Assessing the genetic costs of recurring population

crashes in the Woylie (Bettongia penicillata ogilbyi)

Dr Carlo Pacioni, Dr Peter Spencer, Dr Adrian Wayne

The Woylie has gone through genetic bottlenecks. One took place during early European settlement, and the other is occurring at the moment. These provide an ideal theoretical paradigm to study the genetic effects of genetic population

bottlenecks & conservation strategies

Characterise the historical genetic profile since European settlement by using ancient DNA approaches.

Characterise the genetic profiles (e.g. genetic variability) of remaining Woylies in Western Australia.

Investigate the genetic consequences of previous population declines.

Model and quantify the genetic responses within translocated populations.

Predict the genetic implications of recent woylie declines, and the likely consequences for the future recovery and conservation of the species.

Describe information on paternity, social structure, home range and individual's movements between adjacent populations.

Number of sample per sites

Batalling State Forest, WA	89
Upper Warren, WA	535
Karakamia Sanctuary, WA	256
Dryandra Forest, WA	60
Tutanning Nature Reserve, WA	44
St Peter Island, SA	119
Wedge Island, SA	80
Venus Bay Island, SA	31
Venus Bay Conservation Park, SA	50
Total	1264

different macropodidae species were tested to assess their suitability and polymorphism in woylies. ocus Source Species Locus Source Species 64 Pa597

Twenty-eight primers that were originally developed for

Locus	Source Species	Locus	Source Species
Bt64		Pa597	
Bt76	Bettongia tropica	Pa593	
Bt80		Pa297	Petrogale assimilis
Pl2		Pa385	
PI3		Pa595	
PI13		B90	Onychogalea
PI18	Potorous longipes	B123	fraenata
Dioo		M- 45	
PI22		Me15	
PI26		Me16	
Y175		Me17	
Y170	Petrogale	T17-2	Macropus eugenii
Y151	xanthopus	T31-1	Macropus cugerni
Y76		MeY01	
G31-1	M. giganteus	MeY37	

Preliminary results

	Heteroz		
Locus	Observed	Expected*	Alleles
Mean	0.6640	0.7913	6.69
St.Dev	0.2911	0.0574	2.05

PID (probability of identity) of 1 in 10,000,000

Acknowledgements

We would like to thank DEC and AWC staff, PhD students involved in the Woylie Conservation Research Project, Woylie Disease Reference Council members. Funds for this study have been provided by Australian Academy of Science and DEC Science Division

