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Abstract—The potential of non-singleton fuzzy logic systems
(NSFLSs) in dealing with uncertainties are widely known.
However, their utility and possible challenges in real-world
applications, particularly beyond fuzzy controls, are still not
widely examined. This paper presents some user-centric design
approaches in making NSFLSs usable in a real-world problem
of environmental management. In previous work, a singleton
FLS was developed for the same purpose, based on an es-
tablished environmental management framework. After further
investigation of the users’ requirements, it was realized that the
effective capture, representation and visualization of the system’s
inputs and outputs are critical, particularly when there are
uncertainties involved in the data collection processes. Moreover,
when decision-making is based on uncertain data, knowing the
level of uncertainty in results may be critical. For addressing
the new requirements, the system has been extended to a
NSFLS, so it can make use of non-singleton fuzzification in
handling uncertain (e.g., noisy) environmental data. The user-
centric design of this particular NSFLS lead to the development
of methods to capture/represent input/output uncertainties. The
explained methods have potential to be employed in many similar
real-world applications, thus extending the NSFLSs’ applicability
to a wider context than the present.

I. INTRODUCTION

UZZY logic systems (FLSs) have been widely used in
dealing with uncertainty and imprecision in practical
applications ranging from human resource allocation to stock
market prediction and industrial control [1]-[3]. Handling
uncertain and vague information has been at the forefront of
FLSs since the introduction of fuzzy sets by Zadeh [4], [5].
While Singleton FLSs (SFLSs) are the most common
type of FLS, Non-Singleton FLSs (NSFLSs) [6], which are
specifically designed for handling the uncertainties associated
with the inputs to a FLS, also exist. A NSFLS is a type of
FLS where the input uncertainty is modelled by fuzzy sets
(FSs) [7], rather than singleton FSs as is the case for SFLSs.
NSFLSs have shown their effectiveness in a wide range of
applications including engineering, natural sciences and time-
series prediction [1]-[3].
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Although the theory of NSFLSs has been established for
many years (e.g., [6]), real-world application of NSFLSs are
still reasonably rare in comparison to SFLSs, largely due to
the associated additional computational and design complexity
[8]. There are a limited number of research works dedicated
to comparing the performances of singleton and non-singleton
FLSs (e.g., [6], [9], [10]), generally highlighting the superior
performance of NSFLSs. However, a series of practical chal-
lenges exist in real-world multi-disciplinary NSFLSs’ applica-
tions (part of which apply to FLSs generally) that have limited
their usage, such as the choice of input FSs (e.g. Gaussian or
Triangular) and fuzzification type (type-1 or type-2) etc.

Furthermore, another challenge (not specific to, but practi-
cally important for NSFLSs) is how to quantify and/or rep-
resent the output uncertainties. In singleton systems, although
the whole system captures some level of uncertainty in the
form of antecedent and consequent FSs, the whole system
mostly maps crisp inputs into crisp outputs. In NSFLSs, as
a result of allowing users to quantify their input uncertainties,
the users are more likely to expect a more effective delivery
of output uncertainties.

In FLSs, particularly in NSFLSs, users rightfully expect
the system outputs to indicate the level of (un)certainty en-
countered. While the ability to describe output uncertainty is
more frequently discussed in the context of type-2 FLSs, this
paper uses a case study of transitioning from a type-1 SFLS
to a type-1 NSFLS, in order to highlight the challenges in
such a transition for this particular environmental management
application.

In a previous paper [11], we described a fuzzy logic
based approach for operationalizing an established environ-
mental conservation framework (called value-driven frame-
work), which is currently being employed by the Western
Australian Department of Parks and Wildlife. The presented
system highlighted the challenging domain of environmental
policy design, particularly in relation to the incorporation of
a large number of heterogeneous and uncertain information
sources. In this system, the complex and uncertain nature of
relevant variables in the challenging area of environmental
conservation makes fuzzy logic a highly suitable modeling
approach. The early results and feedback from stakeholders
and experts highlighted the capability of FSs to capture this
uncertainty as well as the high interpretability of the results
as key strong points of the fuzzy logic based approach.

The described system however, was designed as a singleton
system. Effectively, it disregarded the uncertainties attached
to the environmental data. In other words, even though it was
well known that inputs to the system, such as the “size” of



a population of birds, was uncertain, it was modelled as a
crisp value. To address this, the system has been upgraded to
a NSFLS which enables the more effective capture of actual
uncertainties in the environmental data, that are frequently
uncertain and/or noisy. In this paper our study on real-
world suitability and implications of utilizing a NSFLS in
operationalizing the environmental conservation framework is
presented, with a focus on representing input/output uncertain-
ties.

In the rest of this paper, we first provide the background
on the developed environmental management FLS and the
benefits of developing NSFLSs for such a purpose (Section
I). Using the developed NSFLS as a case study, we will
then provide the practical approaches in capturing/representing
input/output uncertainties in the developed NSFLS (Sections
IIT and IV). We then conclude and finally draw our plan for
future work in Section V.

II. BACKGROUND

In this section we briefly introduce some background ma-
terials for the reader, including a short brief about using FLSs
for environmental management, particularly for the framework
used to develop our case study FLS. Later in this section, we
briefly introduce NSFLSs.

A. Environmental Management Using FLSs

1) Overview: Environmental management is highly chal-
lenging in a real world setting. Particularly challenging is
the complexity of natural environments, and the related un-
certainties in capturing environmental data and evaluating
the resulting heterogeneous information. Often, as here, data
including both biological and stakeholder views must be
integrated in the decision process. It is widely shown that
FLSs systematically deal with decision-making problems in
uncertain and complex systems [12], [13], so the challenges
of environmental management make FLSs suitable solutions
in this regard [14].

Using FLSs in environmental management is not new,
however not many working implementations exist. The group
of decision-making support systems (DSS) that are used in
environmental management is usually called EDSS [15] in the
literature. In [16] for instance, a FS is used as an EDSS in the
context of air pollution management. The work in [17] reviews
rule-based fuzzy logic modeling of environmental information.
In [18], environmental information was represented as FSs in
order to classify and quantify environmental facts, as well
as dealing with uncertain or missing data. Further, a fuzzy
logic based approach for wetlands’ classification is provided
in [14]. Finally, there are studies considering the incorporation
of fuzziness into geographical contexts of environmental man-
agement, such as the fuzzy logic based model of geographical
extents of vegetation using remotely-sensed imagery [19].

One key difference between the works described above and
our approach [11] lies in the underlying environmental man-
agement framework, which will be described briefly below.
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Fig. 1. The architecture of the developed FLS

2) The Value-Driven Framework: A substantial question in
any environmental management is defining the goal. Mod-
ern environmental planning frameworks such as the Value-
Driven Framework [20] follow focus on the preservation and
enhancement of human values, i.e. those required for human
survival and well-being, as the main management drivers. The
framework, further describes how to identify the human values
(e.g., Adequate Resources), and thus focus on the delivery of
human values, which support wellbeing, as management goals.
The framework also describes how certain environmental
elements (e.g., Mammals) are determined that can deliver the
human values and how a set of quantifiable properties (e.g.,
Richness) can be assigned to each element.

A group of inputs of the framework which is focused in
this paper, is the collected data from the environment, i.e. the
quantification of the properties of the identified elements. Key
decision outputs from this framework include the prioritization
of environmental elements in order of their utility in delivering
identified, priority values; information on the relative merits of
various management options; the capture of key risk factors,
or to assess the sensitivity of the elements expected value to
the changes in the environment. These have been the main
requirements for developing the FLS in [11] to operationalize
the framework, which will be further described in the next
sub-section.

B. The Developed FLS

In order to operationalize the described value-driven frame-
work as a policy-making tool, we have used a FLS to structure
a computational model for estimating the human value delivery
of a given element (or a group of them). An overview of the
system structure is shown in Fig. 1. Briefly, the FLS processes
the inputs (element property measurements/assessments) using
a rule-based inference engine and produces raw and processes
outputs (e.g., value deliveries from elements). More details of
the developed web-based FLS is explained in [11]. A practical
instance with real-world data based on a current conservation
exercise that is being used in Western Australia’s Department
of Parks and Wildlife, has also been described there.

Quantifying the elements’ properties in such a FLS is where
it is vital to appropriately capture the uncertainty, at least as
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Fig. 2. FLS components and the illustration of different fuzzification methods

far or to a level as it is known within the context/discipline.
In this regard, although a SFLS handles such uncertainties,
more specialised types of FLSs may be used that can handle
them more effectively, which makes non-singleton and type-2
FLS an intuitive choice. The developed system, in its previous
state, was a type-1 FLS. This paper examines its real-world
potential and challenges in this design when further developed
to a NSFLS. Its further extensions towards type-2 and non-
singleton type-2 FLSs are the directions of future work.

C. Non-Singleton FLSs

NSFLSs [6] are introduced in order to more explicitly
address input uncertainties, compared to SFLSs. The fuzzifier
block shown in classical FLSs structures (such as Fig. 3)
converts a given crisp input to a fuzzy input set, rather than
to a fuzzy singleton - as is the case in SFLSs. It is noticeable
that in the both FLSs, the input (z in Fig. 3) is commonly
crisp. The difference is that the crisp input is treated differently
throughout the system.

In NSFLSs, the actual type of fuzzification is application-
dependent, with the most common being a type of fuzzy
number, i.e. a convex, normal FS. Mostly, the membership
function (MF) of the input FS is evenly distributed around the
crisp input [7]. In Fig. 3, a Gaussian distribution is shown as
an example, such that z is located at the centre of a Gaussian
distribution. In real-world applications, the input (z) may in
fact not be crisp. It could be an interval or even a distribution,
making fuzzification in he traditional sense redundant.

The defuzzifier component also converts a generated fuzzy
output set (Y in Fig. 3) to a crisp number (y). However, unlike
the input set, the MF of Y may not be evenly distributed
around y. Different methods of defuzzification (such as cen-
troid) are aimed to make y the best representative of Y. This is
where a question of how best to capture the output uncertainty
arises.

III. REAL-WORLD REPRESENTATION OF INPUT
UNCERTAINTIES

The extension of the developed system from a SFLS to a
NSFLS has been a result of an iterative users’ requirement
analysis. In our case, the users were government planning
officers in Western Australia. In this section, first we explore
our given set of user requirements, then the proposed NSFLS
design addressing these requirements will be presented.

A. Users’ Requirements

After the first development stage, the users expressed their
requirements for capturing input uncertainties. The uncertain-
ties that they wanted to be accounted for either related to
errors in quantifying the environmental, such as sensor noises,
or due to the natural uncertainties embedded in the captured
quantities such as the continuous spatio-temporal changes in
the environment.

The users expressed their requirements in having flexibility
in defining the attributes of a suitable fuzzifier to any individ-
ual input. For example, the property size (number) of a specific
tree is required to be uniformly fuzzified (i.e. with a min/max
bound), but rarity may be best captured with a triangular or
Gaussian fuzzification. The choice of input FSs by the users
of the environmental management system was determined to
be based on three different approaches:

1) Data-driven Approach: This approach is mainly taken
by the users when historical data or data mining techniques are
used for determining or predicting the investigated quantity.
Since this is a statistical approach based on relatively large
amount of data, the natural choice is Gaussian (Normal)
Distribution for statistical modelling (if the data fits this
model), which consequently leads to Gaussian fuzzification
for the FLS’s input. Since a Gaussian fuzzification is attributed
by its mean and SD, it may be difficult to directly realize the
range of the quantity’s change. However, since SD is very
well known in a statistical context, the users could easily map
between data density and SD in Normal Distribution using
the widely available Normal Distribution Tables (also called
Z-table).

2) Technique-driven approach: This approach is not based
on the existence of any historical data, rather it is based on the
current measurements such as counts, satellite images, local
sensors, etc. The uncertainties involved in such measurements
are mostly leading to some bounded fuzzification, mainly in
uniform, triangular or trapezoidal shapes. The advantage of
such an approach is the sensible description of the uncertainty
for the bounded quantities based on the limited information
known, i.e. avoiding a weighting of the model which may
not be warranted - as for example if a Gaussian model was
applied.

3) Tailored approaches: Specifically designed applications,
such as when data is collected from experts, input models here
can be any type of FS. For example, see Fig ... for an example
of an input model based on expert input using the Interval
Agreement Approach [21].

B. Case Study: Input Uncertainties in the Environmental Man-
agement System

According to the user requirements, all the above ap-
proaches are applicable for different inputs. At this stage,
the approaches (1) and (2) have been included in the sys-
tem. In order to enable the system’s users to provide input
uncertainties in any of the two approaches, new columns
were added to the user interface for each element-property
tuple: fuzzification and parameters (Fig. 4). The fuzzification
column determines the distribution type of the input FS, to
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for modelling expert inputs.

# element property fuzzification parameters
*  Microbialites Richness  Triangular 70,75,80

®  Microbialites Size Singleton 5000

4 Reptiles Loss Gaussian 15,3

®  Reptiles Rarity Singleton 50

Fig. 4. A sample list of inputs and their uncertainty specifications in the
developed NSFLS

be either a singleton (by default) or a choice among other
basic distributions (Gaussian, triangular or trapezoidal). The
type and parameters of each input’s fuzzification can be set in
the user interface shown in Fig. 5.

Having singleton fuzzification as an available choice, pro-
vides a backward-compatibility for the system to its previous
singleton version. Fig. 6 shows a sample plot of the MF of
the fuzzy input (of Fig. 5), which is a Gaussian fuzzification
of the property loss of element Reptiles, based on mean and
standard deviation calculated by the environmental experts.

IV. REAL-WORLD REPRESENTATION OF OUTPUT
UNCERTAINTIES

When inputs are uncertain in NSFLSs, representing output
uncertainties to the users of such a systems becomes even
more important, as it is vital to show the variations in output
uncertainty in response to variations in input uncertainties.
In this section a number of approaches in representing FLS
output’s uncertainty, particularly in NSFLSs, are provided.

A. Overall Output Uncertainty

Measuring the output uncertainty is intuitively linked to
measuring how widely the output FS is distributed around

Element: Reptiles |
Property: Loss u int
type: Gaussian “ ted

parameters: 15,3 P text
Gauangle & Triangular: start, peak, end :
Trapezoidal: feft-leg start, lefi-leg end, right-leg start, right-leg end Click to view
Gaussian: mean, stdev o]
Singleton: value

Parameters Guide

Fig. 5. The user interface used for editing input parameters for property loss
of element Reptile in the NSFLS

Fig. 6. MF plot related to the input illustrated in Fig. 5.

the calculated centroid. For this purpose, a similar method
to calculating the standard deviation around a mean can
be utilized. For this purpose, we define a random variables
whose probability density function (PDF) graphically matches
the normalized version of the FS’s membership function. If
Y (in Fig. 3) is the discrete output FS defined as ¥ =
{1ty (yi)/vi }i=1..n, and if the set of the random variable is
defined as R={r;};=1.., with a PDF of p, (r), in such a way
that:

po () = . iy (i) 0

~n 7/ \

i=1 My (yZ)
then we define overall output uncertainty of Y (Uy), and
define it as the standard deviation of R, i.e.

Uy =or 2

By the above definition, the mean of such a random variable
also computationally matches the FS’s centroid.

The definition is only based on a graphical match, and it
clearly does not express any other (e.g., conceptual) match
beyond this. While a number of alternative quantifications are
also possible, some of which we review in a future publication,
in this paper we focus on (2) as one example of uncertainty
quantification in FLS output sets.

The overall output uncertainty is applicable to both singleton
and non-singleton FLSs. For example in Fig. 7, the developed
environmental management FLS has produced an output FS
representing the expected value of an element, in which the
overall uncertainty of the value delivery is represented as
0.2321 around the centroid (0.5876).

The overall output uncertainty is determined by the charac-
teristics of the output FS, and calculated for any given FLSs’
output (singleton or non-singleton). The next sub-section fo-
cuses on an NSFLS-specific type of output uncertainty.

B. Input-Dependent Uncertainty

Various factors (e.g. uncertainties embedded in antecedents’
and consequents’ FSs) are involved in calculating the overall
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Fig. 8. A sample MF for triangular fuzzification used for the property richness
of element mammals.

output uncertainty whereas the input uncertainty is one par-
ticular aspect. Plainly speaking, we need to be able to answer
questions such as: "How does a variation (in uncertainty) in
an input FS affect the overall output uncertainty?”. It is thus
an important point from the user perspective, to specify the
contribution of the input fuzzification to the output uncertainty,
i.e. the Input-Dependent Uncertainty (IDU) between each
input/output pair.

To have an estimation of the IDU, we first notice that a
FLS output is a highly nonlinear function of its inputs [7],
so developing a closed mathematical relation for the IDU can
be very complex. Instead of developing a formal relationship,
our approach is to suggest a set of estimates in such a way
that they are sufficiently expressive to users. Three approaches
will be provided here in this regard. For each approach, an
example will be provided from the developed environmental
management NSFLS. To simplify the examples, the NSFLS
is configured using a single human value (knowledge and
heritage) and its relationship to a single element (mammals)
as determined by one property of the element (richness), for
which there is uncertainty concerning its quantification. In the
provided examples, the non-singleton input is captured by a
triangular fuzzification, as shown in Fig 8.

The three approaches are described here, in order of increas-
ing complexity:

1) Min-Max Approach: In this method, the fuzzifier is tem-
porarily set as a singleton. Two crisp extreme inputs (minimum
and maximum possible values in the input’s uncertainty range)
are used, and the difference between the two crisp extreme
outputs are used to estimate the IDU. If x is a crisp input and

Richness
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Ymin Yrmax

Delivery of
Knowledge and Heritage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fig. 9. The sample illustration of inputs/outputs in the min/max approach.
Two extreme inputs (richness of mammals) have generated two extreme
outputs (delivery of knowledge and heritage).

y is a crisp output, we measure the extreme range of output
change, as AY = Yiar — Ymin Where Yumin and Y4, are the
extreme outputs. However, Ay is a range and is not readily
comparable to the overall output uncertainty.

In order to convert Ay to IDU, we first notice that 1,4,
and y,,;, are not the bounds of an actually generated output
FS, since the only available outputs are two generated crisp
numbers. Secondly, we notice that in a Gaussian distribution,
the samples that are less than 3 SDs from the mean, account
for 99.73% of the whole samples. By analogy, an output FS
whose bounds are known can be approximately matched, for
example, to a Gaussian distribution with a spread of IDU. In
this case, the IDU can be estimated as:

1
IDU =~ EAy 3)

For example in the developed FLS, the SFLS (that is the
NSFLS temporarily having a singleton fuzzification) is run
twice with crisp inputs z,,,;, = 60 and ., = 100 as the two
extremes of the input fuzzification range that would have been
used in the real NSFLS (see Fig. 8). The generated outputs
are Ymin = 0.4755 and Y4, = 0.6422. In this case IDU =
éAy = 0.0277. This example is illustrated in Fig. 9.

Clearly, this simplistic approach is only possible for
bounded fuzzifications. Moreover, there are two aspects of dis-
regarding the uncertainty information in this method. Firstly,
the input uncertainty characteristics are mostly ignored, since
an arbitrary input FS is replaced by two extreme values, such
that a triangular fuzzification can generate the same result as
a uniform fuzzification over the same range. Secondly, the
generated output uncertainties are not explicitly considered.

2) Monte Carlo Method: While the Min-Max method disre-
gards some valuable fuzzification information, in this method
we take the input fuzzification into account, but the method
still does not fully account for the output uncertainties. While
the system is still a singleton FLS, a statistical model simulates
the real-world input, i.e. generates random inputs in line
with the fuzzification model, then the statistical model of the
generated crisp outputs is examined (as known as Monte Carlo
simulation). The IDU in this case is defined as the statistical
SD of the output.

For example in the developed FLS, first a PDF with a
symmetric triangular distribution between 60 and 100 (a
normalized version of Fig. 8) is defined as:
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Fig. 10. The sample (triangular) distribution of inputs (Richness of Mammals)
and outputs (Delivery of Knowledge and Heritage) in the Monte Carlo method.
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Secondly, using the Inverse Transform Sampling method
[22], another function f(r) is defined that transforms a
uniformly-distributed random number 7 (between 0 and 1) to
the random variable x which its probability density is defined
in (4). Using the method, function f(r) is defined as:

f(r):{60+20\/§ 0<r<05

5
100 —-20y2—-2r 05<r<1 ©)

Thirdly, using a uniform random number generator, the sys-
tem is run in singleton mode using 100 crisp inputs generated
by (5), and finally, the crisp outputs (after defuzzification) are
statistically analyzed in order to calculate the IDU according.
In this example, The logged outputs show a mean of 0.5874
and a SD of 0.0393. The distribution of inputs and outputs
in this example are illustrated in Fig. 10. Note how the
distribution reflects the shape of the input MF and made
another shape for the output MF.

3) Improved Statistical Approach: Although the Monte
Carlo method takes the fuzzification type into account, it still
disregards the spread of the output FS by simply defuzzifying
it. In the third method, both the input fuzzification and output
FS characteristics are involved in the IDU estimation. We
notice that in finding IDU, the part of the output’s overall
uncertainty that is exclusively caused by the input uncertainty
is required. The IDU in this method is thus estimated as the
difference between the overall output uncertainty delivered by
singleton and non-singleton fuzzifications. If the overall output
uncertainty calculated in singleton mode is U3 and in non-
singleton mode is U{y , the IDU is estimated as:

IDU =UY - U (6)

LR}

IDU in this case represents how much uncertainty is “in-
jected” into the output because of the non-singleton fuzzifica-
tion. For example in our simplified FLS, if the fuzzification
is a singleton at x=80 (centroid of the non-singleton input
illustrated in Fig. 8), then the output FS will have an overall
uncertainty of 0.1919. On the other hand, if the non-singleton
fuzzification is used, the overall output uncertainty is increased
to 0.2321. According to (6), the IDU estimate is 0.0402. This
example is illustrated in Fig. 11.
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the designed SFLS and NSFLS.

C. Case Study: Output Uncertainties in the Environmental
Management System

Although the concepts of overall uncertainty and IDU have
been explored in the previous sub-sections, our example has
been a simplified (single-value and single-property) system.
In this sub-section, the real-world scenario of representing
the overall uncertainty and IDU with real settings will be
examined. Thus, a NSFLS with the full range of values,
elements and their properties together with a number of rules
are considered, similar to what presented in [11]. In this
regard, we provide the NSFLS-specific features designed for
representing the overall uncertainty and IDU.

1) Representing Overall Uncertainties: The previous
(SFLS) version of the system did not provide any quantifi-
cation of the outputs’ uncertainties. In the current NSFLS
version of the system, the users are provided with a new
column (spread) along with each crisp output in the “value
delivery results” page (Fig. 12). In this regard, the new column
represents the overall uncertainty (called spread) based on
equation (2).

As also shown in Fig. 12, a new column for spread is pro-
vided for the delivery of both "human values” and “elements’
relative human values”. Since the expected values are derived
by averaging a number of fuzzy outputs (as described in [11]),
each spread in this case is also an average of the spreads of
the corresponding individual output FSs. For example, while
the delivery of value Recreation is the average of the value
deliveries among elements Amphibians, Melaleuca Shrubland,
Fungi, etc., the spread of the value delivery is the average of
the spreads of the value deliveries among the same elements.
To illustrate the overall output uncertainties, the spread can
also be shown as standard error bars. Fig. 13 shows such an
illustration produced for the list of environmental elements.

2) Representing IDU: The user interface described in Fig.
12 does not show the IDU along with the overall uncertainty.
This is because in calculating the IDU a specific input/output
pair must be specified, so it cannot be a single column next to
the spread in the same user interface. Another user interface of
the system has already been dedicated to the input/output pairs,
i.e. the sensitivity analysis interface. The sensitivity analysis
interface repeatedly runs the FLS with different quantities of
a single property of a single element, and shows the resulting
changes in the delivery of human values. For example in
Fig. 14, the sensitivity of “total human values’ delivery” to
the changes in the property richness of element Mammals is



Value delivery across all elements - sorted

Name Weight Delivery Spread
Adequate Resources 0 0.5476 0.2268
Recreation 0.57 0.5441 0.246
Knowledge and heritage 1 0.5314 0.219

Elements’ relative human value across all [weighted] values

Name Relative human value Spread

Terrestrial birds 0.6288 0.233

Mallee shrubland 0.6113 0.2351
Other woodlands 0.6011 0.2421
Fungi 0.5556 0.2301
Terrestrial inverts 0.5459 0.2369
Mammals 0.5454 0.2296
Muehlenbeckia 0.5449 0.2288
Reptiles 0.5385 0.2494
Salmon gum woodland 0.5346 0.2233
Samphire communities 0.5314 0.2213
Melaleuca shrubland 0.516 0.2359
Water birds 0.514 0.2286
Yate swamp vegetation community 0.4961 0.2255
Aguatic inverts 0.4431 0.2335
Amphibians 0.4326 0.2321

Fig. 12. The spread of each output is provided along with each numerical
(crisp) output value.
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Fig. 13. The list of elements, their value deliveries (in the range between 0
and 1) and their individual uncertainty illustrated as standard error bars.

graphically shown. Each row has an extra column for showing
the spread of the output uncertainty for each variation in
the property richness. In the NSFLS implementation of the
system, this interface can also be used to graphically represent
the IDU, as well as to compare it with the overall uncertainty.
Among the three provided methods of IDU estimation in
the previous sub-section, we use the “improved statistical
approach” since it takes into account both the input and output
uncertainties. For each FLS run during the sensitivity analysis,
the overall output uncertainty is the result of averaging the
individual spreads. The IDU for the same FLS run is the
average of the IDUs calculated by (6). For calculating the IDU
in this method, it is also required that the system is repeatedly
run as a SFLS.

Fig. 15(a) shows the sample sensitivity graph when a
singleton fuzzifier at richness=80 is used. The spreads are
represented in this figure as standard error bars. In Fig.15(b)
a non-singleton fuzzifier (see Fig. 6) is used for the property

Sensitivity Analysis of Elements’ Relative Human Values

Element: Mammals a Property:  Richness a

% of actual input from : 25.0 to: 150.0 step (%) 5

Go

Actual property input for this element is set to: 80.0

9% of actual input input Total relative human value Spread
25.0 20.0 0.25201667380206654 0.20014
30.0 24.0 0.201B32B04237584 0.2
35.0 28.0 0.254878559764 25088 0.20414
40.0 32.0 0.30375201177817283 0.21493
45.0 36.0 0.31865849112344247 0.22861
50.0 40.0 0.3226B10173862715 0.23267
55.0 44.0 0.32B6138426395056 0.2318
60.0 48.0 0.3320587623124233 0.2321
65.0 52.0 0.3332423517177142 0.23226
70.0 56.0 0.32075548737 220055 0.23193
75.0 60.0 0.32652745650681353 0.23162
B0.0 64.0 0.370473435BB555754 0.23755
B5.0 B8.0 0.4284508450063188 0.23267
50.0 720 0.438470114776832 0.2283
55.0 76.0 0.43852400652534457 0.22807
100.0 BO.O 0.43842472257121506 0.2284

Fig. 14. The user interface designed for sensitivity analysis of the total value
delivery to the variation of a single property. The column ”spread” represents
the overall output uncertainty.

richness. In this case, the overall uncertainty and IDU are
shown as two series of standard error bars. The user can clearly
see the contribution of the input uncertainty to each output, and
where this contribution plays any major or minor role, which
is important in the process of his/her decision making. For
example in Fig. 15(b), the decision maker firstly realizes that
NSFLS is more sensitive to the input change from its current
state (black circle) than SFLS, so if NSFLS better captures
the real-world information, the NSFLS user is more aware of
the possible output sensitivity, and thus more likely to make
a better decision than the SFLS user. Secondly, from the IDU
bars, he/she realizes that in the middle ranges of the richness,
the uncertainty of data collection has less importance towards
the overall output uncertainty than the other parts, so the level
of his/her trust on the output increases in the middle ranges.

V. CONCLUSIONS AND FUTURE WORK

In this paper the applied methods of representing input/out-
put uncertainties in a practical real-world NSFLS, lead by the
a user-centric design, are presented. By focusing on a FLS
previously designed for environmental management [11], our
aim has been to bridge between the NSFLSs functionalities
and the real user’s requirements in handling uncertainties, thus
making the FLS more usable in uncertain conditions. This is
reached not only by upgrading the system to a NSFLS, but also
by representing the input/output uncertainties in some effective
and usable methods.

Regarding the input uncertainty capture, the NSFLS is
equipped with tools that allow the user to tune the fuzzifi-
cation method according to the environmental facts (e.g. the
noise generating model of a sensor). As far as the output
uncertainties are concerned, firstly two types of uncertainties
are defined (overall and input-dependent) that each can reveal
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Fig. 15. The sensitivity graph of the total value delivery to the variation of the
property richness; (a) in the SFLS together standard error bars representing
overall uncertainty; and (b) in the NSFLS together with standard error bars
representing overall uncertainty and IDUs. The black circles specify the
current state of the system (richness=80).

a different aspect of output uncertainties, and thus help the
decision makers comprehending different characteristics of
output uncertainties. Secondly, a number of approaches in
calculating the two defined uncertainties are presented. Finally,
the described methods have been applied and tested on the
designed NSFLS to make some usable output tables and
graphs. While the proposed approach in uncertainty measure
in NSFLSs is an early prototype, it highlights the potential of
NSFLSs in this area.

Following this research, there are many possibilities to go
forward. This firstly includes a more accurate estimation of
the output uncertainties, by exploring alternative measures.
Secondly, more advanced visual representation of the output
uncertainties are possible, such as three-dimensional views
where the MF of the output FSs can be the third dimension
of the produced input/output graphs (such as in the sensitivity
analysis). It is noticeable that if the output is an aggregation of
some different output FSs (as it is the case in the studied FLS
of environmental management), it will be necessary to involve

fuzzy arithmetic methods [23]. Finally, a major upgrade of
the designed NSFLS will be to extend it to a type-2 NSFLS,
in which more uncertainty aspects can be captured from the
environment and/or represented to the users.
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