

THE LIERARY
DEPARTMENT OF CONSERVATION
& LAND MANAGEMENT
WESTERN AUSTRALIA

A BIOLOGICAL SURVEY OF THE HELENA AND AURORA RANGE, EASTERN GOLDFIELDS WESTERN AUSTRALIA.

Edited by:

Michael N. Lyons and Andrew Chapman

Comprising papers by:

A. Chapman, N. Gibson, R.P. McMillan, R. Thomas, G. Pronk, M.N. Lyons, and B.J. Lepshi.

PROJECT 705 FOR THE BIODIVERSITY GROUP, ENVIRONMENT AUSTRALIA

Research and collation of information presented in this report was undertaken with funding provided by the Biodiversity Group, Environment Australia and the Western Australian Department of Conservation and Land Management. The project was undertaken for the National Reserves System Cooperative Program. (Project 705). The views and opinions expressed in this report are those of the authors and do not reflect those of the Commonwealth Government, the Minister for the Environment, Sport and Territories, or the Directior of Environment Australia.

The report may be cited as: Lyons, M.N. & Chapman, A. (eds.) (1997). A Biological Survey of the Helena and Aurora Range, Eastern Goldfields Western Australia. Unpublished Report for Environment Australia, Canberra.

Copies of the report may be borrowed from the following libraries:-

The Biodiversity Group, Environment Australia GPO Box 636 CANBERRA. ACT.2601

Wildlife Sciences Library WA Wildlife Research Centre PO Box 51 WANNEROO WA 6065

or

Department of Conservation and Land Management PO Box 10173 KALGOORLIE WA 6430

ABSTRACT	iv
RECOMMENDATIONS	v
PART 1 INTRODUCTION	
A. Chapman and R. Thomas	1
REGIONAL SETTING AND PHYSICAL ENVIRONMENT	1
PREVIOUS BIOLOGICAL STUDIES AND	
RESERVATION PROPOSAL	3
PART 2 VEGETATION AND FLORA	
N. Gibson, M. N. Lyons, and B.J. Lepshi	5
ABSTRACT	5
INTRODUCTION	5
METHODS	6
RESULTS	8
FLORA	8
VEGETATION	14
Physical correlates	17
Ordination results	18
DISCUSSION	20
PART 3 VERTEBRATE FAUNA	24
A. Chapman and G. Pronk	
METHODS	24
RESULTS	26
MAMMALS	26
AMPHIBIANS AND REPTILES	27
BIRDS	29
DISCUSSION	32
PART 4 INVERTEBRATE FAUNA	34
R.P. McMillan	
METHODS	34
RESULTS	34
DISCUSSION	41
ACKNOWLEDGMENTS	42
REFERENCES	43
APPENDICES	45

ABSTRACT

A biological survey was conducted of the Helena and Aurora Range. The range is the largest of six banded ironstone ranges within the Coolgardie IBRA Region. Data was collected for invertebrates, vertebrates, flora and vegetation.

The vertebrate fauna survey results do not indicate that the banded ironstone landform offers a unique or specialised habitat for the extant vertebrate fauna, though it may be the preferred habitat for some species, particularly reptiles. This conclusion is consistent with other studies of banded ironstone ranges in Western Australia.

A total flora of 324 taxa was recorded from the range, of which 303 were native and 21 were weeds. One species of declared rare flora and 10 taxa listed on CALM's priority flora list were found on the range. Four taxa appear endemic to the Helena and Aurora Range. None of these taxa are currently reserved. Six floristic community types were defined, these were highly correlated with topographic position and slope. Data is not yet available to determine the conservation status of the major community types identified however only a small proportion of the Bungalbin vegetation system is currently managed for conservation.

An invertebrate fauna including 142 insect taxa and 84 spiders was recorded for the range. For some groups, such as Orthoptera and Spiders the range supports a rich fauna. Further taxonomic and field collecting may reveal a small localised or endemic invertebrate fauna.

The inclusion of the Helena and Aurora Range and the surrounding woodlands and sandplains in the proposed extension to the Mount Manning Range Nature Reserve offers an opportunity to establish a large representative Nature Reserve with demonstrated high conservation values in an IBRA region which is inadequately represented by lands managed primarily for conservation.

RECOMMENDATIONS

- 1. As the proposed reserve over the Helena and Aurora Range has been approved in principle by the Western Australian Government, (recommendation 10.5.2 CALM's Goldfields Regional Management Plan, CALM, 1994 and has received ministerial approval) CALM should proceed with the reservation recommendation.
- 2. Following gazettal of the reserve priorities for management include:
 - a) Erosion control of mining exploration access tracks and grid-lines. This should include an approach to the previous tenement holder for financial assistance to address to detrimental effects of previous mineral exploration.
 - b) measures to ensure feral goats do not become established. In practice this involves discouraging the establishment of permanent waters by mining activity ie preventing costeans, open pits and road run-off providing a water source.
 - c) production of an area management plan for the reserve as resources and other priorities permit.

PART 1 INTRODUCTION

Andrew Chapman and Rob Thomas

REGIONAL SETTING AND PHYSICAL ENVIRONMENT

The Helena and Aurora Range (subsequently referred to as 'the Range') is located approximately 50 km north of Koolyanobbing and south of the existing Mount Manning Range nature reserve in the eastern Goldfields of Western Australia (Figure. 1). The Range is within the Coolgardie IBRA region which was formerly known as the botanical district of the same name or the Southwestern Interzone of Beard (1980) (Thackaway & Cresswell, 1995). As the name suggests the vegetation and fauna here is a blending of that of the more mesic south-west and the arid interior. Open eucalypt woodlands often with a chenopod shrub layer are prominent on calcareous red-brown sandy loams. Denser shrublands, mallees and thickets are associated with deeper, sandier soils and granite outcrops or greenstone and banded ironstone hills respectively. Not far to the north are the extensive Mulga woodlands of the Murchison IBRA region. Thus the Range sits close to the major biological divide known in Western Australia as the Mulga-eucalypt line. The reservation status of the Coolgardie IBRA region is <10% (Thackaway & Cresswell, 1995).

Apart from very small areas to the east of Southern Cross there has been no clearing of vegetation for agriculture in the Coolgardie IBRA region, however cutting of eucalypt timber for both fuel and for structural purposes in the mining industry over some 4 000 000 ha has modified the structure of these woodlands elsewhere in the region. Consequently, mature and uncut eucalypt woodlands such as those surrouding the Range have a high priority in conservation and management. Mining is a significant land use particularly in the two massive greenstone belts which strike NNW-SSE in both the west and centre of the region. Productive mining can significantly impact on these woodlands albeit over relatively small areas. Modern exploration, on the other hand is more benign but impacts much larger areas including providing access to areas which may result in secondary impacts such as erosion or illegal activities. Pastoral production occupies the eastern half of the region; impacts include localized degradation in the immediate vicinity of watering points, reduction of palatable perennial shrubs and increases of unpalatable species. The Range itself occupies vacant crown land, neither pastoralism nor timber cutting have impacted upon it or its surrounds. However extensive geological exploration of the banded ironstone resource has provided access to the Range and caused significant erosion. There has been recent open-pit production mining of gold just south of the Range.

Wildfires which are usually ignited by thunderstorms are very infrequent in both the Range and surrounding woodlands due to the very open nature of the vegetation and lack of a flammable understorey. In spite of this a lightning strike east of Bungalbin Hill did ignite the Range crest and slope vegetation on 26/11/95 and burnt 100 ha in 2 days. Wildfires are more frequent in the denser shrublands surrounding the Range.

Geologically the Helena and Aurora Range, and most of the Coolgardie IBRA Region, occupy the Archaen Yilgarn craton, part of the exposed original land surface of Australia. The Range itself comprises Archaen banded iron formation whose origin is iron oxides from bacteria laid down in river or lake sediments which subsequently became metamorphosed and uplifted by tectonic forces. Banded ironstone exposures are known from at least 6 localities in this IBRA region, however the Helena and Aurora Range is the largest and with a maximum height of 702m is certainly the most visually striking. Here banded ironstone occurs at two stratigraphic layers separated by basalt. The upper layer includes red jasperlite which is particularly visible on the western arm of the Range, but the lower layer is thicker, up to 100 m, and contains the

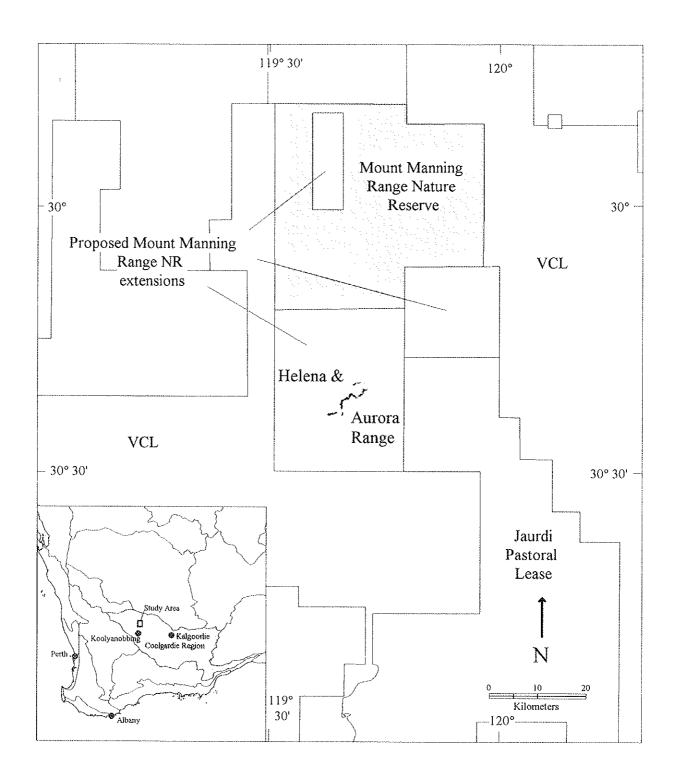


Figure 1. Regional setting of the Helena & Aurora Range. The inset indicates the Coolgardie IBRA Region (shaded).

identified iron ore resource of 61 million tonnes at 58% iron (Chin and Smith 1983). This is a larger resource than that at Koolyanobbing, Mount Jackson or Windarling Peak but is of a lower grade.

The nearest meterological recording station is Southern Cross which is 80 km to the south. Meterological data for Southern Cross are presented in Table 1. The climate of the Range and surrounds according to Bagnouls and Gaussen (1957) in Beard (1981) is 'semi-desert mediterranean'.

'Mediterranean' recognises that the rainfall is predominently in winter, 'semi-desert' recognises that there are between 9-11 dry months per year. Dry in this context is derived from the ombrothermic diagram system of Bagnouls and Gaussen (Ibid) whereby a dry month is one where temperature exceeds rainfall when plotted at a scale of r=2t. Whilst this system provides an adequate regional interpretation it fails to recognise two aspects pertaining particularly to the Range. Firstly there can be significant summer rainfall events from either convective thunderstorms or rain bearing depressions of tropical origin and also there are likely to be biologically significant microclimatic effects due to the topography of the Range. As an example of the latter it was apparent during fieldwork that strong, gusty, evening winds are present within the Range even when it is quite still elsewhere.

Apart from 1994 which was a dry year, the years preceding, and including, the survey generally had above average rainfall as the following data indicate. The mean annual rainfall for Southern Cross is 285 mm; 1992 had 440 mm, 1993 had 318 mm, 1994 had 204 mm and 1995 had 476 mm. Work elsewhere in the Goldfields has demonstrated that rainfall, or the lack of it, has a direct and very pronounced bearing on the success of biological survey work (Chapman and Craig *in prep.*).

Table 1. Climatic Data for Southern Cross

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Ann
Mean monthly rainfall	13.9	20.0	21.3	22.9	34.3	41.6	38.2	30.9	18.5	16.0	15.2	12.4	285.2
(mm) Mean daily max. temp.	34.6	33.6	30.6	25.7	20.5	17.0	16.3	18.0	21.8	25.4	29.6	33.0	25.5
Mean daily min. temp.	17.2	17.1	15.1	11.4	7.6	5.7	4.4	4.8	6.4	9.2	12.8	15.5	10.6
Highest temperature	45.6	45.6	42.3	38.3	32.7	26.9	26.7	30.6	34.0	39.3	42.1	44.4	45.6
Lowest temperature	8.2	8.1	5.0	0.6	-3.3	-3.8	-3.0	-2.7	-1.6	-1.1	1.1	3.4	-3.8
Mean No. rainy days	2.6	2.9	3.3	4.8	7.5	10.3	10.7	9.2	6.1	4.7	3.5	2.6	68.3
Highest No. rainy days	10	11	10	12	24	20	25	18	13	11	12	9	-
Lowest No. rainy days	0	0	0	0	0	2	4	1	0	0	0	0	

PREVIOUS BIOLOGICAL STUDIES AND RESERVATION PROPOSAL

The first biological studies of the Range and surrounds were those of Dell and How (1985) in which both Mt Jackson and the Range were study sites representing the Jackson-Kalgoorlie 'cell' of the System 11 biological survey of the eastern Goldfields. Data were recorded for 5 consecutive days in each of September 1979, April 1980 and November-December 1981. This study recorded data on vertebrates and flora from 7 quadrats 6 of which were in shrublands,

sandplains and woodlands north of the Range, one quadrat designated JK 18a was in a lower slope range habitat. The University of Western Australia conducted 11 field trips to the same sites as the previous study between 1989 and 1993 as student training in vertebrate community ecology. Together these studies revealed an extremely rich vertebrate fauna of 20 species of extant native mammals, 51 species of reptiles and 2 species of frogs. Of particular interest are two vicarious species pairs of mammals *Notomys mitchelli* and *N. alexis* as well as *Ningaui ridei* and *N. yvonnae* in sympatry. With 13 species of gekko; one of the the richest gekko assemblages in the world is present here, Chris Dickman *pers. comm.* in Henry-Hall (1990). Michael Craig *pers. comm.* has compiled a list of 91 bird species from both the above studies.

The Range and surrounds has also attracted the attention of botanists; in particular Ken Newbey, Steve Hopper, Franz Mollemans and Jeni Alford. As a result one endemic species, *Tetratheca aphylla*, which is declared rare, under the Wildlife Conservation Act, is known from the Range as well as 5 priority listed species known from surrouding sandplains and shrublands.

Henry-Hall (1990) summarized all existing biological and landform information and made the first boundary recommendations for a reserve incorporating the Helena and Aurora Range. Previously Keighery (1980) and Dell et. al. (1985) had indicated the high conservation values of the Range and surrounds and recommended a southern extension of the existing Mount Manning Range Nature Reserve. In the Regional Plan for the Goldfields Region, CALM (1994) endorsed the Henry-Hall (1990) proposal; currently the addition of 91 650 ha of vacant crown land including the Range as an extension to Mount Manning Range Nature Reserve has been approved by the Government (Figure 1). The extension is to have 'C' class status to be compatible with the existing reserve.

The purpose of the study reported here is to examine the banded ironstone landform of the Helena and Aurora Range and bring to parity data on its values for vertebrate and invertebrate fauna as well as vegetation and flora compared to the surrounding woodlands, sandplains and shrublands which by Western Australian standards have been particularly well studied.

PART 2 FLORA AND VEGETATION

Neil Gibson, Michael N. Lyons and Brendan J. Lepschi

ABSTRACT

A study was undertaken of the flora and plant communities of the Helena and Aurora Range. The range is formed from banded ironstone and basalts and is surrounded by an outwash plain derived from these units. Fifty-five quadrats were established and data from these were used to define six community types that were highly correlated with topographic position and slope. A total flora of 324 taxa was recorded from the range, of which 303 were native and 21 were weeds. The very good season of spring 1995 allowed extensive collections of annuals and geophytes to be made.

One species of Declared Rare Flora and 10 taxa listed on CALM's priority flora list were found on the range. One apparently new species of *Leucopogon* was on the range. Four taxa appear to be endemic to the Helena and Aurora Range, none of these taxa are currently reserved. A further five taxa are restricted to banded ironstone ranges or associated soils within 100 km of the Helena and Aurora Range and two of these are not reserved. Three taxa are recommended to be added to the priority flora list.

The floristic classification is in broad agreement with previous descriptions of the range but documents finer scale patterning than has previously been reported. A key to the major community types is provided. Data are not yet available to determine the conservation status of the major community types identified. Only a small proportion of the Bungalbin vegetation system is presently managed for conservation.

INTRODUCTION

Beard (1972) first described the major structural formations in the study area. He grouped his structural units into vegetation systems and defined the vegetation of the banded ironstones of the Helena and Aurora Range as forming part of the Bungalbin System. This system also encompasses the ironstone areas of the Hunt Range, the Watt and Yendilberin Hills to the east, the Mt Jackson Range to the west, a small range of hills to the north and the Koolyannobbing Range to the south. He describes the vegetation of these ranges as thickets dominated by Acacia quadrimarginea, Acacia tetragonophylla, Dryandra arborea (on rocky outcrops) and Allocasuarina acutivalvis with understoreys of such shrubs as Dodonaea spp., Eriostemon brucei, Eremophila spp., Enchylaena tomentosa and Grevillea paradoxa. The foot slopes of the Helena and Aurora Range and valley systems would fall into the Eucalyptus salmonophloia - E. salubris association of his very broad Jackson system. Keighery (1980) confirmed the occurrence of Dryandra arborea shrublands in the Die Hardy Ranges, Mt Jackson, Koolyanobbing Range, Mt Dimer, the Hunt Range and the Helena and Aurora Range.

Beard's pioneering work was followed up some years later with a major regional survey of the biota of the Eastern Goldfields, produced in a series of cell reports. The Jackson-Kalgoorlie report (Dell *et al.* 1985) covered the Helena and Aurora Range area. Dell *et al.* adopted a land system approach, somewhat broader than Beard's vegetation systems.

Newbey and Hnatiuk (1985) describe the vegetation of the Helena and Aurora Range under the heading, "Hills (banded ironstone formation)". They briefly describe the major structural units seen on the Helena and Aurora Range and note the *Dryandra arborea* shrublands on the steep upper slopes with *Eucalyptus ebbanoensis* mallee on the upper and lower slopes and *Acacia*

aneura low woodland on the pediment. They also note small areas of Eucalyptus wandoo (=E. capillosa subsp. capillosa) near the crest of the range.

Both Beard's survey and the later biological survey of the eastern goldfields were undertaken to provide regional overviews. Consequently the individual ranges were not sampled extensively. Indeed, only two sites from the Helena and Aurora Range are described in detail (Newbey and Hnatiuk 1985). The only other report on the vegetation of the study area is that of Henry-Hall (1990). This report details reserve recommendations for the southern goldfields. In the section on the proposed Bungalbin Hill extension Henry-Hall described the diverse nature of the vegetation of the range and provided a detailed description of some of the structural units.

The aim of the present work was to undertake a detailed floristic survey of the range to compile a detailed flora list for the range and the surrounding outwash areas, and to detail the vegetation patterning of this area.

METHODS

Fifty-five 20 m x 20 m quadrats were established on the range, its foot slopes and the outwash plain (Figure 2). These sites attempted to cover the major geographical, geomorphological and floristic variation found in the study area. Care was taken to locate sites in the least disturbed vegetation available in the area being sampled. Some difficulty was experienced in accessing the uplands of the western half of the Aurora Range due to lack of vehicle access but several foot traverses indicate that an adequate sampling of the tops and upper slopes has been achieved. No attempt was made to sample the Tertiary sand plain that surrounds the Helena and Aurora Range (Chin & Smith 1983).

Within each site all vascular plants were recorded. Twenty seven primarily upland sites were established in the last week of July 1995. These sites were revisited and a further 28 sites established in the last week of September 1995. Data on topographical position, slope, aspect, percentage litter, percentage bare ground, percentage exposed rock, vegetation structure and condition were collected from each site. Topographical position was scored on a subjective three point scale from ridge tops and upper slopes (1), to midslopes (2), and to lower slopes and broad flats (3). Slope was scored on a one to three scale from flat to steep. Aspect was recorded as one of 16 cardinal directions. Vegetation structure was recorded using Muir's (1977) classification.

All sites were permanently marked with four steel fence droppers and their positions fixed using a GPS unit (Appendix 1). Twenty four soil samples from the A horizon were collected and bulked from each site. These soil samples have not yet been analysed due to lack of resources.

Sites were classified according to similarities in species composition, in these analyses only perennial species were used to facilitate comparisons with classifications from other ranges in the area (Gibson & Lyons 1995, Gibson & Lyons *in prep.*).

The site and species classifications undertaken used the Czekanowski coefficient and "unweighted pair-group mean average" fusion method (UPGMA, Sneath and Sokal 1973). Semi-strong hybrid (SSH) ordination of the sites data was undertaken to show spatial relationships between groups and to elucidate possible environmental correlates with the classification (Belbin 1991). Statistical relationships between site groups for such factors as species richness, slope, aspect etc, were tested using Kruskal - Wallis non parametric analysis of variance (Siegel 1956).

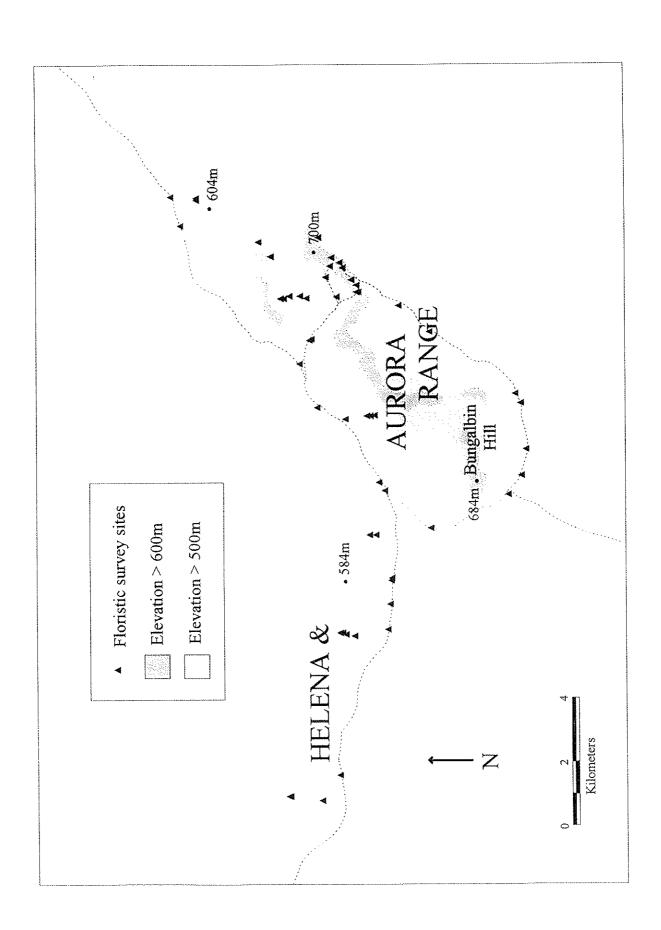


Figure 2. Study area showing location of floristic survey sites.

Nomenclature follows Green (1985) and current usage at the Western Australian Herbarium (PERTH). Selected voucher specimens will be lodged in PERTH.

RESULTS

FLORA

A total of 324 taxa (species, subspecies and varieties) were recorded from the Helena and Aurora Range. The flora list was compiled from taxa found in the 55 plots or the adjacent area, from opportunistic collections and from confirmed records held in PERTH (Appendix 2). Of these 324 taxa, 303 are native and 21 are weeds. The best represented families were the Asteraceae (50 native taxa and 6 weeds), Myrtaceae (30 taxa), Poaceae (12 native taxa and 8 weeds), Mimosaceae (17 taxa), Chenopodiaceae (14 taxa), Myoporaceae (14 taxa), Goodeniaceae (11 taxa), Fabaceae (10 taxa), and Proteaceae (10 taxa). This pattern is typical of the flora of the South Western Interzone (Newbey & Hnatiuk 1985). Good rains were experienced in the winter and early spring of 1995, reflected by the large numbers of annuals and geophytes on the flora list (Appendix 2).

The most common genera were *Eucalyptus* (19 taxa), *Acacia* (17 taxa), and *Eremophila* (14 taxa). Weed species were generally not a major component of the vegetation.

During the survey one species of Declared Rare Flora (DRF) was recorded along with 10 other taxa on CALM's priority flora list (CALM 1996). Two new populations of the DRF *Tetratheca aphylla* were located, as were new populations of some of the 10 priority taxa (Table 2, Figure 3). Previously one species of DRF and five priority taxa were known from the range (CALM 1994).

Table 2. Declared Rare Flora and Priority Flora found during the survey indicating the number of new populations located (CALM 1996).

Taxon	Current priority listing	Number of new populations
Acacia adinophylla ms	1	2
Acacia cylindrica	3	1
Daviesia purpurascens	4	3
Gnephosis intonsa	1	1
Grevillea erectiloba	4	3
Grevillea georgeana	3	1
Leucopogon breviflorus	2	6
Phlegmatospermum eremaeum	2	1
Prostanthera magnifica	4	1
Stenanthemum newbeyi	1	5
Tetratheca aphylla	R	2

Acacia adinophylla ms appears to be endemic to the Helena and Aurora Range. The understorey of the side slopes of the range is dominated by another range endemic, the undescribed grass Neurachne sp. Helena & Aurora (KR Newbey 8972) (Figure 4). This taxon is extremely widespread in the range but as yet has not been collected from any other range in the area. Tetratheca aphylla also appears to be endemic to the range. There is one collection in

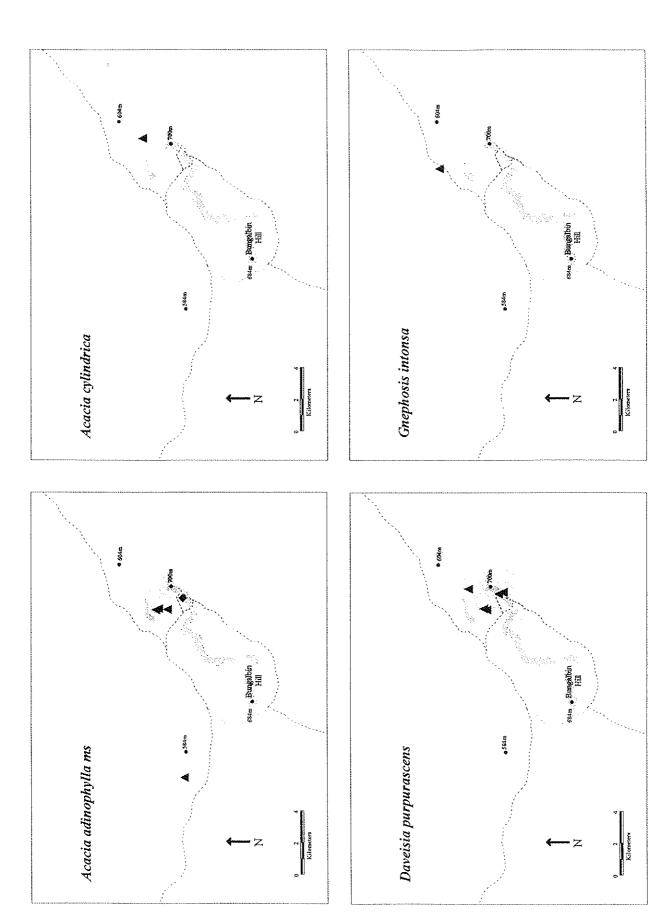


Figure 3. Populations of Declared Rare and Priority Flora recorded during the current survey. New populations (triangles) and known populations (diamonds).

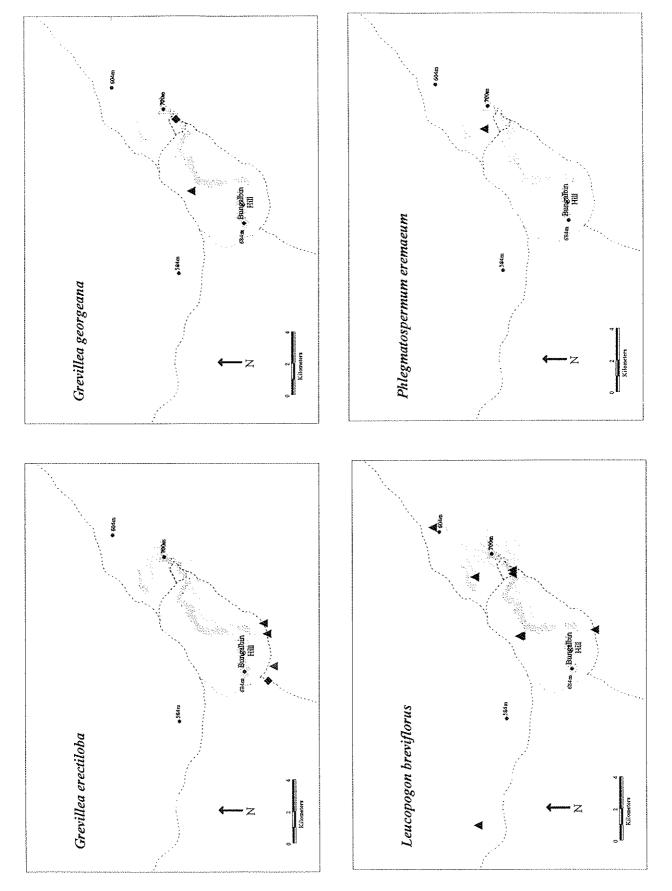
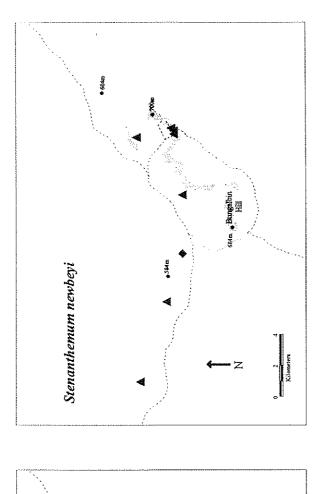



Figure 3. cont'd

a 584m

Prostanthera magnifica

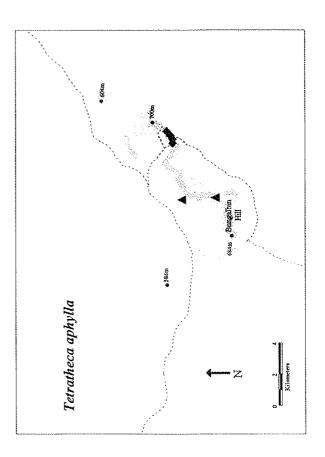


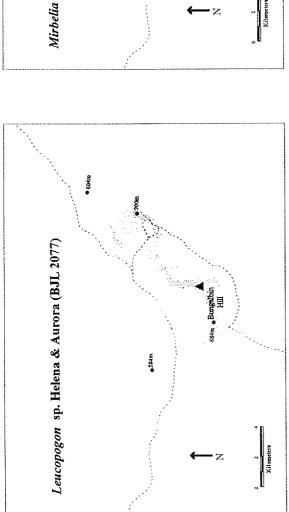
Figure 3. Cont'd.

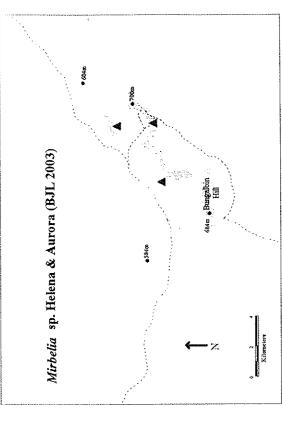
PERTH with a location "10 km N of Bungalbin Hill", this appears to be in error and should read "10 km NE of Bungalbin Hill". Until recently *Stenanthemum newbeyi* was also believed to be restricted to the Helena and Aurora Range and nearby hills (Rye 1995), however recent field work has recorded this species on banded ironstones at Ennuin Station some 80 km to the south west.

Several other species (A. cylindrica, Grevillea erectiloba, G. georgeana, and Mirbelia sp. Helena & Aurora BJ Lepschi 2003) appear to be restricted to the banded ironstone ranges (or associated soils) within 100 km of Bungalbin Hill.

An undescribed species of *Leucopogon* was collected from a cliff line approximately 3 km east of Bungalbin Hill. This taxon (*Leucopogon* sp. Helena & Aurora BJL 2077) was locally abundant growing in association with *Tetratheca aphylla* but was not encountered elsewhere on the range. Another undescribed taxon, *Mirbelia* sp. Helena & Aurora (BJL 2003), was also collected on the range. This species has previously been collected from two locations, one north of the Hunt Range and the second in the Watt Hills. Both localities lie some 60 km from Bungalbin Hill. It is recommended that both these taxa be listed on CALM's priority flora list as Priority 1 and Priority 2 respectively (Table 3, Figure 4).

Table 3. Taxa from the study area requiring priority listing and the number of known populations


Taxon	Recommended priority listing	Number of known populations
Leucopogon sp. Helena & Aurora (BJL 2077)	1	1
Mirbelia sp. Helena & Aurora (BJL 2003)	2	3
Echinopogon ovatus	2	5


(Priority 1 taxa are defined as:- Taxa which are known from one or a few (generally <5) populations which are under threat, either due to small population size, or being on lands under immediate threat, eg. road verges, urban areas, farmland, active mineral lease, etc., or the plants are under threat, eg. from disease, grazing by feral animals, etc. May include taxa with threatened populations on protected lands. Such taxa are under consideration for declaration as 'rare flora', but are in urgent need of further survey.

Priority 2 taxa are defined as:- Taxa which are known from one or a few (generally < 5) populations, at least some of which are not believed to be under immediate threat (ie not currently endangered). Such taxa are under consideration for declaration as 'rare flora', but are in urgent need of further survey.).

Daviesia purpurascens has recently been delisted from DRF to Priority 4. Data from this survey supports this reassessment. This species was found to be very widespread on the range, occupying both the massive ironstone tops as well as the side and midslopes.

Echinopogon ovatus was collected at the base of the same cliff line at which Leucopogon sp. Helena & Aurora (BJL 2077) was found. This grass is known from only six collections in Western Australia, one from near Onslow and the rest in the Margaret River - Nannup area. It is recommended that this species also be listed on CALM's priority flora list as Priority 2.

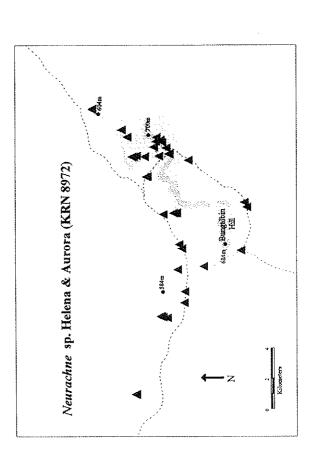


Figure 4. Populations of new and undescribed taxa recorded during the current survey.

VEGETATION

For the floristic analysis two species had to be amalgamated into a species complex due to difficulty of differentiating between them (*Vulpia myuros* and *V. muralis*). Only material that could be identified to species level was included in the analysis (c.99% of records). In the 55 quadrats established on the Helena and Aurora Range 233 taxa were recorded, 117 of these being perennials (see Appendix 3). Twenty seven perennials occurred at only one site. These singletons have little effect on the community classification and were excluded. As a result the final data set consisted of 90 taxa in 55 sites. Species richness ranged from three to 20 taxa per site, with individual taxa occurring in between two and 36 sites.

Multivariate analysis can assist in sorting both sites and species data such that patterns in species composition are more easily seen. The decision as to the number of site and species groups defined is subjective and related to the scale of pattern of interest (Kent and Coker 1992). In this analysis site groups are discussed at the six group level which best reflects the scale of patterning seen in the field.

The dendrogram shows the six community types recognised in the analysis (Figure 5). The primary division seen in the dendrogram between community types 1-4 and community types 5 and 6 separates skeletal and weathered soils of the uplands and slopes from the deeper calcareous fertile soils of the valley bottoms. This can also be clearly seen in the sorted two way table generated from the site and species classifications (Table 4).

Community types 1 and 2 are largely confined to the ridge tops and upper slopes of the Helena and Aurora Range. Both community types develop on skeletal yellow or red soils. Taxa in species group H are typical species of community type 1; these include *Acacia quadrimarginea*, *Grevillea zygoloba*, *Allocasuarina acutivalvis*, *Melaleuca nematophylla*, *Dryandra arborea* and *Calycopeplus paucifolius* (Table 4). This community is generally dominated or co-dominated by the species listed above. Average species richness was 14.7 taxa / plot.

Community type 2 was entirely restricted to the massive ironstone tops slopes and breakaways of the range. This community was generally dominated by either *Eucalyptus ebbanoensis* or, on the small breakaways, by *Eucalyptus capillosa* subsp. *capillosa*. Taxa from species group B, H and I are most consistently present, but with a lower representation of taxa from species group H compared to community type 1. Average species richness was 13.6 taxa / plot.

The open side slopes of the Helena and Aurora Range are primarily occupied by community type 3. This community is generally dominated or co-dominated by *Eucalyptus ebbanoensis* and / or *E. corrugata*, with an understorey dominated by the *Neurachne* sp. Helena & Aurora (KRN 8972). Occasionally this community may be dominated by *Acacia* spp. rather than the eucalypt species. Typical taxa of this community are species in species groups A and B. Taxa in species groups D, F, G, H and I are completely or almost completely lacking from this community type (Table 4). Average species richness was 10.5 taxa / plot.

Community type 4 was restricted to the lower slopes and flats below the range. It was a species-poor community (in terms of perennials) with an average species richness of 7.9 taxa / plot. This community was variously dominated by *Acacia aneura*, *A. resinimarginea* or *A. acuminata*, or occasionally by *Eucalyptus ebbanoensis* and / or *E. hypochlamydea* subsp. *hypochlamydea*. Where eucalypts dominated, the understorey included taxa such as *Grevillea zygoloba* and *Eremophila clarkei*, species more typical of upland areas. The only understorey species that were largely constant to this group are *Neurachne* sp. Helena & Aurora (KRN

8972), Austrostipa elegantissima, Olearia pimeleoides and Dianella revoluta (Table 4). It differed from community type 5 which also occurs on the flats below the range by the almost complete lack of chenopod species.

Figure 5. Dendrogram of the sites from the Helena and Aurora Range area showing the six group level classification.

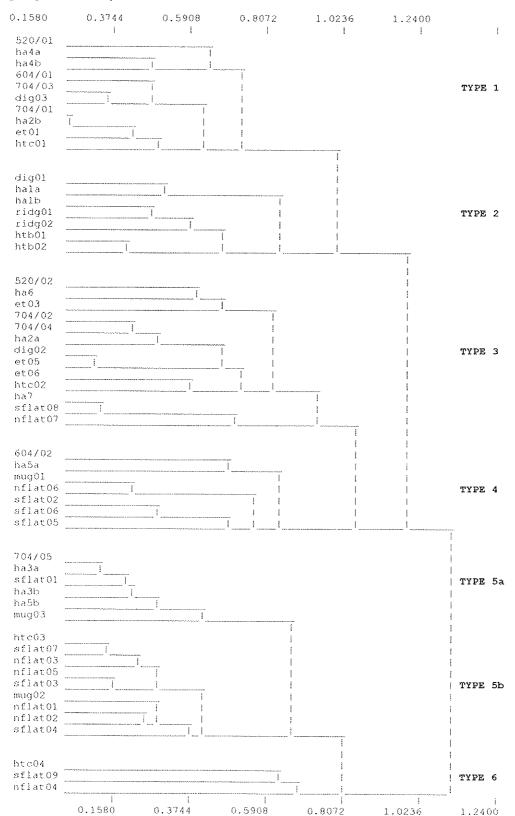


Table 4. Sorted two way table of the Helena and Aurora Range sites showing species occurrence by community type. Site codes appears as columns, species code as rows (see Appendix 2 for full species names).

;		COMMI	NITY TYPE					
	1	2	3	4		5	6	
TAXA		-	•	-	a	b	•	SPECIES
								GROUP
	5hh67d7heh	dhhrrhh	She77hdeehhsn	6hmnsss	7hshhm:	hsnnsmnns	hsn	
			2at00aitttaff					
			1060442g00c711					
			/ 3//a0560 aa					
		[1 0012]		0 ltttt		3tttt2ttt		
	1 13 1	12	2 24 00					
		1	87	6265	1	7353 124	94	
		1 :			,			
7 (3 5 5 (3))			4.2.4.					
ACAACU ACAPRA		1	1 44 444				:	
ACARES		1	l sir strate	draft.	t f		ί ί	
PHECAN		1	1 4. 3.4. I	*	ł I		i	
CASMEL		1	* *		í		;	
DAVPUR		%	· * ** *		: !			A
ERERUG		1	** **		ļ	* *		
SANSPI	* *	*	** * *		Í			
ACAADI	*	i	** *		Í			
ACAERE		1	* *		l			
GREHAPHA		i	* *		[
		4			·		·~	
ACAERI		Į I	** * *		F	**	i	
MAIRAD		{	*		*	**	ł	
ACATET		* *			* **		1	
DODMIC		*	*]		[
DODLOB	*	***	* *		i			
EREOPP		****	* **	*	*	4.	1	
SCASPI		**	电影影	4:	** *	*	1	
WESCEP		** *	***		ļ			В
EUCCOR		1	* *****		****			
EUCEBB	4 4	1	****	*	***			
NEUHAA	*******	*** *	****	****	****			
PTIOBO	.i.	1****** *	** ** * *	 	****	*	**	
OLEMUE	ne ne ne ne ne ne ne ne	1		* ***	***** *** *		Y: Lainah	
AUSELE OLEPIM	* *	1		ar arararar	lararar		, ,	
Outran		4	, , , , , , , , , , , , , , , , , , ,		^ ^ ^ 		·	
ACAANE	4:	1		at at at	!			
HAKMIN		1	**	* 4.	! [t i	
PROGRY	4. 4:	1	st:	\$1.95.95	i			
ACACOGEF	-\$*	i		÷				С
BRAGRE	9r	i			*			
ERELAT	g: 40	i						
		+						
ACACOL		[*	*	*:	**	1	
EUCLON		1				* **		
EUCYIL		1			1	* 4.		
EUCSHE		1	1		i	** * *		D
EREINT		ł i	1		}	* *		
ERESCO		1 :	1]	*** * *	1	
EREION		t :	4.	*	į	* *	ļ	
	FU *** E4 E4 E7 E4 E4 E4 E4 E4	· · · · · · · · · · · · · · · · · · ·			·			
ATRNUM		1	+		4.4.4.	do de quido de de de de de	ł	
SCLDIA					****		•	
ATRVES		:			* *		,	
MAIGEO			** *	*	*****	*** ****	!	
MAITRI		1.	* * * *		*****	*** ***	ļ . +	•
ENCTOM EREDECDE		ŧ *	***** *	 40 40	{ * . • ÷			E
RHADRU		i :	44 34 4.8.	,	^ * * * * *	, ,	l I	
SENARTEI		1	* *** 		 ** **	. *** *	l I	
EUCSALm		1	i ^ ^ *		1 " " " 1 1	**	l 1	
MAITOMTO		: }	! 		! ! ∳	*	' 1	
SCLEUS					1 4 4	** *	1	
BOSWAL				**	! 	w).	i j	
EUCTRA			· İ			* *	i	
EXOAPH	4.	+	<i>*</i>		1	ar ar		
			+		 			
ACAHEM		1	ļ		4		÷	

EUCLOXSM EUCSALu SOLORBOR		[* 		*: *:	* *	; ; *	F
AUSPLA		,	*		1	*	₩	
		,	 		· •			
ACAASSAT	÷: *:	į			!			
ALLCAM	* *	£				(
THRAPP	\$1.50	•	Í		ŀ	i		G
BAEELD	4.	1	i	! *	,			
EUCHYPHY		}	Į	* *	Ì]	l	
		+		f	·	(·	 	
ACAQUA	Araban Araban Araban Ar	** **	1	*	*			
ERECLA GREZYG	काको काको काको संस्कृत काको काको	1 91% 41	7.7	4-4- 4-	 *			
ALLACU	******	** *	* -		. *			
ERIBRUBR	****	**-		1	1			
CALPAU	**** ****	;	 -	1	1	l ı		
HIBEXA	* * ****	1 " "	 -	1	1	} •	1	
MELNEM	*** * ****	,	!	 	l i	į.	1 1	н
DIAREVDI	*****		i •	 * * * * * *	;		i I	11
LEUBRE	** ***	i .	!	· *	1	ž	1	
ALYBUX		; ;*******	l t	 	i i	1	1 1	
DRYARB	****	,	l I	l I	l }	1 {	 	
STENEW	* ***	. ****	l I	l I	} E	i	1	
CHAMAC	* *	:	l L	l I	;	į.	1 1	
CONARG	**		; {	ı I	! {	.	1	
LEP ANG	**	; ; *:	! 	l I	i i	1	1	
MIRBHAA	***	i	i i	i I	ì	·	i I	
71211271171		+	, 	, +	· +	; {	, +	
COMINT	∜ ★	j * *:		l	*		1	
EREGRA	**	* *		*]	
DODVIS		1 * *	I	ĺ	ŀ		1	
TETAPH		1+++		I				
MELLEI	**	**		i I	l	1		I
EREGIB	*:	+	[l	1	1	1	
SIDCAL	W:	I	ļ	l	1	*	I	
EUCCAPCA		**	l	ŧ	1	1	*	
SANACU		* *	ł	l	}	1	I	

Community type 5 consisted of the eucalypt woodlands on the flats below the range with a diverse chenopod understorey. No single eucalypt species consistently dominated this community type with species such as *Eucalyptus salmonophloia*, *E. salubris*, *E. longicornis*, *E. sheathiana*, *E. transcontinentalis*, *E. ebbanoensis* and *E. corrugata* dominating at different sites. Taxa in species group E (mainly chenopods) largely defines this group (Table 4). This group was quite species-rich with an average of 13.1 taxa / plot. This group can be further subdivided into two subgroups. Type 5a are those woodlands close to the change in slope where *E. ebbanoensis* and *E. corrugata* form an overstorey over chenopods and *Neurachne* sp. Helena & Aurora (KRN 8972). Type 5b is more typical of the extensive flats between the ranges where these slope species drop out. Indeed type 5a can be considered transitional between community type 3 and type 5b.

The final community type consists of three heterogenous species-poor quadrats (average species richness 4.7 taxa / plot). One quadrat appears to be related to the *Eucalyptus capillosa* subsp. *capillosa* stands classified into community type 2 and the other two quadrats appear to be species-poor examples of community type 5. The numerical techniques used in this analysis are known to be sensitive to species richness.

Physical correlates

It is clear from the above community descriptions that one of the primary correlates with community type is topographic position and slope class. Significant differences were found between community means for these parameters (Table 5). Community type 2 was entirely restricted to tops and upper slopes, while community type 1 extended down to the midslopes where suitable outcropping of banded ironstone occurred. Both community types were

restricted to the steeper slope classes (Table 5). Community type 3 occurred at an intermediate position in the landscape and consequently occurred across a broader range of slope classes. Community types 4 and 5 occurred low in the landscape, generally on gentle slopes.

There was also significant differences between the community types in percentage exposed rock and percentage litter cover (Tables 6 & 7). Percentage exposed rock showed a similar pattern to slope, with highest degree of rock exposure in those community types on the steepest slopes while percentage litter cover showed the inverse pattern.

Ordination results

Ordination of the site data was undertaken to show spatial relationships between groups and to better elucidate possible environmental correlates with the classification. The results of a two dimensional ordination (stress level 0.24) shows clear separation of most of the classificatory groups (Figure 6). The upland and upper slope community types (1 and 2) occur in upper left quadrant while the midslope and valley floor types (3 and 5) occur in the lower right quadrant. Community type 4 on yellow or red loams falls in an intermediate position. Further interpretation of the ordination may be possible when soil chemistry and soil mechanical data become available.

Table 5. Whisker plots of slope class (1=flat to 3=steep) and topographic position (1-uplands and upper slopes, 2-midslopes, 3-lower slopes and valley bottom) showing differences between the means of the floristic community types (Community types are rows, soil parameters are columns)

```
KEY
L=lower limit....1=1st Quartile....M=mean
D=Median... .3=3rd quartile....U=upper limit
*=more than one symbol at print position
```

Topography class 3.000

Kruskal-Wallis: 35.743

df: 5 Probability: < 0.0001

```
Kruskal-Wallis: 19.726 df: 5 Probability: 0.0014
Slope class
                 2.000
GRP +-----
                  [,----] ==========M=====M=======*
                 \Gamma - \Gamma = nead nead nead nead nead new Market nead new new \pi
```

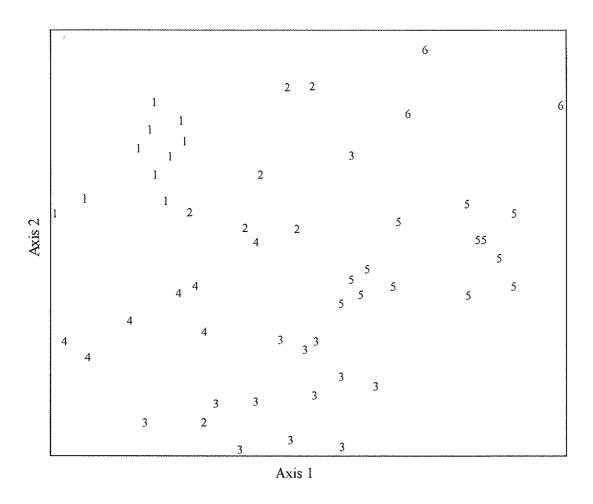


Figure 6. Ordination of sites. Numbers correspond to floristic groups.

Table 6. Degree of rock outcrop in plot by community type.

Community type	< 25% surface rock	25-50% surface rock	> 50% surface rock	Number of quadrats
1		2	8	10
2			7	7
3	4	1	8	13
4	4	1	2	7
5	10	2	3	15
6	2		l	3

Table 7. Degree of litter cover in plot by community type.

Community type	< 25% litter	25-50% litter	> 50% litter	Number of quadrats
1	6	4		10
2	7			7
3	10	2	1	13
4	4	3		7
5	3	9	3	15
6	1		2	3

DISCUSSION

Three hundred and twenty four taxa were recorded from the Helena and Aurora Range. Little detailed survey work has been carried out on the individual ranges of the goldfields. Some recent work has also been completed on the Bremer Range (c. 240 km to the south east) and the Parker Range (some 130 km to the south) (Table 8) (Gibson & Lyons 1995).

Table 8. Comparison of the floras of the Helena and Aurora Range, the Bremer Range and the Parker Range.

	Helena & Aurora Range	Bremer Range	Parker Range
Total taxa	325	269	256
Declared Rare Flora	I	1	
Priority taxa	10	6	8
New taxa	1	2	2
Eucalyptus spp.	19	30	29
Acacia spp.	17	17	20
Eremophila spp.	14	11	7
Melaleuca spp.	5	19	14

The higher number of taxa recorded at the Helena and Aurora Range compared to the other two ranges most likely reflects a seasonal component. Good rains prior to the 1995 season lead to a

profusion of annual taxa compared to the 1994 season (when the other ranges were sampled), which was very poor for annual species and geophytes.

The similar numbers of priority taxa that have been recorded from the ranges indicates the poor state of knowledge of a significant number of taxa from these range systems. This is further borne out by the discovery of one or two new taxa on each range for a limited survey effort, generally less than 10 days per range.

The data also shows significant biogeographical differences in the most species-rich genera between the Helena and Aurora Range and the ranges to the south. *Eucalyptus* and *Melaleuca* numbers drop off toward the north, while *Acacia* numbers stay roughly constant and numbers of *Eremophila* spp. increase northward.

The current survey has identified three taxa that should be listed on the CALM priority list. Two taxa (*Leucopogon* sp. Helena & Aurora (BJL 2077)\ and *Mirbelia* sp. Helena & Aurora (BJL 2003)) have very limited distributions while the third (*Echinopogon ovatus*) has an outlying population in the Helena and Aurora Range (main distribution in Margaret River - Nannup area, but also with a record from Onslow).

Our data and records from the WA Herbarium show that four species appear to be endemic to the Helena and Aurora Range and a further five taxa are regional endemics (found within 100 km) of the banded ironstone ranges and associated soils of this area (Table 9). The majority of these taxa are not known from any conservation reserve.

Table 9. Local and regional endemic taxa.

Taxon	Endemic status	Reservation status
Acacia adinophylla Leucopogon sp. Helena & Aurora (BJL 2077)	Endemic to Helena & Aurora Rg Endemic to Helena & Aurora Rg	Not reserved Not reserved
Neurachne sp. Helena & Aurora (KRN 8972).	Endemic to Helena & Aurora Rg	Not reserved
Tetratheca aphylla Acacia cylindrica Grevillea erectiloba Grevillea georgeana Mirbelia sp. Helena & Aurora (BJL 2003)	Endemic to Helena & Aurora Rg Regional endemic Regional endemic Regional endemic Regional endemic	Not reserved Known from 1 reserve Known from 2 reserves Known from 1 reserve Not reserved
Stenanthemum newbeyi	Regional endemic	Not reserved

The vegetation patterning encountered on the range was highly correlated to topographic position and substrate (as in Gibson & Lyons 1995). Two community types were restricted to upper slopes, there was a broad midslope community type and two community types were found on the lower slopes and flats. This classification, although based only on presence / absence data, accords well with the structural descriptions of Beard (1972), Newbey and Hnatiuk (1985) and Henry-Hall (1990), but provides more detail and shows relationships between the floristic groups.

Significant differences in species richness were found between different community types (Table 10). The species poor community type 6 had significantly less species than all other

community types except for type 4. The shrublands on the massive tops (community type 1) were significantly richer than community types 3 (side slopes) and 4 (foot slopes) but had a similar richness to eucalypt - chenopod woodlands (type 5) of the valley flats. The other upland community type (type 2) had a lower richness than community type 1 and was again significantly richer than community type 4.

It is interesting to find the highest species richness of perennial taxa at both ends of a presumed productivity gradient. Community types 1 and 2 occur on skeletal soils on massive banded ironstones while community type 5 occurs on deep clay-rich soils of the outwash plain.

Table 10. Species richness of community types (based on perennials) from the Helena and Aurora Range with singletons excluded. Means which are not significantly different (P > 0.05 Mann Whitney U-test) are indicated by superscript of same letter.

Community	Mean	Standard
type		deviation
1	14.70°	3.466
2	13.57 ^{ab}	2.499
3	10.54 ^{bc}	3.815
4	7.86 ^{cd}	2,850
5	13.13 ^{ab}	2.446
6	4.67 ^d	1.247

Given the strong correlations with substrate and topographic position it was possible to generate a key to the major floristic units found on the range (Table 11), despite the fact that the community classification was derived from presence / absence data only. It should also be possible to map the floristic units from good quality aerial photography.

Table 11. Key to the major floristic community types found on the Helena and Aurora Range.

- 1. Upland or midslope sites on massive banded ironstone.
 - 2. Shrublands or woodlands not dominated by eucalypt species.

Community type 1.

- 2. Woodlands dominated by *Eucalyptus ebbanoensis* and /or *E. corrugata* or *E. capillosa* subsp. *capillosa* with *Alyxia buxifolia* and / or *Stenanthemum newbeyi* in understorey.

 Community type 2.
- 1. Midslope or valley bottoms not on massive banded ironstones.
 - 3. Midslope community dominated by *Eucalyptus ebbanoensis* and /or *E. corrugata* over *Neurachne* sp. Helena & Aurora (KRN 8972), chenopods absent.

Community type 3

- 3. Lower slope or valley.
 - 4. Community type generally dominated by *Acacia* spp. or if dominated by eucalypts then with *Eremophila clarkei* and *Grevillea zygoloba* present.

Community type 4

4. Community dominated by eucalypts over chenopod shrublands

Community type 5

Some of the floristic units showed some degree of internal heterogeneity and with further sampling it may be possible to describe further subtypes. For example, community type 2 contains two sites dominated by *Eucalyptus capillosa* subsp. *capillosa* which are structurally

distinct from the other quadrats in this group. One quadrat in community type 6 also appears to be a depauperate example of this subunit.

Similarly, community type 4 has potential for subdivision into a mulga subgroup, an *Acacia resinimarginea* subgroup and a eucalypt subgroup. More data would need to be collected from these communities to determine subgroup structure.

Community type 6 does not appear to be a natural group. One quadrat appears to be related to community type 2 while the other two quadrats appear to be related to community type 5. Interestingly, in a classification of the full data set (perennials, geophytes and annuals) the *E. capillosa* subsp. *capillosa* quadrat falls with the other quadrats dominated by this species (community type 2), but the remaining two quadrats form the centre of a small group of species-poor sites restricted to the flats. Further sampling of this community type is needed to clarify its relationships to other communities of the flats.

The endemic taxa of the Helena and Aurora Range are completely unreserved. Beard (1972) places the vegetation of the range into his Bungalbin system, a small part of which occurs on Jaurdi Station to the east. CALM holds the lease to this station and has recommended the southern area become State Forest and the northern part become a Nature Reserve (CALM 1994, Figure 1). As yet it is not possible to determine if the community types found on the Helena and Aurora Range also occur on the banded ironstone areas on Jaurdi Station. The bulk of Beard's Bungalbin vegetation system occurs from the Helena and Aurora Range west to the Mt Jackson area. None of this area is in the current reserve system.

It is regrettable that past exploration activity in the area was not rehabilitated. Track and grids left in this environment take many years to recover due to the slow growth rates found in these environments. Some of the tracks left on steeper slopes show significant erosion.

The results of this study support the recommendations of Keighery (1980), Henry-Hall (1990) and CALM (1994) that the Helena and Aurora Range should be declared an A-class Nature Reserve vested in the NPNCA for the protection of flora and conservation of the ironstone vegetation communities.

PART 3 VERTEBRATE FAUNA

By Andrew Chapman and Grant Pronk

METHODS

The approach taken to sampling vertebrate fauna in the Helena and Aurora Range was determined by two factors. Firstly the requirement to make a comparable effort in sampling the banded ironstone (BIF) landform as had been made for other landforms surrounding the Range during previous surveys. There was also the opportunity to look at the influence of position in the Range ie altitude on faunal utilization of its habitats as there is a decrease in soil depth and an increase in banded ironstone exposure with increasing altitude. Thus having recognized 'crest','upper slope' 'mid-slope', 'lower slope' and internal 'valley' primary habitats which corresponded roughly with different, but consistent vegetation structure and floristics it was necessary to allocate trapping effort to cover the spatial extent of the Range as well as variation within each primary habitat. Three transects, each with quadrats in each of the primary habitats were established to achieve these requirements. One quadrat was established in an internal valley in a section of the Range with complicated structure. Seven quadrats were used, their locations are indicated in Figure 7.

Each quadrat comprised a paired line of pit traps with a joining drift fence. Each line comprised 6 x 20 litre buckets 40 cm deep with an aperture diameter of 29 cm at a spacing of approximately 10 m joined by a 30 cm high aluminium fly wire fence which was set into the soil. On account of the rocky nature of the substrate it was necessary to drill the banded ironstone with a rockdrill to insert an a explosive charge to fracture it before digging a hole to accomodate each pit trap. A cage trap for larger fauna was set at each quadrat. In addition 3 lines each of 20 Elliott traps were set either on very steep slopes occupied by Eucalyptus capillosa woodland or on ridges with massive banded ironstone exposure. Thus each quadrat became a primary sampling site for small mammals, reptiles, frogs and ground inhabiting invertebrates. Trapping effort was 720 pit trap nights and 480 Elliott trap nights. In addition to pit trapping each quadrat was searched for litter inhabiting and nocturnal fauna. At each quadrat vertebrate fauna was identified, weighed, measured (snout-vent length for reptiles and hindfoot and ear for some mammals), marked with a texta pen (except gekkoes) and released. A small number of voucher specimens were lodged in the Western Australian Museum to confirm identifications (see Appendix 5). Photographers Jiri and Marie Lochmann photographed a range of mammals and reptiles from the September 1995 sampling session. Birds were recorded opportunistically at each quadrat and as well in surrounding woodlands while travelling from quadrat to quadrat. Mist nets were set for bats, but mist-netting was unsuccessful due partly to the windy conditions at night in the Range.

Reconnaisance, site selection and pit trap setting was undertaken 22-27 July 1995. The first sampling session was between 22-29 September 1995 and the follow up between 24 February and 1 March 1996. For the Spring survey, weather was cool-warm, minimum temperatures ranged 10-15°C with mean 12.2°C and maximum temperatures ranged 20-30°C with mean 24.6°C and light rain on two occasions; for the Summer survey warm to hot weather prevailed. Minimum temperatures ranged 13-22°C with mean 15.8°C, and maximum temperatures ranged 30-39°C with mean 33.8°C. There was no rain, though there were summer thunderstorms in the vicinity.

All data was entered into a data base, some 350 entries were classified as either CR (for Range crest including quadrats 1, 4 and Elliott site E3), US (for upper slope including Elliott sites E1 and E2), MS (for mid slope including quadrat 2), LS (for lower slope including quadrats 3, 5 and 6) and VL (for internal valley including quadrat 7). Thus this data base (Appendix 5)

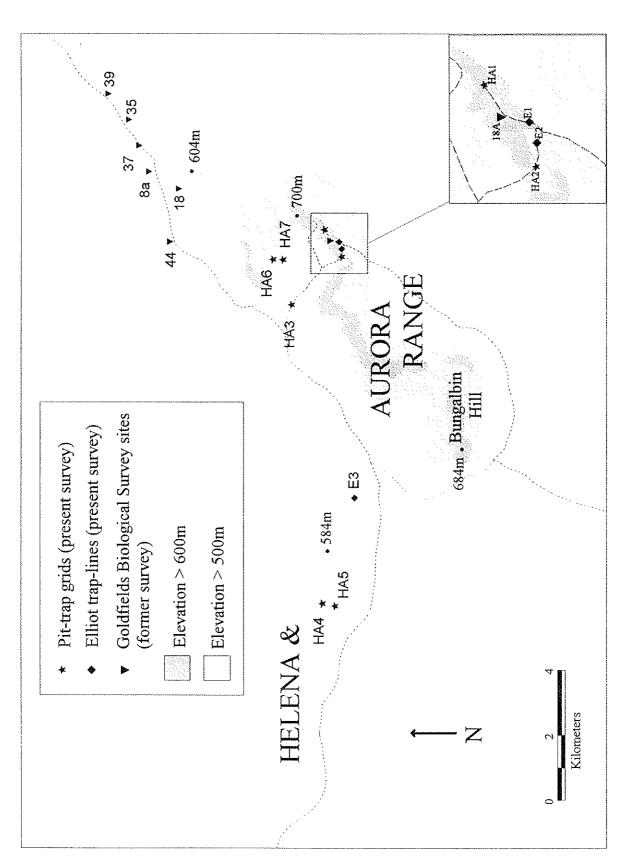


Figure 7. Fauna quadrat locations, Helena and Aurora Range.

forms a list of all vertebrate fauna utilising the Range as a distinct landform and indicates some degree of habitat discrimination within the Range. A secondary data base (Appendix 6) records all fauna recorded in peripheral woodlands. In the annotated list a 'record' refers to a notebook, data sheet or data base entry; irrespective of size of flock or number of individuals seen at any one point.

RESULTS

This survey reveals that the vertebrate fauna of the Helena and Aurora Range, as a distinct landform, comprises 8 species of native mammal, 52 bird species, 28 reptile species and one amphibian. Complete data are in the primary and secondary data bases (Appendices 5 & 6) which are summarized in the following annotated lists.

MAMMALS

Euro (Macropus robustus)

Six records, usually of solitary animals; one pair and twice a group of three, including a female with pouch young were recorded in February. Most were in crest or upper slope habitats, once in lower slope woodland.

Pygmy Possum (Cercartetus concinnus)

Five records including one recapture; from quadrats 1A (1), 3B (1) and 4B (3). Four of five records were on Range crest habitats ie *Eucalyptus ebbanoensis* over *Neurachne sp.* on exposed BIF surfaces. One record on Range lower slope *Eucalyptus corrugatai* woodland. All records were in Spring, one female weighed 10.0g, males weighed 9.0-12.0g.

Little Long-tailed Dunnart (Sminthopsis dolichura)

Seven records from quadrats 1A (1), 1B (2), 4A (1), 4B (1), 6A (1), 6B (1). Five of seven were Range crest habitats (as above), two were lower slope woodlands. All records were in Autumn-Summer, females weighed 7.0-12.5g (N=5), males weighed 11.0-13.5g (N=2).

Ningaui (Ningaui yvonnae)

One record only, a female weighing 7.6g from quadrat 5A in lower slope *Eucalyptus ebbanoensis* woodland over *Neurachne sp.*

Brush-tailed Possum (Trichosurus vulpecula)

One record, old Possum scats of indeterminate age, were located in a cave in upper slope BIF at 30° 22.59'S, 119° 39.28'E.

Echidna (Tachyglossus aculeatus)

Numerous records, fresh scratchings and scats were recorded throughout the Range and one animal was observed in lower slope woodland.

Sandy Inland Mouse (Pseudomys hermannsburgensis)

Three records, from quadrats 3A (1), 5B (1), 6B (1); all of these were lower slope woodlands. All records were in Summer, a male weighed 12.0g, and a female 17.2g.

Lesser Stick Nest Rat (Leporillus apicalis)

Dis-used nests of sticks and amberat in shallow caves and overhangs in massive BIF exposures in Range crest habitats were recorded on several occasions. They were relatively infrequent compared to elsewhere in the Eastern Goldfields.

Dingo (Canis lupus dingo)

One record, fresh tracks in lower slope woodland in summer.

Goat (Capra hircus)

One record, old scats in crest habitat at site E3. This record indicates that in favourable seasons ie. when there is surface water available goats, probably from Mt Jackson, will reach the Range. A lack of permanent water prevents permanent establishment.

Rabbit (Oryctolagus cuniculus)

Three sightings, usually solitary animals, one pair; in crest, mid slope and valley habitats. Other records of dung heaps indicate that rabbits are present throughout the Range but in relatively low numbers.

AMPHIBIANS AND REPTILES

Kunapalari frog (Neobatrachus kunapalari)

One record, pit-trapped at quadrat 1B in Range crest habitat in September.

Diplodactylus assimilis

One record, from quadrat 7A, a valley habitat in Summer

Diplodactylus granariensis

Nine records, from quadrats 2B (1), 3A (1), 3B (3), 5B (2), 7A (1) and 7B (1), most of these are lower slope habitats with one each from mid slope and valley. Records were approximately evenly divided between Spring and Autumn. One Spring female was gravid with 3 eggs.

Diplodactylus maini

Seven records, from quadrats 3A (5), 3B (1), 5B (1). These are all lower slope habitats on deeper soils than elsewhere in the Range. Six records were in Spring.

Diplodactylus pulcher

Twenty five records, from quadrats 1B (5), 2A (1), 2B (8), 3A (2), 3B (2), 5A (2), 5B (5). This is a broad spectrum of Range habitats from crest to lower slope. All but two records were in Spring.

Gehyra variegata

Seven records, from quadrats 5A (1), 5B (2), 6A (3) and 7A (1). These are all lower slope and valley Range habitats. All but one record was in Summer.

Heteronotia binoei

Seven records, from quadrats 1A (2), 4B (1), 6B (1), 7A (1) and two were hand caught in lower slope *Eucalyptus corrugata* over *Neurachne sp.*. This is a broad spectrum of Range habitats. Most records were in Spring.

Barking Gekko (Underwoodisaurus milii)

Two records, from quadrat 1A (1) and 7A (1); these are Range crest and valley habitats; one record from each of Spring and Summer.

Scalefoot (Pygopus lepidopodus)

One record, from quadrat 7A, a Range valley habitat in Summer.

Crested Dragon (Ctenophorus cristatus)

Two sight records in Summer at quadrat 7A and in lower slope woodland *Eucalyptus ebbanoensis* over *Neurachne sp.*.

Reticulated Dragon (Ctenophorus reticulatus)

Two records, both from quadrat 1B on Range crest, one in each of Spring and Summer.

Bearded Dragon (Pogona minor)

One sight record, active at 1.00AM at Quadrat 1B on Range crest in Summer.

Tympanocryptis cephala

Five records, from quadrat 1A (1) and hand caught in upper, mid and lower slope habitats; occupying a broad spectrum of Range habitats. Present in Spring and Summer.

Tree Goanna (Varanus tristis)

Four records, from 1B (2-includes recapture), 3A (1) and 6B (1). Recorded only in Summer in crest and lower slope Range habitats.

Perentie (Varanus giganteus)

Two sight records, in upper slope habitat at E2 site and in lower slope *Eucalyptus ebbanoensis* woodland over *Neurachne sp.*

Cryptoblepharus plagiocephalus

Four records, from quadrats 2A (3) and 2B (1). All these are mid slope habiats, all records were in Spring.

Ctenotus uber

Twenty nine records, from quadrats 1B (2), 2A (2), 2B (1), 3A (4), 3B (6), 4A (2), 4B (1), 5A (1), 6B (1), 6A (3), 7A (4) and 7B (2). As such *Ctenotus uber* the only species recorded from all quadrats, it is widespread and abundant in the Range. The majority of records were in Summer.

Cyclodomorphus branchialis

Three records, from quadrats 1A (1), 6B (1) and hand caught in *Eucalyptus corrugata* over *Neurachne sp.*. These are Range crest and lower slope habitats; recorded in Spring and Summer.

Egernia formosa

One record, from quadrat 3A in lower slope woodland in Summer.

Eremiascincus richardsonii

Three records, from quadrats 3A (1) and 3B (2), these are lower slope woodland Range habitats, all records in Summer.

Menetia greyii

Five records, from quadrats 1A (1), 2A (4), crest and upper slope Range habitats. Four of five records were in Spring.

Morethia butleri

Four records, from quadrats 4B (1), 5B (1) and 2A (2), crest, middle slope and lower slope Range habitats, all records were in Spring.

Yellow-faced Whip-snake (Demansia psammophus reticulata)

One record, photographed by Marie Lochmann in lower slope woodland of *Eucalyptus ebbanoensis*.

Rosen's snake (Denisonia fasciata)

One record, hand caught in lower slope woodland, *Eucalyptus ebbanoensis* over *Neurachne sp.* in Spring.

Monk snake (Rhinoplocephalus monachus)

Two records, quadrats 1B (1) and 5B (1), crest and lower slope Range habitats, both records in Spring.

Ramphotyphlops australis

Three records, from quadrats 1A (1), 4B (1) and 5B (1), crest and lower slope Range habitats, all records were in Spring.

Ramphotyphlops bituberculatus

Three records, from quadrats 3A (2) and 5A (1), lower slope Range habitats, all records were in Spring.

Ramphotyphlops hamatus

One record, quadrat 3B (1), lower slope Range habitat, in Spring

BIRDS

(Nomenclature and order follow (Christidis and Boles 1995))

Mallee Fowl (Leipoa ocellata)

One record, disused nest in lower slope shrubland at 119° 35'E, 30° 21'S.

Brown Goshawk (Accipiter fasciatus)

Two records, solitary birds over lower slope woodland in Spring.

Wedge-tailed Eagle (Aquila audax)

Five records, solitary birds and twice a pair, flying over Range, all records in Winter and Spring.

Australian Hobby (Falco longipennis)

One record, a solitary bird flying low over Range in Summer.

Peregrine Falcon (Falco peregrinus)

Two records, solitary birds flying over Range and along cliff line in Spring and Summer.

Common Bronzewing (Phaps chalcoptera)

One record, solitary bird in upper slope shrubland in Summer.

Purple-crowned Lorikeet (Glossopsitta porphyocephala)

Three records, small flocks to 6 flying through the Range or perching in lower slope woodlands, in Spring and Summer.

Regent Parrot (Polytelis anthopeplus)

One record, two birds in lower slope woodland in Winter.

Australian Ringneck (Bernardius zonarius)

Three records, solitary birds and flocks to three in upper slope *Dryandra arborea* shrubland and *Eucalyptus capillosa* woodland, in Winter and Spring.

Budgerigar (Melopsittacus undulatus)

Three records, small flocks to 6 flying through lower slope woodlands in Spring.

Black-eared Cuckoo (Chrysococcyx osculans)

One record, in upper slope shrubland in Summer.

Horsefield's Bronze-Cuckoo (Chrysococcyx basalis)

Four records, all in lower slope woodlands in Spring.

Southern Boobook (Ninox novaeseelandiae)

Two records, once calling and seen in upper slope mallee, both records in Spring.

Tawny Frogmouth (Podargus strigoides)

One record, one bird in mid slope mallee in Winter.

Spotted Nightjar (Eurostopodus argus)

One record, one bird in crest mallee in Summer.

Australian Owlet-nightjar (Aegotheles cristatus)

Two records, calling at night on Range crest and one found dead, apparently disgorged by a snake, possibly a python in *Eucalyptus capillosa* woodland, both records in Summer.

Rainbow Bee-eater (Merops ornatus)

Numerous records during Summer survey, recorded as being 'constantly present in all habitats.' These records indicate congregating prior to departing north.

Rufous Treecreeper (Climacteris rufa)

Two records, both in lower slope woodland, in Spring.

Striated Pardalote (Pardalotus striatus)

Twelve records, solitary birds and small flocks to c.3-4 in crest, upper, mid and lower slope Range habitats. Nearly all records were in Spring, with one from each of Winter and Summer.

Shy Heathwren (Hylacola cauta)

Two records, small flocks of three and five in denser mallee in Range valley habitat in both Spring and Summer.

Redthroat (Pyrrholaemus brunneus)

One record, solitary bird in denser mid slope Allocasuarina campestris shrubland in Winter.

Weebill (Smicrornis brevirostris)

Thirteen records, small flocks to four birds in crest, mid and lower slope and valley Range habitats, most records in Spring but also recorded in Winter and Summer.

Inland Thornbill (Acanthiza apicalis)

Three records, small flocks to five birds in denser shrublands in crest, upper slope and valley Range habitats in Winter and Summer.

Yellow-rumped Thornbill (Acanthiza chrysorrhoa)

Two records, in upper slope and valley shrublands in Spring and Summer.

Red Wattlebird (Anthochaera carunculata)

Three records, solitary birds and small flocks to 3-4 in lower slope woodlands, all records in Winter and Spring.

Spiny-cheeked Honeyeater (Acanthagenys rufogularis)

Eleven records, usually heard and small flocks to four, present all seasons in all Range primary habitats.

Yellow-throated Miner (Manorina flavigula)

One record, solitary bird in mid slope shrubland in Spring.

Singing Honeyeater (Lichenostomus virescens)

Ten records, solitary birds and small flocks to five in denser vegetation of crest, upper and mid slope habitats. Present in all seasons, feeding in flowering *Dryandra arborea* in Winter.

White-eared Honeyeater (Lichenostomus leucotis)

Seven records, solitary birds and flocks to three in all Range primary habitats except crest and in all seasons.

Yellow-plumed Honeyeater (Lichenostomus ornatus)

Four records, small flocks of three -four only in lower slope woodlands in Spring.

Brown-headed Honeyeater (Melithreptrus brevirostris)

Three records, flocks to 15 in crest and upper slope *Dryandra arborea* shrublands and in lower slope *Eucalyptus corrugata* woodlands, in Winter and Summer.

Brown Honeyeater (Lichmera indistincta)

Sixteen records, flock size variable, in all Range primary habitats and in all seasons but less frequently recorded in Summer.

White-fronted Honeyeater (*Phylidonyris albifrons*)

Seven records, solitary birds and small flocks to three in crest, upper and mid slope habitats, all records were in Spring.

Jacky Winter (Microeca fascinans)

Two records, solitary birds in lower slope woodland and valley habitats in Spring.

Red-capped Robin (Petroica goodenovii)

Four records, solitary birds and flocks to six in mid and lower slope woodlands in all seasons.

Hooded Robin (Melanodryas cucculata)

Two records, solitary birds in mid and lower slope shrublands in Winter and Spring.

Western Yellow Robin (Eopsaltria griseogularis)

One record, solitary bird in dense mallee in Range valley habitat in Summer.

Chestnut Quail-thrush (Cinclosoma castanotus)

One record, solitary bird in lower slope woodland in Winter.

Varied Sitella (Daphoenositta chrysoptera)

One record, flock of seven in lower slope Eucalyptus corrugata woodland in Summer.

Crested Bellbird (Oreoica cristatus)

Eleven records, usually heard in all Range primary habitats in all seasons.

Rufous Whistler (Pachcephala rufiventris)

Seven records, usually heard in thicket-like upper and mid slope as well as valley vegetation, most records were in Spring.

Grey Shrike-thrush (Colluricincula harmonica)

Ten records, solitary birds and pairs in all Range primary habitats except lower slope woodlands, not recorded in Summer.

Willie Wagtail (Rhipidura leucophrys)

Five records, all solitary birds in lower and upper slope habitats in Spring and Summer.

Black-faced Cuckoo-shrike (Coracina novaehollandiae)

Two records, solitary birds flying over crest and mid slope habitats in Spring and Summer.

Little Woodswallow (Artamus minor)

Four records, solitary birds and flocks to six flying over or along upper and mid slope cliffs in all seasons.

Grey butcherbird (Cracticus torquatus)

Two records, solitary birds in crest habitats in Summer.

Pied Butcherbird (Cracticus nigrogularis)

Four records, solitary birds in crest and lower slope habitats in Spring and Summer

Grey Currawong (Strepera versicolor)

Eight records, solitary birds and pairs in upper, mid and lower slope Range habitats in Winter and Spring.

Little Crow (Corvus coronoides)

One record, solitary bird flying over mid slope in Winter.

Zebra Finch (Taeniopygia guttata)

One record, a pair in valley in Spring.

Mistletoebird (Dicaeum hirundinaceum)

One record, solitary bird in lower slope woodland in Spring.

DISCUSSION

The results of this survey indicate that the vertebrate fauna of the Helena and Aurora Range is a subset of the fauna of the wider area, in particular of the proposed extension to the Mt Manning Range Nature Reserve. There is little to suggest that the banded ironstone landform offers a unique habitat for vertebrate fauna, though there are indications that locally it is particularly well suited to and utilized by some species.

All species of mammals and birds reported here have been previously recorded from the surrounding woodlands, shrublands and sandplains. The reptiles Egernia formosa, Varanus tristis, Demansia psammophus reticulata, Denisonia fasciata and Ramphotyphlops bituberculatus have not been previously recorded from the proposed reserve, but there is nothing to suggest that they are restricted to the Range itself. Ctenotus uber, Cyclodomorphus branchialis, Tympanocryptis cephala and Cryptoblepharus carnabyi (the latter from Dell and How 1985) form a suite of reptile species which may be locally restricted to the BIF landform. This comment applies particularly to Ctenotus uber which was recorded 29 times from all quadrats in the Range but not once in the surrounding habitats in previous studies. A similar situation prevailed in a recent study of the fauna of Mt Elvire pastoral lease CALM (unpublished data) and as well in the Mt Manning Range (Burbidge et. al. 1995).

The mammal data indicate that most species utilize Range crest habitats with massive BIF exposure, an exception is Sandy Inland Mouse (*Pseudomys hermannsburgensis*) which in the present study was only recorded from lower slope primary habitats. This is to be expected as this species requires deeper soils in which to burrow.

Two species, Lesser Stick-nest Rat (Leporillus apicalis) and Brush-tailed Possum (Trichosurus vulpecula) which were once present now no longer occur in the Range. The Lesser Stick-nest Rat is now extinct in Australia; the Brush-tailed Possum has declined markedly in the arid and semi-arid zone but is still known from isolated populations elsewhere including the adjacent Wheatbelt.

The bird data indicate that 52 of a total of 92 species recorded from the proposed reserve utilize Range habitats. With the exception of Little Woodswallow and possibly Peregrine Falcon for breeding, no bird species are entirely dependent on the Range as a distinct landform. However several species including Rufous Whistler, Spiny-cheeked Honeyeater, Singing Honeyeater, White-fronted Honeyeater, and Redthroat utilize the dense thicket-like vegetation of the Range as the habitat in which they are most frequently recorded. Tree Dryandra (Dryandra arborea) particularly when it is flowering, is an important plant species for birds.

Although the primary objective of the present survey was to examine the BIF landform, data were also obtained on bird use of the peripheral woodlands. The secondary data base (see Appendix 6) indicates a small suite of woodland inhabiting birds including Major Mitchell's Cockatoo, Yellow-plumed Honeyeater, Dusky Woodswallow, Emu and Galah which are not recorded from the Range; in addition there are several species including Chestnut Quail-thrush, Rufous Tree-creeper and Pied Butcherbird which are only marginally present in the Range landform in that they were only recorded in lower slope habitats.

Two mammal species, Western Grey Kangaroo (*Macropus fuliginosus*) and Red Kangaroo (*Macropus rufa*) were also recorded in peripheral woodlands but not within the Range itself.

Comparison with other studies of the BIF landform.

Elsewhere in southern Western Australia similar surveys have been conducted in the Ravensthorpe Range (Chapman & Newbey 1995), Mt Manning Range (Burbidge et.al. 1995) and Mt Elvire pastoral lease CALM (unpublished data). Only the Mt Elvire survey in which 720 Elliott trap-nights in BIF recorded one Pseudantechinus woolleyae, and nothing else, indicated any specialised mammal use of this landform. The Ravensthorpe Range and Mt Manning Range surveys had a similar result to the present one; ie. that a wide range of ground inhabiting vertebrates and birds utilise habitats provided by the Range as a distinct landform, but with very few exceptions, they are species which also occur in other habitats.

PART 4 INVERTEBRATE FAUNA By R. P. McMillan

METHODS

Invertebrate fauna were collected concurrently with the survey for vertebrates. The primary source of material was from pit traps; fauna was collected in the early morning and invertebrates brought in for processing. By the time sorting and setting was completed the environment had warmed so that it was possible to hand collect. This involved moving into selected areas away from the immediate camp.

Insects were pinned, selected ants, centipedes, scorpions and spiders were preserved in 70% alcohol. Sampling by hand (net) was carried out in the following areas:

Weathered banded ironstone hill from base to the top, approx 200m.

On the plain, red loam soil in:

Woodland environments of Acacia acuminata, A. aneura

Woodland environments of eucalypyt species particularly mallees.

Copses of Mauve Eremophilia and Dodonea sp.surrounding a swamp.

In addition nocturnal insects were collected by sheet and mercury vapour lamp

RESULTS

This survey recorded 142 species of insects and 84 species of spiders. Lists of specimens collected from the Spring and Summer sampling sessions are in Appendices 7 & 8 respectively. Temperatures over Summer were not excessive.

Table 12 shows the temperatures over a four day period. There were very few flowers and the *Eucalyptus* spp were heavy in bud. The environment was dry when compared with September with few nomadic type Arthropoda present, this was evident from the pit trap sampling.

Table 12. Temperatures 26-29 February 1996

Date	Time	Temperature
26 Feb		25° C
27 Feb	0530	17° C
	1230	29° C
	1330	31° C
	2245	17° C
28 Feb	0530	13° C
	1230	27° C
	2240	18° C
29 Feb	0600	14° C
2,100	1200	32° C
	1425	34° C
	2245	20° C

Observations follow on some of the more obvious insects encountered:

BLATTODEA Cockroaches

With the exception of *Methana* sp. and *Periplanata* sp. all specimens collected were apterous ground species. Below are some examples:

Polyzosteria mitchelli a spectacular blue - grey and yellow cockroach approximately 35mm in size. specimens were found in litter at the base of Mulgas, under bark on fallen tree trunks, on the stems and leaves of *Eremophila* sp. and Quondong bushes as well as in the pit traps.

P. cuprea a beautiful dark iridescent copper/green cockroach was found in open areas in Neurachne sp.

Platyzosteria grandis up to 38mm in size, a large black species, was found in litter at the base of Eucalypts. It also was collected at Hg light, here the creatures would come running in from the surrounding darkness.

Platyzosteria sp I a small, 10mm, yellow with fine black bands, common in litter at the base of Eucalyptus.

All the apterous species collected are known to be well adapted to extremely harsh climatic conditions. Little is known of the feeding habits of these indigenous species, it must be assumed that they exist on a diet of decaying organic material in the plant litter. This opens up a possible field of investigation into the energy relationship between these insects and their environment. Figure 8(a) shows the numbers of species of Cockroaches at sample sites.

ORTHOPTERA Grasshoppers, crickets

Species generally considered to be phytophagous feeding on grasses, sedges and green leaves of trees. In the ranges specimens were found associated with dead leaf litter beneath *Acacia aneura*, *A. acuminata*, *Santalum acuminatum* and *Eremophila* sp.. In the environment of lichen covered ironstone specimens were difficult to see, due to their cryptic colouration that generally matched or blended them with their environment.

Similar species on Meka Station, in the Murchison, were observed scraping lichen from rock surfaces. While other species have been observed scraping lichen from rocks in the Darling Ranges. It is possible that the species observed in the ranges also have a similar diet.

Specimens of the genus *Ursunella*, family Catantopinae or spur throated grasshoppers, were found in sheltered locations in patches of ironstone pebbles in red sandy loam beneath Mulga trees. All specimens observed were covered with a find powder of red dust, this could have come from the habit these grasshoppers have of burying themselves in the sandy loam.

Chortoicetes sp. a free flying locust was common in open glades with Everlastings and other green plants. Some specimens were found feeding on leaves of *Eremophila*. Members on the genus were responsible for great damage to crops and pastures as well as native plants in the 1970's.

Coryphistes sp. was found associated with Mulga, Quondong and Eucalypts. In each case the insects were found on the stems or trunks of these trees. On Mulga they were a dark charcoal grey, on eucalypts a very pale grey and on the Quandongs they were a pale black. In each case the insects blended in with the background. Figure 8(b) shows the number of species at sample sites.

COLEOPTERA Beetles

These were the common insects in the environment.

Carabidae were will represented in the pit traps, 15 genera being collected, these beetles are well known as active carnivores and spiders trapped in the pits were often predated before the pits could be emptied.

Scarabaeidae Samples of these insects were only collected at Hg light. It was surprising that none of these ground frequenting beetles were taken from the pits.

Buprestidae Jewel Beetles. These were rare, with only 4 species being collected. All the specimens were nectar feeders taken by net from eucalypt flowers & Leptospermum sp. As there were flowering eucalypts, Melaleucas and Leptospermums it was surprising that there were so few of these beetles.

Curculionidae Weevils. 9 species collected, 6 of these came from the pits others came from mallee flowers. The ground specimens from pits included *Cubicorrhynchus* sp. and *Leptopius* sp. these are detritus feeders. Figure 8(c) shows beetles species in each area.

HYMENOPTERA Wasps, Bees, Ants.

These three groups were active throughout the area, with only Mutillidae being taken from pits (7 species). Hg light attracted 7 species of Ichneumonidae and 1 species of Evanidae. Mallee flowers & Asteraceae attracted Pompilidae and Tiphidae wasps.

Native bees were active in most nectar and pollen producing flowers, 19 species were collected, 8 of these have yet to be determined. The domestic, feral bee, was common throughout the area.

Ants were plentiful and specimens were collected from pits, nests, flowering plants, leaves and stems of Acacias and Quandongs and trunks and leaves of Mallees. Forty three species were listed. Figure 8(d) shows the ant species in each area.

ODONATA Dragonflies

Three species collected in the swamp area, these do not compare with named specimens in the WA Museum's extensive collection.

Damselflies, 2 species collected by sweeping from leaves of Acacias, 1 species from Hg light.

PHASMATODEA Stick insects

One species collected from fine Mulga stems and from Hg light.

HEMIPTERA Bugs

Five species of Homotera swept from Acacias and from Hg light.

Twenty six species of Heteroptera collected by sweeping from foliage and Mallee flowers as well as from Hg light. Included in this number were 12 predators, included in this group were 2 species of aquatic predators: *Agraptocorixa parvipunctata*, Family Corixidae a Waterboatman, and *Anisops gralis* a Back-swimmer, Family Notonectidae. Both these species are associated with fresh water pools. The closest such environment was at least 4km from the Hg light.

NEUROPTERA. Lacewings

The larval pits of these insects were very common in open sandy areas, it was therefore surprising that more adults were not present, only 2 species were collected *Chrysoptera* sp., Green lacewings, and *Glenoleon* sp., Antlions, these latter species are well known for their beautiful wings and antennae, specimens from the arid areas are marked with bands of rich brown and black.

MECOPTERA Scorpion-flies

Only 1 species was collected from the swamp area, it was determined as *Harpobittacus* australis. These insects are predators and prey upon soft bodied insects such as moths, flies and larval stages of some insects, they have been recorded as preying on certain spiders.

DIPTERA Flies

Four species collected. This group is really neglected, specimens being overlooked in favour of others. The species collected were all predators. It must be mentioned that the Bush-fly and green Blow-fly were present in profusion.

LEPIDOPTERA Butterflies

Five species recorded, no collections were made. The specimens were present throughout the environment, at our camp site we watched a number of Lesser Wanderers, *Danaus chrysippus* and chequered Swallowtails, *Papilio demoleus* flying on what seemed a fly path to the East. Wood Whites, *Delias aganippe* were observed flying at hill tops and at bushes of Quandongs.

Figure 8(f) shows numbers of species of insects at each pit sampling site. A list of the insect species is shown in Appendix 7. Figure 9 compares the number of taxa in each insect group and also includes the MYRIAPODA.

MYRIAPODA Centipedes, Scorpions and Spiders.

The myriopoda represent the higher order consumers, the main predators in the invertebrate fauna system. They play a significant role in the control of insect numbers. A healthy population of predators indicates an environment with a good food source that can support them. This situation exists in the Helena & Aurora Ranges.

In the collection now in the WA Museum are:

- 5 species of Centipedes
- 3 species of Scorpions
- 92 species of Spiders

This is an impressive list in the total collection of Arthropoda. (see figures 8(e) & 9). In the Scorpion collection is a possible new species.

Most spider samples came from the pits. Lycosidae (Wolf Spiders, 18 species) were the most abundant with Zodariidae (16 species) the next most common. In both these groups there are many species to be yet identified.

In the Fissidentati 7 specimens may prove to be an undescribed genus.

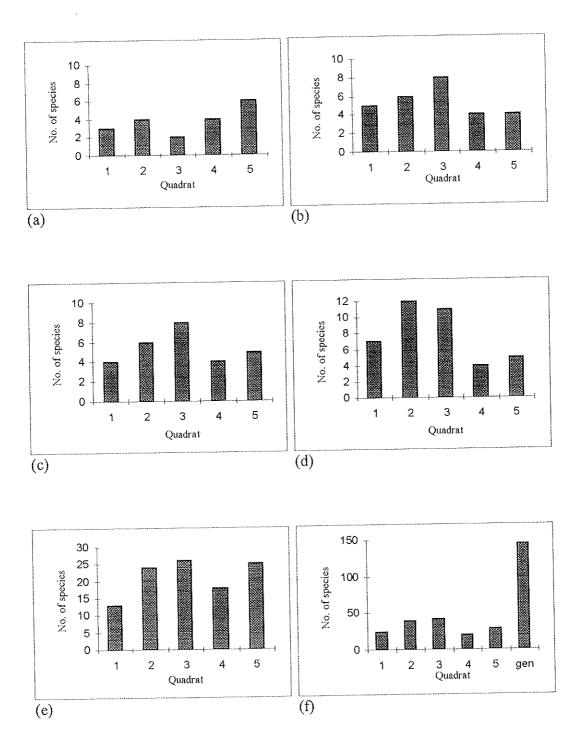


Figure 8. Number of species in each invertebrate group recorded for each quadrat, (a) Cockroaches, (b) Grasshoppers & Crickets, (c) Beetles, (d) Ants, (e) Spiders and (f) all insect groups (includes general column for entire study area).

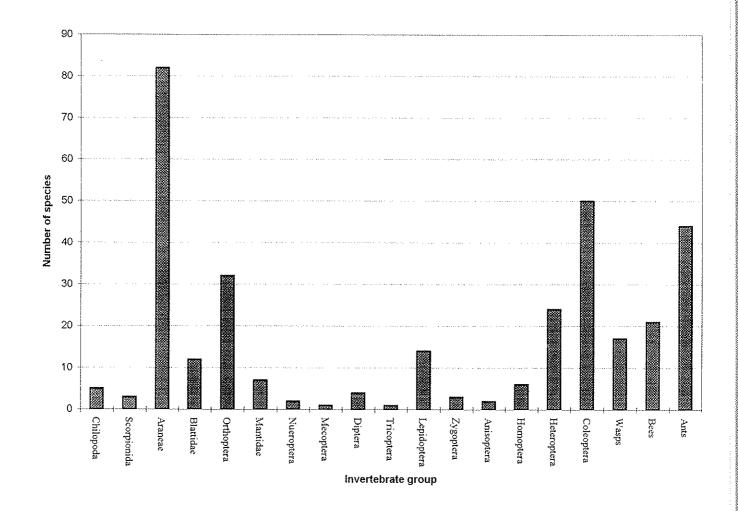


Figure 9. Number of species of Invertebrates in each group. September/October. 1995.

It was surprising that more Mygalomorphae, Trap-door spiders, were not caught in the pits, 6 species of Nemesiidae are to be identified. I species of Barychelidae and I species of Idiopidae are also on the det list.

Of interest was a large Lycosidae, Lycosa spl collected under Hg light, this species came from the darkness to capture a moth, it ended in a container of alcohol, on other nights the Hg light was not visited by spiders.

Table 12 details those invertebrates that are additional to the overall list. Species that were collected in the September survey which are listed in Appendix 7 were not re-collected in the follow up survey. Appendix 8 lists all invertebrates collected during the second survey.

Table 12. Additional taxa encountered during the survey not included in Appendices.

MYRIAPODA

Chilopoda

Scopendridae

Ethmostigma curtipes

Scuterigeridae Allotheura sp.

Scorpionida

Scorpionidae

Urodachus novaehollandiae

Araneae

Araneidae

Nephila edulis the webs of these large spiders were noted throughout the area. They were not in evidence in September.

Gnaphosidae

Eucoptarthria sp.

Salticidae

Sandalopdes sp.

Deinopidae

Deinipsis sp.

Hersiliidae

Tamopsis sp.

Theriidae

Latrodectus hasselti

Mygalomorphae

Aname sp.

INSECTS

Blattidae

Platyzosteria coolgadiensis

Zonioploca sp.

Mantodea

Orthodera sp.
Paraxpypillus sp.

Tettigonidae

species 3

Acridiidae

species 1

Goniaea sp.

Hemiptera

Cydnidae

Adrissa sp. 2

Reduviidae

Ectomocoris sp.

Pentatomidae

Poicilometis sp.

Coleotichus sp.

Coleoptera

Carabidae

Carenum sp.

Parroa apicalis

Elateridae

Pseudotetralobus sp.

Tenebrionidae

Helea sp.

Homotrystris carbonara

Chrysomelidae

Paropsis sp. A rugose black species

Curculionidae

Polyphrades uniformis

Hymenoptera

Vespidae

Abiopa sp. could be new species

Mutillidae

Ephutomorpha rugicollis Ephutomorpha sp. 2 Ephutomorpha sp. 3 Dolichoderinae

Technomyrmex sp.

Formicinae

Camponotus gasseri

Apoidea

Anthrophora sp.

Formicidae

MOLLUSCA

Land snails. Two species of these were collected from the swamp area. A Camaenid landsnail shell was determined as *Sinumelon kalgum* collected in September. Eight specimens from the same locality are yet to be identified.

DISCUSSION

The value of the Helena and Aurora Range and surrounds as a habitat for invertebrates derives from two factors. Firstly the area is intrinsically rich in species; for example this survey recorded 34 species of Grasshoppers compared to 17 species for the Greenough Dune system, McMillan & Foulds (1980); 13 for the Beekeepers Reserve near Leeman, Foulds & McMillan (1982) and 8 species for the Burma Road reserve, Foulds & McMillan (Ibid). A similar situation exists with Spiders; this circumstance, as spiders are higher order consumers in invertebrate food chains, indicates a rich and varied fauna as evidenced by the 142 species of insects recorded.

Additionally the woodland and mallee vegetation of the Helena and Aurora Range and surrounds are similar to, and geographically quite close to, the vegetation of the Western Australian wheatbelt which has largely been cleared for agriculture. Thus to a degree the invertebrates of this area offer a window on a fauna which has all but disappeared, or at least been so fragmented as to loose some of its biological integrity.

Further work in the area is undoubtedly warranted; this applies in particular in hotter summer weather when other insect groups, particularly Jewel Beetles should be encountered.

ACKNOWLEDGMENTS

Environment Australia provided funding without which the survey would not have taken place.

Many people participated in and contributed to this survey. The set-up team included Phil Spencer, Peter Batt, Erin Farquhar, and Geoff Young from CALM Kalgoorlie. Phil Spencer's expertise with explosive deserves special mention. The entomological team comprised Millicent, Robert and Stuart McMillan, Val and Jeremy Talbot and Susan Clarkson. Volunteer zoologist Indre Kirsten and Warwick Roe participated in the spring sampling session. Laurie Smith and Norah Cooper, Western Australian Museum, confirmed reptile and mammal identifications respectively. Brian Hanich, Mark Harvey, Julianne Waldock and Shirley Slack-Smith, also of the Museum assisted in invertebrate identification. Michael Craig contributed unpublished data.

The following people are thanked for assistance with plant identifications in their particular field of expertise: Steve Hopper, Greg Keighery, Bruce Maslin, Barbara Rye, Malcom Trudgen, and Paul Wilson.

Ian Kealley, CALM Goldfields Regional Manager supported the survey. June Anderson word processed and formatted an earlier version of the report and the Bureau of Meteorology provided climatic data.

REFERENCES

Bagnouls, F & Gaussen, H (1957). Les climats ecologiques et leur classification. *Annls Geogr* 66:193-220

Beard J.S. (1972) The vegetation of the Jackson areas, Western Australia. Vegmap, Perth.

Beard, J.S. (1980). A new phytogeographic map of Western Australia. Western Australian Herbarium Research Notes. 3: 37-58.

Beard, J.S. (1981). Vegetation Survey of Western Australia. Swan 1:1,000,000. Vegetation Series. University of Western Australia Press - Nedlands.

Belbin L. (1991) Semi-strong hybrid scaling, a new ordination algorithm. *Journal of Vegetation Science* **2:491-496.**

Burbidge, A.A, Fuller, P.J & McKenzie, N.L (1995). Vertebrate Fauna. *In.* The Biological survey of the Eastern Goldfields of Western Australia. Part 12 Barlee-Menzies Study Area. *Rec. West. Aust. Mus. Suppl.* 49.

CALM (1994). Goldfields Region. Regional Management Plan 1995-2004. Management Plan No. 27. Department of Conservation and Land Management.

CALM (1996) Declared Rare and Priority flora list - 21/10/1996. Unpublished Report, CALM.

Chapman, A. & Craig, M (in prep.) The Effect of Short Term Drought on the Vertebrate Fauna of Wanjarri Nature Reserve.

Chapman, A. & Newbey, K.R. (1995). A Vertebrate Fauna Survey and some Notes on the Vegetation of the Ravensthorpe Range, Western Australia. *CALMScience* 1(4):465-508.

Chin, R.J. & Smith, R.A.. (1983). 1:250,000 Series - Explanatory Notes. 'Jackson' Sheet, Western Australia. Geological Survey of Western Australia, Perth.

Christidis, L. & Boles, W.E. (1994). The Taxonomy and species of Birds of Australia and its Territories. *RAOU Monograph* No.2.

Dell J., & How R.A. (1985) Vertebrate Fauna. In. The biological survey of the Eastern Goldfields of Western Australia. Part 3 Jackson - Kalgoorlie study area. Records of the Western Australian Museum Supplement 23.

Dell, J., How, R.A., Newbey, K.R. & Hnatiuk, R.J. (1985). The Biological Survey of the Eastern Goldfields of Western Australia. Part 3. Jackson-Kalgoorlie Study Area. Records of the Western Australian Museum Suppliment No. 23.

Foulds, W. & McMillan, R.P. (1982). An Ecological Study of the Heathlands of the Leeman Area, Western Australia. Unpublished report to The Australian Heritage Commission. Canberra.

Gibson, N, & Lyons, M.N. (1995) Floristic survey of the Bremer and Parker Ranges of the eastern goldfields of Western Australia. Unpublished Report for the Australian Heritage Commission prepared by the Department of Conservation and Land Management.

Green J.W. (1985) Census of the Vascular Plants of Western Australia. Department of Agriculture, Perth.

Henry-Hall N.J. (1990) Nature conservation reserves in the Eastern Goldfields, Western Australia. (Southern two thirds of CTRC System 11). Unpublished Report to EPA Red Book Task Force.

Keighery G.J. (1980) Notes on the biology, distribution and conservation of *Dryandra arborea* (Proteaceae). Western Australian Naturalist 14: 212-213.

Kent M. & Coker P. (1992) *Vegetation description and analysis: A practical approach.* Belhaven Press, London.

McMillan, R.P. & Foulds. (1980). An Investigation of the proposed Landscape Protection Area of Greenough, Western Australia. Unpublished Report to The Australian Heritage Commission. Canberra.

Muir B.G. (1977) Biological survey of the Western Australian wheatbelt. Part II. Records of the Western Australian Museum Supplement 3.

Newbey K.R. & Hnatiuk R.J. (1985). Vegetation and Flora In: The biological survey of the Eastern Goldfields of Western Australia. Part 3 Jackson - Kalgoorlie study area. Records of the Western Australian Museum Supplement 23: 11-38.

Rye, B.L. (1995) New and priority taxa in the genera *Cryptandra* and *Stenanthemum* (Rhamnaceae) of Western Australia. *Nuytsia* 10: 255-305.

Siegel S. (1956) Non parametric statistics for behavioural sciences. McGraw-Hill, New York,

Sneath P.H.A. & Sokal R.R. (1973) Numerical taxonomy: The principles and practice of numerical classification. Freeman, San Francisco.

Thackway, R. & Cresswell, I.D. (Eds). (1995). An Interim Biogeographic Regionalisation of Australia: A framework for establishing the national system of reserves, Version 4.0. Australian Nature Conservation Agency, Canberra.

Locations for Helena and Aurora Range floristic quadrats.

Site	Latitude (D	MS)	Long	gitude (DM	(S)
520/01 30	19	50	119	42	41
520/02 30	20	3	119	42	24
604/01 30	18	49	119	43	31
604/02 30 704/01 30	18 21	49 47	119	43	33
704/01 30	21	47	119 119	39 39	16 16
704/03 30	21	44	119	39	15
704/04 30	21	40	119	39	15
704/05 30	21	18	119	39	12
dig01 30	21	4	119	42	22
dig02 30	21	3	119	42	12
dig03 30	20	59	119	41	59
et01 30	20	13	119	41	34
et03 30 et05 30	20	22	119	41	37
et05 30 et06 30	20 21	39 10	119 119	41 41	34 36
hala 30	21	13	119	42	16
halb 30	21	16	119	42	10
ha2a 30	21	32	119	$\stackrel{1}{4}\stackrel{2}{1}$	42
ha2b 30	21	30	119	41	42
ha3a 30	20	44	119	40	46
ha3b 30	20	42	119	40	45
ha4a 30	21	12	119	35	1
ha4b 30	21	14	119	35	1
ha5a 30	21	18	119	34	59
ha5b 30 ha6 30	21 20	26 16	119 119	34 41	58 34
ha7 30	20	33	119	41	34 37
htb01 30	21	48	119	36	5 f
htb02 30	21	48	119	36	56
htc01 30	20	19	119	31	49
htc02 30	20	20	119	31	49
htc03 30	20	52	119	31	44
htc04 30	21	10	119	32	14
mug01 30	22	3	119	35	34
mug02 30	22	5	119	36	5
mug03 30 nflat01 30	22 18	4 22	119 119	36 43	2 34
nflat02 30	18	32	119	43	24
nflat03 30	22	0	119	35	5
nflat04 30	20	32	119	40	17
nflat05 30	20	50	119	39	25
nflat06 30	21	52	119	37	57
nflat07 30	21	58	119	37	48
ridg01 30	21	25	119	41	56
ridg02 30	21	30	119	41	50
sflat01 30 sflat02 30	22 24	45	119	37	4
sflat02 30	24	3 16	119 119	37 38	43 5
sflat04 30	24	21	119	38	36
sflat05 30	24	16	119	39	30
sflat06 30	24	10	119	39	41
sflat07 30	22	43	119	40	54
sflat08 30	22	12	119	41	26
sflat09 30	20	51	119	42	46

Flora List for the Helena and Aurora Range.

This list includes all taxa from both the sampling quadrats and the opportunistic collections and confirmed records from PERTH. Nomenclature follows Green (1975) and current usage at PERTH (ms denotes a manuscript name).

Family: Adiantaceae

Cheilanthes austrotenuifolia

Cheilanthes brownii Cheilanthes lasiophylla

Cheilanthes sieberi subsp. sieberi

Family: Aizoaceae

Gunniopsis quadrifida

Mesembryanthemum nodiflorum

Tetragonia sp.

Family: Amaranthaceae

Ptilotus aervoides

Ptilotus carlsonii

Ptilotus drummondii var. drummondii

Ptilotus exaltatus Ptilotus gaudichaudii Ptilotus holosericeus Ptilotus obovatus

Family: Anthericaceae Arthropodium curvipes

Thysanotus patersonii

Family: Apiaceae

Daucus glochidiatus

Hydrocotyle rugulosa

Trachymene ornata

Trachymene pilosa

Uldinia ceratocarpa

Family: Apocynaceae Alyxia buxifolia

Family: Asclepiadaceae

Rhyncharrhena linearis

Family: Asphodelaceae Bulbine semibarbata

Family: Aspleniaceae

Pleurosorus rutifolius

Family: Asteraceae

Actinobole uliginosum

Angianthus tomentosus

Bellida graminea

Blennospora drummondii

Brachyscome ciliaris

Brachyscome iberidifolia

Brachyscome perpusilla

Calotis hispidula

Centaurea melitensis

Cephalipterum drummondii

Ceratogyne obionoides

Chrysocephalum semicalvum

Chthonocephalus pseudevax

Euchiton sphaericus

Gilberta tenuifolia

Gilruthia osbornei

Gnephosis intonsa Hyalosperma demissum

Hyalosperma glutinosum subsp.

glutinosum

Hypochaeris glabra

Isoetopsis graminifolia

Lawrencella davenportii

Lawrencella rosea

Lemooria burkittii

Leucochrysum fitzgibbonii

Millotia myosotidifolia

Minuria cunninghamii

Olearia decurrens

Olearia exiguifolia

Olearia humilis

Olearia muelleri

Olearia pimeleoides

Osteospermum clandestinum

Podolepis canescens

Podolepis capillaris

Podolepis lessonii

Podotheca gnaphalioides

Pogonolepis stricta

Pseudognaphalium luteoalbum

Rhodanthe laevis

Rhodanthe manglesii

Rhodanthe oppositifolia

Rhodanthe pygmaea

Rhodanthe rubella

Rhodanthe stricta

Schoenia cassiniana

Senecio glossanthus

Senecio picridioides

Senecio quadridentatus

Sonchus oleraceus Sonchus tenerrimus

Streptoglossa liatroides

Trichanthodium skirrophorum

Triptilodiscus pygmaeus

Waitzia acuminata

Waitzia citrina

Family: Boraginaceae

Halgania sp. 1 (BJL 2049)

Halgania sp. 2 (BJL 2082)

Family: Brassicaceae

Arabidella sp. Goldfields (P.G. Wilson

7183)

Lepidium oxytrichum

Lepidium phlebopetalum

Phlegmatospermum eremaeum

Sisymbrium irio

Stenopetalum filifolium

Stenopetalum robustum

Family: Caesalpiniaceae

Senna artemisioides subsp. filifolia Senna cardiosperma subsp. cardiosperma Senna pleurocarpa var. pleurocarpa

Family: Campanulaceae Wahlenbergia tumidifructa

Family: Caryophyllaceae

* Cerastium glomeratum
Stellaria filiformis

Family: Casuarinaceae
Allocasuarina acutivalvis
Allocasuarina campestris

Family: Chenopodiaceae
Atriplex nummularia
Atriplex vesicaria
Enchylaena tomentosa
Halosarcia halocnemoides
Maireana georgei
Maireana radiata
Maireana tomentosa subsp. tomentosa
Maireana trichoptera
Rhagodia drummondii

Rhagodia preissii subsp. preissii Sclerolaena diacantha Sclerolaena drummondii Sclerolaena fusiformis Sclerolaena obliquicuspis

Family: Chloanthaceae Newcastelia viscida

Family: Colchicaceae Wurmbea tenella

Family: Convolvulaceae Convolvulus erubescens

Family: Crassulaceae Crassula colorata

Family: Cupressaceae Callitris glaucophylla

Family: Cyperaceae
Isolepis congrua
Lepidosperma aff. tenue (KRN 9197)
Lepidosperma aff. angustatum
Schoenus nanus

Family: Dasypogonaceae Chamaexeros macranthera Lomandra effusa

Family: Dilleniaceae

Hibbertia exasperata

Family: Droseraceae

Drosera macrantha subsp. macrantha

Family: Epacridaceae
Leucopogon breviflorus
Leucopogon sp. Helena & Aurora (BJL 2077)

Family: Euphorbiaceae Calycopeplus paucifolius Monotaxis occidentalis Poranthera microphylla

Family: Fabaceae
Bossiaea walkeri
Daviesia benthamii subsp. acanthoclona
Daviesia purpurascens
Mirbelia depressa
Mirbelia microphylla
Mirbelia sp. Helena and Aurora (BJL
2003)
Swainsona canescens
Swainsona kingii
Swainsona oliveri
Templetonia sulcata

Family: Geraniaceae

* Erodium cicutarium
Erodium crinitum
Erodium cygnorum subsp. cygnorum

Family: Goodeniaceae
Brunonia australis
Dampiera lavandulacea
Dampiera spicigera
Goodenia berardiana
Goodenia havilandii
Goodenia mimuloides
Goodenia occidentalis
Goodenia peacockiana
Goodenia pinnatifida
Scaevola spinescens
Velleia rosea

Family: Haemodoraceae Conostylis argentea

Family: Haloragaceae Gonocarpus nodulosus Haloragis gossei Haloragis trigonocarpa

Family: Juncaginaceae Triglochin sp.

Family: Lamiaceae

Prostanthera campbellii Prostanthera grylloana Prostanthera magnifica Westringia cephalantha Westringia rigida

Family: Lauraceae Cassytha melantha

Family: Lobeliaceae Lobelia gibbosa

Family: Loganiaceae Phyllangium paradoxum

Family: Loranthaceae Amyema miquelii Amyema preissii Lysiana casuarinae

Family: Malvaceae
Lavatera plebeia
Lawrencia repens
Sida aff. spodochroma
Sida calyxhymenia
Sida excedentifolia ms

Family: Mimosaceae
Acacia acuminata
Acacia adinophylla ms
Acacia aneura

Acacia assimilis subsp. atroviridis

Acacia colletioides

Acacia coolgardiensis subsp. effusa

Acacia cylindrica Acacia eremophila Acacia erinacea Acacia hemiteles Acacia hystrix subs

Acacia hystrix subsp. hystrix ms

Acacia aff. multispicata

Acacia prainii

Acacia quadrimarginea Acacia resinimarginea Acacia steedmanii Acacia tetragonophylla

Family: Myoporaceae

Eremophila alternifolia Eremophila clarkei

Eremophila decipiens subsp. decipiens

Eremophila gibbosa Eremophila granitica Eremophila interstans Eremophila ionantha Eremophila latrobei

Eremophila maculata subsp. brevifolia ms

Eremophila oldfieldii Eremophila oppositifolia Eremophila rugosa ms Eremophila saligna Eremophila scoparia

Family: Myrtaceae
Baeckea elderiana
Calothamnus gilesii
Eucalyptus aff. oleosa
Eucalyptus calycogona

Eucalyptus capillosa subsp. capillosa

Eucalyptus celastroides Eucalyptus clelandii Eucalyptus corrugata Eucalyptus cylindrocarpa Eucalyptus drummondii Eucalyptus ebbanoensis Eucalyptus ewartiana

Eucalyptus hypochlamydea subsp.

hypochlamydea ms Eucalyptus longicornis

Eucalyptus loxophleba subsp. smooth bark

Eucalyptus ravida Eucalyptus salmonophloia

Eucalyptus salubris Eucalyptus sheathiana Eucalyptus transcontinentalis Eucalyptus yilgarnensis Homalocalyx thryptomenoides

Leptospermum roei
Melaleuca eleuterostachya

Melaleuca nematophylla Melaleuca radula Melaleuca uncinata Rinzia carnosa Thryptomene appressa

Melaleuca leiocarpa

Family: Ophioglossaceae Ophioglossum lusitanicum

Family: Orchidaceae Caladenia incensa ms

> Caladenia incrassata ms Caladenia microchila ms Caladenia saccharata Cyanicula amplexans ms

Pterostylis aff. nana Pterostylis picta

Thelymitra aff. macrophyllum

Family: Orobanchaceae

* Orobanche minor

Family: Oxalidaceae Oxalis perennans

Family: Phormiaceae

Dianella revoluta var. divaricata

Family: Pittosporaceae Cheiranthera filifolia Pittosporum phylliraeoides

Family: Plantaginaceae

Plantago aff. hispidula (NG & ML 1732)

Plantago drummondii Plantago turrifera

Family: Poaceae

* Aira caryophyllea

Amphipogon caricinus var. caricinus Bromus arenarius

* Bromus diandrus

* Bromus rubens

Danthonia caespitosa

Danthonia setacea

Echinopogon ovatus var. pubiglumis

Elymus scaber Eragrostis dielsii Eragrostis eriopoda

Hordeum glaucum

Neurachne sp Helena & Aurora (KRN 8972)

* Pentaschistis airoides

* Rostraria pumila

Austrostipa elegantissima Austrostipa platychaeta Austrostipa trichophylla

* Vulpia bromoides

* Vulpia myuros - muralis complex

Family: Polygalaceae

Comesperma integerrimum

Family: Polygonaceae Muehlenbeckia adpressa Muehlenbeckia florulenta

Family: Portulacaceae

Calandrinia corrigioloides Calandrinia eremaea

Family: Proteaceae

Dryandra arborea Grevillea acuaria Grevillea erectiloba Grevillea georgeana

Grevillea haplantha subsp. haplantha

Grevillea nematophylla
Grevillea paradoxa
Grevillea zygoloba
Hakea minyma
Hakea preissii

Family: Rhamnaceae

Stenanthemum intricatum

Stenanthemum newbeyi

Family: Rubiaceae

* Galium aparine

* Galium murale

Family: Rutaceae

Eriostemon brucei subsp. brucei

Eriostemon tomentellus Phebalium canaliculatum Phebalium tuberculosum

Family: Santalaceae

Exocarpos aphyllus Santalum acuminatum Santalum lanceolatum Santalum spicatum

Family: Sapindaceae

Dodonaea inaequifolia Dodonaea lobulata Dodonaea microzyga Dodonaea rigida Dodonaea stenozyga Dodonaea viscosa

Family: Solanaceae

Nicotiana occidentalis Nicotiana rotundifolia Solanum hoplopetalum Solanum lasiophyllum Solanum orbiculatum subsp

Solanum orbiculatum subsp. orbiculatum

Solanum plicatile

Family: Sterculiaceae

Brachychiton gregorii Keraudrenia integrifolia Rulingia cuneata

Rulingia luteiflora Rulingia magniflora

Family: Thymelaeaceae Pimelea microcephala

Family: Tremandraceae Tetratheca aphylla

Family: Urticaceae

Parietaria cardiostegia

Family: Zygophyllaceae

Zygophyllum apiculatum
Zygophyllum eremacum
Zygophyllum fruticulosum
Zygophyllum ovatum

Floristic data set for the Helena and Aurora Range.

The full data set (233 taxa x 55 quadrats) is provided in Cornell University Condensed Format. The species code are derived from the first three letters of the genus and species names with a further two letters from intraspecific rank where applicable except where otherwise listed below. *Vulpia myuros* and *V. muralis* proved difficult to differentiate and have been treated as a species complex in flora list and the analysis.

Latitude and longitude of sites are given in Appendix 1.

Nonstandard species codes.

Eucalyptus salmonophloia Eucalyptus salubris EUCSALm EUCSALu

	and aui	rora ra	ange da	ataset	5-12-9	96					r.	
(1316)	4	7	13	19	25	35	41	42	50	67	5 106	109
112 1 228	113	118	126	141	148	159	181	216	217	218	219	224
220 2 179	8	9	23	61	77	89	90	133	139	148	151	177
2	191	196 18	207 35	218 42	230 50	62	83	104	106	109	113	126
132		190	208	217	218	219	228	101	100	100	2.1.0	100
4 228	62	72	79	80	90	113	133	148	191	218	219	220
5 75	18	20	42	49	50	51	55	56	60	62	67	68
5 164	90	101	118	121	131	132	140	141	1.44	146	148	159
5	171	181 90	206 148	208 175	210 179	216	219	220	228			
7 72	6	1.1	13	18	29	30	43	48	50	62	67	68
7 208	78	83	104	109	113	1.1.8	126	132	141	148	150	169
7	219	224 80	228 89	90	136	139	148	175	179	218	228	
9 161	38	39	75	89	90	104	136	137	139	148	151	152
9 10	175 17	176 20	178 31	179 37	187 50	191 51	196 54	201 56	208 58	218 59	224 60	228 62
66 10	68	70	75	90	101	102	121	122	1.28	130	135	1.39
140 10	144	1.48	151	152	155	159	161	164	179	1.93	197	198
202 10	207	208	210	215	219	225	228		101		253	150
11 171		50	60	61	81	89	90	101	121	148	151	159
11 12 118	3	183 13	197 18	203 20	208 35	216 52	218 62	219 68	226 72	227 83	109	113
1.2 1.3	145 4	148 13	169 18	171 19	190 27	208 35	218 41	219 42	224 48	228 50	229 56	57
62 13	67	68	83	86	113	118	119	121	126	127	132	141
146 13	1.48	156	159	171	181	183	193	206	208	216	218	219
223 13 14	228	5	8	1.0		4.4	90	1.1.1	113	148	152	157
191				12	14	44	30	J. 1 I	110	140	104	10.
14 15	2	219 61	224 81	228 89	230 90	133	148	151	179	190	208	218
16 230		65	72	89	90	109	111	148	151	152	190	224
17 18	20	20 68	51 80	61 90	66 113	68 148	74 151	90 189	140 206	148 208	151 215	215 230
19 20	1.7	80 18	89 37	90 40	136 42	148 49	151 50	54	55	57	60	62
67 20	68	69	75	83	113	118	121	126	131	132	140	141
142 20	144	146	148	156	159	171	172	1.81	183	206	208	210
216 20 21	219	223 22	226 23	228 54	58	59	60	75	86	89	90	1.03
109	1	136	139	148	151	152	1.61	175	176	177	179	180
187 21		194	196	203	208	210	218	219	228	2.11	2.12	200
22 136	1	23	24	38	39	60	73	75	86	89	90	103
22 210	139	148	164	173	177	179	180	194	196	197	207	208
22 23	228	231 18	233 35	42	50	72	78	83	109	113	126	141
148 23 24	152 2	218 13	219 18	228 42	50	72	83	90	118	126	133	141
1.48												

97	161	175	106	206	21.0	220						
24 25 109	151 5	1.75 13	196 21	206 35	219 50	228 62	72	73	91	93	103	104
25 219	113	120	126	133	136	148	151	152	171	177	208	218
25 26	224 10	228 13	229 15	39	48	50	53	86	89	93	117	133
136 26	139	148	151	175	177	179	1.94	196	207	208	210	218
219 26	228											
27 230	2	9	12	64	80	90	1.37	148	151	175	191	218
28 81	1.	1.2	1.4	16	27	38	39	4.4	56	60	61	73
28 156	86	89	90	103	106	110	115	121	1.44	147	149	152
28 210	1.57	158	161	181	190	192	193	196	1.97	198	203	208
28 29 152	219 13	224 15	227 20	228 64	230 65	72	80	83	90	103	126	151
29 30	175 13	181 20	191 37	206 40	208 42	216 50	218 51	219 56	220 60	223 64	228 68	230 72
80 30	83	90	101	106	113	126	134	148	152	155	167	171
172 30	175	177	181	1.83	185	190	191	197	198	206	207	208
210 30 31	218 17	219 18	228 20	33	37	42	50	51	54	56	58	60
62 31	64	67	68	72	74	83	86	118	121	122	126	132
141 31	144	148	152	159	1.67	170	171	177	179	181	183	197
199 31	200	206	207	208	210	216	219	226	228			
32 182	50	60	67	72	89	136	148	152	159	164	167	181
32 33	183 23	207 24	216 76	219 80	226 82	228 97	136	151	208	233		
34 162	10	24	32	34	46	58	60	71	94	104	116	126
34 35 123	174 3	176 26	192 28	202 29	208 35	210 39	211 50	213 62	222 86	226 103	233 104	120
35 36	124 9	126 23	148 24	177 70	192 98	222 136	224 137	228 139	176	194	195	208
231 36	233	20	T	, ,	20	100	10.	1.00	1,0	104	1.70	2.00
37 50	15	17	24	29	30	32	34	37	39	45	46	47
37 128	59	70	73	75	80	85	86	106	109	114	120	123
37 168	136	138	139	143	144	1.48	153	156	160	161	163	164
37 202	173	176	177	179	180	185	186	191	192	194	195	197
37 38	208 9	212 23	221 24	226 37	233 73	81	95	136	138	139	151	165
176 38 39	178 23	179 24	180 28	194 81	195 95	196 97	208 98	210 101	133	136	139	151
176 39	178	194	208	210	231	233						
40 151	23	24	46	58	60	82	86	96	123	133	136	139
40 208	164	168	176	178	192	194	196	197	1.99	201	202	207
40	21.0 17	218 24	222 38	231 39	233 56	60	69	86	96	106	116	120
125	168	173	174	176	177	178	179	1.85	186	194	201	202
204 41	209	210	227	232	233	O.O.	100	120	151	\$ 500 per	170	100
42 194 42	196	23	24	92	97	99	133	139	151	176	178	192
42 43 116	196 3	208 16	209 17	210 26	231 32	233 46	50	60	62	86	103	104

43	122	144	148	149	152	1.64	178	181	192	207	208	210
219 43 44	224	228 12	17	32	34	36	39	4.5	56	60	70	73
86 44	93	100	102	107	116	120	122	144	148	149	154	161
164 44	176	177	179	180	181	187	190	192	196	201	202	207
208 44 45	209 17	210 20	221 27	224 37	226 42	50	58	60	63	75	80	87
113 45 210	121	130	131	144	151	161	171	181	184	197	206	208
45 46	218 17	219 18	230 20	27	37	50	54	58	60	64	80	87
121 46	130	132	1.44	151	156	159	161	164	166	171	179	181
183 46 47 177	189 5	197 23	198 89	205 90	206 133	208 136	210 139	219 148		223 152	226 175	227 176
47 48	178 3	179 6	194 26	195 48	207 50	208 75	210 77	228 86	103	104	113	115
119 48 49	148 5	152 23	164 24	169 77	181 82	208 92	210 99	219 101	222 136	224 151	228 178	229 194
196 49 50 195	208 23	233 24	76	77	82	95	136	165	176	178	191	194
50 51	208 14	210 25	214 35	233 62	67	84	91	104	109	126	129	132
148 51 52	152 14	157 26	169 35		218 50	219 58		224 104	228 105	106	115	126
148 52 53	152 23	164 24	169 82		208 92	210 97		219 136	222 139	224 151	227 165	
194 53 54	208 1	210 12	233 14		58	73	75	81	89	90	115	126
133	148	151	152	1.57	169	175	177	188	196	207	208	21.8
219 54 55	222 17	224 27	228 38		58	69	70	87	121	130	144	151
161 55 0	179	181	183	197	208	210	219	223	226	228		
ACAACU ACAMUL AMYMIQ BRAPER CALMIC CHEBRO DAVPUR ERAERI ERERUG EUCHYPHY EXOAPH GREHAPHH HYDRUG LEP_ANG MELNEM OLEMUE PLAAFFHI PTEHAIRY RHOLAE SCASPI SOLORBOI STRLIA TRIPYG ZYGERE 520/01	GALMUR AGREPAR HYPGLA LEUBRE MELUNC OLEPIM IPLADRU YPTEPIC RHOMAN SCHCAS RSONOLE SWAKIN TRISKI ZYGFRU 520/02	ACA ATR BRO CAL SIGHT DIDOD BRE BRI BRO BRI BRO	QUA NUM DIA SAC PINA DECDE BRUBB LOXSM OZYG FIT NODS TALUR ROPP NAN FILM NOLI NOLI NOCER SOVA	ACAASSAT ACARES ATRVES BRORUB CASMEL COMINT DODLOB EREGIB ERITOM EUCRAV GILTEN GUNQUA LAWDAV LOBGIB MILMYO OXAPER PODCAN PTICAR RHOPYG SCLDIA STEFILS TEMSUL VELROS 604/62 et03	ACACOL ACATET BAEELD BRUAUS CENMEL CONARG DODMIC EREGRA EROCIC EUCSAL GONNOD HAKMIN LAWREP LOMEFF MINCUN PARCAR PODCAP PTI DRU RHORUB SCLFUS STEINT TETAPH VULBRO 704/01 et05	ACC BEEF BULL CE CR	LLGRA LLSEM LPDRU LACOL LOVIS LEINT LOCYGCY LCSALU LOOBER LLGCS LWROS LIGEO LRBHAA LNAIR LDGNA LLEGNA LLEGN	AIRCAR BLEDRU CALCOR CERGLO CYAAMP DROMACM/ EREION EUCCAPC/	ERELAT	BRAG CALI CHAM DAN: ELYS ERS EUC GOOO HYA LEP! TOMA! PHY PRO PT! SAN SID AUS	CAM CILL HIS MAC SET MAC COR COR COR COR COR COR COR COR COR CO	ACAHEM ALYBUX BRAGRE CALINC CHEAUS DAUGLO ENCTOM EREOPP EUCEBB EUC_OL GREACU HYAGLUGL LEPROT MELLEI OLEDEC PITPHY PROMAG RHADRU SANSPI SOLLAS AUSTRI TRAPIL WESCEP
dig02 ha3a htc01 nflat04 sflat05	dig03 ha3b htc02 nflat(sflat(ha4 htc os nfl	a :03 .at06	et03 ha4b htc04 nflat07 sflat08	ha5a mug01 ridg01	ha mu n i	:06 a5b ug02 idg02	ha6 muq03	ha7 nflat0	htb 1 nfl	01 at 02	htb02 nflat03 sflat04

Quadrat locations for vertebrate and invertebrate trapping sites and opportunistic record localities.

Site	Latitude	Longitude
HA1(a) HA1(b)	30 21.20'S 30 21.23'S	119 42.25'E 119 42.17'E
HA2(a&b)	30 21.53'S	119 41.68'E
HA3 (a&b)	30 20.72'S	119 40.72'E
HA4(a&b)	30 21.22'S	119 35.04'E
HA5 (a&b)	30 21.41'S	119 34.93'E
HA6(a) HA6(b)	30 20.34'S 30 20.30'S	119 41.63'E 119 41.62'E
HA7(a&b)	30 20.53'S	119 41.61'E
El	30 21.49'S	119 41.98'E
E2	30 21.52'S	119 41.84'E
E3	30 21.73'S	119 37.04'E
Miscellaneous localities	listed in Appendi	ces 5 & 6.
Upper camp	30 21.16'S	119 42.24'F

Upper camp	30 21.16'S	119 42.24'E
Lower camp	30 21.00'S	119 41.00'E
Mug tree rock hole	30 22.12'S	119 36.12'E
Marda Dam turn-off.	30 37.74'S	119 21.96'E
Wetland site	30 19.12'S	119 41.52'E

Vertebrate fauna records for the Helena and Aurora Range.

Explanation of column headings and codes.

Number

Number of individuals captured or sighted.

FW Few MY Many

Quadrat

Quadrats as shown in figure 7. Elliot trap lines are prefixed by the letter E.

Topographic position

quadrats

CR	Range crest	1, 4, E3. (see figure 7).
US	Upper slope	E1, E2.
MS	Mid slope	2.
LS	Lower slope	3, 5, 6.
VL	Internal valley	7.

Comments

Includes details of localities of records.

WAM Western Australian Museum.

Reptile Snout vent lengths (SVL's) and weights.

COMMENTS	near Quadrat 7	walking near 30 23′S, 119 39′E	Peter's ridge Euc, ebbanoensis calling at camp, but distant	Peter's camp 30 217S, 119 417E	Peter's camp 30 21'S, 119 41'E												as above	cave at 30 22'S, 119 39'E	near Quadrat 1	east side of Range	feeding on flowering Dryandra arborea	feeding on flowering Dryandra arborea	near Quadrat 7				
TOPO. POSITION	MS LS	MS CR	S S	S S	TS	WS CB	MS CL	LS	CR	LS	US	LS	CR	S. S.	MS	O.S	WS	SO	CS	SO	SO	CR	TS	TS	LS	LS T	LS
QUADRAT	. 2 F3	-	· -		,	~ ₹	r ~	5	41	Ŋ					2	E3						1		3	5	5	
NUMBER	- C -	nc game (100m)	(frue frue			MY			1	-	FW	 4	MY	FW	FW	MY	<u> </u>	,_ ,		FW	m	7	15	FW	7	FW	-
DATE	27/2/96 28/2/96 27/7/96	27/9/95 27/9/95 29/2/96	28/9/95	27/2/96	26/6/92	24/9/95 36/9/95	27/9/95	28/9/95	28/9/95	26/9/95	22/7/95	23/7/95	23/7/95	23/7/95	24/7/95	26/9/95	27/9/95	28/9/95	26/2/96	29/2/96	22/7/95	27/7/95	28/2/96	25/9/95	25/9/95	26/9/95	23/7/95
TAXON	BIRDS Australian. Hobby Australian. Sitella	Diack-faced Cuckoo. Shrike Black-faced Cuckoo. Shrike	Boobook Owl	Bronzewing Pigeon Brown Goshawk	Brown Goshawk	Brown Honeyeater	Brown Honeveater	Brown Honeyeater	Brown Honeyeater	Brown Honeyeater	Brown-headed Honeyeater	Brown-headed Honeyeater	Brown-headed Honeyeater	Budgerygah	Budgerygah	Budgerygah	Chestnut Quail-thrush										

	near Quadrat 7	as above imm.	in gorge adj E1	as above cave at 30 22'S, 119 39'E Peter's camp 30 21'S, 119 41'E
MS CR CR MS MS MS LS LS LS CR CR CR CR CR CR CR CR CR CR CR CR CR	LS MS MS MS LS US LS	S S S S S	MS CR MS	US US US US US US US
E2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	E2 E2 E1	E	E 7 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	% W
have how have bord how how how the Co. have how		. – – –		
28/9/95 26/9/95 28/9/95 28/9/95 26/9/95 26/9/95 23/7/95 23/7/95	28/2/96 24/9/95 26/9/95 28/9/95 22/7/95 23/7/95	27/9/95 26/2/96 29/2/96 26/9/95	24/9/95 26/9/95 27/9/95 26/9/95 25/9/95 23/7/95 24/7/95	27/9/95 28/9/95 23.7.95 27/9/95 25/9/95 26/9/95
Corvid Crested Bellbird	Crested Bellbird Currawong Currawong Currawong Currawong Currawong	Currawong Grey Butcherbird Grey butcherbird Grey Currawong	Grey Shrike-tirush Grey Shrike-tirush Grey Shrike-tirush Grey Shrike-tirush Grey Shrike-tirush Grey Shrike-tirush Grey Shrike-tirush Grey Shrike-tirush	Grey Shrike-thrush Grey Shrike-thrush Hooded Robin Horsefield's Bronze Cuckoo Horsefield's Bronze Cuckoo

	as above	cave at 30 22'S, 119 39'E near Quadrat 1 disused nest at 119 35'E, 30 21'S	reter's camp 50.21.5, 119.41.E. calling at might disgorged by ?Python in E. capillosa	east side of Range	near Bungalbin Hill	as above near Quadrat 7	near 30 22'S, 119 38'E near Quadrat 4 near Quadrat 7
LS CR US	LS VL MS	WS CS CS CS CS CS CS CS CS CS CS CS CS CS	S S S	S S S S S	US NAS	S	MS LS S
5 1 7	ធ	ធ	proved present	. 53 . 5	о <u>В</u>	in in o	o 2500
- 77 4 V	4 1				FW 3 3 1 1	~ 9 L M	· O M M
28/9/95 24/7/95 28/2/96 28/2/96	27/9/95 27/9/95 23/7/95 26/9/95	25/7/52 28/9/95 28/2/96 25/9/95	20/3/93 24/2/95 28/2/96 28/9/95	29/2/96 26/9/95 28/9/95 26/9/95	2017/20 2017/96 23/7/95 26/9/95 27/9/95	27/9/95 28/2/96 28/9/95 26/9/95 23/7/95	27(9/75) 26/7/95 28/2/96 24/7/95 26/7/95
Horsefield's Bronze Cuckoo Inland Thornbill Inland Thornbill Inland Thornbill	Jacky Winter Jacky Winter Little Crow Little Woodswallow	Little Woodswallow Little Woodswallow Little Woodswallow Mallee fowl	Misuetoebird Owlet Nightjar Owlet Nightjar Pereorine Falcon	Pregrine Factor Pied Butcher bird Pied Butcher bird Pied Butcher bird	Pred Dutcherbird Pied Butcherbird Port Lincoln Ringneck Port Lincoln Ringneck Port Lincoln Ringneck Purple-crowned Lorikeet	Purple-crowned Lorikeet Purple-crowned Lorikeet Red Wattle Bird Red Wattlebird Red Wattlebird Red-capped Robin	Red-capped Robin Red-capped Robin Red-capped Robin Redthroat Regent Parrot Rufous Tree-creeper

as above as above	Gully in Range	Feeding on flowering Dryandra arborea as above near Quadrat 1 east side of Range Peter's camp 30 21'S, 119 41'E	cave at 50 225, 119 59 E near Quadrat 1
LS MS WS US US VL	MS MS WS US WS	CR US US US US US US US US US US US US US	S C C C C C C C C C C C C C C C C C C C
N 11 11 N	7 7 2 5 2 E 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 N4N	E2 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	·	- M M 4	
26/9/95 24/9/95 27/9/95 25/9/95 27/9/95 27/9/95	26/2/96 25/9/95 28/2/96 24/9/95 26/9/95 22/7/95	23/7/95 23/7/95 23/7/95 26/2/96 29/2/96 25/9/95 26/9/95 23/7/95 27/9/95 27/9/95	28/9/95 26/2/96 29/2/96 24/9/95 24/9/95 25/9/95 27/9/95
Rufous Tree-creeper Rufous Whistler Rufous Whistler Rufous Whistler Rufous Whistler Rufous Whistler	Rufous Whistler Shy Hylacola Shy Hylacola Singing Honeyeater Singing Honeyeater Singing Honeyeater Singing Honeyeater Singing Honeyeater Singing Honeyeater	Singing Honeyeater Singing Honeyeater Singing Honeyeater Singing Honeyeater Singing Honeyeater Singing Honeyeater Spiny-cheeked Honeyeater	Spiny-cheeked Honeyeater Spiny-cheeked Honeyeater Spiny-cheeked Honeyeater Spotted Nightjar Striated Pardalote Striated Pardalote Striated Pardalote Striated Pardalote Striated Pardalote

	as above near Quadrat 1 over Bungalbin Hill Peter's camp 30 21'S. 119 41'E	as above		near Quadrat 1 east side of Range	as above east side of Range
LS MS MS MS	MS US	MS CR US LS	MS M	VL VL VL VL VL VL VL VL VL VL VL VL VL V	LS WS WS WS LS CR
3 E2		2 5 E2	E2 8 8 8 8 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 7 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	E2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
حسم محمو محمو محمو المحمو	FW	1	FW FW FW FW FW FW	FW - W	
27/9/95 28/9/95 28/995 26/9/95 23/7/95	27/9/95 26/2/96 23/7/95 24/9/95	26/9/95 23/7/95 23/7/95 24/9/95 24/9/95	26/9/95 27/9/95 27/9/95 28/9/95 23/7/95 24/7/95	26/2/96 28/2/96 29/2/96 28/2/96 28/9/95 25/9/95	2779/95 22/7/95 23.7/95 29/2/96 24/9/95 26/9/95
Striated Pardalote Striated Pardalote Striated Pardalote Striated Pardalote Striated Pardalote	Striated Pardalote Striated Pardalote Tawny Frogmouth Wedge-tailed Eagle	Wedge-tailed Eagle Wedge-tailed Eagle Wedge-tailed Eagle Weebill	Weebill Weebill Weebill Weebill Weebill Weebill Weebill	Weebill Weebill Western Yellow Robin White-eared Honeyeater White-eared Honeyeater	White-eared Honeyeater White-eared Honeyeater White-eared Honeyeater White-eared Honeyeater White-fronted Honeyeater White-fronted Honeyeater White-fronted Honeyeater

cave at 30 22'S, 119 39'E cave at 30 22'S, 119 39'E cave in cliff at 30 22.59'S, 119 39.28'E cave at 30 22'S, 119 39'E east side of Range east side of Range	fresh Dingo tracks, 30 21'S, 119 41'E old goat scats here ie E2 site female, 10.0g male, 12.0g male, 12.0g, testes width 14.3mm male, 9.0g testes width 12.5mm recapture of above old nest cave at 30 22'S, 119 39'E near Quadrat 1 incl. female with pouch young female, 7.6g, specimen not confirmed near Quadrat 2
MS M	SR S
E2 5 3 E2 5 E2 5 E2 5 E2 5 E2 5 E2 5 E2	A 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	— ———— —— O— o o o o o o o o o o o o o o
27/9/95 28/9/95 28/9/95 27/9/95 27/9/95 28/9/95 25/9/95 25/9/95 27/9/95 28/9/95 28/9/95 28/9/95 27/9/95	29/2/96 23/7/95 25/9/95 26/9/95 26/9/95 28/9/95 23/7/95 23/7/95 23/7/95 25/2/96 25/2/96 26/9/95
White-fronted Honeyeater White-fronted Honeyeater White-fronted Honeyeater White-fronted Honeyeater White-fronted Honeyeater Willie Wagtail Willie Wagtail Willie Wagtail Willie Wagtail Willie Wagtail Willie Wagtail Yellow-plumed Honeyeater Yellow-plumed Honeyeater Yellow-plumed Honeyeater Yellow-plumed Honeyeater Yellow-rumped Thombill Yellow-tumped Thombill Yellow-tumped Thombill Yellow-tumped Thombill Yellow-tumped Thombill Yellow-tumped Thombill Yellow-tumped Thombill	Canis lupus Capra hircus Cercartetus concinuus Cercartetus concinuus Cercartetus concinuus Cercartetus concinuus Cercartetus concinuus Cercartetus concinuus Leporillus apicalis Macropus robustus Oryctolagus cuniculus Oryctolagus cuniculus

E2 site male, 12.0g, specimen not confirmed	female, specimen not confirmed	female, 17.2g	female, 12.5g hind foot=10.4mm	male, 11.0g, mark #1	female, 12.0g, mark #2	male, 13.5g	female, 10.0g, mark #1	female, 7.0g	female, 9.0g	fresh scratchings E2 site	scratchings Site E3		fresh scratchings near Quadrat 1	very fresh scat!	old scats in cave at 30 23'S, 119 39'E		2.0g, 37.5mm	0.5g, 34mm	0.6g, 31mm	R 127336 in WAM	sight record only	E. ebbanoensis	female, sight record	5.3g, 57mm						3.8g, 59mm, mark #1		•	1.2g, 41mm, mark #2
CR LS	LS.	LS	CR	CR	CR	CR	CR	LS	LS	CR	SO	rs	SO	US	ns		MS	MS	MS	MS	VĽ	LS	CR	CR	CR	MS	MS	MS	ΓS	LS	ΓS	LS	LS
3A	5B	6B	IA	1B	1B	4A	4B	6B	6A	E2							2A	2A	2A	2B	7A		<u>B</u>	IB	1B	2A	2A	2B	3A	3A	3A	3B	3B
2		,,,,, ,	pq			1	_	1	-			_p umit							_	_	_	1		parted	grand			,	,,,,,,		1	_	1
23/7/95 25/2/96	27/2/96	28/2/96	27/2/96	25/2/96	28/2/96	29/2/96	28/2/96	28/2/96	26/2/96	23/7/95	26/6/92	28/6/62	26/2/96	29/2/96	27/9/95		24/9/95	26/6/92	27/9/95	26/6/92	28/2/96	25/2/95	28/2/96	24/9/95	27/2/96	27/2/96	29/2/96	26/9/95	26/9/95	27/9/95	26/2/96	25/2/96	25/2/96
Oryctolagus cuniculus Pseudomys hermannsburgensis	Pseudomys hermannsburgensis	Pseudomys hermannsburgensis	Sminthopsis dolichura	Sminthopsis dolichura	Sminthopsis dolichura	Sminthopsis dolichura	Sminthopsis dolichura	Sminthopsis dolichura	Sminthopsis dolichura	Tachyglossus aculeatus	Tachyglossus aculeatus	Tachyglossus aculeatus	Tachyglossus aculeatus	Tachyglossus aculeatus	Trichosurus vulpecula	REPTILES	Cryptoblepharus plagiocephalus	Cryptoblepharus plagiocephalus	Cryptoblepharus plagiocephalus	Cryptoblepharus plagiocephalus	Ctenophorus cristatus	Ctenophorus cristatus	Ctenophorus reticulatus	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber						

1.9g, 44mm, mark #1 1.2g, 41mm, mark #2		0.2g, 31mm		1.8g, 44mm, mark #1		3.0g, 54mm, specimen not confirmed		1.0g, 45mm		1.0g, 30mm			1.6g, 47mm		0.3g, 33mm	5.4g, 63mm	62mm	5.4g, 76mm	1.5g, 45mm	as above	E. corrugata	photo, Marie Lochman		4.1g, 59mm	3.1g 39mm	4.5g, 51mm	3.6g, 46mm		female, 4.8g, 61mm, gravid 3 eggs	5.9g, 64mm	4.2g, 50mm	3.0g, (no tail) 51mm	2.8g, 51mm, specimen WAM 126491	dead in pit	4.0g, 52mm, specimen WAM 126484
LS	LS.	rs	CR	CR.	8	S	LS	TS	TS	LS	ΛΓ	ΛΓ	ΛĽ	ΛĽ	ΛΓ	$\Lambda\Gamma$	ĽS	CR	rs	LS	LS	LS	ΛĽ	MS	LS	LS	ĽS	S	LS	ΛΓ	ΛΓ	S	LS	LS	LS
3B	3B	3B	4A	4A	4B	5A	eB	6A	6A	6A	7A	7A	7A	7A	7B	7B	3A	ΙΑ	6B				7A	2B	3A	3B	3B	5B	5B	7A	7B	38	3A	3A	3A
	e yuus	poored		_	_	_	_		tune	*****E		Ţ		*****	,	~	_	-	1	,	++E	,	_	_	,	p*****4		-	-	pund	post		_	-	*****
26/2/96	28/2/96	28/2/96	24/9/95	27/2/96	29/2/96	25/9/95	27/2/96	26/2/96	27/2/96	29/2/96	26/2/96	26/2/96	28/2/96	29/2/96	28/2/96	29/2/96	27/9/95	24/9/95	26/2/96	27/9/95	27/9/95	29/9/95	26/2/96	25/2/96	26/2/96	26/9/95	27/2/96	25/9/95	28/9/95	25/2/96	25/2/96	26/9/95	25/9/95	27/9/95	27/9/95
Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Ctenotus uber	Cyclodomorphus branchialis	Cyclodomorphus branchialis	Cyclodomorphus branchialis	Cyclodomorphus branchialis	Demansia psammophis reticulata	Diplodactylus assimilis	Diplodactylus granariensis	Diplodactylus granariensis	Diplodactylus granariensis	Diplodactylus granariesis	Diplodactylus maini	Diplodactylus maini	Diplodactylus maini					

3.0g, 49mm, gravid with 2 eggs 2.0g, 38mm		5.0g, 55mm	2.0g, 52.7mm	3.0g, 52mm		3.0g, 51mm	3.2g, 55mm	2.5g (no tail), 56mm	2.5g, 46mm	4.0g, 53mm		2.2g, 45mm	3.5g, 55mm	4.5g, 60mm	4.2g, 53mm	3.0g, 49.5mm	4.0g 50mm	3.8g, 43mm	3.6g, 46mm	53mm	5.5g, 61mm, single vert. stripe	4.0g, 47mm	4.0g, 52mm	3.6g, 53mm	5.0g, 60mm	3.0g, 45mm	48mm	3.6g 53mm	3.0g, 52mm			1.6g, 46mm, mark #2	2.8g, 49mm	2.0g, 46mm	
ST ST	LS	LS	CR	CR	CR	CR	MS	LS	LS	LS	LS	LS	LS	LS	S	S	LS	LS	LS	CR	LS	LS	LS	LS	LS	LS	LS								
3A 3A	3B	SB	113	IB	1B	11B	2A	2B	3A	3A	38	3B	5A	ŝA	5B	5B	5B	SB	SB	SB	113	3A	3A	3B	3B	5A	5B	5B							
gaand gaquid			,	,	,	ş ş	,		,	,1	,	_	-	_	_	-	1	_			-	*****	J	,	,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,	Property		1	_	parent.	,i	,		,d
27/9/95 26/2/96	26/9/95	27/9/95	26/6/92	26/9/95	26/9/95	28/9/95	26/2/96	26/6/95	26/6/92	26/6/92	27/9/95	27/9/95	27/9/95	27/9/95	27/9/95	26/9/95	27/9/95	24/9/95	25/9/95	25/9/95	27/9/95	25/9/95	26/9/95	26/9/95	27/9/95	28/9/95	26/2/96	25/9/95	27/2/96	26/2/96	25/2/96	25/2/96	27/2/96	26/6/92	27/2/96
Diplodactylus maini Diplodactylus maini	Diplodactylus maini	Diplodactylus maini	Diplodactylus pulcher	Diplodactylus pulcher	Diplodactylus pulcher	Diplodactylus pulcher	Diplodactylus pulcher	Diplodactylus pulcher	Diplodactylus pulcher	Diplodactylus pulcher	Egernia formosa	Eremiascincus richardsonii	Eremiascincus richardsonii	Eremiascincus richardsonii	Gehyra variegata	Gehyra variegata	Gehyra variegata																		

2.2g, 40mm 2.0o 36mm	1.9g, 33mm	sight record only	2.0g, 43mm		2.2g, 48mm	1.9g, 36mm	sight record only	Euc corrugata at 119 39E, 30 23'S	E.corrugata	<1.0g, (no tail) 28mm	wt? 27mm dead in pit	<1.0g, 31mm	0.1g, 18mm	<1.0g, 23mm	male, 2.5g, 50mm, orange throat	50 nm	2.7g, 52mm, mark #1	2.0g, 48mm, mark #2	active in camp 1.00AM	77mm	4.2g, 220mm	6.0g, 215mm	15.0g, 295mm	0.6g, 125mm, specimen WAM 126493	3.0g, 215mm, specimen not confirmed	10.0g, 390mm, specimen WAM 126492	2.9g, 225mm	7.0g, 270mm	8.0g, 280mm	4.7g, 48mm	2.4g, 35mm	E. ebbanoensis ~ 30.21 °S, 119.41°E	Gorge' site	30 21'S, 119 41'E	15.0g, 88mm
LS	rs I	VL	CR	CR	CR	LS	ΛΓ	LS	S	CR	MS	MS	MS	MS	CR	LS	MS	MS	CR	ΛΓ	CR	CR	ĽS	LS	LS	rs	LS	CR	LS	CR	MS	LS	SO	r.S	CR
6A 6A	6A	7A	ΙΑ	14	4B	6B	7A			1,4	2A	2A	2A	2A	4B	5B	2A	2A	_	7A	1A	4B	5B	3A	3A	5A	3B	1B	5B	IA			E		TY.
,—c yuuc		1	-	priva		1	ei	_	_	, (, (_	,	,	-	٦			1	·	_	-	-	,	,«	_	pront	*****		_	_	e	-	_	evena.
25/2/96 26/2/96	27/2/96	28/2/96	24/9/95	26/6/95	27/2/96	27/2/96	28/2/96	27/9/95	27/9/95	28/9/95	26/9/95	26/9/95	29/2/96	26/9/95	26/6/92	27/9/95	25/9/95	25/9/95	03/1/96	28/2/96	27/9/95	28/9/95	28/9/95	27/9/95	27/9/95	28/9/95	26/6/92	27/9/95	24/9/95	24/9/95	24/2/95	23/9/95	25/2/95	29/2/96	26/9/95
Gehyra variegata Gehyra variegata	Gehyra variegata	Gehyra variegata	Heteronotia binoei	Heteronotia binoei	Menetia greyii	Menetia greyii	Menetia grevii	Menetia greyii	Menetia greyii	Morethia butleri	Morethia butleri	Morethia butleri	Morethia butleri	Pogona minor	Pygopus lepidopodus	Ramphotyphlops australis	Ramphotyphlops australis	Ramphotyphlops australis	Ramphotyphlops bituberculatus	Kamphotyphlops bituberculatus	Kamphotyphlops bituberculatus	Ramphotyphlops hamatus	Khinoplocephalus monachus	Khinoplocephalus monachus	Lympanocryptis cephala	Lympanocryptis cephala	Lympanocryptis cephala	l ympanocryptis cephala	lympanocryptis cephala	Underwoodisaurus milii					

Biological Survey of the Helena and Aurora Range

2.0g, 45mm	4.0g, 75mm, mark#1	recapture of #1	4.3g, 74mm	32.0g, 129mm	1.3m long, in 'Gorge'	E. ebbanoensis at 119 38E, 30 2
ΛΓ						
7.A	1B	1B	3A	6B		
_	4	_	hune	_	_	, mary
25/2/96	28/2/96	29/2/96	29/2/96	27/2/96	25/6/50	27/9/95
Underwoodisaurus milii	Varanis tristis	Varanus fristis	Voranne frietie	Various tristic	Valaille libile	Varanns of oantens

APPENDIX 6

Vertebrate fauna records for woodlands surrounding the Helena and Aurora Range.

Explanation of column headings and codes.

Number

Number of individuals captured or sighted.

FW

few

MY

many

Comments

General locality details (see Appendix 4 for coordinates of some localities).

TAXON	NUMBER	DATE	COMMENTS
BIRDS			
Australian, Ringneck	1	24/2/95	Marda Dam T/off
Australian, Ringneck	2	25/9/95	track Salmon Gum
Australian. Ringneck	2	27/9/95	track mallee
Australian. Ringneck]	27/9/95	track woodland
Black-faced Cuckoo Shrike	3	25/9/95	Mug tree Rock Hole
Black-faced Cuckoo Shrike	1	27/9/95	track Salmon Gum
Black-faced Cuckoo-shrike	1	27/9/95	track Gimlet
Brown Falcon	1	22/7/95	JK 8A site
Brown Falcon	. 1	25/9/95	track Salmon Gum nest with C/3
Brown Falcon	2	26/9/95	
Budgerygah	FW 16	26/9/95 25/9/95	track E. corrugata track Salmon Gum
Budgerygah	10	24/2/95	track Salmon Gum
Chestnut Quail-thrush	1	27/9/95	track Salmon Gum
Chestnut Quail-thrush Chestnut Quail-thrush	l	26/9/95	track E. corrugata
Chestnut Quail-thrush	1	27/9/95	track woodland
Chestnut Quail-thrush	2	27/9/95	track Eucalypt woodland
Crested Bellbird	1	22/7/95	Salmon Gum bogsite
Crested Bellbird	1	23/7/95	Mug tree Rock Hole
Crested Bellbird	1	26/2/95	track Salmon Gum
Crested Belibird	Ĭ	25/9/95	track Salmon Gum
Crested Bellbird]	27/9/95	track Salmon Gum
Crested Bellbird	í	27/9/95	Marda T/off
Currawong	j	27/9/95	track mallee
Currawong	2	27/9/95	track Salmon Gum
Currawong	ī 1	27/9/95	track woodland
Currawong	2	25/9/95	track woodland
Currawong	1	25/9/95	track Salmon Gum
Dusky Woodswallow	2	25/7/95	Salmon Gum
Dusky Woodswallow	2	26/2/95	track Salmon Gum
Dusky Woodswallow	2	29/2/95	Track Salmon Gum
Dusky Woodswallow	FW	27/9/95	track woodland
Emu	1x2 B/10	24/9/95	near wetland
Galah	20	25/9/95	Mulga patch
Galah	8	27/9/95	track Salmon Gum
Galah	10	27/9/95	track Salmon Gum
Galah	ì	27/9/95	track Salmon Gum
Galah	9	27/9/95	Mug tree Rock Hole
Grey Butcherbird	}	25/9/95	track Salmon Gum
Grey Shrike-thrush	1	22/7/95	JK 8A site
Grey Shrike-thrush	1	22 <i>/7/</i> 95	Salmon bog site
Grey Shrike-thrush	1	24/7/95	Salmon bog site
Grey Teal	FW	24/9/95	Salmon bog site
Jacky Winter	1	27/9/95	Marda T/off
Kestrel	ì	24/2/95	Marda Dam T/off
Little Crow	1	27/9/95	track Salmon Gum
Little Woodswallow	1	26/9/95	track E. corrugata
Magpie	1	24/7/95	Salmon bog site
Magpie	4	29/2/95	track Eucalypt woodland
Magpie	2	27/9/95	track mallee
Major Mitchell	2	22/7/95	JK 8A site
Major Mitchell	1	27/9/95	Falcon's nest site
Pacific Black Duck	2	24/9/95	swamp near 30 19.50S 119 41.10E
Pallid Cuckoo	1	23/7/95	Mug tree Rock Hole
Pied Butcherbird	1	22/795	Salmon bog site
Pied Butcherbird	1	27/9/95	track woodland
Pied Butcherbird	J	25/9/95	track Salmon Gum
Purple-crowned Lorikeet	FW	22/7/95	Salmon bog site
Purple-crowned Lorikeet	FW	24/7/95	Salmon bog site

Purple-crowned Lorikeet	2	26/2/95	track Salmon Gum
Purple-crowned Lorikeet	2	25/9/95	Salmon Gum T/off
Purple-crowned Lorikeet	FW	27/9/95	track Eucalypt woodland
Red Wattlebird	1	22/7/95	JK 8A site
Red Wattlebird	FW	22/7/95	Salmon bog site
Red Wattlebird	}	27/9/95	track Salmon Gum
Red-backed Kingfisher	2	27/9/95	track Salmon Gum
Red-backed Kingfisher	1	27/9/95	track Gimlet
Red-backed Kingfisher	1	25/9/95	track Salmon Gum
Red-backed Kingfisher	1	25/9/95	Salmon Gum T/off
Red-backed Kingfisher	1	27/9/95	track Salmon Gum
Red-capped Robin	6	27/9/95	Marda T/off
Rufous Songlark	1	27/9/95	track woodland
Rufous Tree-creeper	! 2	24/7/95 24/2/95	Salmon bog site track Eucalypt woodland
Rufous Tree-creeper	_	24/2/95 24/2/95	track Salmon Gum
Rufous Tree-creeper	1 1	27/9/95	track Salmon Gum
Rufous Tree-creeper Rufous Tree-creeper	l l	27/9/95	track Gimlet
Rufous Tree-creeper	FW	26/9/95	track E. corrugata
Rufous Tree-creeper	1	27/9/95	track woodland
Rufous Tree-creeper	1	25/9/95	Salmon Gum T/off
Rufous Treecreeper	1	22/7/95	Salmon bog site
Rufous Whistler	1	27/9/95	track Salmon Gum
Spiny-cheeked Honeyeater	1	22/7/95	JK 8A site
Spiny-cheeked Honeyeater	1	23/7/95	Mug tree Rock Hole
Splendid Fairy-wren	i	23/7/95	Mug tree Rock Hole
Square-tailed Kite	1	24/7/95	Salmon bog site
Striated Pardalote	FW	22/7/95	JK 8A site
Striated Pardalote	FW	22/7/95	Salmon bog site
Striated Pardalote	1	23/7/95	Mug tree Rock Hole
Striated Pardalote	FW	25/9/95	track Salmon Gum
Striated Pardalote	1	27/9/95	track mallee
Tree Martin	5	24/7/95	Trailer site
Tree martin	4	26/2/95	track Salmon Gum
Wedge-tailed Eagle	1	26/2/95	track Salmon Gum
Wedge-tailed Eagle	1	27/9/95	track Salmon Gum
Wedge-tailed Eagle	3	27/9/95	
Weebill	FW	22/7/95	JK 8A site
Weebill	FW	23/7/95	Mug tree Rock Hole
Weebill	FW	25/9/95	track Salmon Gum
Weebill	FW	27/9/95	track Salmon Gum
White-eared Honeyeater	1	23/7/95	Mug tree Rock Hole
White-eared Honeyeater	1	27/9/95	Marda T/off
Willie Wagtail	1	25/9/95	track Salmon Gum
Willie Wagtail	1	25/9/95	nesting C/3
Willie Wagtail	j 	27/9/95	Marda T/off
Yellow-plumed Honeyeater	FW	22/7/95	Salmon bog site
Yellow-plumed Honeyeater	FW	24/7/95	Salmon bog site
Yellow-plumed Honeyeater	FW	26/2/95	track Salmon Gum
Yellow-plumed Honeyeater	ΓW	29/2/95	track Salmon Gum
Yellow-plumed Honeyeater	1	27/9/95	track Salmon Gum
Yellow-plumed Honeyeater	4	26/9/95	track E. corrugata track woodland
Yellow-plumed Honeyeater	1	27/9/95	track woodiand track Salmon Gum
Yellow-plumed Honeyeater	l FW	25/9/95	JK 8A site
Yellow-throated Miner	8 8	22/7/95 23/7/95	Mug tree Rock Hole
Yellow-throated Miner	8 1	25/9/95	Track Salmon Gum
Yellow-throated Miner Yellow-throated Miner	1	23/9/95 27/9/95	track Salmon Gum
Yellow-throated Miner	4	27/9/95	track Eucalypt woodland
	٦,	2117173	duck Edddypt Woodidia
MAMMALS			
Macropus robustus	1	24/2/95	Marda Dam T/off
Oryctolagus cuniculus	2	24/2/95	track Salmon Gum

Macropus fuliginosus Macropus robustus Macropus rufus	1	27/9/95 27/9/95 27/9/95	track Salmon Gum track Salmon Gum track Gimlet
REPTILES			
Ramphotyphalops australis	1	22/7/95	Salmon bog site
Varanus giganteus	1	25/2/95	wetland site
Ctenophorus cristatus	1	29/2/95	track Eucalypt woodland

APPENDIX 7.

Invertebrate collections for the Helena and Aurora Range Sept/Oct. 1995. (Quadrats 6 and 7 not sampled spring 1995)

	QUADRA	T (Number	s are quadr	at No.)		COMMENTS
	1	2	3	4	5	
CHILOPODA Lithopodia Scolpendrida Scolpendridae			٠		5	
Scolpendra laeata S. morsitans			3		5	very large centipedes centipedes
Cormocephalus turneri Arthrorhabus paucispinus			3		5	
SCORPIONIDAE						
Buthidae Lychas alexandrinus	1				5	
Lyshas sp. 3 Isometroides vescus	}				5	possibly new species
ARANEAE						
Araneomorphae						
Lamponidae Lamponina sp Lamponia sp	1		3			
Lycosidae Lycosidae sp1 2 juv		2				
Lycosidae sp2 1 juv Lycosidae sp2 1 juv Lycosidae sp3 2 juv		2		4	5	
Lycosidae sp4 4 juv Lycosidae sp 1 male		2	2	4		
Lycosidae sp - 1 female Lycosidae sp5 - 1 juv Lycosidae sp6 - 3 juv		2	3	4		
Lycosidae sp7 3 juv Lycosidae sp8 2 juv			3 3			
Lycosidae sp9 1 juv Lycosidae sp10 1 juv Lycosa sp 1 male					5 5	From litter
Lycosa sp 1 male Lycosa sp 1 male			3		3	vagrant at night
Lycosa sp l male				4		
Arancidae indet sp. 1 juv indet.sp. 2 juv Gastercantha minox 1 female					5	Mulga branch litter many species in webs in shrubs
Corinnidae Supunna albopunctatum 1 male species group 1		2				
Ctenidae Ctenidae 2 juv Ctenidae 1 juv			3			

Gnaphosidae Aristerus sp Gnaphosidae sp1		1	2 2 2	3 3 3		5	under Euclayptus bark
Miturgidae spl Miturgidae sp2 I male Miturgidae sp3 Miturgidae sp4 2 juv Miturgidae sp5 2 juv			2	3	4		
Nicodamidae Nicodamus mainae 2 males N. mainae 2 males				3		5	
Oxyopidae spl Oxyopidae sp2 l male Oxyopidae sp3 Oxyopidae sp4 Oxyopidae sp5 l male Oxyopidae sp6				3	4	5	from Acacia acuminata from Acacia acuminata
Prodidomidae Molycrinae 1 female Molycrinae 1 male Molycriinae 1 female Molycriinae 1 female		1				5	low shrubs
Pholoidae Pholoidae I male Pholoidae I male			2			5	
Salticidae indet. sp. 1 female Fissidentatisi sp1 1 male Fissidentatisi sp2 1 male Fissidentatisi sp3 1 female Fissidentatisi sp4 1 male Fissidentatisi sp5 1 male Fissidentatisi sp6 1 male Fissidentatisi sp7 1 female Menomerus sp 1 male	* *	Ĭ	2	3		5	an extremely small adult *Undescribed genus* vagrant in rocks
Stiphidiidae Corassoides sp 1 male Corassoides sp 1 male Corassoides sp 1 male				3		5	
Thomisidae Thomisidae sp 1 juv Thomisidae sp 1 juv						5	from Dodonea

Stephanopsis sp l juv					5	
Theridiidae						
Steatoda native sp male				4		
Zodariidae						
Zodariidae 1 female		2				
Zodariidae 1 male		2				
Zodariidae 2 juv				4		
Zodariidae 1 female				4		
Zodariidae 2 female 1 juv		2				
Zođariidae 4 juv			3			
Zodariidae 1 juv					5	
Zodariidae 2 female	1					
Zodariidae 1 juv				4		
Zodariidae 1 male		2				
Zodariidae 1 female		2				
Zodariidae 2 juv			3			
Zodariidae 2 juv						from litter
Zoridae						
Zoridae 1 female					5	
Zoridae 1 female		2				
Zoridae 1 female					5	
Mygalomorphae						
Nemesiidae 1 male					5	
Nemesiidae 1 male					5	
Nemesiidae I male	1					
Nemesiidae 1 male					5	
Nemesiidae 1 male		2				
Nemesiidae 1 male			3			
Barychelidae 1 male		2				
Idiopidae I male				4		
Tetragnathidae 4 juv						from Neurachne sp. & bushes

	QU	ADART	(numb	ers are o	quad. N	(o.) COMMENTS	NO. COLLN'S.
INSECTS							
BLATTODEA Cockroaches Blattidae							
Anmesia sp	1			4			5
Desmozosteria sp	l			-1	5		7
Pseudolmpra sp	•				5.	& upper camp, possibly new species	3
Megazosteria patula		2			5	also from swamp area	3
Zoniopiocata sp			3				4
Polyzosteria mitchelli	}	2	3	4	5	& general	8
Polyzosteria sp		2				•	2
Platyzosteria grandis				4		lower camp & general	4
Ellipsidion sp					5	lower camp & general	2
Dlobonidos							
Blaberidae Ataxigamia tatei				4		lower camp	4
Laxta sp		2			5	·	3
ORTHOPTERA							
Gryllidae			2				2
Gryllidae spl			3			0	2 2
Gryllidae sp2			3			& swamp area Hg light common	2
Tettigonidae spl							
Tettigonidae sp2						Hg light common	2
Tettigonidae sp3						Hg light common	2
Conocephalus sp						upper camp]
Myrmecophilus testaceus		2					1
Buforina sp I		2	3		-		2
Buforina sp2		2			5 5		4 3
Buforina sp3					3		2
Buforina sp4 Buforina sp5						lower camp area in Neurachne sp.	4
Coryphistes ruricola		2				& general in Neurachne sp.	2
Genus not det sp31		2	3	4	5	& swamp area	2
Urnisa spl		~~	3	·		, a	2
Urnisa sp2		2					3
Orthoptera sp6						mulga woodland	2
Orthoptera sp7	1						2
Orthoptera sp8						general vagrant	3
Orthoptera sp9						general vagrant	2
Orthoptera sp10					5		1
Orthoptera spl l			3				2
Orthoptera sp12						general vagrant	2
Orthoptera sp13]						2
Orthoptera sp14	Ą			4			2
Orthoptera sp15	1						2
Orthoptera sp16	1	2					2 2
Orthoptera sp17		2		4			l I
Orthoptera sp18 Orthoptera sp19			3	4			1
Orthoptera sp20			J			Mulga Woodland	2
ormopour spec							~

MANTODEA Amorphoscelidae Cliomantis sp male Cliomantis sp male Paraxypilus sp male Paraxypilus sp female Paraxypilus sp female						Lower camp in Acacia acuminata Lower camp in Acacia acuminata Lower camp in Mulga Lower camp in Mulga Lower camp Hg light	2 1 2 2
PHASMATODEA Phasmatinae Ctenomorphodes tessulatus			3			& general area in Mulga	4
NEUROPTERA Chrysopidae Chrysoptera sp Dendroleontini Glenoleon sp possibly new							3
Coleoptera see seperate list							
MECOPTERA Bittacidae Harpobittacus sp							
DIPTERA Tabanidae spl	1	2	3	4	5		2
Asilidae spl Bathypogon spl Bathypogon sp2	1	2 2 2	3 3 3	4 4 4	5 5 5		1 1 2
TROCHOPTERA Leptoceridae spl							4
LEPIDOPTERA Butterflies Danaus chrysippus Junonia villida Papilio demoleus Eurema smilax Delias aganippe						Lesser Wanderer Medow Argus Chequered Swallowtail frequent sightings Small Grass Yellow Wood White seen flying at hill tops & on Santalum acuminatum	
Cossidae Xyleutes sp Sphingidae Hippotion scrofa						lower camp Hg light	4
Geometridae Onechroma sp Chlorocoma spl Chlorocoma sp2						lower camp Hg light lower camp Hg light	2 2 2

Xyloryctidae					
Cryptophasia sp					3 1
Noctuidae sp!					•
Noctuidae sp2					2
ODONATA					
All specimens collected area					
from the swamp					
Zygoptera - Damselflies					
Austrolestes sp					4
Ischneura sp				these species don't compare with named	2
77 / /				specimens in WA Museum	2
Xanthagrion sp					L
Anisoptera - dragonflies					
Hemicordula tau					1
Diplacodes sp					5
HEMIPTERA					
Homoptera					
Eurybranchidae				Lower camp Hg light	1
Membracidae				general on Acacia spp	3
Corixidae				** ** 1.	c
Agraptocorixa parvipunctata				lower camp Hg light common	5
Notonectidae					
Anisops gralis				lower camp Hg light common	3
Species 1	2		2		2
Heteroptera					
Reduviidae					
Havanthus rufovarius				lower camp under stone	j
Havanthus rufovarius		3			3
Havanthus rufovarius				lower camp vagrant	2
Stenolemus sp			5	a very delicate sp	l
Reduviidae spl				lower camp Hg light	4
Reduviidae sp2		3			2
Reduviidae sp3		3			1
Peirates sp1	2]
Peirates sp1	_	3			2
Peirates sp3	2				1
Lygaeidae					
Dieuches sp				upper camp vagrant	4
Scutelleridae					
Choerocorus paganus				on Dodonea sp	12
Coreidae					
Myctis profana				on Dodonaea and Eremophila	4
^ t t				•	
Cydnidae					_
Adrissa sp				general graound vagrant	3

Pentatomidae Poecilomentis apicallis Poecilomentis patruellis Aplerotus maculatus Pentatomidae sp2 Pentatomidae sp3 Pentatomidae sp4						general on Senna under bark of Eucalyptus spp. upper camp on Dodonaea general on Dodonaea general on mulga trunk general on Gimlet trunk	4 2 2 2 3 3
Miridae Miridae sp1						gwant from Canna nd Assais	2
sp2						swept from Senna nd Acacia swept from Senna	3 4
sp3						swept from Senna	2
sp4						swept from Senna	2
COLEOPTERA Carabidae							
Calosoma oceanicum						at Hg light common	2
Scaraphites sp1					5		1
sp2			3				1
sp3		2]
sp4	l						1
Euryscaphus sp E. waterhousei	1	2				an unusual brown sp	1
Gigadema bostocki	1	2 2	3	4	5		1 3
Gnathoxys humeralis	1	L	3	7	,		2
Scopodes sp			3				1
Simodontus sp		2			5		3
Philoscaphus tuberculosus			3		5		2
Dytiscidae							
Eretes australis						at Hg light	4
Necterosoma sp						at Hg light	2
Hydrophilidae							
Limoxenus mastersi						at Hg light	3
Scarabaeidae							
Cryptodus sp						at Hg light	1
Colpochila sp C. laminatus						at Hg light	4
Melolonthinae spl						at Hg light at Hg light	2
Melolonthinae sp2						at Hg light	1
Semanopterus tricostatus						at Hg light	1
Geotrupidae sp						at Hg light	1
Buprestidae							
Temognatha flavocincta							
Castiarina carminea						Mallee flowers Eucalyptus	l
						Mallee flowers E. ebbanoenis	1
C. parallela						Mallee flowers E. ebbanoenis Leptospermum flowers	1
C. rufa						Mallee flowers E. ebbanoenis	1
C. rufa Elateridae						Mallee flowers E. ebbanoenis Leptospermum flowers Leptospermum flowers	1
C. rufa Elateridae Agrypnus sp						Mallee flowers E. ebbanoenis Leptospermum flowers Leptospermum flowers at Hg light	1 1 3
C. rufa Elateridae						Mallee flowers E. ebbanoenis Leptospermum flowers Leptospermum flowers	1 1 3
C. rufa Elateridae Agrypnus sp						Mallee flowers E. ebbanoenis Leptospermum flowers Leptospermum flowers at Hg light	1 1 3

Eleale sp2						Mallee flowers		
							1	
Phlogistus sp						Mallee flowers	2	
Natalis sp						at Hg light	1	
Mordellidae								
spl						Melaleuca flowers	2	
sp2						hakea flowrers	3	
Tenebrionidae								
Chalcopterus sp						Mulga bark	1	
Meloidae						~		
Zonitus sp Yellow						Mallee flowers	5	
Zonitus sp Yellow						Hg	2	
Zonitus sp Purple						Leptospermum flowers	14	
Anthicidae								
Anthicus sp						in litter	1	
Chrysomelidae								
Ditropidus sp						Eucalyptus leaves	1	
Paropsis sp1						Eucalyptus leaves	2	
Paropsis sp2						Mulga leaves	3	
Curculionidae								
Cubicorrhynchus sp					5		1	
Leptopius sp			3				1	
Polyphrades sp			3	4		and in Mallee flowers (13)	15	
Oxyops spl						Mallee flowers	3	
Oxyops sp2						Mallee flowers	1	
Haplonyx sp								
Curculionidae spl		2						
Curculionidae sp2		_			5			
Curculionidae indet					,	Mallee flowers	1	
curounomade maet						Manee nowers	1	
HYMENOPTERA								
Wasps								
Mutillidae								
	,							
sp1	1]	
sp2		2					2	
sp3		2					1	
sp4			3]	
sp5			3				1	
sp6			3]	
sp7			3				1	
Ichneumonidae								
Ophion sp							1	
Ichneumonidae						at Hg light	-	
sp1						at Hg light	1	
sp2						at Hg light	2	
sp3						at Hg light	2	
sp3 sp4								
						at Hg light	2	
sp5						at Hg light	1	
sp6						at Hg light]	
P11								
Evanidae spl						at Hg light	2	

Tiphiidae							
Hemithynnus sp						Mallee flowers	4
APOIDEA							
Colletidae							
Leioproctus sp						on Leptospermum sp.	2
Hylaeus elegans						Mallee flowers	4
						Leptospermum	4
Stenotritidae							
Stenotritis sp						At rest on Allocasuarina	1
							_
Halictidae							
Homalictus sp						Eremophila	2
Nomia sp						Eremophila	4
Nomia sp						Mallee fls	2
•							-
Megachilidae							
Megachilidae sp1						Mallee fls	1
Chalicoderma sp						Melaleuca	2
Anthophoridae							
Amegilla sp						Ptilotus	J
?Parasphecodes sp						Eremophila	1
Exoneura sp						From burrow in Sandalwood	5
· ·							•
Apidae							
Apis mellifera						common througout study area	
Apoidea not determined							
sp1						Eremophila	2
sp2						Eremophila	2
sp3						Mallee	l
sp4						Eremophila	2
sp5			3			S. O. O. Pilla	1
sp6			•			Mallee	
sp7						Mallee	2
sp8						Eremophila	1
3 p 0						глеторина	2
Formicidae 1							
Myrmecinae							
Myrmecia infima						Cassia	,
Myrmecia fucosa							1
Wyrmeeta tacosa						Swamp area from Eremophila	3
Ponerinae							
Rhytidoponera metallica			•	4	_		
R. violacea		2	3	4	5	0 1	4
		2	3			& general	5
Rhytidoponera spl		•	3]
sp2		2	3				3
sp3			3				1
sp4			3				1
sp5						general large +11mm	1
Odanta wa 1	-						
Odontomachus sp	1						3
Cerapachys sp		2					3
Ponerinae indet	1						2
Ponerinae indet						Specimen a winged male	

Pseudomyrmecinae Tetraponera sp	1					and general on Cassia	4
Myrmicinae Aphaenogaster barbigula							
Apnaenogaster bartiguta						from colony at lower camp These ants have large nest holes very common in the general area	6
Crematogaster spl & sp3			•			From Mallee flowers	3
sp2						From Quandong fruit	2
sp4						From quandong fruit	4
Podomyrma sp1						From Mallee flowers	4
Podomyrma adelaidae						From trunk of Eucalyptus sp.	3
P. adelaídae						From trunk of E. capillosa, workers & winged female	4
Formicidae 2							
Dolichoderinae							
Iridomyrmex purpureus						This ant common in all areas	25
Iridomyrmex sp1	l		3				
Iridomyrmex sp2		2		4	5		6
Iridomyrmex sp3	1	2		4	5		12
Formicinae							
Polyrachis spl		2				and from Mallee flowers	ì
Polyrachis sp2						vagrant in area of hill above the lower camp	l
Calomyrmex sp1		2					2
Calomyrmex sp2						vagrant in Neurachne sp. in area lower camp	4
Melophorus sp1	1					and from Olearia sp in area lower camp	4
sp2	1						1
sp3			3				1
sp4			3		-		3
sp5 sp6	1		3		5		4
spo sp7	i		3			Cream Cram Assais on while day	3
sp8						Swept from Acacia sp phyllodes]
sp9						Swept form Cassia sp Swept from Cassia sp, female]
sp10		2				Swept from Cassia sp, tentate	1 2
Camponotus sp1	1	2					
sp2	,					Swept from Acacia acuminata	1
sp3	1		3			onope from reacia acuminata	2 4
Camponotus sp4	•		3				2
sp5			Ψ'			on Eremophila in swamp area	2
•						recopression in a contrapt with	-

APPENDIX 8.

Helena & Aurora Range Invertebrates collected during February 1996.

			NO. COLL'S						
	1	2	3	4	5	6	7		
CHILOPODA Scolpendridae Scolpendra laeata S. morsitans Ethmostigma curtipes Cormocephalus turneri			P	1	- way	1	1		1 3 1 2
Scuterigeridae Allotheura sp.					2				<u>2</u> 9
SCORPIONIDA Buthidae Lychas alexandrinus Isometroides vescus	1]		1]		3
Scorpionidae Urodachus novaehollandiae		2			-	1			
ARANAEAE Araneomorphae Lamponidae Lamponina sp male	1				70000000	Annie III.		To a second	1
Lycosidae Lycosa sp1 male " sp2 female " sp3 male " sp4 males " sp5 males Lycosa forresti males	Procedure in the contract of t	1	ganet proces	1 1 3 1	***************************************	Addition of the state of the st	Providence (1997)	PARAMANANA	1 1 1 4 2 3
Corinnidae Supunna albopunctatum sp group	***************************************					lın	l fim		2
Gnaphosidae Genus? male Aristerus sp Encoptarthria sp		1	1				1		1 1 1
Ctenidae sp juv			ì						ì
Miturgidae sp female				l					1
Salticidae Sandalodes sp female Deinopidae Deinopis sp males		1	1					I lower camp	1 2
Hersiliidae Tampopsis sp juv		1							1
Theriidae Lactrodectus hasselti juvs				1			1		2

	ł	1 :	,				ı	(
Araneidae Eriophora sp male]		1
Zodariidae									
Genus 1 Genus 2	lm	lj	1f	~ ·		lm			4
Genus 3			lm	2j 1f			2ſ		3 3
	lm			**			201		l
Zoridiae									
Mygalomorphae									
Nemesiidae	ł								
Aname sp		2m	2m	lm					5
Tetragnathidae									
Nephila edulis	1							If Im lower camp	2
•]					r	45
									15
									60
INSECTS									
NY 1 7770 N 1									
BLATTODEA Polyzostera mitchelli			τ,		1				2
Platyzostera coolgardiensis		1	I		I				1
Zonioploca sp		,	1]
•									4
MANTODEA									
Orthodera sp	3]				^		4
Paraxypillus sp	1						2		-3 7
ORTHOPTERA									
Tettigonidae									
Species 1								l at light]
" 2 " 3					1			l at light	}
3					1				1
Acridiidae									
Species 1								1 vagrant	1
Goniaea sp]]						1
	į								2
HEMIPTERA									
Cydnidae									
Adrissa sp							2		2
D									
Pentatomidae								5 Calman sums	c
Poecilometis apicalis Poecilometis sp]	3					5 Salmon gums	5 4
, vooi on op		'	, ,						•
Elvisurinae									
Coleotichus costatus]					On Eremophila	1
Reduviidae									
Ectomocoris sp	2								2
	-								14
	,	•	•		į į	ı	ı	1	

COLEOPTERA Carabidae Species 1 Gigadema bostocki Parroa apicalis Carenum sp		2	1			g dept.	1		1 3 1 1
Tenebrionidae Helea sp Homotrystis (carbonaria)				J			2		2 1 3
Chrysomelidae Paropsis sp rugose black]					<u>1</u>
Elateridae Pseudotetralobus sp			***************************************					3 at light	3 3
Curculionidae Adelognatha Polyphrades uniformis Polyphrades sp			7					5 on acacia leaves	5 -7 -12
HYMENOPTERA Vespidae Abiopa sp								2 vagrant at camp	2
Tenthredinidae Saw-fly larvae								2 from Eucalyptsp	2
Mutillidae Ephutomorpha rugicollis Ephutomorpha sp 2 " " 3	1						2	l vagrant at camp	1 2 1
Apoidea Anthrophora sp								l in Eremophila	}
Formicidae Ponerinae Rhytidoponera metallica Rhytidoponera sp Dolichoderinae]						l		1 1
Iridomyrmex purpureus Iridomyrmex sp 1 Technomyrmex sp			1				6	This species noted in all areas	6 1
Formicinae Polyrachis sp Melophorus sp Camponotus gasseri	1 1			4	- Control of the Cont				5 1 1 25