

Restoring an appropriate fire regime to fragmented vegetation: a vital attributes approach

Carl Gosper, Colin Yates and Suzanne Prober
CSIRO Sustainable Ecosystems and
WA Department of Environment and Conservation
2 December 2009

South-West Western Australia: a global biodiversity hotspot

- High richness and endemism in vascular plants
- Highly threatened
- Mediterranean climate
- Fire-prone landscape
- Poor understanding of historic fire regimes
- Fire is a key process driving vegetation composition, health and recruitment

The WA wheatbelt

Highly fragmented

As little as 2-3% cover in some districts Altered disturbance regimes

- Fire frequency, season, extent &/or intensity
- Different sources of ignition
- Loss of connectivity (for passage of fire)
- Fire exclusion and suppression
- Different parts of the landscape appear to be experiencing different fire intervals

CSIRO. Restoring an appropriate fire regime to fragmented vegetation

Restoring fire?

Conservation risks of infrequent fire:

- Vegetation community change
- Senescence
- Lack of recruitment opportunities

Uncertainty as to what constitutes an appropriate fire regime for biodiversity conservation

Study aim:

Can appropriate fire intervals for plant communities be reconstructed from sampling the vital attributes of firesensitive examples of key Plant Functional Types?

Species selection

Functional types vulnerable to fire interval

- Focus on processes and mechanisms that fire impacts species
- Means of persistence through fire (sprouter vs. obligate seeder)
- Means of seed survival (persistent soil-stored vs. canopy-stored)

Serotinous species

- Seed bank survival reliant on adult survival
- Seed bank exhausted in each disturbance
- Recruit predominately after disturbance

Serotinous species selection

Obligate seeders

Reliant of recruitment from seed for persistence after fire

Vulnerable to fire intervals:

- less than juvenile period
- greater than adult longevity (senescence)

Sprouters

Rely on adult survival, often having low rates of recruitment

Vulnerable to:

Adult mortality (competitive interactions, disturbance, disease)

Paired contrasts

Family	Obligate seeders	Sprouters	
Proteaceae	Banksia violacea	B. pteridifolia	
Proteaceae	Hakea pandanicarpa	H. incrassata	
Proteaceae	Petrophile glauca	P. seminuda	
Myrtaceae	Beaufortia micrantha	Leptospermum spinescens	

Methods

- Stratification by time since fire
- 9 vegetation ages
- Range: 2 to > 46 yrs post-fire
- Species sampled at 4 sites per fire age (more for > 46 yrs)
- 10 individuals per site Field measurements:
- Mortality
- Fruit number

Study community

Tallerack mallee-heath

- Tallerack *Eucalyptus pleurocarpa*
- Scattered mallees over dense shrub layer
- Myrtaceae and Proteaceae dominant
- This and similar communities (kwongan) are widespread across Mediterranean-climate SW Western Australia

Acceptable fire intervals

We use two methods to estimate minimum and maximum fire intervals

Minimum fire intervals

- Time to maturation and commencement of accumulation of seed bank
- Primary (obligate seeders) or secondary (sprouters) juvenile period
- Our estimates derived from (i) the proportion of individuals with fruit and (ii) mean fruit crop size

Proportion of individuals with fruit

- Time since fire when ≥ 50% of individuals carry fruit
- Derived from regression of the proportion of sampled individuals carrying fruit per site with time since fire

Secondary juvenile period ~ 8 yrs

Sprouter - Banksia pteridifolia

Obligate seeder - Petrophile glauca

Primary juvenile period ~ 15 yrs

Sprouter - Banksia pteridifolia

Mean fruit number

- Time since fire when mean number of fruits per plant reaches 25% of maximum
- Derived from regression of count data with time since fire (sites combined)

Obligate seeder - Petrophile glauca

Primary juvenile period ~ 20 yrs

CSIRO. Restoring an appropriate fire regime to fragmented vegetation

Acceptable fire intervals

Maximum fire interval

- Period when time since fire exceeds plant and/or seed bank longevity
- Appropriate metrics have not been well defined
- Our estimates derived from (i) the proportion of dead individuals and (ii) mean fruit crop size (measuring decline of the seed bank)

Sprouter - Banksia pteridifolia

Proportion of dead individuals

- Time since fire when ≥ 25% of individuals are dead
- Derived from regression of the proportion of dead individuals per site with time since fire

Obligate seeder - Petrophile glauca

Max. interval > 46 yrs

CSIRO. Restoring an appropriate fire regime to fragmented vegetation

Mean fruit number

Sprouter - Banksia pteridifolia

- Time since fire when mean number of fruits per plant declines to 25% of maximum
- Derived from regression of count data with time since fire (sites combined)

Obligate seeder - Petrophile glauca

Fruit crop declined in long unburnt vegetation, but did not reach 25% threshold

Minimum fire intervals – all species

Time since fire to:	≥ 50% of popn.	25% of max. crop
Obligate seeder (primary juv. period)		
Banksia violacea	Did not reach	19 yrs
Hakea pandanicarpa	36 yrs	36 yrs
Petrophile glauca	15 yrs	20 yrs
Beaufortia micrantha	8 yrs	14 yrs
Sprouter (secondary juv. period)		
Banksia pteridifolia	8 yrs	3 yrs
H. incrassata	No relationship	No relationship
P. seminuda	No relationship	No relationship
Leptospermum spinescens	7 yrs	5 yrs

Maximum fire intervals – all species

Time since fire to:	25% mortality	25% of max. crop
Obligate seeder		
Banksia violacea	> 46 yrs#	No decline
Hakea pandanicarpa	> 46 yrs	> 46 yrs
Petrophile glauca	> 46 yrs	> 46 yrs#
Beaufortia micrantha	> 46 yrs#	> 46 yrs#
Sprouter		
Banksia pteridifolia	> 46 yrs#	No decline
H. incrassata	No relationship	No relationship
P. seminuda	30-40 yrs#	No relationship
Leptospermum spinescens	20-25 yrs	19-39 yrs

*Significant relationship with time since fire (increase in mortality, or reduction in fruit crop, in vegetation of a certain age), but did not reach relevant threshold

Appropriate fire intervals

- Based on the species sampled, an appropriate minimum fire return interval ~36 yrs
- Among obligate seeders, several show senescence under very long fire-return intervals (>> 50 yrs)
- Among sprouters, higher mortality and lower fruit crop size of some species at intermediate ages suggests than repeated intermediate intervals would lead to population declines
- From a plant vital attribute perspective, an appropriate fire return interval range may be variable, but within the range 36 ->>50 yrs

Restoration of fire interval

How do these estimates compare to recent fire regimes?

- Recent average fire intervals vary with landscape context (Blair Parsons unpubl. data):
 - Small remnants: ~340 yrs
 - Large remnants: ~70 yrs
 - Continuous vegetation: ~40 yrs
- Active fire introduction may be appropriate in small remnants
- A increase in fire interval may be desirable in continuous vegetation
- Challenges in fire regime restoration in remnants:
 - Weed invasion
 - Operational constraints

Vital attributes approach

Vital attributes:

- useful for deriving estimates of minimal fire intervals
- less useful in deriving estimates of maximum fire intervals, due to the lack of long-term fire history data
- do not provide any information on other aspects of fire regime that would provide guidance in restoring fire regimes in remnants (season, patchiness, extent, intensity)

Carl Gosper, Suzanne Prober and Colin Yates

Department of Environment and Conservation and CSIRO Sustainable Ecosystems

Phone: +61 8 9333 6442

Email: carl.gosper@csiro.au

Web: http://www.csiro.au/science/WAFireFragment.html

© CSIRO Australia, 2009

All photos: C. Gosper. Fire age polygons kindly provided by DEC Fire Management Services.

Thank you

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176

Email: enquiries@csiro.au Web: www.csiro.au

