information for delineating vegetation if transformed prior 

to Multi-variate Analysis of Variance testing. 

 

4.5. Inferential statistics variable comparison 

4.5.1. Assumption 1 testing - correlations 

The correlation matrix for exclusion plot site 1 shows a high correlation between spectral 

reflectance variables (Figure 4.8-9). Mean_blue and Mean_green showed a correlation of 0.97, 

Mean_blue and Mean_red showed a correlation of 0.98, and finally Mean_red and Mean_green 

showed a correlation of 0.99. Therefore, retaining all three variables in the Multi-variate Analysis of 

Variance (MANOVA) test would not satisfy assumption 1, that correlations are not greater than 0.6. 

The box plot assessment suggested that the dissimilarity between Mean_red classes was greater than 

that of Mean_blue or Mean_green for exclusion plot site x01. The Mean_red variable was selected for 

further exclusion plot site x01 testing. 

 

Exclusion plot site x06 Mean_red, Mean_green, and Mean_blue showed an analogous 

correlation pattern to the spectral reflectance found across x01. Mean_blue and Mean_green showed 

a correlation of 0.98, Mean_blue and Mean_red showed a correlation of 0.97, and Mean_red and 

Mean_green showed a correlation of 0.99. Mean_red showed the greatest dissimilarity between classes 

via a box plot analysis. To mitigate the correlations found in the x06 matrix and satisfy assumption 1, 

Mean_red was selected from the spectral reflectance variables for further testing. 
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Figure 4.8. A correlation matrix for x01 with diagonal boxes showing each variable and their data 

distribution. Bottom left boxes = bi-variate scatterplots with mean line (red). Top right boxes = absolute 

correlation values. The diagonal variables in order from top left to bottom right are Mean_blue, Mean_green, 

Mean_red, Med_gla, Max_gla, Mean_gla, Med_nsm, Min_nsm, Mean_nsm, Max_nsm, quan90nsm, 

quan90gla, Roundness, GLCM_Contr, GLCM_Corre, GLCM_Entro, GLCM_Homog, GLCM_Mean_, 

LengthWidt, Area, and Compactnes. 
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Figure 4.9. A correlation matrix for x06 with diagonal boxes showing each variable and their data 

distribution. Bottom left boxes = bi-variate scatterplots with mean line (red). Top right boxes = absolute 

correlation values. The diagonal variables in order from top left to bottom right are Mean_blue, Mean_green, 

Mean_red, Med_gla, Max_gla, Mean_gla, Med_nsm, Min_nsm, Mean_nsm, Max_nsm, quan90nsm, 

quan90gla, Roundness, GLCM_Contr, GLCM_Corre, GLCM_Entro, GLCM_Homog, GLCM_Mean_, 

LengthWidt, Area, and Compactnes. 

 

Pearson correlation coefficient values between GLA variables returned high correlations for 

exclusion plot site 1. The Med_gla variable showed correlation values of 0.84, 0.84, and 0.87 with 

Max_gla, Mean_gla, and quan90gla respectively. Max_gla had a correlation of 0.87 with Mean_gla and 

0.98 with quan90gla. Mean_gla showed a correlation value of 0.93 with quan90gla. The box plot 

assessment suggested Max_gla and Mean_gla to be the most dissimilar. However, these two variables 

returned an absolute correlation value which was greater than 0.6 and therefore did not satisfy 

assumption 1. Max_gla was deemed to have a slightly greater dissimilarity than Mean_gla. However, 

the Max_gla distribution appeared to be bimodal. This would not meet the assumption of normality 

required to meet assumption 2 of the MANOVA test. Both Mean_gla and Max_gla variables were 

retained for further x01 assumption testing. 
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  Exclusion plot site 6 showed a similar trend in GLA correlations to exclusion plot site 1. 

Med_gla showed correlation values of 0.76, 0.88, and 0.83 with Max_gla, Mean_gla, and quan90gla 

respectively. Max_gla had a correlation of 0.84 with Mean_gla and 0.96 with quan90gla. Mean_gla 

showed a correlation value of 0.93 with quan90gla. Mean_gla and Max_gla were determined as the 

most dissimilar based on the box plot class distributions. Max_gla had the greatest dissimilarity when 

compared with Mean_gla. Max_gla was chosen for further assumption testing. 

 

The height variables calculated were Med_nsm, Min_nsm, Mean_nsm, Max_nsm, and 

quan90nsm. These variables were strongly correlated to each other for both exclusion plot sites. The 

box plot analysis suggested that Med_nsm and Min_nsm for x01 and x06 may best differentiate 

between the classes on DHI. However, these variables returned a Pearson’s correlation coefficient of 

0.86 and 0.92 for x01 and x06 respectively. The data for Med_nsm and Min_nsm appeared to be 

skewed across both of the exclusion plot sites. To meet assumption 2 the data should be normally 

distributed. In this instance a transformation may need to be applied to mitigate the skew. However, 

transformations are not always successful. Med_nsm and Min_nsm for both exclusion plot sites were 

selected for further assumption testing. This will allow for the skew value to be quantified and to 

examine whether a transformation is applicable for the variables in order to satisfy the normality 

assumption of a MANOVA.  

 

 Texture was through the calculation of GLCM_Contr, GLCM_Corre, GLCM_Entro, 

GLCM_Homog, and GLCM_Mean_ variables. Only GLCM_Contr and GLCM_Corre showed a 

correlation value which did not satisfy assumption 1 for exclusion plot site 1. The box plot assessment 

showed that the variables GLCM_Entro and GLCM_Homog may provide the most suitable 

dissimilarity for classifying vegetation on exclusion plot site x01. Therefore, in the absence of an 

unsatisfactory correlation, GLCM_Entro and GLCM_Homog were selected for further assumption 

testing. 

 

 GLCM_Contr and GLCM_Corre also showed a high correlation of -0.97 for exclusion plot 

site x06. GLCM_Contr showed a slightly greater dissimilarity in the x06 box plot assessment and was 

recommended for further modelling. GLCM_Homog was also suggested as a probable variable to 

delineate x06 species and did not return any correlations. GLCM_Homog and GLCM_Contr may be 

the most suitable texture variables for classifying vegetation on exclusion plot site 6. 
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 The final variable type was shape which included Roundness, LengthWidt, Area, and 

Compactnes. The correlation value of 0.86 was shown between Roundness and Compactnes for both 

exclusion plot sites. There were no other correlating shape variables. A value of 0.86 dissatisfies the 

assumption that correlations shouldn’t be greater than 0.6 and therefore was not suitable for further 

MANOVA testing. The box plots for both x01 and x06 indicate that Compactnes and Area may 

differentiate between classes. Compactnes and Area for both exclusion plot sites were chosen for 

further modelling.  

 

Correlations were predominately present between intra-variable types. However, there were a 

few inter-variable type correlations for exclusion plot site x01. Med_gla and Max_nsm had a Pearson 

correlation coefficient value of 0.6. To satisfy assumption 1 for a MANOVA the correlation value 

must be greater than 0.6. Therefore, Med_gla and Max_nsm would satisfy the assumption 1. Max_gla 

showed a correlation with Mean_green (-0.64), Max_nsm (0.65) and quan90nsm (0.61). Mean_blue 

also had high correlations with Med_gla and Max_gla displaying values of -0.61 and -0.77 respectively. 

Furthermore, quan90gla shared high correlation values with Mean_blue, Mean_green, Mean_red, 

Max_nsm, and quan90nsm. As Mean_blue, Mean_green, Med_gla, Max_nsm, and quan90gla were 

not selected for further modelling, these correlations did not impact the decision process. 

 

Mean_red showed a high correlation with Max_gla (-0.72) for x01. From the GLA variables 

for x01 both Max_gla and Mean_gla were selected for further testing whilst Mean_red was the sole 

spectral reflectance variable selected for x01. Max_gla was removed from further assumption testing 

as GLA may still be modelled through the Mean_gla variable. The removal of Max_gla also mitigates 

potential issues arising from a bi-modal data distribution. 

 

Exclusion plot site x06 showed less intra-variable correlations than x01. The correlation value 

for Mean_blue and Max_gla was -0.61. As Mean_blue was not selected for further modelling, this 

correlations did not impact the decision process. 

 

4.5.2. Assumption 2 testing - normality 

The histograms calculated in the correlation matrix provided information on whether the 

variables were normally distributed and thus satisfied assumption 2. However, further quantifiable 

analysis was required to eliminate human-induced bias. Skewness values were calculated for the refined 
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variable set (Table 4.2). Mean_gla and GLCM_Entro for x01 was reflected prior to transformation. A 

square root transformation was applied to Mean_red (x01), Mean_gla (x01), Med_nsm (x06), and 

Min_nsm (x06). The log of the data was derived for Med_nsm (x01), Min_nsm (x01), GLCM_Homog 

(x01 and x06), GLCM_Entro (x01), and GLCM_Contr (x06). Transformation outcomes may be 

found in Appendix 9.3. 

 

Table 4.2. Skewness calculation per the variables selected for the MANOVA testing. 

Variable 

Skewness value a priori 

transformation 

Skewness value posteriori 

transformation 

x01 x06 x01 x06 

Mean_red 0.52 0.25 0.05 - 

Mean_gla -0.86 - 0.28 - 

Max_gla - -0.2 - - 

Med_nsm 1.13 0.61 0.22 -0.17 

Min_nsm 1.64 0.98 0.6 0.19 

GLCM_Homog 3.46 3.71 1.11 1.46 

GLCM_Entro -1.31 - 0.4 - 

GLCM_Contr - 1.23 - 0.03 

Compactnes 0.1 0.02 - - 

Area 3.31 2.79 3.3 -0.12 

 

After the transformations, a strong skew of greater than 1 was found in the variables 

GLCM_Homog for both exclusion plot sites and Area for x01. These variables were removed from 

subsequent modelling. Min_nsm for x01 showed a skewness value of 0.6 after the logarithmic 

transformations. As this value marginally surpasses the skewness threshold of 0.5 it was retained for 

further modelling. 

 

There was an absence of outliers for both exclusion plot sites. Therefore, outliers would not 

affect the results of the study. 
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4.5.3. Updated correlation matrix and assumption 3 testing - linearity 

 The correlation matrix was re-run on the refined dataset and Med_nsm_TranF and 

Min_nsm_TranF for x01 returned a correlation of 0.88 (Figure 4.10). Furthermore, the bi-variate 

scatterplot mean line showed that the two variables are not linearly related. The transformed Min_nsm 

variable had shown that a numerical skewness was still present after the logarithmic transformation. 

From the two correlated transformed Normalised Surface Model (NSM) variables, Min_nsm_TranF 

was removed from further analysis due to the presence of a posteriori transformation skew. 

 

Med_nsm_TranF and Min_nsm_TranF for x06 returned a correlation of 0.92 which is greater 

than the correlation assumption of less than 0.6 for assumption 2. Med_nsm_TranF was retained for 

further analysis due to the greater dissimilarity between classes shown in the box plot analysis. 

Min_nsm_TranF for x06 was excluded from the final MANOVA test. 

 

 Area_TranF and GLCM_Contr_TranF showed a strong correlation of -0.72 for x06. Due to 

difficulties determining box plot differentiation for Area_TranF, the transformed box-plots were re-

analysed in Appendix 9.3. There was an increased dissimilarity found in GLCM_Contr_TranF when 

compared with Area_TranF. The latter variable was removed from the final x06 MANOVA test. 

 

 The x01 refined variable set appeared approximately linearly related once Min_nsm_TranF 

was removed, with the exception of GLCM_Entro_TranF and Compactness per the mean line of the 

bi-variate scatterplot. However, the non-linear relationship between GLCM_Entro_TranF and 

Compactness may still be suitable for a MANOVA as the strength of the collinearity between 

predictors is relatively low. Both the GLCM_Entro_TranF and Compactness for x01 were retained 

for the MANOVA test. 

 

The refined variable set for x06 appeared approximately linear across all relationships. No 

further variable exclusion was required.  
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a) 

 

b) 

 

Figure 4.10. Final correlation matrices with diagonal boxes showing each variable and their data distribution. 

a) x01 and b) x06. Bottom left boxes = bi-variate scatterplots with mean line (red). Top right boxes = 

absolute correlation values.  
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4.5.4. Multi-variate Analysis of Variance and post-hoc univariate test 

 The final dataset derived for x01 contained the dependent (Species) and refined independent 

variable set after assumption testing. Predictor variables for testing significance were 

Mean_red_TranF, Mean_gla_TranF, Med_nsm_TranF, GLCM_Entro_TranF, and Compactnes. The 

MANOVA test showed that the variable set selected had a significant effect on Species (Table 4.3). A 

pairwise comparison suggests that all predictor variables are statistically significant for delineating 

species on DHI (Table 4.4).  

 

Table 4.3. Results of the MANOVA applied to the effect of the segment variables on Species for x01. 
Significance was measured at a P < 0.05 level and indicated by *. 
 df Pillai test P P < 0.05 

Species 9 1.12 <0.001 * 

Residuals 13,648    

 

Table 4.4. Result of the Summarise Analysis of Variance test for the effect of x01 segment variables on 
delineating species. Sum Sq = Sum of Squares. Mean Sq = Mean sum of Squares. Significance was measured 
at a P < 0.05 level and indicated by *. 
 Sum Sq Mean Sq P P < 0.05 

Mean_red_TranF 62,240 6,915.6 <0.001 * 

Mean_gla_TranF 95,692,547 10,632,505 <0.001 * 

Med_nsm_TranF 33,736 3,748.4 <0.001 * 

GLCM_Entro_TranF 104.68 11.63 <0.001 * 

Compactnes 1.53e+12 1.69e+11 <0.001 * 

 

Significance testing for x06 was conducted on Mean_red, Max_gla, Med_nsm_TranF, 

GLCM_Contr_TranF, and Compactnes. The MANOVA test showed that the variable set selected 

had a significant effect on Species (Table 4.5). A pairwise comparison suggests that all predictor 

variables are statistically significant for delineating species on DHI (Table 4.6). 

 



Department of Spatial Sciences | 2019 

70 

Table 4.5. Results of the MANOVA applied to the effect of the segment variables on Species for x06. 
Significance was measured at a P < 0.05 level and indicated by *. 
 df Pillai test P P < 0.05 

Species 4 0.82 <0.001 * 

Residuals 5,952    

 

Table 4.6. Result of the Summarise Analysis of Variance test for the effect of x06 segment variables on 
delineating species. Sum Sq = Sum of Squares. Mean Sq = Mean sum of Squares. Significance was measured 
at a P < 0.05 level and indicated by *. 
 Sum Sq Mean Sq P P < 0.05 

Mean_red 8,232,932 2,058,233 <0.001 * 

Max_gla 1.39e+10 3.47e+9 <0.001 * 

Med_nsm_TranF 424.97 106.24 <0.001 * 

GLCM_Contr_TranF 118.01 29.5 <0.001 * 

Compactnes 1.91e+11 4.76e+10 <0.001 * 

 

4.6. Random forest classification accuracy 

 Accuracy outcomes measured showed that a scale parameter set at 20 provided the greatest 

classification accuracy (Kappa = 0.7, accuracy = 0.75) for exclusion plot site x01 followed closely by 

a scale parameter of 50 tested with all variables (Kappa = 0.69, accuracy = 0.74) (Table 4.7). All 

variables in this instance denotes all originally captured variables and not the transformed variables. A 

scale value of 20 for x01 had a higher computation time (>1hr) compared to a scale value of 50 tested 

with all variables (5.5mins). The difference between accuracy outcomes is marginal for the scale of 20 

compared to 50 with all variables and the computation time is markedly higher. 

 

Both exclusion plot sites showed the segmentation scale of 100 as having a lower Kappa value 

and accuracy estimate than the scenarios where the scale was calculated at 20 and 50 with all variables. 

This suggests there may be a decrease in classification accuracy when the segments are more 

generalised. Therefore, a scale of 100 for both exclusion plot sites may not be suitable for quantifying 

species on DHI. 
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Table 4.7. Random Forest out of bag Kappa and accuracy quantified by mean value over 10 iterations per 

scenario. Approximate computation time captured from a random iteration sample per scenario. 

Scenario Kappa Accuracy Computation time 

Exclusion plot site x01    

 Scale 20 – all variables 0.7 0.75 >1 hour 

 Scale 50 – untransformed 

selected variables 
0.5 0.59 2 minutes 

 Scale 50 – transformed selected 

variables 
0.51 0.59 2 minutes 

 Scale 50 – all variables 0.69 0.74 5.5 minutes 

 Scale 100 – all variables 0.63 0.69 4 minutes 

Exclusion plot site x06    

 Scale 20 – all variables 0.7 0.78 45 minutes 

 Scale 50 – untransformed selected 

variables 
0.56 0.63 1.75 minutes 

 Scale 50 – transformed selected 

variables 
0.51 0.63 1.75 minutes 

 Scale 50 – all variables 0.67 0.74 5.5 minutes 

 Scale 100 – all variables 0.57 0.66 3.5 minutes 

 

 The MANOVA dimension reduction of variables for a scale of 50 resulted in a classification 

accuracy decrease for exclusion plot site 1 from 74% to 59% for the all variables and untransformed 

selected variable scenarios respectively. However, computational performance was improved by 

63.64%. 

 

A scale of 50 with all variables may provide the most efficient metric for classifying exclusion 

plot site x01 segmentation outputs. Values for all scenario iterations across both exclusion plot sites 

may be found in Appendix 9.4. 

  

The highest accuracy outcome for exclusion plot site 6 was the scale of 20 followed by 50 

tested with all variables. There was a 4% classification accuracy difference between these scenarios. 

The scenarios returned similar Kappa values of 0.7 and 0.67 for a scale of 20 and 50 tested with all 
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variables respectively. The Kappa value is an equation which tests how far the data classification 

departs from expected outcomes. A higher Kappa value suggests the classification is less likely to be 

calculated by chance. The Kappa value comparison between x06 scale parameterisation of 20 and 50 

with all variables suggests both scenarios may provide a suitable classification. The scale of 50 with all 

variables had a lower computation time (5.5minutes) when compared with a scale of 20 (45 minutes) 

for x06. 

 

 There was no significant difference between the transformed and untransformed refined 

variable set per a scale of 50 for x06. The x06 segment scale of 50 untransformed variable subset 

reduced the accuracy and Kappa values when compared with a scale of 50 tested using all variables.  

 

 The MANOVA dimension reduction of variables for a scale of 50 resulted in a classification 

accuracy decrease for exclusion plot site 6 with 74% to 63% for the all variables and untransformed 

selected variable scenarios respectively. However, computational performance was improved by 

68.18%. 

 

 The segmentation scale parameter of 50 calculated with all variables for exclusion plot site 6 

was selected for the final classification output and class comparisons due to computational 

performance outcompeting the similarly accurate segment scale of 20 scenario. 

 

 Exclusion plot site 1 returned a slightly lower classification accuracy for all scenarios when 

compared with exclusion plot site 6. This may be related to the two identified species found across 

x01 which were removed due to having less than 10 samples each. Classification accuracy may be 

improved if an exhaustive survey effort is applied. Achieving a minimum of 10 samples for all classes 

when in the field may improve accuracy outcome in subsequent modelling stages. 

 

4.7. Area comparisons 

 Class comparisons were made between 15x15m quadrats, one within the exclusion plot and 

another mirrored external to the aforementioned quadrat for x01 and x06 (Figure 4.11-12, Table 4.8-

9).  
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Figure 4.11. Northernmost exclusion plot site (x01) map with predicted segments and remotely piloted aircraft capture. Red polygon = exclusion plot. 

Black polygon = 15x15m quadrat within the exclusion plot. Grey polygon = 15x15m quadrat located in mirrored proximal area to the quadrat measured 

within the exclusion plot. Final iteration to calculate this prediction quantified Kappa value and accuracy as 0.69 and 74% respectively. 
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Figure 4.12. Southernmost exclusion plot site (x06) map with predicted segments and remotely piloted aircraft capture. Red polygon = exclusion plot. 

Black polygon = 15x15m quadrat within the exclusion plot. Grey polygon = 15x15m quadrat located in mirrored proximal area to the quadrat measured 

within the exclusion plot. Final iteration to calculate this prediction quantified Kappa value and accuracy as 0.67 and 74% respectively. 
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Table 4.8. Area comparisons quantified per pixel area and % for exclusion plot x01 testing quadrats. 

Class 

Area within 

exclusion plot (area 

per pixel) 

Proximal area 

(area per pixel) 

Area within 

exclusion plot 

(%) 

Proximal 

area (%) 

Change 

(%) 

Acacia ligulata 1,207,440 1,291,156 15.69 16.76 +1.07 

Acanthocarpus preissii 1,178,146 1,132,710 15.31 14.7 -0.61 

Alyogyne cuneiformis 493,440 235073 6.41 3.05 -3.36 

Atriplex vesicaria 903,687 1,043,812 11.74 13.55 +1.81 

Cenchrus ciliaris 28,041 65,017 0.36 0.84 +0.48 

Exocarpus aphyllus 246,243 308,211 3.2 4 +0.8 

Ground 2,818,084 2,749,670 36.62 35.69 -0.93 

Threlkeldia diffusa 522,952 541,302 6.8 7.03 +0.23 

Triodia plurinervata 244,852 250,426 3.18 3.25 +0.07 

X01-008 52,365 87,196 0.68 1.31 +0.63 

 

Table 4.9. Area comparisons quantified per pixel area and % for exclusion plot x06 testing quadrats. 

Class 

Area within 

exclusion plot 

(area per pixel) 

Proximal area 

(area per pixel) 

Area within 

exclusion plot 

(%) 

Proximal 

area (%) 

Change 

(%) 

Acacia ligulata 1,308,736 985,756 20.41 15.36 -5.05 

Atriplex vesicaria 456,052 715,825 7.11 11.16 +4.05 

Ground 968,523 705,660 15.11 11 -4.11 

Scaevola spinescens 1,043,865 892,798 16.28 13.91 -2.37 

Triodia plurinervata 2,633,579 3,116,428 41.08 48.57 +7.49 

 

There was a minimal difference between class coverage for x01. The highest differential was 

shown in the A. cuneiformis species with a -3.36% change. A. vesicaria was the second highest outcome 

with an increase of 1.81% cover between the quadrat within the exclusion plot and the proximal area. 

T. plurinervata showed the least change (+0.07%) between x01 quadrats. 
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 A. ligulata showed to have the greatest coverage of the plant species both within the exclusion 

plot and across the external quadrat for x01. A visual assessment showed that A. ligulata could be 

found sharing habitat with similarly sized shrubs E. aphyllus and A. preissii. 

 

Comparisons between 15x15m quadrats for x06 showed an increase in T. plurinervata (7.49%) 

and A. vesicaria (4.05%) cover (Figure 4.12, Table 4.9). There was a subsequent decrease in A. ligulata, 

ground, and S, spinescens classes with values of 5.05%, 4.11%, and 2.37% respectively for x06. 

 

 T. plurinervata followed by A. ligulata showed to have the greatest coverage of the plant species 

both within the exclusion plot and across the external quadrat for x06. A visual assessment showed 

that the lower-lying forb S. spinescens and grass T. plurinervata could be found growing peripherally to 

A. ligulata. 

 

 Ground coverage found at x01 was greater than the area of ground found for x06. The increase 

in diversity and ground may relate to a decrease in A. ligulata cover for x01 when compared to x06. 

 

 Using a segmentation method which divides objects into multiple segments has shown to 

delineate the inherent complexities of wild plant growth for both exclusion plot sites. 
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5. Discussion 

 Object-based classification techniques on very high-resolution aerial imagery has been shown 

to be a viable method of delineating vegetation to a species level. Comparisons between the 

experimental control quadrats and proximal quadrats tested the impacts of translocated fauna 

posteriori ungulate removal. This section will provide an in-depth discussion of the five objectives for 

this report: a) construct and test a framework of sampling vegetation for the purpose of classifying 

high-resolution aerial imagery, b) segmentation of aerial imagery and implementation of the Random 

Forest (RF) algorithm to classify segmented data, c) dimension reduction to obtain variables offering 

the greatest degree of species level separation, d) accuracy assessment of the RF classifier, and e) 

determining if translocated fauna are having an ecosystem engineered impact on Dirk Hartog Island 

(DHI). 

 

5.1. Data capture and processing 

Incidental surveying of vegetation is where the sample is found by chance and the represented 

target is not based on a pre-defined taxa (Yong et al., 2018). Sampling of the incidental specimen may 

then be conducted based on a defined numerical threshold i.e. the aim of capturing 10 samples per 

species for this report. The application of this observation technique on DHI was found to be a 

proficient sampling method. Sampling was conducted in an area relative to the exclusion plot site. 

Segment classification may have been interpolated for the entire exclusion plot site Remotely Piloted 

Aircraft (RPA) capture. However, there may be a species bias if sampling coverage is restricted to one 

section of the capture. Where the species richness was greater (x01), the species sampling effort took 

a longer period of time to cover the same area than the exclusion plot site where the species richness 

was less (x06). Two recommended alternatives may improve the field survey sample distributions. 

Firstly, to sample every second or third incidental specimen. This would allow for a greater area to be 

sampled whilst maintaining approximately the same level of survey effort.  

 

An alternative is to divide the current segmentation boundary areas (x01 = 4,215.1m2 and x06 

= 3,000.66m2) into four plots. These boundaries determine the minimum area required to capture the 

species diversity. Tobler’s first law of geography states that phenomena nearby to each other are more 

closely related than phenomena further away (Tobler, 1970). Therefore, distributing observed classes 

within the study design would allow for segments located further from the exclusion plot boundary 
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to also be accurately classified. Dispersing these plots across the RPA imagery would allow for a more 

distributed sampling effort and retain the same level of effort. 

 

Segmentation totals for Acacia ligulata and Alyogyne cuneiformis presented the highest count for 

x01. However, A. ligulata and A. cuneiformis showed the second most number of field samples behind 

Atriplex vesicaria. A. ligulata segments for x06 also presented the highest number of total segments with 

A. vesicaria returning under half the segments calculated than that of the A. ligulata. A. ligulata was 

sampled an approximate equivalent number of times when compared to A. vesicaria across x06. A. 

cuneiformis was not found at x06. A. vesicaria is a medium sized bush which may grow between 0.3-1m 

tall (Spooner, 1999b). A. ligulata and A. cuneiformis are both larger structures both shown to have a 

maximal growth of 4(-6 in some environments) and 3.5m respectively (Paczkowska, 1996; Spooner, 

1999a). Vegetation classes which experience larger growth patterns may have a higher segmentation 

count due to an increase in canopy. Therefore, the discrepancy seen in field capture sample size and 

total number of segments may be explained by differences in growth behaviours.  

 

Cenchrus ciliaris and Triodia plurinervata are both tussock-forming graminoids which are relatively 

low lying with a maximum growth of up to 1.5m, allowing for successful seed wind dispersal (Coleman, 

1998; Paczkowska, 1993). This study found that C. ciliaris showed the lowest segment total for x01 

whilst T. plurinervata returned the lowest segmentation count at x06. However, C. ciliaris placed within 

the upper half of overall field samples based on the plant species and ground class included in the 

modelling process for x01. Furthermore, the number of field samples for Cenchrus ciliaris was relative 

to the other classes for x06. The reduction in the segment count compared with other larger growth 

forms may suggest a correlation between plant morphology and segmentation total. 

 

Moderately sized plant species for x01 include Atriplex vesicaria and Exocarpus aphyllus shrubs 

and the forb Acanthocarpus preissii (Paczkowska, 1994, 1995a; Spooner, 1999b). The medium plants 

found at x01 were centrally ranged with segmentation totaling 903-1,637. Atriplex vesicaria and Scaevola 

spinescens represent moderately sized sample for x06 with a total of 790 and 1,467 segments respectively 

(Spooner, 1999b, 2000). There is a difficulty in placing the moderately size plant species within a range 

for x06 due to a decrease in species richness when compared to x01. Overall, the differences in 

segmentation size against plant species morphological characteristics are more apparent in x01. The 

increase in species richness may provide a greater understanding of the plant type to segmentation 
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total relationship. Further studies and required to understand the relationship between sample size, 

segmentation count and plant growth behaviours. This will allow environmental managers to 

determine the most efficient sampling method. 

 

5.2. Segment parameterisation 

The unit of interest in this study were plant species. Each individual was divided into multiple 

segments to increase the sample size and therefore the strength of classification (Millard & Richardson, 

2015). The unique characteristics of the individual plant segment mosaics allowed for their varying 

exhibited qualities to be captured. For example, individuals which have had the leaf density reduced 

on one side due to wind erosion or where two plants are sharing the same ground area for growth.  

 

Yang et al. (2019) suggest that dividing a feature into multiple segments is the result of over-

segmentation and is inadvisable. However, their study measured urban areas and crop types from 

Sentinal-2A and Landsat 8 satellites at a regional scale (Yang, Mansaray, Huang, & Wang, 2019). This 

would not be applicable to a species-level classification of very high-resolution RPA data. Each 

measured surface contains unique qualities which may result in different parameterisation 

requirements (Singh et al., 2005). The outputs for this study highlighted peripheral grasses and small 

forbs which were growing underneath larger shrubs. Another example shown in the classified outputs 

were instances where two large shrubs growing in the same area could be discriminated. Leveraging 

the power of segment clusters has shown to capture the complexity of vegetation on DHI which may 

not be possible if plants were modelled as a whole. 

 

A visual assessment of the scale value to determine if segmentation represented the underlying 

aerial imagery was shown to reliably validate parameterisation. This method is in line with the broader 

scientific literature (Adam et al., 2016; Juniati & Arrofiqoh, 2017; Mathieu et al., 2007; Myint et al., 

2011; Sertel & Alganci, 2015; Sibaruddin et al., 2018; Yan et al., 2007; Yu et al., 2006). 

 

This research identified a probable linear relationship between segmentation scale and the 

accuracy of the classification. As the objects of interest became more segmented, the out-of-bag 

estimates improved. This may be related to how well the segments fit the aerial image. Segmentation 

quality is correlated with the image object geometry and has been shown to influence the classification 

accuracy (Benz et al., 2004; Niphadkar et al., 2017; Zhang et al., 2012). However, reliance of accuracy 
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assessment calculations may result in over- or under-segmentation (Jing et al., 2012; Kawakubo et al., 

2013). The visual assessment of the segmentation output shown in this research paper may eliminate 

difficulties in determining whether accuracy outcomes relating to parameterisation are suitable.  

 

This study showed that scales of 20, 50, and 100 all may potentially represent individual plant 

species and the surrounding surface area. Identifying whether a linear relationship exists between 

accuracy and scale values for vegetation on DHI may improve classification performance for future 

assessments. This may provide resource managers a more precise delineation of flora for long-term 

monitoring programs. 

 

5.3. Variable selection 

Application of all multi-spectral and ancillary variables was shown to outcompete the refined 

dataset in terms of classification accuracy (15% and 11% reduction for x01 and x06 respectively). 

Studies have shown that the Green Leaf Algorithm (Booth et al., 2005; Chianucci et al., 2016; 

Louhaichi et al., 2001; Macfarlane & Ogden, 2012), Normalised Surface Model (Booth et al., 2005; 

Kluckner et al., 2009; Louhaichi et al., 2001; Räsänen et al., 2014; Salehi et al., 2012), Grey-Level Co-

occurrence Matrix (Champion et al., 2013; Feng et al., 2015; Kim et al., 2011; Liu et al., 2013; Wang 

et al., 2004), and segment geometry (Jiao & Liu, 2012; Mathieu et al., 2007; Memarian et al., 2013) may 

compliment red, green, and blue bands in an object-based classification of remotely sensed data. The 

breadth of variables used in this report may functionally exaggerate the spectral characteristics of 

certain plant species or complement each other to effectively discriminate vegetation types and the 

ground class. However, the use of box-plot comparisons and assumption testing methods achieved a 

strict dimensionality reduction of 76% for both exclusion plot sites. Confining the variable selection 

to a box-plot analysis and subsequent correlation matrix may provide an equivalent accuracy output 

to the all variables scenario whilst mitigating the ‘curse of dimensionality’. 

 

The ‘curse of dimensionality’ phenomena is where there is a relationship between the number 

of variables input into the algorithm and the temporal performance of the algorithm (Jin & Liu, 2010). 

Therefore, ‘curse of dimensionality’ mitigation methods have been proposed to reduce the number of 

features input by eliminating redundant variables to improve computational performance (Camps-

Valls, Tuia, Gómez-Chova, Jiménez, & Malo, 2011; Witten, Frank, & Hall, 2011). The three methods 
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for dimensionality reduction are filter, wrapper, and embedded (Camps-Valls et al., 2011; Kavzoglu & 

Mather, 2002). 

 

Wrapper dimensionality reduction techniques incorporate classification algorithms to evaluate 

the strength of a subset’s usefulness in relation to a predictor (Talavera, 2005). These include Support 

Vector Machines and Greedy Search Algorithms (Guyon & Elisseeff, 2003). The benefit of these 

method is that relationships between classes are validated (Camps-Valls et al., 2011). However, cross-

validation of variables and classes is timely and may exceed the computational performance of the 

filter method or the scenario of processing all variables (Colkesen & Kavzoglu, 2018). This renders 

the purpose of utilising a wrapper variable reduction method void. Furthermore, the wrapper methods 

may lend themselves to overfitting, especially where there is a low sample size (Colkesen & Kavzoglu, 

2018). 

 

Embedded methods select the variable subset during the machine learning algorithm training 

process (Camps-Valls et al., 2011). For example, Puissant, Rougier, and Stumpf (2014) used repeated 

Random Forest variable importance outcomes to determine variables that may be removed from 

further classification. For each iteration the least significant features (lower 20%) were removed. Their 

study reduced the initial dataset from 80 to 33 variables (Puissant, Rougier, & Stumpf, 2014). However, 

this process is counter-intuitive if the rationale of dimension reduction is to minimise the number of 

inputs prior to machine learning computation. Furthermore, Yang et al. (2019) suggest that variable 

importance methods may not interpret the interplay between variable types. A lowly ranked feature 

may extricate additional dissimilarities when complemented with other variables (Yang et al., 2019). 

Ignoring the relationships between variables may result in a loss of differentiation capability. 

 

Lastly, the filter method is used to subset the data based on indirect measures prior to 

classification e.g. Principal Component Analysis (PCA), Nonnegative Matrix Factorization (NMF), 

Chi-squared testing, and the process delineated for this research paper (Colkesen & Kavzoglu, 2018; 

Huang & Zhang, 2008). Studies may also fuse filter methods to obtain a reduced dimensionality 

and/or apply the technique to a sub-group rather than the entire dataset (Abasi, Arefi, & Bigdeli, 2015; 

Chen et al., 2018).  

 



Department of Spatial Sciences | 2019 

82 

Chen et al. (2018) used a PCA to reduce the original 32 texture variables to 12. The texture 

variable subset were amalgamated with spectral reflectance, terrain, and spatial relation features. Their 

object-based classification of GF-1 satellite imagery achieved a maximum classification accuracy of 

88.16% using Random Forest. The application of PCA to a sub-group was required because PCA is a 

holistic algorithm (Huang & Zhang, 2008). PCA, Chi-squared, and NMF filter methods may not have 

an intuitive interpretation of the relationship between classes. A box-plot analysis allows for the 

recognition of intra-class relations. The proposed flow-on correlation matrix may test sub-grouping 

dissimilarities and holistic relationships.  

 

Limiting the variable refinement to the initial box plot assessment or correlation assumption 

test, as done in this study, may provide an effective method for reducing the variable set for 

computational efficiency whilst retaining a satisfactory accuracy. A trade-off in this instance may be 

made where a slight reduction in accuracy is accepted in return for expedient data processing. This 

may allow for discriminatory pre-selection of variables in future research projects. Further studies to 

test the application of solely the box-plot and correlation matrix dimensionality reduction are required. 

This would determine if refinement for computational performance improvement may be achieved 

using this method with an equivalent accuracy to the application of all variables. 

 

5.4. Accuracy assessment 

The out-of bag estimates produced by RF determines the accuracy of the classification through 

the use of bootstrapped samples cross-validating outcomes (Breiman, 2001). However, the random 

forest accuracy assessment was developed for testing two-dimensional datasets. Spatially dependent 

data may result in RF accuracy estimates which are auto-correlated (Haining, 2015). With multiple 

segments per plant, there is a chance that the accuracy calculation may be influenced by randomly 

sampling a cluster. RF bootstrapped samples do not factor in the spatial relationships of the data being 

inputted (Breiman, 2001).  

 

Independent assessments of error may offer a more reliable evaluation method for geospatial 

datasets (Millard & Richardson, 2015). A confusion or error matrix visually determines the 

performance of a classifier through the calculation of the overall accuracy, users accuracy (false 

positive: type 1 error), and producers accuracy (false negative: type 2 error) (Congalton & Green, 2009; 

Lillesand et al., 2015). The user may sample one or more observed segment per sample to ensure the 
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data is dispersed. Cross-tabulation of classes has been shown to reliably assess the accuracy of object-

based classification (Chapman et al., 2010; Duro et al., 2012; Jhonnerie et al., 2015; Ye et al., 2018).   

 

The difficulty with an independent error assessment is that take additional time to program 

and analyse in comparison with accuracy assessments built into the model. Due to the volume of 

segments (165,935 for x01 and 104,800 for x06) the effects of spatial auto-correlation on accuracy 

outcomes are likely to be minimal. Therefore, it is discretionary whether an independent error matrix 

is applied for future object-based modelling of vegetation on DHI. 

  

5.5. Ecosystem engineering 

 Species class cover between 15 x 15 m quadrats within the exclusion plot and external to the 

exclusion plot for x01 showed a negligible difference. However, there was a small scale change in 

species level canopy coverage across x06 for T. plurinervata (+7.49%), A. vesicaria (+4.05%) cover, A. 

ligulata (-5.05%), ground (-4.11%), and S. spinescens (-2.37%) classes. Further temporal studies may 

show if these differences relate to the landscape providing more favourable habitat for the translocated 

endangered species to DHI.  

 

Rufous and banded hare-wallabies are known to create nests and dig small burrows within T. 

plurinervata and A. ligulata respectively (Burbidge & Woinarski, 2016a, 2016b; Cowen et al., 2018). The 

rufous hare wallaby may also utilise A. ligulata for habitat (Burbidge & Woinarski, 2016a). A site which 

is abundant in T. plurinervata and A. ligulata could provide ideal habitat for either species. Exclusion 

plot site 6 showed a greater composition area of A. ligulata and T. plurinervata than exclusion plot site 

1. 

 

Bare ground, seedlings, and juveniles coverage found at x01 was greater than the area of the 

‘ground’ class for x06. The reduction of open space and subsequent increase in plant density may 

provide an ideal refugium for the risk averse hare-wallabies (Hardman & Moro, 2006; Richards, 2012). 

Hardman and Moro (2006) studied mala (Lagostrophus fasciatus and Lagorchestes hirsutus) habitat 

preferences using animals fitted with radio-transmitters for diurnal monitoring on a protected area of 

the Peron Peninsula. They found that both species sought out a floristically and structurally variable 

vegetation outside of their known preferences due to the former providing a greater habitat density 

and thus reliable refugia. Exclusion plot sites that combine favourable flora species with vegetation 
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density may be more preferable for habitation leading to an increase in changes to the species 

composition. 

 

 Interestingly, T. plurinervata increased in cover whilst A. ligulata decreased. Ecosystem 

engineering through digging behaviours can promote plant growth in adjacent soil heaps and lower 

conductivity, phosphorus, potassium, sulphur, and microbial activity of direct foraging pits (Valentine 

et al., 2018). Testing direct hare-wallaby nesting within A. ligulata, in conjunction with remotely sensed 

data may show that biopedturbation is promoting plant growth of peripheral grasses such as the T. 

plurinervata. 

 

The absence of changes for x01 may be the result of ecosystem engineering inertia. Studies 

have shown a temporal lag between organic litter build up and altered abiotic conditions for 

microhabitats and the creation of beneficial growing conditions (Eldridge & James, 2009; James et al., 

2009; Mallen‐Cooper et al., 2019; Sandom et al., 2013; Travers et al., 2012; Valentine et al., 2016). 

Ecosystem engineering inertia to providing beneficial growing patterns may also explain the minimal 

differences found for x06. The introduced hare-wallaby species have been present on DHI for less 

than 2 years. Long-term monitoring of exclusion plot sites is required to determine if translocated 

hare-wallabies are having an ecosystem engineered impact. 

 

Finally, the difference shown in exclusion plot site 6 may relate to natural variation across the 

landscape and not faunal biopedturbation. Environmental stochasticity is known pillar of natural 

systems (Fujiwara & Takada, 2017). Further studies utilising the entirety of the 40 x 40 m exclusion 

plot would reduce uncertainties associated with whether the vegetation mosaic difference has been 

calculated by chance or significantly impacted by translocated hare-wallabies on DHI. 
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6. Conclusions 

 Object-based classification of very high-resolution Remotely Piloted Aircraft (RPA) imagery 

has shown to be an effective method for delineating vegetation on Dirk Hartog Island (DHI) to a 

species level. This method may be viable for replication when assessing temporal changes in vegetation 

on DHI. It is recommended that long-term field monitoring programs implement a distributed 

stratified, systematic random sampling approach in the form of sampling every second/third incidental 

plant or dividing the survey effort into four dispersed quadrats. This may provide an equally accurate 

classification of the broader RPA capture area. Further studies measuring the relationship between 

plant growth behaviours, sample size per species, and segmentation total may also provide increased 

survey effort efficacy. 

 

Segment parameterisation was found to have a potential association with the calculated out-

of-bag accuracy and Kappa values. Research testing this relationship using high-resolution aerial 

imagery captured on DHI may improve segment parameterisation and classification accuracy for 

future monitoring of plant species and faunal impacts.  

 

Implementation of Multi-variate Analysis of Variance assumption and post-hoc statistical 

testing showed to be a strict dimensionality reduction method. A trade-off was made between 

improving computational performance through decreasing variables and the classification accuracy. 

Variable refinement may be restricted to solely the box plot analysis and correlation matrix to preserve 

slightly more information. The outcome of a less strict reduction may extract variables which show 

dissimilarities between classes whilst retaining an acceptable accuracy outcome. 

 

There was minimal differences found between both the exclusion plot sites and their 

associated quadrat comparatives. Long-term vegetation monitoring is recommended to adequately 

determine the impacts of translocated fauna. Furthermore, utilising the entirety of RPA capture may 

reduce uncertainties to whether differences are related to environmental stochasticity or faunal 

impacts. Data captured and analysed within the research paper may provide base-line composition 

statistics for future object-based modelling of DHI. 
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8. Appendix 

 This section details the additional processing information and results that is supplementary to 

the data outlined in previous chapters. 

 

8.1. R code 

library(dplyr) 

library(stringr) 

library(ggplot2) 

library(sf) 

library(tidyr) 

library(raster) 

library(PerformanceAnalytics) 

library(xlsx) 

library(sciplot) 

 

gpsdir <- "C:\\Users\\Lucy\\Desktop\\Curtin University\\Masters\\Dirk 

Hartog\\DirkHartogData\\plant_gps\\" # data location 

 

dhi_plantboundaries <- st_read(paste0(gpsdir, 

"PlantBoundarie_PlantIdAppend_20190912.shp"), quiet = TRUE) # input digitised 

plant boundary data across the 3 field days 

 

dhi_gps <- dhi_plantboundaries %>% 

  dplyr::select(Name) %>% # select only the "name", removing others 

  filter(str_detect(Name, "^x")) # filter for exclusion plot identifiers 

 

colnames(dhi_gps)[1] <- "Waypoint"  # rename the name field so datasets can 

be easily joined 

 

ex01csv <- read.csv(paste0(gpsdir, "ex01.csv")) # load in field data for 

exclusion plot 1 

ex06csv <- read.csv(paste0(gpsdir, "ex06.csv")) # load in field data for 

exclusion plot 6 

 

ex01 <- dhi_gps %>% left_join(ex01csv, by = "Waypoint") %>% # join field data 

with plant boundaries 

  filter(str_detect(Waypoint, "^x01"))  # filter for ex01 records 

 

ex01 <- na.omit(ex01) # remove NA records 

 

ex06 <- left_join(dhi_gps, ex06csv,  by = "Waypoint")%>% # join field data 

with plant  boundaries 

  filter(str_detect(Waypoint, "^x06")) # filter for ex06 records 

 

# exclusion plot 1 

# group by and summarise functions - statistics per species can be calculated 

ex01g <- ex01 %>% group_by(SpeciesNotes) %>% 

  summarise(n = n()) 

 

# plot the number of records by species 

ggplot(ex01g, aes(SpeciesNotes, n)) +  

  geom_bar(stat = "identity") + 
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  theme(axis.text.x = element_text(angle = 90, hjust = 1))+ 

  labs(y = "Number of individuals", x = "Species") 

 

data(ex01g) 

View(ex01g) # view data for exact species counts 

 

# select species where samples total >= 5 

ex01 <- subset(ex01, SpeciesNotes!="Westringia dampieri")  

ex01 <- subset(ex01, SpeciesNotes!="Santalum acuminatum") 

 

# exclusion plot 6 

# group by and summarise functions - statistics per species can be calculated 

ex06g <- ex06 %>% group_by(SpeciesNotes) %>% 

  summarise(n = n()) 

 

# plot the number of records by species 

ggplot(ex06g, aes(SpeciesNotes, n)) +  

  geom_bar(stat = "identity") + 

  theme(axis.text.x = element_text(angle = 90, hjust = 1)) + 

  labs(y = "Number of individuals", x = "Species") 

 

data(ex06g) 

View(ex06g) # view data for exact species counts 

 

# select species where samples total >= 5 

ex01 <- subset(ex01, SpeciesNotes!="Westringia dampieri")  

ex01 <- subset(ex01, SpeciesNotes!="Santalum acuminatum") 

 

# segment data location 

ecogdir <- gpsdir <- "C:\\Users\\Lucy\\Desktop\\Curtin University\\Dirk 

Hartog\\DirkHartogData\\segments\\results_20191016\\" 

 

# BOX-PLOTTING VARIABLES 

# exclusion plot 1 

ecog01 <- st_read(paste0(ecogdir, "Site_01b.v50.shp"), quiet =  TRUE)  # read 

in segmentation results 

 

ex01 <- st_transform(ex01, crs(ecog01)) # reproject field data to match 

segments (GDA 1994 MGA 49) 

 

ex01st <- st_intersection(ex01, ecog01) # intersect the field data and 

segments 

st_geometry(ex01st) <- NULL # remove geometry 

 

ex01st <- dplyr::select(ex01st, SpeciesNotes, Mean_blue, Mean_green, 

Mean_red, Med_gla, Max_gla, Mean_gla, Med_nsm, Min_nsm, Mean_nsm, Max_nsm, 

quan90nsm, quan90gla, Roundness, GLCM_Contr, GLCM_Corre, GLCM_Entro, 

GLCM_Homog, GLCM_Mean_, LengthWidt, Area, Compactnes) # select variables for 

analysis 

 

for(i in 2:ncol(ex01st)){ 

ex01st[,i] <- as.numeric(ex01st[,i]) 

} # for loop to set data up as numerical for statistical analysis 

 

# segment totals 

ex01seg <- ex01st %>% group_by(SpeciesNotes) %>% # using the group_by and 

summarise functions stats per group can be calculated 
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  summarise(n = n()) 

 

# view total segments per species 

data(ex01seg) 

View(ex01seg)  

 

ex01box1 <- gather(ex01st, "measure", "value", 2:22) # change the data to 

"long" format, this allows you to use the facet wrap in ggplot 

 

# plot 

ggplot(ex01box1, aes(x = SpeciesNotes, y = value)) +                     

        geom_boxplot() +  

        facet_wrap(~measure , scales="free")  + 

        theme(axis.text.x = element_text(angle = 90, hjust = 1)) 

 

# exclusion plot 6 

ecog06 <- st_read(paste0(ecogdir, "Site_07.v50.shp"), quiet =  TRUE) # read 

in segmentation results 

 

ex06 <- st_transform(ex06, crs(ecog06)) # reproject field data to match 

segments (GDA 1994 MGA 49) 

 

ex06st <- st_intersection(ex06, ecog06) # intersect the field data and 

segments 

st_geometry(ex06st) <- NULL # remove geometry 

 

ex06st <- dplyr::select(ex06st, SpeciesNotes, Mean_blue, Mean_green, 

Mean_red, Med_gla, Max_gla, Mean_gla, Med_nsm, Min_nsm, Mean_nsm, Max_nsm, 

quan90nsm, quan90gla, Roundness, GLCM_Contr, GLCM_Corre, GLCM_Entro, 

GLCM_Homog, GLCM_Mean_, LengthWidt, Area, Compactnes) # select variables for 

analysis 

 

for(i in 2:ncol(ex06st)){ 

ex06st[,i] <- as.numeric(ex06st[,i]) 

} # for loop to set data up as numerical for statistical analysis 

 

# segment totals 

ex06seg <- ex06st %>% group_by(SpeciesNotes) %>% # using the group_by and 

summarise functions stats per group can be calculated 

  summarise(n = n()) 

 

# view total segments per species 

data(ex06seg) 

View(ex06seg)  

 

ex06box1 <- gather(ex06st, "measure", "value", 2:22) # change the data to 

"long" format, this allows you to use the facet wrap in ggplot 

 

# plot 

ggplot(ex06box1, aes(x = SpeciesNotes, y = value)) +                     

        geom_boxplot() +  

        facet_wrap(~measure , scales="free")  + 

        theme(axis.text.x = element_text(angle = 90, hjust = 1)) 

 

# STATISTICAL TESTING 

 

# Exclusion Plot 1 
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# set up response variable as factor 

ex01st$SpeciesNotes <- as.factor(ex01st$SpeciesNotes) 

str(ex01st) # check data to ensure factor has been applied correctly 

 

# standard deviations 

sd(ex01st$Mean_blue) 

sd(ex01st$Mean_green) 

sd(ex01st$Mean_red) 

sd(ex01st$Med_gla) 

sd(ex01st$Max_gla) 

sd(ex01st$Mean_gla) 

sd(ex01st$Med_nsm) 

sd(ex01st$Min_nsm) 

sd(ex01st$Mean_nsm) 

sd(ex01st$Max_nsm) 

sd(ex01st$quan90nsm) 

sd(ex01st$quan90gla) 

sd(ex01st$Roundness) 

sd(ex01st$GLCM_Contr) 

sd(ex01st$GLCM_Corre) 

sd(ex01st$GLCM_Entro) 

sd(ex01st$GLCM_Homog) 

sd(ex01st$GLCM_Mean_) 

sd(ex01st$LengthWidt) 

sd(ex01st$Area) 

sd(ex01st$Compactnes) 

 

# standard error 

se(ex01st$Mean_blue) 

se(ex01st$Mean_green) 

se(ex01st$Mean_red) 

se(ex01st$Med_gla) 

se(ex01st$Max_gla) 

se(ex01st$Mean_gla) 

se(ex01st$Med_nsm) 

se(ex01st$Min_nsm) 

se(ex01st$Mean_nsm) 

se(ex01st$Max_nsm) 

se(ex01st$quan90nsm) 

se(ex01st$quan90gla) 

se(ex01st$Roundness) 

se(ex01st$GLCM_Contr) 

se(ex01st$GLCM_Corre) 

se(ex01st$GLCM_Entro) 

se(ex01st$GLCM_Homog) 

se(ex01st$GLCM_Mean_) 

se(ex01st$LengthWidt) 

se(ex01st$Area) 

se(ex01st$Compactnes) 

 

# skewness value calculation 

skewness(ex01st$Mean_red) 

skewness(ex01st$Mean_gla) 

skewness(ex01st$Med_nsm) 

skewness(ex01st$GLCM_Homog) 

skewness(ex01st$GLCM_Entro) 
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skewness(ex01st$Compactnes) 

 

attach(ex01st) # select data source 

y1 <- cbind(Mean_blue, Mean_green, Mean_red, Med_gla, Max_gla, Mean_gla, 

Med_nsm, Min_nsm, Mean_nsm, Max_nsm, quan90nsm, quan90gla, Roundness, 

GLCM_Contr, GLCM_Corre, GLCM_Entro, GLCM_Homog, GLCM_Mean_, LengthWidt, Area, 

Compactnes) # bind explanatory variables 

 

summary(y1) # summary statistics 

 

# skewness value calculation 

skewness(ex01st$Mean_red) 

skewness(ex01st$Mean_gla) 

skewness(ex01st$Med_nsm) 

skewness(ex01st$Min_nsm) 

skewness(ex01st$GLCM_Homog) 

skewness(ex01st$GLCM_Entro) 

skewness(ex01st$Compactnes) 

skewness(ex01st$Area) 

 

chart.Correlation(y1) # test MANOVA assumtions 

# no correlations > 0.6 

# require roughly normal distributions 

# require roughly linear relationships 

 

# data transformations 

ex01st$Mean_gla_pos <- -ex01st$Mean_gla # reflect negatively skewed variables 

ex01st$Mean_gla_pos <- ex01st$Mean_gla_pos + (max(ex01st$Mean_gla) + 1) # 

create positive Mean_gla values for transformation 

 

ex01st$GLCM_Entro_pos <- -ex01st$GLCM_Entro # reflect negatively skewed 

variables 

ex01st$GLCM_Entro_pos <- ex01st$GLCM_Entro_pos + (max(ex01st$GLCM_Entro) + 1) 

#create positive GLCM_Entro values for transformation 

 

# histograms for determining if positive skew amended and presence of zero 

values 

hist(ex01st$Mean_red,  main = "a)", col="gray") 

hist(ex01st$Mean_gla_pos,  main = "b)", col="gray") 

hist(ex01st$Med_nsm,  main = "c)", col="gray") 

hist(ex01st$Min_nsm,  main = "d)", col="gray") 

hist(ex01st$GLCM_Homog,  main = "e)", col="gray") 

hist(ex01st$GLCM_Entro_pos,  main = "f)", col="gray") 

hist(ex01st$Area,  main = "g)", col="gray") 

 

ex01st$Mean_red_TranF <- ex01st$Mean_red # set up sqrt transformed Mean_red 

variable 

ex01st$Mean_gla_TranF <- ex01st$Mean_gla_pos # set up sqrt transformed 

Mean_gla variable 

ex01st$Med_nsm_TranF <- ex01st$Med_nsm # set up log transformed Med_nsm 

variable 

ex01st$Min_nsm_TranF <- ex01st$Min_nsm # set up log transformed Min_nsm 

variable 

ex01st$GLCM_Homog_TranF <- ex01st$GLCM_Homog # set up log transformed 

GLCM_Homog variable 

ex01st$GLCM_Entro_TranF <- ex01st$GLCM_Entro_pos # set up log transformed 

GLCM_Entro variable 
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ex01st$Area_TranF <- ex01st$Area # set up log transformed Area variable 

 

ex01st$Med_nsm_TranF <- ex01st$Med_nsm_TranF + 1 # apply constant to 

Med_nsm_Tranf values for future log transform 

ex01st$Min_nsm_TranF <- ex01st$Min_nsm_TranF + 1 # apply constant to 

Min_nsm_TranF values for future log transform 

ex01st$GLCM_Homog_TranF <- ex01st$GLCM_Homog_TranF + 1 # apply constant to 

GLCM_Homog_TranF values for future log transform 

ex01st$Area_TranF <- ex01st$Area_TranF + 1 # apply constant to Area_TranF 

values for future log transform 

 

ex01st$Mean_red_TranF <- sqrt(ex01st$Mean_red_TranF) # square-root 

transformation 

ex01st$Mean_gla_TranF <- sqrt(ex01st$Mean_gla_TranF) # square-root 

transformation 

ex01st$Med_nsm_TranF <- log(ex01st$Med_nsm_TranF) # logarithmic 

transformation  

ex01st$Min_nsm_TranF <- log(ex01st$Min_nsm_TranF) # logarithmic 

transformation  

ex01st$GLCM_Homog_TranF <- log(ex01st$GLCM_Homog_TranF) #logarithmic 

transformation 

ex01st$GLCM_Entro_TranF <- log(ex01st$GLCM_Entro_TranF) #logarithmic 

transformation 

ex01st$Area_tranF <- log(ex01st$Area_TranF) #logarithmic transformation 

 

ex01st$Med_nsm_TranF[is.infinite(ex01st$Med_nsm_TranF)] <- 0 # ensure log has 

worked on 1 values 

ex01st$Min_nsm_TranF[is.infinite(ex01st$Min_nsm_TranF)] <- 0 # ensure log has 

worked on 1 values 

 

# re-applying previous assumption tests 

skewness(ex01st$Mean_red_TranF) 

skewness(ex01st$Mean_gla_TranF) 

skewness(ex01st$Med_nsm_TranF) 

skewness(ex01st$Min_nsm_TranF) 

skewness(ex01st$GLCM_Homog_TranF) 

skewness(ex01st$GLCM_Entro_TranF) 

skewness(ex01st$Area_TranF) 

 

# histograms of transformed data 

hist(ex01st$Mean_red_TranF,  main = "a)", col="gray") 

hist(ex01st$Mean_gla_TranF,  main = "b)", col="gray") 

hist(ex01st$Med_nsm_TranF,  main = "c)", col="gray") 

hist(ex01st$Min_nsm_TranF,  main = "d)", col="gray") 

hist(ex01st$GLCM_Homog_TranF,  main = "e)", col="gray") 

hist(ex01st$GLCM_Entro_TranF,  main = "f)", col="gray") 

hist(ex01st$Area_TranF,  main = "g)", col="gray") 

 

hist(ex06st$Med_nsm_TranF,  main = "a)", col="gray") 

hist(ex06st$Min_nsm_TranF,  main = "b)", col="gray") 

hist(ex06st$GLCM_Homog_TranF,  main = "c)", col="gray") 

hist(ex06st$GLCM_Contr_TranF,  main = "d)", col="gray") 

hist(ex06st$Area_TranF,  main = "e)", col="gray") 

 

# further assumption testing on the refined dataset 

attach(ex01st) 
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FinalTestx01 <- cbind(Mean_red_TranF, Mean_gla_TranF, Med_nsm_TranF, 

Min_nsm_TranF, GLCM_Entro_TranF, Compactnes) # bind data set 

 

chart.Correlation(FinalTestx01) # final correlation matrix 

mvoutlier::aq.plot(FinalTestx01, quan = 1) # check for outliers 

 

write.xlsx(ex01st, file="C:\\Users\\Lucy\\Desktop\\Curtin 

#University\\Masters\\Dirk Hartog\\DirkHartogData\\rawMANOVAdata.xlsx",  

sheetName = "x01", append = FALSE) # raw and transformed data table export to 

excel 

 

# Exclusion Plot 6 

 

# set up response variable as factor 

ex06st$SpeciesNotes <- as.factor(ex06st$SpeciesNotes) 

 

# standard deviations 

sd(ex06st$Mean_blue) 

sd(ex06st$Mean_green) 

sd(ex06st$Mean_red) 

sd(ex06st$Med_gla) 

sd(ex06st$Max_gla) 

sd(ex06st$Mean_gla) 

sd(ex06st$Med_nsm) 

sd(ex06st$Min_nsm) 

sd(ex06st$Mean_nsm) 

sd(ex06st$Max_nsm) 

sd(ex06st$quan90nsm) 

sd(ex06st$quan90gla) 

sd(ex06st$Roundness) 

sd(ex06st$GLCM_Contr) 

sd(ex06st$GLCM_Corre) 

sd(ex06st$GLCM_Entro) 

sd(ex06st$GLCM_Homog) 

sd(ex06st$GLCM_Mean_) 

sd(ex06st$LengthWidt) 

sd(ex06st$Area) 

sd(ex06st$Compactnes) 

 

# standard error 

se(ex06st$Mean_blue) 

se(ex06st$Mean_green) 

se(ex06st$Mean_red) 

se(ex06st$Med_gla) 

se(ex06st$Max_gla) 

se(ex06st$Mean_gla) 

se(ex06st$Med_nsm) 

se(ex06st$Min_nsm) 

se(ex06st$Mean_nsm) 

se(ex06st$Max_nsm) 

se(ex06st$quan90nsm) 

se(ex06st$quan90gla) 

se(ex06st$Roundness) 

se(ex06st$GLCM_Contr) 

se(ex06st$GLCM_Corre) 

se(ex06st$GLCM_Entro) 

se(ex06st$GLCM_Homog) 
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se(ex06st$GLCM_Mean_) 

se(ex06st$LengthWidt) 

se(ex06st$Area) 

se(ex06st$Compactnes) 

 

attach(ex06st) # select data source 

y6 <- cbind(Mean_blue, Mean_green, Mean_red, Med_gla, Max_gla, Mean_gla, 

Med_nsm, Min_nsm, Mean_nsm, Max_nsm, quan90nsm, quan90gla, Roundness, 

GLCM_Contr, GLCM_Corre, GLCM_Entro, GLCM_Homog, GLCM_Mean_, LengthWidt, Area, 

Compactnes) # bind explanatory variables 

 

summary(y6) # summary statistics 

 

chart.Correlation(y6) # test MANOVA assumtions 

# no correlations > 0.6 

# require roughly normal distributions 

# require roughly linear relationships 

 

# skewness value calculation 

skewness(ex06st$Mean_red) 

skewness(ex06st$Max_gla) 

skewness(ex06st$Med_nsm) 

skewness(ex06st$Min_nsm) 

skewness(ex06st$GLCM_Homog) 

skewness(ex06st$GLCM_Contr) 

skewness(ex06st$Compactnes) 

skewness(ex06st$Area) 

 

# data transformations 

# histograms for determining presence of zero values 

hist(ex06st$Med_nsm,  main = "a)", col="gray") 

hist(ex06st$Min_nsm,  main = "b)", col="gray") 

hist(ex06st$GLCM_Homog,  main = "c)", col="gray") 

hist(ex06st$GLCM_Contr,  main = "d)", col="gray") 

hist(ex06st$Area,  main = "e)", col="gray") 

 

ex06st$Med_nsm_TranF <- ex06st$Med_nsm # set up square root transformed 

Med_nsm variable 

ex06st$Min_nsm_TranF <- ex06st$Min_nsm # set up square root transformed 

Min_nsm variable 

ex06st$GLCM_Homog_TranF <- ex06st$GLCM_Homog # set up log transformed 

GLCM_Homog variable 

ex06st$GLCM_Contr_TranF <- ex06st$GLCM_Contr # set up log transformed 

GLCM_Entro variable 

ex06st$Area_TranF <- ex06st$Area # set up log transformed Area variable 

 

ex06st$Med_nsm_TranF <- sqrt(ex06st$Med_nsm_TranF) # square-root 

transformation 

ex06st$Min_nsm_TranF <- sqrt(ex06st$Min_nsm_TranF) # square-root 

transformation 

ex06st$GLCM_Homog_TranF <- log(ex06st$GLCM_Homog_TranF) #logarithmic 

transformation 

ex06st$GLCM_Contr_TranF <- log(ex06st$GLCM_Contr_TranF) #logarithmic 

transformation 

ex06st$Area_TranF <- log(ex06st$Area_TranF) #logarithmic transformation 

 

# re-applying previous assumption tests 
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skewness(ex06st$Med_nsm_TranF) 

skewness(ex06st$Min_nsm_TranF) 

skewness(ex06st$GLCM_Homog_TranF) 

skewness(ex06st$GLCM_Contr_TranF) 

skewness(ex06st$Area_TranF) 

 

# further assumption testing on the refined dataset 

attach(ex06st) 

FinalTestx06 <- cbind(Mean_red, Max_gla, Med_nsm_TranF, Min_nsm_TranF, 

GLCM_Contr_TranF, Compactnes, Area_TranF) # bind data set 

 

chart.Correlation(FinalTestx06) # final correlation matrix 

mvoutlier::aq.plot(FinalTestx06, quan = 1) # check for outliers 

 

ex06boxFinal <- gather(ex06st, "measure", "value", 26:27) # change the data 

to "long" format, this allows you to use the facet wrap in ggplot 

 

# recreate box plot for comparisons of Area_TranF and GLCM_Contr_TranF 

ggplot(ex06boxFinal, aes(x = SpeciesNotes, y = value)) + 

        geom_boxplot() +  

        facet_wrap(~measure , scales="free")  + 

        theme(axis.text.x = element_text(angle = 90, hjust = 1)) 

 

 

write.xlsx(ex06st, file="C:\\Users\\Lucy\\Desktop\\Curtin 

University\\Masters\\Dirk Hartog\\DirkHartogData\\rawMANOVAdata.xlsx",  

sheetName = "x06", append = TRUE) # raw and transformed data table export to 

excel 

 

# MANOVA TESTS 

attach(ex01st) 

MANOVA_Data01 <- cbind(Mean_red_TranF, Mean_gla_TranF, Med_nsm_TranF, 

GLCM_Entro_TranF, Compactnes) # bind data set for MANOVA 

RF.MANOVA1 <- manova(MANOVA_Data01 ~ ex01st$SpeciesNotes) # set up MANOVA 

interaction terms 

summary(RF.MANOVA1) # MANOVA test for significance 

summary.aov(RF.MANOVA1) # post-hoc univariate test 

 

attach(ex06st) 

MANOVA_Data06 <- cbind(Mean_red, Max_gla, Med_nsm_TranF, GLCM_Contr_TranF, 

Compactnes) # bind data set for MANOVA 

RF.MANOVA6 <- manova(MANOVA_Data06 ~ ex06st$SpeciesNotes) # set up MANOVA 

interaction terms 

summary(RF.MANOVA6) # MANOVA test for significance 

summary.aov(RF.MANOVA6) # post-hoc univariate test 

 

# Random Forest (RF) run over 20, 50, and 100 segmentation scales for x01 and 

x06 across all original variables. Scale 50 was tested for all variables, 

selected raw variables and selected variable set with transformed data. 

 

ex01st <- droplevels(ex01st) # remove factorisation of values 

ex06st <- droplevels(ex06st) # remove factorisation of values 

 

ex01All <- dplyr::select(ex01st, -Mean_gla_pos, -GLCM_Entro_pos, -

Mean_red_TranF, - Mean_gla_TranF, -Med_nsm_TranF, -Min_nsm_TranF, -

GLCM_Homog_TranF, -GLCM_Entro_TranF, -Area_TranF) # original ex01 variable 

capture  
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ex01TFSelect <- dplyr::select(ex01st,  SpeciesNotes, Mean_red_TranF, 

Mean_gla_TranF, Med_nsm_TranF, GLCM_Entro_TranF, Compactnes) # example 

transformed variable set for x01 

 

ex01RawSelect <- dplyr::select(ex01st, SpeciesNotes, Mean_red, Mean_gla, 

Med_nsm, GLCM_Entro, Compactnes) # example untransformed variable set for x01 

 

ex06All <- dplyr::select(ex06st, -Med_nsm_TranF, -Min_nsm_TranF, -

GLCM_Contr_TranF, -GLCM_Homog_TranF, -Area_TranF)  # original ex06 variable 

capture  

 

ex06RawSelect <- dplyr::select(ex06st,  SpeciesNotes, Mean_red, Max_gla, 

Med_nsm, GLCM_Contr, Compactnes) # example untransformed variable set for x06 

 

ex06TFSelect <- dplyr::select(ex06st,  SpeciesNotes, Mean_red, Max_gla, 

Med_nsm_TranF, GLCM_Contr_TranF, Compactnes) # example transformed variable 

set for x06 

 

# RF model example - not all scenarios shown as model was adapted per 

iteration 

# RF iteration 1 

mtry <- seq(from = 2, to = ncol(ex01All)-1, by = 2) # set up mtry value, 

iterating through variables by 1 

 

tunegrid <- expand.grid(.mtry=mtry, # set up tune grid per mtry value, with 

split rule extra trees 

                        .splitrule = c( "extratrees"),#, 

                        .min.node.size = 1) # may have only one item in the 

final vote 

# increasing min node size threshold will apply additional tree splits to 

ensure minimum class size is met 

 

ranger_model <- train(  

  SpeciesNotes ~., # variable used to train model 

  tuneGrid = tunegrid, 

  data = ex01All, method = "ranger", # random forest model from the ranger 

package 

  trControl = trainControl(method = "cv",  

                           number = 10, # number of folds in the trainings 

data 

                           verboseIter = TRUE)) # do not print progress 

updates 

 

max(ranger_model$results["Accuracy"], na.rm = TRUE) 

max(ranger_model$results["Kappa"], na.rm = TRUE) 

 

# RF iteration 2 

mtry <- seq(from = 2, to = ncol(ex01All)-1, by = 2) # set up mtry value, 

iterating through variables by 1 

 

tunegrid <- expand.grid(.mtry=mtry, # set up tune grid per mtry value, with 

split rule extra trees 

                        .splitrule = c( "extratrees"),#, 

                        .min.node.size = 1) # may have only one item in the 

final vote 
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# increasing min node size threshold will apply additional tree splits to 

ensure minimum class size is met 

 

ranger_model <- train(  

  SpeciesNotes ~., # variable used to train model 

  tuneGrid = tunegrid, 

  data = ex01All, method = "ranger", # random forest model from the ranger 

package 

  trControl = trainControl(method = "cv",  

                           number = 10, # number of folds in the trainings 

data 

                           verboseIter = TRUE)) # do not print progress 

updates 

 

max(ranger_model$results["Accuracy"], na.rm = TRUE) 

max(ranger_model$results["Kappa"], na.rm = TRUE) 

 

# RF iteration 3 

mtry <- seq(from = 2, to = ncol(ex01All)-1, by = 2) # set up mtry value, 

iterating through variables by 1 

 

tunegrid <- expand.grid(.mtry=mtry, # set up tune grid per mtry value, with 

split rule extra trees 

                        .splitrule = c( "extratrees"),#, 

                        .min.node.size = 1) # may have only one item in the 

final vote 

# increasing min node size threshold will apply additional tree splits to 

ensure minimum class size is met 

 

ranger_model <- train(  

  SpeciesNotes ~., # variable used to train model 

  tuneGrid = tunegrid, 

  data = ex01All, method = "ranger", # random forest model from the ranger 

package 

  trControl = trainControl(method = "cv",  

                           number = 10, # number of folds in the trainings 

data 

                           verboseIter = TRUE)) # do not print progress 

updates 

 

max(ranger_model$results["Accuracy"], na.rm = TRUE) 

max(ranger_model$results["Kappa"], na.rm = TRUE) 

 

# RF iteration 4 

mtry <- seq(from = 2, to = ncol(ex01All)-1, by = 2) # set up mtry value, 

iterating through variables by 1 

 

tunegrid <- expand.grid(.mtry=mtry, # set up tune grid per mtry value, with 

split rule extra trees 

                        .splitrule = c( "extratrees"),#, 

                        .min.node.size = 1) # may have only one item in the 

final vote 

# increasing min node size threshold will apply additional tree splits to 

ensure minimum class size is met 

 

ranger_model <- train(  

  SpeciesNotes ~., # variable used to train model 
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  tuneGrid = tunegrid, 

  data = ex01All, method = "ranger", # random forest model from the ranger 

package 

  trControl = trainControl(method = "cv",  

                           number = 10, # number of folds in the trainings 

data 

                           verboseIter = TRUE)) # do not print progress 

updates 

 

max(ranger_model$results["Accuracy"], na.rm = TRUE) 

max(ranger_model$results["Kappa"], na.rm = TRUE) 

 

# RF iteration 5 

mtry <- seq(from = 2, to = ncol(ex01All)-1, by = 2) # set up mtry value, 

iterating through variables by 1 

 

tunegrid <- expand.grid(.mtry=mtry, # set up tune grid per mtry value, with 

split rule extra trees 

                        .splitrule = c( "extratrees"),#, 

                        .min.node.size = 1) # may have only one item in the 

final vote 

# increasing min node size threshold will apply additional tree splits to 

ensure minimum class size is met 

 

ranger_model <- train(  

  SpeciesNotes ~., # variable used to train model 

  tuneGrid = tunegrid, 

  data = ex01All, method = "ranger", # random forest model from the ranger 

package 

  trControl = trainControl(method = "cv",  

                           number = 10, # number of folds in the trainings 

data 

                           verboseIter = TRUE)) # do not print progress 

updates 

 

max(ranger_model$results["Accuracy"], na.rm = TRUE) 

max(ranger_model$results["Kappa"], na.rm = TRUE) 

 

# Continued for 5 more iterations. Total of 10 iterations per scenario. 

 

saveRDS(ranger_model, paste0(ecogdir, "ex01_ranger_", Sys.Date(), ".rds")) # 

set-up location and information 

 

ranger_model <- readRDS(paste0(ecogdir, "ex01_ranger_2019-11-10.rds")) 

 

ecog01 <- st_read(paste0(ecogdir, "\\Site_01b.v50.shp"), quiet =  TRUE) # 

read in results from ecog 

 

tmp <- ecog01 # temporary variable for saving out classified segments 

 

st_geometry(tmp) <- NULL # remove geometry 

 

i <- 1 # for loop to determine variable set 

for(i in 1:ncol(tmp)){ 

tmp[,i] <- as.numeric(tmp[,i]) 

} 
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ecog01$predict <- predict(ranger_model, tmp, type = "raw") # create class 

prediction column 

 

st_write(ecog01, paste0(ecogdir, "\\Site_01b.v50_predict.shp"), quiet = TRUE) 

# export classified shapefile 

 

8.2. Sampling and segmentation outcomes 

Sampling effort for both exclusion plot sites quantified per total species may be found in Table 

8.1. Descriptive statistics including range, median, mean, standard deviation, and standard error were 

derived for each variable per exclusion plot (Table 8.2-3). 

 

Table 8.1. Sample counts per plant species/ground for x01 and x06. 

Class 
Total number of samples 

x01 x06 

Acacia ligulata 25 21 

Acanthocarpus preissii 17 - 

Alyogyne cuneiformis 25 - 

Atriplex vesicaria 27 20 

Cenchrus ciliaris 22 - 

Exocarpus aphyllus 19 - 

Ground 20 20 

Santalum acuminatum 1 - 

Scaevola spinescens - 21 

Threlkeldia diffusa 13 - 

Triodia plurinervata 16 20 

Westringia dampieri 4 - 

X01-008 10 - 
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Table 8.2. Descriptive statistics for the untransformed segment variables from x01. 

Variable Range Median Mean 
Standard 

Deviation (±) 

Standard 

Error (±) 

Mean_blue 4.38-213.97 85.59 97.19 52.53 0.45 

Mean_green 8.69-223.25 105.26 113.52 51.64 0.44 

Mean_red 4.33-241.68 99.78 112.5 59.28 0.51 

Med_gla 21-7,657 3,878 4,344 2,033.33 17.4 

Max_gla 92-12,073 7,832 6,901 3,467.95 29.67 

Mean_gla 80-164,934 136,373 117,955 45,197.05 386.74 

Med_nsm 0.0-255 0.0 58.25 77.35 0.66 

Min_nsm 0.0-255 0.0 39.83 64.61 0.55 

Mean_nsm 0.0-255 25.55 60.47 72.65 0.62 

Max_nsm 0.0-255 62 82.76 82.97 0.71 

quan90nsm 0.0-255 46 74.47 80.52 0.69 

quan90gla 27-20,246 13,968 12,577 5,537.03 47.69 

Roundness 0.04-4.6 1.28 1.31 0.45 0.0 

GLCM_Contr 27-4,520 963.8 1,038.2 433.39 3.71 

GLCM_Corre 0.32-0.98 0.8 0.79 0.06 0.0 

GLCM_Entro 4.74-9.39 8.24 8.15 0.56 0.0 

GLCM_Homog 0.01-0.35 0.04 0.05 0.02 0.0 

GLCM_Mean_ 36-164,788 86,201 84,530 44,942.05 380.75 

LengthWidt 1.0-7.2 1.66 1.79 0.63 0.01 

Area 23-13,203 768 1,014 884.3 7.57 

Compactness 9-152,635 69,999 71,741 43,180.33 369.48 
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Table 8.3. Descriptive statistics for the untransformed segment variables from x06. 

Variable Range Median Mean 
Standard 

Deviation (±) 

Standard 

Error (±) 

Mean_blue 9.72-238.5 108.81 115.45 52.96 0.69 

Mean_green 11.03-247.88 125.51 127.44 52.78 0.68 

Mean_red 6.35-253.6 124.15 127.63 56.31 0.73 

Med_gla 2-7,180 2,704 3,598 1,770.02 22.93 

Max_gla 80-10,560 6,247 5,948 2,617.38 33.91 

Mean_gla 9-104,782 72,864 67,582 27,947.53 362.1 

Med_nsm 0.0-1.55 0.36 0.41 0.38 0.0 

Min_nsm 0.0-1.47 0.17 0.3 0.34 0.0 

Mean_nsm 0.0-1.53 0.37 0.42 0.37 0.0 

Max_nsm 0.0-1.58 0.53 0.53 0.39 0.01 

quan90nsm 0.0-1.58 0.48 0.49 0.39 0.01 

quan90gla 28-16,763 10,035 9,571 4,289.53 55.58 

Roundness 0.18-3.36 1.37 1.39 0.46 0.01 

GLCM_Contr 283.7-4,511.5 1,344.5 1,448.8 509.58 6.6 

GLCM_Corre 0.49-0.94 0.81 0.8 0.06 0.0 

GLCM_Entro 4.48-9.52 8.31 8.24 0.54 0.01 

GLCM_Homog 0.01-0.21 0.03 0.04 0.02 0.0 

GLCM_Mean_ 26-104,772 52,387 52,045 29,906.89 387.49 

LengthWidt 1.0-14.62 1.72 1.86 0.71 0.01 

Area 40-8,680 702 864.9 650.27 8.42 

Compactness 7-98,719 48,496 48,933 29,021.06 376.01 

 

8.3. Data transformations 

 Due to the volume of segments for x01 (165,935) and x06 (104,806) there was insufficient 

space to show the complete transformation dataset tables here. The excel file containing raw and 

transformed segment values is available from the author.  
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 Histograms were derived for the reflected and non-reflected variables before transformation 

across both exclusion plot sites (Figure 8.1-2). It was determined that the positive skew found across 

Mean_gla and GLCM_Entro x01 was amended so that further transformations could be applied.  

 

  

  

  

 

Figure 8.1. Histograms of the reflected and non-reflected variables before transformation for x01. a) 

Mean_red, b) reflected Mean_gla, c) Med_nsm, d) Min_nsm, e) GLCM_Homog, f) reflected 

GLCM_Entro, and g) Area. 
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Figure 8.2. Histograms of variables before transformations for x06. a) Med_nsm, b) Min_nsm, c) 

GLCM_Homog, d) GLCM_Contr, and e) Area. 

  

The presence of zero values were identified for variables where a logarithmic transformation 

was deemed appropriate. There were zero values found in Med_nsm and Min_nsm which were chosen 

to be logarithmically transformed per a skewness value of greater than 1 for x01. A constant of 1 was 

applied to these variables. For x06 there were not variables with a skewness value greater than 1 and 

a lower limit range of 0. Data distributions after the transformations may be found in Figures 8.3-4. 
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Figure 8.3. Histograms of variables before transformation for x01. a) Mean_red_TranF, b) 

Mean_gla_TranF, c) Med_nsm_TranF, d) Min_nsm_TranF, e) GLCM_Homog_TranF, f) 

GLCM_Entro_TranF, and g) Area_TranF. 
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Figure 8.4. Histograms of variables before transformation for x06. a) Med_nsm_TranF, b) 

Min_nsm_TranF, c) GLCM_Homog_TranF, d) GLCM_Contr_TranF, and e) Area_TranF. 

 

The Mahalanobis distances were calculated for Mean_red_TranF, Mean_gla_TranF, 

Med_nsm_TranF, Min_nsm_TranF, GLCM_Entro_TranF, and Compactnes x01 variables (Figure 

8.5). Mahalanobis distance calculations for x06 were Mean_red, Max_gla, Med_nsm_TranF, 

Min_nsm_TranF, GLCM_Contr_TranF, Compactnes, and Area_tranF. There were no prominent 

outliers present for either exclusion plot site that may affect the results. 



Department of Spatial Sciences | 2019 

123 

a) 

 

b) 

 

Figure 8.5. Outlier graphs showing the observed versus expected Mahalanobis distances for both 

exclusion plot sites. a) x01 and b) x06. Top left = distribution of all Mahalanobis distance values. Top right 

= cumulative probability of outliers with 97.5% quantile and adjusted quantile indicators. Bottom left = 

outliers shown in red per the 97.5% quantile. Bottom right = outliers shown in red per the adjusted 

quantile.  
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 Box and whisker plots were recalculated for the transformed Area_TranF and 

GLCM_Contr_TranF correlated variables found in x06 (Figure 8.6). The spread of values was similar. 

The GLCM_Contr_TranF ground class had an interquartile range which showed slightly less overlap 

with plant species than the ground class found in Area_TranF. Furthermore, Scaevola spinescens median 

was in line with the maximum interquartile range value for Triodia plurinervata for GLCM_Contr_TranF 

whilst the median for Scaevola spinescens shown in Area_TranF was positioned centrally to the first 

quartile of Triodia plurinervata. The inverse may be found where the GLCM_Contr_TranF median for 

Triodia plurinervata was located at the minimum interquartile range value whilst the median for Scaevola 

spinescens shown in Area_TranF was positioned centrally to the third quartile of Triodia plurinervata. 

Acacia ligulata and Atriplex vesicaria was relatively similar across both x06 Area_TranF and 

GLCM_Contr_TranF. GLCM_Contr_TranF showed an increase in dissimilarity between classes 

when compared with Area_TranF. 

 

a)                                    b) 

 

Figure 8.6. Box and whisker plot comparisons showing the spread of transformed variables quantified per 

species and ground classes for x06. The whiskers encompass samples within 10% to 90% of each 

distribution with points representing values outside of this range. a) Area_TranF and b) 

GLCM_Contr_TranF. 
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8.4. Random Forest scenario testing 

 The complete set of Kappa and accuracy values for each scenario are shown in Tables 8.4-5. 

  

Table 8.4. Random Forest out of bag Kappa values for 10 iterations per scenario. 

Scenario Kappa values 

Exclusion plot site x01  

 
Scale 20 – all variables 

0.6964, 0.6972, 0.6977, 0.6969, 0.6975, 0.6965, 

0.6973, 0.6973, 0.6972, 0.6971 

 
Scale 50 – untransformed selected variables 

0.5051, 0.5039, 0.5022, 0.506, 0.5034, 0.5027, 

0.5037, 0.5058, 0.5033, 0.5017 

 
Scale 50 – transformed selected variables 

0.5057, 0.5072, 0.5059, 0.505, 0.5061, 0.5061, 

0.5062, 0.5037, 0.51, 0.5075 

 
Scale 50 – all variables 

0.6846, 0.6836, 0.6874, 0.6842, 0.6865, 0.6871, 

0.6855, 0.6809, 0.6844, 0.6852 

 
Scale 100 – all variables 

0.637, 0.6315, 0.6299, 0.6331, 0.6322, 0.6339, 

0.6352, 0.6316, 0.6324, 0.634 

Exclusion plot site x06  

 
Scale 20 – all variables 

0.6997, 0.6981, 0.6991, 0.6988, 0.6977, 0.7005, 

0.6972, 0.6991, 0.6978, 0.6994 

 
Scale 50 – untransformed selected variables 

0.5555, 0.559, 0.5579, 0.5556, 0.5609, 0.56, 

0.5582, 0.5604, 0.5583, 0.5595 

 
Scale 50 – transformed selected variables 

0.5127, 0.5071, 0.5058, 0.5074, 0.5106, 0.5093, 

0.5097, 0.5072, 0.5108, 0.5055 

 
Scale 50 – all variables 

0.6682, 0.6619, 0.6658, 0.6652, 0.666, 0.6647, 

0.6627, 0.6665, 0.6666, 0.6659 

 
Scale 100 – all variables 

0.5661, 0.5609, 0.5664, 0.5728, 0.5686, 0.5679, 

0.5705, 0.5637, 0.5747, 0.56 
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Table 8.5. Random Forest out of bag accuracy values for 10 iterations per scenario. 

Scenario Accuracy values 

Exclusion plot site x01  

 
Scale 20 – all variables 

0.7508, 0.7515, 0.7518, 0.7512, 0.7517, 0.7509, 

0.7516, 0.7515, 0.7515, 0.7514 

 
Scale 50 – untransformed selected variables 

0.5895, 0.5884, 0.587, 0.5903, 0.5867, 0.5875, 

0.5882, 0.59, 0.5879, 0.5867 

 
Scale 50 – transformed selected variables 

0.5899, 0.5912, 0.5901, 0.5894, 0.5901, 0.5904, 

0.5903, 0.5882, 0.5934, 0.5914 

 
Scale 50 – all variables 

0.7368, 0.7358, 0.7391, 0.7364, 0.7382, 0.7388, 

0.7375, 0.7336, 0.7366, 0.7372 

 
Scale 100 – all variables 

0.695, 0.6905, 0.6891, 0.6922, 0.691, 0.6925, 

0.6935, 0.6905, 0.691, 0.6925 

Exclusion plot site x06  

 
Scale 20 – all variables 

0.7785, 0.7774, 0.778, 0.7778, 0.777, 0.779, 

0.7766, 0.7779, 0.777, 0.7782 

 
Scale 50 – untransformed selected variables 

0.6312, 0.6342, 0.6334, 0.6314, 0.6359, 0.6352, 

0.6335, 0.6354, 0.6337, 0.6347 

 
Scale 50 – transformed selected variables 

0.6283, 0.6245, 0.6231, 0.6248, 0.6273, 0.6258, 

0.6268, 0.6245, 0.6268, 0.6228 

 
Scale 50 – all variables 

0.7464, 0.7417, 0.7447, 0.7442, 0.7447, 0.744, 

0.7422, 0.7452, 0.7452, 0.7447 

 
Scale 100 – all variables 

0.66, 0.6558, 0.6599, 0.6651, 0.6615, 0.661, 

0.663, 0.6579, 0.6667, 0.6553 

 


