

Ancient metamorphosed sedimentary sequences associated with greenstone belts in the granites of the Yilgarn Craton

Survey prior to 2004

- Beard mapping 1970s
- DEC & Museum Goldfields surveys 1980s
- Henry-Hall 1990
- DEC Greenstone & BIF Ranges surveys 1994-96
- Portman PER studies 2002

The Issue

Department of Industry & Resources

- BIF prospects in the Yilgarn 30th June 2004

DEC survey team

- Dr Adrienne Markey
- Dr Rachel Meissner
- Dr Wendy Thompson
- Jessica Allen
- Ben Bayliss
- Yvette Caurso
- Steve Dillon
- Gaynor Owen
- Niall Sheehy
- Jessica Wright

Why plot based survey?

- Repeatable
- Heterogeneity of units explicit
- Analyzed at a variety of scales
- Classifications can be refined as more information becomes available
- Requires detailed searches resulting in collection & identification of new and / or cryptic taxa

24 BIF ranges surveyed

Outcomes 2005 - 2009

- Established 1217 quadrats across 24 ranges
- Identified > 100 new populations of DRF & Priority taxa
- Identified 21 new taxa
- Documented 11 local endemics and 10 regional endemics
- Documented 69 major range extensions
- Lodged over 6200 vouches specimens
- Found a regular catenary sequence of vegetation types correlated with soil chemistry and landscape position
- Described 134 floristic community types and subtypes
- 17 papers published or in press
- 6 papers in review

Meta analysis

- ·Beta diversity
 - ·How similar are the ranges?
 - What are the major patterns in species richness?
 - To what degree is the compositional variation related to spatial and environmental factors?
 - •Can conservation value of the ranges be prioritised?

Beta diversity measures - richness Additive partitioning of a and \(\beta \) diversity

Regional species richness can be partitioned into its components of average number of species present in a plot (alpha diversity) and average number of species absent from a plot (beta diversity) allowing analysis of hierarchical scale patterning in species diversity.

```
Regional species richness = alpha (within quadrat) + beta (between quadrat) + beta (between ranges).
```

We used this method to examine patterns in alpha and beta diversity where we had 50-54 samples nested in 24 ranges nested in the one region.

Additive partitioning of α and β diversity components of total and perennial species richness in a hierarchical scaled study across 24 BIF ranges.

		Total				Perennial			
Source	No. samples	Observed	Expected	p	Observed	Expected	p		
$\beta_{\text{ (between ranges)}}$	24	742.0	564.8	0.001	501.7	381.0	0.001		
$\beta_{\text{(between plots)}}$	50 - 55	140.0	319.3	0.001	91.6	213.6	0.001		
$\alpha_{\text{(within plots)}}$	1217	23.9	22.0	0.001	15.7	14.4	0.001		
Total		906			609				

Beta diversity measures - composition

·Average Sørensen

mean of all pairwise dissimilarity measures on individual ranges or region (Jaccard 1900, 1901, 1908; Sørensen 1948, Steinhaus 1947, Odum 1950, Bray & Curtis 1957)

Multiple site diversity measures (Baselga 2010)

$$\beta_{SOR} = \beta_{SIM} + \beta_{NES}$$

TURNOVER

Site 1 xxxx
Site 2 xxxxxx
Site 3 x xxxxxxx

NESTEDNESS

Comparison of diversity values for 24 BIF ranges.

n = number of plots

S = total species / range

Mean Perennial = mean perennial species per plot

 β_{SOR} = multiple site Sørensen index

 β_{SIM} = multiple site Simpson index

 β_{NES} = multiple site nestedness index

Mean Sørensen = mean of all pairwise Sørensen dissimilarity measures.

Range	n	S	Mean Perennial	$\beta_{S \varnothing R}$	β_{SIM}	β_{NES}	Mean Sørensen
Во	51	188	19.3	0.948	0.936	0.013	0.634
Br	50	94	11.9	0.946	0.934	0.012	0.610
Bu	51	98	10.3	0.950	0.934	0.016	0.638
С	51	131	12.1	0.955	0.943	0.012	0.697
D	50	155	22.0	0.949	0.938	0.011	0.665
G	50	218	24.2	0.947	0.935	0.012	0.645
J	50	189	10.1	0.949	0.933	0.015	0.650
Ka	51	321	24.3	0.947	0.937	0.010	0.629
Ko	50	225	21.1	0.949	0.940	0.009	0.665
Le	50	97	13.3	0.945	0.929	0.017	0.608
Lg	51	154	21.6	0.950	0.943	0.007	0.657
Lm	50	98	13.4	0.951	0.935	0.016	0.687
Mg	50	232	17.6	0.949	0.939	0.010	0.663
Mi	52	298	22.8	0.948	0.935	0.013	0.636
Mm	50	68	11.0	0.945	0.929	0.016	0.617
Mn	52	130	10.7	0.956	0.941	0.014	0.708
Мо	50	84	11.2	0.945	0.926	0.020	0.596
R	50	153	11.9	0.944	0.927	0.018	0.592
S	50	126	13.4	0.952	0.939	0.012	0.679
V	50	78	8.6	0.952	0.935	0.018	0.674
We	52	232	14.2	0.946	0.931	0.015	0.600
Wi	50	173	18.4	0.948	0.927	0.021	0.633
Wo	51	173	14.0	0.943	0.924	0.019	0.595
Υ	55	221	19.7	0.956	0.938	0.017	0.698
All	1217	906	15.7	0.967	0.950	0.018	0.839

Variance partitioning

Partial redundancy analysis was used to assessed the contribution of each different set of predictors to community composition (Sørensen dissimilarity matrix) following methods of Legendre et al. (2005).

Broad scale spatial pattern

- Simple factor based on individual ranges.
- PCA of 19 BIOCLIM variables (8 precipitation and 11 temperature) for each plot from the 'one km grid' spatial interpolation of Hijmans et al. (2005).
 - Three PC accounted for 92% variance.
- Principal Coordinates of Neighbor Matrices generates a set of explanatory variables that have structure at all scales encompassed by plot locations down to a scale equal to the widest gap (c. 217 km) between neighbouring plots (Borcard & Legendre 2002).
 - 252 eigenfunctions were generated to cover broad scale pattern ranging between 217 & 700 km.
 - 57 vectors were found to be significant and these were used in subsequent analyses.

Variance partitioning: Broad Scale

Site variables

Altitude Range standardized (altitude meters)

North Cos(aspect radians)

East Sin(aspect radians)

Slope Degrees

Topographic position 7 classes

Coarse fragment size 7 classes

Coarse fragment abundance 7 classes

Rock outcrop abundance 6 classes

Litter cover 4 classes

Bare ground cover 4 classes

Soil chemistry

pH Normalized

Electrical Conductivity Log(v+1) + Normalized

Organic Carbon Log(v+1) + Normalized

Nitrogen Log(v+1) + Normalized

Phosphorus Log(v+1) + Normalized

Potassium Log(v+1) + Normalized

Calcium Log(v+1) + Normalized

SCORE1 PCA1 of 9 metal trace elements

SCORE2 PCA2 of 9 metal trace elements

SCORE3 PCA3 of 9 metal trace elements

Variance partitioning: Broad - Fine Scale

Conclusions

- •Demonstrate very high beta diversity in terms of both richness and composition.
- This beta diversity is primarily related to turnover.
- Composition high beta diversity is only partially correlated with climatic gradients and finer scale environmental patterning.
- •Suggesting that compositional patterns may have resulted from the stochastic processes happening over the extraordinarily long evolutionary times these systems have been functioning neutral theory processes cf. environmental control models.
- •In terms of a CAR reserve system each range is 'irreplaceable' sensus Pressy.
- •Is it possible to identify conservation priorities?

Patterns of specialists BIF taxa

- 24 taxa restricted to individual BIF ranges
- 6 taxa restricted to BIF but occurring across several ranges
- 14 that had their distributions centred on BIF ranges
- two hotspot of specialists BIF taxa
- these areas have highest conservation priority

