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Abstract—One of the biggest challenges in the design of Fuzzy 

Logic Systems (FLSs) is the construction of their rule base. While 

fuzzy sets capture aspects of a system’s variables and associates 

them with linguistic labels, it is the rules which capture the logical 

relationships of these labels and underlying fuzzy sets. Further, 

while fuzzy systems are credited for dealing well with uncertainty 

in system inputs and outputs, comparatively little research has 

focused on the capture of uncertainty in their actual inference 

rules. This paper focusses on the challenge of capturing the 

knowledge of multiple human experts on the relationships of 

linguistic labels in a given problem domain. Specifically, it 

proposes a novel survey-centric methodology which enables the 

capture of individual, subjective input from domain (not fuzzy 

logic) experts with minimal prior training and provides 

mechanisms to aggregate the resulting survey-data into a working 

and interpretable fuzzy system. The rule base of the resulting 

system incorporates weights to capture intra- and inter-expert 

uncertainty during rule specification. The paper follows a 

practical style to facilitate reproduction of the proposed 

methodology by peers. Results and initial evaluation based on real 

world case studies in the context of environmental conservation in 

Western Australia are provided. 
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I.  INTRODUCTION 

Since their introduction in 1965 by Zadeh [14], Fuzzy Sets 
(FSs) and specifically Fuzzy Logic Systems (FLSs) have proved 
highly valuable in applications from time series prediction to 
control. Also, since their (in particular Mamdani fuzzy logic 
controllers  [8]) application, a particular challenge of FLSs has 
been the identification of the crucial rules that provide the 
connection between a system’s antecedents and consequents 
which in turn captures the logical relationship of a system’s 
inputs and outputs. 

Substantial bodies of work have addressed the challenge of 
creating a rule base from a knowledge extraction (rule-mining) 
or an optimization point of view. In [13], the structure of the rule 
base within a FLS is explored and a powerful method for 
automatic rule-extraction method for existing input-output 
datasets was presented. The authors show its application in time 

series prediction and control applications. In the same year, [6] 
introduced the concept of a distributed representation of fuzzy 
rules, capturing the possibility of “superimposing” fuzzy rules 
and showing its potential in a pattern classification context.  A 
large number of other approaches to rule generation exist, 
including [2], [3], [5], [7], many of which employ hybrid 
techniques for rule elicitation such as through the use of 
evolutionary computing strategies, e.g., [2] and [5]. Several of 
the methods have also continuously been refined, for example in 
[1], further developments to the Wang-Mendel rule elicitation 
approach [13] are proposed.  

While the above rule generation approaches have been 
highly successful in a number of applications, they do not 
specifically address the capture of rules from non-fuzzy-logic-
experts. While the latter is often cited as a common approach for 
rule generation, in practice however, it is usually based on the 
interaction of a FLS designer with domain experts – after which 
the designer proceeds to generate the rule base. 

Beyond the actual generation of rules, it is interesting to note 
that a number of rule generation approaches (and indeed other 
approaches of FLSs), incl.  [2], [6] and [13] have employed rule-
weights to capture additional information regarding the 
importance of given rules within the rule base and thus enable 
better FLS performance. More generally, it is clear that the 
weighting of rules commonly takes the role of “fine-tuning” of 
FLS performance in a given context. 

This paper focusses on the challenge of generating rule bases 
from multiple application domain (not fuzzy logic) experts. In 
particular, it presents an approach on 1) how to capture the 
required information, without the experts needing to be familiar 
with fuzzy logic or even rule based systems, and, 2) how to 
address the problem of rule uncertainty (by a given expert) and 
conflicting rules (among experts). 

The motivation for this paper is the application of FLSs in 
multi-disciplinary applications where their potential for dealing 
with uncertain data while maintaining high interpretability are 
often essential. In particular, we highlight the deployment and 
evaluation of the proposed approach in the context of a data-
driven environmental management application for wetland 
conservation in Western Australia. This work was part partially funded by the UK EPSRC EP/K012479/1, 

RCUK EP/G065802/1 and NERC NE/M008401/1 grants. 
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The paper provides two main contributions. First, it 
introduces and provides complete detail for a methodology for 
capturing rules from multiple experts based on a structured 
survey which does not require prior knowledge about rule based 
systems or other computer science aspects. A practical style for 
the presentation of the methodology is adopted to enable and 
encourage the replication of the methodology by peers in order 
to motivate debate and refinement of the method.  

Second, the paper details an initial path to capturing and 
processing uncertain rules, in this case, with the uncertainty in 
the rules arising from both inter-expert uncertainty, i.e., different 
experts providing different rules, and intra-expert uncertainty, 
i.e. individual experts expressing the viability of multiple 
conflicting rules. 

The structure of the paper proceeds as follows. Section II 
elaborates on the motivation and context of the proposed 
approach, clarifying the type of applications it has been designed 
for. Section III presents the proposed rule elicitation framework, 
followed by a real world case study in Section IV. Section V 
finally provides a discussion and conclusions. 

II. MOTIVATION 

The proposed framework for fuzzy logic rule elicitation has 
been designed for multi-disciplinary applications where domain 
experts possess crucial knowledge on the relationships between 
aspects/variables of the system which is to be modelled using an 
FLS. However, no familiarity with FLSs or even more generally, 
modelling and computer science is expected. Target audiences 
thus can include experts from domains such as medicine, 
biology, conservation management, but also stakeholders in a 
given context, such as residents in a city development context – 
who may be experts in the sense that they possess essential 
insight into a given modelling context. 

Further, the framework focusses specifically on contexts 
where a pool of experts are available and where it is deemed 
important to capture a rich view of the relationships in the given 
problem domain, i.e. a standard survey context. As individual 
experts may differ in their opinion (i.e. potential for opposing 
“rules”) and beyond this, may be more or less certain on given 
relationships, the framework is designed to explicitly address 
cross-expert discord (inter-expert) and individual expert (intra-
expert) uncertainty. 

Finally, specific emphasis has been given to providing a high 
degree of interpretability in the resulting framework outputs in 
order to enable experts to review and evaluate the outputs. Thus, 
a graphical representation combining simple tabular rule 
representation and a heat-map style shading is introduced. 

In the following sections, we present the individual steps of 
the framework, from the survey design and relationship-data 
capture from experts, to the survey transcription and finally, the 
generation of fuzzy rules. 

III. THE SURVEY-CENTRED FRAMEWORK 

The proposed framework is based on the design of a 
questionnaire which captures experts’ perceptions on the 
relationships of variables in a simple, efficient, yet 
comprehensive way. 

In order to illustrate the individual steps in this section, we 
will employ a simple toy example: consider that we are 
interested in the tipping behavior of customers in a restaurant 
based on the quality of the food. We model the food-quality and 
the level of tip using seven labels (i.e. seven fuzzy sets). We are 
now interested in capturing the relationship of increasing food-
quality to the level of tip that would be given by different diners. 

In the following subsections, we show how a questionnaire 
is designed for the proposed framework, referring to the tipping-
example as illustration throughout. 

A. Survey-based capture of variable relationships 

Each survey is structured as a questionnaire where each of N 
experts is presented with a set of M matrices capturing the 
relationship between two variables which will respectively form 
the antecedent and the consequent of a rule. An example of a 
matrix “skeleton” is provided in Figure 1.  

 

Figure 1. Example of a matrix "skeleton" which is used to capture the 
relationship between two variables. Note that, Antecedent, Consequent, as 

well as the numeric values for Min and Max (on both axes) are replaced by the 

variable names by the experimenter during the survey design. 

1) Survey Preparation. 
In order to prepare a survey for a given application, the 

following steps are required:  

 All 2-tuple relationships between antecedent and 
consequent variables are identified for the given 
application. In our example, we only have a one-part 
antecedent (Food Quality) and one consequent (Level of 
Tip) variable. Note - it is possible to address multi-part 
antecedents (e.g., connected by AND in the rules), see 
Section V for a discussion of this. 

 For each relationship, one matrix is created, where the 
Antecedent label (e.g., Food Quality) is used on the x-axis 
and the consequent (e.g., the tipping level) is used on the y-
axes. The number of rows (I) and columns (J) in the matrix 
is established based on the desired number of linguistic 
labels (i.e. fuzzy sets) to be employed to qualify each 
variable. For example, in Figure 2, we use r=c=5 labels 
(e.g., Very Low, Low, OK, High, Very High) for both 
variables. Note that this matrix structure underlying a FLS’s 
rule base has a long tradition (e.g., [6],[13]) but has not been 
leveraged as the basis for a survey-questionnaire. 

 For both axes, the min and max levels are established and 
specified. In our example, Food Quality is rated as a value 
between 0 and 10, while Tipping Level is a value between 
0 and 30 (%). See Figure 2 for an illustration. 



 

Figure 2. Example Rule Capture Matrix for the Tipping Problem 

2) Survey Administation 
After the survey has been produced (either on paper or 

digitally), human experts are given explanations on how to 
complete the matrices. In particular, they are instructed to put 
one cross per column in the row which captures the relationship 
between the given quantity of the variable on the x-axis (the 
antecedent) and the variable on the y-axis (the consequent). 
Effectively, for each column, participants are thus requested to 
answer the question “For a given amount of X, how much Y do 
you consider appropriate?”. An example of a filled-in matrix for 
the Tipping Problem is shown in Figure 3. 

 

Figure 3. Example filled-in matrix for the Tipping Problem 

In the applied work conducted by the authors so far using the 
proposed technique, explanations are given in a workshop 
context. However, it is similarly possible to provide written 
instructions with examples to participants. 

Optionally, participants are also requested to use circles to 
indicate potential relationships which they consider possible, but 
less likely or less of a good match than those relationships which 
they indicated with crosses. In each column, multiple circles are 
allowed, but all circles need to be adjacent either to a cross or to 
another circle. This step is designed to enable participants to 
express their uncertainty on given relationships. An example is 
given in Figure 4.  

 

Figure 4. Example filled-in matrix including both best estimates (crosses) and 

possible relationships (circles). 

After all participants have completed the survey, all N 
matrices for a given relationship are grouped before being 
numerically translated as explained in the following Section. 

B. From Survey to Digital Data 

After the survey has been completed by all 𝑁 participants, 
the survey data for each of the M matrices/relationships is 
aggregated into two summary matrices, 𝑀𝐵𝑒𝑠𝑡  and 𝑀𝑃𝑜𝑠𝑠 , 
capturing the best estimates (crosses), and the possible 
relationships (circles), respectively. In order to generate both 
summary matrices, the crosses, (respectively circles) in each 
field across all M participant-matrices are counted, providing an 
overall view of the strength of the given relationships. Figure 5 
provides an example based on N=3 participants. 

 

Figure 5. Generating summary matrices for best estimate and possible 

relationships. Note that for the best estimate matrix on the left, each “X” in the 
participant ratings is counted and the sum is added to the summary matrix. The 

same process is repeated with the “O” for the possible relationship matrix. 

C. From data to uncertain (weighted) fuzzy logic rules 

As noted, each matrix captures the relationships between an 
antecedent and a consequent variable over J columns and I rows 
respectively (five for both variables in Figure 5). Consider 
associating each column and row with linguistic labels as is 
common for fuzzy sets, i.e., for the antecedent, a possible option 
is to name the columns from Very Low, Low, …, Very High 
from left to right. An example for both antecedent and 
consequent is given in Figure 6. 

 
Figure 6 Matrix with example linguistic labels 

In order to create rules, we consider each of the possible 
column/row combinations, resulting in simple rules in the format 
of: “IF FoodQuality IS VeryLow THEN LevelofTip IS 
VeryLow”, “IF FoodQuality IS VeryLow THEN LevelofTip IS 
Low”, etc. A total of 𝐼 ∗ 𝐽 rules can thus be generated. As noted 
previously, more complex rules are possible as discussed in 
Section V. 

Clearly, it would be meaningless to generate a rule base 
which contained all possible rules as already noted for example 
in [6] and [13]. In our case, in order to focus only on rules arising 
from the participating experts, only rules with a non-zero weight 
are generated, where the weight arises from the participant’s 



survey ratings. More formally, consider R rules, where 𝑅𝑖,𝑗 

refers to the rule generated for row i and column j. The weight 
𝑊𝑅𝑖,𝑗

, or more simply 𝑊𝑖,𝑗 of rule 𝑅𝑖,𝑗 is given by: 

𝑊𝑖,𝑗 =
𝑀𝐵𝑒𝑠𝑡𝑖,𝑗×𝜔𝐵𝑒𝑠𝑡+𝑀𝑃𝑜𝑠𝑠𝑖,𝑗

×𝜔𝑃𝑜𝑠𝑠

𝜔𝐵𝑒𝑠𝑡+𝜔𝑃𝑜𝑠𝑠
, 

 
,where 𝜔𝐵𝑒𝑠𝑡 ∈ [0,1]  is the weight for best estimate 

relationships and 𝜔𝑃𝑜𝑠𝑠 ∈ [0,1]  is the weight for possible 
relationships. Note that the weights reflect how much emphasis 
is to be given to the best estimates and the possible relationships 
and are commonly specified based on the specific application 
context. As noted, the rule base of the resulting system 
comprises all rules, where 𝑊𝑖,𝑗 > 0. 

D. Executing a rule base with uncertain (weighted) rules. 

When performing inference with the resulting fuzzy logic 

system, the firing strength of a given rule 𝑓𝑖,𝑗
′ , is modified from 

the standard firing strength 𝑓𝑖,𝑗  resulting from the implication 

operation of the antecedents as follows: 

𝑓𝑖,𝑗
′ = 𝑓𝑖,𝑗 ∗ 𝑊𝑖,𝑗  , 

where ∗ is any t-Norm, commonly multiplication.  

Note that the overall structure of the resulting FLS is 
identical to standard type-1 FLSs. Figure 7 summarizes the 
structure, highlighting the two components which have been 
adapted. Specifically, the Rule Base is highlighted, as in the 
proposed system, each rule is associated with a weight; and the 
Inference Engine is highlighted as the firing strength 
computation for each rule within the FLS has been adapted based 
on (2). 

 

Figure 7. Structure of the type-1 FLS. Shaded components of the FLS are 

adjusted from standard FLS to capture uncertain (weighted) rules. 

IV. REAL WORLD CASE STUDY 

The described framework was deployed and subsequently 
evaluated in the context of ongoing research projects on data-
driven environmental planning and policy design in Western 
Australia. Environmental management is highly challenging, 
both because quantitative data on the natural environment (e.g., 
species diversity) is often highly uncertain, but also, as the 
relationship between given elements (e.g., fauna and flora 
species) within an ecosystem, and human priorities are often 
unclear. The latter is compounded as the ‘users’ of a 
management area are often diverse. A typical conservation 
management area (such as a national park) may need to meet the 
expectations of the general public and natural resource experts 
(scientists, managers, conservation groups) while also having to 
meet specific management objectives such as legislative 
stipulations (i.e., conservation of threatened species or habitats). 
All of these stakeholders possess an array of motivations and 
interests that ultimately lead to expectations which can be 

framed as (desired) human values such as Aesthetics, Adequate 
Resources, Meaningful Occupation, Health, etc. [12] [12].  

In values-driven planning frameworks such as [12], 
decisions relating to the management of system elements (e.g., a 
given bird species such as swans for example) focus on the 
important element properties (e.g., size or intactness of the swan 
population). While management can affect elements’ properties 
(e.g., we can affect the size of the population), it is vital to 
understand how changes in a property (antecedent) affect the 
different human values expected by stakeholders (the 
consequent). For example, how does a change in the size of the 
swan population affect the aesthetic pleasure that different 
stakeholders perceive?  

In [9], we introduced a data-driven management framework 
which operationalizes [12]. While in [9], the rules within the 
underlying FLS were specified by fuzzy logic experts (with 
domain expert input), the framework proposed in this paper 
enables the incorporation of insight directly from a number of 
domain experts.  

A. Problem Summary 

Given a link between element properties and the delivery of 
important human values (e.g., [4]), it is important for managers 
and decision makers to quantify said links and any associated 
uncertainty. By understanding how a change in an important 
property will affect the way stakeholders rate the values 
associated with an element, managers can better focus their 
management activities towards controlling properties to better 
deliver priority values to stakeholders. However, in most natural 
resource domains there is little to no quantitative information to 
link the many properties that must be managed to the many 
values that must be delivered. However, important information 
about these links is typically available via expert opinion. 
Mining the opinions of experts (and associated uncertainty) 
provides an opportunity for natural resource managers to 
develop more targeted and effective management for the 
delivery of human values.   

B. Case Study: Lake Bryde Catchment, Western Australia 

As part of the value-driven conservation planning, N=8 
experts were surveyed in an interactive workshop in 2014. The 
rule-generation framework presented in Section III was 
employed specifically to elicit the potential of specific element-
properties to deliver a key set of human values as their amount 
varies. The set of human values identified as of highest priority 
and thus explored included: Recreation, Knowledge & Heritage 
and Future Options. The element-properties considered were: 
Richness (or total number of species), Visibility, Size, Rarity, 
Loss, and Charisma. 

As the presentation of all the results would go beyond the 
scope of this paper, we will present a subset of the resulting 
combinations, namely, a detailed, step-by-step example for 
property-value relationships (Richness-Future Options) 
followed by summary results (focusing on the weights) for all 
the property-value relationships for the human value Recreation. 

Figure 8 shows the matrix employed to capture the 
relationship between the human value Future Options and 
varying levels of the property (Species) Richness. 



After all N=8 experts had completed the questionnaire, the 
data from the respective matrices (Figure 8) was captured as 
described in Section III.b. Figure 9 shows the complete step-by-
step data capture, including both summary matrices for best 
estimate and possible relationships as well as the resulting 
aggregated rule weights. Note that the weighting of 𝜔𝐵𝑒𝑠𝑡 = 1 
and 𝜔𝑃𝑜𝑠𝑠 = 0.5 was employed as it was considered appropriate 
by domain experts. 

Note that we do not provide a complete listing of the rule set 
because of space considerations. It is trivially generated from 
Figure 9 using the process outlines in Section III.C. We used 
seven labels, i.e. extremely low, very low, low, medium, high, 
very high, extremely high, resulting in rules in the format, 
counting from the lower left in the matrix with i=j=0: 

 𝑅0,0: IF Richness is ExtremelyLow THEN FutureOptions is 

ExtremelyLow; 𝑊0,0 = 3.7 

 𝑅1,0: IF Richness is ExtremelyLow THEN FutureOptions is 

VeryLow; 𝑊1,0 = 2 

 etc. 

 
Figure 8. Survey matrix as employed to capture the relationship between the 

property "Richness" and the human value "Future Options". Note that the 
property endpoints [0,150] were established by the experts prior to the survey.  

 
Figure 9. Summary matrices for Best Estimate and Possible Relationships 

between varying quantities of Species Richness and the human value Future 

Options. Note that N=8 experts filled in the survey. The shading has been 
applied to provide an easier visualisation of the data, highlighting the 

uncertainty. The resulting weights are based on 𝜔𝐵𝑒𝑠𝑡 = 1 and 𝜔𝑃𝑜𝑠𝑠 = 0.5. 

Considering the weights in Figure 9, it is visible that the 
experts as a group consider the value of Future Options to be 
roughly linearly increasing with increasing Species Richness. 

The output of the corresponding FLS generated as detailed in 
Section III (using evenly distributed triangular fuzzy sets for 
both variables) is plotted in Figure 10. As is expected, the FLS 
output increases quasi linearly as the Species Richness increases. 
Note that the “steps” in the FLS output in Figure 10 are the direct 
result of the discretization and use of simple FSs.  

While various techniques could be employed to smooth the 
output, from using different FSs, to more detailed surveys and 
post-survey smoothing (e.g., using rule interpolation), 
interaction with stakeholders thus far has shown that domain 
experts value the transparency of the resulting FLS outputs, i.e. 
they can “tell” that the FLS output arises from the survey data 
that was collected. 

Finally, note that while the quasi-linear relationship in this 
case can make it seem overly straightforward to capture such 
relationships, the actual relationships are frequently 
substantially more complex, both in terms of the captured intra- 
and inter-expert uncertainty as well as in terms of the non-linear 
nature of value delivery based on changes in a given property. 
Further, as can be seen in Figure 9, while overall linear, there is 
considerable and non-symmetric uncertainty in the relationship 
which has been captured in the rule weights.  

Figure 11 provides an example for all properties employed 
in relation to the human value Recreation. Note the difference in 
resulting weight matrices for the property Richness for the 
different values in Figure 9 and Figure 11. 

 
Figure 10. FLS output for the relationship of Future Options for varying levels 

of Species Richness 
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Figure 11. Relationships captured for the delivery of the human value 

"Recreation" (the consequent), based on a number of element-properties (the 

antecedents). 

The rules resulting from the overall expert elicitation 
exercise are employed in the overall data-driven environmental 
framework described in [9]. Expert evaluation of the rules and 
the resulting system outputs has been very positive, highlighting 
in particular the capture of relationship uncertainty, rule-based 
interpretability and simple visualization of rule bases (as in 
Figure 11) as strong aspects of the approach. By exploiting the 
link between properties and human values through the 
generation of a set of verbal rules that capture these relationships 
and their uncertainty, the framework enables the creation of 
FLSs which provide a unique approach to deliver informed 
management and in turn, human values. 

V. CONCLUSIONS 

Rules are at the core of FLSs. Inter-disciplinary collaboration 
highlights increasing numbers of applications where the 
properties of FLSs, such as their ability to deal with uncertainty 
and their high interpretability, are highly valuable. In many of 
these applications, such as in the environmental management 
context described in this paper, there is a need for capturing the 
relationship between variables, i.e. the rules of the FLS, from 
human experts. Moreover, functionality is needed to capture the 
complexity, discord and potential uncertainty in those 
relationships and thus rules. 

This paper has proposed a survey-based methodology to 
capture uncertain rules directly from domain (not FLS) experts. 
We have provided a step-by-step illustration of how the 
methodology is applied, together with real world examples from 
an environmental management application in Australia. 

In this paper, we have only introduced the basic framework. 
Current limitations include the lack of both in-depth analysis of 
appropriate weighting for best estimate and possible 
relationships as well as a more satisfying mathematical approach 
to capturing the uncertainty in the relationships. While 
functional, the current weighting of a potentially very large 

number of rules may be better addressed by introducing 
appropriately parameterized inference operators (t-norms). We 
will consider this body of work in the future. 

Finally, it may be perceived that a major potential 
shortcoming of the proposed approach is the use of only a single 
antecedent component. While currently most rules rely on such 
single-component antecedents and more complex system 
outputs are accumulated by aggregating individual FLS outputs, 
the framework is capable of addressing multiple component 
antecedents, as for example in rules of the form: “IF Rarity is x 
AND Charisma is y AND… THEN …”. To capture such 
relationships, experts are given questionnaires which specify 
fixed amounts of all antecedent components except one (which 
is varied), resulting in questions such as: “For a Rarity of x and 
Charisma y, show how varying amounts of Loss affect the 
human value Recreation”.  The main challenge in the above is 
the significantly increased amount of expert-time required to fill 
in a potentially very large number of questionnaires. In future 
work, we are seeking to explore this option as part of an online 
crowd-sourcing approach. 
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