See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/291206709

Development of information products for rangeland managers

Technical Report · April 2001

DOI: 10.13140/RG.2.1.1879.6565

CITATIONS	READS	
0	7	
1 author:		

Alexander Holm

Alexander Holm & Associates, Fremantle Western Australia

33 PUBLICATIONS **574** CITATIONS

SEE PROFILE

All content following this page was uploaded by Alexander Holm on 20 January 2016.

Development of Information Products for Rangeland Managers

NHT Project 953024

A contract with Agriculture Western Australia to develop and recommend methods for the summary and presentation of Landscape Function Analysis (LFA) data for the Western Australian Rangeland Monitoring System (WARMS)

April 2001

Alexander Holm Alexander Holm and Associates 26 Edward St Nedlands Western Australia

Executive Summary

Recommendations for LFA data presentation in standard WARMS reports and for interpreting change in LFA data at the site scale.

- 1. Group WARMS vegetation types and pasture groups into five main countrytypes based on vegetation structure and main mode of resource control: hummock grassland, tussock grassland, southern sandplain, shrub-steppe and mulga hardpan.
- 2. Classify each patch-type as resource-capturing or resource-shedding based on definitions provided in this report.
- 3. From each transect log, calculate a resource-capturing index as one of the key indicators of landscape function. RC Index = Σ length of resource-capturing patches/total transect length
- 4. Calculate site-scale LFA indicators (stability, infiltration and nutrient cycling) based on proportional lengths of patch-types and respective LFA ratings for each patch-type.
- Replace existing WARMS presentations of landscape function with a more visual product. Examples of suggested presentations are provided in Appendix 2

Recommendations for summarising, presenting and interpreting LFA change data at the vegetation community / district level.

- 1. Examples of suggested summary tables and graphical presentations based on vulnerability of the site to disturbance and changes in RC index and/or stability rating are presented.
- 2. An interpretive matrix is provided based on the RC index and Stability rating.

Plotting the regional/vegetation type LFA profiles for WA rangelands and recommendations on the importance of completing the curves for particular vegetation types.

- 1. Some weak linear relationships, but no sigmoidal relationships, were found between LFA ratings and disturbance indicators of distance from water, grazing intensity and RC index.
- 2. It is unlikely that any further analysis of WARMS data using available indicators of disturbance will greatly strengthen the relationships presented in this report.
- 3. More sophisticated independent indicators of disturbance are required which could include stocking histories associated with particular sites, selected to cover the range of LFA ratings and RC indices. The likely success of such an

approach is problematic, especially given the very limited success of the approach tested here and is not recommended.

4. Meanwhile, the approach adopted in this report based on frequency distributions of sites is a reasonable first pass and will suffice until more data becomes available or alternative approaches are identified.

Recommendations for frequency of LFA recordings.

1. Landscape function be assessed at each scheduled sampling i.e. every three to four years on grassland sites and every five to six years on shrub-steppe sites.

Recommendations for cutting down the LFA sampling set.

- 1. Consider discontinuing infiltration/runoff and nutrient cycling ratings and specific soil surface assessment attributes associated with these ratings i.e. perennial plant cover (grassland), soil cover flow (shrubland), litter source, litter incorporation, microtopography and soil texture.
- 2. Soil surface assessment be restricted to resource-shedding patches (fetch) in both grassland and shrubland sites.
- 3. Greater attention be given to classifying and logging patches as resourcecapturing and resource-shedding based on the definitions provided. All significant fetch zone – types to be logged and sampled.

The relationship between LFA and vegetation data. Importance of testing relationships between species composition and LFA.

- 1. Frequency cannot be used in place of transect logging to establish the RC index.
- 2. Higher frequencies are associated with higher stability and infiltration ratings on tussock grassland as expected, and in these situations provide complementary information.
- 3. In general, shrub density provides complementary information on landscape function, however this information is not sufficiently robust to be used with confidence in reporting landscape function.
- 4. A provisional framework for interpreting change in species composition and trends in landscape function is provided.
- 5. Two simultaneous sets of data are required to report change for pastoral purposes, one set dealing with landscape function and the other with vegetation change. While some inferences may be made between these data sets, these two data sets should be assessed and reported independently.
- 6. Mounting a major research program to investigate relationships between species composition and landscape function is not recommended.

Contents

Executive Summary	2
Contents	4
Contract Brief:	6
General approach	7
Recommendations for LFA data presentation in standard WARMS	5 reports8
Defining reporting groups	8
Defining patch types	8
Calculation of site index of resource-capture	9
Calculation of LFA ratings for patch and site	9
Distribution of LFA ratings and resource-capturing indices	10
Recommendations for interpreting change in LFA data at the site s	cale17
Background	17
Thresholds in landscape function	
Presentation of landscape function data at site-scale	19
Recommendations for summarising, presenting and interpreting Li data at the vegetation community / district level Plotting the regional/vegetation type LFA profiles for WA rangelar recommendations on the importance of completing the curves for p	20 nds and
vegetation types	
Background:	
Approach	
Results	
Recommendations:	
Recommendations for how frequently LFA should be recorded	
Recommendations for how frequently LFA should be recorded <i>Background:</i>	
Background:	
Background: Recommendation	
Background: Recommendation Recommendations for cutting down the LFA sampling set.	
Background: Recommendation Recommendations for cutting down the LFA sampling set. Background:	
Background: Recommendation Recommendations for cutting down the LFA sampling set. Background: Possible reduction in soil surface attributes that are assessed	30 31 31 31 31 31 31 31 31 ceppe sites 32

Relationship between LFA and vegetation data.	
Importance of testing the relationship between species composition as	nd LFA34
Background	
Relationship between RC Index, LFA ratings and shrub density or pere	•
frequency	
Approach	
Conclusion:	35
Species composition and landscape function	
Background	
Approach	45
Relationships between reporting of landscape function and reporting for	or pastoral
production	*
References	47
Appendices	48
Appendix 1 Frequency tables	
Appendix 2: Examples of presentations of landscape function at the site	e scale55

Contract Brief:

The following tasks will be reported in a single document, which will act as the contract report and its delivery will be considered the final milestone.

These tasks will be reviewed during the term of the contract, and the detail may be amended, on the basis of recommendations from Dr Holm and in discussion with Dr Watson.

The tasks apply to both WARMS SHRUBLANDS and GRASSLAND sites, although in many cases the findings will be identical.

1) Recommendations for LFA data presentation in standard WARMS reports (i.e. as produced by WARMS database).

1a) set of MS ACCESS queries to extract data as per recommendations in 1).

2) Recommendations for interpreting change in LFA data at the site scale. These will be in the form of a set of "rules" weighting the relevant importance of various LFA attributes recorded.

3) Recommendations for summarising, presenting and interpreting LFA change data at the vegetation community / district level. Examples of such presentation will be included.

4) Discussion of the relationship between LFA and vegetation data. Are they indicating complementary changes, reinforcing similar interpretations or providing information on different parameters?

5) Consider Tongway and Hindley's Audit recommendations in the context of WARMS. How would one go about plotting the regional/vegetation type LFA profiles for WA rangelands as Tongway and Hindley suggest? (AGWEST to supply Dr Holm with a copy of Tongway and Hindley's report, 2000).

6) Recommendations for how frequently LFA should be recorded within each of the WARMS groups.

7) Recommendations for cutting down the LFA sampling set. For example, can 20% of the attributes assessed give us 80% of the information required to show change?

8) Express some written views on how important it is to test the relationship between species composition and LFA. If, after discussion between the Contractor and the AGWEST Officer it is considered this is an important research question - draft a 1-2 page Preliminary Research Proposal for AGWEST to progress.

9) Based on 5 above, provide some recommendations on the importance of completing the curves for particular vegetation types. If, after discussion between the Contractor and the AGWEST Officer it is considered this is an important research question - draft a 1-2 page Preliminary Research Proposal for AGWEST to progress.

General approach

WARMS and grassland data were provided by AGWEST in MS Access format.

Data was generally accepted as correct, however several errors were detected and corrected during processing and Mr Philip Thomas advised.

In developing the suggested products I produced several tables in MS ACCESS as examples of query outputs. My approach to MS ACCESS queries is a stepwise process that does not lend itself to generation of one-pass query statements. Therefore, I have not attempted to provide the queries themselves but have provided detail on how the outputs are produced.

The outputs and tables are provided as examples, they are derived from 'real' data but have not been checked and will contain errors. All outputs and tables should therefore be rebuilt.

Statistical analyses were performed using SSPS (SPSS Inc, 1999) and graphs were produced either in SSPS or in Sigma Plot.

Copies of all relevant outputs and tables are provided on CD.

Recommendations for LFA data presentation in standard WARMS reports.

Defining reporting groups

Monitoring sites have been classified on the basis of pasture groups (e.g. MSGF – mulga short grass forb and WARMS groups (EB9 – mulga shrubland). These groupings were used to allocate sites to the following broad country types (based on structural form of the vegetation (e.g. clumps or groves) and transport mechanisms.

Country type	Landscape characteristics
Southern shrubland	
Sandplain	Individual shrubs and trees, clumps of shrubs and trees,
	perennial grasses and/or spinifex. High infiltration rates with little overland flow
Shrub-steppe	Individual shrubs of clumps of shrubs, usually with few trees.
	Sheet flow and wind transport.
Mulga hardpan	Groves of shrubs and trees, individual shrubs and trees. Sheet
	flow, broad drainage flow zones.
Grassland	
Tussock grassland	Individual tussocks or clumps of tussocks, few to many trees.
Hummock	Spinifex often with other perennial grasses, usually on deep
grassland	sandy soils.

Table 1: Recommended country-type groups for landscape function reporting

Sites were allocated to these major groups, firstly on the basis of WARMS groupings as shown in Table 2. Secondly, pasture groups were also allocated to country types and used to modify the primary allocation. For example, sites allocated to WARMS group EB9 contained sites on wandarrie banks, which were reallocated to 'sandplain'. Many sites were not classified either by WARMS group or pasture group. I used transect data to classify some of these sites.

MS ACCESS table : alecpasture_groups.table

Defining patch types

Resource-capturing patches consist of perennial plants –living, standing dead and fallen dead. The resource-capturing patches are the soil-surface footprints below these plants where nutrient cycling is active, water infiltrates, and organic matter and soil nutrients are concentrated. These patches maybe single plants, clumps, mats and groves. Resource-shedding patches are the interspaces between the resource-capturing patches where resources are more or less uniformly distributed. Annual species dominate these patches. Measures of landscape patchiness have been shown to provide good indicators of landscape function whereby loss of resource-capturing patches often leads to loss of resources from the landscape, especially in non-resilient landscapes.

WARMS Group	Description	Country type
EB1	Spinifex grassland	Hummock grassland
EB2	Salt lakes, rocks and heath	
EB3	Short bunch grass savanna	Tussock grassland
EB4	Chenopod shrubland	Shrub-steppe
EB5	Other Acacia woodland	Sandplain
EB7	Eucalypt chenopod shrubland	Shrub-steppe
EB9	Mulga shrubland	Mulga hardpan
EB10	Nullarbor	Shrub-steppe
NB1	Inaccessible hills, mud flats	
NB2	Frontage grass	Tussock grassland
NB3	Curly spinifex	Tussock grassland
NB4	Pindan	Tussock grassland
NB5	Mitchell grass	Tussock grassland
NB6	Limestone grass	Tussock grassland
NB8	Soft spinifex grassland	Hummock grassland

Table 2: Allocation of WARMS groups to country types

WARMS assessors have used a plethora of terms to describe patch-types (108 terms!). Several of these, especially pre-1997, are ill-defined, for example 'soil surface and grass'. I allocated each of these terms to either resource-capturing patches or resource-shedding patches

MS ACCESS tables : ALEC_SOIL_CODES.

Calculation of site index of resource-capture

I summed intervals of resource-capturing and resource-shedding patches from transect logs to obtain resource-capturing indices for each site:

Resource-capturing index = Σ Length of resource-capturing patches/Total transect length.

MS ACCESS tables: alec_rc_w; alec_rc_g

Calculation of LFA ratings for patch and site

Mean LFA ratings of stability, infiltration/runoff and nutrient cycling were calculated for resource-capturing and resource-shedding patches on each site, using modified MS ACCESS queries.

MS Access table alec_ratings_patch_g and alec_ratings_rc_patch_w

These LFA ratings were combined into site ratings by pro-rata based on the resourcecapturing index for each site.

Site LFA ratings (stability, infiltration, nutrient cycling) = LFA rating resourcecapturing patches X resource capturing index + LFA rating resource-shedding patches X (1-resource capturing index).

Note, resource-capturing patches are not generally sampled in Grassland sites and site LFA ratings were not calculated.

MS ACCESS table: alec_ratings_rc_site_w

Distribution of LFA ratings and resource-capturing indices

LFA ratings and resource-capturing indices for each date of recording were plotted as frequency histograms (Figures 1-6). All LFA ratings were normally distributed, while resource-capturing indices were strongly skewed in that there were far more sites with low scores. Distribution patterns for WARMS sandplain and mulga-hardpan country-types were similar and these have plotted together.

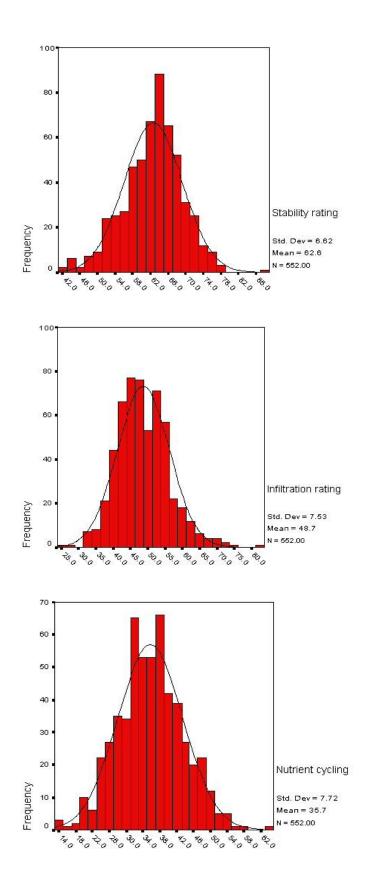


Figure 1: Frequency distribution of LFA ratings for shrubland monitoring sites – shrub steppe country type

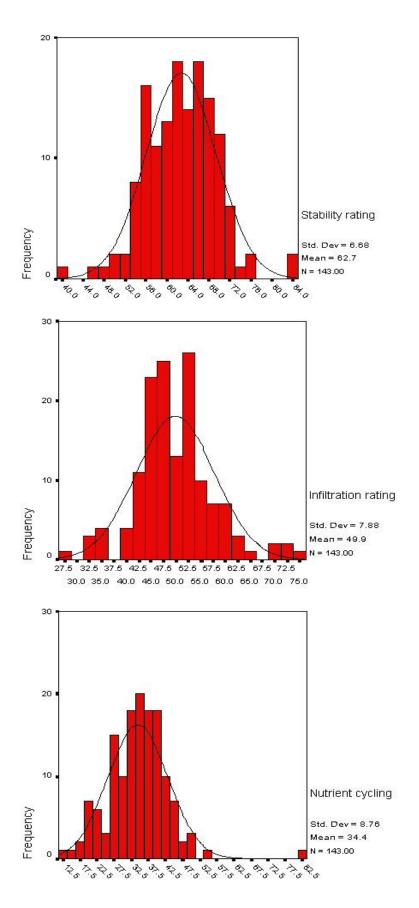


Figure 2: Frequency distribution of LFA ratings on shrubland sites – sandplain and mulga

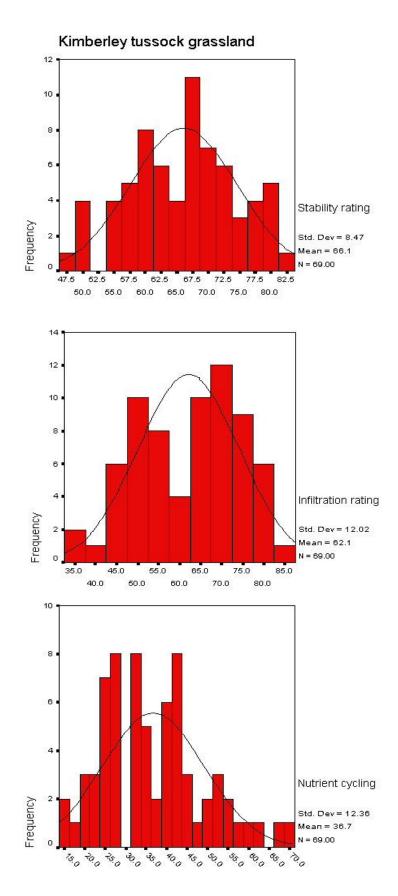


Figure 3: Frequency distribution of LFA ratings on Kimberley sites - tussock grassland

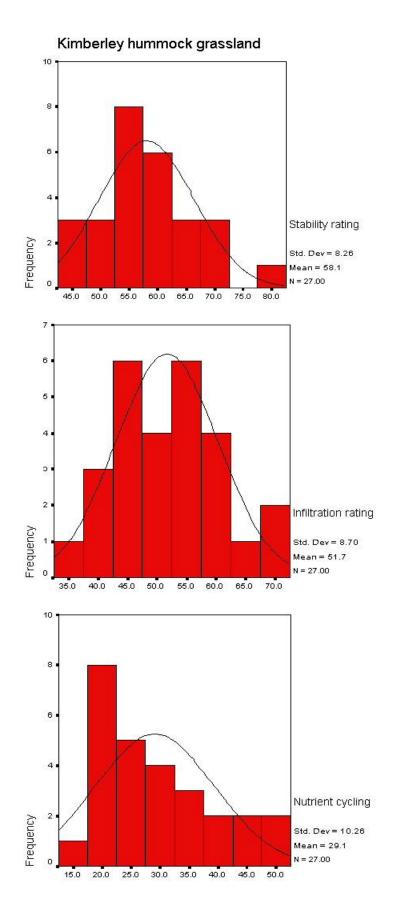


Figure 4: Frequency distribution of LFA ratings for Kimberley sites – hummock grassland

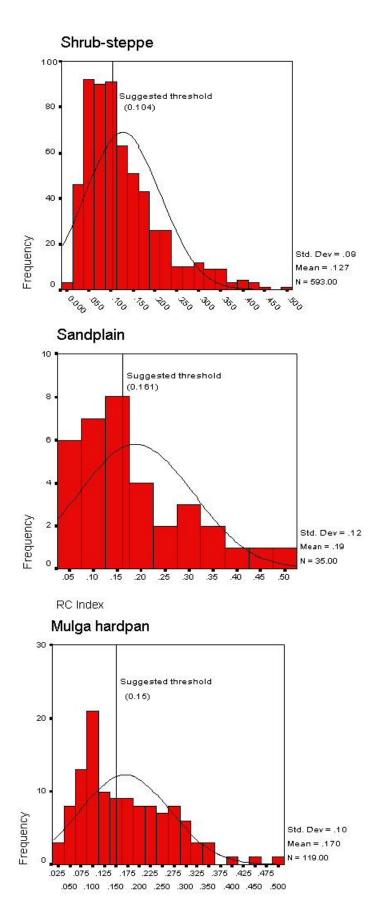
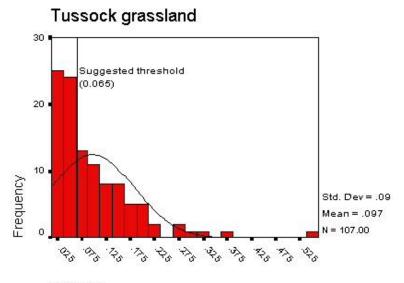



Figure 5: Frequency distributions of resource-capturing indices (RC index) on southern monitoring sites.

Kimberley grassland sites

RC Index

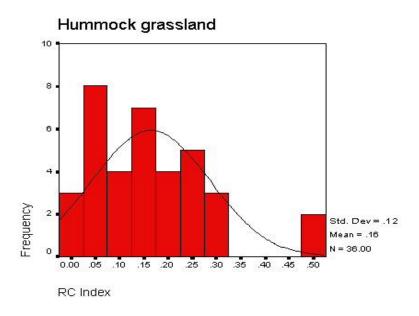


Figure 6: Frequency distributions of resource-capturing indices (RC index) of Kimberley sites

Recommendations for interpreting change in LFA data at the site scale.

Background

Landscape function at the site-scale maybe inferred from both LFA ratings (stability, infiltration/runoff and nutrient cycling) and indices of resource-capture. Additional information maybe derived from density of shrubs or frequency of perennial grasses, and this will be discussed under point 4. I suggest that temporal variability of each of these ratings and indices is likely to be significantly different and will influence how change is interpreted (Table 3)

Interpretation of change in nutrient cycling rating is likely to be seasonally dependent and highly uncertain, especially with infrequent sampling. I therefore recommend that less importance be given to change in nutrient cycling ratings.

Infiltration rating depends on soil texture and slaking (largely invariant), microtopography (uncertain properties under grazing or other disturbance), soil cover (related to resourcecapturing index but confounded by inclusion of rocks and other invariant features), and litter cover (seasonally dependent). While the infiltration rating for the site provides useful information on how the site might respond to rainfall, it is difficult to interpret change in this rating. Again, I recommend less importance be given to change in infiltration rating.

Stability rating is composed of several indicators that are related to grazing in complementary ways and with similar temporal variance. I recommend greater importance be given to change in stability rating.

As mentioned before, grazing directly influences change in RC index. However, these changes must be interpreted within a broad-scale understanding of structural transitions such as change from grassland to shrubland or fine-scale shrubland to coarse-scale shrubland. Thus grazing may initially result in loss of perennial shrubs or grasses and consequent decline in RC index. Subsequently however, these degraded landscapes may be resorted at broader scales, associated with ingress of other species, and the restoring of RC index and landscape function.

A framework to interpret change in landscape function is recommended based on the RC index and stability rating (Table 4). Interpretation is maybe aided by vegetation information, which is discussed later.

Change is arbitrarily (but leniently) defined as greater than one standard deviation difference in either RC index or stability rating between sampling dates.

All sites that were below both the median RC index and Stability rating were classed as vulnerable to disturbance while others were either less vulnerable or resilient to disturbance.

MS ACCESS tables: alec_rc_ratings_w; alec_function_dens_change_9500;

Landscape function indicators	Temporal variability	Comment
Resource-capturing index	Very low	Trends evident >5 years – changes grazing induced
Ratings:		
Stability	Low	Soil and litter cover variable other soil surface factors much less variable
Infiltration/runoff	Low	Litter cover variable, others much less variable
Nutrient cycling	High	Especially on resource-shedding patches
Soil surface indicators		I
Soil cover (interception)	Moderate	Related to RC index and to seasonal conditions
Soil cover (overland flow)	Low	Related to RC index but also includes rocks and other invariant objects
Crust broken-ness	Low-moderate	Probably influenced by grazing
Cryptogam cover	Low-moderate	Influenced by grazing, confounded by litter (ie high litter – low cryptogams)
Erosion features	Low	Grazing induced
Eroded materials	Low	Grazing induced
Litter cover	High	Seasonally dependent
Litter origin	High	Seasonally dependent
Litter incorporation	Low – moderate	Disproportionate effect on rating
Soil microtopography	Low	Largely invariant, some grazing impact
Surface nature	Low	Uncertain relationship to grazing or other disturbance
Slake test	Very low	Grazing exposes sodic soils
Soil texture	Very low	Mostly invariant.

Table 3: Likely temporal variability in ratings and indices of landscape function and soil surface indicators

Stability rating	RC index		RC index			
	Low -	-ve change*	Medium-high	- ve change		
Low	Highly	Requires	Moderately	Alert –		
	vulnerable to	urgent	vulnerable to	precautionary		
	further	remedial action	disturbance	action		
	disturbance			recommended		
High	Degraded but	Alert –	Stable	Noted		
	stable and	precautionary				
	probably	action				
	productive	recommended				

 Table 4 An interpretive framework for assessing change in landscape function

* Negative change in either or both stability and RC index. Contradictory changes are less urgent.

Thresholds in landscape function

Later in this report (point 5/9) I investigate sigmoidal response curves in landscape function as suggested by Tongway and Hindley (2000). No significant relationships were established. Alternatively, I have suggested thresholds for the main country types based subjectively on the frequency distributions. These thresholds are provisionally set at the modal value (e.g. Figure 5 and Figure 6).

Presentation of landscape function data at site-scale

I recommend existing WARMS presentations of landscape function be replaced with a more visual product. Examples of suggested presentations are provided in Appendix 2

Recommendations for summarising, presenting and interpreting LFA change data at the vegetation community / district level.

Summary tables and graphical presentations based on vulnerability of the site to disturbance and changes in RC index and/or stability index are proposed.

I suggest the data be presented within the five structural country types (southern sandplain, shrub-steppe, mulga hardpan, hummock grassland communities and tussock grassland). Data maybe further sub-divided at district levels when sufficient sites have been re-sampled, although it is possible to allocate all sites to vulnerability classes on the basis of one sampling.

An example presentation for the southern rangeland is presented in Table 5. Sites shown as changing significantly, were those with changes greater than one SD in either RC Index or stability rating.

MS ACCESS tables: alec_rc_ratings_w; alec_function_dens_change_9500; alec_regionalsummary_w

Table 5 Landscape function status of WARMS sites in southern rangeland ofWestern Australia sampled between 1995 and 2000 and trends in landscape functionof re-sampled sites

	Total sites	Vulnerability of site to disturbance			Re-sampled		Significant		
	Total sites	Mode High	erate to	Low or stable		1999/2000		change	
			Numbe	er of site	es and p	ercenta	ages		
Sandplain	35	13	37%	22	63%	8	23%	2 (25%) ↑ 6 (75%) NC	
Shrub- steppe	593	187	32%	406	68%	19	3%	2 (10%) ↑ 1 (5%) ↓ 16 (85%) NC	
Mulga hardpan	119	35	29%	84	71%	10	8%	1 (10%) ↓ 9 (90%) NC	

A suggested graphical presentation of this same data is provided in Figure 7. In this presentation, sites are arranged along the X axis 1) within broad categories of vulnerability to disturbance based on Table 4, modal thresholds in RC Index and Stability rating were used to establish the four categories; and 2) by ranking on RC index – i.e. lowest ranking sites to the left.

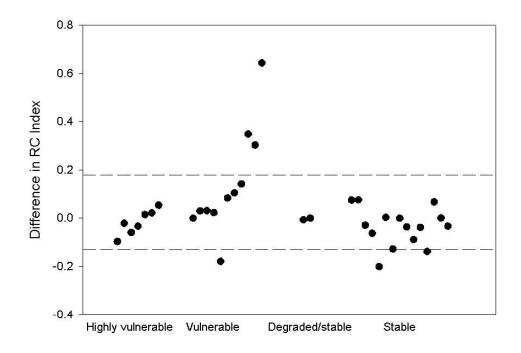


Figure 7: Regional trends in landscape function (differences in resource-capturing index) in monitoring sites in the southern rangeland. Sites are arranged along the X axis from most to least vulnerable to disturbance. Sites changing greater than one SD (dotted line) are considered to have changed significantly.

Plotting the regional/vegetation type LFA profiles for WA rangelands as Tongway and Hindley suggest and provide recommendations on the importance of completing the curves for particular vegetation types

Background:

Tongway and Hindley (2000) suggest that 'establishing the changes in landscape function in response to change of stresses and disturbances, in the form of a landscape function curve, is of paramount importance.' Further, they suggest that sigmoidal response curves be fitted to establish thresholds where there are sharp discontinuities between landscape function and disturbance. Such thresholds are intuitively appealing and have been suggested for several years (Friedel, 1991), but there has been no progress on their derivation. Attempts to relate LFA ratings to various disturbance indicators (soil nutrients and RC index) in Western Australian rangeland have been previously unsuccessful (Holm *et al.*, 2001). On the other hand, there was a significant relationship between soil nutrients and RC index in this study, however this was not sigmoidal.

Approach

One of the difficulties in attempting to derive these relationships between disturbance and landscape function, is to quantify 'disturbance' in non-experimental situations. For this report, I used data from the WARMS sites to establish RC index, frequency of perennial grass, (both log transformed), distance from water, and a derived index of grazing intensity (10/distance from water squared) as surrogates for disturbance from grazing, and plotted these against LFA ratings. I also examined the relationship between RC index and the other surrogates of grazing intensity. Both linear and sigmoidal relationships were examined. I also used multiple regression approaches using country type, RC index, frequency or shrub density, grazing intensity and salinity of water as the variables likely to affect each of the LFA ratings

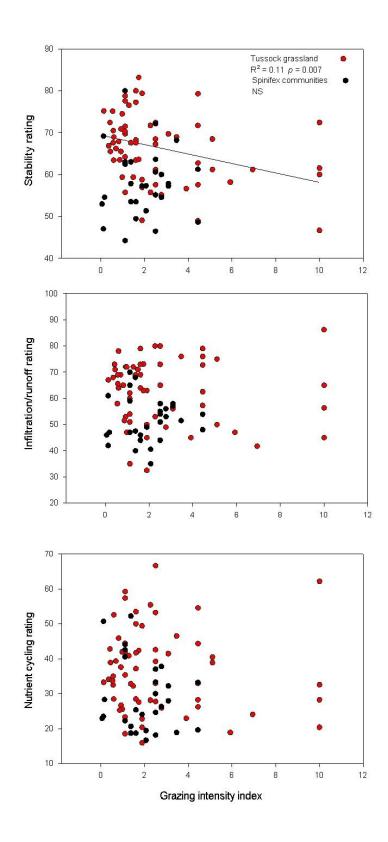


Figure 8: Relationship between LFA ratings and grazing intensity (10/distance from water squared) for Kimberley grassland sites

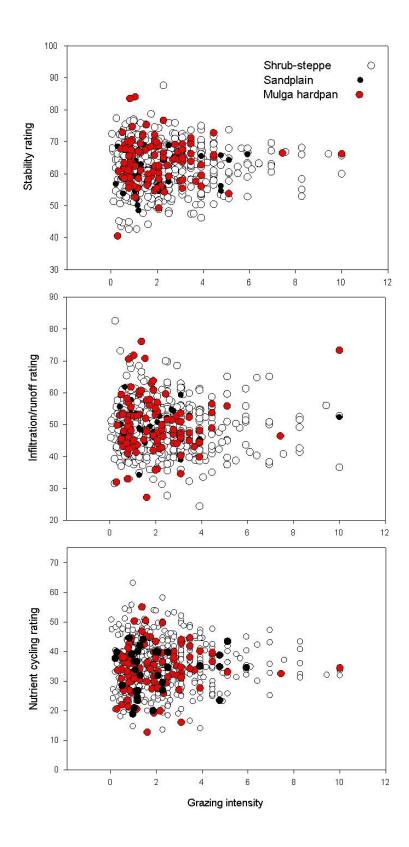


Figure 9: Relationship between LFA ratings and grazing intensity (10/distance from water squared) for shrubland monitoring sites in southern rangeland. Some extreme values not shown.

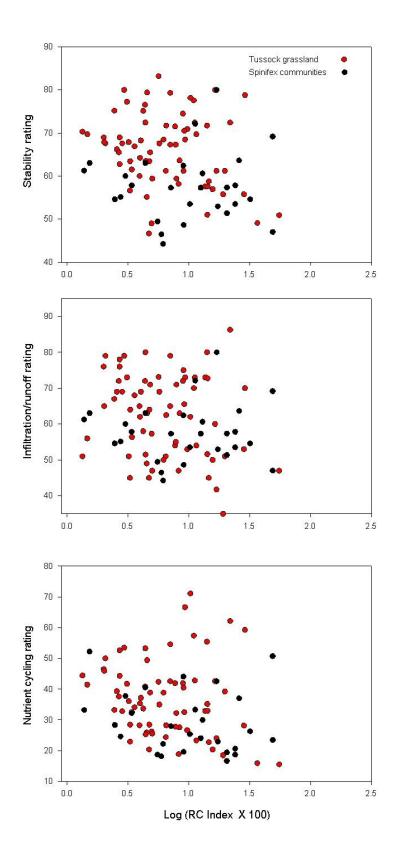


Figure 10: Relationship between LFA ratings and resource-capturing index (expressed as log RC Index X 100) for Kimberley grassland sites.

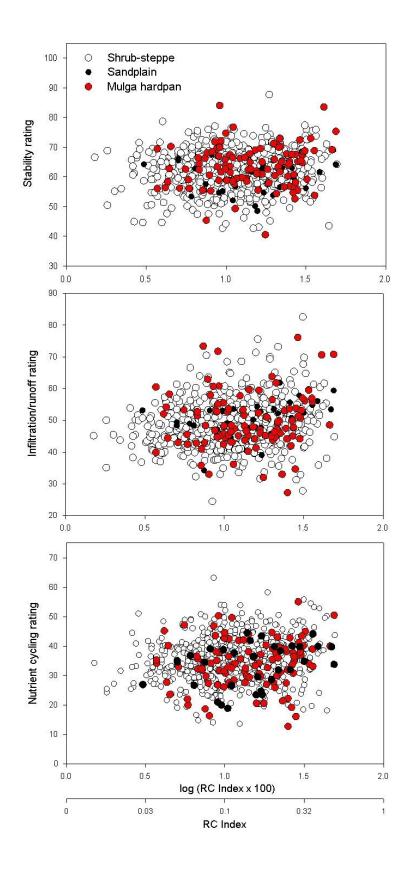


Figure 11: Relationship between LFA ratings and resource-capturing index for shrubland monitoring sites in southern rangeland.

Results

Most relationships between LFA ratings and the surrogate variables of disturbance were non-significant (Figure 8 - Figure 11). The few exceptions were stability and grazing intensity on tussock grassland, which were negatively related ($r^2 = 0.11$, p = 0.007 Figure 8). RC index was weakly negatively related to grazing intensity on hummock grassland sites ($r^2 = 0.16$; p = 0.016 Figure 12), and on shrub-steppe sites ($r^2 = 0.01$; p = 0.02 Figure 13) i.e. sites closer to water generally had lower RC Indices.

There were no sigmoidal relationships between indices or ratings of landscape function and indices of disturbance.

Multiple regression analyses also failed to establish any strong relationships between LFA ratings and disturbance indictors (Table 6)

Table 6: Multiple regression relationships between indictors of landscape function
and variables likely to affect disturbance by grazing. Relationships derived from
data collected on WARMS sites from 1992 – 2000

Landscape function indicator/rating	Significant terms	Variance accounted for by model	Significance of model (<i>p</i>)	
Grassland sites				
Stability	78.5 ! 2.8 –9.4 ! 1.8 (if hummock grassl.) – 1.0 ! 0.4 grazing intensity	0.26	0.000	
Infiltration/runoff	70.1 ! 4.2 + 0.08 ! 0.04 frequency – 22.1 ! 12.8 RC Index – 8.1 ! 2.7 (if hummock grassl.)	0.24	0.000	
Nutrient cycling	44.0 ! 3.6 - 7.2 ! 2.6 (if hummock grassl.)	0.08	0.007	
RC index	0.06 ! 0.03 + 0.06 ! 0.02 (if hummock grassl.) – 0.007 ! 0.003 grazing intensity – 0.0005 ! 0.000 frequency	0.16	0.000	
Shrub-steppe sites				
Stability	Stability 62.1 ! 0.4 + 0.0001 ! 0.000 density - 2.2 ! 1.3 (if sandplain) + 1.6 ! 0.8 (if mulga)		0.05	
Infiltration/runoff	50.0 ! 0.5 - 0.003 ! 0.000 salinity	0.01	0.04	
Nutrient cycling	34.7 ! 0.4 + 0.0002 ! 0.000 density	0.02	0.001	
RC index	0.15 ! 0.01 + 0.00005 ! 0.000 density + 0.06 ! 0.01 (if shrub-steppe) + 0.004 ! 0.002 grazing intensity	0.16	0.000	

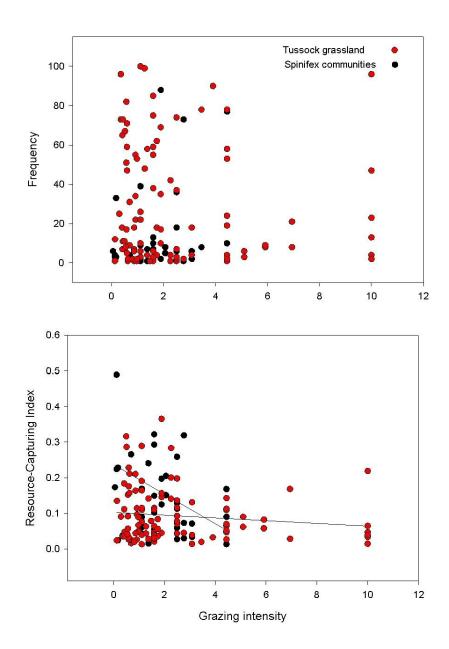


Figure 12: Relationships between grazing intensity (10/ distance from water squared) and perennial grass frequency (top) and resource-capturing index (bottom). Data are from Kimberley grassland sites.

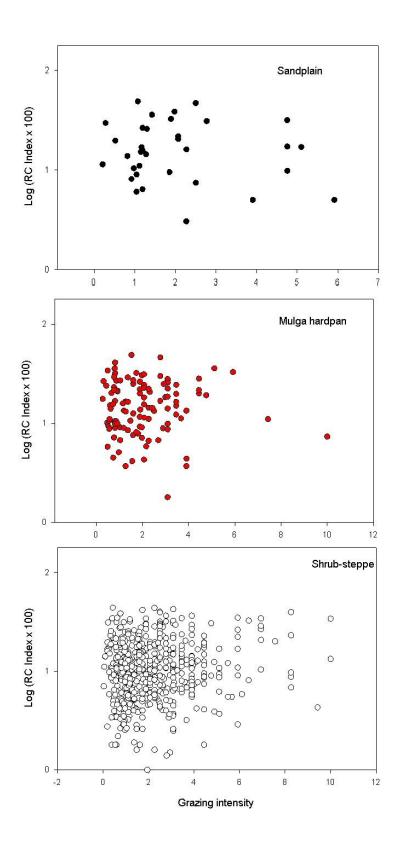


Figure 13: Relationship between grazing intensity (10/distance from water squared) and resource-capturing index (expressed as log RC Index x 100), for shrubland sites.

Recommendations:

It is unlikely that any further analysis of WARMS data will greatly strengthen these relationships using available indicators of disturbance. More sophisticated independent indicators of disturbance are required which could include stocking histories associated with particular sites, selected to cover the range of LFA ratings and RC indices. The likely success of such an approach is problematic, especially given the very limited success of the approach tested here.

Meanwhile, the approach adopted in this report based on frequency distributions of sites is a reasonable first pass and will suffice until more data becomes available or alternative approaches are identified.

Recommendations for how frequently LFA should be recorded within each of the WARMS groups.

Background:

Assessment of change on monitoring sites requires simultaneous information on both changes in biological capacity of sites to support the selected land use (e.g. change in species composition is important for grazing), and changes in physical or geophysical capacity of landscapes to support vegetation (landscape function).

Recommendation

Landscape function be assessed at each scheduled sampling i.e. every three to four years on grassland sites and every five to six years on shrub-steppe sites.

Recommendations for cutting down the LFA sampling set.

Background:

Landscape function assessment requires both a measure of patchiness (Resourcecapturing index) and soil surface attributes –i.e. the current approach of transect logging and LFA soil surface assessment (Tongway, 1994; Tongway & Hindley, 1995). I suggest some modifications to these assessments that if adopted, will reduce the time required to complete these assessments, but only by a matter of minutes per site.

Possible reduction in soil surface attributes that are assessed

If the recommendations within this report are adopted, then less importance will be placed on the infiltration/runoff and nutrient cycling ratings and more importance on the RC index and stability rating. This could be taken to the extreme whereby, all soil surface assessment indicators not associated with stability rating could be dropped. These are: perennial plant cover (grassland), soil cover – flow (shrub-steppe), litter source, litter incorporation, microtopography and soil texture.

Relationship between LFA ratings at patch and site-scales – shrub-steppe sites

Tongway and Hindley (1995) do not assess the resource-capturing patches (i.e. perennial grass butts) in their LFA analysis of grassland sites. In their view, 'the quality of soil associated with a perennial grass is high and does not vary much with overall site condition; the big variation is in the quality of the fetch zones' (fetch zones analogous with resource-shedding patches). This raises the question, whether LFA assessments in shrubland might also be restricted to the resource-shedding patches without serious loss of information. Certainly the errors associated with measurement and spatial variability of these measurements are likely to be higher within the resource-capturing patches.

I examined correlations between the LFA ratings within resource-capturing and resourceshedding patches for WARMS shrub-steppe sites (Table 7). In general equivalent ratings were highly correlated (r = 0.65 - 0.73), suggesting that most of the information could be derived from only assessments of resource-shedding patches. I have presented frequency tables of for both site-scale and patch-scale ratings and suggest that presentations be based on resource-shedding patches for both grassland and shrub-steppe sites (Appendix 1).

		Resource-shedding patches			Resource-capturing patches			
		Stability	Infiltration	Nutrient	Stability	Infiltration	Nutrient	
Resource- shedding								
Stability Infiltration	Correlation Sig. (2-tailed) N Correlation Sig. (2-tailed) N	1.000 932	.479 .000 932 1.000	.547 .000 932 .310 .000 932	.698 .000 932 .279 .000 932	.285 .000 932 .730 .000 932	.314 .000 932 .207 .000 932	
Nutrient	Correlation Sig. (2-tailed) N			1.000	.407 .000 932	.199 .000 932	.647 .000 932	
Resource-	- capturing							
Stability	Correlation Sig. (2-tailed) N				1.000	.455 .000 932	.541 .000 932	
Infiltration	Correlation Sig. (2-tailed) N					1.000	.452 .000 932	
Nutrient	Correlation Sig. (2-tailed) N						1.000	

Table 7: Correlations between LFA ratings for resource-capturing patches and resource-shedding patches in shrubland monitoring sites

Transect logging and simplification of fetch zones

As discussed previously, patch types along site transects are to be classified firstly as either resource-capturing or resource-shedding (i.e. fetch) based on the definitions provided in section 1. Tongway and Hindley (1995) then require fetch zones to be further sub-divided into fetch zone-types and recommend a minimum of 5 queries per fetch-zone type. Excessive splitting of fetch-zones is not recommended. There is no point in logging a zone type if it is too small to be sampled. For example, the occasional ant bed that occupies less than say 5% of the monitoring site should be excluded. Conversely, if a zone-type is significant, it must be logged and sampled to enable calculation of LFA ratings for the site based on the proportional lengths of each fetch-zone type.

Recommendations

- 1. Consideration be given to discontinuing infiltration/runoff and nutrient cycling ratings and the specific soil surface assessment attributes associated with these ratings i.e. perennial plant cover (grassland), soil cover flow (shrubland), litter source, litter incorporation, microtopography and soil texture.
- 2. Soil surface assessment be restricted to resource-shedding patches (fetch) in both grassland and shrubland sites.
- 3. Greater attention be given to classifying and logging patches as resource-capturing and resource-shedding based on the definitions provided. All significant fetch zone types to be logged and sampled.

Relationship between LFA and vegetation data.

Importance of testing the relationship between species composition and LFA.

Background

Increasingly, monitoring of the environment is seen to involve firstly an assessment of the capacity of the landscape to convert rainfall into plant biomass (landscape function) and secondly an assessment of the biodiversity that these landscapes support. While a common approach to assessment is reasonable for all land uses in the first phase, assessment techniques for the second phase depend on the nature of the land use. Thus, on pastoral land used for grazing, biodiversity assessment requires a focus on changes in species composition that affects grazing value. Such changes include loss of useful perennial species and replacement of these species by unpalatable species, or herbaceous annuals. Many of these transitions do not necessarily result in loss of landscape function - the efficiency of conversion of rainfall into biomass is maintained on so-called resilient landscapes. On less resilient landscapes, loss of perennial species precipitates significant soil loss, and accelerated runoff resulting in loss of landscape function -i.e. lower efficiency of conversion of rainfall into biomass. In time, even non-resilient landscapes may again stabilize and become re-vegetated with alternative species often at broader spatial scales. Interpretation of monitoring data from land used for pastoralism therefore requires an understanding of where a monitoring site sits within the transition matrix and must include data on landscape function and species composition.

A key indicator of landscape function is change in the proportional area occupied by resource-capturing patches i.e. patches predominately occupied by perennial shrubs trees and/or grasses – RC Index. Additional information on soil surface properties is required to reveal if loss of patches is associated with accelerated soil loss or if the landscape is stable and losses are minimal.

The questions addressed in this section include:

- 1. Is there a relationship between RC Index (as an indicator of landscape function) and shrub density or perennial grass frequency?
- 2. Are LFA ratings related to shrub density or perennial grass frequency?
- 3. Is species composition related to landscape function?
- 4. Provide a framework for interpreting change in landscape function and in species diversity and/or abundance.

Relationship between RC Index, LFA ratings and shrub density or perennial grass frequency

Approach

I examined these relationships using correlation and regression analyses of all available site data for resource-shedding patches on all monitoring sites and on resource-capturing patches on shrubland sites.

Unexpectedly, frequency of perennial grass was negatively correlated with resourcecapturing index on both hummock grassland (logs; - 0.24 p = 0.004) and tussock grassland although the later was not significant. (Table 8 and Table 9).

Frequency of perennial grass was significantly correlated with LFA ratings for stability and infiltration/runoff, but not nutrient cycling on both hummock grassland and tussock grassland (Table 8 and Table 9).

On resource-shedding patches, density of shrubs and trees was significantly positively correlated with resource-capturing index on all country-types (sandplain: Table 10, shrub-steppe: Table 11and mulga hardpanTable 12). Regression analysis indicates that these relationships are strongest on shrub-steppe Figure 14). There was generally no correlation between density and LFA ratings (Table 10 -Table 12). There were only marginal differences in these correlations for resource-capturing patches (Table 13 - Table 15

Conclusion:

It might be expected that higher frequency or density of perennial species and all indicators of landscape function should be positively related. More perennial grass or shrubs should result in higher infiltration, more nutrient cycling and less movement of soil and soil nutrients. Furthermore, one would expect resource-capturing index on a site to be positively related to the frequency or density of plants.

On grassland monitoring sites, perennial grass frequency provides confusing information about landscape function. Generally the higher frequencies are associated with lower RC indices, although this is highly variable. My only explanation for this is that perhaps higher frequencies indicate smaller plants with smaller basal areas. Whatever the explanation, it is apparent that frequency cannot be used in place of transect logging to establish the RC index. On the other hand, higher frequencies are associated with higher stability and infiltration ratings on tussock grassland as expected, and in these situations provide complementary information.

On southern monitoring sites, shrub density is associated with higher RC indices, but associations with LFA ratings are weak or non-existent. It might be expected that the associations with LFA ratings should be stronger in resource-capturing patches where shrubs directly influence infiltration, nutrient cycling and perhaps stability. There is some suggestion that this is so in shrub-steppe country-types but the correlations are weak.

In general, shrub density does provide complementary information on landscape function, however this information is not sufficiently robust to be used with confidence in reporting.

		Frequency	Log freq	RC Index	Log RC I	Stability	Infiltration	Nutrient	Distance	Grazing Int
Frequency	Correlation	1.000	.886	.004	083	.112	.261	016	.050	059
	Sig. (2-tailed)		.000	.966	.395	.358	.030	.894	.620	.559
	Ν	107	107	107	107	69	69	69	100	100
Log freq	Correlation	.886	1.000	047	134	.178	.218	006	.051	045
	Sig. (2-tailed)	.000		.628	.170	.144	.071	.964	.615	.658
	N	107	107	107	107	69	69	69	100	100
RC Index	Correlation	.004	047	1.000	.894	281	298	179	.077	126
	Sig. (2-tailed)	.966	.628		.000	.019	.013	.142	.446	.212
	Ν	107	107	107	107	69	69	69	100	100
Log RC I	Correlation	083	134	.894	1.000	213	256	140	.050	117
-	Sig. (2-tailed)	.395	.170	.000		.079	.033	.251	.622	.247
	Ν	107	107	107	107	69	69	69	100	100
Stability	Correlation	.112	.178	281	213	1.000	.573	.700	.317	335
-	Sig. (2-tailed)	.358	.144	.019	.079		.000	.000	.011	.007
	Ν	69	69	69	69	69	69	69	64	64
Infiltration	Correlation	.261	.218	298	256	.573	1.000	.713	.131	085
	Sig. (2-tailed)	.030	.071	.013	.033	.000		.000	.304	.505
	Ν	69	69	69	69	69	69	69	64	64
Nutrient	Correlation	016	006	179	140	.700	.713	1.000	.025	083
	Sig. (2-tailed)	.894	.964	.142	.251	.000	.000		.846	.515
	N	69	69	69	69	69	69	69	64	64
Distance	Correlation	.050	.051	.077	.050	.317	.131	.025	1.000	700
	Sig. (2-tailed)	.620	.615	.446	.622	.011	.304	.846		.000
	N	100	100	100	100	64	64	64	100	100
Grazing Int	Correlation	059	045	126	117	335	085	083	700	1.000
-	Sig. (2-tailed)	.559	.658	.212	.247	.007	.505	.515	.000	
	N	100	100	100	100	64	64	64	100	100

 Table 8: Correlations (Pearson) among variables recorded on Kimberley grassland sites: tussock grassland – shed patches

		Frequency	Log freq	RC Index	Log RC I	Stability	Infiltration	Nutrient	Distance	Grazing Int
Frequency	Correlation	1.000	.839	293	392	002	.038	.140	124	.205
	Sig. (2-tailed)		.000	.083	.016	.994	.849	.485	.464	.223
	Ν	37	37	36	37	27	27	27	37	37
Log freq	Correlation	.839	1.000	245	302	.051	.021	.173	022	.099
	Sig. (2-tailed)	.000		.150	.070	.801	.918	.389	.898	.558
	Ν	37	37	36	37	27	27	27	37	37
RC Index	Correlation	293	245	1.000	.894	.045	190	020	.404	399
	Sig. (2-tailed)	.083	.150		.000	.827	.353	.921	.015	.016
	Ν	36	36	36	36	26	26	26	36	36
Log RC I	Correlation	392	302	.894	1.000	.118	270	286	.227	231
-	Sig. (2-tailed)	.016	.070	.000		.558	.173	.148	.176	.170
	N	37	37	36	37	27	27	27	37	37
Stability	Correlation	002	.051	.045	.118	1.000	.713	.665	108	.031
-	Sig. (2-tailed)	.994	.801	.827	.558		.000	.000	.590	.879
	N	27	27	26	27	27	27	27	27	27
Infiltration	Correlation	.038	.021	190	270	.713	1.000	.868	114	.032
	Sig. (2-tailed)	.849	.918	.353	.173	.000		.000	.571	.875
	N	27	27	26	27	27	27	27	27	27
Nutrient	Correlation	.140	.173	020	286	.665	.868	1.000	.085	201
	Sig. (2-tailed)	.485	.389	.921	.148	.000	.000		.673	.314
	N	27	27	26	27	27	27	27	27	27
Distance	Correlation	124	022	.404	.227	108	114	.085	1.000	733
	Sig. (2-tailed)	.464	.898	.015	.176	.590	.571	.673		.000
	Ň	37	37	36	37	27	27	27	37	37
Grazing Int	Correlation	.205	.099	399	231	.031	.032	201	733	1.000
	Sig. (2-tailed)	.223	.558	.016	.170	.879	.875	.314	.000	
	Ň	37	37	36	37	27	27	27	37	37

 Table 9 Correlations (Pearson) among variables recorded on Kimberley grassland sites: hummock grassland – shed patches

	Density	RC Index	Stability	Infiltration	Nutrient	Log den	Log RC I	Distance G	razing Int	Salinity
Density Correlation	1.000	.392	.086	.238	.223	.911	.274	050	.125	.206
Sig. (2-tailed)		.015	.543	.086	.109	.000	.096	.769	.462	.251
N	53	38	53	53	53	53	38	37	37	33
RC Index Correlation	.392	1.000	.068	.150	.064	.395	.936	146	.139	.345
Sig. (2-tailed)	.015		.686	.370	.702	.014	.000	.388	.413	.050
N	38	38	38	38	38	38	38	37	37	33
Stability Correlation	.086	.068	1.000	.404	.318	.111	019	135	.171	427
Sig. (2-tailed)	.543	.686		.003	.020	.427	.908	.427	.312	.013
N	53	38	53	53	53	53	38	37	37	33
Infiltration Correlation	.238	.150	.404	1.000	.333	.234	.177	.147	097	017
Sig. (2-tailed)	.086	.370	.003		.015	.092	.287	.385	.567	.926
N	53	38	53	53	53	53	38	37	37	33
Nutrient Correlation	.223	.064	.318	.333	1.000	.220	.067	.011	.210	182
Sig. (2-tailed)	.109	.702	.020	.015		.114	.690	.948	.211	.310
N	53	38	53	53	53	53	38	37	37	33
Log den Correlation	.911	.395	.111	.234	.220	1.000	.325	.019	.071	.130
Sig. (2-tailed)	.000	.014	.427	.092	.114		.046	.913	.675	.470
N	53	38	53	53	53	53	38	37	37	33
Log RC I Correlation	.274	.936	019	.177	.067	.325	1.000	066	.064	.394
Sig. (2-tailed)	.096	.000	.908	.287	.690	.046		.698	.705	.023
N	38	38	38	38	38	38	38	37	37	33
Distance Correlation	050	146	135	.147	.011	.019	066	1.000	757	046
Sig. (2-tailed)	.769	.388	.427	.385	.948	.913	.698		.000	.798
N	37	37	37	37	37	37	37	37	37	<u>33</u>
Grazing Int Correlation	.125	.139	.171	097	.210	.071	.064	757	1.000	110
Sig. (2-tailed)	.462	.413	.312	.567	.211	.675	.705	.000		.544
N	37	37	37	37	37	37	37	37	37	33
Salinity Correlation	.206	.345	427	017	182	.130	.394	046	110	1.000
Sig. (2-tailed)	.251	.050	.013	.926	.310	.470	.023	.798	.544	
N	33	33	33	33	33	33	33	33	33	33

 Table 10: Correlations (Pearson) among variables recorded on shrubland monitoring sites:
 sandplain - shed patches

		Density	RC Index	Stability	Infiltration	Nutrient	Log den	Log RC I	Distance	Grazing Int	Salinity
Density	Correlation Sig. (2-tailed) N	1.000 732	.265 .000 564	.069 .061 732	.017 .637 732	.148 .000 732	.838 .000 732	.337 .000 564	078 .072 537	.043	.136 .005 433
RC Index	Correlation Sig. (2-tailed) N	.265 .000 564	1.000 605	020 .621 605	010 .815 605	.027 .508 605	.278 .000 564	.860 .000 605	046 .276 571	.076 .068	.074 .112 458
Stability	Correlation Sig. (2-tailed) N	.069 .061 732	020 .621 605	1.000 776	.507 .000 776	.493 .000 776	.053 .149 732	019 .632 605	.050 .230 571	.370	.039 .406 458
Infiltration	Correlation Sig. (2-tailed) N	.017 .637 732	010 .815 605	.507 .000 776	1.000 776	.281 .000 776	007 .847 732	023 .571 605	.059 .157 571	.622	094 .044 458
Nutrient	Correlation Sig. (2-tailed) N	.148 .000 732	.027 .508 605	.493 .000 776	.281 .000 776	1.000 776	.136 .000 732	.042 .301 605	005 .909 571	.525	.039 .403 458
Log den	Correlation Sig. (2-tailed) N	.838 .000 732	.278 .000 564	.053 .149 732	007 .847 732	.136 .000 732	1.000 732	.397 .000 564	047 .278 537	.056	.137 .004 433
Log RC I	Correlation Sig. (2-tailed) N	.337 .000 564	.860 .000 605	019 .632 605	023 .571 605	.042 .301 605	.397 .000 564	1.000 605	035 .410 571	.095	.121 .010 458
Distance	Correlation Sig. (2-tailed) N	078 .072 537	046 .276 571	.050 .230 571	.059 .157 571	005 .909 571	047 .278 537	035 .410 571	1.000 571	.000	020 .671 454
Grazing Int	Correlation Sig. (2-tailed) N	.088 .043 535	.076 .068 569	038 .370 569	021 .622 569	027 .525 569	.083 .056 535	.070 .095 569	637 .000 569		.003 .947 452
Salinity	Correlation Sig. (2-tailed) N	.136 .005 433	.074 .112 458	.039 .406 458	094 .044 458	.039 .403 458	.137 .004 433	.121 .010 458	020 .671 454	.947	1.000 458

 Table 11 Correlations (Pearson) among variables recorded on shrubland monitoring sites: shrub-steppe – shed patches

		Density	RC Index	Stability	Infiltration	Nutrient	Log den	Log RC I	Distance	Grazing Int	Salinity
Density	Correlation Sig. (2-tailed) N	1.000 119	.105 .313 94	.098 .288 119	085 .359 119	.135 .143 119	.759 .000 119	.320	.025 .816 87	.767	007 .955 77
RC Index	Correlation Sig. (2-tailed) N	.105 .313 94	1.000	.005 .963 108	.154 .111 108	001 .992 108	.260 .011 94	.899 .000 108	020 .844 98	.695	.095 .376 88
Stability	Correlation Sig. (2-tailed) N	.098 .288 119	.005 .963 108	1.000 139	.507 .000 139	.522 .000 139	.037 .693 119	.393	.031 .761 98	.414	026 .812 88
Infiltration	Correlation Sig. (2-tailed) N	085 .359 119	.154 .111 108	.507 .000 139	1.000 139	.521 .000 139	071 .442 119		.093 .361 98	.014	119 .268 88
Nutrient	Correlation Sig. (2-tailed) N	.135 .143 119	001 .992 108	.522 .000 139	.521 .000 139	1.000 139	.048 .605 119	.961	.026 .800 98	.088	033 .763 88
Log den	Correlation Sig. (2-tailed) N	.759 .000 119	.260 .011 94	.037 .693 119	071 .442 119	.048 .605 119	1.000 119	.014	.160 .140 87	.531	090 .438 77
Log RC I	Correlation Sig. (2-tailed) N	.104 .320 94	.000	.083 .393 108	.101 .297 108	005 .961 108	.253 .014 94		048 .641 98	.757	.160 .136 88
Distance	Correlation Sig. (2-tailed) N	.025 .816 87	020 .844 98	.031 .761 98	.093 .361 98	.026 .800 98	.160 .140 87		1.000 98	.000	213 .049 86
Grazing Int	Correlation Sig. (2-tailed) N	032 .767 87	040 .695 98	083 .414 98	249 .014 98	173 .088 98	068 .531 87	.757	651 .000 98		.057 .605 86
Salinity	Correlation Sig. (2-tailed) N	007 .955 77	.095 .376 88	026 .812 88	119 .268 88	033 .763 88	090 .438 77		213 .049 86	.605	1.000 88

 Table 12 Correlations (Pearson) among variables recorded on shrubland monitoring sites:
 mulga hardpan – shed patches

Table 13 Correlations (Pearson) among variables recorded on shrubland monitoring sites: sandplain – resource-capturing patches correlations –

		Density	RC Index	Stability	Infiltration	Nutrient	Log den	Log RC I	Distance	Grazing Int	Salinity
Density	Correlation Sig. (2-tailed) N	1.000 47	.022	.179 .228 47	.112	.255 .084 47	.915 .000 47	.122	033 .850 36	.536	.184 .315 32
RC Index	Correlation Sig. (2-tailed) N	.381 .022 36	1.000	.181 .277 38	.127 .448	.260 .114 .38	.382 .021 36	.937 .000	142 .401 37	.132 .435	.337 .055 33
Stability	Correlation Sig. (2-tailed) N	.179 .228 47	.277	1.000 49	.483 .000	.496 .000 49	.193 .194 47	.716	285 .087 37	.042	241 .176 33
Infiltration	Correlation Sig. (2-tailed) N	.235 .112 47	.127 .448	.483 .000 49	1.000	.583 .000 49	.231 .118 47		.105 .535 37	.680	.103 .568 33
Nutrient	Correlation Sig. (2-tailed) N	.255 .084 47	.114	.496 .000 49	.000	1.000 49	.295 .044 47	.141	055 .745 37	.259	.184 .306 33
Log den	Correlation Sig. (2-tailed) N	.915 .000 47	.021	.193 .194 47	.118	.295 .044 47	1.000 47	.066	.043 .803 36	.790	.098 .595 32
Log RC I	Correlation Sig. (2-tailed) N	.263 .122 36	.000	.061 .716 38	.649	.243 .141 38	.309 .066 36		055 .746 37	.758	.381 .029 33
Distance	Correlation Sig. (2-tailed) N	033 .850 36	.401	285 .087 37	.535	055 .745 37	.043 .803 36	.746	1.000 37	.000	061 .738 33
Grazing Int	Correlation Sig. (2-tailed) N	.106 .536 36	.435	.337 .042 37	.680	.190 .259 37	.046 .790 36	.758	760 .000 37		103 .568 33
Salinity	Correlation Sig. (2-tailed) N	.184 .315 32	.055	241 .176 33		.184 .306 33	.098 .595 32	.029	061 .738 33	.568	1.000 33

Table 14: Correlations (Pearson) among variables recorded on shrubland monitoring sites: shrub steppe – resource-capturing patches

		Density	RC Index	Stability	Infiltration	Nutrient	Log den	Log RC I	Distance	Grazing Int	Salinity
Density	Correlation Sig. (2-tailed) N	1.000 620	.236 .000 524	.138 .001 620	.080 .048 620	.107 .008 620	.842 .000 620	.317 .000 524	078 .080 500	.037	.130 .009 405
RC Index	Correlation Sig. (2-tailed) N	.236 .000 524		.050 .239 557	.060 .159 557	.014 .750 557	.242 .000 524	.869 .000 557	054 .217 528	.081	.058 .233 426
Stability	Correlation Sig. (2-tailed) N	.138 .001 620	.050 .239 557	1.000 654	.446 .000 654	.496 .000 654	.167 .000 620	.081 .055 557	.017 .689 528	.568	.042 .387 426
Infiltration	Correlation Sig. (2-tailed) N	.080 .048 620	.060 .159 557	.446 .000 654	1.000 654	.457 .000 654	.098 .015 620	.118 .005 557	.026 .557 528	.999	106 .028 426
Nutrient	Correlation Sig. (2-tailed) N	.107 .008 620	.014 .750 557	.496 .000 654	.457 .000 654	1.000 654	.084 .037 620	.073 .085 557	046 .290 528	.413	011 .820 426
Log den	Correlation Sig. (2-tailed) N	.842 .000 620		.167 .000 620	.098 .015 620	.084 .037 620	1.000 620	.348 .000 524	043 .340 500	.074	.135 .007 405
Log RC I	Correlation Sig. (2-tailed) N	.317 .000 524		.081 .055 557	.118 .005 557	.073 .085 557	.348 .000 524	1.000 557	036 .414 528	.150	.118 .015 426
Distance	Correlation Sig. (2-tailed) N	078 .080 500	054 .217 528	.017 .689 528	.026 .557 528	046 .290 528	043 .340 500	036 .414 528	1.000 528	.000	024 .616 424
Grazing Int	Correlation Sig. (2-tailed) N	.094 .037 498	.076 .081 526	.025 .568 526	.000 .999 526	.036 .413 526	.080 .074 498	.063 .150 526	633 .000 526		.019 .702 422
Salinity	Correlation Sig. (2-tailed) N	.130 .009 405	.058 .233 426	.042 .387 426	106 .028 426	011 .820 426	.135 .007 405	.118 .015 426	024 .616 424	.702	1.000 426

Table 15 Correlations (Pearson) among variables recorded on shrubland monitoring sites: mulga hard pan – resource shedding patches

		Density	RC Index	Stability	Infiltration	Nutrient	Log den	Log RC I	Distance	Grazing Int	Salinity
Density	Correlation	1.000	.096	.142		.138	.772		.027		006
	Sig. (2-tailed) N	99	.363 92	.162 99	.340 99	.175 99	.000 99		.804 85		.956 75
RC Index	Correlation	.096	1.000	023	.135	027	.246	.908	040	036	.081
	Sig. (2-tailed)	.363		.814	.172	.788	.018	.000	.703	.729	.464
	Ν	92	104	104	104	104	92	104	94	94	84
Stability	Correlation	.142	023	1.000	.587	.560	.183	.126	.032	061	.048
	Sig. (2-tailed)		.814		.000	.000	.070		.760		.663
	N	99	104	113	113	113	99	104	94	94	84
Infiltration	Correlation	097	.135	.587	1.000	.404	.011	.207	.155		037
	Sig. (2-tailed)	.340	.172	.000		.000	.915		.136		.740
	N	99	104	113	113	113	99	104	94	94	84
Nutrient	Correlation	.138	027	.560	.404	1.000	.161	.028	.125	217	.085
	Sig. (2-tailed)		.788	.000	.000		.112		.229		.444
	N	99	104	113	113	113	99	104	94	94	84
Log den	Correlation	.772	.246	.183	.011	.161	1.000	.245	.187	089	087
	Sig. (2-tailed)	.000	.018	.070	.915	.112		.019	.086		.458
	N	99	92	99	99	99	99	92	85	85	75
Log RC I	Correlation	.093	.908	.126	.207	.028	.245	1.000	089	021	.143
	Sig. (2-tailed)	.379	.000	.204	.035	.777	.019		.392		.194
	N	92	104	104	104	104	92	104	94	94	84
Distance	Correlation	.027	040	.032	.155	.125	.187	089	1.000	649	232
	Sig. (2-tailed)	.804	.703	.760	.136	.229	.086			.000	.036
	N	85	94	94	94	94	85	94	94	94	82
Grazing Int	Correlation	035	036	061	229	217	089	021	649	1.000	.063
-	Sig. (2-tailed)	.749	.729	.559	.027	.036	.420	.843	.000		.573
	Ν	85	94	94	94	94	85	94	94	94	82
Salinity	Correlation	006	.081	.048	037	.085	087	.143	232	.063	1.000
-	Sig. (2-tailed)	.956	.464	.663	.740	.444	.458	.194	.036		
	Ν	75	84	84	84	84	75	84	82	82	84

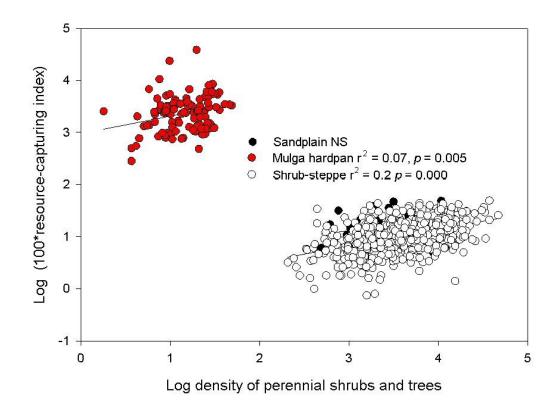


Figure 14: Relationships between shrub density and RC Index on shrubland monitoring sites

Species composition and landscape function

Background

Most studies on effects of species composition on ecosystems function (mostly in terms of total productivity) have examined the effect of numbers of species rather than large shifts in structural composition. (These studies have produced conflicting information.) Our interest is not whether number of species is affecting landscape function, but whether shifts in structural composition are important (e.g. shifts from multi-stemmed shrubs to single stemmed shrubs, or from fire sensitive species to fire tolerant species). It is unlikely that less significant change, for example substitution of *Aristida* spp for *Astrebla* spp, will affect landscape function in any measurable way.

Approach

I outline some examples of structural change and the likely impacts on RC index and Stability rating in Table 16.

Table 16 Examples of structural change in vegetation and likely impacts on landscape function as indicated by RC index and Stability rating

Structural transition in vegetation	Change in landscape function						
composition	RC index	Stabil	ity rating				
		Resilient	Non-resilient				
		landscapes	landscapes				
Tussock grassland to annual herb/grass	\downarrow	NC or \downarrow	\downarrow				
Tussock grassland to tussock grassland	NC	NC	NC				
and woody species							
Hummock grassland to shrubland	\downarrow	NC	\downarrow				
Shrubland/woodland to annual	ļ	NC or \downarrow	ļ				
herb/grass	•	•	•				
Annual herb/grass to shrubland	↑	NC	↑				
(coarse-scale) – non-resilient landscape	I		I				
Annual herb/grass to annual herb/grass	NC	NC	NC				
– resilient landscape							
NC: no change							

Table 16 may be used as a provisional framework for interpreting change in species composition and trends in landscape function. In many cases these major shifts in structural composition are associated with a change in the RC index. Regional scale reporting should focus on these major shifts.

Relationships between reporting of landscape function and reporting for pastoral production

Earlier I showed that there was a reasonable relationship between shrub/tree density and landscape function, but an ambiguous relationship with perennial grass frequency. In reporting change on monitoring sites it is important to firstly establish if the physical or geo-physical capacity of the landscape to support and produce vegetation has been altered (i.e. change in landscape function) and then secondly, to assess change in the biological capacity of the landscape to support the selected land use (plant species composition and abundance are the important biological characteristics for pastoral land use). Thus two simultaneous sets of data are required to report change for pastoral purposes, one set dealing with landscape function and the other with vegetation change. While some inferences may be made between these data sets, as shown above, generally these two data sets should be treated and assessed independently. I see little purpose at this stage in mounting a major research program to investigate relationships between species composition and landscape function. While these data sets are assessed independently, they should be reported simultaneously to provide a complete overview. I have outlined a simple approach to scoring change in species density and composition from a pastoral perspective and included this in the pro-forma for reporting change on each southern monitoring site (Appendix 2). A similar approach could be used for reporting change in frequency of perennial grasses.

	Significant change			
Desirables	Undesirables		Rating	Display code
1	\downarrow		9	+ + +
↑	NC		8	+ + +
Ť	1	$\Delta D > \Delta U$	7	+ +
NC	\downarrow		6	+
NC	ŃĊ		5	0
Ť	1	$\Delta D \leq \Delta U$	4	—
NC	1		3	
\downarrow	NC		2	— —
Ļ	1		1	

Table 17: Suggested ratings for pastoral land-use for change in density of 'desirable and 'undesirable' perennial shrubs.

Change deemed 'significant' if the following 'rules' are met:

Number of desirable or undesirable	Change from assessment 1 to assessment 2
plants on the site	%
> 50	> 10
> 20 - 50	> 20
$10 \ge 20$	> 50
< 10	NS

MS Access tables:alec_function_dens_change_9500; alec_density_w_DIU_ass1_ass2; DES_INDEX.

References

- Friedel, M.F. (1991). Range condition assessment and concept of thresholds: A viewpoint. *Journal of Range Management* **44**: 422-426.
- Holm, A.M., Bennett, L.T., Loneragan, W.A., and Adams, M.A. (2001). Relationships between empirical and nominal indices of landscape function in the arid shrubland of Western Australia. *Journal of Arid Environments*. (In press)
- SPSS Inc (1999) SPSS Base 9.0. Applications Guide SPSS Marketing Department, Chicago Illinois. 412 pp.
- Tongway, D. (1994) *Rangeland soil condition assessment manual* C.S.I.R.O. Publications, Canberra. Australia. 69 pp.
- Tongway, D. and Hindley, N. (1995) *Manual for Soil Condition Assessment of Tropical Grasslands* CS.I.R.O. Australia, Canberra. 60 pp.
- Tongway, D.J. and Hindley, N. (2000). *Ecosystem function analysis of rangeland monitoring data Rangelands Audit Project 1.1*. National Land and Water Resources Audit, Canberra ACT. 35 pp

Appendices

Appendix 1 Frequency tables.

Frequency distribution of tussock grassland – resource-shedding patches

		RC Index	FREQ	STAB	INFIL	NUTS
N	Valid	107	107	69	69	69
	Missing	0	0	38	38	38
Mean	-	9.7097E-02	28.69	66.0749	62.1045	36.7254
Median		6.5200E-02	17.00	67.2727	64.0000	35.1852
Mode		.027	1	61.21	51.00	20.37
Percentiles	5	2.0066E-02	1.00	50.0000	43.3750	18.7037
	10	2.6920E-02	1.80	55.1515	47.0000	22.7778
	15	2.9720E-02	2.00	56.8025	49.5000	24.2593
	20	3.5012E-02	3.00	58.1818	51.0000	25.5556
	25	3.8907E-02	4.00	59.6970	51.2500	27.1296
	30	4.2816E-02	5.00	61.2121	53.0000	28.2609
	35	4.5373E-02	6.80	63.1034	55.5000	30.3502
	40	4.9568E-02	8.00	63.6364	58.0000	32.8261
	45	6.0463E-02	10.60	65.8621	62.2500	33.4823
	50	6.5200E-02	17.00	67.2727	64.0000	35.1852
	55	7.8358E-02	18.40	67.7325	65.0000	37.3913
	60	9.0748E-02	23.80	68.4848	68.0000	39.2593
	65	.10993	34.20	69.3312	69.0000	41.1755
	70	.11498	45.00	70.4981	71.0000	41.9565
	75	.13619	53.00	71.7241	72.0000	42.7093
	80	.14842	59.00	72.4138	73.0000	45.9259
	85	.16768	70.60	75.8621	74.0625	51.3043
	90	.20249	78.00	78.1818	78.0000	54.5652
	95	.28536	88.00	79.6970	79.5000	60.7166

		RC Index	FREQ	STAB	INFIL	NUTS
N	Valid	36	37	27	27	27
	Missing	1	0	10	10	10
Mean	-	.16464	12.76	58.0560	51.6831	29.0874
Median		.15044	5.00	57.3574	51.5000	26.2963
Mode		.205	1	53.51	44.00	18.70
Percentiles	5	1.5053E-02	1.00	45.1400	37.0000	17.2593
	10	2.8450E-02	1.00	46.9189	40.4444	18.5926
	15	3.9447E-02	1.00	48.8108	42.4000	18.7407
	20	5.7017E-02	2.00	50.5946	44.0000	19.2222
	25	6.3841E-02	2.00	52.9730	46.0000	19.6296
	30	7.4991E-02	2.40	53.5135	46.4000	21.2778
	35	9.0469E-02	3.00	54.3784	47.0000	22.8148
	40	.11079	4.00	55.1351	47.6000	23.6296
	45	.12801	4.10	57.2973	48.6000	24.8519
	50	.15044	5.00	57.3574	51.5000	26.2963
	55	.16877	6.00	57.8378	53.3556	28.1111
	60	.17817	6.80	59.5676	53.9778	29.6667
	65	.20540	7.00	60.7371	55.2000	32.4239
	70	.22267	8.00	61.9590	56.6000	33.2922
	75	.23768	9.50	63.0303	58.0000	37.0370
	80	.25174	11.20	63.2727	58.4000	38.8889
	85	.27825	22.50	67.2727	60.6000	42.1852
	90	.32022	45.80	69.7756	65.6000	45.4074
	95	.48960	78.10	76.8485	69.2000	51.6296

Frequency distributions of hummock grassland – resource-shedding patches

		RC Index	STAB	INFIL	NUTS
N	Valid	35	33	33	33
	Missing	0	2	2	2
Mean	-	.1887	60.01	50.56	33.58
Median		.1610	61.63	50.81	34.90
Mode		.05	49	34	19
Percentiles	5	4.610E-02	49.69	37.63	19.73
	10	5.630E-02	52.62	44.87	22.02
	15	6.815E-02	53.94	45.86	23.65
	20	8.280E-02	54.64	47.12	26.22
	25	9.500E-02	54.95	47.60	26.84
	30	.1028	55.84	47.94	28.81
	35	.1124	56.53	48.38	31.69
	40	.1404	57.28	49.05	33.07
	45	.1530	59.29	49.66	34.61
	50	.1610	61.63	50.81	34.90
	55	.1698	61.97	52.32	36.10
	60	.1868	62.85	52.82	37.19
	65	.2100	63.01	53.10	38.47
	70	.2310	63.91	53.38	39.04
	75	.2650	64.28	53.55	39.82
	80	.3072	65.58	54.45	39.87
	85	.3222	66.08	55.58	40.09
	90	.3698	68.16	57.12	42.88
	95	.4736	69.03	60.14	44.28

Frequency distributions of sandplain – site-scale

		RC Index	STAB	INFIL	NUTS
N	Valid	593	552	552	552
	Missing	0	41	41	41
Mean	Ŭ	.1272	62.60	48.68	35.75
Median		.1040	63.25	48.14	35.83
Mode		.09	66	24	14
Percentiles	5	3.035E-02	51.07	37.65	23.39
	10	4.070E-02	53.54	40.03	25.76
	15	5.010E-02	55.54	41.29	27.57
	20	5.790E-02	57.49	42.15	29.15
	25	6.450E-02	58.46	43.31	30.86
	30	7.200E-02	59.64	44.48	31.78
	35	8.245E-02	60.84	45.09	32.80
	40	8.800E-02	61.60	46.14	33.54
	45	9.500E-02	62.50	47.27	34.48
	50	.1040	63.25	48.14	35.83
	55	.1154	64.01	48.83	36.71
	60	.1250	64.55	50.27	37.62
	65	.1380	65.18	51.55	38.54
	70	.1509	66.20	52.36	39.46
	75	.1680	66.88	53.33	40.69
	80	.1842	67.86	54.56	41.95
	85	.2120	68.86	55.69	43.90
	90	.2413	70.59	57.88	46.09
	95	.3137	72.60	61.37	48.81

Frequency distributions of shrub-steppe sites – site-scale

		RC index	STAB	INFIL	NUTS
N	Valid	35	33	33	33
	Missing	0	2	2	2
Mean		.1887	60.01	50.56	33.58
Median		.1610	61.63	50.81	34.90
Mode		.05	49	34	19
Percentiles	5	4.610E-02	49.69	37.63	19.73
	10	5.630E-02	52.62	44.87	22.02
	15	6.815E-02	53.94	45.86	23.65
	20	8.280E-02	54.64	47.12	26.22
	25	9.500E-02	54.95	47.60	26.84
	30	.1028	55.84	47.94	28.81
	35	.1124	56.53	48.38	31.69
	40	.1404	57.28	49.05	33.07
	45	.1530	59.29	49.66	34.61
	50	.1610	61.63	50.81	34.90
	55	.1698	61.97	52.32	36.10
	60	.1868	62.85	52.82	37.19
	65	.2100	63.01	53.10	38.47
	70	.2310	63.91	53.38	39.04
	75	.2650	64.28	53.55	39.82
	80	.3072	65.58	54.45	39.87
	85	.3222	66.08	55.58	40.09
	90	.3698	68.16	57.12	42.88
	95	.4736	69.03	60.14	44.28

Frequency distributions of mulga-hardpan – site-scale

		RC Index	Density	Stability I	nfiltration	Nutrient
N	Valid	140	145	158	158	158
	Missing	18	13	0	0	0
Mean	-	.20785	3551.00	60.9923	47.6977	30.7465
Median		.16950	2533.33	60.9029	46.7244	30.2662
Mode		.110	2233	67.57	41.83	21.16
Percentiles	5	5.0500E-02	664.58	50.0775	38.9551	18.8746
	10	7.0000E-02	966.67	53.2987	41.3553	21.0229
	15	8.0500E-02	1197.02	54.4125	41.8944	22.8086
	20	9.4000E-02	1358.33	55.4366	42.7742	24.1906
	25	.10425	1558.33	56.3707	43.4066	25.3086
	30	.11250	1858.33	57.4797	43.8884	25.6314
	35	.12815	2104.17	58.5515	44.4542	26.2917
	40	.14075	2225.00	59.4775	45.3967	27.3364
	45	.15625	2391.67	60.2989	46.1538	28.4259
	50	.16950	2533.33	60.9029	46.7244	30.2662
	55	.19733	2783.33	62.0606	47.7104	31.2091
	60	.20600	3166.67	62.6006	48.3547	32.8796
	65	.21875	3361.11	63.3604	49.7285	33.9142
	70	.24611	3633.33	64.0631	50.5800	34.4481
	75	.26600	4300.00	64.9149	52.0243	35.4167
	80	.27800	4766.67	66.2072	52.5821	36.9907
	85	.31730	5450.00	67.4903	53.3260	38.6185
	90	.43320	6733.33	69.0811	55.2163	40.1663
	95	.54000	8616.67	70.8340	58.2218	43.9373

Frequency distributions - sandplain and mulga hardpan - resource shedding patches

a Calculated from grouped data.
b Multiple modes exist. The smallest value is shown
c Percentiles are calculated from grouped data.

		RC Index	Density	Stability	Infiltration	Nutrient
N	Valid	556	610	643	643	643
	Missing	87	33	0	0	0
Mean	-	.15340	5526.50	61.1121	47.6941	32.4579
Median		.11767	3633.33	61.8665	47.5221	32.0602
Mode		.087	967	59.46	50.00	25.93
Percentiles	5	3.6933E-02	683.33	48.8243	36.6053	19.1850
	10	4.8600E-02	990.00	52.0202	38.6581	21.4239
	15	5.7225E-02	1350.00	53.8056	39.9985	23.3102
	20	6.5080E-02	1620.83	55.5788	41.1390	24.4013
	25	7.4267E-02	1885.19	56.9444	42.2591	26.1148
	30	8.3717E-02	2185.71	58.1757	43.2265	27.4383
	35	9.0663E-02	2538.89	59.1512	44.2178	28.7556
	40	9.8588E-02	2916.67	60.0809	45.3504	29.8854
	45	.10824	3173.33	60.8246	46.8375	31.0766
	50	.11767	3633.33	61.8665	47.5221	32.0602
	55	.12810	4061.11	62.7266	48.4968	32.8241
	60	.14070	4746.67	63.2993	49.8217	33.6790
	65	.15406	5444.44	64.0764	50.7356	35.1293
	70	.17304	6147.62	64.8462	51.5777	36.7894
	75	.18988	6944.44	65.6530	52.5894	38.2102
	80	.21430	8666.67	66.7093	53.8684	39.8061
	85	.24010	10333.33	67.7318	55.4631	41.8490
	90	.30187	12900.00	69.6021	57.2342	44.4792
	95	.38230	16206.67	71.5541	59.8483	47.3287

Frequency distribution --shrub-steppe resource-shedding patches

a Calculated from grouped data. b Multiple modes exist. The smallest value is shown c Percentiles are calculated from grouped data.

Appendix 2: Examples of presentations of landscape function at the site scale

ercentile	RC Index	Stability	Infiltration	Nutrient	Density			Sit	te ranking:	WEE	001	
									Ratir	ngs		
Ν	288	354	354	354	318	RC Index	Stability		Infiltration		Nutrient	Plant density
						1995 2000	1995	2000		2000		1995 2000
95	0.541	76.8	65.4	51.0	8577							
90	0.428	73.8	62.1	47.7	6733							
85	0.318	71.6	59.6	45.1	5467							
80	0.276	69.8	58.2	43.5	4815							
75	0.266	68.9	56.7	41.5	4358							
70	0.245	67.6	55.8	39.8	3783							
65	0.218	66.9	54.3	38.0	3433		_					
60	0.205	65.5	53.3	36.2	3200							
55	0.197	64.6	52.6	34.8	2858							
50	0.169	63.5	51.8	33.3	2625							
45	0.156	62.7	50.5	31.5	2467							
40	0.140	62.2	49.4	30.6	2253							
35	0.123	61.4	48.1	28.9	2127							
30	0.112	60.2	46.8	27.5	1933							
25	0.102	58.8	45.9	26.0	1625							
20	0.093	57.8	44.2	25.2	1383							
15	0.079	56.3	43.2	23.7	1217							
10	0.068	54.6	41.8	21.3	967							
5	0.050	52.4	38.7	18.1	666							

Functional type: Sandplain community

to red negative change

Pastoral change rating: 0

(ie no change in long-term pastoral value derived from perennial shrubs)

rcentile	RC Index	Stability	Infiltration	Nutrient	Density			Sit	te ranking:	RIV 0	10			
									Rating	IS				
Ν	1162	1430	1430	1430	1352	RC Index	Stabi	lity	Infiltration		Nutr	rient	Plant d	ensity
						1995 1999	1995	1999	1995	1999	1995	1999	1995	1999
95	0.384	75.9	66.4	53.9	16058		_							
90	0.300	73.7	63.5	49.6	12667									
85	0.239	72.1	61.5	47.2	9894									
80	0.213	70.8	59.2	45.4	8100									
75	0.187	69.8	57.7	43.5	6733									
70	0.171	68.9	56.4	41.7	6063									
65	0.153	67.6	55.4	40.1	5235									
60	0.140	66.8	53.8	38.4	4609									
55	0.127	65.9	53.1	36.9	4000									
50	0.116	64.9	51.8	35.5	3533									
45	0.107	63.8	51.0	34.0	3067									
40	0.097	62.9	50.0	32.7	2785									
35	0.088	62.0	48.7	31.3	2383									
30	0.081	60.8	47.5	29.8	2098									
25	0.072	59.6	46.2	28.0	1817									
20	0.063	58.5	44.6	26.2	1567									
15	0.055	56.8	43.0	24.1	1267									
10	0.045	54.4	40.9	22.2	967									
5	0.034	51.2	38.3	19.8	650									
						Black to black	= no się	gnifica	nt change;	to gree	en posi	itive ch	nange;	

Functional type: Shrubland (chenopod)

to red negative change

Pastoral change rating: +ve +ve (I.e. significant increase in pastoral value derived from perennial shrubs)