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Abstract 
 

Kwongan, also known as sandplain heathland, occurs in remnant vegetation 

throughout the fragmented landscape of the Western Australian wheatbelt. This 

vegetation community has high levels of species richness and endemism, and is of 

high conservation value. In many vegetation remnants in the wheatbelt the native tree 

species Allocasuarina huegeliana (rock sheoak) is expanding out from its normal 

range and encroaching into kwongan. A. huegeliana may ultimately dominate the 

kwongan, causing a decline in floristic diversity. Altered disturbance regimes, 

particularly the absence of fire and reduced or absent browsing mammal herbivores, 

are likely to be responsible for causing A. huegeliana encroachment.  

 

This study used experimental and observational data from patches of kwongan in 

three Nature Reserves in the central and southern wheatbelt to investigate the role of 

fire, native mammal activities and interactions between these two factors in shaping 

A. huegeliana woodland–kwongan community boundaries. Investigations were 

carried out into the characteristics of encroaching A. huegeliana populations; the 

environmental factors affecting the extent of encroachment, naturally recruited 

juveniles, and seedling emergence and establishment; historical and current 

abundances of native mammals; and the effects of mammal herbivores on seedling 

establishment during inter-fire and post-fire periods. 

 

Results from this study confirm that A. huegeliana has encroached into kwongan 

throughout the wheatbelt region and recruitment appears likely to continue in most 

areas. Few of the environmental factors measured in this study affected the extent of 
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encroachment, the locations of naturally recruited A. huegeliana juveniles, and 

seedling germination and establishment. Western grey kangaroos (Macropus 

fuliginosus) browsed extensively on seedlings, which largely prevented them from 

establishing in open areas of kwongan. However, numerous A. huegeliana seedlings 

escaped browsing herbivores by establishing in perennial shrubs, where they 

appeared to be tolerant of increased levels of inter-specific competition.  

 

There was no native mammal common to all three Reserves that declined around the 

time that A. huegeliana encroachment most likely began in the 1970s. In addition, 

tammar wallabies (Macropus eugenii) had little effect even where their densities were 

high. It is therefore unlikely that the decline of an individual mammal species 

initiated encroachment. A. huegeliana encroachment appears to be driven by 

increased propagule pressure, which is in turn caused by increased inter-fire intervals. 

Long periods of time without fire have enabled fire-sensitive A. huegeliana trees to 

produce increasing quantities of seed that are continuously released into kwongan. A 

range of other factors may interact synergistically with this process to affect 

encroachment and these are also discussed. This study considered the implications of 

these findings for management of remnant vegetation in fragmented landscapes, 

particularly kwongan in the Western Australian wheatbelt, and areas for further 

research are suggested.  
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Chapter 1  
 

 General introduction 
 

 

Ecosystems are complex and dynamic structures that change over time. The 

significance of disturbance in shaping ecosystem dynamics is well documented 

(White 1979; Sousa 1984; Pickett & White 1985; White & Jentsch 2001). 

Disturbances are relatively discrete events that affect or change ecosystem 

components and occur at different temporal and spatial scales. They range from 

localised modifications, such as small-scale soil disturbance by animals, to landscape 

scale disturbances, such as fire, drought and flood (Hobbs 1987). Many plant 

communities and species depend upon disturbance, particularly for regeneration 

(Pickett & White 1985). Disturbances provide novel conditions for seedling 

establishment and plant growth, and opportunities for plants to access resources that 

are otherwise unavailable (Spooner et al. 2004). Alterations to disturbance regimes 

will therefore result in changes to ecosystem dynamics, particularly to seedling 

recruitment. 

 

Ecosystems worldwide have become increasingly subject to various forms of human 

modification including altered disturbance regimes as a result of fragmentation, 

cessation of traditional land use practises and human management (White & Jentsch 

2001). The fragmentation process reduces the area of native ecosystems and leaves 

small patches that are increasingly isolated; reduces species population sizes of both 

flora and fauna; and alters landscape-scale processes (Hobbs & Yates 2003). In 
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fragmented systems, it is highly likely that the pre-existing disturbance regimes will 

be significantly altered because of the changed landscape context, isolation of 

fragments and altered composition of vegetation (Hobbs 1987).  

 

Disruption of disturbance regimes may cause dramatic successional changes in 

ecosystems that result in the loss of landscape and species diversity and ecological 

processes (White & Jentsch 2001), or changes in the abundances of many species 

(Tilman 1996). For example, fire regimes in fragmented ecosystems are likely to alter 

in one of two contrasting directions (Hobbs 2003). Fire can become almost entirely 

eliminated because of the lack of continuous vegetation cover and the cessation of 

active fire management, which could potentially lead to the disappearance of 

relatively short-lived species that require fire as a cue for germination. Alternatively, 

fire frequency can increase where fire is used in the surrounding landscape, for 

instance in stubble burning or “burning off” along road or rail reserves. In such cases, 

fires that escape into remnant vegetation can result in the death of particular native 

species and/or failure of some species to regenerate.  

 

The increase of native tree and woody shrub species in vegetation communities from 

which they were formerly sparse has been variously referred to as expansion, 

encroachment, invasion and successional change. This process is becoming 

increasingly common in Australia (e.g. Withers & Ashton 1977; Gleadow & Ashton 

1981; Bennett 1994; Fensham & Fairfax 1996; Crowley & Garnett 1998; Russell-

Smith et al. 2004; Franco & Morgan 2007) and throughout the world (e.g. Veblen & 

Lorenz 1988; Rose et al. 2000; Soulé & Knapp 2000; Roques et al. 2001; Goslee et 

al. 2003; Bartolomé et al. 2005; Briggs et al. 2005; Norman & Taylor 2005). Due to 
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the common association of the term invasion with exotic species, I will refer to this 

process as encroachment. 

 

In the southwest of Western Australia anecdotal observations have been made about 

the encroachment of a native tree species Allocasuarina huegeliana into adjacent or 

nearby vegetation communities including kwongan (sandplain heathland) (Powell 

1990; Little & Friend 1993; Main 1993; Bamford 1995). Historical vegetation 

surveys have shown that A. huegeliana was sparse or not recorded in many patches of 

kwongan in the Western Australian wheatbelt (Muir 1978b, c; Brown & Hopkins 

1983).  

 

Several shrub species in eastern Australia, including Leptospermum laevigatum, 

Kunzea ambigua and Acacia sophorae, have encroached into heathland from adjacent 

communities and are considered woody plant invaders (Burrell 1981; Cheal 1996; 

McMahon et al. 1996). The change from heathland to Callitris verrucosa woodland 

has, in contrast, been described as a cyclical change because C. verrucosa is present 

in the heathland from the earliest post-fire regeneration (Cheal 1996). This is not the 

case with Allocasuarina huegeliana in kwongan. 

 

Encroachment may have a range of impacts including the decline of species richness 

and diversity, decline of landscape diversity, loss of conservation-value habitats and 

an increase in erosion (Crowley & Garnett 1998; Costello et al. 2000; Rose et al. 

2000; Foster & Motzkin 2003; Bartolomé et al. 2005; Briggs et al. 2005; Butler et al. 

2006; Fredrickson et al. 2006). A. huegeliana encroachment may cause a decline in 

floristic diversity in kwongan because this species appears to be able to dominate the 
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vegetation types it encroaches into (Main 1993). Other Allocasuarina species have 

altered the composition and structure of vegetation communities that they have 

encroached into (Lunt 1998a; Kirkpatrick 2004). 

 

The southwest of Western Australia has high levels of plant diversity and endemism 

that is recognised as being of global significance, with the flora richest in the coastal 

and inland kwongan (Hopper & Gioia 2004; Mittermeier et al. 2005). Much of this 

area is now occupied by wheat and sheep farming, known as the wheatbelt, and 

covers more than 150 000 km2 in the southwest of the state. Since European 

settlement 93% of native vegetation in the Western Australian wheatbelt has been 

cleared and the remaining vegetation exists in small, scattered remnants in what is 

now a highly fragmented landscape (Hobbs et al. 1993). This degree of habitat 

removal has had obvious consequences for the biota in terms of both representation of 

native vegetation types and abundance and range of fauna (Hobbs 2001). 

 

The wheatbelt region is dominated by old landscapes with nutrient-deficient, highly 

weathered soils (Hopper et al. 1996) and experiences a Mediterranean climate of hot 

dry summers and cool wet winters. The geology is dominated by the extensive 

Yilgarn Block. The bedrock of gneisses and granites is largely covered by laterite and 

its derived products (Johnstone et al. 1973). Prior to clearing the wheatbelt region 

consisted of a complex mosaic of vegetation types, the distribution of which was 

largely determined by soils, landforms and climate (Beard 1981, 1990; McArthur 

1991; Gibson et al. 2004). 
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Kwongan is ecologically complex and its component species exhibit a wide range of 

life forms, regenerative strategies and habitat requirements (Pate & Beard 1984; 

Brown 1989). This vegetation community occurs throughout the wheatbelt and is 

comparable with the maquis, chaparral and fynbos of other countries with 

Mediterranean-type systems. Kwongan is characterised by a high diversity within 

homogeneous habitats (ά-diversity), high plant species turnover along habitat or 

environmental gradients (β-diversity), high plant species turnover among equivalent 

habitats across geographical gradients (γ-diversity) and a large proportion of locally 

endemic flora (Hopper 1979; Brown 1989; Hopper 1992; Hopper et al. 1996; Hopper 

& Gioia 2004). Remnants of this rich flora are located in landscapes that have been 

extensively cleared through European land-use practices and are therefore of high 

conservation value (Hopper & Gioia 2004). 

 

In many areas of remnant vegetation in the wheatbelt, kwongan occurs adjacent to or 

near woodland dominated by the native tree species Allocasuarina huegeliana 

(Beadle 1981). A. huegeliana often occurs on and around granite outcrops; however, 

it also occurs on the sandplains and has been recorded from a wide range of other soil 

types (Doran & Hall 1981). A. huegeliana stands vary from open to very dense and 

range from 5−10m in height. This species forms a thick layer of leaf litter beneath its 

canopy and the species present in the understorey vary according to the density of the 

overstorey (Beard 1990).  

 

The causes of encroachment have been much debated and are often complex and 

interactive. The most commonly identified causes of encroachment are altered 

browsing and grazing regimes, including both overgrazing by livestock and the 
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absence or decline of herbivore populations; altered fire regimes, particularly a 

reduction in fire frequency; and interactions between these processes.  

 

Herbivores may determine the relative abundance of different plant species in a 

habitat through selective defoliation causing seedling death, trampling, nutrient 

relocation and other factors (Harper 1977). Grazing from domestic livestock has 

caused encroachment in many systems through reduced competition from grasses and 

herbs for soil moisture and nutrients, and reduced fine fuel in the understorey, which 

limits fire and subsequent seedling mortality (Madany & West 1983; Savage & 

Swetnam 1990; Roques et al. 2001; Harris et al. 2003; Briggs et al. 2005). The loss 

or decline of various herbivores, such as the black-tailed prairie dog (Weltzin et al. 

1997), reindeer (Cairns & Moen 2004) and bettongs and bridled nailtail wallabies 

(Noble & Grice 2002), have also caused encroachment in a range of systems through 

reduced levels of browsing on seedlings of the encroaching species. 

 

Fire has the potential to affect plant populations by killing fire-sensitive species. 

Local extinction of fire-sensitive species will occur if the interval between successive 

fires is shorter than the time that plants require to reach first reproduction. In many 

systems where encroachment is occurring reduced fire frequencies have enabled 

seedlings of fire-sensitive species to establish (Veblen & Lorenz 1988; Crowley & 

Garnett 1998; Lunt 1998b; Russell-Smith et al. 2004; Bartolomé et al. 2005; Norman 

& Taylor 2005; Coop & Givnish 2007). Disturbance processes such as fire and 

herbivory may also interact with each other to influence seedling mortality, 

particularly in post-fire environments where grazing can promote or eliminate 

particular plant species (Noble & Grice 2002; Hobbs 2003; Kirkpatrick 2004). 



 7

No systematic scientific investigations have been undertaken into A. huegeliana 

encroachment. However, anecdotal observations suggest that altered fire and 

browsing regimes may be responsible for driving this process (Powell 1990; Main 

1993; Bamford 1995). Disturbance regimes have been fundamentally altered across 

the Australian landscape since European colonization (Hobbs 1987). Kwongan is fire-

prone and is thought to have historically been subject to frequent fires, set by 

Aboriginal people or by lightening, at intervals from 1 to 20 years (Pate & Beard 

1984). However, many reserves have currently not been burned for more than 50 

years. A. huegeliana is very fire-sensitive and historical fire intervals may have 

maintained the kwongan structures by eliminating seedlings establishing in kwongan 

before they reached first reproduction. A. huegeliana can, unlike many kwongan 

species, establish seedlings without disturbance (Ladd 1989). The decline of fire 

frequency in these reserves may have enabled large numbers of A. huegeliana 

seedlings to establish and reach maturity. 

 

Grazing and browsing regimes have also been dramatically altered in remnant 

vegetation in Australia through the loss or decline of most medium-sized mammal 

fauna such as small wallabies, bandicoots and large rodents. The loss or decline of 

these fauna has been attributed to habitat loss, predation by foxes and cats, and other 

factors (Burbidge & McKenzie 1989). These mammals probably had important 

effects on ecosystem and regeneration processes in post-fire and inter-fire periods. 

For example, when fire was absent for long periods of time in the past, herbivores 

such as the tammar wallaby might have controlled the recruitment of A. huegeliana 

seedlings to a large extent through browsing (Main 1993). However, like many 

similar species, tammars are now absent from many reserves. As a result of the 
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absence of fire and reduced herbivore populations, many remnant areas in the 

wheatbelt now lack two key processes that may have previously been important 

drivers of ecosystem dynamics.  

 

In addition to factors such as fire, grazing and climate, the initiation, rate and extent 

encroachment would also depend on factors that affect all colonizing plants. These 

factors may include the availability of propagules, dispersal capacity, availability of 

safe sites, conditions suitable for germination and establishment, and competitive 

interactions with resident vegetation (Harper 1977; Oliver & Larson 1990). It is not 

surprising that in complex systems, changes in ecosystem dynamics reflect the 

influence of multiple factors. However, there are few studies that address all of these 

components or their interactions simultaneously. 

 

If anecdotal observations that A. huegeliana is encroaching into kwongan and 

populations are surviving to maturity are correct, management strategies may be 

required to ensure the conservation of kwongan communities. However, the extent to 

which management is required will depend on the impact of A. huegeliana on 

kwongan. Little is currently known about A. huegeliana populations encroaching into 

kwongan, factors affecting the rate and extent of encroachment, the processes driving 

these changes or the impacts of encroachment. As a consequence there are no 

scientific guidelines for managing the remaining areas of kwongan to ensure the 

continued retention of species in these communities. 

 

I considered a number of factors that may potentially be contributing to A. huegeliana 

encroachment, including altered fire and browsing regimes, altered climatic 
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conditions and atmospheric carbon dioxide concentrations, and altered levels of seed 

predation. However, the research in this thesis focuses on the role of fire and 

browsing by native herbivores for several reasons. Fire and browsing are commonly 

identified as driving encroachment in a range of systems worldwide, including 

heathlands in Australia. These factors have also been identified as enabling 

Allocasuarina species to encroach into other vegetation communities in Australia. 

Additionally, other research scientists who have observed A. huegeliana 

encroachment in the wheatbelt over several decades have suggested that fire and 

browsing are key factors likely to be causing encroachment (e.g. Main 1993).  

 

There is currently an important and unique opportunity to examine the effects of fire 

interval and mammal herbivore activity by using a mixture of natural and targeted 

experimentation. Native mammals have increased recently in several Nature Reserves 

due to predator control. The vegetation communities within these Reserves have 

experienced a range of known fire intervals. It was beyond the scope of this study to 

carry out experimental fires in kwongan that has been encroached upon by A. 

huegeliana. An area of A. huegeliana woodland was burned at the beginning of the 

study and this opportunity was used to monitor the effects of herbivore exclusion on 

post-fire recruitment. The research undertaken for this thesis aimed to use the 

aforementioned opportunities to develop an understanding of the role of fire, native 

mammal activities and the interactions between the two in shaping A. huegeliana–

kwongan community boundaries in remnant vegetation.  
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The major research questions addressed in this thesis were:  

• What is the extent of A. huegeliana encroachment in kwongan in remnant 

vegetation in the Western Australian wheatbelt and is it likely to be a long-term 

problem? 

• Which environmental factors affect A. huegeliana establishment in kwongan 

during inter-fire periods? 

• How does native mammal browsing affect A. huegeliana establishment in the 

inter-fire and immediate post-fire periods?  

• What are the likely outcomes of long inter-fire periods in remnants where native 

herbivores are largely absent? 

More detailed research questions were addressed within each chapter (Figure 1.1).  

 

The current chapter provided an overview of the problem of encroachment, its 

ecological significance, potential causal factors and historical background to the 

study. The structure of the remaining chapters is illustrated in Figure 1.1. Chapter 

Two describes the characteristics of encroaching A. huegeliana populations and the 

patches of kwongan in which this phenomenon is occurring. Chapter Three introduces 

the mammals that were historically present in the study areas and explores the pattern 

of their decline since the 1800s. Chapter Four investigates the relative abundance of 

mammal herbivores currently present in the study areas. Chapter Five characterises 

the locations where naturally recruited juvenile A. huegeliana are both present and 

absent. Chapter Six examines the effects of perennial vegetation and herbivore 

exclusion on A. huegeliana seedling establishment. Chapter Seven explores the 

effects of a range of environmental factors on A. huegeliana seedling establishment. 

Chapter Eight differentiates between the impacts of individual mammal herbivore 
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species on A. huegeliana seedling establishment. Chapter Nine describes the effects 

of mammal exclusion on the recovery of A. huegeliana woodland following fire. 

Chapter Ten summarises the main findings and discusses the implications for 

management of remnant vegetation in fragmented landscapes.  

 

Note: Chapter 2 forms the basis of the following paper:  Maher, K.A, Hobbs, R.J. & 

Yates, C.J., Invasion of kwongan by the native tree species rock sheoak 

(Allocasuarina huegeliana) in the Western Australian wheatbelt: population and 

patch characteristics. Austral Ecology, in revision.               
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Figure 1.1: Diagram of thesis structure, order of the chapters and key questions. 
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2.1 Introduction 

As discussed in Chapter 1, anecdotal observations have been made on the 

encroachment of A. huegeliana at a range of sites located throughout the wheatbelt 

(Powell 1990; Little & Friend 1993; Main 1993; Bamford 1995). However, little is 

currently known about the characteristics of the encroaching A. huegeliana 

populations or the sites where this is occurring.  

 

Population structure studies may give insight into regeneration patterns and whether 

recruitment is continuous or fluctuates in response to disturbance events, competitive 

interactions or climatic changes (Ågren & Zackrisson 1990). Age is often a more 

accurate measure of a population structure; however, age is difficult to determine for 

most native plant species in Australia because the production of annual rings is 

constrained due to the opportunistic response of most tree taxa to unpredictable 

rainfall and temperatures (LaMarche et al. 1979; Mucha 1979; Ogden 1978). In the 

absence of an appropriate method for age determination girth is often a reasonable 

approximation of a tree’s age (Pearson and Searson 2002). Although estimates of 

population size through time are preferable (Condit et al. 1998; Kohira & Ninomiya 

2003), single-year ‘snapshot’ data may give some indication of the future of a 

population. Size-class distributions have been successfully used in numerous studies 

(e.g. Hett & Loucks 1976; Fensham & Bowman 1992; Kelly et al. 2001; George et al 

2005; Souza 2007).  

 

The size distribution of a population is a synthesis of the demographic events of 

recruitment, mortality and individual growth rates over time (Kelly et al. 2001). In a 

population with a constant recruitment rate, and a mortality rate that is either constant 
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or decreasing with age, the expected age structure has a 'reverse-J' shape, (Hett & 

Loucks 1976). These populations have many small stems and gradually declining 

numbers of larger stem sizes. Large numbers of juvenile plants relative to adult plants 

indicates that a population is stable or perhaps growing, but few juveniles may 

indicate that the population is in decline (Condit et al. 1998). Distinct gaps or peaks 

in abundance of one or more size classes indicate the episodic establishment from 

recruitment events or the death of juvenile plants (Fensham & Bowman 1992). Such 

structures may be found in populations where recruitment is only possible during 

periods following major disturbances; only at certain intervals because of competitive 

interactions; or in climatically marginal populations, only during periods of 

favourable weather conditions (Ågren & Zackrisson 1990). Studies of A. huegeliana 

population structures should indicate whether recruitment is continuous or episodic, 

and whether recruitment is likely to continue or decline.  

 

The A. huegeliana–kwongan system is complex and a number of factors are likely to 

interact to affect encroachment. The initiation, rate and extent of encroachment will 

depend on a range of factors that determine whether a plant establishes, including 

seed availability and dispersal capacity, biotic interactions and abiotic conditions 

(Harper 1977). Propagule pressure has consistently been associated with invasion 

success (Colautti et al. 2006). If two habitats exert equally negative effects on new 

species, but one receives greater propagule input, the habitat receiving more 

propagules is more likely to become invaded (Thomsen et al. 2006). However, 

invasion may be unlikely when propagule density is below a threshold value because 

of the sensitivity of small populations to stochastic events (Tilman 2004) and Allee 
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effects (Leung et al. 2004). Encroachment is thus more likely to occur in kwongan 

patches that are bordered by A. huegeliana woodland than patches that are not. 

 

Site characteristics such as time-since-fire and soil type may interact with propagule 

pressure to affect A. huegeliana encroachment. Since A. huegeliana is killed by fire, 

the amount of time that encroachment could occur is indicated by the number of years 

since the last fire. The size of the encroaching A. huegeliana populations is therefore 

likely to be lower at sites with shorter time-since-fire. A. huegeliana has been 

recorded from a wide range of soil types (Doran & Hall 1981). However, vegetation 

community boundaries in the southwest are thought to be controlled largely by soils, 

landforms and climate (Beard 1981, 1990; McArthur 1991; Gibson et al. 2004). Soil 

types at some sites may therefore inhibit seedling survival. If so, A. huegeliana 

populations would be smaller at such sites.  

 

This chapter investigates the characteristics of A. huegeliana populations that have 

encroached into kwongan in three Nature Reserves in the Western Australian 

wheatbelt. This chapter aims to describe the density, reproductive capacity, and size 

structure of A. huegeliana populations, and the effects of the characteristics of the 

kwongan patches on the extent of encroachment.  

  

2.2 Methods and materials 

2.2.1 Study species 

Allocasuarina huegeliana is a dioecious tree that ranges from 5–10 m in height. Few 

studies have been conducted into A. huegeliana and little is known about a number of 

its biological and ecological characteristics. Little is also known about A. huegeliana 
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growth rates in kwongan; however, plants that recruited after a wildfire at a granite 

outcrop in the wheatbelt grew to around 1 metre in the first three years and were 

greater than 4 metres eleven years after the fire (Yates et al. 2003). At the same site, 

A. huegeliana plants took around 9 years before fruit occurred to any significant 

extent (Hopper 2000). Personal observations of A. huegeliana at other sites with 

known fire ages indicate that this species may live for around 100 years.  

 

A. huegeliana has winged seeds that are wind dispersed and although distances are 

unknown, it is considered to have a good dispersal capacity (Main 1993). Seed is 

released continually, and although there may be peaks in release at some times of the 

year, there is always carry-over of propagules in the canopy from year to year (Ladd, 

1989). A. huegeliana has been found to germinate readily in moist conditions at rates 

ranging from 60 to 100% (Turnbull & Martensz 1981; Piggott et al. 1987; 

Schmidberger 1997).  

 

A. huegeliana is very fire sensitive and can establish at high densities following fire 

(e.g. Yates et al. 2003) because a heavy seed rain is produced (Ladd 1989). However, 

survival can decline rapidly as a consequence of irregular rain and protracted drought 

(Yates et al. 2003). A. huegeliana is also able to establish seedlings without 

disturbance, although often not particularly abundantly, which is likely to be related 

to their shade and drought tolerance (Ladd 1989). 

 

2.2.2 Study sites 

Kwongan is a sclerophyllous shrub-dominated community commonly dominated by 

the families Proteaceae (genera such as Banksia, Dryandra and Hakea), Myrtaceae 
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(Verticordia and Melaleuca) and Papilionaceae (Daviesia and Jacksonia), although a 

range of other families are also well represented including the Cyperaceae, 

Mimosaceae, Epacridaceae, Leguminosae, Orchidaceae, Stylidaeceae, Asteraceae, 

Poaceae and Liliaceae (Pate & Beard 1984; Brown 1989; Brown & Hopkins 1983). In 

many areas of remnant vegetation in the wheatbelt, kwongan commonly occurs 

adjacent to or near woodland dominated by the native tree species Allocasuarina 

huegeliana (Beadle 1981). Boundaries between these two vegetation communities are 

generally sharp (e.g. Figure 2.1). 

 

 

Figure 2.1: Photograph of a patch of kwongan at Tutanning Nature Reserve showing the sharp 

boundary between the kwongan (foreground) and A. huegeliana woodland (background) communities.  

 

The characteristics of A. huegeliana populations were investigated at twelve kwongan 

patches at Durokoppin, Dongolocking and Tutanning Nature Reserves in the Western 

Australian wheatbelt in 2004 (Figure 2.2). These reserves are set aside for the 
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conservation and restoration of the natural environment, and the protection, care and 

study of indigenous flora and fauna. Durokoppin Nature Reserve is located in the 

central wheatbelt ca 26 km north of Kellerberrin, has an area of 1030 ha and an 

average annual rainfall of 330 mm. Tutanning Nature Reserve is located ca 18 km 

east of Pingelly, has an area of 2140 ha and an average annual rainfall of 454 mm. 

Dongolocking Nature Reserve is located ca 80 km west of Lake Grace and consists of 

a large number of remnants, including eleven that are protected by the reserve system 

and have a total area of 3450 ha, and an average annual rainfall of 430mm. 

 

These particular reserves were selected because they are located in similar 

topographic locations high in the landscape, contain similar vegetation mosaics and 

experience similar management regimes i.e. are not frequently burned. They include a 

geographic spread across the central and southern wheatbelt to give some idea of the 

regional extent of where A. huegeliana is encroaching into kwongan. These reserves 

were also selected because they have different mammal herbivore communities and 

the patches of kwongan within the reserves have been burned at different times in the 

past. These differences may give some indication how fire regimes and browsing 

herbivores affect A. huegeliana encroachment and are investigated in subsequent 

chapters. 
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Figure 2.2: Satellite image of southwest Western Australia showing the extent of the wheatbelt region 

(light grey), areas of native vegetation (dark grey), and the location of three Nature Reserves studied. 

 

Each patch was an area of kwongan that was separated from other areas of kwongan 

by different types of vegetation, cleared land, or adjoining areas of kwongan with 

different ages since last fire. Such adjoining patches only occurred at Durokoppin and 

time-since-fire ages were obtained from Friend et al. (1997) and Muir (1978a). The 

patches encompassed a broad range of characteristics including patch size, soil type, 

percentage of the kwongan bordering on A. huegeliana woodland and time since last 

fire (Table 2.1). The uneven number of patches selected for study in each reserve was 

due to the number of kwongan patches present at each reserve.  
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Table 2.1: Characteristics of the 12 patches of kwongan invaded by Allocasuarina huegeliana in three 

Nature Reserves.  

Patch size A. huegeliana 
border 

Time since 
fire  Patch 

(ha) (%) (years) 
Soil type Citations 

Durokoppin 1 25 10 65 (1939) yellow sand Hobbs et al. 1989 

Durokoppin 2 50 20 15 (1989) yellow sand Muir 1978a 

Dongolocking 1 34 1 76 (1928) grey sand Chapman 1978 

Dongolocking 2 59 1 76 (1928) grey sand Beecham et al. 1998 

Dongolocking 3 31 1 76 (1928) grey sand Lloyd 1998 

Tutanning 1 3 3 44 (1960) yellow sand 

Tutanning 2 14 1 44 (1940) grey sand 

Tutanning 3 1 100 64 (1940) duplex 

Tutanning 4 4 35 64 (1940) shallow duplex 

Tutanning 5 6 35 14 (1990) duplex 

Tutanning 6 2 100 72 (1932) shallow duplex 

Tutanning 7 4 100 38 (1966) shallow duplex 

Brown & Hopkins 1983  

Friend et al. 1997  

Little & Friend 1993 

Nyagba 1976 

 

2.2.2 Stem density, plant size and population structure  

At each patch, three parallel transects were located from the patch boundary into the 

kwongan. The patch boundary was defined by bordering A. huegeliana woodland or 

other vegetation community. At sites where there was no clear boundary and A. 

huegeliana plants were scattered throughout the patch transects were located at a 

selected point, e.g. a track or road. The three transects were spaced evenly across the 

patch and transect length varied, depending on the size of the patch. Transects 

extended across the entire patch or to a maximum of 520m (at Durokoppin 1 and 2, 

and Dongolocking 1). 

 

From the patch boundary, 10 × 10 m quadrats were located at 30 m intervals along 

each transect. In each quadrat, the height of all live A. huegeliana individuals was 

recorded using an extendable pole and tape measure, whether the individual was 
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bearing fruit or not, and the stem diameter of live and dead individuals using vernier 

calipers at 40 cm above the ground or for smaller plants (< 0.6 m) at 10 cm above the 

ground. Almost all trees were single-stemmed, but in the case of multi-stemmed 

individuals the diameter of the largest stem was recorded.  

 

Mean A. huegeliana stem density and fruit-bearing tree density were calculated for 

each patch by averaging data across all quadrats. Mean height and stem diameter, and 

the percentage of fruit-bearing trees were calculated from data pooled across all 

quadrats and transects. Reserve values were then obtained by averaging data across 

the patches at each reserve. The relationships between the percentage of trees bearing 

fruit, height and stem diameter among the patches were analysed using Spearman’s 

rank order correlation in SPSS 15.0 (SPSS 2006). 

  

Preliminary investigations indicated that age classes could not be determined for A. 

huegeliana due to the absence of reliable growth ring markers. In the absence of an 

appropriate method for age determination, girth is often a reasonable approximation 

of a tree’s age (Pearson & Searson 2002). Therefore stem diameter classes were used 

to analyse the A. huegeliana population structures. A population was considered to 

include all the trees within a patch. Stem-class frequency histograms were produced 

for each patch by pooling data from all quadrats.  

 

The populations were visually categorized into three distribution types. Type 1 

distributions had a ‘reverse-J’ distribution, with many small trees and decreased 

toward larger diameter classes. Type 2 distributions were discontinuous (i.e. a larger 

size class had more individuals than a smaller size class), but the smallest classes still 
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had the largest proportion. Type 3 distributions were unimodal with a few or no trees 

in small classes or had even distributions across size classes. The classification was 

done visually, but the following statistical inspections were also performed to see if 

both results agreed. For each population, the midpoint for each size class range (e.g. 

the midpoint of size class 0−20 was 10) and the corresponding number of plants were 

natural log transformed, and their relationship was tested using linear regressions in 

SPSS 15.0 (SPSS 2006). The log-linear relationship should be highly significant in 

Type 1 distributions, less so in Type 2 and not significant in Type 3 (Kohira & 

Ninomiya 2003). The distribution of A. huegeliana across each patch was illustrated 

by producing graphs of the number of individuals that were/not bearing fruit within 

the quadrats. Quadrats located at specific distances from the patch edge were pooled 

across the three transects. 

 

2.2.3 Effects of patch characteristics on the extent of encroachment 

The effect of the patch characteristics, including patch size, the percentage of the 

kwongan patch that bordered on A. huegeliana woodland, number of years since last 

fire and edge–area ratio (patch size/percentage A. huegeliana–kwongan border) on 

the level of encroachment (A. huegeliana density and plant height) was examined 

using linear regression. The effect of soil type (categorised as yellow sand, grey sand 

or duplex) was examined using one way ANOVA. Percentage values were converted 

to proportions and arcsine square root transformed. Assumptions of homogeneity of 

variance and normality were checked with residual plots, box-plots and using the 

Levene test. These data met the assumptions. All analyses were undertaken using 

SPSS 15.0 (SPSS 2006). 
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The effect of interactions among patch-scale characteristics on the extent of 

encroachment at each patch could not be analysed because there were not enough 

patches to fit multiple regression models. Although the twelve patches occurred 

within three reserves they were treated independently due to the large degree of 

heterogeneity. Kwongan in the wheatbelt exhibits a low level of floristic uniformity 

between stands at both the regional scale and the local scale between stands that are 

located close together (Brown 1989).  

 

2.3 Results 

2.3.1 Stem density and plant size  

Mean A. huegeliana stem density was similar among reserves (Table 2.2). The 

proportion of trees bearing fruit was larger at Tutanning (21%) than Dongolocking 

and Durokoppin (13–14%). Plants were largest (in height and stem diameter) at 

Tutanning, followed by Dongolocking and were smallest at Durokoppin.  

 

The density of A. huegeliana trees within the 12 patches differed markedly among 

patches at the same reserve and patches at other reserves, from 138–908 plants ha−1 

(Table 2.2). The largest trees were located at Tutanning 3, 6 and 7 with both the 

tallest (4.6–7.2 m) and broadest trees (74–133 mm). Mean plant sizes at the remaining 

patches averaged between 2.0–3.6 m in height and 21–49 mm in diameter. The 

percentage of trees that were bearing fruit increased as both height and stem diameter 

increased (stem diameter P = 0.004, rs = 0.760; height P = 0.003, rs = 0.760). Fruit-

bearing plants had a minimum height of 2.1 m at Durokoppin, 3.2 m at Dongolocking 

and 2.7 m at Tutanning. It should be noted that these figures included trees that had 

just begun to bear fruit i.e. only had one or two cones. 
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Table 2.2: Characteristics of the Allocasuarina huegeliana populations in 12 patches of kwongan in 

three Nature Reserves.  

Density 
(mean ± SE) 

Fruit-bearing 
tree density 
(mean ± SE) 

Fruit-
bearing 

trees 

Height 
(mean ± SE) 

Stem 
diameter 

(mean ± SE) 
Site (patch) 

 (trees ha−1) (trees ha−1) (%) (m) (mm) 

Durokoppin 1 167 ± 49 31 ± 11 19 3.3 ± 0.21 43 ± 4 

Durokoppin 2 456 ± 195 37 ± 13 8 2.1 ± 0.08 21 ± 1.3 

Durokoppin mean 312 ± 145 34 ± 3 14 ± 6 2.7 ± 0.62 32 ± 11 

Dongolocking 1   446 ± 234 25 ± 21 6 3.0 ± 0.16 43 ± 4 

Dongolocking 2   387 ± 109 59 ± 22 15 3.6 ± 0.16 49 ± 3 

Dongolocking 3   185 ± 68 31 ± 15 17 3.4 ± 0.22 47 ± 5 

Dongolocking mean 339 ± 79 38 ± 10 13 ± 3 3.3 ± 0.19 46 ± 2 

Tutanning 1 333 ± 128 10 ± 10 3 2.0 ± 0.21 25 ± 5 

Tutanning 2 138 ± 61 38 ± 22 27 3.4 ± 0.63 48 ± 12 

Tutanning 3 236 ± 62 91 ± 28 38 7.2 ± 0.35 133 ± 14 

Tutanning 4 229 ± 105 17 ± 10 7 2.6 ± 0.23 33 ± 5 

Tutanning 5 296 ± 56 21 ± 8 7 2.9 ± 0.18 40 ± 3 

Tutanning 6 908 ± 158 400 ± 66 44 6.1 ± 0.17 93 ± 6 

Tutanning 7 171 ± 30 40 ± 12 24 4.6 ± 0.19 74 ± 5 

Tutanning mean 330 ± 100 88 ± 53 21 ± 6 4.1 ± 0.73 64 ± 15 

 

2.3.2  Population structure 

Eight populations were classified as having Type 1 (‘reverse-J’ shape) distributions, 

one population as Type 2 (discontinuous but most stems in smaller classes) and three 

populations as having Type 3 (even or unimodal distributions). Visual classification 

of the observed distributions was strongly supported by the statistical tests: ANOVA 

F-tests were markedly significant (P < 0.01) for species classified as Type 1; 

intermediate (0.01 < P < 0.05) for Type 2; and not significant for Type 3 (Table 2.3).  

 

A. huegeliana populations at all patches at Durokoppin and Dongolockings, and three 

patches at Tutanning (1, 2 and 4) indicated continual recruitment, with a large 

proportion of individuals in the smaller size classes and few individuals in the larger 



 26

size classes (Figure 2.3 a–g and i). Tutanning 5 was also dominated by plants in 

smaller size classes; however, there were fewer plants in the smallest size class (0–

19mm) than the number in the larger size class. This population structure indicates a 

possible reduction in recruitment (Figure 2.3 j).  

 

The A. huegeliana population at Tutanning 3 had an even distribution across size 

classes (Figure 2.3 h). A. huegeliana encroachment into this patch was extensive and 

the canopy of A. huegeliana trees shaded much of the kwongan.  

 

A. huegeliana populations at Tutanning 6 and 7 had unimodal population 

distributions, with the majority of individuals in the 40–100 cm size classes (Figure 

2.3 k–l). There were a few larger trees at these patches and many individuals were 

reaching maturity (beginning to flower or bear fruit). Despite similar size-class 

distributions the difference in plant densities was great. Tutanning 6 was dominated 

by larger trees at much greater densities (Table 2.2) which formed an almost closed 

canopy over much of the kwongan. Although large trees were present at Tutanning 7 

they were at much lower densities and the canopy was open. 
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Table 2.3: Size distribution types of Allocasuarina huegeliana populations in 12 patches of kwongan 

at three Nature Reserves and the parameter estimates (standard error) for the intercepts and slopes 

(standard error) of the log-linear relationship between the number of individuals and size class. For 

significant relationships:  P < 0.01**, P < 0.05*.  

Patch Intercept 
(SE) Slope (SE) P Distribution 

Type 

Durokoppin 1 6.95 (1.19) −1.26 (0.28)  0.003** 1 

Durokoppin 2 9.97 (0.97) −1.97 (0.23)  0.001** 1 

Dongolocking 1   7.14 (0.98) −1.27 (0.22)  0.001** 1 

Dongolocking 2   7.91 (1.20) −1.39 (0.27)  0.001** 1 

Dongolocking 3   6.37 (1.07) −1.15 (0.25)  0.002** 1 

Tutanning 1 6.71 (0.95) −1.33 (0.23)  0.002** 1 

Tutanning 2 4.26 (0.61) −0.76 (0.14)  0.001** 1 

Tutanning 3 1.18 (1.26) −0.09 (0.26)  0.730 3 

Tutanning 4 5.81 (0.54) −1.04 (0.13)  0.001** 1 

Tutanning 5 6.04 (1.30) −1.06 (0.32)  0.021* 2 

Tutanning 6 4.17 (1.36) −0.54 (0.29)  0.092 3 

Tutanning 7 3.91 (1.64) −0.55 (0.37)  0.177 3 

 

2.3.3 Effects of patch characteristics on the extent of encroachment 

Few of the relationships between the patch characteristics and the measures of 

encroachment were significant; plant height was the only measure of encroachment 

that could be significantly explained. Mean plant height was taller at patches with a 

larger percentage of the kwongan patch bordering on A. huegeliana woodland (Table 

2.4). Soil type did not significantly impact on plant density or height (Table 2.5).  
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Table 2.4: Results from linear regression analyses between patch-scale characteristics and extent of 

Allocasuarina huegeliana encroachment (stem density and plant height) in twelve patches of kwongan. 

For significant relationships:  P < 0.01**, P < 0.05*. 

Patch characteristic Measure of encroachment P r2 

Patch size   0.878 0.002 
Time-since-fire   0.633 0.024 
A. huegeliana woodland–kwongan border   0.352 0.087 Stem density 

Edge–area ratio   0.994 0.000 
Patch size   0.226 0.143 
Time-since-fire   0.258 0.126 
A. huegeliana woodland–kwongan border   0.002** 0.629 

Plant height 

Edge–area ratio   0.649 0.021 
 

Table 2.5: Results from ANOVA analyses between soil type (yellow sand, grey sand or duplex) and 

extent of Allocasuarina huegeliana encroachment (stem density and plant height) in twelve patches of 

kwongan. For significant relationships:  P < 0.01**, P < 0.05*. 

Stem density Plant height Source Degrees of 
freedom Mean Square F P Mean Square F P 

Soil type 2 7245.68 0.14 0.875 4.93 2.63 0.126 
Error 9 53616.97   1.88   
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Figure 2.3: The percentage frequencies of Allocasuarina huegeliana individuals in each stem size 

class (pooled across all quadrats and transects) in 12 patches of kwongan at three Nature Reserves. 
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2.4 Discussion 

Results from this study confirm anecdotal observations that A. huegeliana has 

encroached into kwongan at the reserves studied, which are located in the central and 

southern wheatbelt (Powell 1990; Little & Friend 1993; Main 1993; Bamford 1995). 

The progress of encroachment was substantially different among the kwongan 

patches, indicated by the variation in A. huegeliana population characteristics and 

size class structures.  

 

Since the study species did not produce reliable annual growth rings it was not 

possible to accurately age individuals. Therefore, the initiation of encroachment could 

not be determined. At Durokoppin and Dongolocking, A. huegeliana was not 

recorded in the patches of kwongan studied in the late 1970s (Muir 1978b, c). In the 

early 1980s at Tutanning, Brown and Hopkins (1983) recorded A. huegeliana within 

quadrats at a number of kwongan patches, and outside the quadrats but within the 

community at other patches. At most sites, however, they described A. huegeliana as 

‘rare emergent’ or ‘very rare emergent’, and above kwongan shrublands 1.5–2 m in 

height. Although little is known about A. huegeliana growth rates, Yates et al. (2003) 

found that the mean plant height of 10-year-old A. huegeliana plants was greater than 

3.5 m. In addition, a large proportion of A. huegeliana plants that recruited after a fire 

in 1990 (i.e. 14 years old) at Tutanning 5 were greater than 3 m in height. Therefore 

the ‘emergent’ A. huegeliana plants recorded by Brown and Hopkins (1983) were 

most likely less than 10 years old and established during the 1970s.  

 

Not all encroachment, however, has occurred since the 1970s. Large isolated 

individuals were present in several patches e.g. Dongolocking 2 and 3, and Tutanning 
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1 and 4 (Figure 2.3), and were probably present prior to the 1970s. Field observations 

suggest that isolated individuals are not uncommon in kwongan, including patches 

that are not bordered by A. huegeliana woodland (Figure 2.4). Very few of the 

isolated individuals observed at the study sites or other Nature Reserves in areas that 

had and had not been encroached upon were producing fruit. Therefore, I do not 

consider that the establishment of individual isolated A. huegeliana trees is the 

‘initiation of encroachment’. Instead I consider that encroachment began (although 

this is only a rough estimate) when several plants had established; hence the majority 

of plants have established in kwongan since the 1970s.  

 

 

 

 

 

 

 

 

 

Figure 2.4: Photographs of isolated A. huegeliana trees that have established in kwongan. 
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The size structure of A. huegeliana populations (live plants only) at most patches was 

a ‘reverse J’ shape, which indicates continual recruitment (Hett & Loucks 1976; 

Smith et al. 1997). Encroachment does not visually appear to be dramatic in many 

kwongan patches because most A. huegeliana populations were dominated by 

seedlings and saplings with few larger trees. However, the visual and ecological 

impacts of encroachment on the kwongan species will increase dramatically as the 

current A. huegeliana populations mature and come to dominate the kwongan.  

 

The continuing recruitment patterns of most of the populations indicate that plant 

density will increase within the patches studied. These populations have already 

reached densities of between 138–456 stems per hectare. The size-class distribution 

of an area of A. huegeliana woodland on a granite site indicated continuous 

recruitment up to a carrying capacity of approximately 2 000 trees per hectare (Ladd 

1989). Whether A. huegeliana can establish to such densities in kwongan is unknown.  

 

A. huegeliana populations at two patches at Tutanning (6 and 7) had unimodal size 

structures and were dominated by plants in the mid-size classes with few plants in the 

smallest size classes, indicating a recent decline in recruitment. However the density 

and average size of the plants was considerably different between these patches. The 

stem density was much higher and plant size was larger at Tutanning 6 and the 

encroaching populations had formed an almost closed canopy over much of the 

kwongan (Figure 2.6). Further seedling recruitment at this site is most likely 

prevented by shading and competition from the established trees (Oliver & Larson 

1990). Dead individuals in the larger size classes indicate that self-thinning may be 

occurring, where tree death occurs due to suppression by a more competitive 
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neighbour (Peet & Christensen 1987). This process was commonly observed in the 

dense sheoak woodlands surrounding the kwongan. 

 

 

Figure 2.5: Photograph showing extensive A. huegeliana encroachment in kwongan at Tutanning 6. 

 

While the A. huegeliana population at Tutanning 7 had a unimodal size structure, the 

stem density and plant size was much smaller at this patch. The stem density was also 

much lower at Tutanning 3, which had an even size-class distribution and no stems in 

the smallest size class, but there were a number of trees in large size classes. The 

reasons why A. huegeliana is establishing at lower densities at these two patches are 

uncertain. A range of factors determine whether a plant establishes including the 

supply of available propagules, and biotic and abiotic site conditions (Harper 1977; 

Oliver & Larson 1990). These factors will therefore affect the density of plants and 

the size structure of a population establishing within a patch.  

 

Propagule pressure is unlikely to be the cause of the differences in recruitment 

between patches 3, 6 and 7 at Tutanning, which had even or unimodal size 
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distributions, because all patches were small in size and entirely surrounded by A. 

huegeliana woodland. The soil type at these sites was also similar (all were duplex 

soils) and rainfall would be similar because these patches occur within the same 

reserve. Additionally, the encroaching A. huegeliana stands were not triggered by fire 

because A. huegeliana was spare in these areas in the early 1980s (Brown & Hopkins 

1983), 15−40 years after the last fire occurred at each patch (Table 2.1). Other 

environmental factors that are different between these patches must therefore be 

responsible for differences in extent of encroachment.  

 

The density at which A. huegeliana is able to establish and grow to maturity within 

different kwongan patches is extremely important because this will determine the 

impact that these trees will have on the kwongan understorey. Small numbers of A. 

huegeliana individuals at low densities are much less likely to negatively impact on 

the kwongan that a large number of individuals that have established at high densities. 

An understanding of the factors affecting recruitment is therefore essential to 

determine which sites are most at risk of extensive encroachment and to assist with 

prioritising the sites for management.  

 

Colonisation by an expanding or invading species can occur as both advancing fronts 

from existing populations and as satellites that arise from them. The progression of a 

frontier is generally limited by the time required for new generations to establish; new 

recruits at a population boundary must reach seed-bearing age before they can 

disperse their seed beyond the advancing front (Clark et al. 1998). Satellite 

populations establish when individuals disperse widely and then increase sufficiently 

to become self-perpetuating populations (Moody & Mack 1988). Such colonists that 
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detach from the main population accelerate spread well beyond that expected from 

the average dispersal distance, and also make the rate of spread highly variable (Clark 

et al. 1998). It has therefore been suggested that measures to reduce the overall 

population spread of a species should be more effective if control tactics are focused 

on satellite populations (Cousens & Mortimer 1995; Moody & Mack 1988).  

 

Personal observations indicate that A. huegeliana plants have established widely 

throughout most patches, including patches where A. huegeliana woodland was an 

adjacent community and where it was not. Therefore patches of kwongan that are not 

adjacent to A. huegeliana woodland still appear to be susceptible to encroachment. 

Although this study did not assess the patterns of encroachment, observations 

indicated that A. huegeliana was establishing both in large numbers adjacent to areas 

of woodland i.e. an encroachment front, and also in scattered populations that have 

thickened and spread i.e. satellites. Further investigations into the pattern of A. 

huegeliana encroachment are needed to provide a greater understanding of the 

encroachment process. This information may be useful for prioritising sites for 

management and management practises.  

 

There appeared to be no obvious patch-scale characteristics limiting A. huegeliana 

encroachment into kwongan. We can therefore assume that encroachment is likely to 

occur throughout the region, at least in remnants in the central and southern wheatbelt 

that have similar characteristics to the reserves selected for this study (Section 2.2.2). 

It is also possible that A. huegeliana could be encroaching on kwongan in remnants 

further north and south of the study reserves. The occurrence of kwongan and 
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distribution of A. huegeliana overlaps throughout the southwest region (Beard 1984, 

1990) therefore all kwongan remnants in this area could be at risk of encroachment. 

 

The patches that are being encroached upon encompassed a range of characteristics. 

A. huegeliana plants were significantly larger (both height and stem diameter) in 

patches that shared a greater percentage of their boundary with A. huegeliana 

woodland and therefore experienced higher propagule pressure. In the absence of an 

appropriate method for age determination, girth is often a reasonable approximation 

of a tree’s age (Pearson & Searson 2002) and thus the length of time that 

encroachment has been occurring. Therefore, A. huegeliana appears to have been 

encroaching into patches of kwongan that experience higher propagule pressure for a 

longer period of time than patches with lower propagule pressure. Alternatively, 

encroachment may have occurred over the same period of time but has occurred more 

rapidly at the sites that experience higher propagule pressure. 

 

Since propagule pressure was greater at kwongan patches where encroachment had 

been occurring either for a longer period of time or more rapidly, we would also 

expect higher A. huegeliana stem densities. However, none of the patch-scale 

characteristics explained the variation in stem density among the patches, including 

propagule pressure (i.e. A. huegeliana woodland–kwongan border and the edge–area 

ratio). Other environmental factors must therefore affect the density of seedlings that 

are able to establish within a patch.  

 

In patches with higher densities of fruit-bearing trees, which should therefore have 

higher propagule pressure, the stem densities of younger plants (in the smallest size 
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category) were low. The highest densities of fruit-bearing trees occurred in 

Dongolocking 2 and Tutanning 3, 6 and 7. Three of these were the patches that 

showed evidence of declining recruitment, which were all at Tutanning. This pattern 

would suggest that A. huegeliana establishment was inversely related to propagule 

pressure. However, most seed entering the kwongan patch is from bordering A. 

huegeliana woodland. Fruit-bearing trees within kwongan patches would also 

contribute seed; however, field observations indicated that the heights, canopy sizes 

and seed loads were much smaller than for fruit-bearing trees in the surrounding 

woodland. The decline in recruitment is instead more likely due to increased shading 

and competition from the larger A. huegeliana plants present at these sites, and other 

factors that affect the carrying capacity of the site such as biotic and abiotic site 

conditions, as discussed previously.  

 

Soil type did not significantly affect plant density or size. Plants of all sizes had 

established across entire patches of kwongan, which indicates that A. huegeliana can 

prosper on a range of soil types. This characteristic is unsurprising considering that A. 

huegeliana has been recorded from a wide range of soil types ranging from yellow 

sand-clays to sandy and gravely loans, sandy clays, sandy types of all gradations and 

lateritic clays (Doran & Hall 1981). Such a wide tolerance for different soil types 

increases the range of sites that are at risk of encroachment and raises the question 

why A. huegeliana hasn’t always occurred within these patches.  

 

Historical vegetation surveys have indicated that A. huegeliana was sparse or not 

recorded in the patches of kwongan studied (Muir 1978b, c; Brown & Hopkins 1983). 

Therefore, the historical A. huegeliana and kwongan community boundaries were 
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probably maintained by interactions between soils and disturbance regimes. These 

results are particularly significant in southwest Australia where there is considered to 

be a close correlation between vegetation type and soil type (Beard 1990; McArthur 

1991; Gibson et al. 2004). However, it should be noted that the analysis only included 

broad soil type and did not include a detailed analysis of soil physical and chemical 

properties.  

 

Fire and grazing regimes have been altered across much of Australia, including the 

Western Australian wheatbelt (Hobbs 1987). Alterations to fire and grazing regimes 

have been identified as factors contributing to the encroachment of Allocasuarina in 

other vegetation communities (Withers & Ashton 1977; Lunt 1998a, b; Main 2001; 

Crosti et al. in press) and the encroachment of other woody species into heathland 

(Burrell 1981; Cheal 1996; McMahon et al. 1996). However, time-since-fire did not 

significantly explain variation in the stem density or plant size (age) of A. huegeliana 

populations among patches.  

 

A. huegeliana is killed by fire and can regenerate prolifically following fire or soil 

disturbance (Yates et al. 2003). However, A. huegeliana is also able to establish 

seedlings without disturbance (Ladd 1989). Plant age, indicated by stem diameter (if 

this measure is a reasonable approximation of age), should therefore be greater at 

patches with a longer period of time since the last fire. However, the stem diameters 

of plants were not larger at sites with a longer time-since-fire. The initiation and rate 

of encroachment may be affected by interactions with other factors such as propagule 

pressure, herbivore browsing, and other biotic and abiotic site characteristics.  
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The effect of interactions among the patch-scale characteristics (e.g. time-since-fire, 

propagule pressure, soil type etc.) could not be analysed because there were not 

enough patches to fit multiple regression models. Interactions among patch-scale 

characteristics may have a more significant effect on the extent of encroachment than 

individual characteristics alone. The survey design used in this study was constrained 

by the history of land-use in the wheatbelt and replication at the patch and reserve 

scale was limited due to the small amount of remnant vegetation remaining in the 

region. A broader survey of kwongan patches throughout the wheatbelt, which 

includes sites that have not been encroached upon by A. huegeliana and additional 

characteristics such as herbivore abundance, is required to better understand how 

reserve and management factors are affecting encroachment.  

 

This chapter has demonstrated that A. huegeliana has successfully established in 

patches of kwongan that encompass a broad range of characteristics and occur 

throughout the central and southern wheatbelt. A. huegeliana appears to have 

dispersed widely throughout these patches, recruitment is continuous in most 

populations and most plants appear able to survive to maturity. Kwongan that occurs 

throughout the wheatbelt where A. huegeliana is nearby is therefore likely to be at 

risk from encroachment. In contrast to the commonly held understanding that 

vegetation communities in southwest Western Australia are largely controlled by soil 

factors, these do not appear to limit A. huegeliana establishment in kwongan. 

Subsequent chapters will investigate the environmental conditions affecting seedling 

recruitment and the effects of herbivore browsing during inter- and post-fire periods 

to better understand the factors driving A. huegeliana encroachment. 
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Chapter 3  

 Historical abundances of native mammals and 

patterns of decline since European settlement 
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3.1 Introduction  

Chapter 1 explained suggestions that altered browsing regimes, as a consequence of 

the loss of much of the medium-sized mammal fauna throughout the wheatbelt, may 

be potentially responsible for encroachment.  

 

Australia has suffered more mammal extinctions, range contractions and population 

declines than any other biogeographical realm (Kinnear et al. 2002). Currently 18 

Australian mammal species are believed extinct and another 40 are considered under 

threat (Short et al. 2005). Most extinctions and declines have occurred within the 

medium-sized terrestrial species in the weight range 0.35–5.5kg (Burbidge & 

McKenzie 1989) and omnivores and herbivores have declined to a greater extent than 

carnivores (Short & Smith 1994). The two most affected areas are the southern arid 

zone and the wheatbelt of Western Australia (Short & Smith 1994). Many species 

from the wheatbelt now persist only as small populations in remnant patches of native 

habitat or on offshore islands.  

 

A large number of factors have been identified as potential contributors to mammal 

decline in Australia. These factors include habitat loss, fragmentation, changed fire 

regimes, introduction of stock and rabbits, predation by foxes and cats, disease and 

climate change (Short et al. 2005). The loss or decline of mammals may have a 

number of important indirect effects on ecosystem dynamics through the loss of the 

functional role of these species (Hobbs & Mooney 1998).  

 

Several mammals that suffered the greatest declines were important disturbance 

agents. Bettongs, potoroos, bilbies and bandicoots turn plant litter and dig shallow 
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scratchings, pits and holes when foraging for food (Strahan 1995). Such digging 

activity mixes organic matter into the soil; spreads mycorrhizal fungi and seeds; and 

alters the conditions for water infiltration, nutrient cycling and seed germination 

(Christensen 1980b; Claridge et al. 1992; Noble 1995; Garkaklis et al. 1998; 

Garkaklis et al. 2000; Martin 2003). Brush-tailed bettongs (Bettongia penicillata) 

make between 38 and 114 diggings a night each and turn over almost 5 tonnes of soil 

each year (Garkaklis et al. 2004). The loss of these mammals removed this soil 

turnover and its subsequent effects on soil characteristics and vegetation dynamics. 

Similar declines of herbivore species have altered grazing and browsing regimes 

which is likely to have had widespread effects on vegetation dynamics. 

 

Main (1993) proposed that the reduction of browsing that occurred with the decline of 

native mammal herbivores was responsible for A. huegeliana encroachment. In 

particular, the author suggested that A. huegeliana encroachment into kwongan at 

Tutanning Nature Reserve was caused by reduced levels of browsing on seedlings as 

a result of the decline of tammar wallabies during the 1970s. A. huegeliana has 

encroached into kwongan at several reserves in the wheatbelt and the factors driving 

this process are assumed to be similar. If the decline of a particular mammal species, 

such as tammars, has caused A. huegeliana encroachment, the timing and extent of 

decline should be similar at the reserves where encroachment has occurred.  

 

Prior to the 1970s, knowledge and information about the distribution and abundance 

of mammal populations, and the timing of major changes in abundance is scarce. 

Hence the information available is largely anecdotal or dependent upon the small 

collection of specimens held in the Western Australian Museum (Kitchener et al. 
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1980). This chapter uses museum collections, survey data, naturalist diaries, and 

anecdotal observations to explore the historical abundance of native mammals, and 

the pattern, timing and extent of their decline in the areas surrounding Durokoppin, 

Dongolocking and Tutanning Nature Reserves. It will then discuss the potential role 

of mammal decline in driving A. huegeliana encroachment. Most of the anecdotal 

observations of mammal abundances and changes to their populations were by local 

residents and largely recorded in social history books of the region. All books and 

manuscripts written by residents that lived in the region around the three Nature 

Reserves studied, that were held in the J. S. Battye Library of West Australian 

History (Perth) were searched for discussion of native mammals and their 

abundances.  

 

3.2 Early observations of mammal abundance  

Throughout this chapter, many locations are identified by the Local Government 

District that they occur in (Table 3.1). These Districts are now known as Local 

Government Shires. Durokoppin is located in the Shire of Kellerberrin, Dongolocking 

is located on the border between the Shires of Wickepin, Dumbleyung and Wagin, 

and Tutanning is located in the Shire of Pingelly. Although the boundaries of the 

Districts and Shires have changed over the past 100 years, the areas that they refer to 

are generally similar (Figure 3.1).  
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Table 3.1: Local Government Shires and former Districts that Durokoppin, Dongolocking and 

Tutanning Nature Reserves are located in, and nearby Shires/Districts.  

Reserve Located in Shire/District  Adjacent Shires/Districts (direction) 

Durokoppin Kellerberrin  
Bruce Rock (south and east), Tammin (west), 
Cunderdin/Meckering (adjoins the western 
border of Tammin) 

Dongolocking Border between Wickepin, 
Dumbleyung and Wagin Katanning (south of Dumbleyung)  

Tutanning Pingelly Brookton (north), Corrigin (northeast), 
Wickepin (southeast), Cuballing (south) 

 

 
Figure 3.1: Location of the Local Government Shires within the Western Australian wheatbelt 

(Wheatbelt Development Commission n.d.) 

 

 



 45

At the time of European settlement there were about 43 species of mammals in the 

wheatbelt region (Kitchener et al. 1980), including those listed in Table 3.2. Bruce 

Leake, whose father had property near Doodlakine (15 km east of Kellerberrin), 

observed numerous mammals in this part of the eastern wheatbelt in the 1890s 

including the grey kangaroo, rock-wallaby, tammar, woylie, boodie, bertie, wurrung, 

wurrup, numbat, merrnine, possums, dalgyte, red-tailed phascogale and native cat 

(Leake 1962). Leake also noted that in the early 1900s the brush wallaby and euro 

extended their range into the Kellerberrin district as a result of rapid agricultural 

expansion pushing them out of their former range.  

 

In the nearby Meckering (now Cunderdin) district Thomas Kelly (n.d.) recalled that 

in the 1880s the “wildlife in the bush was plentiful” including the tammar wallaby, 

brushtail and ringtail possum, dalgyte, boodie, numbat, pig-footed bandicoot and the 

brush wallaby which “ranged everywhere in the scrub country”. Other observations 

indicate that brush wallabies were also abundant in 1906 in the Bruce Rock district 

(Ewers 1959) and the Meckering [Cunderdin] district in 1924 (Stokes 1986). 

 

Guy Shortridge made extensive collections of mammals in southern Australia in the 

years 1904 to 1907 for the British Museum of Natural History. Shortridge found 

abundant fauna at Dwaladine (18 km north of Tutanning) and Woyaline (5 km east of 

Tutanning), including the grey kangaroo, brush wallaby, tammar wallaby, nailtail 

wallaby, banded hare-wallaby, burrowing bettong, brush-tailed bettong, bilby, 

brushtail possum, western quoll, numbat and bandicoots (Short 2005). In the nearby 

area of Aldersyde (16 km north of Tutanning), Charles Smith reported that there were 

large numbers of boodie rats, dalgytes, dunnarts, warrens, bandicoots and native cats 
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in the district in 1903 (Knox-Thompson 1975). In the 1920s the Dowling family 

noted that a number of mammals were abundant including kangaroos, brush 

wallabies, tammars, boodie rats, possums and dalgytes in areas of bush near 

Popanyinning (18 km southwest of Tutanning) (Lange 1981).  

 

Job Haddleton recalled that when the first settlers came to the Katanning district 

during the 1860s kangaroos, brush wallabies, tammar wallabies, kangaroo rats, 

boodie rats, dalgytes, brushtail and ringtail possums, bandicoots, marls, numbats and 

native cats were found in the area, and several species were so abundant that they 

were considered pests (Haddleton 1952). At this time, the kangaroo, brush wallaby, 

tammar and possums were also common in the Wagin district (Pederick 1979) and 

there were hundreds of brush wallabies in the Dongolocking area (Lloyd 1999b). The 

brushtail possum, kangaroo, brush and tammar wallaby were eaten by landholders in 

the Dongolocking area, especially during the Depression (Lloyd 1999a) and thus were 

presumably abundant at this time. 

 

3.3  Patterns of mammal decline  

3.3.1 The late 1800s to the 1920s 

A number of species became extinct from the wheatbelt region soon after settlement 

in the late 1800s and early 1900s. In 1904 Shortridge detected a widespread decline 

of mammals in arid and semi-arid parts of Western Australia and a lack of fauna in 

the mesic southwest where agriculture was well developed (Short 2005). However, no 

fauna decline was evident in mesic woodland, scrub and forest in the wheatbelt 

except in areas close to settlements (Short 2005).  
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Table 3.2: The common and indigenous names of some of the mammal species observed by settlers in 

the Western Australian wheatbelt (from Strahan 1995). 

Common Names Species 

Banded hare-wallaby, warren, merrnine (indigenous) Lagostrophus fasciatus 

Bilby, dalgyte (indigenous) Macrotis lagotis 

Black-footed rock-wallaby, rock-wallaby Petrogale lateralis 

Western brush wallaby, brush wallaby, black-gloved wallaby Macropus irma 

Brushtail possum Trichosurus vulpecula 

Brush-tailed bettong, kangaroo rat, woylie (indigenous) Bettongia penicillata 

Burrowing bettong, boodie, boodie rat  Bettongia lesueur 

Dunnart Sminthopsis murina 

Euro, common wallaroo Macropus robustus 

Western grey kangaroo, grey kangaroo, kangaroo Macropus fuliginosus 

Crescent nailtail wallaby, nailtail wallaby, wurrung (indigenous) Onychogalea lunata 

Western quoll, native cat Dasyurus geoffroii 

Numbat Myrmecobius fasciatus 

Pig-footed bandicoot, bertie (indigenous) Chaeropus ecaudatus 

Red-tailed phascogale Phascogale calura 

Western ringtail possum, ringtail possum Pseudocheirus occidentalis

Rufous hare-wallaby, whistler, mala (indigenous), wurrup (indigenous) Lagorchestus hirsutus 

Southern brown bandicoot, short-nosed bandicoot, quenda (indigenous) Isoodon obesulus 

Tammar wallaby, tammar Macropus eugenii 

Western barred bandicoot, marl Perameles bougainville 

 

Leake (1962) noted that a number of smaller mammals were lost from the 

Kellerberrin district between 1894 to 1899 including the woylie, boodie, wurrung, 

merrnine, wurrup, short-nosed bandicoot, pig-footed bandicoot, numbat and native 

cat. Tammars and the brushtail possum were lost from the district a few years later in 

1902 (Leake 1962). Charles Masters noted that most brushtail possums had 

disappeared from the nearby Tammin district by early 1902 and boodies by 1904 

(Masters & Masters 1999). However, specimens received by the Western Australian 

Museum from the central wheatbelt indicate that the bilby, brushtail possum and 
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numbat persisted in the area until the late 1920s to early 1930s (Kitchener & Vicker 

1981). 

 

There were no reports of widespread decline in mammals in the area around 

Tutanning. However, several species appear to have declined in the early 1900s in the 

districts surrounding Dongolocking. Haddleton (1952) considered that many of the 

smaller mammals in the Katanning district disappeared from 1898 to 1905 including 

the boodie, wurrung, ringtail possum and kangaroo rat, although the bilby survived to 

1935. John Drummond noted in 1911 the early demise of tammar wallabies in the 

Katanning district (Prince 1984). 

 

3.3.2 Continued decline through the 1930s and 1940s 

The first wave of extinctions and general decline in abundance of many mammals 

appears to have slowed by about 1930 (Kitchener et al. 1978). However, another 

serious decline occurred throughout the southwest from the early 1930s to the mid 

1940s which particularly affected medium-sized mammals. This decline in the native 

fauna has largely been attributed to predation by the fox which spread throughout the 

southwest during the 1930s (Christensen 1980a).  

 

The distribution of a number of mammals in Western Australia was described by 

Glauret (1933). At the time, the ringtail possum remained only in small isolated 

colonies in the lower southwest; the brushtail possum was still plentiful in the 

southwest but its distribution was restricted; the banded hare-wallaby was rare; the 

rufous hare-wallaby only survived in the northern desert regions; the black-footed 

rock-wallaby was rare in the settled districts of the southwest and wheatbelt; and the 
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nailtail wallaby was on the verge of extinction (Glauert 1933). The distribution of 

both the brush and tammar wallaby was described as ‘southwestern Australia’, 

however their abundance was not mentioned (Glauert 1933).  

 

Perry (1973) concluded from his observations and discussions with other people that 

there was a catastrophic collapse of number of species populations during the period 

1938–1944 in the southwest including brushtail and ringtail possums, woylies and 

tammars. Although brush wallaby populations were reduced, they did not appear to 

be as seriously affected as other mammals (Perry 1973). However, a serious decline 

in brush wallabies was observed in the Kulin district from 1938, where they were 

previously considered to be plentiful (Serventy 1954).  

 

3.3.3 A small increase during the 1950s  

An increase in the abundance of several native mammals that had been long regarded 

as scarce or rare in the southwest was reported during the 1950s (Serventy 1954). The 

recovery of some species of fauna at this time appears to have been due to the 

decrease in fox populations. The introduction of broad-scale rabbit poisoning using 

1080 baits caused large numbers of foxes to be killed through secondary poisoning 

from eating the poisoned rabbits (Christensen 1980a).  

 

The toxin fluoroacetate contained in the 1080 baits occurs naturally in many plant 

species of the genera Gastrolobium which are abundant throughout southwest 

Western Australia. A number of species of native fauna in the southwest have a high 

level of tolerance to fluoroacetate (Oliver et al. 1977; King et al. 1978; Oliver et al. 
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1979; King et al. 1981). However, introduced species such as rabbits and foxes are 

highly susceptible to 1080.   

 

The mammal community at Tutanning continued to be relatively unaffected by the 

decline experienced in other areas (Kinnear et al. 2002). A number of medium-sized 

marsupials were present within Tutanning in the 1960s including the numbat, quenda, 

ringtail possum, brushtail possum, tammar wallaby and woylie (Sampson 1971). 

Woylies, brushtail possums and kangaroos were abundant at nearby Dryandra 

Forestry Station (35 km southwest), and brush wallabies and tammars were also 

present in the area (Serventy 1954).  

 

The decline of mammals continued throughout much of the rest of the wheatbelt, 

including the areas around Durokoppin and Dongolocking. During the early 1950s in 

the Katanning district, Haddleton (1952) noted that kangaroos and brush wallabies 

were still abundant, the brushtail possum was not present in large numbers, and 

tammars were very scarce. By the early 1960s in the Kellerberrin district, Leake 

(1962) considered that the grey kangaroo was common but less abundant, the rock-

wallaby had almost disappeared, and the brush wallaby was rare. Ewers (1959) 

similarly reported that in the Bruce Rock district by the 1950s, only the kangaroo and 

brush wallaby were still occasionally seen, and only a few black-footed rock-

wallabies remained.  

 

3.3.4 Drastic decline from the 1960 to mid-1980s 

Medium-sized mammal populations that persisted on Nature Reserves in the 

wheatbelt suffered a further drastic decline in the 1970s, and some species declined to 
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extinction (Kinnear 1993). This decline followed the reduction in broad-scale rabbit 

poisoning using 1080 during the early 1970s (Christensen 1980a). An unintended 

consequence of this was an unprecedented increase in fox populations due to the lack 

of secondary poisoning from eating poisoned rabbits (King et al. 1981). Native 

species subsequently declined drastically in numbers and remained under constant 

pressure from foxes (Christensen 1980a).  

 

During the 1970s, the Western Australian Museum conducted detailed surveys of 

flora and fauna at 23 Nature Reserves in the wheatbelt. Of the 43 mammal species 

thought to have been present in the wheatbelt at the time of European settlement, 18 

species were recorded in the Museum surveys in the 1970s and only 12 species were 

considered to be moderately common to abundant (Kitchener et al. 1980).  

 

The Museum survey at Durokoppin found that the western grey kangaroo and euro 

were common, but the brush wallaby was uncommon and was only seen on occasions 

(Chapman & Kitchener 1978). A similar survey at Dongolocking found that the 

western grey kangaroo was common, on average a solitary individual brush wallaby 

was sighted each day and only two brushtail possums were captured (Kitchener & 

Chapman 1978). The tammar, woylie, quenda and numbat were considered to be 

locally extinct at Dongolocking by the late 1990s (Beecham et al. 1998). The 

mammal community at Tutanning was severely affected during the early 1970s and 

by 1978 the numbat, quenda and the ringtail possum had disappeared from the 

reserve, the tammar wallaby and brushtail possum were infrequently sighted and 

sightings of the woylie ceased (Kinnear et al. 2002).  
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3.3.5 From the instigation of fox baiting in the mid 1980s to present 

Fox baiting programs were introduced at several reserves in the wheatbelt during the 

1980s, including Tutanning and Dongolocking, and had a profound affect on native 

fauna. The tammar population at Tutanning experienced a 12 to 20 fold increase in 

abundance over the 12 years following fox control, locally elevating the species from 

rarity to pest status (Kinnear et al. 2002). Tutanning now supports one of the largest 

populations of tammars in Western Australia; 429 tammars were removed from this 

reserve from 1998−2004 and translocated other locations without any measurable 

impact on the Tutanning population (DEH 2004). The brushtail possum population at 

this reserve is now thriving and appears stable, and the woylie population remains 

relatively low but stable (Orell 2004). Brush wallaby numbers have increased since 

fox baiting was implemented, but the species is still uncommon at Tutanning 

(Courtenay 1996).  

 

There has been a large increase in brush wallabies at Dongolocking; however, 

brushtail possums remain uncommon at this reserve (Orell 2004). The quenda has 

been successfully reintroduced to the reserve (Kinnear et al. 2002). There have been 

unconfirmed reports of tammar wallabies in the reserve, and it is fair to assume that 

western grey kangaroos are also abundant in the area (P. Orell pers. comm.).  

 

Euros and western grey kangaroos are present in high densities at Durokoppin and are 

thought to probably represent the near natural status of population distribution and 

abundance in this environment (Arnold et al. 1994). Brush wallabies are believed to 

persist as a very small relictual population and were sighted about once a year from 

1986 to 1992 (Arnold et al. 1994).  
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The western grey kangaroo is considered to be common throughout its distribution. In 

some remaining extensive areas of natural habitat it appears to be as abundant as it 

was at the time of European settlement (Prince 1984). However, western grey 

kangaroo populations have almost certainly been reduced in abundance since the 

1930s (Prince 1984), but probably by less than 10% (Kennedy 1992). Rock-wallaby 

populations have also recovered significantly at the four sites where this species is 

located, Mt Caroline, Nangeen Hill, Sales Rock and Tutakin (Eldridge et al. 2004). 

No rock-wallabies occur at the three reserves in this study. 

 

3.4 Implications for A. huegeliana encroachment  

Anecdotal observations clearly indicate that numerous mammal species were present 

in the region around the three reserves around the time of settlement. Many species 

were abundant and most were common to all three areas. Many of these mammals 

suffered massive declines or have been lost from the areas around Durokoppin, 

Dongolocking and Tutanning. However, the pattern, timing and extent of decline 

were substantially different among these reserves.  

 

Mammal decline occurred at a much earlier stage at Durokoppin, primarily before the 

1930s. The extent of decline was also more dramatic at this reserve and many species 

became locally extinct. Substantial decline also occurred at Dongolocking in the 

decades following settlement; however, many species were able to persist in small 

numbers until the 1970s and 1980s. The decline of mammals was relatively limited at 

Tutanning until the 1970s, when most species were either lost from the reserve or 

declined to very small numbers. 
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The majority of the A. huegeliana populations studied appear to have established in 

kwongan from the 1970s (Chapter 2). Therefore, the extinction of several mammal 

species prior to 1950s probably did not directly cause the more recent encroachment 

of A. huegeliana into kwongan. The establishment of A. huegeliana in kwongan from 

the 1970s coincides with the decline of remaining mammal populations throughout 

the wheatbelt at this time. However, no mammal species was common to all three 

areas that declined during the period between the 1960s and 1980s. For example, 

western grey kangaroos were common to all three areas but did not experience a 

decline at this time. Brush wallabies had already declined to small numbers at 

Durokoppin by the 1950s. Tammar wallabies had been lost from Durokoppin in the 

early 1900s, were scarce at Dongolocking by the 1950s and were only abundant at 

Tutanning where they declined dramatically during the 1970s. The decline of a single 

mammal species, including tammars, is therefore unlikely to have enabled large 

numbers of A. huegeliana seedlings to establish in kwongan at this time.  

 

While the decline of individual mammal species may not be responsible for driving A. 

huegeliana encroachment, the cumulative effects of mammal decline needs to be 

taken into account. Ecosystems in this region may have been resilient to the initial 

mammal losses, with other species fulfilling the functions lost with successive 

declines or extinctions. The most recent losses and declines during the 1970s may 

have pushed these ecosystems past a threshold where remaining species, such as 

kangaroos, can no longer compensate for the absence of other mammals. However, it 

should be noted that encroachment has continued (Chapter 2) despite populations of 

several mammal species recovering in some areas including Tutanning. 
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Rabbits became abundant throughout the wheatbelt from the 1920s, soon after many 

native mammals were lost from the region. The activities of these native mammals 

such as digging, burrowing and browsing, may have been replaced to an extent by the 

activities of rabbits. Graziers have suggested that rabbits to some extent controlled the 

encroachment of several woody shrubs species in semi-arid pastoral lands in eastern 

Australia prior to the 1950s by browsing seedlings and ringbarking larger shrubs 

(Noble & Grice 2002). Browsing by rabbits has been shown to limit shrub and tree 

recruitment in many parts of Australia (Johnston 1968; Crisp & Lange 1976; Lange & 

Graham 1983; Cooke 1987; Auld 1990; Cohn & Bradstock 2000).  

 

Rabbits may have similarly buffered the effects of mammal decline on ecosystem 

dynamics in the wheatbelt and potentially limited the recruitment of A. huegeliana 

seedlings in kwongan. Rabbit populations declined from the 1950s with the 

introduction of broad scale 1080 poisoning and the disease myxomatosis. A further 

substantial decline in rabbit populations occurred when the rabbit flea was introduced 

in 1969 and increased the transmission of myxomatosis (King et al. 1985; King & 

Wheeler 1985). The decline of rabbit populations from the late 1960s corresponds 

with the estimates of the initiation of A. huegeliana encroachment. Rabbit decline 

may have contributed to this process of encroachment, but the extent to which rabbits 

replaced previous herbivory by native mammals is unknown. 

 

Although A. huegeliana encroachment into kwongan corresponds with the crash of 

many mammal populations in the 1970s, it is also important to note that the Reserves 

had not been burned for 20 to 50 years. These intervals are most likely much longer 

than historical inter-fire intervals. Therefore, the decline of mammals and long fire 
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intervals may have had interactive effects that caused A. huegeliana encroachment. 

The absence of fire may have enabled trees to grow larger, and produce and disperse 

more seed into kwongan where seedlings have established because browsing 

mammals were largely absent. The effect of mammal herbivores on the establishment 

of A. huegeliana seedlings is investigated in Chapters 6 and 8. Other factors that 

might cause or exacerbate encroachment are considered in Chapter 10. 

 

This chapter has shown that a diverse range of mammals were present at the time of 

European settlement in the areas around the three studied Nature Reserves. Most 

species were common to the three areas and many were abundant. From the 1900s 

onwards, the patterns of the mammal population decline varied among the reserves. 

Additionally, there was no native mammal common to all three reserves that declined 

around the time that A. huegeliana encroachment is estimated to have begun during 

the 1970s. It is therefore unlikely that the decline of a single mammal species 

triggered encroachment. However, the cumulative effects of mammal decline, the 

decline of rabbits, or both may have contributed to the progress of encroachment.  
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Potential causal factors 
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4.1 Introduction  

Chapter 2 demonstrated that the extent of A. huegeliana encroachment varied among 

the patches of kwongan studied. The abundance of mammal herbivores was suggested 

as a factor potentially affecting A. huegeliana encroachment. Chapter 3 indicated that 

the mammal herbivore communities are currently different among the reserves, but 

did not investigate possible differences in the abundance of mammals at each reserve.   

 

Mammal abundances can be measured either as a population size, an absolute density 

or as a density index, i.e. some measurable correlate of absolute density (Caughley 

1977). Provided an appropriate index is used, relative indices of density can be just as 

effective as measurements of absolute density in monitoring abundance and are often 

far cheaper and easier to obtain (Southwell 1989). A commonly used index based on 

indirect counts is faecal pellet (or scat) accumulation. This method requires the 

measurement of scat accumulation per unit area over a defined time. Initially, 

permanent plots need to be marked and cleared of scats. The number of scats 

deposited over a defined time by the species of interest is then counted at regular 

intervals. These data can then be used directly as a measure of relative abundance or, 

if the defecation rate of a mammal is known, the scat abundance index can be 

converted to an estimate of absolute density (Southwell 1989). 

 

Faecal scat counts have been used to study trends in the abundance of a wide range of 

vertebrate species including deer (e.g. Neff 1968; Bailey & Putman 1981; Freddy & 

Bowden 1983), elk (e.g. Edge & Marcum 1989; Ripple 2001), and rabbits (e.g. 

Taylor & Williams 1956; Wood 1988). Faecal scat counts have also been used in 

studies of macropods in Australia including the red kangaroo (Macropus rufus), 
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eastern grey kangaroo (Macropus giganteus), western grey kangaroo (Macropus 

fuliginosus), wallaroo/euro (Macropus robustus), red-necked wallaby (Macropus 

rufogriseus) and swamp/black wallaby (Wallabia bicolour) (e.g. Caughley 1964; 

Floyd 1980; Hill 1981; Andrew & Lange 1986; Johnson & Jarman 1987; Arnold et 

al. 1994; Meers & Adams 2003).  

 

Macropod scat counts of have been used to assess patterns of habitat utilisation (e.g.  

Caughley 1964; Hill 1982; Arnold et al. 1995), and to estimate absolute density using 

a known defecation rate (e.g. Coulson & Raines 1985; Perry & Braysher 1986; 

Johnson & Jarman 1987). However, knowledge of the defecation rates of macropods 

is currently very poor. Most information comes from captive animals (either in 

laboratory cages or in small enclosures), and only two studies have been conducted 

on wild macropods (Southwell 1989). Without accurate knowledge of defecation 

rates the general use of the scat accumulation method as a monitoring technique of 

macropods is limited. This method is effective, however, for specific problems in 

small areas, for example monitoring the abundance of small localized populations of 

macropods (Southwell 1989). 

 

Scat abundance indicates the presence of an animal rather than the particular activity 

it is performing such as resting, browsing, or moving between areas. However, 

Caughley (1964), Hill (1978), and Johnson et al. (1987) found that defecation by 

macropods was strongly associated with feeding. Consequently, several studies have 

been used scat counts as an indicator of browsing/grazing pressure. Andrew and 

Lange (1986) used this method to show that kangaroos prefer to graze in different 

areas that sheep. Hill (1982) used scat counts to determine the seasonal movements of 
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kangaroos associated with grazing. Floyd (1980) also used this method to determine 

the browsing habits of the swamp wallaby in Eucalypt plantations of different ages. 

Scat counts of macropods in this study should therefore be reasonable indicator of 

browsing activity in kwongan. 

 

There are several errors associated with the scat accumulation method, including 

incorrectly identified scats, missing scats, scat decay, and variation in faecal output 

among seasons and years (Johnson & Jarman 1987; Arnold & Maller 1987; 

Southwell 1989; Bulinski & McArthur 2000). However, many of these errors may be 

overcome if the ability of workers to accurately identify scats is tested, search effort 

in plots with taller or denser vegetation is more thorough, studies of scat decay are 

carried out and incorporated into abundance calculations, and studies are conducted 

over longer periods of time.  

 

Studies that have been carried out where several macropod species inhabit the same 

geographic region have required workers to identify between scats of the different 

species. Shepherd et al. (1997) stated that faecal scats for the western grey kangaroo, 

western brush wallaby (Macropus irma), tammar wallaby (Macropus eugenii), were 

distinctive in shape and size and could be easily separated. Wann and Bell (1987) had 

little difficulty discriminating between faecal scats of western brush wallabies and 

western grey kangaroos, also according to their shape and size. These studies were 

able to differentiate between scats of the species present in the reserves in this study 

(Section 2.2.2); therefore, the scat accumulation method should be suitable to assess 

the relative abundance of these mammal herbivores. 
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This chapter aims to determine: (1) which mammal herbivore species are currently 

present in patches of kwongan at Durokoppin, Dongolocking and Tutanning Nature 

Reserves in the Western Australian wheatbelt; and (2) identify differences in the 

relative abundance of each species among patches of kwongan within these reserves 

using the scat accumulation method. A greater understanding of the abundances of 

the herbivores present in kwongan at these reserves may provide some indication of 

the potential differences in browsing pressure that these remnants of vegetation 

experience.  

 

4.2 Methods and materials 

4.2.1 Study sites 

The abundance of mammal herbivores was investigated at eight patches of kwongan, 

including four at Tutanning (1, 4, 5 and 7), two at Dongolocking (1, 2) and two at 

Durokoppin (1, 2) (see Section 2.2.2).  

 

4.2.2 Scat identification 

Western grey kangaroo (Macropus fuliginosus), tammar wallaby (Macropus eugenii), 

brush wallaby (Macropus irma) and rabbit (Oryctolagus cuniculus) scats were 

identified using descriptions and photographs in Wann and Bell (1997) and Triggs 

(2004). Kangaroo and euro scats could not be differentiated; however, surveys have 

shown a significant difference in distribution of the two species around Durokoppin 

(the only reserve where euros are located) (Arnold et al. 1994). Western grey 

kangaroos favoured short heathland whilst the euro showed a strong preference for 

dense tall shrubland (primarily Allocasuarina sp.) and in areas of Eucalyptus 

loxophleba, Acacia acuminata woodland with rock outcrops (Arnold et al. 1994).  
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To ensure that the species belonging to each type of scat was identified consistently, 

all scats found during the first four periods were collected and stored in the 

laboratory. The scats collected at the different reserves and patches were visually 

compared and checked regularly throughout the duration of the study, and the scats of 

the different herbivore species were easily identifiable. 

 

Scats can decay through attacks of insects, such as scarabaeid dung-beetles and flies, 

and tend to disappear quickly during warm, wet conditions (Johnson & Jarman 1987). 

Scat decay was assessed in June (winter), September (spring) and January (summer). 

Scats from the herbivores present at each reserve were collected, and for each species 

10 scats were placed under a shrub and 10 in an open area with no vegetation cover. 

Decay was subsequently observed by visually inspection between collection periods. 

Little decay was detected within the 4–6 week periods and all scats remained visible. 

Scat decay was not considered to be a problem in the reserves studied; therefore, the 

results did not require adjustment. 

 

4.2.3 Size and shape of plots 

Two basic sampling shapes have been used in macropod scat accumulation surveys; 

circular plots and belt transects (see review by Southwell 1989). Circular plots have 

the advantages over transects of having a lower perimeter to area ratio, thus reducing 

the chance of incorrectly judging a scat or scat-group as in or out of the sampling 

unit, and are easier to set up and count. Belt transects have the advantage of 

increasing the dispersion of effort and hence improving sampling efficiency. Line-

plot designs, where circular plots are systematically spaced along transects, 

effectively combine the advantages of both methods (Southwell 1989). Most studies 
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of rabbit densities using the scat accumulation method have used belt or line-plot 

designs (Taylor & Williams 1956; Wood 1988; Moreno & Villafuerte 1995; Fa et al. 

1999). Transects used in these studies were not located towards ‘latrine sites’ or 

‘dung hills’; they were systematically or randomly located across the study area. 

Because the line-plot design has been successfully used in both macropod and rabbit 

studies this method was considered to be an appropriate design for this study. 

 

At each patch, three parallel transects were located from the patch boundary into the 

kwongan. The patch boundary was defined by bordering A. huegeliana woodland or 

other vegetation community. At sites where there was no clear boundary and A. 

huegeliana plants were scattered throughout the patch transects were located at a 

selected point, e.g. a track or road. The three transects were evenly spaced across the 

patch and were 150 m in length. From the beginning of each transect, 8 m2 circular 

plots were located at 10m intervals along each transect (15 plots × 8 m2 = 120 

m2/transect) and cleared of scats at the end of August 2005. Areas of the basic 

estimation unit for line-plot designs have ranged from 3 to 250 m2, with the most 

common size around 50 m2 (Southwell 1989).  

 

4.2.4 Scat counting (groups versus individuals) 

Scat groups or individual scats may be counted in a scat accumulation survey. Several 

studies have addressed the question of scats versus scat groups for macropod surveys. 

The general consensus is for counting scats rather than scat-groups (e.g. Hill 1978; 

Perry & Braysher 1986; Arnold & Maller 1987) largely due to the difficulty of 

defining scat-groups. However, there are disadvantages to counting individual scats 

because they are likely to decay more quickly, to be obliterated if stepped on while 
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fresh and soft and are more easily missed by a surveyor. The assumption that all scat 

groups are independent should also cause less distortion than the assumption that all 

individual scats are independent (Johnson & Jarman 1987).  

 

All individual scats deposited in the plots after clearing in August 2005 were 

collected at intervals of 4−6 weeks, from September 2005 to March 2007, identified 

and counted. More time was spent searching for scats where vegetation height and 

cover was greater, because the number of scats found in a plot may be partially 

related to the vegetation characteristics, and the probability of ‘missing’ scats is often 

related to vegetation height and cover (Bulinski & McArthur 2000). 

 

4.2.5 Abundance of mammal herbivore scats  

The total number of scats deposited by each herbivore species within all of the 8 m2 

plots located on each transect was pooled for the duration of the study. The number of 

scats deposited by each species per hectare, per day for the duration of the study 

(scats ha−1 day−1) was then calculated for each transect (total area 120 m2) and 

averaged across the three transects at each site. Differences in the abundance of scats 

of each mammal herbivore among the reserves and patches were examined using 

ANOVA. The reserves (Durokoppin, Dongolocking and Tutanning) were treated as a 

fixed factor and the patches as a random factor nested within reserve. Since tammar 

scats were only found at Tutanning, reserve was not included as a factor and patch 

was treated as a random factor for the tammar scat ANOVA. Post hoc comparisons of 

reserve means were made using Tukey HSD tests (Quinn & Keough 2002). 

Assumptions of homogeneity of variance and normality were checked with residual 
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plots and box-plots. The data were cube root transformed. All analyses were 

undertaken using SPSS 15.0 (SPSS 2006).  

 

4.3 Results  

4.3.1 Mammal herbivores identified 

Western grey kangaroos, brush wallabies and rabbits were present at all three 

reserves, and tammars were present only at Tutanning. Kangaroo scats were the most 

abundant and large numbers of scats were recorded at all reserves (Figure 4.1). The 

number of scats deposited by kangaroos, brush wallabies and rabbit was not affected 

by the reserves, but was affected by the patches within the reserves (Table 4.1).  

 

4.3.2 Abundance of mammal herbivore scats  

Kangaroo scats were more abundant within patches 5 and 7 at Tutanning than all 

other patches (Figure 4.1). Brush wallaby scats were particularly abundant at 

Dongolocking 2, but were only recorded in small numbers at Dongolocking 1 and 

patches at the other reserves (Figure 4.1). Rabbit scats were most abundant at 

Dongolocking 2 and also relatively abundant at Durokoppin 1 and 2. However, 

rabbits scats were practically absent from the kwongan patches at Tutanning and 

Dongolocking 1 (Figure 4.1). Tammar wallaby scats occurred in similar densities in 

the four patches at Tutanning (Table 4.1; Figure 4.1).  
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Table 4.1: Results from the ANOVA investigating the effects of the reserves and patches on the 

abundance of mammal herbivore scats among eight patches of kwongan at three Nature Reserves. For 

significant relationships:  P < 0.01**, P < 0.05*. 

 Kangaroo/euro Brush wallaby Rabbit  Tammar 
Source 

d.f. Mean 
Square F P Mean 

Square F P Mean 
Square F P d.f. Mean 

Square F P 

Reserve 2 2.12 4.53 0.075 3.90 2.64 0.165 8.58 3.68 0.104     

Patch 
(Reserve) 5 0.47 7.18 0.001** 1.48 5.33 0.005** 2.33 18.13 0.001** 3 0.02 0.19 0.901

Error 16 0.07   0.28   0.13   8 0.12   
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Figure 4.1: Mean number of scats deposited by each mammal herbivore species, per hectare, per day, 

in eight patches of kwongan at three Nature Reserves. 
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4.4 Discussion 

Western grey kangaroo and western brush wallaby scats were found in kwongan at all 

three reserves and tammar wallaby scats were found only at Tutanning. The 

collection of brush wallaby scats at Durokoppin is particularly significant because 

individual brush wallabies were only sighted about once a year from 1986−92 

(Arnold et al. 1994) and the persistence of this species was uncertain.  

 

Scat accumulation provides an index of the relative abundance of mammals among 

patches of kwongan. Macropods have been found to deposit most scats while they are 

actively feeding (Caughley 1964; Hill 1978; Johnson et al. 1987); therefore, most 

scats found in kwongan are likely to have been deposited when the animals were 

feeding or moving around. Consequently, differences in scat accumulation among the 

reserves and patches within the reserves indicate corresponding differences in 

browsing pressure among these areas to some degree.  

 

The abundance of kangaroos was reasonably similar among the reserves and most 

kwongan patches. These results suggest that kangaroo populations may be as 

abundant in similar sized or larger remnants of vegetation in the wheatbelt. However, 

kangaroos may be scarcer in smaller remnants. Their populations may vary according 

to the vegetation types within the remnants, the degree of isolation from human 

disturbance and the distance to nearby remnants (Arnold et al. 1995). Kangaroos at 

Durokoppin and Tutanning obtain nearly all their resources from native vegetation 

(Arnold & Steven 1988; Arnold et al. 1994). The grazing and browsing pressure 

imposed by kangaroos is therefore likely to be similar among the reserves.  
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Kangaroos were particularly abundant at two patches of kwongan within Tutanning 

(5 and 7), which are located in the western part of the reserve. Arnold and Steven 

(1988) considered that the western part of Tutanning has a higher proportion of 

vegetation that provided food for kangaroos, including short kwongan and woodland 

with Eucalyptus wandoo and E. accedens. Kangaroos were less abundant at patches 1 

and 4 at Tutanning. Field observations indicate that the kwongan Tutanning 1 was the 

tallest of the four patches studied at this reserve. Tall kwongan is considered to 

provide little or no feed for kangaroos (Arnold & Steven 1988). The vegetation at the 

other three Tutanning patches (4, 5 and 7) was much shorter, but the abundance of 

scats was also low at Tutanning 4. The variation in kangaroo abundance among the 

patches may reflect the overall suitability of the surrounding vegetation mosaics to 

provide both food and shelter for kangaroos, rather than just the availability of food 

(Arnold & Steven 1988).  

 

The abundance of brush wallabies, tammar wallabies and rabbits varied substantially 

among the patches of kwongan at the three reserves. Therefore, the occurrence of 

these herbivores at other reserves is likely to be more idiosyncratic than kangaroos. 

The numbers of native mammal species in a remnant and their population sizes is 

affected by the size of the reserve (Kitchener et al. 1980), whether fox baiting is 

carried out (Kinnear et al. 2002), and the incidence of Gastrolobium plants which are 

highly toxic to exotic species, but not to native animals (Short et al. 2005). 

 

Brush wallabies were abundant at Dongolocking 2, but were relatively scarce at 

Dongolocking 1 and the other patches at Durokoppin and Tutanning. Unlike the 

patches of kwongan within the other reserves, the two patches at Dongolocking were 
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separated by about 8 km of farmland and brush wallabies may not have been able to 

move between the two areas. Dongolocking 2 is about twice the size of Dongolocking 

1 and the vegetation communities within the remnants varied to some extent 

(Beecham et al. 1998). Such differences may affect the ability of these remnants to 

provide food and shelter for brush wallabies and thus affect the abundance of this 

species within the remnants. It is interesting to note that the brush wallabies appear to 

remain scarce at Tutanning, while tammars densities have increased dramatically 

following fox baiting at this reserve (Chapter 3).  

 

Tammar wallabies were only present at Tutanning and their abundance did not vary a 

great deal among the patches of kwongan within the reserve. Tammars are therefore 

likely to exert similar levels of browsing pressure on the vegetation in these patches. 

The similarity in tammar abundance is interesting considering that there were a 

number of characteristics that varied among the patches, such as vegetation height, 

dominant plant species (Brown & Hopkins 1983) and the amount of surrounding A. 

huegeliana woodland (Chapter 2), which may provide shelter. Such differences 

apparently did not affect the tammar populations among the patches at Tutanning.   

 

Rabbits were scarce at Dongolocking 1 and all patches of kwongan at Tutanning, but 

were much more abundant at Dongolocking 2 and both patches at Durokoppin. The 

soil type at both Dongolocking patches was deep grey sand. This factor is therefore is 

unlikely to be responsible for the variation in rabbit abundance among the patches at 

this reserve. Variation in rabbit abundances among the reserves and the patches 

within Dongolocking (which are separated by farmland) may be due to the 

effectiveness of past outbreaks of the myxoma virus (King & Wheeler 1985) and 
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rabbit haemorrhagic disease (Pech & Hood 1998), or the use of other control methods 

such as poisoning, refuge removal, ripping, fencing and shooting in surrounding areas 

of farmland.  

 

The total number of herbivore scats and the proportion of the scats contributed by 

each species varied considerably among the reserves and individual patches of 

kwongan. Browsing pressure may therefore vary among the reserves and patches of 

kwongan. However, the mammal herbivores vary substantially in size and 

consequently consume different amounts of vegetation. The impact of browsing by 

each herbivore species on kwongan and on A. huegeliana seedlings establishing 

within kwongan will also depend on their dietary preferences.  

 

Western grey kangaroos consume a broad range of plant species. Their diets have 

been found to range from predominantly grasses (Wann & Bell 1997), to equal 

proportions of grasses and shrubs (Halford et al. 1984), to mainly shrubs (Shepherd et 

al. 1997). The western brush wallaby has a similarly variable diet, from a mixture of 

grasses, other monocotyledons and shrubs (Wann & Bell 1997), to largely shrubs 

(Shepherd et al. 1997). The diets of tammar wallabies also vary from mostly grasses 

(Christensen 1980b; Bell et al. 1987), to primarily shrubs (Shepherd et al. 1997). 

Shepherd et al. (1997) suggested that variations in diet most likely reflect a difference 

in the predominance of the available food source. All of the mammal herbivores 

found at the reserves studied may potentially browse on A. huegeliana seedlings. 

However, their impact on seedling establishment can only be determined 

experimentally and this is investigated in Chapters 6 and 8. 
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This chapter has shown that the western grey kangaroo and western brush wallaby are 

present at Tutanning, Durokoppin and Dongolocking Nature Reserves, but the 

tammar wallaby is only present at Tutanning. The abundance of kangaroos was 

similar among the reserves; therefore the browsing pressure exerted by this herbivore 

is likely to be similar among these areas. It also appears likely that this herbivore 

would be as abundant at other similar sized reserves. Brush wallabies remain 

reasonably scarce in most areas, but have become abundant in kwongan at one 

remnant at Dongolocking. The abundance of tammar wallabies was similar among the 

patches of kwongan at Tutanning. Rabbits were practically absent from Tutanning but 

were more abundant at Durokoppin and Dongolocking. The differences in mammal 

abundances among the reserves and patches of kwongan of indicate that browsing 

pressure is also likely to vary and may affect A. huegeliana establishment. The effects 

of browsing by mammal herbivores on A. huegeliana seedling establishment are 

investigated in subsequent chapters. 
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Chapter 5  

 Juvenile Allocasuarina huegeliana plants and their 

environments 
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5.1 Introduction  

Chapter 2 demonstrated that A. huegeliana has encroached into patches of kwongan 

in Nature Reserves in the central and southern wheatbelt. A. huegeliana has dispersed 

widely throughout these patches and recruitment appears likely to continue in most 

patches. The extent of encroachment varied among the patches, and some of this 

variation could be attributed to propagule pressure. However, a range of 

environmental factors affect plant establishment and these factors will affect A. 

huegeliana plants encroaching into kwongan.  

 

For a plant to establish, viable seed must be dispersed and persist until conditions 

suitable for germination occur, and the young plant must then grow and survive. A 

range of environmental factors affect plant establishment including soil conditions, 

temperature, rainfall, and interactions such as competition and herbivory (Harper 

1977). Interactions with other plants may be particularly important for establishing A. 

huegeliana plants because they have to compete with existing flora that is well 

adapted to the site conditions.  

 

Neighbouring plants compete for limited resources and interfere with each other’s 

activities according to their age, size and distance apart (Harper 1977). Shrubs can 

impede seedling establishment through litter accumulation, reducing light and soil 

water, or by excreting allelopathic substances (Callaway & Walker 1997; Holmgren 

et al. 1997). However, shrubs can enhance seedling establishment by protecting them 

from browsing herbivores, or by improving microhabitat conditions through reducing 

thermal or water stress, and increasing soil nutrients and organic matter (Hunter & 

Aarssen 1988; Callaway 1995; Stachowicz 2001; Bruno et al. 2003). Shrubs that 
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facilitate the growth or survival of other plants that establish within them are known 

as ‘nurse plants’ (Callaway 1995). 

 

Seedlings of many Casuarina and Allocasuarina species appear to be tolerant of 

competition with established vegetation (Allocasuarina was previously included in 

the Casuarina genus, but was separated in the 1980s: all genus and species names in 

this thesis have been updated to their current status). Ladd (1989) suggested that most 

Casuarina/Allocasuarina species are able to regenerate under an overstorey canopy. 

He also found that the growth of Casuarina cunninghamiana seedlings, a riparian 

species on the eastern coast of Australia, was affected by only very high levels of 

shading (95%). Withers (1978) found that A. littoralis and A. verticillata seedlings 

were able to establish in dense grass swards and under dense canopy cover at Ocean 

Grove, Victoria. Withers (1979) showed that 30% shading actually increased the 

height growth of A. verticillata and A. littoralis seedlings; however, intense shading 

(92%) caused etoliation and decreased growth. The author concluded that 

Allocasuarina seedlings were able to survive in dense grass swards because their 

foliage had achieved a balance between shade tolerance and drought resistance.  

  

The ability of A. huegeliana to regenerate sporadically in grassy swards in the 

wheatbelt has been attributed its high drought resistance (Ladd 1989). However, a 

lack of rainfall can have a significant effect on Casuarina/Allocasuarina seedling 

survival. Yates et al. (2003) suggested that lower rates of seedling recruitment 

including A. huegeliana after a fire in granite outcrop vegetation in the wheatbelt 

were a consequence of irregular rain and protracted drought during the rainy season 

resulting in poor germination and survival. A. huegeliana seedlings establishing under 
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the canopy of a fallen tree at a site in the wheatbelt were found to have only a 3% 

survival rate, which was attributed to a long dry summer (Ladd 1989). Low levels of 

rainfall has also been attributed to the lack of regeneration success of A. fraseriana 

seedlings in jarrah forest in Western Australia (Abbott 1984) and C. pauper seedlings 

in the semi-arid region of western New South Wales (Auld 1995).  

 

Casuarina/Allocasuarina seedlings appear to be palatable to a range of native and 

introduced herbivores. Seedling regeneration of C. pauper has been found to be 

strongly limited by rabbits, stock and goats in the arid and semi-arid regions of 

southeastern Australia (Chesterfield and Parsons 1985; Auld 1995). Main (1993) 

commented that it was common to see sheoak seedlings cropped and frequently killed 

by herbivores at a reserve in the Western Australian wheatbelt. Workers on 

revegetation projects in the wheatbelt region have also observed that planted 

Casuarina and Allocasuarina seedlings are often preferentially browsed over other 

seedlings by kangaroos. Faecal studies of western grey kangaroos have shown that 

these herbivores consume Casuarina/Allocasuarina species (Halford et al. 1984).  

 

If A. huegeliana is palatable to herbivores present at the reserves studied, kwongan 

shrubs may act as ‘nurse plants’ by protecting seedlings from browsing. The strong 

drought and shade tolerance of many Casuarina and Allocasuarina species indicates 

that seedlings of A. huegeliana may be able to successfully establish in kwongan 

vegetation while avoiding browsing herbivores. However, the ability of seedlings to 

survive may also depend on other factors such as litter, annual plants and soil 

conditions. 
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Many Casuarina and Allocasuarina species appear to be tolerant of competition; 

however, field experiments have shown that annual plants significantly reduced the 

survival of seedlings of the shrub A. campestris in the Western Australian wheatbelt 

(Hobbs & Atkins 1991). Plant litter may also affect germination and establishment; 

however few studies have been conducted into such effects on Casuarina or 

Allocasuarina seedlings. Ladd (1989) suggested that a thin layer of litter would 

provide protection for seedlings, while a thicker layer would intercept much 

precipitation, leaving them in a dry micro-environment, and may have allelopathic 

effects. A. huegeliana seedlings in kwongan may be less likely to survive in areas 

where levels of annual cover or plant litter are high. 

 

Substrate quality has been found to affect recruitment of some Casuarina and 

Allocasuarina species. In a glasshouse experiment, Woolfrey and Ladd (2001) 

confirmed field observations that seedlings of C. cunninghamiana grew better on a 

cobble substrate than on sand. Ladd (1989) suggested that where site quality is poor, 

such as where soils are shallow over rock, Casuarina/Allocasuarina seedling 

recruitment may become sporadic after a carrying capacity is reached. Kwongan 

occurs on a range of soil types, including lateritic duricrust, gravels, deep yellow 

sands and grey sands, sandy loams, gravel/clay duplex soils and clay (Brown & 

Hopkins (1983). Although A. huegeliana has also been recorded from a wide range of 

soil types (Doran & Hall 1981), soil conditions in some types of kwongan may affect 

its ability to survive in these areas.  

 

This chapter aims to determine which environmental factors best predict where A. 

huegeliana plants have successfully established and where they have not. The 
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characteristics of the environments that surround A. huegeliana plants and the 

environments where plants are absent should identify the factors that favour or inhibit 

A. huegeliana encroachment into kwongan.  

 

5.2 Methods and materials 

5.2.1 Study sites 

The environments associated with juvenile A. huegeliana plants (individuals < 1.5m 

in height and < 20mm in stem diameter) were investigated at eight patches of 

kwongan, including four at Tutanning (1, 4, 5 and 7), two at Dongolocking (1 and 2) 

and two at Durokoppin (1 and 2) (see Section 2.2.2).  

 

5.2.2 Environmental characteristics 

At each patch, three parallel transects were located from the patch boundary into the 

kwongan. The patch boundary was defined by bordering A. huegeliana woodland or 

other vegetation community. At sites where there was no clear boundary and A. 

huegeliana plants were scattered throughout the patch transects were located at a 

selected point, e.g. a track or road. The three transects were evenly spaced across the 

patch and were 150 m in length. 

 

From the beginning of each transect, paired 0.5 m × 0.5 m quadrats were located at 20 

m intervals along each transect. A. huegeliana juveniles were absent from all quadrats 

located on all transects, therefore quadrats located on the transects were used to 

characterise environments in which A. huegeliana was absent. The paired quadrat was 

placed around a juvenile plant nearest to this point and these quadrats were used to 

characterise environments in which A. huegeliana was present. The total number of 
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quadrats with A. huegeliana absent was 192 (8 patches × 3 transects × 8 quadrats) and 

for quadrats with A. huegeliana present was 189 (three juveniles could not be located 

along one transect at Durokoppin 2 within a reasonable distance of the paired quadrat 

located on the transect).  

 

In October 2005, several environmental factors were assessed in each quadrat 

including visual estimates of perennial shrub cover (%), annual plant cover (%) and 

plant litter cover (%); and measurements of the dominant perennial plant height (m), 

distance to the base of the three nearest perennial plants (any species) (m) and 

distance to nearest fruit-bearing tree (m). The mean distance to neighbouring plants 

was then calculated. Very few of the nearest perennial plants were A. huegeliana; the 

vast majority were kwongan shrub species. A sample of the top 10cm of soil was also 

collected using an auger (diameter 5 cm), air dried and taken to the laboratory for 

analysis. The percentage of gravel and clay, and soil pH (measured in a 1:5 soil/water 

suspension) was measured for each soil sample in accordance with McDonald et al. 

(1990). 

 

Univariate logistic regression was used to determine which environmental variables 

were significant in predicting presence/absence of juvenile A. huegeliana (Quinn & 

Keough 2002). The environmental variables were distance to parent tree, perennial, 

annual and litter cover, perennial plant height, distance to neighbouring plants, soil 

pH, and the gravel and clay content in the soil. Several variables had a significant 

relationship with juvenile presence/absence (P ≤ 0.15); therefore, collinearity 

between these predictors was examined using Pearson’s product moment correlation. 

If variables were highly correlated (P < 0.05, rs > 0.7) the variable that had the 
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strongest relationship with juvenile presence/absence was selected for subsequent use. 

Environmental factors interact to affect juvenile plants; therefore, multivariate logistic 

regression was used to determine which combination of variables best predicted 

juvenile presence/absence. This analysis was undertaken using the forward stepwise 

procedure and the Hosmer–Lemeshow goodness-of-fit statistic was calculated to 

assess the fit of the model (Quinn & Keough 2002). The Hosmer–Lemeshow statistic 

was not significant (HL = 7.79, d.f. = 8, P = 0.454), indicating no evidence for lack of 

fit of the model. All statistical analyses were undertaken using SPSS 15.0 (SPSS 

2006). 

 

5.3 Results 

5.3.1 Effects of environmental factors on juvenile plant presence/absence 

Several environmental variables had a significant relationship with juvenile 

presence/absence, including perennial cover, litter cover, distance to nearest 

neighbours and distance to parent tree (Table 5.1). None of these environmental 

predictors were highly inter-correlated (Table 5.2) and therefore all were included in 

the multivariate logistic regression model.  

 

Results from the multivariate logistic regression model indicated that the combination 

of environmental factors that best predicted juvenile presence/absence was perennial 

shrubs cover, mean distance to three neighbouring plants and distance to nearest fruit-

bearing tree (Table 5.3). This model accurately predicted 60.4% of present juveniles 

and 67.6% of absent juveniles, with an overall accuracy of predicting 63.9% juvenile 

presence/absence (−2 log likelihood = 488.43, d.f. = 3, P < 0.05).  
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The predicted probability of a juvenile A. huegeliana being present increased with a 

shorter distance to nearest parent tree, a shorter distance to neighbouring plants and 

increased perennial shrub cover (Figure 5.1 a–c). A juvenile A. huegeliana was more 

likely to occur (i.e. probability was greater than 50%) where the parent tree was less 

than 20 m away, perennial shrub cover was greater than 30% and neighbouring 

perennial plants were on average less than 20 cm from the juvenile plant. 

 
Table 5.1: Results from univariate logistic regression analyses between the presence/absence of 

Allocasuarina huegeliana juveniles and the biotic and abiotic factors measured at each location. For 

significant relationships:  P < 0.01**, P < 0.05*.  

Variable B SE Wald 
statistic d.f. P R 

Perennial shrub cover 0.033 0.008 15.635 1 0.001** 1.034 

Annual cover −0.005 0.039 0.014 1 0.905 0.995 

Litter cover 0.013 0.006 4.800 1 0.028* 1.013 

Perennial plant height −0.184 0.151 1.493 1 0.222 0.832 

Distance to neighbouring plants −3.680 0.917 16.108 1 0.001** 0.025 

Distance to parent tree −0.016 0.006 7.44 1 0.006** 0.984 

Gravel 0.004 0.009 0.212 1 0.645 1.004 

Clay 0.008 0.026 0.106 1 0.745 1.008 

pH 0.330 0.328 1.014 1 0.314 1.391 
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Table 5.2: Results from the Pearson correlation indicating significant inter-correlation between the 

predictive environmental variables. Variables were considered to be highly inter-correlated where P < 

0.05 and r ≥ 0.70*. 

Environmental 
variables 

Perennial 
cover 

Annual 
cover 

Litter 
cover 

Perennial 
height 

Distance to 
neighbouring 

plants 

Distance 
to parent 

tree 
Gravel Clay pH

Perennial cover 1         

Annual cover −0.130* 1        

Litter cover 0.402* −0.190* 1       

Perennial height 0.035 0.016 0.144* 1      

Distance to 
neighbouring plants −0.242* 0.101* 0.01 0.249* 1     

Distance to parent tree −0.045 −0.189* 0.022 −0.047 −0.057 1    

Gravel 0.084 0.049 0.044 −0.086 −0.076 −0.139* 1   

Clay 0.1 0.003 0.033 −0.06 −0.102* −0.075 0.503* 1  

pH 0.086 0.141* 0.052 −0.059 −0.135* −0.164* 0.255* 0.168* 1 

 

Table 5.3: Results from the multiple logistic regression analysis between the presence/absence of 

Allocasuarina huegeliana juveniles and biotic and abiotic factors, including the factors significant to 

the model. For significant relationships:  P < 0.01**, P < 0.05*. 

Variable B SE Wald 
statistic 

Degrees of 
freedom P R 

Perennial cover 0.027 0.009 9.682 1 0.002** 1.028 

Distance to neighbouring plants −3.264 0.943 11.976 1 0.001** 0.038 

Distance to parent tree −0.018 0.006 7.727 1 0.005** 0.982 

Constant 0.154 0.385 0.159 1 0.690 1.166 
B, Estimated regression coefficient; R, estimated odds ratio. 
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Figure 5.1: Scatter plots of the actual occurrence (y-axis: 0.00 = juvenile plant absent 1.00 = juvenile 

plant present) and predicted probability curves of Allocasuarina huegeliana juveniles in relation to: (a) 

perennial vegetation cover; (b) mean distance to three nearest perennial plants; and (c) distance to 

nearest fruit-bearing tree. 

 

5.4 Discussion 

The establishment of A. huegeliana plants within a patch of kwongan initially 

requires the presence of propagules. A. huegeliana has winged seeds that are wind 

dispersed and thus has a good dispersal capacity (Main 1993). The importance of 

dispersal in the establishment of A. huegeliana populations was indicated by the 

increased likelihood of a juvenile plant being present with a shorter distance to a fruit-

bearing tree.  

 

Wind dispersed propagules are generally dispersed close to the parent and seed 

density falls off steeply with distance (Howe & Wesley 1997). However the dispersal 

pattern from isolated plants differs strongly from that of plants in a closed stand. The 

densest seed rain from a stand of trees occurs at the margin, while the densest seed 

rain from isolated trees often occurs at a much greater distance from the source 

(Harper 1977). A similar pattern of dispersal was found in this study. The majority of 
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juvenile A. huegeliana plants (93%) occurred within 45 m of a fruit-bearing tree; 

however, individuals were located up to 139 m from a fruit-bearing tree.  

 

The presence or absence of a plant population and its density depends on the 

availability of a seed and on the frequency of ‘safe sites’ that provide the conditions 

required for seed germination and seedling establishment (Harper 1977). Perennial 

shrubs clearly provided ‘safe sites’ for A. huegeliana plants establishing in kwongan. 

This was indicated by the increased likelihood of a juvenile A. huegeliana being 

present at locations with higher levels of perennial shrub cover and shorter distance to 

neighbouring perennial plants. However, the occurrence of only 64% of juveniles 

could be accurately predicted. These results indicate that the occurrence of juveniles 

is probably affected by factors that affect plant survival at earlier stages and perhaps a 

degree of randomness. 

 

Areas beyond shrub canopies were not heavily vegetated with annual plants. A. 

huegeliana seedlings that establish within shrubs would therefore be subjected to 

increased shade and competition from the surrounding vegetation. However, a 

number of Casuarina and Allocasuarina species have been found to be shade and 

drought tolerant and able to grow in established vegetation (Ladd 1989; Withers 

1978, 1979). In this study, juveniles occurred in locations with up to 95% perennial 

cover. However, the perennial cover may have increased since the individual was a 

young seedling. Since more juvenile plants occurred within shrubs than in open areas, 

the benefits that perennial shrubs provide to the establishing A. huegeliana plants 

must outweigh the increased levels of inter-specific competition. A. littoralis 
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seedlings have similarly been found to compete well with established vegetation due 

to their shade tolerance and drought resistance (Withers 1979).  

 

The benefits that perennial shrubs provide to A. huegeliana plants may be protection 

from browsing herbivores, improved microhabitat conditions, or both. Shrubs in other 

ecosystems have been shown to improve microhabitat conditions for seedlings by 

increasing nutrient or soil water availability, and moderating air and soil temperatures 

by providing shade (Franco & Nobel 1989; Callaway et al. 1991; Caldwell et al. 

1998; Carrillo-García et al. 2000; Shumway 2000). Shrubs have also been found to 

provide seedlings with protection from browsing animals (McAuliffe 1986; Callaway 

et al. 2000; Rebollo et al. 2002; Baraza et al. 2006).  

 

Kwongan occurs on nutrient poor soils in a region that experiences a hot and dry 

climate during the summer months (Hopper et al. 1996). Herbivores such as 

kangaroos and rabbits are present at most reserves. Kwongan shrubs may improve 

microhabitat conditions for A. huegeliana plants by mitigating heat and drought stress 

during summer, increasing soil nutrients, or protect seedlings from browsing animals. 

However, this study was unable to differentiate between such processes. The benefits 

that perennial shrubs provide to seedlings are investigated in Chapter 6.  

 

Other environmental factors, such as litter and annual plants, did not affect the 

occurrence of A. huegeliana juveniles. While these factors may not affect A. 

huegeliana establishment, the results may be due more to the size of the individual 

plants measured. The plants measured were < 1.5 m in height and < 20 mm in 

diameter and the largest of these plants were well established. The large plants had 
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already passed through a range of ‘environmental filters’ and represented the 

surviving individuals. Litter, annual plants and other microhabitat conditions may 

affect A. huegeliana establishment, but at earlier germination and initial establishment 

stages of development. The effects of some of these environmental factors are 

investigated in Chapter 7.  

 

Soil factors did not affect the occurrence of A. huegeliana juveniles, which indicates 

that A. huegeliana can readily establish on the same soil types as kwongan. These 

results provide further evidence that soil type does not exclusively determine A. 

huegeliana and kwongan community boundaries, as suggested in Chapter 2. Instead, 

the historical vegetation boundaries were probably maintained by interactions 

between soils and other factors such as disturbance regimes.  

 

This chapter has demonstrated that A. huegeliana establishment primarily depends on 

a nearby seed source and is favoured by the presence of perennial shrubs. No other 

environmental factors measured in this study affected naturally occurring juveniles; 

however, these factors may affect emergence and establishing seedlings. It appears 

likely that few environmental factors will limit encroachment of A. huegeliana into 

kwongan, and if propagule pressure is high enough seedlings will establish. 

Subsequent chapters will investigate whether perennial vegetation provides 

establishing A. huegeliana seedlings with protection from browsing herbivores or 

improved microhabitats, and the environmental factors affecting emergence and 

younger seedlings.  
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6.1 Introduction  

Chapter 5 demonstrated that the occurrence of A. huegeliana plants is favoured by 

perennial shrub cover. The benefits that the shrubs provided to A. huegeliana plants 

therefore appear to outweigh any increased levels of inter-specific competition. The 

benefits that perennial shrubs provide may be through protection from browsing 

herbivores, improved microhabitat conditions, or both.  

 

Herbivores influence plants mainly through grazing or browsing (defoliation), 

trampling and excretion (Schulze et al. 2002). The impact of herbivory on plant 

performance depends on its timing, location, intensity and frequency (Crawley 1997). 

Although plants can tolerate defoliation to an extent, avoidance is a common 

mechanism by which plants cope with herbivory. Plants that protect other plants by 

physically impeding herbivores are known as biotic refuges (Milchunas & Noy-Meir 

2002). Shrubs may provide protection from browsing, but they may also favourably 

or unfavourably alter the microhabitat conditions for seedlings establishing within 

them. 

 

Shrubs can have a range of physical and chemical effects on their surrounding 

environments. For example, shrubs can moderate air and soil temperatures (Hunter & 

Aarssen 1988; Nolasco et al. 1997), create nutrient islands (Carrillo-García et al. 

2000) and alter soil water availability (Caldwell et al. 1998; Wainwright et al. 1999; 

Shumway 2000). However, shrubs also can impede seedling establishment through 

increased competition for limited resources (Harper 1977). For a seedling to establish 

within a shrub the benefits that the shrub provides must therefore outweigh the 

potential increased levels of inter-specific competition. 
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This chapter examines the beneficial effect that perennial vegetation appears to have 

on A. huegeliana seedlings growing in long unburned (> 60 years) patches of 

kwongan. This chapter aims to determine: (1) the impact that mammal herbivores 

have on seedling establishment; (2) whether browsing activity varies among reserves 

with different herbivore communities; (3) whether perennial vegetation protects A. 

huegeliana seedlings from browsing herbivores; (4) whether perennial vegetation 

affects seedling establishment through improved microhabitat condition or increased 

competition; and (5) which of these facilitative processes are more important to the 

establishment of A. huegeliana seedlings.  

 

If protection from herbivores was more important to the establishment of A. 

huegeliana seedlings than microhabitat favourability, excluding herbivores from 

seedlings in areas with no vegetation cover would result in a substantial increase in 

emergence, growth and survival. However, if microhabitat favourability was more 

important than protection from herbivores, seedling emergence, survival and growth 

would be higher within perennial shrubs than areas with no vegetation cover whether 

herbivores had access to seedlings or not. 

 

6.2 Methods and materials 

6.2.1 Study sites 

The effects of perennial vegetation and excluding mammal herbivores on the 

emergence, growth and survival of A. huegeliana seedlings in unburned kwongan 

were investigated in three patches of kwongan, including one at each of Durokoppin 

(1), Dongolocking (1) and Tutanning (4) Nature Reserves (see Section 2.2.2). For the 

mammal herbivores present at the reserves and their abundance see Chapter 4 (Figure 
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4.1). Within each reserve, a patch of kwongan was chosen with a similar vegetation 

structure and time since fire in order to reduce the potential effect of site variations on 

seedling emergence, growth and survival. To gain an understanding of the effects of 

vegetation and herbivores at different stages of seedling development two 

experiments were carried out at each patch of kwongan. The first experiment 

involved planting A. huegeliana seeds (sown seed) and the second involved planting 

seedlings that had been grown at a nursery (green-stock). 

 

6.2.2 Effects of herbivore exclusion and perennial shrubs on seedling emergence and 

survival (sown seed) 

Eight areas within each patch were subjectively chosen, where a perennial shrub or 

several shrubs were present and covering an area of at least 1 m2 and adjoined a bare 

area with no vegetation cover at least 2.5 m2 in size (Figure 6.1). In the area of bare 

ground, an exclosure consisting of a 1 × 1 m pen covered in wire netting (30 mm 

diameter mesh) with a 30 cm mesh apron that continued along the ground, was 

erected to exclude mammal herbivores and to prevent rabbits from burrowing into the 

exclosure. An equivalent 1 × 1 m area was located in the same area with no 

vegetation cover, but was not fenced and allowed access to herbivores. 

 

In each area with no vegetation cover, fenced area with no vegetation cover, and 

perennial shrubs, 100 A. huegeliana seeds were planted on a 50 × 50 cm grid in May 

2005. The seed was collected from each reserve (20 infructescences from 10 trees at 

each reserve) in January 2005, air dried and stored in a paper bag until it was planted. 

Laboratory germination trials (10 Petri dishes with 20 seeds from each reserve placed 
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on moistened Whatman’s No. 1 filter paper) gave a mean germination rate of 67% at 

Durokoppin and Dongolocking and 77% at Tutanning.  

 

 

 

 

 

 

 

Figure 6.1: Photographs of the three treatments (left to right): no vegetation cover, fenced area with no 

vegetation cover and perennial shrub cover. A grid of 100 Allocasuarina huegeliana seeds and 10 A. 

huegeliana seedlings were planted in each treatment. 

 

Seedling emergence was recorded from June to July, and the fate of seedlings 

(dead/alive) was recorded at the end of winter (August), spring (November), summer 

(February) and autumn (May), until February 2007. Seedling emergence was adjusted 

for seed germinability (determined in the laboratory trial) by dividing the number of 

seedlings that emerged in each grid by the germinability of seed from that reserve. 

Seedling survival was calculated for each grid by dividing the number of seedlings 

that were alive at the end of each season by the total number of seedlings that 

emerged during June and July 2005. No further seedlings emerged after this time. 

 

The effect of reserve (Durokoppin, Dongolocking and Tutanning), treatments (no 

vegetation cover, fenced area with no vegetation cover, and perennial shrubs) and 

their interaction on seedling emergence and survival at the end of the experiment 

were examined using ANOVA. Reserve and treatment were both treated as fixed 

factors. Post hoc comparisons of treatment and reserve means were made using 
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Tukey HSD tests (Quinn & Keough 2002). Percentage values were converted to 

proportions and arcsine square root transformed. These data met the assumptions of 

normality and homogeneity of variance, which were checked with residual plots, box-

plots and using the Levene test. All analyses were undertaken using SPSS 15.0 (SPSS 

2006). All results are given as mean ± standard error. 

 

6.2.3 Effects of herbivore exclusion and perennial shrubs on survival, growth and 

browsing of planted seedlings (green-stock) 

In each reserve, at five of the areas where seeds were planted on grids, 10 A. 

huegeliana seedlings were planted at least 20 cm apart within each area with no 

vegetation cover, fenced area with no vegetation cover, and perennial shrubs. The 

seedlings were grown at a Phytophthora accredited nursery (Phytophthora is a fungus 

that kills many native plant species) and planted in June 2005. The heights of 

seedlings were measured immediately after planting and the subsequent survival of 

seedlings, whether they had been browsed, and their heights were measured at the end 

of winter (August), spring (November), summer (February) and autumn (May), until 

February 2007. The height growth of each seedling over 21 months was calculated by 

deducting the height at planting from the height at the end of the study. Mean 

seedling growth, the percentage of seedlings that had survived, and the percentage 

that had been browsed by mammal herbivores was calculated for the 10 seedlings in 

each treatment at each location for each season. 

 

The effect of reserve, treatments and their interaction on the growth, survival and 

browsing of planted seedlings (21 months old) were examined using the same method 

described for the analysis of seedling emergence and survival (sown seed). 
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Herbivores could not access seedlings in the no vegetation cover (fenced) treatment 

and no seedlings were browsed. These data were therefore excluded from the 

percentage of seedlings browsed ANOVA. These data met the assumptions of 

normality and homogeneity of variance, which were checked with residual plots, box-

plots and using the Levene test. However a large number of seedlings died in the 

treatment with no vegetation cover and the sample sizes were uneven. Therefore, 

growth values were calculated for each seedling by deducting the height at planting 

from the last height recorded prior to the death of the seedling, except for seedlings 

that died in the first season after planting, and these values were used for the 

ANOVA. All results are given as mean ± standard error.  

 

6.3 Results 

6.3.1 Effects of herbivore exclusion and perennial shrubs on seedling emergence and 

survival (sown seed) 

Seedling emergence was not affected by the exclusion of herbivores or by perennial 

vegetation, but differed among the reserves (Table 6.1). Mean seedling emergence 

was highest at Dongolocking (62% ± 2.34), followed by Tutanning (44% ± 2.63) and 

was lowest at Durokoppin (33% ± 2.82) (Figure 6.2).  

 

There was a significant interaction between reserve and treatment on seedling 

survival (sown seeds) (Table 6.1). Only a small percentage of seedlings survived to 

the end of this study in all treatments at Durokoppin (4% ± 1.13) and Dongolocking 

(3% ± 0.90). Seedling survival was similarly low at Tutanning in areas with no 

vegetation cover (3% ± 1.63). However, survival was much higher in perennial 

shrubs (18% ± 5.97) and fenced areas with no vegetation cover (39% ± 5.97) at this 
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reserve for these treatments (Figure 6.3), which accounts for the significant 

interaction. Seedling survival was also higher in perennial shrubs and fenced areas 

with no vegetation cover at Durokoppin and Dongolocking. However this effect was 

not significant due to the small number of seedlings that survived. 

 

Seedling survival (sown seeds) declined rapidly following emergence at both 

Durokoppin and Dongolocking, and less than 30% of seedlings survived to the end of 

the first summer (2006) in all treatments (Figure 6.4 a–b). Although the decline in 

survival was more gradual at Tutanning than the other reserves, the greatest decline 

also occurred from emergence to the end of the first summer at this reserve (Figure 

6.4 c).  

 
Table 6.1: Results from the ANOVA investigating the effects of the reserves and treatments on 

Allocasuarina huegeliana seedling emergence and survival (sown seeds). For significant relationships:  

P < 0.01**, P < 0.05*. 

 Emergence Survival 
Source 

d.f. Mean 
Square F P Mean 

Square F P 

Reserve 2 1818.02 30.09 0.001** 1914.08 24.91 0.0018* 

Treatment 2 156.90 2.60 0.082 1349.98 17.57 0.0018* 

Reserve × 
Treatment 4 63.06 1.04 0.392 415.30 5.40 0.001* 

Error 63 60.41   76.85   
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Figure 6.2: Mean percentage of Allocasuarina huegeliana seedlings emerged from seed sown in areas 

with no vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover 

at three Nature Reserves. Bars indicate standard errors. 
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Figure 6.3: Mean survival of Allocasuarina huegeliana seedlings (sown seed) in areas with no 

vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at three 

Nature Reserves. Bars indicate standard errors. 
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Figure 6.4: Mean Allocasuarina huegeliana seedling survival (sown seeds) from June–July 2005 and 

at the end of each season until March 2007, in areas with no vegetation cover, fenced areas with no 

vegetation cover, and areas with perennial shrub cover at (a) Durokoppin, (b) Dongolocking and (c) 

Tutanning Nature Reserves.  
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6.3.2 Effects of herbivore exclusion and perennial shrubs on survival, growth and 

browsing of planted seedlings (green-stock) 

The exclusion of herbivores and the presence of perennial vegetation had a significant 

effect on the browsing, growth and survival of planted seedlings (green-stock) (Table 

6.2). Mammal herbivores browsed most of the seedlings in areas with no vegetation 

cover soon after they were planted, and continued to browse extensively on these 

seedlings for the duration of the study (Figure 6.8 a–c). Perennial vegetation provided 

seedlings with protection from browsing herbivores and the percentage of seedlings 

browsed was much higher for seedlings in areas with no vegetation cover (76% ± 

3.89) than for seedlings in perennial shrubs (10% ± 2.23) (Figure 6.5).  

 

Mean seedling (green-stock) growth and survival was lowest in areas with no 

vegetation cover (growth −9.9 cm ± 0.83; survival 23% ± 6.79) (Figure 6.6 and 6.7). 

Mean seedling height at planting was 15.9 cm ± 0.35. Seedling heights declined soon 

after planting in areas with no vegetation cover, and remained at less than 10 cm for 

the duration of the study (Figure 6.9 a–c). Seedling growth and survival was much 

higher in fenced areas with no vegetation cover (growth 8.2 cm ± 1.44; survival 75% 

± 7.23) and in perennial shrubs (growth 11.0 cm ± 1.77; survival 61% ± 7.29).  

 

There was a significant interaction between reserve and treatments on seedling 

(green-stock) growth (Table 6.2). Seedling growth in fenced areas with no vegetation 

cover and in perennial shrubs was similar at Tutanning and Durokoppin. However, 

seedling growth was considerably higher in perennial shrubs than fenced areas with 

no vegetation cover at Dongolocking (Figure 6.6), which accounts for the significant 

interaction. 
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Herbivores and perennial shrubs generally had similar effects on seedlings (green-

stock) at each reserve. These variables, however, differed significantly among the 

reserves (Table 6.2). The percentage of seedlings (green-stock) browsed was highest 

at Tutanning (49% ± 10.32), similarly high at Durokoppin (43% ± 12.81), but lower 

at Dongolocking (36% ± 11.69). Seedling survival was much higher at Tutanning 

(74% ± 7.02) than Dongolocking (51% ± 9.33), but seedling growth was similar at 

the two reserves (Tutanning 4.7 cm ± 2.68; Dongolocking 4.9 cm ± 3.21). Both 

growth and survival were lowest at Durokoppin (growth −0.2 cm ± 2.36; survival 

40% ± 8.84) (Figure 6.6 and 6.7). The decline in survival of seedlings in areas with 

no vegetation cover was particularly rapid at Durokoppin (Figure 6.10 a).  
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Table 6.2: Results from the ANOVA investigating the effects of the reserves and treatments on 

browsing, height growth, and survival of planted Allocasuarina huegeliana seedlings (green-stock). 

For significant relationships:  P < 0.01**, P < 0.05*. 

 Browsed  Height growth Survival 
Source 

d.f. Mean 
Square F P d.f. Mean 

Square F P Mean 
Square F P 

Reserve 2 373.16 5.01 0.015* 2 128.14 6.52 0.004* 3072.39 8.74 0.001* 

Treatment 1 15908.56 213.68 0.001** 2 1927.14 98.12 0.001** 7211.87 20.52 0.001**

Reserve × 
Treatment 2 133.80 1.80 0.187 4 67.91 3.46 0.017* 119.41 0.34 0.849 

Error 24 74.45   36 19.64   351.43   
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Figure 6.5: Mean percentage of Allocasuarina huegeliana seedlings browsed (green-stock) in areas 

with no vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover 

at three Nature Reserves. Bars indicate standard errors. 
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Figure 6.6: Mean Allocasuarina huegeliana seedling height growth (green-stock) in areas with no 

vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at three 

Nature Reserves. Bars indicate standard errors. 
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Figure 6.7: Mean Allocasuarina huegeliana seedling survival (green-stock) in areas with no 

vegetation cover, fenced areas with no vegetation cover, and areas with perennial shrub cover at three 

Nature Reserves. Bars indicate standard errors. 
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Figure 6.8: Mean percentage of Allocasuarina huegeliana seedlings browsed from planting (green-

stock) in June 2005 and at the end of each season until March 2007, in areas with no vegetation cover, 

fenced areas with no vegetation cover, and areas with perennial shrub cover at (a) Durokoppin, (b) 

Dongolocking and (c) Tutanning Nature Reserves.  
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Figure 6.9: Mean Allocasuarina huegeliana seedling height from planting (green-stock) in June 2005 

and at the end of each season until March 2007, in areas with no vegetation cover, fenced areas with no 

vegetation cover, and areas with perennial shrub cover at (a) Durokoppin, (b) Dongolocking and (c) 

Tutanning Nature Reserves. 
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Figure 6.10: Mean Allocasuarina huegeliana seedling survival from planting (green-stock) in June 

2005 and at the end of each season until March 2007, in areas with no vegetation cover, fenced areas 

with no vegetation cover, and areas with perennial shrub cover at (a) Durokoppin, (b) Dongolocking 

and (c) Tutanning Nature Reserves.  
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6.4 Discussion 

Mammal herbivores did not affect seedling emergence; however, they did have a 

substantial negative effect on A. huegeliana growth and survival in areas with no 

vegetation cover soon after seedlings emerged. Koch et al. (2004) similarly found that 

protection from western grey kangaroos did not have a significant effect on initial 

germination of two Xanthorrhoea species, but had a significant effect on seedling 

growth and survival. The negative effect of herbivores on the survival of young A. 

huegeliana seedlings (sown seeds) in kwongan was particularly apparent at 

Tutanning. At this early stage of growth the seedlings were very small, i.e. only a few 

centimetres, and therefore unlikely to be browsed by mammals.  

 

Field observations suggest that many areas where seeds were planted with no 

vegetation cover were paths created and maintained by kangaroos and wallabies. 

Trampling may therefore substantially reduce the number of A. huegeliana seedlings 

that establish in kwongan. Herbivores did not affect seedling survival (sown seeds) at 

Durokoppin or Dongolocking. However, survival rates were very low in all 

treatments at these reserves (1−5%) and thus few seedlings were available to be 

trampled or browsed by herbivores.  

 

Muir (1985) found that only 6% of an A. huegeliana population in the Western 

Australian wheatbelt reached 20 cm or more in diameter, and that the greatest 

mortality occurred in the 0–2 cm diameter range. Ladd (1989) suggested that the size 

class structure of this population indicated that regeneration and survival were 

probably sporadic and that survival may depend on a sufficient number of wet years. 

Insufficient rainfall has been found to reduce survival of A. huegeliana seedlings in 
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other parts of the wheatbelt (Ladd 1989; Yates et al. 2003), and survival of seedlings 

of other Casuarina and Allocasuarina species (Abbott 1984; Auld 1995). However, 

rainfall was much higher than average during the first summer (2005−06) after 

germination (Bureau of Meteorology 2007). During years of average summer rainfall, 

the survival of A. huegeliana seedlings may therefore be even lower than the levels 

recorded by this study.  

 

Seedling growth and survival was generally higher in perennial shrubs than areas with 

no vegetation cover. The beneficial effects of shrubs to the growth and survival of 

young seedlings (sown seeds) and larger planted (green-stock) seedlings were 

obvious throughout the study at Tutanning. The effect of shrubs on young seedlings 

(sown seeds) was less pronounced at Durokoppin and Dongolocking, but the benefits 

to larger planted (green-stock) at these reserves were significant. Shrubs have been 

shown to facilitate growth and survival of seedlings through a number of 

mechanisms, primarily by altering the microhabitat conditions or reducing herbivory 

(Hunter & Aarssen 1988; Callaway 1995; Stachowicz 2001).  

 

The effects of browsing by mammal herbivores were most noticeable on the larger 

planted A. huegeliana seedlings (green-stock). Although the levels of browsing varied 

among the reserves, seedlings in areas with no vegetation cover were browsed 

extensively by mammal herbivores at all reserves. Seedlings in these areas were 

continually browsed, which restricted their heights to around 10 cm and had a 

detrimental impact on survival. Leigh and Holgate (1979) also found that browsing 

and grazing by native mammals (kangaroos, wallabies and wombats) restricted the 

heights of regenerating plants to less than 11 cm at three different sites, compared 
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with plants protected from herbivores which grew to an average height of 30 cm, 15-

35 cm and 57 cm at each of the sites. Herbivory by these native mammals also 

significantly reduced seedling survival at these sites. 

 

Perennial vegetation protected many A. huegeliana seedlings (green-stock) from 

browsing herbivores. Considerably fewer seedlings were browsed in perennial shrubs 

than in areas with no vegetation cover. A considerable number of studies have 

demonstrated that shrubs can protect other plants species growing under them from 

grazing or browsing herbivores (reviewed by Milchunas & Noy-Meir 2002). On the 

Patagonian steppe, Oesterheld & Oyarzábal (2004) showed that less palatable grasses 

provided protection from grazing by sheep to the highly palatable grass Bromus 

pictus. Jaksić and Fuentes (1980) found that native perennial herbs in the matorral 

scrub of central Chile were most abundant beneath shrubs, which protected the herbs 

from grazing by rabbits. In the North American Great Plains, Rebollo et al. (2002) 

showed that that the spiny cactus Opuntia polyacantha provided refuges for the 

dominant short-grass steppe species Bouteloua gracilis and other plants from grazing 

cattle. McAuliffe (1986) found that that the canopies of perennial plants protected 

seedlings of a common Sonoran Desert tree Cercidium microphyllurn with refuges 

from browsing cottontail rabbits and jackrabbits. Kwongan shrubs in this study 

appear to be providing similar biological refuges to A. huegeliana seedlings from 

browsing kangaroos and wallabies. 

 

The similar growth and survival rates of seedlings in perennial shrubs and fenced 

areas with no vegetation cover indicated that in the absence of browsing, any positive 

or negative effects of the microhabitats counteracted each other, such that the impact 
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on seedling growth and survival was minimal. Facilitation often operates 

simultaneously with competition and the net result of these interactions may range 

from positive to negative (Callaway & Walker 1997; Berkowitz et al. 1995; 

Holmgren et al. 1997). For example, nurse plants can improve some environmental 

conditions they can also have negative effects on other factors. A nurse plant can 

moderate air and soil temperatures (Hunter & Aarssen 1988; Nolasco et al. 1997), 

increase nutrient and organic carbon availability in the soil (Carrillo-García et al. 

2000) and improve soil water availability (Caldwell et al. 1998). However, nurse 

plants can impede seedling growth and/or survival by increasing litter accumulation 

(Facelli & Pickett 1991), reducing the availability of light and soil water (Franco & 

Nobel 1989), or by excreting allelopathic substances (Callaway et al. 1991).  

 

The balance of facilitative and competitive interactions on A. huegeliana generally 

had a neutral (i.e. little or no) effect. However, kwongan shrubs in some areas 

appeared to have negative or positive affects on seedling growth and/or survival. 

Shrubs benefited planted seedlings (green-stock) at Dongolocking, where seedling 

heights were taller in perennial shrubs than fenced areas with no vegetation cover. 

Conversely, perennial vegetation had a negative effect on seedling survival (sown 

seed) at Tutanning, where survival was lower in perennial shrubs than fenced areas 

with no vegetation cover.  

 

Similar growth and survival rates of seedlings in perennial shrubs and fenced areas 

with no vegetation cover indicate that A. huegeliana seedlings are tolerant of 

competition from the existing vegetation. Withers (1979) found that A. littoralis and 

A. verticillata seedlings were able to establish in dense grass swards and attributed 
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this to shade tolerance and drought resistance. A. huegeliana has also been observed 

regenerating sporadically in grassy swards in the wheatbelt, which has been attributed 

to drought resistance (Ladd 1989). However, competition with annual grasses has 

found to reduce the survival of A. campestris seedlings (Hobbs & Atkins 1991).  

 

Any effects of increased competition from perennial shrubs were far outweighed by 

the benefits that the shrubs provided to establishing A. huegeliana seedlings through 

protection from browsing herbivores. Similar patterns have been found in other 

systems subjected to grazing and browsing. Rousset & Lepart (2000) showed that the 

protection offered by shrubs to downy oak Quercus humilis seedlings from grazers 

offset the negative effects on growth so that plants could survive to overtop the shrub 

canopy and reach maturity. Similarly, Oesterheld & Oyarzábal (2004) found that 

protection from grazing by sheep to the highly palatable grass Bromus pictus 

outweighed the competitive effects of the less palatable grasses that provided 

protection. McAuliffe (1986) also identified that due to herbivore pressure, seedling 

distributions of a Sonoran Desert tree Cercidium microphyllum were largely limited 

to areas beneath other perennial plants, despite the likely competitive effects. 

 

The negative effects of browsing on seedling growth and survival were obvious; 

however, it should be noted that the seedling growth measurements and subsequent 

analysis were influenced by mortality. The growth of surviving seedlings was 

calculated over a longer period of time than the seedlings that did not survive, which 

probably grew less. Mortality may skew data e.g. taller plants may be those more 

likely to survive. However, the results from this study indicate that herbivory reduced 

seedling growth and hence increased mortality (Fig 6.6). This highly significant result 
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occurs irrespective of mortality levels; if mortality alone were important, a zero 

increase in height would be expected. 

 

The ability of seedlings to escape browsing by establishing in perennial shrubs 

suggests that the herbivore communities at the reserves studied are unable to prevent 

A. huegeliana encroachment in long unburned patches of kwongan. Although 

herbivore communities have declined at many reserves, populations at Tutanning 

have largely recovered (Chapter 3). Since large numbers of seedlings were also able 

to escape browsing and establish in perennial shrubs at this reserve, it seems unlikely 

that herbivores could have prevented A. huegeliana encroachment in the past. 

However, herbivores may play an important role in post-fire conditions through 

selective browsing on A. huegeliana seedlings (Chapter 9).  

 

Although the effect of perennial shrubs and herbivore exclusion explained most of the 

variation in the growth, survival and browsing of A. huegeliana seedlings, these 

seedling response variables also differed substantially among the reserves. Seedlings 

emergence was higher at Dongolocking, which indicates that germination conditions 

were more favourable at this reserve. However, the conditions for seedling survival 

(sown seed and green-stock) were much more favourable at Tutanning. The high 

survival rates at Tutanning were particularly interesting given that browsing levels 

were also highest at this reserve. These results further suggest that environmental 

conditions were more favourable at Tutanning, which offset the impacts of browsing. 

Such variation in seedling emergence and survival is likely to be due to variation in 

the environmental conditions among the reserves. 
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The reserves were located across a geographical range and were subject to different 

climatic conditions. Abiotic factors such as temperature and rainfall have an 

important effect on germination (Mott & Groves 1981) and plant establishment 

(Harper 1977). These factors have been found to affect establishment of several 

Casuarina and Allocasuarina species in Australia (discussed in Section 5.1). Seedling 

survival (sown seed) was much higher at Tutanning than Durokoppin and 

Dongolocking, where survival rates were very low. This pattern is not explicable by 

climatic variation. Total rainfall and average temperatures were similar at Tutanning 

and Dongolocking. However, Durokoppin received about 100 mm less rainfall over 

the duration of the study and had slightly higher temperatures (Bureau of 

Meteorology 2007). Survival may therefore be expected to be lower at Durokoppin 

than the other reserves, but these factors do not explain the differences in emergence 

and survival at Tutanning and Dongolocking. Instead, these differences may be due to 

other environmental factors such as soil properties or annual plant cover, some of 

which are investigated in Chapter 7.  

 

In conclusion this chapter has shown that mammal herbivores browse extensively on 

seedlings in areas with no vegetation cover and significantly reduce the number of A. 

huegeliana seedlings that establish in kwongan. However, this study could not 

identify which herbivore species were browsing on seedlings. Although the levels of 

browsing varied to some extent among the reserves, this did not result in increased 

growth or survival where browsing levels were lower. Perennial shrubs provided 

refuge to seedlings from browsing herbivores and as a consequence many seedlings 

were able to grow and survive. In the absence of browsing, the effects of possible 

microhabitat differences between shrubs and areas with no vegetation cover appeared 
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to counteract each other. Therefore, any benefits which may have been provided by 

differences in microhabitat conditions were of less importance than protection from 

browsing. Environmental conditions appeared to vary among the reserves and had an 

important effect on seedling establishment and will be investigated in the next 

chapter. 
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7.1 Introduction  

Chapter 6 demonstrated that perennial shrubs benefit the establishment of A. 

huegeliana seedlings by protecting them from browsing herbivores. However, there 

was substantial variation in seedling survival and growth among the treatments 

(presence or absence of perennial vegetation) and the reserves that could not be 

explained by herbivore browsing alone. Such variation is likely to be due to other 

environmental factors that affect establishment.  

 

There is a range of potential physical and chemical differences between areas with no 

vegetation cover and perennial shrub cover. Differences such as temperature, water 

availability, soil nutrients and organic matter may exist between areas with no 

vegetation cover and shrubs (Hunter & Aarssen 1988; Callaway 1995; Stachowicz 

2001; Bruno et al. 2003). These factors may also affect seedling emergence and 

establishment. Additionally, ‘perennial shrub cover’ consists of a composite of many 

variables such as the density of the canopy, amount of plant litter and allelopathic 

effects of particular plant species, which may affect the conditions and resources 

available to seedlings that establish within a shrub.  

 

Seedlings of many Casuarina and Allocasuarina are able to recruit in established 

vegetation, which has been attributed to their shade tolerance and drought resistance 

(Ladd 1989). However, seedling establishment of some species has been affected by 

soil conditions and reduced by annual plant competition and high levels of leaf litter 

(see Section 5.1). Few environmental factors affected the occurrence of juvenile A. 

huegeliana plants (Chapter 5). However, the causal events that determine whether a 

seedling establishes are usually untraceable when the plant has developed and mature 



 113

vegetation is studied (Harper 1977). The juvenile plants measured in the previous 

study (Chapter 5) were relatively large (up to 1.5 m) and had already survived a range 

of environmental factors and were therefore no longer affected by these factors. 

Additionally, the conditions surrounding these plants have most likely changed from 

when the seedlings first emerged. To accurately determine which environmental 

factors affect A. huegeliana establishment it is important that young seedlings are 

studied.  

 

This chapter examines the environmental factors affecting the establishment of A. 

huegeliana seedlings in long unburned (> 60 years) patches of kwongan and aims to 

determine which environmental factors affect emergence, growth, survival and 

browsing of A. huegeliana seedlings. The effects of environmental factors were 

investigated into seedlings in two of the three treatments used in the previous study 

(Section 6.2); areas with no vegetation cover and perennial shrub cover. Only 

seedlings in these treatments were investigated in this study because they were 

exposed to similar conditions that naturally establishing seedlings would experience 

i.e. they were not fenced from browsing herbivores. The environmental factors that 

affect these seedlings would best indicate the factors that affect naturally establishing 

A. huegeliana seedlings. Because this study did not include the fenced treatment, the 

findings of this study were considered separately from the previous chapter. 
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7.2 Methods and materials 

7.2.1 Study sites 

The environmental factors affecting emergence, growth, survival and browsing of A. 

huegeliana seedlings in unburned kwongan were investigated in three patches of 

kwongan including one at each of Durokoppin (1), Dongolocking (1) and Tutanning 

(4) Nature Reserves (see Section 2.2.2). The A. huegeliana seedlings (sown seed and 

green-stock) examined in this study were planted for the experiments described in 

Chapter 6 (Section 6.2). Only seedlings in areas with no vegetation cover and 

perennial shrub cover were used in this study. The selection of locations where seeds 

and seedlings were planted, replication and seedling measurements are described in 

Section 6.2.  

 

7.2.2 Environmental characteristics of locations where seeds and seedling were 

planted  

In October 2005, 0.5m × 0.5m quadrats were located around each grid of planted 

seeds (sown seeds) and each planted seedling (green-stock) and several 

environmental factors were assessed, including visual estimates of perennial shrub 

cover (%), annual plant cover (%) and plant litter cover (%), and the distances from 

the seedlings to the base of the three nearest perennial plants (any species) (m) were 

measured. The mean distance to neighbouring plants was then calculated. The 

environmental factors were selected as surrogates of microhabitat conditions such as 

soil moisture, organic carbon, light availability, and soil and air temperatures, which 

were not measured due to time and financial constraints. This study assumes that the 

surrogates modify the environment in some way e.g. percentage shrub cover affects 

light availability and temperature; and that leaf litter affects organic carbon, nutrients 
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and moisture availability. However, it should be noted that we cannot be sure of the 

exact effects of the surrogates on the environment or the magnitude of these effects. 

 

A sample of the top 10cm of soil was collected adjacent to each grid and in the 

middle of each group of 10 seedlings planted in each treatment using an auger 

(diameter 5 cm), and subsequently air dried. The percentage of gravel and clay, and 

soil pH (measured in a 1:5 soil/water suspension) was measured in the laboratory for 

each soil sample in accordance with McDonald et al. (1990). 

 

7.2.3 Factors affecting seedling emergence and survival (sown seeds) 

The effect of reserves (Durokoppin, Dongolocking and Tutanning), treatments (no 

vegetation cover and perennial shrubs) and their interaction on seedling emergence, 

and survival at 22 months were examined using ANOVA. Reserve and treatment 

were both treated as fixed factors. Percentage values were converted to proportions 

and arcsine square root transformed. Post hoc comparisons of the reserve means were 

made using Tukey HSD tests (Quinn & Keough 2002). Assumptions of homogeneity 

of variance and normality were checked with residual plots, box-plots using the 

Levene test. These data met the assumptions.   

 

The effect of the predictive environmental variables (percentage perennial, annual 

and litter cover, soil pH, percentage gravel and clay) on seedling emergence and 

survival was examined using Pearson’s product moment correlation and ANCOVA 

models (Quinn & Keough 2002). Each environmental variable was entered as a 

covariate into the model with the fixed design factors (reserve and treatment). The 

assumption of homogeneous regression slopes was checked by examining the 
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interaction between the environmental covariates and treatment. None of the 

interactions were significant, and therefore homogeneity of the regression slopes was 

assumed. Collinearity of the environmental variables was examined using the Pearson 

correlations. No variables were highly inter-correlated (P < 0.05 and rs ≥ 0.70).  

 

Several outliers were identified in the environmental covariates which could not be 

corrected through transformation, including one outlier for perennial cover, annual 

cover, litter cover, pH and gravel. Outliers can have undue influence on estimates of 

group effects and the conclusions from the ANOVA (Quinn & Keough 2002). 

Therefore ANCOVA was carried out with the outliers included and omitted. There 

was little difference between the results of the two analyses, which suggests that the 

outliers were not influential. The outliers were therefore included in the analyses. All 

analyses were undertaken using SPSS 15.0 (SPSS 2006). 

 

7.2.4 Factors affecting the growth, survival and browsing of planted seedlings 

(green-stock) 

The effect of reserves (Durokoppin, Dongolocking and Tutanning), treatments (no 

vegetation cover and perennial shrubs) and their interaction on the growth, survival 

and browsing of planted seedlings at 22 months were examined using the same 

method described for the analysis of seedlings emergence and survival (sown seed). 

The distance to neighbouring plants was also included as a covariate. A large number 

of seedlings died in the treatment with no vegetation cover and the sample sizes were 

uneven. Therefore, growth was calculated for each seedling by deducting the height at 

planting from the last height recorded prior to the death of the seedling, except for 
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seedlings that died during the season of planting (June–August), and these values 

were used for the ANOVA. These data met the assumptions. 

 

The effect of the predictive environmental variables (perennial, annual and litter 

cover, distance to neighbouring plants, soil pH, gravel and clay) on the growth, 

survival and browsing of planted seedlings was examined using the same method 

described for analysis of seedling emergence and survival. None of the interactions 

between the environmental covariates and treatment were significant, and therefore 

homogeneity of the regression slopes was assumed. Variables were highly inter-

correlated where P < 0.05 and rs ≥ 0.70. Perennial cover and plant litter were highly 

inter-correlated (rs = 0.797) and this was considered in the interpretation of the 

results. 

 

Several outliers were identified in the environmental covariates, including two 

outliers for perennial cover, annual cover and gravel. ANCOVA was carried out with 

the outliers included and omitted. There was a substantial difference between the two 

analyses for perennial cover and annual cover, which suggests that the outliers were 

influential. However, the results of the two analyses for gravel were similar, thus the 

outliers had little effect. Results from both tests are presented for the environmental 

variables that were affected by outliers (perennial and annual cover), and the reasons 

for the outliers and their influence on the results are discussed. All analyses were 

undertaken using SPSS 15.0 (SPSS 2006). 

 

ANCOVA also assumes that the continuous covariate values do not depend on the 

categorical predictors in the model (Quinn & Keough 2002). However, several 
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environmental covariates varied among the treatments, reserves, or both (Figure 7.1 

and 7.2). If the covariate is influenced by the categorical independents, some of the 

indirect effects of the independents will be removed from the dependent when 

ANCOVA adjusts for the covariate (Tabachnick & Fidell 1996). However, the 

environmental variables are a more detailed quantitative assessment of the treatments 

and reserves, and are therefore expected to explain some of the effects of these fixed 

factors.  

 

7.3 Results  

7.3.1 Factors affecting seedling emergence and survival (sown seed) 

The treatments did not affect seedling emergence, but emergence was significantly 

different among the reserves (see Table 6.1). Plant litter significantly affected 

seedling emergence (Table 7.1), which declined as litter cover increased. However, 

litter cover only explained a small amount of variation in emergence. When litter 

cover was included in the ANCOVA the effect of reserve remained significant and 

explained much more variation in emergence. The effect of the reserves on seedling 

emergence was not explained by any of the environmental variables, and remained 

significant for all ANCOVAs (Table 7.1).  

 

The reserves and treatments had a significant effect on seedling survival (sown seeds) 

(see Table 6.1). No environmental variables had a direct, significant affect on 

seedling survival (sown seed) (Table 7.2). Perennial cover explained much, but not 

all, of the treatment effect on seedling survival. The variation in seedling survival 

accounted for by the treatments reduced substantially when perennial cover was 

included in the ANCOVA, but the treatment effect remained significant (Table 7.2). 
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The effect of the reserves on seedling survival was not explained by any of the 

environmental variables, and remained significant for all ANCOVAs (Table 7.2).  

 

Table 7.1: Results from ANCOVA models investigating the effects of the environmental variables, 

reserves and treatments on Allocasuarina huegeliana seedling emergence (sown seed). For significant 

relationships:  P < 0.01**, P < 0.05*. 

Perennial cover Litter cover Annual cover 
Source d.f. Mean 

Square F P Mean 
Square F P Mean 

Square F P 

Covariate 1 8.01 0.16 0.695 261.71 5.81 0.021* 11.78 0.23 0.634 

Reserve 2 1355.78 26.45 0.001** 1457.03 32.33 0.001** 1251.76 24.46 0.001**

Treatment 1 6.81 0.13 0.717 0.58 0.01 0.911 159.10 3.11 0.085 

Reserve × 
Treatment 2 108.59 2.12 0.133 132.76 2.95 0.064 110.53 2.16 0.128 

Error 41 51.26   45.07   51.17   

 

Table 7.1 (cont.): 

pH Gravel Clay 
Source d.f. Mean 

Square F P Mean 
Square F P Mean 

Square F P 

Covariate 1 24.77 0.49 0.489 126.94 2.62 0.113 1.07 0.02 0.886 

Reserve 2 1236.98 24.33 0.001** 1191.09 24.63 0.001** 955.17 18.57 0.001**

Treatment 1 171.17 3.37 0.074 186.37 3.85 0.056 162.29 3.16 0.083 

Reserve × 
Treatment 2 100.68 1.98 0.151 106.93 2.21 0.122 105.41 2.05 0.142 

Error 41 50.85   48.36   51.43   
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Table 7.2: Results from ANCOVA models investigating the effects of the environmental variables, 

reserves and treatments on Allocasuarina huegeliana seedling survival (sown seed). For significant 

relationships:  P < 0.01**, P < 0.05*. 

Perennial cover Litter cover Annual cover 
Source d.f. Mean 

Square F P Mean 
Square F P Mean 

Square F P 

Covariate 1 123.21 1.70 0.199 0.11 0.00 0.969 16.51 0.22 0.642 

Reserve 2 489.39 6.76 0.003** 454.74 6.03 0.005** 355.16 4.73 0.014* 

Treatment 1 500.25 6.91 0.012* 548.37 7.27 0.010* 900.33 12.00 0.001**

Reserve × 
Treatment 2 206.04 2.84 0.070 177.77 2.36 0.107 164.76 2.20 0.124 

Error 41 72.44   75.45   75.05   

 

Table 7.2 (cont.):  

pH Gravel Clay 
Source d.f. Mean 

Square F P Mean 
Square F P Mean 

Square F P 

Covariate 1 69.88 0.95 0.336 62.60 0.85 0.363 53.18 0.72 0.402 

Reserve 2 468.64 6.36 0.004** 263.65 3.57 0.037* 478.90 6.46 0.004**

Treatment 1 938.48 12.73 0.001** 972.71 13.16 0.001** 823.97 11.11 0.002**

Reserve × 
Treatment 2 177.79 2.41 0.102 181.95 2.46 0.098 159.34 2.15 0.130 

Error 41 73.74   73.92   74.15   
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Figure 7.1: Environmental variables recorded within 0.5 × 0.5 m quadrats located around grids where 

Allocasuarina huegeliana seeds were sown in areas with no vegetation cover and perennial shrub 

cover at three Nature Reserves. The environmental variables included (a) perennial cover, (b) litter 

cover, (c) annual cover, (d) pH, (e) gravel and (f) clay. Bars indicate standard errors. 
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7.3.2 Factors affecting the growth, survival and browsing of planted seedlings 

(green-stock) 

The treatments significantly affected seedling height growth, survival and the 

proportion of seedlings browsed (see Table 6.2). Seedlings planted in perennial 

shrubs were taller, had higher survival rates and fewer were browsed than seedlings 

planted in areas with no vegetation cover (see Figures 6.5−6.7).  

 

The effect of the treatments on seedlings was largely explained by perennial cover. 

Perennial cover and litter cover were strongly correlated with seedling growth, 

survival and browsing (Table 7.3). However, the relationship between perennial cover 

and seedling growth, survival and browsing was stronger than litter cover (Table 7.3). 

The variation in seedling growth, survival and browsing accounted for by the 

treatments reduced substantially when perennial cover was included in the ANCOVA 

models (Tables 7.4−7.6). When the two perennial cover outliers were omitted, the 

effect of this variable increased and explained all of the treatment effect because the 

inter-correlation between treatments and perennial cover also increased.  

 

While the treatments accounted for most of the variation in seedling growth, survival 

and browsing (Tables 7.4−7.6), the reserves also significantly affected seedlings. 

There was a significant interaction between reserve and treatment on seedling growth 

(Table 7.5), and two environmental variables (distance to neighbouring plants, annual 

plant cover) had a direct, significant effect on the seedlings (Tables 7.4−7.6).  

 

Fewer seedlings were browsed at Dongolocking than the other reserves (Table 6.2). 

The reserve effect was explained by annual cover (outliers omitted) and gravel (Table 
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7.4). However, annual cover was very low in all cases (< 2%), and these factors could 

not realistically affect the browsing activity of herbivores on seedlings. These factors 

removed the effect of browsing because they varied among the reserves in a similar 

pattern to browsing, i.e. were lower at Dongolocking than the other reserves. These 

variables were therefore confounded with the reserves, and the differences in 

browsing between reserves clearly cannot be attributed to annual cover and gravel.  

 

The distance to neighbouring plants had a direct, significant effect on the percentage 

of seedlings browsed (Table 7.4). More seedlings were browsed as the distance to 

neighbouring plants increased. However, this variable only explained a small amount 

of variation in the percentage of seedlings browsed when included in the ANCOVA, 

and the effect of reserve and treatment remained significant and explained much more 

of the variation.  

 

Seedling growth was greater at Dongolocking than the other reserves, which 

accounted for the reserve effect (Figure 6.6). Growth was much higher in perennial 

shrubs at Dongolocking than the other treatments and reserves, which explained the 

significant interaction. Plant litter cover explained the reserve and interaction effect 

and clay explained the reserve effect (Table 7.5). The variation in plant litter and 

seedling growth between treatments and reserves was very similar. Plant litter was 

greater at Dongolocking, particularly in perennial shrubs, than the other treatments 

and reserves (Figure 7.2 c). This variable therefore contributed to both the reserve 

effect and the interaction between reserve and treatment. Clay levels were lower at 

Dongolocking than the other reserves (Figure 7.2 g), and this variable apparently 

contributed to the greater seedling growth at this reserve.  
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Seedling survival was higher at Tutanning than the other reserves (Figure 6.7). 

However, none of the environmental variables explained this effect, and reserve 

remained significant for all ANCOVAs (Table 7.6). When the outlier values for 

annual plant cover were included in the analysis (Table 7.6), this variable was 

significantly associated with seedling survival. However, annual cover was very low 

in all cases (< 2%), and is therefore unlikely to have had an important effect on 

seedling survival. 

 

However, annual cover was very low in all locations (< 2%; Figure 7.2 d), including 

the outliers, and only explained a small amount of variation in survival. The effect of 

reserve and treatment remained significant and explained much more variation in 

survival when this variable was included in the ANCOVA (Table 7.6). Annual cover 

did not have a significant effect on seedling survival when the outliers were omitted. 

Few definite conclusions can therefore be drawn from the effect of annual cover on 

seedling survival.  
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Table 7.3: Results from the Pearson correlation between Allocasuarina huegeliana seedling height 

growth, survival and the percentage of seedlings browsed (green-stock) and the predictive 

environmental variables. Variables were considered to be highly inter-correlated where P < 0.05 and r 

≥ 0.70*. 

Variable Browsing Growth Survival 

Browsing 1   

Growth −0.891* 1  

Survival −0.687* 0.576* 1 

Perennial cover −0.843* 0.877* 0.721* 

Distance to neighbouring plants 0.031 −0.192 −0.401* 

Litter cover −0.723* 0.844* 0.533* 

Annual cover −0.018 −0.013 −0.117 

pH −0.12 0.102 0.094 

Gravel 0.141 −0.128 0.232 

Clay 0.113 −0.273 −0.161 
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Figure 7.2: Environmental variables recorded within 0.5 × 0.5 m quadrats located around 

Allocasuarina huegeliana seedlings (green-stock) planted in areas with no vegetation cover and 

perennial shrub cover at three Nature Reserves. The environmental variables included (a) perennial 

cover, (b) distance to neighbours, (c) litter cover, (d) annual cover, (e) pH, (f) gravel and (g) clay. Bars 

indicate standard errors. 
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7.4 Discussion 

Few factors were associated with the emergence of A. huegeliana seedlings. 

Increased levels of plant litter caused a slight decline in seedling emergence. 

Increased levels of plant litter caused a slight decline in seedling emergence. Many 

studies have reported the effects of plant litter on seed germination and seedling 

establishment (reviewed by Facelli & Pickett 1991). Litter can alter the physical and 

chemical environment through releasing nutrients and phytotoxic substances into the 

soil; shading seeds and seedlings; reducing the thermal amplitude in the soil; and 

reducing evaporation from the soil. However, litter may also diminish water 

availability when it retains a large proportion of rainfall (Facelli & Pickett 1991).  

 

Plant litter has been found to favour germination and establishment, for example by 

conserving water during dry conditions (Fowler 1986) and adding nutrients (Facelli & 

Pickett 1991). However, in a meta-analysis of 35 independently published studies on 

the effects of plant litter on vegetation, Xiong & Nilsson (1999) found that litter 

generally had an overall negative effect on germination and establishment. Litter 

generally has a negative effect on germination because it creates a physical barrier 

which can prevent seeds and germinant roots from reaching the soil or bury seeds and 

prevent sprouts from emerging (Facelli & Pickett 1991). Litter from kwongan shrubs 

may have inhibited seedling emergence through such mechanisms. Litter cover was 

much greater within perennial shrubs than areas with no vegetation cover; however, 

the treatments did not affect emergence. The effect of litter on seedling emergence 

was therefore somewhat limited.  
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Soon after seedlings emerged, protection from browsing and trampling by herbivores 

appeared essential for A. huegeliana seedlings to establish. This was indicated by the 

dominant effect of the treatments, i.e. absence or presence of perennial vegetation, on 

the growth, survival and browsing of seedlings. Shrubs have been shown to protect 

seedlings from a range of small and large mammal herbivores, such as elk and ibex 

(Baraza et al. 2006), rabbits (Jaksić & Fuentes 1980; McAuliffe 1986) and sheep and 

cattle (Callaway et al. 2000; Rebollo et al. 2002; Oesterheld & Oyarzábal 2004). 

Details of some of these studies are discussed in Section 6.4. 

 

The importance of kwongan shrubs in protecting seedlings from browsing herbivores 

was reiterated by the effect of shrubs that neighboured the seedlings. Fewer seedlings 

were browsed where the distance to neighbouring shrubs was smaller. Herbivores 

presumably had easy access to the seedlings in areas with little to no vegetation, 

which were subsequently suppressed by constant browsing and survival rates were 

generally low. Conversely, perennial shrubs presumably obstructed herbivores from 

reaching seedlings growing within them. Few seedlings were browsed and 

subsequently most grew taller and survived.  

 

Fewer seedlings were browsed at Dongolocking than the other reserves. Although 

seedlings in perennial shrubs grew taller at this reserve, seedling survival was not 

greater. The lower levels of browsing at Dongolocking were not explained by any of 

the environmental variables or by differences in herbivore abundance (Chapter 4). 

Herbivores including kangaroos, brush wallabies and rabbits were generally more 

abundant at Dongolocking than Durokoppin (Chapter 4), but browsing levels were 



 132

lower at Dongolocking. Therefore, herbivore presence does not necessarily 

correspond directly with browsing pressure.  

 

Perennial cover accounted for most, but not all of the effects of the treatments on A. 

huegeliana seedlings. Although omitting the perennial cover outliers increased the 

amount of variation explained by this variable, the outliers indicated natural variation 

in kwongan shrubs. Perennial cover was not expected to explain all of the treatment 

effects on seedling establishment because the treatments represented a range of 

potential physical and chemical differences. Additionally, many different species 

shrubs of were involved, and species of some shrubs may have more of an effect 

(either positive or negative) than others. Increased replication of exclosure locations 

may have removed these outliers and the problems associated with analysing and 

interpreting these data.   

 

Results from this study reveal an interesting difference in the characteristics of the 

kwongan among the reserves. Shrub cover, density (indicated by distance to 

neighbouring plants) and litter all varied among the reserves. These inter-site 

differences may be due to a productivity gradient associated with the geographical 

locations of the reserves. For example, the production of litter depends primarily on 

the site productivity (Facelli & Pickett 1991). Litter results from this study indicate 

that Dongolocking had the highest productivity, followed by Tutanning, and 

Durokoppin had the lowest site productivity. While Dongolocking and Tutanning 

experience more similar climatic conditions, Durokoppin experiences higher 

temperatures and lower levels of rainfall, which may contribute to lower site 

productivity. Inter-site differences may also be due to differences in dominant shrub 
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species. The high degree of floristic heterogeneity in kwongan across geographical 

gradients is well known (Hopper 1979; Brown 1989; Hopper 1992; Hopper et al. 

1996; Hopper & Gioia 2004) and is likely to have contributed to the differences in the 

characteristics such as shrub cover and height. In addition to naturally occurring 

environmental variations, differences in disturbance histories may also influence the 

composition of remnant vegetation (Lunt 1998b), and thus the characteristics of the 

kwongan among the reserves.  

 

Although the treatments were the main factor affecting seedling establishment, the 

reserves also had an important effect on seedling growth and survival, which is 

discussed in Section 6.4. Seedling emergence and growth were higher at 

Dongolocking than the other reserves, but seedling survival was much higher at 

Tutanning. The benefits that these reserves provided to seedling emergence and 

survival could not be explained by climatic differences or the environmental variables 

measured in this study, and therefore remain unknown. However, the higher levels of 

growth at Dongolocking, particularly in perennial shrubs, were explained by several 

environmental factors. 

 

Seedlings may have grown taller at Dongolocking because fewer were browsed. 

However, the greater growth was also partially explained by higher litter cover and 

lower levels of clay at this reserve. As discussed previously, litter can favour 

vegetation development by conserving water during dry conditions (Fowler 1986) 

and adding nutrients (Facelli & Pickett 1991). In arid areas, clay reduces water 

availability for plants by keeping water near the surface which is rapidly lost though 

evaporation (Barchuk et al. 2005). Seedlings at Dongolocking may have benefited 
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through such processes. However, the effects of clay and litter cover were 

confounded by the effects of the reserves. It is not possible to separate the effects of 

these variables from the differences among the reserves. Replication of the exclosure 

experiments in multiple patches of kwongan within each reserve is required to 

address the issue of collinearity between the reserves and environmental variables, 

but was not possible due to logistical limitations.  

 

The only environmental factor that was directly associated with seedling 

establishment was annual cover. Seedling survival (green-stock) declined as annual 

cover increased. However, the levels of annual cover were very low in kwongan 

where seeds and seedlings were planted in this study (< 2%), and the effect of annual 

cover was only significant when the outliers (also less than 2%) were included in the 

analysis. In addition, emergence of A. huegeliana seedlings in this study was not 

affected by annual plants. Such low levels of annual cover probably did not affect 

seedling establishment. However, Hobbs and Atkins (1991) found that annual plants 

reduced the germination of seeds and survival of seedlings of Allocasuarina 

campestris. The establishment of other woody species is often inhibited by annual 

species, generally through competition for water and nutrients (Schultz et al. 1955; 

Griffin 1971; da Silva & Bartolome 1984; Eliason & Allen 1997).  

 

In conclusion, A. huegeliana can establish in a range of environmental conditions in 

unburned kwongan. The findings from this chapter support those found in other 

chapters, and reiterate the importance of perennial shrubs in providing protection 

from browsing herbivores for A. huegeliana seedlings to establish. However, these 

findings did not provide much additional clarification about other environmental 
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factors that may be important to A. huegeliana seedling establishment. Plant litter was 

associated with seedling emergence and annual cover was associated with seedling 

survival, but these effects were minor. The reserves were also associated with 

seedling establishment, but the factors responsible for this effect could not be 

determined. However, many factors that may affect seedling establishment were not 

measured in this study (largely due to financial and time constraints) such as soil 

nutrients and organic matter, soil water availability, soil temperature, allelopathic 

effects of particular shrub species and light levels.  
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8.1 Introduction 

Chapter 6 showed that mammal herbivores have an important effect on A. huegeliana 

seedlings establishing in kwongan, but was not able to determine which species were 

responsible for browsing the seedlings.  

 

A number of herbivores are present within Nature Reserves in the Western Australian 

wheatbelt that may affect the establishment of A. huegeliana seedlings, including 

western grey kangaroos (Macropus fuliginosus), tammar wallabies (Macropus 

eugenii), western brush wallabies (Macropus irma), rabbits (Oryctolagus cuniculus) 

and invertebrates. Main (1993) proposed that Allocasuarina encroachment was due 

the absence or decline of a grazing or browsing herbivore. Specifically, he suggested 

that the decline of tammars at Tutanning during the 1970s was responsible for the 

encroachment of A. huegeliana into kwongan at this reserve.  

 

The loss of mammal herbivores from a range of systems has been found to have a 

significant impact on vegetation dynamics, including the loss of diversity in 

understorey plant communities in forests in Mexico (Dirzo & Miranda 1990), 

woodland encroachment and subsequent loss of heathlands in Britain (Bullock & 

Pakeman 1997), tree encroachment into grassy woodlands in Tasmania (Kirkpatrick 

2004) and encroachment of several woody shrubs into semi-arid pastoral lands in 

eastern Australia (Noble & Grice 2002; Noble et al. 2007).  

 

Many studies investigating the effects of mammal herbivores on plant communities 

have used fenced exclosure experiments (Smart et al. 1985; Hulme 1994; Ritchie et 

al. 1998; Brookshire et al. 2002; Turkington et al. 2002; Augustine & McNaughton 
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2004). Such experiments attempt to exclude several herbivores, or ideally a single 

herbivore, from a small area of a natural ecosystem. The responses of individual 

plants or plant communities to the release or reduction of herbivory can indicate the 

extent to which various herbivores influence factors such as recruitment, species 

composition and cover of the community. 

 

The opportunity to investigate the effect of tammar wallabies on A. huegeliana 

seedlings has recently become possible due to the recovery of this species at 

Tutanning Nature Reserve. The density of the current population of tammars at 

Tutanning is similar to levels that are thought to have occurred historically (Chapter 

3). This chapter examines the effect that different herbivores, including the tammar 

wallaby, have on A. huegeliana seedlings in a patch of kwongan at Tutanning Nature 

Reserve in the Western Australian wheatbelt.  

 

This chapter aims to determine: (1) the separate effects of kangaroos, wallabies and 

rabbits on the emergence, growth and survival of A. huegeliana seedlings in an 

unburned (38 years) patch of kwongan; and (2) whether perennial shrubs protect 

seedlings from all herbivores. If tammars were able to limit the establishment of A. 

huegeliana seedlings in kwongan in the past, and their decline in the 1970s enabled 

numerous plants to establish, tammars should have a significant impact on seedling 

growth and survival at Tutanning now that their populations have recovered.  
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8.2 Methods and materials 

8.2.1 Study site 

The effects of four mammal herbivores (kangaroos, tammars, brush wallabies and 

rabbits) on the emergence, growth and survival of A. huegeliana seedlings in 

kwongan were investigated at one patch of kwongan at Tutanning Nature Reserve (6) 

(see Section 2.2.2).  

 

8.2.2 Exclosure design 

Three locations were subjectively chosen 30−40 m apart and evenly spaced across the 

site. At each location three adjoining 5 × 5 m pens and an adjoining 5 × 5 m open 

area were erected in a random direction. The three pens had 1.8 m fences to prevent 

kangaroos jumping in and were designed to selectively exclude other herbivores 

(Figure 8.1). The first pen excluded kangaroos, wallabies and rabbits (−K −W −R) 

using wire netting (30 mm diameter mesh) with a 30 cm mesh apron that continued 

along the surface of the ground. The second pen excluded kangaroos and wallabies, 

but allowed rabbits to enter (−K −W +R) through larger sized mesh (0.1 × 0.1 m). 

The third pen allowed wallabies and rabbits to enter under a mesh fence that was 

raised 30cm above the ground, but not kangaroos (−K +W +R). The unfenced area 

allowed access to these mammals (+K +W +R).   

 

In practice, the herbivores that occurred at this site were tammar wallabies and 

kangaroos. The only herbivore scats found throughout this study in all exclosure 

locations and across the remainder of the site (see Chapter 4) were from these species. 

Although brush wallabies are known to occur in small numbers at the reserve and 

rabbits are assumed to be present, no scats from these species were found. 
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Additionally, no rabbit warrens were observed around the site and no seedlings were 

browsed in the −K −W +R areas. The −K −W −R and −K −W +R treatments were 

therefore effectively the same, and exclosures that included or excluded wallabies 

only affected tammars.  

 

Figure 8.1: Diagram of a set of exclosures and adjacent unfenced area, indicating the mammal 

herbivores that were excluded from, or had access to, each treatment area including (a) −K +W +R, (b) 

−K −W −R, (c) −K +W +R and (d) +K +W +R (n = 3 sets). 

 

To determine whether kangaroos were effectively excluded from the −K +W +R 

exclosure, double-sided tape was attached to the base of the raised fence to collect 

hair in the event they entered and departed the exclosure. The tape was collected and 

replaced every 4−6 weeks and the mammal species belonging to each hair sample 

was identified according to Brunner et al. (2002).  

 

The design of the −K +W +R exclosure was mostly successful in keeping kangaroos 

out. Kangaroo scats and hair were recorded in −K +W +R at location 2 on one 

occasion, however no seedlings were browsed. Kangaroo hair was collected on three 

(a) (b) (c) (d) 
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occasions (from 12 collection periods over 21 months) from −K +W +R at location 3. 

Two hair samples were found on the tape on each occasion, which indicates that most 

likely an individual kangaroo entered and left the area during the sample period. 

Kangaroos are locally known to be able to crawl under low fences to access crops in 

paddocks adjacent to bushland. It is possible that the kangaroo did not fully enter the 

exclosure and just put their head under the fence. However, there were substantial 

quantities of hair on the tape, which suggests that the kangaroo went right under the 

fence. As the exclosure wire was not bent, the kangaroo that entered the exclosure 

may have been a young or small one. A number of tammars also entered −K +W +R 

during the sample period. Therefore, the browsing activity that occurred in this area 

during these periods cannot be unequivocally attributed to tammars. Browsing 

activity at other times and browsing in −K +W +R at the other locations can be 

attributed to tammars. 

 

8.2.3 Herbivore presence  

The presence of herbivores within −K −W +R, −K +W +R and +K +W +R at the 

three locations across the site was monitored by removing scats from all areas in June 

2005, and scats subsequently deposited in these areas were collected at intervals of 

4−6 weeks, identified and counted. The total number of scats deposited by each 

herbivore species over the duration of the study was calculated for each treatment and 

location.  

 

8.2.4 Effects of herbivore exclusion on seedling emergence and survival (sown seed) 

In each treatment (−K −W −R, −K −W +R, −K +W +R, +K +W +R), 100 A. 

huegeliana seeds were planted on a 50 × 50 cm grid at two locations subjectively 
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selected where a perennial shrub was present and a bare area with no vegetation cover 

at the beginning of June 2005 (100 seeds/grid × 1 grid/type of vegetation cover × 2 

types of vegetation cover/treatment × 4 treatments/location × 3 locations = 2400 

seeds). The seeds were collected from Tutanning (20 infructescences from 10 trees) 

in January 2005, air dried and stored in a paper bag until sowing.  

 

Seedling emergence was recorded from June to July and the fate of seedlings 

(dead/alive) was recorded at the end of the study in February 2007. Seedling survival 

was calculated for each grid by dividing the number of seedlings that were alive at the 

end of the study by the total number of seeds that emerged.  

 

The effect of the location (1−3), treatments (−K −W −R, −K −W +R, −K +W +R, +K 

+W +R), vegetation cover (no vegetation cover and perennial shrub cover), and their 

interactions on seedling emergence and survival were examined using ANOVA. The 

treatments and vegetation cover were treated as fixed factors, and location as a 

random factor. Post hoc comparisons of treatment and vegetation cover means were 

made using Tukey HSD tests (Quinn & Keough 2002). Percentage values were 

converted to proportions and arcsine square root transformed. Assumptions of 

homogeneity of variance and normality were checked with residual plots and box-

plots. These data met the assumptions. All analyses were undertaken using SPSS 15.0 

(SPSS 2006). All results are given as mean ± standard error. 
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8.2.5 Effects of herbivore exclusion on the survival, growth and browsing of planted 

seedlings (green-stock) 

In each treatment, 10 A. huegeliana seedlings were planted at least 20 cm apart in 

areas with no vegetation cover, and the same number in perennial shrubs (10 

seedlings/type of vegetation cover × 2 types of vegetation cover/treatment × 4 

treatments/location × 3 locations = 240 seedlings). The seedlings were grown at a 

Phytophthora accredited nursery and planted in June 2005.  

 

The heights of seedlings were measured immediately after planting and subsequent 

survival of seedlings, whether they had been browsed, and their heights were 

measured at the end of winter (August), spring (November), summer (February) and 

autumn (May), until February 2007. A number of seedlings died in some locations 

and treatments, which made the sample sizes uneven for analysis. Seedling growth 

was therefore calculated by deducting the height at planting from the height recorded 

prior to the death of the seedling. Mean seedling growth, the percentage of seedlings 

that survived to the end of the study, and the mean percentage that had been browsed 

by mammal herbivores (averaged across the seasons) was calculated for the 10 

seedlings in the areas with no vegetation cover and in perennial shrubs within the four 

treatments at each location. 

 

The effect of the location, treatments, vegetation cover and their interactions on the 

growth, survival and browsing of planted seedlings were examined using the same 

method described for the analysis of seedlings emergence and survival (sown seed). 

These data met the assumptions. All results are given as mean ± standard error. 
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8.3 Results 

8.3.1 Herbivore presence 

Herbivore presence varied across the site. The largest numbers of kangaroo and 

tammar scats were found at location 3 (Figure 8.2). The number of kangaroo scats 

was similar at locations 2 and 3, but there were many tammar scats at location 2 and 

only a few at location 1. Tammars were not exclosure-shy, and readily entered −K 

+W +R. The number of tammar scats was low in both +K +W +R and −K +W +R at 

location 1, and scats were more abundant within −K +W +R than +K +W +R at 

locations 2 and 3 (Figure 8.2). 

 

8.3.2 Seedling emergence and survival (sown seed) 

There was a significant interaction between location and treatment on emergence 

(Table 8.1). Seedling emergence varied among the treatments particularly at locations 

1 and 3, but there was no consistent treatment effect. Emergence was much higher in 

−K −W +R at location 3 (67% ± 3.00) than all other treatments at the three locations, 

which accounted for the significant interaction (Figure 8.3).  

 

Seedling survival (sown seeds) was not affected by the treatments or vegetation 

cover, but was significantly affected by the locations (Table 8.1). Seedling survival 

was lowest at location 1 (0% ± 0.30), also low but slightly higher at location 2 (2% ± 

1.09) and highest at location 3 (8% ± 3.10) (Figure 8.4). 

 

8.3.3 Growth, survival and browsing of planted seedlings (green-stock) 

Vegetation cover significantly affected the percentage of seedlings browsed, and 

there was a significant interaction between the treatments and vegetation cover on 



 145

browsing (Table 8.2). Perennial shrubs protected many seedlings from browsing. 

Fewer seedlings were browsed within shrubs (12% ± 4.20) than seedlings in areas 

with no vegetation cover (46% ± 14.80). However, many more seedlings were 

browsed in areas without vegetation cover in +K +W +R than seedlings in areas 

within perennial shrubs and in areas with no vegetation cover in −K +W +R (Figure 

8.5), which accounts for the significant interaction. The treatments also had a strong 

effect on the percentage of seedlings browsed (Table 8.2). Large numbers of 

seedlings were browsed in +K +W +R (48% ± 5.18), while only a few seedlings were 

browsed in −K +W +R (10% ± 5.18) even at locations where numerous tammar scats 

were present (Figure 8.2). However, the treatment effect on the percentage of 

seedlings browsed was not significant at the P < 0.05 level (Table 8.2).  

 

Mean seedling growth was significantly affected by the locations and treatments, and 

there was a significant interaction between treatment and vegetation cover on growth 

(Table 8.2). There was substantial variation in conditions across the site and seedlings 

grew much taller at location 2 (15.6 cm ± 5.25) than location 1 (−0.9 cm ± 3.16) and 

location 3 (−4.6 cm ± 2.70) over the duration of the study. Seedlings declined in 

height over the duration of the study in treatments where kangaroos had access (+K 

+W +R), but increased in height in all other treatments. Seedlings in areas with no 

vegetation cover grew taller than seedlings in perennial shrubs in all treatments 

except +K +W +R. In this treatment, seedlings in areas with no vegetation cover 

declined to a much greater extent than seedlings in perennial shrubs (Figure 8.6), 

which accounted for the significant interaction. 
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There were significant interactions between location and treatment, and treatment and 

vegetation cover on seedling survival (Table 8.2). Despite heavy browsing on 

seedlings in +K +W +R the treatments did not affect survival at locations 1 and 2 

(Figure 8.7). However, seedling survival was much higher in −K −W −R than the 

other treatments at location 3 (Figure 8.7), which accounts for the significant 

interaction between location and treatment. This large difference in survival occurred 

even though no herbivores accessed −K −W −R or −K −W +R and the treatments 

were effectively the same. 

 

Seedling survival was not affected by vegetation cover where herbivores did not have 

access to the seedlings (−K −W −R and −K −W +R), and perennial shrubs had a 

slightly negative effect on survival where only tammars had access to the seedlings 

(−K +W +R). However, seedling survival was much lower in areas with no vegetation 

cover where all herbivores had access to the seedlings (+K +W +R) than seedlings in 

all other treatments (Figure 8.7), which accounted for the significant interaction 

between treatment and vegetation cover. 
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Table 8.1: Results from the ANOVA investigating the effects of the locations, treatments, vegetation 

cover and their interactions on Allocasuarina huegeliana seedling emergence and survival (sown 

seeds) in a patch of kwongan at Tutanning Nature Reserve. For significant relationships:  P < 0.01**, 

P < 0.05*. 

 Emergence Survival 
Source 

d.f. Mean 
Square F P Mean 

Square F P 

Location 2 45.63 0.53 0.614 346.79 7.73 0.022* 

Treatment 3 22.02 0.26 0.855 39.61 0.88 0.501 

Location × 
Treatment 6 86.17 4.46 0.028* 44.87 0.67 0.679 

Vegetation cover 1 28.90 1.50 0.256 0.08 0.00 0.974 

Treatment × 
Vegetation cover 3 7.14 0.37 0.777 61.19 0.91 0.477 

Error 8 19.31   67.09   

 

Table 8.2: Results from the ANOVA investigating the effects of the locations, treatments, vegetation 

cover and their interactions on browsing, height growth and survival of planted Allocasuarina 

huegeliana seedlings (green-stock) in a patch of kwongan at Tutanning Nature Reserve. For significant 

relationships:  P < 0.01**, P < 0.05*. 

 Browsed  Height growth Survival 
Source 

d.f. Mean 
Square F P d.f. Mean 

Square F P Mean 
Square F P 

Location 2 208.00 1.60 0.384 2 927.33 19.97 0.002** 951.32 2.19 0.193 

Treatment 1 2204.62 16.97 0.054 3 519.32 11.19 0.007** 718.45 1.66 0.274 

Treatment × 
Location 2 129.89 4.15 0.106 6 46.43 2.94 0.080 433.82 6.73 0.008**

Vegetation cover 1 1544.10 49.34 0.002** 1 35.53 2.25 0.172 112.67 1.75 0.223 

Treatment × 
Vegetation cover 1 446.57 14.27 0.019* 3 171.97 10.89 0.003** 286.76 4.45 0.041* 

Error 4 31.30   8 15.78   64.46   
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Figure 8.2: Total number of kangaroo and tammar wallaby scats found from June 2005 to February 

2007, in four treatments at three locations in a patch of kwongan at Tutanning Nature Reserve. K = 

kangaroo, W = tammar wallaby and R = rabbit, and +/− indicates where herbivores are included or 

excluded from the treatment. 
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Figure 8.3: Percentage of Allocasuarina huegeliana seedlings emerged from seed sown in areas with 

no vegetation cover and perennial shrub cover, within four treatments at three locations in a patch of 

kwongan at Tutanning Nature Reserve. K = kangaroo, W = tammar wallaby and R = rabbit, and +/− 

indicates where herbivores are included or excluded from the treatment. 
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Figure 8.4: Percentage survival of Allocasuarina huegeliana seedlings (sown seed) in areas with no 

vegetation cover and perennial shrub cover, within four treatments at three locations in a patch of 

kwongan at Tutanning Nature Reserve. K = kangaroo, W = tammar wallaby and R = rabbit, and +/− 

indicates where herbivores are included or excluded from the treatment. 
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Figure 8.5: Mean percentage of Allocasuarina huegeliana seedlings browsed (green-stock) in areas 

with no vegetation cover and perennial shrub cover, within four treatments at three locations in a patch 

of kwongan at Tutanning Nature Reserve. K = kangaroo, W = tammar wallaby and R = rabbit, and +/− 

indicates where herbivores are included or excluded from the treatment. Bars indicate standard errors. 
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Figure 8.6: Mean Allocasuarina huegeliana seedling height growth (green-stock) in areas with no 

vegetation cover and perennial shrub cover, within four treatments at three locations in a patch of 

kwongan at Tutanning Nature Reserve. K = kangaroo, W = tammar wallaby and R = rabbit, and +/− 

indicates where herbivores are included or excluded from the treatment. Bars indicate standard errors. 
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Figure 8.7: Mean Allocasuarina huegeliana seedling survival (green-stock) in areas with no 

vegetation cover and perennial shrub cover, within four treatments at three locations in a patch of 

kwongan at Tutanning Nature Reserve. K = kangaroo, W = tammar wallaby and R = rabbit, and +/− 

indicates where herbivores are included or excluded from the treatment. Bars indicate standard errors. 
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8.4 Discussion 

The absence of rabbits and brush wallabies from the study site was ultimately 

beneficial for the purposes of this study because only two mammal herbivores were 

responsible for browsing – kangaroos and tammar wallabies. The effects of each 

herbivore on A. huegeliana seedlings could therefore be more accurately determined. 

The interpretation of the results of this study is somewhat limited by not having a 

treatment that only kangaroos were able to enter and not tammars, thus exhibiting the 

effect of kangaroos alone: this was logistically impossible to achieve. However, the 

effects of kangaroos can be inferred by examining the difference between the area 

where both tammars and kangaroos could access, and the exclosure where only 

tammars had access to seedlings.  

 

Large numbers of A. huegeliana seedlings were browsed in unfenced areas where 

both kangaroos and tammars had access to seedlings. Although seedlings were able to 

tolerate heavy browsing, the height growth of most seedlings in areas with no 

vegetation cover was effectively suppressed. In the exclosures where only tammars 

could access seedlings, these mammals browsed only a few seedlings and had little 

impact on emergence, growth and survival. Fewer tammar scats were deposited in the 

unfenced areas than the exclosures, and assuming that scats are correlated with 

browsing activity (Chapter 4), tammars were most likely less abundant  than 

kangaroos and browsed less in the unfenced areas. Even if tammars had a similar 

impact on seedlings in the two areas they could access, most browsing and 

subsequent effects on seedling growth and survival in unfenced areas can be 

attributed to kangaroos.  
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Although western grey kangaroos are often considered to consume primarily grasses, 

they have been found to frequently consume Casuarina spp. in a Eucalyptus wandoo-

grass pasture landscape near Bakers Hill (east of Perth) (Halford et al. 1984) and a 

variety of shrub and tree species in Eucalyptus forest at Perup Nature Reserve in 

southwest Western Australia (Shepherd et al. 1997). Results from this study provide 

increasing evidence that western grey kangaroos consume shrub and tree seedlings as 

well as grasses. The large extent of browsing carried out by kangaroos indicates that 

this herbivore plays an important role in slowing A. huegeliana encroachment into 

kwongan. The higher growth and survival rate of seedlings where kangaroos were 

excluded indicates that the abundance of A. huegeliana seedlings would be 

remarkably greater if kangaroos were absent or if browsing activity was lower.  

 

The limited impact of tammars on seedling emergence, growth and survival suggests 

that these wallabies have little impact on A. huegeliana encroachment into kwongan 

even where their densities are high. These results cast doubt on Main’s (1993) theory 

that the decline of tammar wallabies during the 1970s caused the encroachment of A. 

huegeliana into kwongan at Tutanning. The low levels of browsing by tammars in 

this study are consistent with results obtained in Chapter 6, which found that similar 

numbers of A. huegeliana seedlings were browsed at three Nature Reserves in the 

wheatbelt even though tammars were absent from two of these reserves. Additionally, 

large numbers of seedlings are currently establishing in many kwongan patches at 

Tutanning (Chapter 2) despite the tammar population having recovered to high 

densities since the early 1990s (Chapter 3). Reintroduction of tammars to other 

reserves is therefore unlikely to affect A. huegeliana encroachment.  
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Brush wallaby scats were absent from the study site and few scats were found at other 

sites at Tutanning (Chapter 4). There are no records of a massive decline in brush 

wallaby populations similar to that experienced by tammars during the 1970s at this 

reserve. Therefore, brush wallaby populations may be naturally low at this reserve or 

the decline of this species was not noted. Brush wallabies appear to be much more 

abundant at a site at Dongolocking Nature Reserve, where their scats were found to 

be as abundant as kangaroos (Chapter 4). However, huge numbers of seedlings are 

also present at the site (Chapter 2). Therefore, it appears unlikely that the low 

population densities or possible decline of this species at Tutanning caused A. 

huegeliana to encroach into kwongan. 

 

The loss of mammal herbivores from other parts of Australia has been suggested as 

causing increased recruitment of particular species. Kirkpatrick (2004) considered 

that the loss of wallabies and wombats from an urban remnant in Tasmania 

contributed to increased densities of Eucalyptus and Allocasuarina trees in areas of 

grassy woodland. The loss of the burrowing bettong (Bettongia lesueur), brush-tailed 

bettong (B. penicillata) and bridled nailtail wallaby (Onychogalea fraenata) has 

similarly been identified as enabling several woody shrub species to encroach into 

semi-arid pastoral lands in eastern Australia (Noble & Grice 2002; Noble et al. 2007). 

The loss of selective browsing following fire was considered to be particularly 

important in causing changes to vegetation in both of these systems, and is examined 

in the context of this study in Chapter 9.  

 

While herbivores had a major impact on A. huegeliana seedlings, microhabitat 

conditions also appear to have a substantial impact on the seedling establishment. 
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Seedling survival (sown seeds) appeared to be more favourable at location 3, but 

growth and survival of planted seedlings (green-stock) was more favourable at 

Location 2. These differences are most likely due to variations in biotic or abiotic 

conditions across the site which affects the favourability of the locations for 

establishment (Chapter 7).  

 

Establishment also appears to vary substantially between sites within Tutanning. 

Seedlings survival (sown seeds) was much lower in this study than at another site at 

Tutanning where emergence and survival studies were conducted at the same time 

(Chapter 6). These differences are also likely to be due to variation in environmental 

conditions between the sites. The process of A. huegeliana invasion into kwongan is 

therefore complicated, and the rate of encroachment is affected by a number of 

factors that can vary between sites that at first glance appear to be relatively similar.  

 

This chapter has shown that kangaroos are responsible for most of the browsing that 

occurs on A. huegeliana seedlings in kwongan. Seedlings are only able to establish in 

kwongan because they can escape browsing by establishing in perennial shrubs. 

However, without kangaroos the encroachment of A. huegeliana into kwongan would 

be much more extensive and rapid. Tammars have a limited effect on the 

establishment of A. huegeliana seedlings even where tammar densities are relatively 

high. It is therefore unlikely that the decline of tammars during the 1970s at 

Tutanning was responsible for A. huegeliana encroachment into kwongan at this 

reserve. The decline of mammal herbivores does not appear to be the main cause of 

A. huegeliana encroachment into kwongan in the Western Australian wheatbelt.  
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Chapter 9  

 Effects of herbivore exclusion on seedling 

recruitment following fire 
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9.1 Introduction  

Chapters 6 and 8 showed that herbivores were unable to entirely prevent the 

establishment of A. huegeliana seedlings during long fire-free periods because the 

kwongan is dominated by woody shrubs that protect seedlings browsing herbivores. 

However, selective browsing by herbivores after fire, when the kwongan shrubs that 

previously protected seedlings from herbivores have been removed, may be important 

in limiting A. huegeliana seedlings that recruit in kwongan. 

 

Browsing and grazing by native mammals has been shown to have a considerable 

effect on seedling survival in recently burned areas in a number of vegetation 

communities in Australia. Leigh and Holgate (1979) found that post-fire herbivory by 

eastern grey kangaroos, red-necked wallabies (Macropus rufogriseus) and wombats 

(Vombatus ursinus) caused a large decline in the survival of seedlings, and 

resprouting trees and shrubs. Meers & Adams (2003) illustrated how grazing by 

eastern grey kangaroos in areas of burnt Eucalypt open forest can significantly affect 

seedling density and survival. Three shrubs species were entirely eliminated from 

areas that were grazed. Following a fire in mallee vegetation, grazing by eastern grey 

and red kangaroos has been shown to reduce the survival of Acacia seedlings where 

the area burned was relatively small (20–50 ha) (Cohn & Bradstock 2000).  

 

Browsing by smaller herbivores following fire has also been shown to limit seedling 

recruitment. Wykes & McArthur (1995) found that grazing by tammar wallabies on 

Garden Island following a small fire (9 ha) eliminated seedlings of the tree species C. 

preissii and Melaleuca hueglii. On nearby Rottnest Island, grazing by Quokkas 

(Setonix brachyurus) has been implicated in the failure of the tree species Melaleuca 
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lanceolata and Callitris preissii to regenerate following fire (Rippey & Hobbs 2003). 

In addition to native mammal herbivores, grazing by rabbits (Leigh et al. 1987; 

Wimbush & Forrester 1988; Cohn & Bradstock 2000) and invertebrates such as 

grasshoppers (Goniaea spp.) has also been found to have a significant effect on 

seedling survivorship following fire (Whelan & Main 1979). 

 

It was beyond the scope of this study to undertake experimental fires in kwongan 

where Allocasuarina huegeliana encroachment had occurred to determine the effects 

of post-fire browsing. However, an opportunity to observe the effects of herbivores 

on A. huegeliana recruitment following fire arose at Boyagin Nature Reserve when 

the Department of Environment and Conservation (DEC) carried out a prescribed 

burn covering 176 hectares of the reserve in early May 2004. A number of 10 × 10 m 

wire exclosures were erected after the fire in several different vegetation types, 

including two exclosures within A. huegeliana woodland. The exclosures excluded all 

vertebrate herbivores, including rabbits, and no herbivore scats were observed inside 

the fenced area.  

 

This chapter aims to determine the effects of mammal herbivore browsing on the 

density and height of A. huegeliana seedlings after a fire in an area of woodland at 

Boyagin Nature Reserve in the Western Australian wheatbelt.  
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9.2 Methods and materials 

9.2.1 Study site 

Boyagin Nature Reserve is a remnant of natural bushland on the western edge of the 

Central Wheatbelt, located about 24 km north east of Pingelly (about 45 km 

northwest of Tutanning Nature Reserve). The 4780 ha reserve is comprised of two 

blocks (west and east) separated by a gap of approximately 500 m of farmland. The 

vegetation consists of Eucalyptus wandoo, E. accedens and Allocasuarina huegeliana 

woodland and areas of kwongan (Nevill 2001).  

 

9.2.2 Effects of herbivore exclusion on seedling density and height 

The effects of browsing and grazing on plant communities after fire have been 

assessed using used a range of measurements including survival, height, density, 

percentage cover, number of leaves, leaf area, and species richness, abundance and 

frequency (Leigh & Holgate 1979; Tozer & Bradstock 1997; Cohn & Bradstock 

2000; Meers & Adams 2003; Rippey & Hobbs 2003; Hill & French 2004). Plant 

height and density are two measurements that can be measured are easily and rapidly 

and were therefore selected for use in this study. The above studies have ranged from 

12 months to 8 years in duration; however, most have showed significant effects of 

herbivores on the plant community within the first two years after fire. Plant 

measurements for this study were recorded 30 months after fire and are therefore 

likely to show herbivore impacts on the regeneration of A. huegeliana.  

 

A. huegeliana seedling heights and densities were recorded inside and outside the two 

exclosures in November 2006. Within each exclosure, sixteen 1 m × 1 m quadrats 

were located across an evenly spaced grid, and the number of seedlings within each 
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quadrat was recorded. Outside each exclosure, four 1 m2 quadrats were located within 

the 10 × 10 m areas adjacent to the four sides of the exclosure (total of 16 quadrats), 

and the number of seedlings was also counted. Seedlings heights were recorded from 

32 randomly selected seedlings inside the exclosures, and from the same number of 

seedlings in the area surrounding the exclosure, up to 10 m away from the fence. 

 

The effect of excluding herbivores on seedling height and density were examined 

using paired t-tests with the average seedling height and density for inside and outside 

each exclosure. Only two replicates were therefore available for analysis. 
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9.3 Results 

9.3.1 Effects of herbivore exclusion on seedling density and height 

Seedlings were taller inside the exclosures than outside the exclosures, where they 

were exposed to mammal herbivores. Seedlings were similar heights outside both 

exclosures, but were taller within Exclosure 1 than Exclosure 2 (Figure 9.1). Seedling 

densities were very high within Exclosure 2. Stem densities were low in comparison 

within Exclosure 1 and outside both exclosures (Figure 9.2). Results from the t-tests 

indicated that there was no significant difference in seedling height (t1 = 3.40, P = 

0.182) and density (t1 = 1.13, P = 0.462) inside and outside the exclosures. It should 

be noted that the sample size was very small and seedling density variances were not 

equal, which limited the analysis. 

 

97.7

65.8

31.234.3

0

20

40

60

80

100

120

Exclosure #1 Exclosure #2

Se
ed

lin
g 

he
ig

ht
 (c

m
)

Inside Outside

 

Figure 9.1: Mean seedling height (at two and a half years), inside and outside two exclosures located 

in an Allocasuarina huegeliana woodland burned in April 2004 at Boyagin Nature Reserve. 
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Figure 9.2: Mean seedling density (at two and a half years), inside and outside two exclosures located 

in an Allocasuarina huegeliana woodland burned in April 2004 at Boyagin Nature Reserve. 

 

9.4 Discussion 

Results from this study showed that A. huegeliana is a fast-growing species following 

fire, and browsing by herbivores has a significant impact on seedling height. Without 

herbivory, seedlings grew to heights of almost 1 m during the two and a half years 

following fire. At current levels of browsing pressure at this reserve seedlings were 

restricted to heights of less than 40 cm.  

 

The suppression of seedling height growth by herbivores indicates that these trees 

would take longer to reach reproductive maturity. Propagule supply from the A. 

huegeliana woodland into neighbouring vegetation communities such as kwongan 

would therefore be lower for a longer period of time. Such a reduction in propagule 

pressure would potentially delay encroachment of A. huegeliana into kwongan, but 

how long this effect lasts is unknown. 
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A. huegeliana appears able to establish at high densities following fire. Seedlings 

established at densities ranging from 10 000 to 770 000 stems per hectare at Boyagin. 

Other studies have also shown prolific recruitment of A. huegeliana seedlings 

following fire. After a fire in the nearby Dryandra Nature Reserve the density of two-

year-old A. huegeliana saplings varied from 16 800 to 103 600 plants per hectare 

(Ladd 1989). At Chiddarcooping Nature Reserve, located ca. 360 km northeast of 

Perth near the eastern margin of the wheatbelt, A. huegeliana seedlings established at 

densities of 548 000 plants per hectare following a fire in 1987 and around 300 000 

plants per hectare following a fire in 2000 (Yates et al. 2003). 

 

The limitations of the experimental design and the large differences in seedling 

densities between the two exclosures make it difficult to be conclusive about the 

effect of browsing on seedling density. The difference in seedling density between the 

two locations where herbivores were excluded may be due to natural patchiness in 

seedling density. Alternatively, factors such as the size of the seed bank, soil type or 

erosion may have varied between the two locations and affected the density of 

seedlings recruited. However, field observations indicated that herbivore exclusion 

had a substantial impact on recruitment at both exclosures (Figure 9.3). 

 

The mammal community at Boyagin has undergone a similar decline in diversity and 

abundance to that experienced in remnants throughout southwest of Western 

Australia (Kinnear et al. 2002). During a survey in 1972 only one tammar was 

sighted and after intensive trapping in 1982 only one brushtail possum was captured 

(Kinnear et al. 2002). Fox baiting was implemented at Boyagin from 1985 to 1989 

and most species have to some extent recovered. Woylies, numbats and quendas have 
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been successfully reintroduced (Orell 2004). Tammar and brush wallabies are also 

present but only occur in small numbers (Kinnear et al. 2002; Orell 2004). The 

kangaroo population most likely remains similar to historical levels (see Chapter 3).  

 

Field observations of herbivore scats around the exclosures at Boyagin indicated that 

kangaroos were the most abundant herbivore at the site and tammar wallabies were 

also present in low numbers. Although rabbits are assumed to be present at the 

reserve, no scats or warrens were observed at the site. Since rabbits rarely graze more 

than 300–400 m away from their warrens (Leigh et al. 1989), most of the post-fire 

browsing effects can be attributed to kangaroos and tammars.  

 

The current herbivore community at Boyagin is comparable to the other wheatbelt 

Nature Reserves (Durokoppin, Dongolocking and Tutanning) studied in this project. 

Therefore, the herbivore communities present at these reserves are likely to have a 

similar effect on A. huegeliana recruitment if a fire was to occur. However, post-fire 

browsing may be more intense at reserves where mammal populations are more 

abundant, such as tammars at Tutanning or brush wallabies at Dongolocking. The 

effect of herbivores after fire can also be greater in smaller or patchy burns 

(Christensen & Maisey 1987; Cohn & Bradstock 2000).  

 

The decline of herbivores and the loss of their ecological function in selective post-

fire browsing have been implicated in vegetation change in other parts of Australia. 

Noble and Grice (2002) and Noble et al. (2007) suggested that in the semi-arid 

pastoral lands in eastern Australia, episodic fire and selective browsing by medium-

sized marsupials including the burrowing bettong (Bettongia lesueur), brush-tailed 
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bettong (B. penicillata) and bridled nailtail wallaby (Onychogalea fraenata), which 

are now regionally extinct or rare, contributed to regulating populations of native 

shrub species that are now regarded as ‘woody weeds’.  

 

The burrowing bettong and brush-tailed bettong (or woylie) were historically present 

at all of the reserves studied (Chapter 3). The burrowing bettong is now locally 

extinct at all of these reserves and the brush-tailed bettong is only present in small 

numbers at Boyagin and Tutanning. The decline or absence of these species may also 

contribute to A. huegeliana encroachment into kwongan throughout the wheatbelt. 

However, if A. huegeliana populations are regulated through selective browsing 

following fire, the results from this study indicate that there are other mammal 

herbivores remaining at most reserves that would fulfil this function.  

 

This chapter has shown that native herbivores, particularly kangaroos, can have a 

large impact on the recruitment of A. huegeliana seedlings following fire in woodland 

areas. However, the impact of browsing on A. huegeliana seedlings in kwongan after 

fire and whether current herbivore populations can eliminate A. huegeliana seedlings 

from kwongan remains to be seen. Results from this study suggest that recruitment of 

A. huegeliana seedlings following fire is likely to be very dense in patches of 

kwongan that are heavily invaded with many fruit-bearing trees. However, fire and 

post-fire herbivory may be able to eliminate most A. huegeliana seedlings within 

kwongan patches that have been less encroached upon. This can only be determined 

by undertaking experimental investigations after burning patches of kwongan of 

different sizes with different levels of A. huegeliana encroachment, ideally at several 

reserves. Unfortunately this could not be carried out during this study. 
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Figure 9.3: Photographs of Exclosure 1 (October 2005) in an area of Allocasuarina huegeliana 

woodland at Boyagin Nature Reserve burned in April 2004. Top: the exclosure fence line. Middle: A. 

huegeliana seedlings inside the exclosure. Bottom: (directly adjacent to the exclosure) limited A. 

huegeliana recruitment outside the exclosure. 
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Prior to this study, little was known about A. huegeliana encroachment into kwongan 

in the Western Australian wheatbelt. This lack of knowledge posed a problem for the 

conservation of remaining areas of kwongan in the region (Chapter 1). This study 

attempted to address these issues by determining whether the encroaching populations 

were likely to persist and increase, which factors affect the rate and extent of 

encroachment, and whether altered fire and browsing regimes were driving this 

process. This chapter will describe the findings of the study, propose a conceptual 

model of the encroachment process, discuss the limitations of the study and identify 

further research directions and explain other factors (than those investigated in this 

study) that may cause or contribute to encroachment. It will then describe the 

problems associated with conserving dynamic ecosystems and explain the need for 

urgent management and restoration strategies.  

 

10.1 Summary of chapters 

This study confirms that A. huegeliana has encroached into patches of kwongan in the 

central and southern wheatbelt, both where A. huegeliana woodland was an adjacent 

community and where it was not (Chapter 2). A. huegeliana has dispersed widely 

throughout these patches of kwongan and recruitment appears likely to continue in 

most areas. Although most sites were dominated by seedlings and juvenile plants, a 

few sites were dominated by large trees that had formed a dense canopy over the 

kwongan understorey (Chapter 2). 

 

Few of the environmental factors measured in this study affected the extent of 

encroachment in unburned patches of kwongan (Chapter 2), the location of juvenile 

A. huegeliana plants (Chapter 5) or seedling establishment (Chapter 7). The primary 
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requirements for A. huegeliana to establish in kwongan were a seed source (Chapters 

2 and 5) and the presence of perennial shrubs (Chapters 5 and 6). In contrast to the 

commonly held understanding that vegetation communities in southwestern Australia 

are largely controlled by soil factors, these did not appear to limit A. huegeliana 

encroachment (Chapter 2). However, soil sampling was limited in both profile depth 

and in the range of properties analysed.  

 

Perennial shrubs were important for seedling establishment because they provided a 

refuge from browsing mammal herbivores, rather than by improving microhabitat 

conditions (Chapter 6). Western grey kangaroos browsed extensively on A. 

huegeliana seedlings in areas with no vegetation cover (Chapter 8) and significantly 

reduced the number of seedlings that established in kwongan (Chapters 6 and 8). 

Mammal herbivores were unable to entirely prevent the establishment of A. 

huegeliana seedlings in kwongan because numerous seedlings escaped browsing by 

establishing in perennial shrubs (Chapter 6). 

 

Although the mammal communities varied among the reserves, the abundance of 

western grey kangaroos was similar (Chapter 4) and browsing pressure on A. 

huegeliana seedlings in kwongan was also similar (Chapter 6). This is likely to be the 

case with other reserves of a similar or larger size throughout the wheatbelt. 

However, in smaller vegetation remnants kangaroos may be absent or their 

populations less abundant (Arnold et al. 1995). In these areas browsing pressure 

would be lower and encroachment of A. huegeliana into kwongan is therefore likely 

to be more rapid and extensive (Chapter 8). 
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Main (1993) proposed that the decline of native mammal herbivores was responsible 

for Allocasuarina encroachment. In particular, the decline of tammar wallabies during 

the 1970s at Tutanning enabled A. huegeliana to encroach into kwongan. Mammal 

communities are less diverse and most species less abundant now than they were at 

the time of European settlement (Chapter 3). However, the patterns of decline from 

the 1900s onwards were very different among the reserves studied and there was no 

native mammal common to all three reserves that declined around the time many A. 

huegeliana plants began to establish in kwongan in 1970s (Chapter 3).  

 

Although the population of tammars declined massively at Tutanning during the 

1970s, they have since recovered to levels where they are locally considered to be 

pests (Chapter 3). Tammars had a limited effect on the establishment of A. huegeliana 

seedlings at Tutanning even where their densities were relatively high (Chapter 8). In 

addition, brush wallaby populations appear to have recovered at a site at 

Dongolocking (Chapter 4), but huge numbers of seedlings are establishing in 

kwongan it this remnant (Chapter 2). It therefore appears unlikely that the decline of a 

single mammal species, including tammars, is the main cause of A. huegeliana 

encroachment.  

 

10.2 Conceptual model of Allocasuarina huegeliana encroachment  

A. huegeliana encroachment into kwongan appears to be driven primarily by 

increasing propagule pressure from adjacent or nearby A. huegeliana woodland and 

exacerbated by the availability of safe sites within mature woody shrubs. If sufficient 

amounts of seed enter a site to allow a species to overcome recruitment limitation 

many native or naturalised plant species can become established and persist in sites 



 170

from which they were previously absent (Tilman 2004). Propagule pressure and 

woody shrub development are both driven by increased inter-fire intervals.  

 

As time since fire increases, A. huegeliana trees grow taller and canopy sizes 

increase. Consequently, the supply of propagules and dispersal distance into nearby 

kwongan also increases (Figure 10.1). Kwongan shrubs grow larger as time 

progresses and provide safe sites for A. huegeliana seedlings to establish where they 

are inaccessible to browsing herbivores. If no fires occur, the kwongan shrubs 

eventually senesce and inter-specific competition is reduced. However, field 

observations suggest that senescent shrubs would continue to provide a physical 

barrier that prevents herbivores from browsing on seedlings that establish within 

them. As the A. huegeliana plants that have established in kwongan grow and 

reproduce, they further increase propagule pressure. Seedlings continue to establish 

increase until the carrying capacity of the site has been reached. 

 

Fire appears to be the only mechanism that could prevent encroachment by killing the 

source supply of propagules from A. huegeliana trees in neighbouring woodland 

areas, removing kwongan shrubs that protect seedlings from herbivores and killing 

any A. huegeliana seedlings that have established in kwongan. Selective browsing by 

native mammal herbivores following fire may also be important in removing A. 

huegeliana seedlings that establish in kwongan following fire (Chapter 9). 

 

Fire regimes have been dramatically altered throughout the wheatbelt and many 

kwongan remnants that were historically burned at frequencies of between 1 and 20 

years have not been burned for more than 60 years (Chapter 1). To inhibit A. 
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huegeliana encroachment in the past, fires would have had to occur at intervals 

frequent enough so that few A. huegeliana plants established in kwongan and matured 

to produce fruit. A. huegeliana may shed seed throughout the year, but there is always 

carry-over of propagules in the canopy (Ladd 1989). This species is therefore able to 

regenerate prolifically after fire because a heavy seed rain is released from the cones 

stored in the canopy (Ladd 1989). When encroaching populations are producing fruit, 

fire may therefore promote regeneration of A. huegeliana rather than inhibiting it. 

However, if patches are subjected to successive fires at short intervals A. huegeliana 

may also be removed. 

  

10.3 Study limitations and further research directions 

The research in this thesis focussed on the effects of browsing by mammal herbivores 

and a range of environmental factors on A. huegeliana establishment in unburned 

kwongan. While the effects of these factors have been clarified to an extent, there are 

a number of limitations to the findings of this study. These limitations arise from both 

the studies that were carried out and from the areas that were not investigated and 

include incomplete knowledge about the effects of encroachment on kwongan, the 

effect of interactions among patch-scale characteristics on the extent of 

encroachment, the role of soil in determining the vegetation communities it supports, 

and the effects of fire and post-fire herbivory on kwongan and encroaching A. 

huegeliana populations. These factors may have an important effect on A. huegeliana 

encroachment. Research into these areas would provide a greater understanding of the 

processes driving A. huegeliana encroachment and benefit the development of 

appropriate and effective management strategies. 
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Figure 10.1: Conceptual diagram of Allocasuarina huegeliana encroachment into kwongan and the 

changes in structure and composition that is likely to occur over time as the community progresses 

from kwongan shrubland to A. huegeliana woodland in the absence of fire. The first three boxes 

encompass the transitions covered in this thesis. The solid arrows indicate possible changes to the 

community if fire and selective browsing by herbivores (following fire) were to occur at the different 

stages of development. The lower two boxes are largely speculative and the dashed arrows indicate 

totally speculative transitions. 

Infrequent fire causes A. huegeliana
regeneration and maintains woodland 

Fire and/or 
browsing by 

herbivores after fire 
kills A. huegeliana 

seedlings and 
maintains kwongan 

Fire causes 
numerous  

A. huegeliana 
seedlings to 
regenerate in 

kwongan; browsing 
herbivores remove 

some/many 
seedlings 

Fire causes prolific 
A. huegeliana 

regeneration, which 
out-competes 

kwongan 

Repeated fires 
cause the 

woodland to revert 
to a depauperate 
form of kwongan 

shrubland.   A. huegeliana woodland with scattered 
kwongan shrubs in understorey 

As the canopy becomes denser, conditions 
become more unfavourable for kwongan 
shrubs. Plant species diversity declines as more 
shrubs are lost from the community. 

Frequent fire promotes regeneration 
of kwongan species  

Kwongan shrubland 
High plant species diversity; no A. huegeliana. 

Kwongan shrubland 
(depauperate) 

Low species diversity; 
few A. huegeliana. 

Kwongan with A. huegeliana overstorey 
Woodland forms as A. huegeliana trees grow 
taller and develop larger canopies, which drop 
large quantities of leaves on the ground below. 
Conditions are less favourable for kwongan 
shrubs and some are lost from the community.  

Kwongan with scattered A. huegeliana trees 
A. huegeliana plants mature and begin to 
reproduce. Seedling recruitment increases with 
propagule pressure, but eventually decreases as 
the carrying capacity of the site is reached. 

Kwongan with A. huegeliana seedlings 
A. huegeliana seeds are dispersed into kwongan, 
and seedlings establish within shrubs where they 
are protected from browsing herbivores.  
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10.3.1 Impacts of encroachment on kwongan  

This study did not examine the impact of A. huegeliana encroachment on species 

richness and composition of kwongan, or on other factors such as soil properties and 

fire regimes. Due to the high degree of heterogeneity among patches of kwongan 

(Chapter 2), a comparison of sites where A. huegeliana had and had not colonized 

would not provide reliable analysis of the effects of encroachment. Historical data 

sets of species richness and abundance in patches of kwongan at Tutanning exist 

(Brown & Hopkins 1983), and some of patches have since been encroached upon 

while others have not. Re-surveying these sites may provide a valuable insight into 

the effects of encroachment on kwongan.  

 

The impacts of A. huegeliana encroachment in a heterogeneous system such as 

kwongan may alternatively be assessed at smaller scales by undertaking 

chronosequence studies within particular sites, for example Costello et al. (2000). 

However, such studies require the accurate identification of tree growth ring markers. 

This study found that reliable growth rings could not be identified for A. huegeliana. 

If further studies are also unsuccessful in establishing dendrochronological sequences 

for A. huegeliana surrogate characteristics for age, such as height, stem diameter and 

canopy size, may be useful in determining the effects of encroachment on species 

richness as time progresses. Such information is essential to better understand the 

potential loss of species from this high conservation value community and thus 

clarify the urgency of this issue.  

 

The impact of A. huegeliana encroachment on soil properties may have a significant 

effect on the persistence of kwongan. Main (1993) suggested that the increased 
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densities of Allocasuarina cause greater quantities of nitrogen to be fixed in the soil 

and contributes to soil acidity. He further proposed that Allocasuarina can grow in 

acid conditions to its advantage relative to other shrubs and so contributes to their 

decline in abundance. An assessment of the impacts of A. huegeliana on soil 

properties should indicate whether mature stands of this species can raise soil nutrient 

or acidity levels to an extent that the sites can not support kwongan again i.e. they 

form alternative stable states, even if repeated fires were implemented. 

 

Mature A. huegeliana stands may alter fire regimes and, in turn, have an important 

effect on the regeneration potential of kwongan. Mature stands of A. huegeliana may 

inhibit fires and thereby help perpetuate the encroachment process. This issue, and the 

others described above, is likely to become of increasing importance as the current, 

recently invaded sites become dominated by mature A. huegeliana stands. 

 

10.3.2 Patch-scale characteristics 

The effect of interactions among patch-scale characteristics (e.g. time-since-fire, 

propagule pressure, and soil type) on the extent of encroachment at each patch could 

not be analysed because there were not enough patches to fit multiple regression 

models. A broader survey of kwongan throughout the wheatbelt to include patches 

that have and have not been colonized by A. huegeliana, and characteristics such as 

herbivore abundance, may provide a greater understanding of the interactive effects 

of these patch-scale characteristics on the extent and rate of encroachment that were 

not detected in this study. A greater understanding of these effects may identify 

particular characteristics that indicate the susceptibility of a kwongan patch to 

encroachment, which would assist in prioritising remnants for management.  
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10.3.3 Soil analyses 

Results from this study found that A. huegeliana encroachment is occurring in a range 

of soil types, and that this factor did not appear to exclusively determine vegetation 

community boundaries (Chapter 2). However, soil sampling was limited in depth 

(only the top 10 cm was sampled) and the analysis did not include factors such as 

compaction, organic matter, nutrients or a range of other chemical properties that may 

affect A. huegeliana establishment. Additionally, soil sampling was limited to 

kwongan. Sampling areas of A. huegeliana woodland through the boundary transition 

areas and into kwongan may reveal more about the differences in soil characteristics 

between the two vegetation communities.  

 

10.3.4 Effects of fire and post-fire browsing in kwongan 

No experimental fires were carried out in this study and therefore a number of 

uncertainties remain about the role of fire and post-fire browsing in preventing A. 

huegeliana encroachment in the past, and whether these can be used as tools to 

eliminate A. huegeliana from patches of kwongan that have been encroached upon. 

Key questions that remain include: 

• Can shorter fire intervals can prevent encroachment by A. huegeliana. If so, what 

fire interval length is appropriate? 

• Do A. huegeliana seedlings commonly recruit in kwongan that has not been 

encroached upon after fire, particularly in areas bordering A. huegeliana 

woodland? If so, what eliminates these seedlings (e.g. browsing or interspecific 

competition) after fire to maintain the kwongan structure? 

• What are the effects of fire in kwongan that has been encroached upon to a 

varying extent on A. huegeliana recruitment?  
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• Can successive fires within a short interval (e.g. 5 years) eliminate A. huegeliana 

from kwongan that has been encroached upon without adversely affecting the 

kwongan community? 

• Can post-fire browsing by vertebrate and invertebrate herbivores eliminate A. 

huegeliana seedlings from kwongan that has been encroached upon? If so, what 

extent of encroachment is reversible by fire and post-fire browsing?  

 

10.4 Other potential causal factors of encroachment 

Altered fire and browsing regimes are commonly identified as factors causing 

encroachment and were the focus of this study. However, a range of other factors 

have also been implicated as causing encroachment in other systems including 

increased seed dispersal, climate change, increased atmospheric carbon dioxide (CO2) 

concentrations and combinations of these factors (Neilson 1986; MacDonald et al. 

1993; Polley et al. 1994; Savage et al. 1996; Weltzin et al. 1997; Allen & Breshears 

1998; Soulé et al. 2003).  

 

10.4.1 Climate change  

Studies of vegetation history using pollen analysis have suggested that Casuarina 

[Allocasuarina] was much more abundant in the past (> 1000 years) in some parts of 

Australia (Singh et al. 1981; Singh & Geissler 1985; D’Costa et al. 1989; Ladd et al. 

1992; Martin & McMinn 1994; Harle et al. 2002; Hope et al. 2004). In many areas 

Casuarina has since been replaced by eucalypt and heath vegetation (Kershaw et al. 

2002). The causes of Casuarina decline is much debated and has been attributed to 

climate change causing increased rainfall and leaching of soils that would favour 

other vegetation types (Ladd et al. 1992); increased fire frequencies as a consequence 
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of either increased biomass production due to increased rainfall (Ladd 1989), or the 

arrival of Aboriginal people to Australia (Singh et al. 1981; Singh & Geissler 1985); 

and increased soil salinity and/or rising groundwater levels (Crowley 1994).  

 

More recent changes in climate have also been cited as a major factor driving woody 

plant encroachment, but evidence in support of this contention is mixed. Williams et 

al. (1987) and Hobbs & Norton (2004) found that the rate of transition from annual 

grassland to shrubland in northern California, USA, was greatest during 1982–83 

when the highest levels of rainfall ever were recorded in the area. Shrub 

encroachment into Eucalyptus semi-arid savanna in north-western New South Wales, 

Australia, is also considered to occur during wet periods when soil moisture is 

sufficient for shrub seedlings to establish (Hodgkinson 1991). However, other studies 

have found no clear trends in increases in woody plant cover with changes in climate 

(e.g. Veblen & Lorenz 1988; Bahre & Shelton 1993; Knapp & Soule 1998; Dullinger 

et al. 2004; Briggs et al. 2005; Norman & Taylor 2005). 

 

Winter rainfall has decreased in the southwest of Western Australia since the mid 

1970s by about 15–20%, which has been attributed to natural variability and the 

enhanced greenhouse effect (IOCI 2002). While such changes would inevitably 

impact on ecosystem dynamics, encroachment has been primarily associated with 

periods of increased rainfall when conditions are more favourable for seedling 

recruitment (Savage et al. 1996; Mast et al. 1998; Ansley et al. 2001; League & 

Veblen 2006). Periods of drought, on the other hand, have been associated with 

widespread shrub and tree mortality and a consequential reduction in woody cover 

(Archer et al. 1988; Allen & Breshears 1998; Fensham et al. 2005). Although drought 



 178

may reduce the competitive effects of kwongan shrubs, it would appear unlikely that 

the decline in rainfall across the wheatbelt would cause A. huegeliana seedlings to 

establish.  

 

10.4.2 Altered hydrology 

The Western Australian wheatbelt had undergone significant hydrological change 

over the past 100 years. The broad scale clearing of perennial native vegetation and 

its replacement with annual crop plants has led to increased deep drainage of soil 

water and increased groundwater recharge. This has caused the development of 

shallow water tables and land surface salinisation (Peck & Williamson 1987; George 

1992; McFarlane et al. 1993). It may be possible that higher water tables levels are 

benefiting trees such as A. huegeliana, as the (generally) deeper root systems of trees 

come into contact with a rising water table earlier than understorey species (Cramer et 

al. 2004). Species of Casuarina [Allocasuarina] are among the most tolerant of 

Australia species to waterlogging and salinity (Bell 1999). Therefore, kwongan 

shrubs may be less able to tolerate increased levels of salinity than A. huegeliana, 

thereby decreasing plant vigour and competition with establishing seedlings. 

 

Many areas in the wheatbelt are affected by salinisation and waterlogging, and at 

most immediate risk are those systems that occur in the lowest landscape positions 

(Cramer & Hobbs 2002). A major topographical division exists between the valley 

floors and the uplands that support kwongan (Beard 1990). Rising water tables will 

affect the valley floors and some of the lower slopes, while systems located higher in 

the landscape (including kwongan) will be more protected from rising groundwater 

(Cramer & Hobbs 2002). Since kwongan is located high in the landscape the water 
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table most likely remains relatively deep in these areas and would subsequently have 

little impact on vegetation in these systems. If a rising water table benefited A. 

huegeliana it would only benefit mature trees with deep root systems that could 

access the water, not seedlings with shallow root systems. These changes are 

therefore unlikely to cause increased seedling establishment in kwongan.  

 

10.4.3 Increased atmospheric carbon dioxide (CO2) 

Increased atmospheric CO2 concentrations have recently been implicated in causing 

shrub and tree encroachment (Polley et al. 1994; Bond & Midgley 2000; Bond et al. 

2003; Soulé et al. 2003) through increasing biomass production and water use 

efficiency, and improving the ability of plants to cope with environmental stresses 

(see Knapp & Soule 1998). However, the mechanisms linking increased levels of CO2 

and encroachment are disputed in other studies (e.g. Archer et al. 1995; Wand et al. 

1996; Van Auken 2000). In their study on the effects of increased CO2 and land use 

on Australian vegetation over the past 200 years, Berry & Roderick (2002) concluded 

that encroachment may have been exacerbated by the increase in CO2, but other 

changes associated with European settlement were important. 

 

The effects of elevated atmospheric CO2 are thought to preferentially benefit woody 

as opposed to herbaceous species (Idso & Kimball 1993). Increased CO2 may 

therefore explain woody plant encroachment in grasslands or savannas (e.g. Bond & 

Midgley 2000; Bond et al. 2003). However, kwongan is dominated by woody shrubs. 

Elevated levels of atmospheric CO2 should therefore benefit both A. huegeliana and 

kwongan shrubs. However, it may be possible that certain species such as 

Allocasuarina are able to respond disproportionately to increasing CO2 through some 
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as yet unexamined differential effect. For example, increasing CO2 may affect the 

symbiotic relationship between Allocasuarina species and the nitrogen fixing bacteria 

Frankia or mycorrhizal fungi to enable greater nitrogen or nutrient uptake and thus 

benefit A. huegeliana over kwongan species. 

 

10.4.4 Reduced abundance of seed predators 

Another factor that may be contributing to A. huegeliana encroachment is the 

reduction of seed predators. Carnaby’s Black-Cockatoo (Calyptorhynchus latirostris) 

is endemic to the southwest of Western Australia. These cockatoos feed primarily in 

woodland and kwongan and their main food is seeds from species of Banksia, 

Dryandra, Hakea, Grevillea, Allocasuarina and Eucalyptus (Saunders 1980). 

Carnaby’s cockatoo has undergone a major decline particularly in the drier areas of 

its range and the central wheatbelt (Saunders 1990). Between 1968 and 1987 this 

species disappeared from over one third of its range, with both reduced density and 

local extinctions (Saunders & Ingram 1995). It is unknown whether Carnaby’s 

cockatoos consume A. huegeliana seed. However, other Black-Cockatoo species are 

known to consume large quantities of Allocasuarina seed and for some species it is 

their primary food source (Joseph 1982; Pepper et al. 2000; Crowley & Garnett 

2001). It is therefore possible that the decline of Carnaby’s cockatoos may have 

caused a decline in A. huegeliana seed predation and subsequently increased 

propagule supply into kwongan.  

 

A range of factors may be responsible for A. huegeliana encroachment. These factors 

may act alone or synergistically with each other and/or with altered disturbance 

regimes to cause or exacerbate encroachment. In complex systems such as these, it is 
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unsurprising that A. huegeliana encroachment may be the result of multiple 

interacting causal factors. This study investigated a subset of factors that were 

thought to be causing A. huegeliana encroachment and was of most proximal 

relevance to management. 

 

10.5 Problems associated with conserving dynamic ecosystems 

This study of A. huegeliana encroachment highlights the problems inherent in 

conserving dynamic ecosystems, not only in the Western Australian wheatbelt, but 

elsewhere in Australia and around the world. This study adds to the growing number 

of observations of ecosystems that are changing due to encroachment by species that 

were formerly more restricted in range or abundance (Veblen & Lorenz 1988; Cheal 

1996; Lunt 1998b; Rose et al. 2000; Roques et al. 2001; Kirkpatrick 2004; Briggs et 

al. 2005; Franco & Morgan 2007). These studies emphasise the need for active 

management to conserve vegetation communities in a particular desired state, rather 

than assuming that species assemblages would be maintained by ‘natural processes’. 

 

In systems where rapid change is occurring, decisions need to be made relating to 

what management goals should be. Should remnant vegetation be actively managed 

to maintain what is (or was) there? Or should these areas be left alone to enable 

current ecosystem processes to reach a new equilibrium even if this means a loss of 

plant species? Franco & Morgan (2007) suggest that one way to resolve this question 

is to ask what vegetation structure conserves the greatest overall biodiversity 

(including plants, invertebrates and vertebrates) and what management regimes are 

required to maintain this structure.  
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In the context of this study, conserving kwongan is particularly important due to its 

floristic diversity and high levels of endemism. However, conserving both kwongan 

and A. huegeliana woodland communities would most likely provide the greatest 

value to overall biodiversity. However, the reality of complex systems is that 

vegetation of the future will probably differ from the vegetation state chosen for 

conservation regardless of the management inputs imposed (Lunt 1998b).  

 

10.6 Need for management of remnant vegetation in the wheatbelt 

Conservation in fragmented ecosystems such as the Western Australian wheatbelt 

aims to maintain viable and representative species assemblages. Recently, much 

attention has been focused on conservation of areas threatened by processes such as 

salinity and grazing by livestock. There are also large areas that are not at risk from 

these processes, yet these areas are essentially unmanaged since there is a perception 

of lower levels of threat. This study has shown that in the absence of human 

intervention, ‘natural processes’ will not maintain A. huegeliana woodland–kwongan 

boundaries in remnant vegetation in the wheatbelt. These communities may be under 

increasing levels of threat if encroachment results in the loss of plant diversity as A. 

huegeliana forms dense stands that prevent kwongan species from regenerating.  

 

In order to conserve both kwongan and A. huegeliana woodland communities, 

restoration strategies are required to control or eliminate A. huegeliana populations 

that have already invaded heathlands. Management strategies also need to be 

implemented to prevent invasion occurring at other locations. Actions to eliminate or 

control A. huegeliana populations in patches of kwongan that have been encroached 

upon need to occur urgently while most sites are dominated by seedlings and juvenile 
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plants (Chapter 2), and thus fewer resources are required for management, and 

restoration outcomes are more likely to be successful.  

 

This study has shown that a range of potential factors may cause A. huegeliana to 

encroach into kwongan and multiple factors may interact to affect encroachment. 

Results have shown that changes in native mammal fauna are unlikely to be a main 

factor causing encroachment, and therefore the reintroduction of native mammal 

species is unlikely to affect this process. Increased fire intervals appear to be a likely 

factor driving A. huegeliana encroachment in kwongan. However, further research is 

required to determine whether this is the case and, if so, how best to use fire as a tool 

to manage A. huegeliana encroachment.   
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