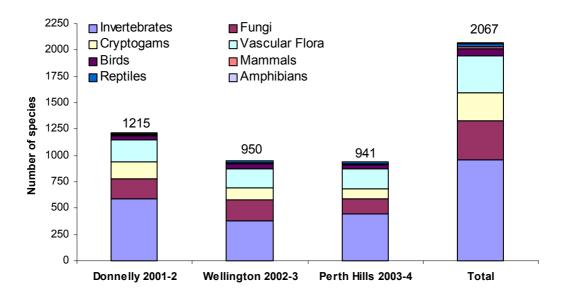


REPORT OF PROGRESS 2003 – 2004

Science Division November 2004


CONTENTS

EXECUTIVE SUMMARY	1
INTRODUCTION	3
FOREST STRUCTURE AND REGENERATION STOCKING	14
FOLIAR AND SOIL NUTRIENTS	21
SOIL DISTURBANCE	24
COARSE WOODY DEBRIS, SMALL WOOD AND TWIGS, AND LITTER	
MACROFUNGI	35
CRYPTOGAMS	50
VASCULAR PLANTS	62
INVERTEBRATES	73
BIRDS	104
MAMMALS AND HERPETOFAUNA	109
DATA MANAGEMENT AND STORAGE	117

EXECUTIVE SUMMARY

This report documents the sites monitored and the results of the third round of sampling in the FORESTCHECK monitoring program. Eight sampling grids were established in Jarrah forests within the Perth Hills District, and sampled in the spring of 2003 and the autumn of 2004. This brings the total number of FORESTCHECK monitoring grids to 27, having previously established grids in Donnelly and Wellington Districts in 2001 and 2002 respectively. These reports can be viewed on CALM's Naturebase website at <u>http://www.calm.wa.gov.au/science/science.html</u>.

During the three years of FORESTCHECK, information on over 2000 species of plants, animals and fungi has been gathered.

Some interesting information has been recorded and interesting patterns are emerging. Many of the species recorded were previously unknown or have been recorded for the first time in WA. A species of *Peripatus* recorded in the Perth Hills is thought to be a relict from Pangea and is considered a living invertebrate fossil, representing the link between present day annelids and arthropods. Other interesting points to have emerged from the Perth Hills monitoring grids are:

- Stand structure on the Perth Hills sites reflected the declining contribution that Marri has in the northern and eastern Jarrah forest, with Jarrah comprising 63-97% of the eucalypt regeneration.
- Surface soils in the Perth Hills have lower extractable P and total P concentrations than on sites in Donnelly and Wellington.
- Mature Marri leaves have higher P and K concentrations than leaves from either advanced growth or saplings of both Jarrah and Marri. N concentration was similar for both Jarrah and Marri in all growth stages.

- Litter loads in all treatments generally reflected time since the last fire.
- Fungal species richness recorded in the Perth Hills was about 25% lower than that recorded in Donnelly and Wellington.
- Over 900 morphospecies of invertebrates have been recorded across all FORESTCHECK sites.
- Species richness of vascular plants differed little between the Donnelly, Wellington and Perth Hills FORESTCHECK sites.
- Foxes were not recorded on the Perth Hills FORESTCHECK sites, but pigs were.
- Bird species numbers were similar in all treatments, but abundance was lower in gap release grids.

Some overall trends that appear to be emerging are:

- There is a mean increase of 20% in soil bulk density across all FORESTCHECK sites that is attributed to timber harvesting.
- The diversity of cryptogams is consistently higher in the external controls across all FORESTCHECK sites.
- Changes in species composition of cryptogams on control sites reflect changes in climatic conditions across all FORESTCHECK sites.
- Timber harvesting has had little impact on the species richness and abundance of vascular plants across all FORESTCHECK sites.
- FORESTCHECK is also helping to quantify the effect of environmental gradients on species distribution and diversity within the SW forests, some of which are well known (eg. the lower proportion of Marri trees in the northern Jarrah forest) and others which have not previously been documented (eg. the lower number of cryptogam species and lower fungal abundance in the drier Jarrah forests).

I thank the FORESTCHECK team for their continued commitment to the arduous field and laboratory components of this project. The report was compiled and editied by Verna Tunsell and Richard Robinson.

Dr Neil Burrows Director Science Division November 2004

INTRODUCTION

Scope

This report has been compiled from chapters prepared by scientists and technical staff involved in the FORESTCHECK monitoring program. It represents a summary of activities completed as part of the monitoring program during the 2003-2004 financial year.

FORESTCHECK is an integrated monitoring system that has been developed to provide information to forest managers in the southwest of Western Australia about changes and trends in key elements of forest biodiversity associated with a variety of forest management activities. Although the initial focus of FORESTCHECK will be on timber harvesting and silvicultural treatments in Jarrah (*Eucalyptus marginata*) forest, the intention is to extend the scale of monitoring over time to include other forest ecosystems, fire (prescribed and wildfire), mining, the effects of forest disturbance for utility corridors (e.g. roads, power transmission lines), and the impacts of recreation uses. (Note, however, that the Forest Products Commission will only fund the part of FORESTCHECK that is specific to its activities).

FORESTCHECK was developed to meet a range of compliance conditions placed on the Forest Management Plan 1994-2003 through Ministerial Conditions and the Codd Report of 1999 and is included as an operational program in the current Forest Management Plan 2004-2013. Integrated monitoring is a fundamental component of Ecologically Sustainable Forest Management (ESFM), and is necessary for reporting against the Montreal Process criteria and indicators for ESFM. In addition, monitoring forms the basis for adaptive management, which is recognized as an appropriate strategy for managing under conditions of uncertainty and change.

The Science Division of the Department of Conservation and Land Management has primary responsibility for the implementation of FORESTCHECK. The development of the program took place over 2 yrs and included input from scientists and managers within the Department of Conservation and Land Management, and from a number of external scientific agencies. The background to this process is described in the FORESTCHECK Concept Plan, and details of methods are provided in the FORESTCHECK Operations Plan. Annual Progress Reports, the Concept Plan and Operations Plan may be viewed on CALM's Naturebase website at http://www.calm.wa.gov.au/science/science.html.

Sampling strategy

Since 1995 timber harvesting in Jarrah forests has been undertaken according to Silvicultural Guideline 1/95, which recognizes three silvicultural objectives.

- 1. Thinning to promote growth on retained trees,
- 2. Release of regeneration by gap creation, where existing advance growth is encouraged to develop unimpeded by the removal of competing overstorey,
- 3. Regeneration establishment by shelterwood, where seedlings are encouraged to establish and develop into the lignotuberous ground coppice stage. This is achieved by reducing the competition from the overstorey, but retaining sufficient overstorey to provide a seed source and maintain

other forest values until the ground coppice is developed and capable of responding to release.

Silvicultural guidelines have been revised in conjunction with the preparation of the Forest Management Plan (2004-2013) and changes to the guidelines are detailed in Appendix 5 of the plan.

Gap creation and shelterwood treatments are being given priority in the initial stages of FORESTCHECK as these are the most widespread operations and involve the greatest extent of disturbance to the forest. Thinning will also be monitored where the structure of the forest dictates that this treatment is appropriate on a significant scale.

SITES AND GRID ESTABLISHMENT

FORESTCHECK sites are being established at a number of locations across the forest, stratified according to recognized ecological gradients of rainfall, evapo-transpiration and soil fertility Forest ecosystem mapping (Mattiske and Havel 1998¹) provides a systematic basis for stratification of sampling. Allocation of sites also takes account of scheduled future harvesting within the Jarrah forest, with priority given to those ecosystems likely to be subject to harvesting on an extensive scale in the next decade.

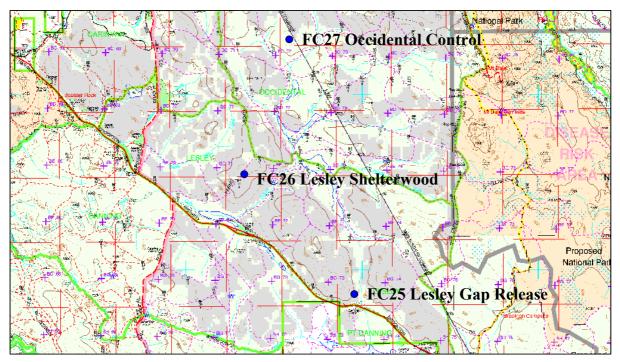
Each FORESTCHECK site consists of up to 4 sampling grids. Grids will be established in forest subject to the following treatments:

- 1. Gap release
- 2. Shelterwood
- 3. Coupe buffer or internal reference forest, i.e. temporary exclusion areas (TEAS) between adjacent gaps or shelterwood forest
- 4. External reference or control forest i.e. not recently harvested, or has had minimal harvesting, and will not be subject to harvesting in the foreseeable future.

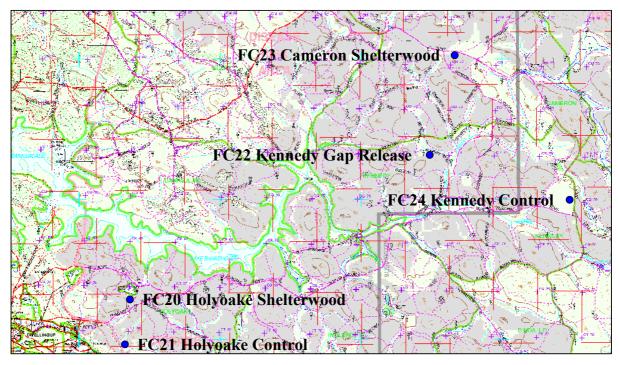
The intention is that grids be closely matched in terms of site characteristics (climate, geomorphology, soils, topography, altitude, aspect), pre-harvest forest structure and vegetation attributes in order that differences between grids reflect the effects of harvesting, rather than inherent site differences. Not all treatment types will be found in the one locality and it is expected that external reference forest may have to be located some distance from their harvested counterparts. It may not always be possible to find gap release and shelterwood treatments together, because underlying relationships between rainfall, soil fertility and Jarrah lignotuber development influence the broad pattern of silvicultural treatment across the Jarrah forest, as have previous silvicultural activities.

¹ Mattiske, E.M. and Havel, J.J 1998. Vegetation Mapping in the South West of Western Australia. CALM, Perth.

Methodology


A range of ecosystem attributes are monitored at each site including:

- 1. Forest structure and regeneration stocking
- 2. Foliar and soil nutrients
- 3. Soil disturbance
- 4. Coarse woody debris and leaf litter
- 5. Macrofungi
- 6. Cryptogams
- 7. Vascular flora
- 8. Invertebrate fauna
- 9. Vertebrate fauna (birds, herpetofauna, and mammals).


Sampling methodologies for each set of ecosystem attributes are described in the FORESTCHECK Operations Plan, together with examples of protocols for data collection and storage. Monitoring of biodiversity is based on a sample grid. The main grid is 100 m x 100 m, with 30 m x 30 m vegetation sample plots at each corner.

Sampling in Perth Hills District during 2003/04

Eight FORESTCHECK monitoring grids were established in State Forest in the Perth Hills District and sampled during 2003/04. Three grids (FC 25-27) were established within Occidental and Lesley blocks in the northern range of the district, about 30 km northeast of Jarrahdale (Fig. 1), in the 900 mm annual rainfall zone, and five grids (FC20-24) were established within Holyoake, Kennedy and Cameron blocks, east and northeast of Dwellingup (Fig. 2) in the 1100 – 1300 mm annual rainfall zone. Grids were identified by alphanumeric codes FC20 to FC27, with the southern and northern locations being about 55-60 km apart.

Figure 1. Location of the three 'northern' FORESTCHECK sampling grids established in the Perth Hills District during 2003/04.

Figure 2. Location of the five 'southern' FORESTCHECK sampling grids established in the Perth Hills District during 2003/04. The town of Dwellingup is situated in the lower left hand corner of the map.

Grids are located within the Dwellingup1, Dwellingup 2, Yarragil 1 and Yarragil 2 vegetation complexes of Mattiske and Havel (1998). These complexes are found in open forests of Jarrah and Marri (*Corymbia calophylla*), with Dwellingup 1 located on lateritic uplands in the humid and subhumid zones, Dwellingup 2 on lateritic uplands in subhumid and semiarid zones, Yarragil 1 on valley floors in the humid and subhumid zones, and Yarragil 2 on valley floors in the subhumid and semiarid zones. Other eucalypt species such as *E. megocarpa, E. patens* and *E. rudis* may also be present in the Yarragil complex. Upland sites have mild slopes (generally <10 degrees, except FC21 which was 13 degrees) and are at elevations between 220 and 320 m ASL (Table 1).

Grid ID		Vegetation	Latitude	Longitude	Elevation	Aspect	Slope
	block	complex	(S)	(E)	(m)		(degrees)
FC20	Holyoake	Dwellingup 1	32° 42' 16"	116° 06' 38"	300	Е	5
FC21	Holyoake	Yarragil 1	32° 43' 10"	116° 06' 45"	220	W	13
FC22	Kennedy	Yarragil 2	32° 39' 26"	116° 13' 48"	280	NE	2
FC23	Cameron	Dwellingup 1	32° 37' 31"	116° 14' 19"	330	NNE	3
FC24	Kennedy	Dwellingup 1	32° 40' 19"	116° 16' 46"	310	E	2
FC25	Lesley	Yarragil 2	32° 10' 43"	116° 15' 17"	300	E	9
FC26	Lesley	Dwellingup 2	32° 09' 08"	116° 13' 15"	320	SE	9
FC27	Occidental	Dwellingup 2	32° 06' 54"	116° 16' 07"	320	S	2

Table 1. Grid locations and attributes.

Grid ID	Block	Silvicultural treatment	Year of most recent cut	Decades of previous cutting	Year of most recent burn	Burn type
FC21	Holyoake	Control	Pre 1920	N/A	1999	Fuel reduction
FC24	Kennedy	Control	1930-34	Pre 20	1975	Fuel reduction
FC27	Occidental	Control	1930-39	20	1984	Fuel reduction
FC20	Holyoake	Shelterwood	1995	Pre 20, 20	2002	Establishment
FC23	Cameron	Shelterwood	1989	Pre 20, 30	1984	Advance
FC26	Lesley	Shelterwood	1997	Pre 20	1998	Establishment
FC22	Kennedy	Gap release	1988	Pre 20, 30	1991	Regeneration release
FC25	Lesley	Gap release	1998	Pre 20	1998	Regeneration release

Table 2. Logging and fire history at each grid¹.

¹ Cutting and burn data retrieved from Forest Management Branch SILREC files.

Photographs taken in each of the eight sampling grids are presented in Figs. 3-10. All photos were taken from peg W2.1 looking towards the centre peg (W2.3) (see Fig. 11), and allow changes in vegetation structure and condition to be determined in eachtsubsequent photograph. All photographs were taken on 20-21 May 2004.

Northern Grids:

Figure 3. FC25 Lesley forest block; gap release.

Figure 4. FC26 Lesley forest block; shelterwood.

Figure 5. FC27 Occidental forest block; control.

Southern Grids:

Figure 6. FC22 Kennedy forest block; gap release.

Figure 7. FC23 Cameron forest block; shelterwood.

Figure 8. FC24 Kennedy forest block; control.

Figure 9. FC20 Holyoake forest block; shelterwood.

Figure 10. FC21 Holyoake forest block; control.

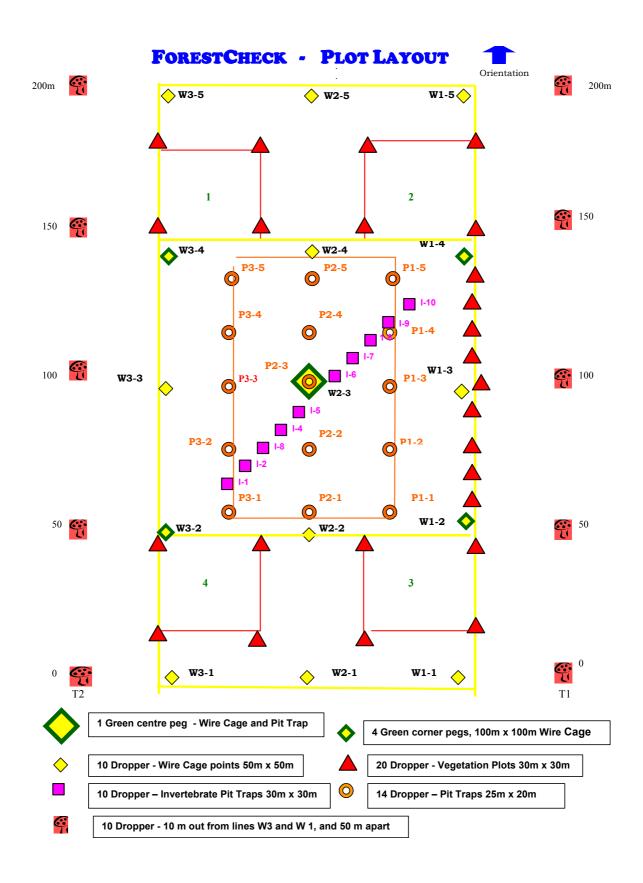


Figure 11. The layout of a FORESTCHECK sampling grid.

Expenditure

The budget for establishing and monitoring the FORESTCHECK grids in the Perth Hills District in 2003-2004 is shown in Table 4.

Task/Activity	TOTALS
OPERATING EXPENDITURE	
including grid establishment, sampling, specimen processing and data nanagement)	142 000 ^A
management).	200 000
SALARY EXPENDITURE	173 000
(based on 0.2 FTE allocation for staff participating in FORESTCHECK).	175 000
TOTAL	373 000

Table 4. FORESTCHECK budget for 2003/04.

^{A.}Subject to 40 per cent Corporate overhead charge.

FOREST STRUCTURE AND REGENERATION STOCKING

Lachlan McCaw, Bob Smith and John Neal

Introduction

The adequacy of regeneration following harvesting and silvicultural treatment is one of the core indicators of Ecologically Sustainable Forest Management (ESFM). The current framework of regional level indicators provides for assessment of the area and per cent of harvested area of native forest effectively regenerated (Indicator 2.1.g). This is recognized as a Category A indicator that can be reported upon immediately.

Regeneration outcomes have for a number of years been assessed as a matter of routine on at least a portion of the area of forest subject to harvesting. For unevenaged forest stands, there is a need to consider the existing structure of the stand and whether sufficient sapling and advance growth is present to re-establish the stand following harvesting. Under the current silvicultural guidelines for Jarrah-Marri the density of existing lignotuberous advance growth determines whether the stand should be cut to gap release or shelterwood.

Forest managers also require information about the rate of growth and species composition of stands so that future stand conditions can be projected over time. These attributes can affect the potential of forest stands to produce wood and other products, and to achieve ecological outcomes.

The objectives of this component of FORESTCHECK monitoring are therefore to:

- Describe the stand structure, species composition and developmental stage of tree species present at each sampling grid, and
- Measure the contribution of mid-storey species to stand structure, density and basal area.

Fieldwork

All eight sampling grids in Perth Hills District were assessed over four days in mid March 2004. Grids were located east of Dwellingup (FC 20-24), and north east of Jarrahdale (FC 25-27).

Sampling techniques were the same as used in Donnelly and Wellington Districts in the previous two years. Regeneration stocking was assessed using the triangular tessellation method at 50 points around the outer perimeter of each grid. Triangular tessellation sampling is the standard technique employed for regeneration surveys undertaken before and after timber harvesting operations. Stand structure was assessed by measurement of all trees taller than 2 m in a transect 200 m long by 4 m wide. In stands cut to gap release and shelterwood treatments, the height and species of regeneration was assessed at 4 locations on each grid to indicate the rate of regrowth. Canopy cover was measured as part of the vascular plant assessment.

Data management

Regeneration stocking data are summarized and entered into the FORESTCHECK database. Data are analysed to determine the following key information:

- Whether the grid meets current stocking standards.
- Species composition of overstorey trees and the regeneration cohort.
- Proportion of the grid affected by retained overwood (gap and shelterwood grids only).
- Average density of saplings and ground coppice at points that meet the stocking standard.

Results

Stand structure and species composition

Eucalypt basal areas ranged from 18 to 37 m^2/ha in the three control grids, and were predominantly comprised of Jarrah (Figure 1, Table 1). Midstorey trees of Allocasuarina fraseriana contributed a further 9 m²/ha at Lesley (FC 27), and tall Balga (Xanthorrhoea preissii) contributed 9 m²/ha at Holyoake (FC21). All shelterwood stands had a retained basal area of Jarrah and Marri exceeding 25 m²/ha, with the Cameron stand (FC23) also having an additional 20 m²/ha of A. *fraseriana*. The lower basal area in the Lesley shelterwood (FC 26) can be attributed to the more recent (1997) harvesting, reflecting changes introduced in the 1995 silvicultural guidelines and the shorter time period for growth response of established trees and recruitment of saplings. The Kennedy gap release treatment (FC 22) was heavily stocked with Jarrah saplings and had a low level of retained overwood. This stand was cut in 1988 prior to introduction of the requirement for retention of habitat and potential habitat trees and also received post-harvest culling treatment to fell noncommercial trees. The gap release treatment at Lesley block (FC 25) was predominantly stocked with Jarrah saplings and also included a component of pole and mature sized Jarrah.

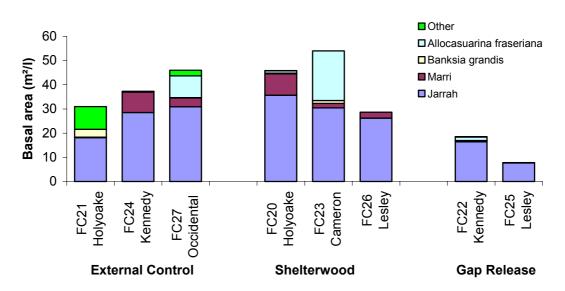


Figure 1. Basal area of Jarrah, Marri and midstorey trees.

Marri was present as a secondary species in all grids but contributed no more than a quarter of the stand basal area. A small number of Yarri (*E. patens*) seedlings were recorded in the gap release treatment at Kennedy block. Relative proportions of Jarrah and Marri were consistent between basal area, stems per ha, and the regeneration cohort of saplings and advance growth (Table 1). The current silvicultural guideline requires that on predominantly Jarrah sites the species mix of the eucalypt regeneration should contain at least 20 % Jarrah. This requirement was achieved in all treated stands.

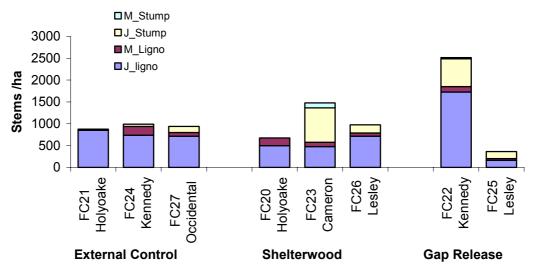
Grid	Basa	l area (m	² /ha)	S	Stems/ha	Regeneration species composition		
	Jarrah	Marri	Total	Jarrah	Marri	Total	Jarrah	Marri
Control								
FC21	18.11 <i>99%</i>	0.2 1%	18.31	850 97%	25 3%	875	- 95%	- 5%
FC24	28.53 77%	8.44 <i>23%</i>	36.97	788 80%	200 20%	988	- 89%	- 11%
FC27	30.86 <i>89%</i>	3.69 11%	34.55	850 91%	88 9%	938	- 91%	- 9%
Shelterwood								
FC20	35.66 79%	8.54 <i>21%</i>	45.20	500 74%	175 26%	675	- 63%	- 37%
FC23	30.43 <i>94%</i>	1.87 <i>6%</i>	32.30	1263 86%	213 14%	1476	- 75%	- 25%
FC26	26.18 <i>91%</i>	2.45 9%	28.63	900 92%	75 8%	975	- 83%	- 17%
Gap Release								
FC22	16.43 97%	0.51 <i>3%</i>	16.94	2363 <i>94%</i>	150 6%	2513	- 97%	- 2%
FC25	7.66	0.13	7.79	325	38	363	-	-
	98%	2%		90%	10%		91%	9%

Table 1. Analysis of eucalypt species composition determined according to basal area and stem density of live standing trees >2 m tall, and the species mix determined in regeneration surveys of nine FORESTCHECK sampling grids in Perth Hills District.

Regeneration stocking

The three control grids contained few saplings but had moderate stocking levels of ground coppice and advance growth (Table 2). The general absence of saplings can be attributed to the lack of recent disturbance and associated temporary reduction in competition from the overstorey canopy.

Satisfactory stocking in stands cut to shelterwood is defined as having 65 % of sample points with 500 or more stems/ha of saplings or stool coppice from stumps <30 cm diameter, or 1000 or more stems/ha of saplings, stool coppice and Jarrah ground coppice or Marri advance growth, and can also include lignotuberous seedlings at 5000 or more stems/ha. The Lesley block shelterwood (FC26) was well stocked with saplings and ground coppice and also had substantial areas stocked with lignotuberous seedlings established following the post-harvest burn (Table 2). This stand had a lower level of retained overwood and lower basal area than the shelterwood treatments at Holyoake (FC20) or Cameron (FC23). The latter two stands have an established overstorey of trees 20-50 cm dbhob and the most appropriate silviculture would be to promote growth on the best trees in this cohort, rather than to establishing further seedling regeneration. Previous cutting has resulted in a complex mosaic of stand structure complexity of silviculture over much of the northern Jarrah forest and it is difficult to accurately map the outcomes of treatment at a fine level of resolution.


The gap release at Kennedy block (FC22) had a dense stocking of saplings 4-5 m tall together with a secondary stratum of ground coppice, and easily satisfied the regeneration stocking standard. Good development of saplings at this site can be attributed to the low level of retained overwood (Table 2). Regeneration stocking in the gap release at Lesley block (FC25) was slightly below the specified standard of 65 per cent. The absence of saplings at this grid reflects the relatively short time period elapsed since the post-harvest burn in 1997.

Treatment and Grid Number	Height range of eucalypt regeneration (m)	Percent affected by overwood	Percent stocked with saplings	Percent stocked with saplings & ground coppice	Per cent stocked includin g seedlings	Per cent not stocked to standard
Control						
FC21	Uncut	N/a	4	50	N/a	16
FC24	Uncut	N/a	2	42	N/a	8
FC27	Uncut	N/a	6	48	N/a	2
Shelterwood	1					
FC20	3-4	48	0	34	10	20
FC23	3-4	68	2	34	20	16
FC26	1-2.5	36	16	32	42	10
Gap Release	e					
FC22	4-5	8	56	32	N/a	12
FC25	1.5-3	18	0	58	N/a	38

Table 2. Regeneration stocking and species composition for nine FORESTCHECK grids in Perth Hills District assessed during March 2004. Values for per cent stocking are based on 50 sample points per grid. Retained over-wood is not assessed in uncut stands or TEAS buffer strips.

Regeneration originating from stool coppice on stems >30 cm diameter and from stump coppice is not considered to contribute to the effective stocking at a point. This is because it is prone to wind-throw and is readily damaged by fire if the parent stump catches alight. However on most sites there are a considerable number of additional stems originating from stump coppice that contribute to the initial re-establishment of crown cover and basal area.

The origin of all Jarrah and Marri stems >2 m tall measured in the 4 m x 200 m transect on each grid is shown in Figure 2. All grids had at least 500 trees of Jarrah and Marri that originated from lignotuberous growth, except for the Lesley gap release treatment where the sapling cohort had not yet been re-established following harvesting.

Figure 2. Origin of all Jarrah and Marri stems >2 m tall measured in the 4 m x 200 m transect on eight grids in Perth Hills District.

Canopy cover

Canopy cover in control grids varied from 50-75 % (Fig. 3). Shelterwood stands at Holyoake and Cameron also had more than 50 % canopy cover, but the Lesley shelterwood was somewhat lower reflecting the more recent harvesting in this stand. Gap release stands at Kennedy and Lesley had 20-30 % canopy cover.

Discussion

Jarrah was the dominant tree on all sites in the Perth Hills network of FORESTCHECK sampling grids. This matches the expected pattern of declining Marri contribution in northern and eastern areas of the Jarrah forest. Several indicators (basal area, stems/ha, regeneration species composition) provided similar estimates of the relative contributions of Jarrah and Marri. The potential for timber harvesting and associated silviculture to affect species composition at the stand level is likely to be lower in the

Northern Jarrah forest than is the case further south where Marri is more abundant and is often the predominant species in the lignotuberous advance growth stage. Control grids had been subject to timber harvesting in the early to mid decades of the 20th century, unlike those established previously in Wellington District, which had no recorded history of harvesting. Some of the grids are likely to have been established in forest that was subject to regeneration tending operations undertaken by unemployed workers on sustenance work during the years of the Great Depression (Bradshaw in press). This work included coppicing of young but damaged Jarrah regrowth, the felling of *Banksia, Allocasuarina* and Balga, and the ringbarking of larger unwanted trees. Regeneration tending operations are very likely to have influenced the present day structure of the forest and may have had some influence on the species composition and structure of the intermediate tree layer, although this would be difficult to establish with any certainty.

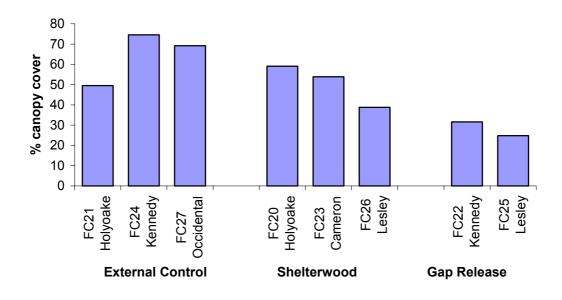


Figure 3. Canopy cover estimated using point intercept sampling.

The five FORESTCHECK grids in the Dwellingup area (Holyoake, Cameron and Kennedy forest blocks) are within the area burnt by the January 1961 wildfires, which burnt 145 000 ha of mostly cut-over forest. Much of the area burnt in 1961 experienced very high fire intensities as a result of extreme weather conditions and the heavy fuel loads that had accumulated during a period of deliberate fire exclusion during the decades of the 1930's and 40's. Maps exist showing the fuel age at the time of the 1961 wildfires (McCaw *et al.* in press) and the resulting levels of crown damage (Peet and Williamson 1965). Information about previous fire history will be collated prior to the analysis phase of the project scheduled for 2006 and used to test hypotheses about possible impacts of extreme fire events on forest condition and biodiversity.

Recommended change to sampling procedure

An important issue highlighted during this year's field sampling was the difficulty in accurately ascribing silvicultural treatments to any particular area of forest on the basis of the SILREC maps. While the maps do indicate the silvicultural objectives applied at a compartment scale, it would be almost impossible to map the actual outcome of treatment at scale of tens of metres. However, such information is important in the interpretation of data collected during FORESTCHECK sampling. The operational procedures used for assessing forest structure will therefore be expanded to include recording the diameter, height and species of stumps removed in past harvesting operations. Stumps will be recorded in the four transect (4 m wide x 25 m long) that are currently used to sample stem diameters of trees >2 m tall. This change will allow stands to be characterised in terms of the basal area removed, as well as retained basal area and stand structure. FORESTCHECK grids previously established in Donnelly and Wellington Districts will be re-visited to collect this data retrospectively.

References

Bradshaw, F.J. (in press). The legacy of sustenance. In: *A Forest Conscienceness*. Proceedings of the 6th National Conference of the Australian Forest History Society Inc. Augusta, WA.

McCaw, L., Hamilton, T. and Rumley, C. (in press). Application of fire history records to contemporary management issues in southwest Australian forests. Proceedings of the 6th National Conference of the Australian Forest History Society Inc. Augusta, WA.

Peet, G. B. and Williamson, A. J. (1965). An assessment of forest damage from the Dwellingup fires in Western Australia. Paper presented to the Fifth Conference of the Institute of Foresters of Australia, Perth.

FOLIAR AND SOIL NUTRIENTS

Lachlan McCaw, John Neal, Bob Smith, Shelley McArthur and Lin Wong

Introduction

Concentrations of nitrogen (N), phosphorus (P) and potassium (K) in the foliage of advance growth, saplings and overstorey trees, and in surface soils are measured at each FORESTCHECK monitoring grid to provide information about the nutritional status of the forest ecosystem. Data will be used to investigate correlations between macronutrient concentrations and measures of plant and animal abundance, and ecosystem health.

Field Work

Samples of foliage and soil were collected from all grids in Perth Hills District during mid March 2004. The methodology for collection and analysis of samples is described in the Operations Plan. Samples were analysed at the Science Division Soil and Plant Laboratory in Kensington.

Results

Foliar nutrients

Foliage from mature Marri trees tended to have higher concentrations of P and K measured in advance growth or saplings. Growth stage appeared to have little or no effect on concentrations of N, P or K in Jarrah foliage (Table 1). Nitrogen concentrations were similar in mature foliage of Jarrah and Marri, whereas P and K concentrations were higher in Marri than in Jarrah.

Table 1. Concentrations of N, P and K in the foliage of Jarrah and Marri advance growth, saplings and mature trees for eight grids in Perth Hills District. Data are shown as minimum-**mean**-maximum.

Species	Foliage source	oliage source Nitrogen (total)		Potassium		
		(%)	(%)	(%)		
Jarrah	Advance growth	0.56- 0.75 -1.04	0.001 -0.010- 0.013	0.20 -0.25- 0.31		
	Sapling	0.64- 0.71 -0.79	0.001 -0.007- 0.140	0.20 -0.27- 0.40		
	Mature	0.71- 0. 83 -1.00	0.002 -0.009- 1.021	0.20 -0.22- 0.27		
Marri	Advance growth	0.56 -0.79- 0.93	0.006- 0.014 -0.029	0.38- 0.46 -0.54		
	Sapling	0.74 -0.91 -1.46	0.003- 0.018 -0.061	0.49- 0.54 -0.60		
	Mature	0.82 -0.93- 1.27	0.010- 0.040 -0.122	0.62- 0.70 -0.77		

Soil nutrients

Soil N concentrations were quite consistent (0.10-0.13 %) across all grids, except for the Holyoake control (FC21) which had almost twice the level of the other grids (Table 2).

Total P concentrations ranged from 14.4-63.9 ppm, and tended to be lowest in the northern set of grids in Lesley and Occidental forest blocks (FC25-27). Extractable P concentrations were not clearly related to the geographical location of the sites, and the lowest concentration was recorded in the Cameron shelterwood grid (FC23). Total and extractable K concentration varied by a factor of about 2.5 times from the lowest to the highest sample means. The Cameron block shelterwood (FC23) had low concentrations of both extractable and total K, while the Holyoake control (FC21) had the highest ranked concentrations.

Table 2. Mean concentrations of N, extractable and total P, and extractable and total K determined from 5 samples surface soil samples. The overall mean (s.e.m.) for 8 grids in Perth Hills District is indicated.

Grid	N (%)	P-extract. (ppm)	P-total (ppm)	K-extract. (ppm)	K-total (ppm)
FC20	0.13	1.70	44.40	78.10	164.40
FC21	0.20	2.00	63.90	76.60	245.20
FC22	0.10	1.00	40.70	42.10	113.90
FC23	0.11	0.80	21.40	31.00	100.40
FC24	0.11	1.80	33.30	55.60	113.50
FC25	0.13	1.30	23.00	42.70	124.60
FC26	0.11	1.70	17.70	42.20	91.50
FC27	0.13	1.20	14.40	60.20	132.30
MEAN (s.e.m)	0.13 (0.03)	1.44 (0.42)	32.35 (16.71)	53.56 (17.19)	135.73 (49.45)

Discussion

The Holyoake control grid (FC21) exhibited superior soil macronutrient concentrations compared to the remaining sites, reflecting its favourable location just upslope from a fertile gully containing good stands of Yarri (*E. patens*) on red loamy soil. The Cameron shelterwood grid (FC23) stood out as having relatively low levels of soil P and K relative to the other sites.

Comparing the overall mean concentrations of soil nutrients measured in previous years for the FORESTCHECK grids in Donnelly, Wellington and Perth Hills Districts (Table 3) we find that:

- Mean N concentrations are similar across grids in all three Districts.
- Grids in Perth Hills have lower extractable and total P concentrations.
- Mean concentrations of extractable and total K are similar across grids in all three Districts.

Foliar nutrient concentrations were generally comparable with those measured in Donnelly and Wellington in previous years.

District	N (%)	P-extract. (ppm)	P-total (ppm)	K-extract. (ppm)	K-total (ppm)
U	0.12 (0.01)	2.0 (0.4)	65.4 (13.4)	43.8 (5.6)	94.8 (13.5)
	0.14 (0.01)	2.3 (0.6)	85.2 (16.3)	54.7 (5.6)	119.0 (11.0)
	0.13 (0.03)	1.4 (0.4)	32.3 (16.7)	53.6 (17.1)	135.7 (49.4)

Table 3. Mean (s.e.m) soil nutrient concentrations for FORESTCHECK grids inDonnelly, Wellington and Perth Hills Districts.

Recommended changes to operating procedure

With the closure of the Kensington soils laboratory in June 2004, analysis of foliar and soil nutrients will be outsourced from 2004/05. Preliminary discussions held with the WA Chemistry Centre indicate that they are capable of taking on the FORESTCHECK analysis work at a reasonable cost.

SOIL DISTURBANCE

Kim Whitford

Introduction

This report covers the 2003/2004 soil disturbance assessments of the FORESTCHECK sites: Holyoake shelterwood (FC20), Kennedy gap release (FC22), Cameron shelterwood (FC23), Kennedy control (FC24), Lesley gap release (C25), and Lesley shelterwood (C26). Only a subset of all FORESTCHECK sites is monitored in the soil disturbance assessment. Bulk density was measured on only two sites: Cameron shelterwood and the Kennedy control. Because snig tracks are the source and location of most soil disturbance produced by logging, mapping of snig track layout and snig track order was attempted on all of the harvested sites.

The objectives of this work wereto:

- Record the extent of soil disturbance on FORESTCHECK monitoring sites where machine disturbance (snig tracks) could be readily identified.
- Monitor the intensity of changes to soil physical properties induced by logging, on selected sites.
- Provide base data that could be used to monitor any change in these soil physical properties over time.
- Contribute data that can be used to relate the operational categories to the intensity of disturbance, where intensity of disturbance is measured as the fine earth bulk density of the soil.

Sampling

Bulk density was measured on two sites: Cameron shelterwood, and the Kennedy control. These sites were selected for measurement of bulk density because: a) the surface soils were relatively free of large boulders or sheet cap rock, b) the two sites were the same Mattiske-Havel vegetation complex and consequently should have similar soils, and c) the snig tracks could be successfully mapped on the Cameron shelterwood site, thus providing information on the operational categories of the bulk density was stratified on the basis of operational categories. The operational categories are classifications that identify the type of harvesting activities that have occurred at the sample point, e.g. harvested area, unharvested area, log landing, old log landing, old snig track, snig track order.

On the remaining five sites where bulk density was not measured, mapping of snig tracks provided a measure of the amount of disturbance. Incorrect or low quality mapping produces biased measurements of the amount of disturbance. This year mapping of the snig track layout was particularly difficult on some sites because surface rocks and post harvest silvicultural treatment (Kennedy gap release), and relatively light soil disturbance (Holyoake shelterwood and Lesley shelterwood) impeded the identification of snig tracks on these sites. Satisfactory mapping of the snig track layout only occurred on the Cameron shelterwood and the Lesley gap release, Holyoake shelterwood and Lesley shelterwood are not presented.

Site	Site label	Snig track map	Operational category sample points	Bulk density sample points	Quality of snig track mapping
Holyoake shelterwood	FC20	No			Very low
Holyoake control	FC21	No			No snig tracks
Kennedy gap release	FC22	Yes			Low
Cameron shelterwood	FC23	Yes	174	174	Satisfactory
Kennedy control	FC24	No	40	40	No snig tracks
Lesley gap release	FC25	Yes			Satisfactory
Lesley shelterwood	FC26	No			Very low
Occidental control	FC27	No			No snig tracks
TOTAL			214	214	

Table 1. The type of assessment and the number of samples collected at each site.

Results

The sites and treatments assessed and measured are listed in Table 1. Table 2 gives the means and standard errors for total bulk density (TBD) and fine earth bulk density (FEBD), and gravel content for various operational categories on the Cameron shelterwood and the Kennedy control. Although the Kennedy control has been harvested, this last occurred c. 80 years ago. Consequently the visual evidence of any soil disturbance has disappeared and the sample points are classified as unharvested.

Table 3 shows the area of the snig tracks and landings for five sites from the 2002/2003 monitoring, but only for the Lesley gap release site for this years monitoring. Although snig tracks were successfully mapped on two sites, the Lesley gap release was the only site from this years monitoring where the relationship between the snig track pattern and the area of the harvesting was clear. The snig track maps (Figs. 1 and 2) show the location and extent of snig tracks and landings on the Cameron shelterwood, and the Lesley gap release sites.

Table 4 provides a summary of the comparisons of soil bulk density that can be made between the control sites and the recently harvested sites over the three years of FORESTCHECK monitoring. Five such comparisons can be made. For each of the recently harvested sites two values of the mean bulk density are given; one mean for samples collected on the systematically sampled grid points, and another mean for the samples collected from the "harvested area" operational category. The change in bulk density as a result of the harvesting is best estimated by comparison of the mean bulk densities from the unharvested control site and the systematic grid point samples from the recently harvested sites. **Table 2.** Bulk density and gravel content for operational categories at two FORESTCHECK sites. Operational categories: Harvested area (HA), Unharvested area (UA), Major snig track into landing (ST0), Primary snig track (ST1), Secondary snig tracks (ST2), Tertiary snig track (ST3), Old Primary snig track from previous logging (OST1), Old Tertiary snig track from previous logging (OST3), Log landing (LL), Old log landing (OLL), Access track (Track).

FORESTCHECK site	Operational category	n	Total bulk density	SE	Fine earth bulk density	SE	Gravel content (%)	SE
FC23 Cameron shelterwood	НА	73	1.466	0.024	0.918	0.013	52.2	1.2
	LL	21	1.856	0.049	1.042	0.041	62.5	1.5
	OLL	1	1.657		0.761		71.5	
	OST1	10	1.520	0.059	0.950	0.035	55.6	2.7
	OST3	4	1.400	0.073	0.931	0.019	50.1	4.8
	ST1	4	1.711	0.050	0.883	0.045	66.8	4.2
	ST2	25	1.520	0.036	1.030	0.028	48.7	2.4
	ST3	31	1.484	0.032	0.969	0.020	49.6	1.9
	Track	5	1.614	0.034	1.045	0.025	56.3	1.3
FC24 Kennedy control	UA	40	1.642	0.029	0.826	0.021	66.6	1.6

Discussion

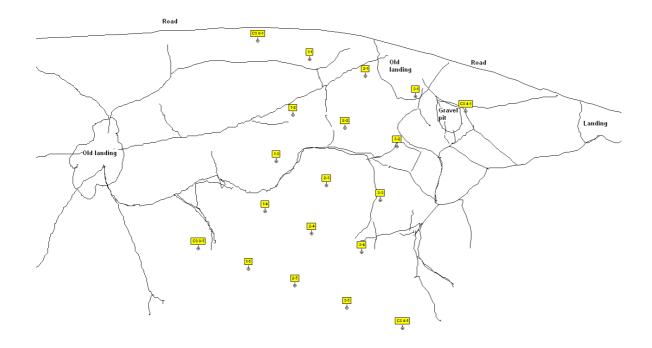
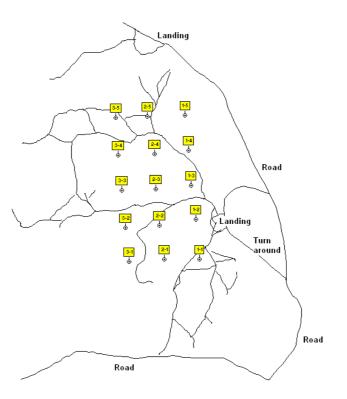

- The boundaries of the faller's blocks about these 2003/04 FORESTCHECK sites in the northern Jarrah forest were not as well delineated as the faller's blocks assessed in the southern Jarrah forest in 2001/2002. The boundaries of the shelterwood and gap release loggings of the 2001/02 FORESTCHECK sites were marked on the surrounding trees and the paint marks were clearly visible. This was not the case in 2003/04. Consequently the faller's block areas presented in Table 3 are estimates. These areas were estimated from the extent and distribution of the snig tracks on these sites. This reduces the accuracy of the last two columns in Table 3, i.e. the estimates of the area of the landing as a proportion of the faller's block area, and the estimates of the proportion of the faller's block disturbed by snig tracks and landings.
- One of the aims of this work is to identify the impact of timber harvesting on the soil bulk density. Soil bulk density can only be readily measured on sites that are relatively free of cap rock and large boulders, as bulk density is measured by collecting soil cores. This limits the site selection for bulk density measurements to treatment and control sites that are relatively free of cap rock and large boulders. In addition, measurements of bulk density are best collected from treatment sites where the snig tracks can be clearly mapped, so that the operational categories of the sample points are known. For this years set of monitoring sites this restricted the monitoring of bulk density to the Cameron shelterwood, and the Kennedy control.

Table 3. The estimated area of the faller's block surrounding each FORESTCHECK site, the area of snig tracks and landings identified on each faller's block, and the areal proportion of the faller's block that has been disturbed by snig tracks and landings. Snig track classes are: primary (ST1), secondary (ST2), tertiary (ST3), and old snig track from a previous logging (OST). Snig track area calculations are based on measurements of snig track lengths and assumed widths of 4.67 m for ST1, 4.46 m for ST2, and 4.13 m for ST3.


Site	Site code	ST1 (m ²)	ST2 (m ²)	ST3 (m ²)	OST (m ²)	Total snig track area (m ²)	Landing Area (m ²)	Estimated faller's block area (m ²)	Landing area as a percentage of faller's block	Snig track area as a percentage of faller's block	Percentage of fallers block disturbed
Edwards gap release main landing and faller's block	FC11	1365	1346	5326	0	8037	1970	55220	3.6	14.6	18.1
Edwards gap release second landing	FC11	n/a	n/a	n/a	n/a	n/a	2240	n/a			
Edwards gap release third landing	FC11	n/a	n/a	n/a	n/a	n/a	600	n/a			
Ross gap release	FC12	1804	2331	5256	0	9391	4350	105300	4.1	8.9	13.0
Ross shelterwood eastern faller's block	FC13	1112	1560	8262	0	10934	2248	77130	2.9	14.2	17.1
Surface shelterwood	FC15	2351	1761	6908	0	11020	1590	65760	2.4	16.8	19.2
Chalk shelterwood western faller's	FC18	322	825	5995	2159	9301	2120	43820	4.8		26.1
block										21.2	
Chalk shelterwood eastern faller's	FC18	444	1511	3596	2739	8290	680	46700	1.5		19.2
block										17.8	
Chalk combined, both faller's blocks	FC18	766	2336	9591	4899	17592	2805	90520	3.1	19.4	22.5
Chalk shelterwood west, excluding	FC18	322	825	5995	excluded	7142	2120	43820	4.8		21.1
OST										16.3	
Chalk shelterwood east, excluding	FC18	444	1511	3596	excluded	5551	680	46700	1.5		13.3
OST										11.9	
Chalk combined, excluding OST	FC18	766	2336	9591	excluded	12693	2805	90520	3.1	14.0	17.1
Lesley gap release	FC25					9666	418	120,179	0.4	8.4	

Site	Site code	Operational category	Number of times harvested	Year of last harvest	Years since harvest	Mattiske-Havel vegetation complex	Fine earth bulk density (g cm ⁻³)	% Change (grid vs. not harvested)	n	Gravel content (%)	Assessment year
Kingston gap release	FC2	Grid points	3	1995/96	7	Corbalup 2	0.82 ± 0.03		77	33	2001
Kingston gap release	FC2	Harvested	3	1995/96	7	Corbalup 2	0.80 ± 0.02		68	32	2001
Kingston TEAS	FC4	Not harvested	2	1970's	22-32	Corbalup 2	0.92 ± 0.02	-11	39	10	2001
Thornton gap release	FC6	Grid points	2	1991	11	Corbalup 1	1.00 ± 0.02		77	17	2001
Thornton gap release	FC6	Harvested	2	1991	11	Corbalup 1	0.98 ± 0.02		75	17	2001
Thornton TEAS	FC7	Not harvested	1	1940's	52-62	Corbalup 1	0.76 ± 0.04	32	40	47	2001
Carter gap release	FC8	Harvested	2	1999	3	Collis 1	0.80 ± 0.01		137	35	2001
Carter TEAS	FC9	Not harvested	1	1940's	52-62	Collis 1	0.78 ± 0.02	3	40	55	2001
Chalk shelterwood	FC18	Grid points	3	1992	11	Dwellingup 1	0.81 ± 0.02		81	65	2002
Chalk shelterwood	FC18	Harvested	3	1992	11	Dwellingup 1	0.80 ± 0.02		67	65	2002
Tumlo control	FC19	Not harvested	0	virgin	n/a	Dwellingup 1	0.60 ± 0.02	35	40	70	2002
Cameron shelterwood	FC25	Grid points	3	1989	15	Dwellingup 1	0.92 ± 0.01		74	53	2003
Cameron shelterwood	FC25	Harvested	3	1989	15	Dwellingup 1	0.92 ± 0.01		73	52	2003
Kennedy Control	FC24	Not harvested	2	1930-34	74-70	Dwellingup 1	0.83 ± 0.02	11	40	67	2003
Mean								20			

Table 4. A summary of the mean change in surface soil bulk density attributed to timber harvesting operations across all FORESTCHECK sites.

Figure 1. FORESTCHECK site FC 23, Cameron block shelterwood. Scale is given by the grid point spacing of 50 metres.

Figure 2. FORESTCHECK site FC 25, Lesley block gap release. Scale is given by the grid point spacing of 50 metres.

- All of the monitoring sites, other than the Holyoake control (logged once) have been logged at least twice. Bulk density was measured on the Cameron shelterwood (logged three times, most recently in 1989) and the Kennedy control (logged twice 1920s and pre 1920). The Kennedy control is used here as a reference site for comparison with the Cameron shelterwood. The intention of this comparison is to determine the impact of timber harvesting on the soil bulk density. Ideally such comparisons would be made between a logged site and a comparable site that had never been logged. This is not always possible, and the comparison presented here for this years monitoring compares a recently logged site (Cameron shelterwood) with one logged c. 60 years earlier (Kennedy control). Comparing these two sites, the most recent timber harvesting on the Cameron shelterwood produced an increase in fine earth bulk density of the surface soil of c. 11%.
- Table 4 summarizes the mean change in surface soil bulk density attributed to timber harvesting operations across all of the FORESTCHECK sites where bulk density has been measured. The change in bulk density as a result of the harvesting is estimated by comparison of the mean bulk densities from the grid point samples for the recently harvested sites, with the unharvested control sites. The comparisons in Table 4 are made between sites with the same Mattiske-Havel vegetation complex. Generally soils are similar within a Mattiske-Havel vegetation complex, however this is not always the case and one such exception occurred with the Kingston gap release and the immediately adjacent Kingston TEAS being a sand, and the Kingston gap release a gravelly loam. Comparison of bulk density between these two sites is not meaningful because the soils are clearly different.
- Excluding the Kingston gap release site, the mean increase in soil bulk density attributable to timber harvesting across these four sites was 20%. This is a substantial increase in the mean bulk density of the surface soils, and can be identified as a likely impact of timber harvesting. Similar data from a greater number of sites and further comparisons with virgin sites is needed to clarify the validity of this observed increase in bulk density.
- Of these four comparisons shown in Table 4, only one of these, the Chalk Shelterwood and Tumlo control enable a comparison of a virgin site with a harvested site. These two sites reveal the greatest increase in soil bulk density from the unharvested to the harvested site. The Tumlo control site could similarly be used for comparison with the Cameron shelterwood (logged three times) and with the Kennedy control (logged twice) as all of these sites are from the Dwellingup 1 vegetation complex and have similar soils.
- The mean bulk density of the soil on the "harvested area" operational category was relatively high for the Cameron shelterwood.
- The landing size on the Lesley gap release was particularly small. At 418 m² this is the smallest landing measured across all of the FORESTCHECK sites, and is only 0.4% of the total faller's block area. Landings are sites of major soil disturbance and reducing landing size is an important component in reducing soil disturbance.
- Across all of the FORESTCHECK sites, landing size has varied from 0.4% to 4.8% of the total area of the faller's block. The mean landing size was 2.4% of the total area of the faller's block.

Conclusions

- The landing at Lesley gap release was the smallest landing so far measured. It was 418 m² or c. 0.4% of the faller's block.
- Only 8% of the Lesley gap release faller's block was disturbed by snig tracks and landings. This is a relatively low amount of disturbance.
- The mean fine earth bulk density at Kennedy control site was 0.83 ± 0.02 g cm⁻³ (n = 40), this site has been harvested twice and was last logged between 1930 and 1934.
- The mean fine earth bulk density at Cameron shelterwood was 0.92 ± 0.01 g cm⁻³ (n = 74) (from systematic grid points). This site has been harvested three times and was last logged in 1989.
- The three logging events at the Cameron shelterwood have produced a general increase in soil compaction across this site of c. 11%, when compared with Kennedy control site that has been logged twice.
- Considering all of the FORESTCHECK sites so far monitored for soil bulk density, harvesting produces a mean increase in soil bulk density of 20%.
- Similar differences over a larger number of sites are needed to confidently identify the size of any increase in bulk density caused by harvesting.
- Understanding the impact of harvesting on the soil bulk density on these FORESTCHECK sites would be greatly enhanced if further measurements of soil bulk density were taken on more sites of similar soil types that have never been harvested.

Future tasks

The planned work for the 2003-4 monitoring is complete. The snig track widths used to calculate the area of the snig tracks were mean values determined from earlier work at other sites in the Jarrah forest (Whitford 2001). The addition of measurements of snig track widths on the individual FORESTCHECK sites would increase the accuracy of the snig track areas presented here. It could be helpful in the final analysis of this data to have particle size analysis, soil descriptions and possibly soil mapping for all of the FORESTCHECK sites, but particularly for the 10 sites listed in Table 4 where soil bulk density has been measured. As many of the control sites have been harvested at least once, and have thus experienced soil disturbance which is slow to ameliorate, it may also be valuable to collect bulk density measurements from some additional sites which have not been harvested, to use as reference sites for the harvested treatment sites as well as the control and TEAS sites that have also been harvested some time back.

COARSE WOODY DEBRIS, SMALL WOOD AND TWIGS, AND LITTER

R.H. Smith and R.M. Robinson

Introduction

The quantity of wood and leaf debris on the forest floor has a great influence on the habitat for the fungi, small reptiles, mammals and invertebrates. It is therefore important to ascertain the amount of debris in each area before and after disturbance such as logging and burning. The amount of litter also affects the soil moisture, which in conjunction with micro-organisms affects the soil texture.

This component of FORESTCHECK is intended to:

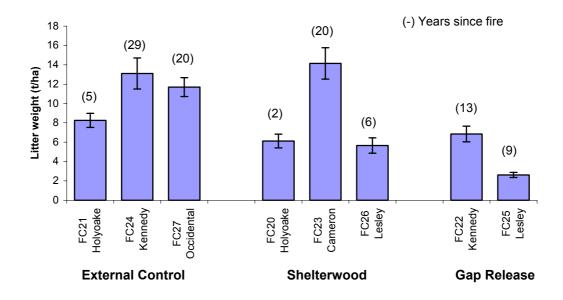
- Measure and record the amount of litter, small wood and twigs (SWT) and coarse woody debris (CWD) on the ground in the various managed Jarrah forest treatments (ie. Gap Release and Shelterwood) and in uncut forest.
- Analyse trends within and between the treatments over time.
- Make the data available for analysis of distribution patterns of other organisms such as invertebrates, small mammals, fungi and cryptogams.

Data Collection

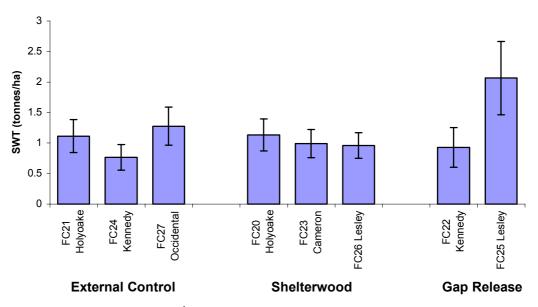
Sampling in 2004 was carried out on 8-12 March in conjunction with the soil and leaf nutrient sampling and stand structure measurement.

Data Management

The data were entered into Microsoft Excel worksheets. The litter and SWT component was initially calculated in grams then converted to t ha^{-1} . The volume of CWD was calculated to $m^3 ha^{-1}$.


Results

Litter Weights


Generally the heaviest litter loads occurred on the control sites (8.3 to 11.7 t ha⁻¹) but the long-unburnt Cameron shelterwood site (FC23) had a litter load of 14.2 t ha⁻¹. The lightest loads were in the gap release treatments, with the Lesley site (FC25) having only 2.6 tonnes of litter per hectare. Overall, the litter loads reflected the different crown densities and time since last burn on each site (Fig. 1).

Small Wood and Twigs

The amount of small wood and twigs was similar on all sites, being about 1 t ha⁻¹ except on the Lesley gap release treatment (FC25) where it was 2 t ha⁻¹ (Fig. 2).

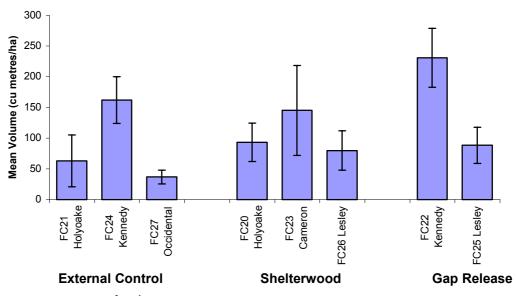

Figure 1. Mean litter loads (t ha⁻¹) calculated at each FORESTCHECK grid in the Perth Hills District in March 2004.

Figure 2. The average weights (t ha⁻¹) of small wood and twigs measured at each FORESTCHCECK site in the Perth Hills District in March 2004.

Coarse Woody Debris

A large amount of variability was encountered within and between treatments in the amount of CWD measured on sites (Fig. 3). This is most likely caused by large logs that have a very big influence on the volume per hectare but are not distributed in great numbers on the sites. The greatest volume of CWD occurred on the Kennedy and Cameron sites with 231 m³ measured on the gap release (FC22) treatment, 162 m³ on the external control (FC24) and 145 m³ on the shelterwood treatment (FC23). The lowest volume of 37 m³ occurred on the Occidental external control (FC27).

Figure 3. The volume (m³ ha⁻¹) of coarse woody debris measured at each FORESTCHCECK site in the Perth Hills District in March 2004.

Conclusions

- The amount of litter on each grid generally reflects the time since last burn and the overhead crown densities.
- The amount of small diameter wood and twigs on each grid is similar (c. 1 t ha⁻¹) except on the Lesley gap release that has about twice the amount of the other grids.
- The volume of coarse woody debris on each grid is very variable between treatments as well as within treatments.

Modification to Methods and Difficulties

The method is working well and the results can be expected to improve over time as further data are obtained for each site. Although not used in the calculations, the diameter of all stumps on the sample lines was measured. At present no satisfactory method of estimating their contribution to the amount of coarse woody debris on each site has been made.

MACROFUNGI

R.M. Robinson, R.H. Smith and J.L. McGurk

Introduction

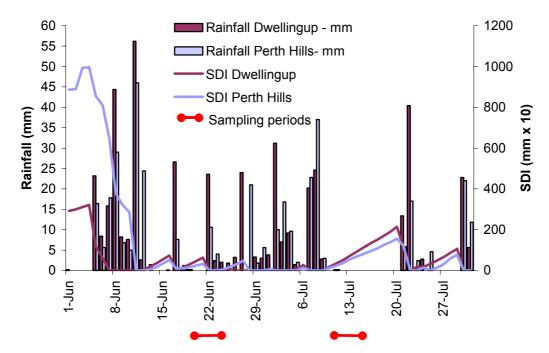
Fungi are considered one of the most important forest organisms in terms of both biodiversity and forest function. Soil, litter and wood inhabiting fungi play major roles in decomposition and nutrient cycling. Mycorrhizal fungi enhance nutrient uptake of plants and may enhance plant resistance to some pathogens. In addition, underground truffle-like fungi are an important food source for small mammals, especially following disturbance such as fire.

Research on fungi in Western Australia's southern forests is in its infancy. Knowledge on fungal diversity and the ecological roles that fungi play is of vital importance to Forest Managers making decisions on Sustainable Forest Management.

The objective of this component of the FORESTCHECK program is to:

- Monitor and record the species of macrofungi in the various treatments of managed Jarrah forest (gap release, shelterwood) and in uncut forest.
- Analyse trends in species composition, richness and abundance and substrate utilization over time.
- Generate detailed descriptions of unknown or unnamed species.

Field and Lab work


Transects to monitor macrofungi were installed at the Perth Hills sites during grid establishment in September-October 2003 and all the sites were monitored in June and again in July 2004. In addition to the Perth Hills sites, Donnelly sites (initially established and monitored in 2002) were also monitored in June 2004.

The emphasis of this report is on monitoring undertaken at Perth Hills, however, a brief report on results obtained at the Donnelly sites in 2004 is also included.

1. PERTH HILLS

Monitoring

As in previous years, monitoring dates were selected on the basis of rainfall and soil dryness index (SDI) statistics provided by the Dwellingup Work Centre, the Perth Hills District office at Mundaring, and the Bureau of Meteorology online SDI statistics for Dwellingup and Bickley. A week of steady rain, from 5-12 June, delivered 166 mm and 151 mm of rain at Dwellingup and Mundaring respectively and all sites were monitored from 21-23 June. However, the plots, especially the northern set located in Occidental and Lesley blocks, still appeared to be quite dry. Steady rain fell once again from 22 June – 8 July delivering a further 160 and 142 mm at Dwellingup and Mundaring respectively. The second monitoring was undertaken from 12-14 July (Fig 1).

Figure 1. Daily rainfall soil dryness index calculated for Dwellingup and Mundaring (Perth Hills) during the period 1 June to 30 July 2004. The FORESTCHECK sampling period is indicated in red.

Voucher Specimens

Voucher specimens have been processed and where possible identified. An overall species list and one for each individual site has been determined. In total, 185 voucher collections were made representing 76 species. Processing of each voucher was completed on the day of collection or the next day. This included photographing in the field, and preparing morphological descriptions of fresh collections. A total of 32 species had not been encountered previously and detailed descriptions were necessary to validate their identity. All collections were then dried so that microscopic descriptions could be later completed on the dried specimens in the Laboratory at Manjimup Research Centre. All vouchers have been entered onto the WA Herbarium database and are housed at the Tony Annells Herbarium at the Manjimup Research Centre.

Results and Discussion

Similar numbers of species were recorded at both the June and July monitoring periods (Fig. 2). Ninety-five species were recorded in June and 89 species recorded in July. However, the number of fruitbodies recorded in July (1902) was only 40% of that recorded in June (2507). The reason for this appears to be that 42 species of fungi were common to both monitoring periods, but they produced almost twice as many fruitbodies in June (2109) compared to July (1332). The remaining 53 species that were recorded only in June and the 47 species recorded only in July produced similar numbers of fruitbodies, 466 and 507 respectively.

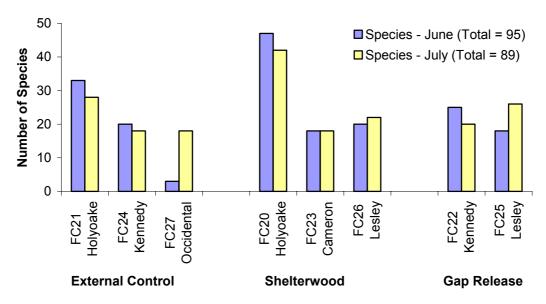
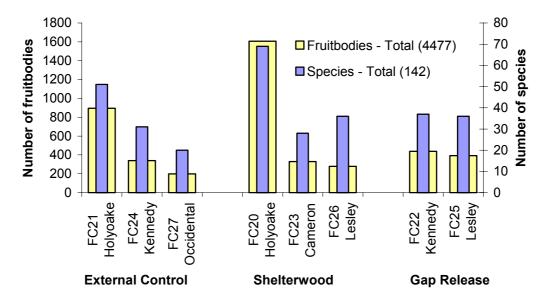
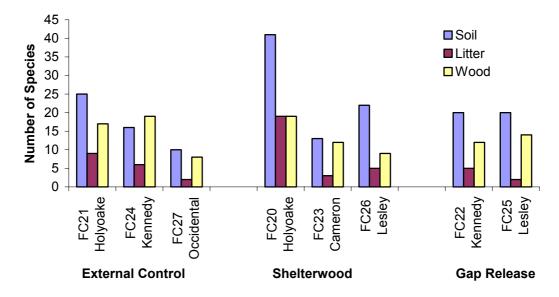
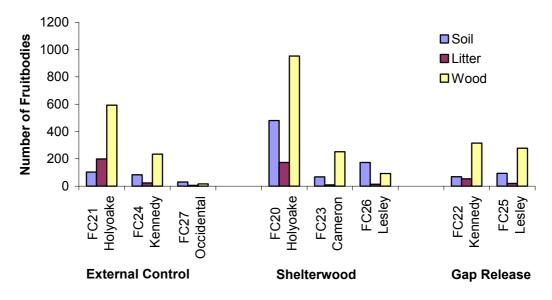



Figure 2. The number of species recorded in June and July at the Perth Hills FORESTCHECK sites.

In total, 142 species of fungi were recorded on the Perth Hills sites (Appendix I). Of these, 23% (42 species) were recorded for the first time in FORESTCHECK. A total of 4,477 fruitbodies were recorded (Appendix I). This is about three-quarters of the number of species recorded in previous years, but the number of fruitbodies recorded in 2004 was only about one-quarter of that previously recorded. This is likely due to the drier environment, especially in the northern sites, in which the 2004 sites were established. The Holyoake sites, both external control and shelterwood treatments, had more species and fruitbodies than the corresponding Lesley/Occidental and Kennedy/Cameron sites (Fig. 3).


On the external controls there appears to be a north-south gradient associated with the number of species and the number of fruitbodies recorded. However within the logging treatments there are similar numbers of both species and fruitbodies on all sites except for the Holyoake shelterwood, which had a more species and fruitbodies. The Holyoake shelterwood had a larger number of species recorded on soil and the species colonizing wood had produced more fruitbodies compared to other sites (Figs 4 and 5).

Generally, in each treatment the majority of species were recorded fruiting on the soil, but the majority of fruitbodies were recorded on wood. Species that fruit on wood tend to produce large numbers of fruitbodies (e.g. Species of *Gymnopilus, Calocera* sp. and *Stereum hirsutum* – see Appendix I on page 42). The Occidental and Kennedy controls and the Cameron shelterwood had low numbers of species associated with the litter layer (Fig. 4) despite having a long unburnt history (15-20 years) and carrying the highest litter loads (see chapter on Litter and Coarse Woody Debris). Although the Kennedy gap treatment had not been burnt for 13 years, it carried a low litter load but more litter species were recorded than on the previously mentioned sites. The number of species recorded on wood at each site corresponded closely with the amount of CWD measured at each site (see chapter on Litter and Coarse Woody Debris), but the number of fruitbodies recorded at each site was variable. Firm conclusions cannot be made regarding variation in species composition and fruitbody



production on each site and within treatments until further analysis, which will include site variability, is undertaken.

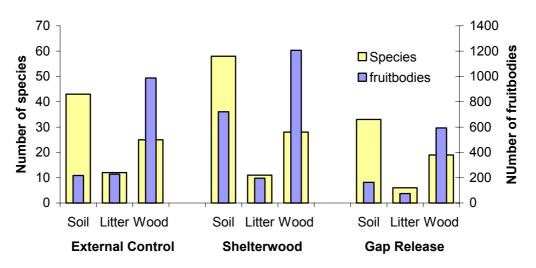
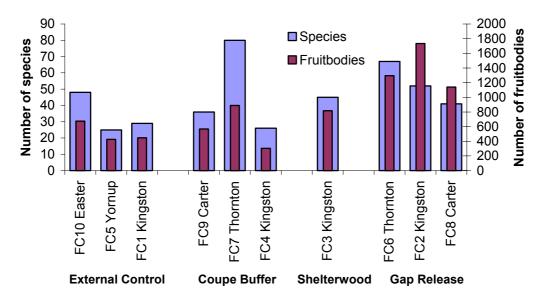

Figure 3. The total number of species and abundance recorded at the Perth Hills FORESTCHECK sites in 2004.

Figure 4. The number of species recorded fruiting on soil, litter and wood on the Perth Hills FORESTCHECK sites in 2004.

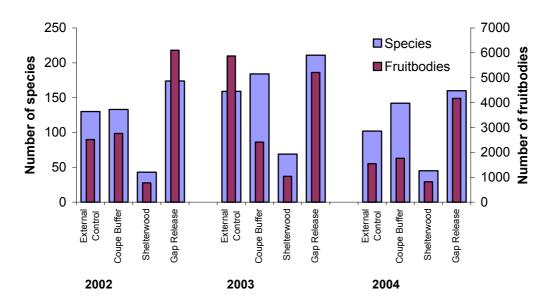
Figure 5. The number of fruitbodies recorded on litter, soil and wood in each grid on the Perth Hills FORESTCHECK sites in 2004.

Figure 6. The number of species and fruitbodies recorded on litter, soil and wood in each treatment on the Perth Hills FORESTCHECK sites in 2004 (NB. Only 2 grids in the gap release treatment).

2. DONNELLY Monitoring


Monitoring at the Donnelly sites (installed and initially monitored in 2002) was carried out from 14-18 July 2004.

Voucher Specimens


Fifty-five voucher collections were made, representing 48 species.

Results and Discussion

A total of 179 species, and 8,290 fruitbodies were recorded across all the sites. Thirty-one species were recorded for the first time on the Donnelly sites. The overall number of species was comparable to previous years but the abundance in 2004 was considerably lower. The highest number of species and fruitbodies continued to be recorded on the gap release treatment.

Figure 7. The total number of species and abundance recorded at the Donnelly FORESCHECK sites in 2004.

Figure 8. The total number of species and abundance recorded in each treatment in the Donnelly FORESTCHECK sites from 2002-04 (NB. Only one shelterwood site at Donnelly).

Thirty-one species were recorded at Donnelly for the first time in 2004. A planned burn was conducted on the Yornup control (FC5) in December 2003, which resulted in a number of fire associated species such as *Peziza tenacella*, *P. praetervisa*, *Pulvinula archerii*, an undescribed agaric (sp. 329) and *Mycena sanguinolenta* being abundant and recorded for the first time in 2004.

Generally, year-to-year differences at the same location(s) reflect the variation in fruiting patterns associated with annual fluctuations of local climate regimes. Such fluctuations can be alleviated to some extent with regular and long-term monitoring to ensure that all species are reliably and adequately recorded. However, disturbance and management activities such as fire also require additional monitoring in order to record species fluctuations associated with the change and the subsequent site recovery.

Conclusions

- A total of 377 species of macrofungi have so far been recorded in FORESTCHECK.
- 236 species of macrofungi were recorded in 2004 on the Donnelly and Perth Hills FORESTCHECK sites. Of these 84 species (about one-third) were recorded at both sites. Ninety-four were restricted to Donnelly and 58 were restricted to the Perth Hills. This reflects the varying environment within the Jarrah forest and indicates that a number of macrofungi are restricted in distribution within the Jarrah forest.
- Fungal species richness and abundance fluctuate from year to year.
- Timing of monitoring to capture the peak fruiting period for macrofungi is crucial.
- Monitoring for macrofungi immediately following management activities (such as fire) is needed in order to record species that respond to disturbance.

Data Management

All data has been entered onto a Microsoft Excel worksheet. Species diversity and abundance at each site and a frequency rating of 1 (rare) to 8 (very common) for each species at each site has been determined. The data includes a complete list of species recorded across all the sites, their life modes (mycorrhizal, saprotrophic, parasitic) and the substrate on which they were fruiting. Analysis is ongoing.

Issues

The addition of a third person to the team expedited the processing of voucher collections and macro-descriptions of species/specimens without compromising field data collection. However, because field work is carried out without access to the laboratory it is difficult to complete all the descriptive aspects necessary for correct identification of specimens, therefore descriptions of micro-characters for undescribed species were not completed in 2004, but can be undertaken in the future if needed.

		42

Sp #	Species	Life Mode ¹	Substrate ²	Control	Shelterwood	Gap Release	TOTAL
349	Agaric "brown, brown decurrent gills"	S?	S		9		9
46	Agaric "creamy white"	S	S				
82	Agaric "Lepiota-like, cream-grey"	S	S				
156	Agaric "light brown - red scales on stem"	S	S				
18	Agaric "light brown-olive"	S	S				
97	Agaric "pure white"	?	S				
174	Agaric "red/yellow/red"	S	??				
329	Agaric "viscid buff, long stem"	M?	S				
170	Agaric "yellow brown-moist"	S	S/L				
23	Agaric ? <i>Clitocybe</i>	S	S				
240	Agaricus sp. "small with red brown fibrils"	S	S				
38	Agaricus sp. "small"	S	S				
71	Agaricus sp. "small, flat- red stain"	S	S				
33	Agaricus sp. "yellow stainer"	S	S				
39	Agaricus sp."large cap, purplish scales"	S	S				
120	Aleuria rhenana	S	S	7	1		8
126	Aleurina ferruginea	S	S/MOSS		2		2
206	Amanita ananiceps	М	S				
186	Amanita brunneibulbosa "grey-brown"	М	S		1	7	8
283	Amanita eucalypti	М	S				
269	Amanita ochrophylloides	М	S				
114	Amanita sp. "apricot-pink margin"	М	S				
360	Amanita sp. "large grey-white, robust" Amanita sp. "small robust, yellow-buff, bulbous	М	S	1			1
320	base	М	S				
368	Amanita sp. "white with mealy stem"	М	S			1	1
371	Amanita sp. "white with saccate volva"	М	S			1	1
45	Amanita sp. "white, deeply rooted"	М	S				
28	Amanita sp. "white, stout"	М	S				
218	Amanita sp."powdery - long tapering base"	М	S			4	4
196	Amanita umbrinella	М	S	1			1
6	Amanita xanthocephala	М	S	1	20		21
35	Amanita xanthocephala forma macalpiniana	М	S				
338	Anthrocobia muelleri	S	S				
180	Armillaria luteobubalina	P/S	W	14		6	20
188	Austroboletus laccunosa	S	S				
200	Austroboletus occidentale	S	S		1		1
93	Boletellus ananiceps	S	S				
103	Boletellus obscurecoccineus	S	S		1	3	4
225	Boletus sp. "creamy pale yellow	М	S				
29	Boletus sp. "dull maroon"	М	S		1		1
345	Boletus sp. "light yellow"	М	S				
350	Boletus sp. "pink maroon cap, yellow/red stem"	М	S		2		2
49	Boletus sp. "red pores and stem" Boletus sp. "red-brown/golden yellow - intense	М	S				
253	blue stain"	М	S				
95	<i>Boletus</i> sp. "small yellow/cream pores" <i>Boletus</i> sp. "viscid brown cap, yellow	М	S				
358	marshmallow pores"	М	S		1		1
99	<i>Boletus</i> sp. "yellow-red, stains blue" <i>Boletus</i> sp. "brown/yellow pores which stain	M	S			1	1
216	blue"	М	S				

Appendix I. The complete species list of fungi recorded in FORESTCEHCK 2002-4 and the species and number of fruitbodies recorded on the Perth Hills sites in 2004.

Sp #	Species	Life Mode ¹	Substrate ²	Control	Shelterwood	Gap Release	TOTAL
210	Boletus sp."maroon/orange pores"	М	S				
195	Boletus sp."mustard brown-brown stain"	М	S				
193	Boletus sp."purple brown"	М	S				
284	Boletus sp."under Allocasuarina"	М	S				
208	Boletus sp."yellow-brown, cracked/white pores"	М	S				
9	Calocera sp. "yellow"	S	W	352	325	53	730
265	Cheilymenia sp. "eyelash on roo poo"	С	DUNG				
243	Cheilymenia sp. "orange disks on Marri nuts"	S	NUTS		8		8
364	Chlorociboria aeruginascens	S	W				
377	Clavaria "small lemon yellow" Clavaria (Clavulinopsis) aff. aurantiaca	S	S	4	8		12
316	"orange" Clavaria (Clavulinopsis) sp. "grey-brown with	M?	S				
319	black tips"	M?	S		11		11
81	Clavulina cf. cinerea "grey-brown"	S	S				
344	Clavulina sp. "cream, fluffy tips"	M?	S				
140	Clavulina sp. "pink-buff coral"	S	S	2			2
362	Clavulinopsis "grey brown, black tips"	M?	S				
261	Clavulinopsis sp. "cream"	S	S				
262	Clavulinopsis sp. "tiny white candles"	S	S				
197b	Clitocybe semi-occulta "large"						
14	<i>Clitocybe</i> sp.	S	S				
370	Clitocybe sp. "creamy beige"	S	S/L	4		16	20
324	Clitocybe sp. "grey robust"	S	S				
197	Clitocybe sp. "semi occulta"	S	W				
301	Clitocybe sp." dark grey with dimple"	S	S				
181	Collybia aff. butracea	S	S				
143	Collybia sp. "buff funnel"	S	S				
249	Collybia sp. "grey"	S	S				
233	Collybia sp. "grey/dimple"	S	S				
151	Collybia sp. "large"	S	S				
15	Coltricia oblectans	S	S	2	33	5	40
32	Coprinus sp.	S	S/L				
128	Coprinus sp. "basal hairs"	S	S				
224	Coprinus sp. "micaceous"	S	S				
282	Cortinarius sp. "honey-brown dome /long stem"	М	S				
303	Cortinarius sp."stubby domes"	М	S				
146	Cortinarius (Myxacium) sp. "orange-brown"	М	S		5		5
125	Cortinarius (Phlegmacium) sp. "purple-grey"	М	S				
171b	Cortinarius ?vinaceolamellatus "purple"	М	S				
158	Cortinarius aff. micro archerii	М	S				
314	Cortinarius archerii	М	S				
207	Cortinarius australiensis	М	S				
173	Cortinarius basirubescens (red cap)	М	S		1		1
173b	Cortinarius basirubescens(brown cap)	М	S				
115	Cortinarius fibrillosus	М	S	3	0	0	3
7	Cortinarius radicatus	М	S				
293	Cortinarius rotundisporus	М	S				
357	Cortinarius sinapicolor	М	S/L	1	2	2	5
234	<i>Cortinarius</i> sp. <i>Cortinarius</i> sp. "brown with lavender margin	М	S				
355	and stem"	М	S			6	6
73	Cortinarius sp. "brown with purplish tints"	М	S				
68	Cortinarius sp. "brown" ?(34)	М	S				
346	Cortinarius sp. "brown, grey-lavender gills"	М	S				

Sp #	Species	Life Mode ¹	Substrate ²	Control	Shelterwood	Gap Release	TOTAL
232	Cortinarius sp. "cf sinapicolor" Cortinarius sp. "chestnut with yellow margin	М	S				
382	and yellow flesh"	М	S	1			1
154	Cortinarius sp. "chestnut"	М	S	4	22	2	28
334	Cortinarius sp. "fawn brown"	М	S				
252	Cortinarius sp. "glutinous cap/rooting stem"	М	S	18		4	22
348	Cortinarius sp. "golden tan, long stem"	М	S				
374	Cortinarius sp. "golden-tan"	М	S		3		3
257	Cortinarius sp. "honey-brown"	М	S		4		4
369	Cortinarius sp. "large red-brown"	М	S			2	2
379	Cortinarius sp. "lilac-brown with yellow gills"	М	S		1		1
251	Cortinarius sp. "orange-brown 2"	М	S				
121	Cortinarius sp. "slender brown"	М	S				
131	Cortinarius sp. "slender lilac"	М	S				
96/259	<i>Cortinarius</i> sp. "viscid - pink" <i>Cortinarius</i> sp. "yellow with brown fibrils and	М	S		1		1
375	orange ring"	М	S	1			1
237	<i>Cortinarius</i> sp. "yellow with orange brown fibrils" <i>Cortinarius</i> sp. "yellow-brown cap, lavender	М	S	3	7	1	11
354	gills and stem"	М	S	2	6	4	12
231	Cortinarius sp. "yellow-brown/tan margin"	М	S				
124	Cortinarius sp. "yellow-olive"	М	S				
255	Cortinarius sp. "yellow-orange"	М	S				
279	Cortinarius sp."brown fibrillose"	М	S				
244	Cortinarius sp."brown umbonate" Cortinarius sp."chocolate brown with mustard	М					
299	gills"	М	S				
201	Cortinarius sp."cream with orange gills"	М	S	2	16		18
212	Cortinarius sp."orange brown"	М	S				
230	Cortinarius sp."orange viscid"	М	S				
223	Cortinarius sp."orange" Cortinarius sp."orange/yellow flesh/yellow	М	S				
205	gills"	М	S				
267	Cortinarius sp."showy chestnut" Cortinarius sp."viscid, yellow-red-brown, white	M	S	8	4		12
270	stem"	M	S				
273	<i>Cortinarius</i> sp."white with deep rooting stem"	M	S				
199	Cortinarius sp."yellow orange"	M	S	15	27	(50
184	Cortinarius spp. (unidentified) Cortinarius vinaceolamellatus	M	S	15	37	6	58
171 290	Cortinarius vinaceolameliatus Cortinarius violaceous	M	S				
290 118		M S	S W	1	11		12
	Crepidotus sp. "large creamy-tan"	S S	W W	1	11		12
323	Crepidotus sp. "rusty brown suede"						
61	Crepidotus sp. "small brown"	S	W/Bk	2		0	11
83	<i>Crepidotus</i> sp. "small creamy tan"	S	Bk/W	3		8	11
21	Crepidotus sp. "small white"	S	W				
241	Crepidotus variabilis	S	T/W	51	80		121
148 206	Crucibulum laeve	S S/C	T/L DUNG	51	80		131
296 207	<i>Cyathus</i> sp."on roo poo"	S/C	DUNG I		2		2
307	Cyathus sp.	S	L		2		2
138	Daldina concentrica	S M	W				
110	Dermocybe aff. sanguinea	M	S		2		2
147	Dermocybe austroveneta	M	S		2		2
340	Dermocybe clelandii "mini" Dermocybe clelandii "olive brown - white	М	S				

Sp #	Species	Life Mode ¹	Substrate ²	Control	Shelterwood	Gap Release	TOTAL
57/34	Dermocybe clelandii (white mycelium) Dermocybe clelandii (yellow mycelium -	М	S		1		1
172b	glutinous cap)	М					
172	Dermocybe clelandii (yellow mycelium)	М	S				
328	<i>Dermocybe</i> sp. "small olive" <i>Dermocybe</i> sp. (<i>D. clelandii</i> ?) "brown with	М	S				
168	mustard yellow gills"	М	S				
40	Dermocybe sp."chestnut"	М	S				
310	Dermocybe splendida Discomycete "small yellow on Banksia grandis		S				
294	leaf"	S	L	5			5
123	Discomycete "yellow stalked"	S	S	14	14		28
31	Entoloma (Leptonia) sp. "blue-black"	S	S	1			1
78	Entoloma (Leptonia) sp. "grey/decurrent gills" Entoloma (Leptonia) sp. "small dark grey-	S	S				
153	brown"	S	S			•	
222	Entoloma sp. "black with grey-white gills	S	S			2	2
347	Entoloma sp. "brown striate cap"	S	S			1	1
227	Entoloma sp. "brown-black with tan gills"	S	S				
30	Entoloma sp. "creamy white"	S	S		4		4
167	Entoloma sp. "dark grey/blue gill edge"	S	S				
25	Entoloma sp. "grey-brown/blue stem"	S	S				
77	Entoloma sp. "grey-brown/brown stem"	S	S				
235	Entoloma sp. "grey-brown/grey stem"	S	S		8		8
135	Entoloma sp. "tall, grey-brown"	S	S		4	1	5
198	Entoloma sp."brown black/tan/blue"	S	S				
194	Entoloma sp."brown"	S	S				
272	Entoloma sp." grey-brown with dimple"	S	S				
278	Entoloma sp."suede grey-brown"	S	S				
274	Entoloma viridomarginatum	S	S				
159	Exidia glandulosus	S	W				
41	Fistulina hepatica	S	W	1	4	1	6
91	Fistulinella mollis	S	W				
11	Galerina sp. "hanging gills" and "conic"	S	S/L	35	64	3	102
111	Galerina sp. "large"	S	S				
42	<i>Galerina</i> sp. "small on bark"	S	Bk				
228	Geastrum sp.	S	S/L				
8	<i>Gymnopilus austrosapineus</i>	S	W	218	99	108	425
365	Gymnopilus junionus	S	W				
43	<i>Gymnopilus</i> sp.	S	W				
105	<i>Gymnopilus</i> sp. "chestnut scales, forked gills"	S	W				
26	<i>Gymnopilus</i> sp. "reddish cap, orange gills"	S	W				
85	<i>Gymnopilus</i> sp. "slender" <i>Gymnopilus</i> sp. "snall cap, eccentric stipe - on	S	W	80	292	95	467
58	wood" <i>Gyroporus</i> aff. <i>cyanescens</i> "yellow suede -	S	W	43	47	168	258
217	intense blue stain"	М	S				
292	Gyroporus sp."beige-yellow, blue stain"	М	S				
56	Heterotexus peziziformis	S	W/T	55	5	12	72
275	Hydnoid "fleshy funnel"	?	S/L				
297	Hydnum repandum	S?	S				
380	Hydnum sp. "chestnut"	S?	S	1			1
381	Hygrocybe cantharellus	М	S	2			2
317	Hygrocybe conica	S	S				
281	<i>Hygrocybe</i> sp."pallid yellow"	S	S				
100	Hypholoma australe	S	W	52	35		87

Sp #	Species	Life Mode ¹	Substrate ²	Control	Shelterwood	Gap Release	TOTAL
59	Hypholoma brunneum	S	W				
108	Hypomyces chrysospermus	Р	BOLETE	1			1
204	Innonotus sp.	S	W				
1	Inocybe australiensis	М	S	18	177		195
203	Inocybe geophylla	М	S				
378	Inocybe sp. "chocolate umbonate"	М	S		3		3
137	Inocybe sp. "creamy-brown"	М	S				
48	Inocybe sp. "grey"	М	S	1			1
65	<i>Inocybe</i> sp. "large scaly cap"	М	S				
226	Inocybe sp. "orange brown"	М	S				
113	<i>Inocybe</i> sp. "radially fibrillose, pink stem"	М	S	1			1
20	<i>Inocybe</i> sp. "scaly cap" see sp. 277 Fire Fungi	М	S		2		2
169	Inocybe sp. "shaggy stem"	М	S				
162	<i>Inocybe</i> sp. "small light brown, fibrillose"	М	S				
53	<i>Inocybe</i> sp. "tan skirt"	M	S	18	46		64
286	<i>Inocybe</i> sp." uni skitt <i>Inocybe</i> sp."umbonate, shaggy"	M	S	10	40	13	17
74	Laccaria aff. masonii	M	S	3	37	12	52
36	Laccaria lateritia	M	S	4	2	12	6
				4	2		0
221	Lactarius clarkii	M	S	1		1	2
142	Lactarius eucalypti	M	S	1		1	2
245	Lactarius sp. "cream yellow"	M	S				
215/220	Lactarius sp."cream custard"	M	S				
335	Lentinellus sp. "brown cap, saw-toothed gills"	S	W				
271	Lepiota aff. haemorrhagica "red stainer"	S	S				
185	Lepiota cristata	S	S				
264	Lepiota sp. "cream-grey"	S	S				
246	Lepiota sp. "purple-grey"	S	S	1			1
166 76	<i>Lepiota</i> sp."creamy-brown" <i>Lepiota</i> sp."orange with brick red scales/white gills"	S S	S				
	0		S				
117	<i>Lepista</i> sp.	M?	S				
214	Leucapaxillus lilacinus	M	S				_
24	<i>Lycoperdon</i> sp.	S	S		2	3	5
190 318	Macrolepiota konradii Marasmiellus sp."small white, on twigs & leaves"	S S	S L/T				
191	Marasmiellus sp. "white umbrella"	S	T/W				
239	Marasmiellus sp. "on zamia"	S	T T				
239 55	-			11	5	10	20
	Marasmius crinis-equi	S	L	11	5	12	28
183	Marasmius elegans	S	S L /T	10			10
341	Marasmius sp. "tiny red on twigs"	S	L/T	12			12
309	Marasmius sp. (see 223 Fire fungi)	S	S/L				
75 22	Marasmius sp."large brown, on Zamia stems" Melanotus hepatocrous (Crepidotus subhaustellaris)	S S	T W				
304	Meruliopsis sp.	S	W/T			7	7
304 373	<i>Meruliopsis</i> sp. <i>Merulius</i> sp "creamy yellow, on Jarrah stick'	S S	W/1 W		1	/	1
				2			5
101	<i>Merulius</i> sp. "pink-buff"	S	W/Bk	3	2	0	
238	Mycena yuulongicola Maaaaa "maataa amiillania" (blaach)	S	W	17	1	0	18
327	Mycena "austrocapillaris" (bleach)	S	L		7	7	14
372	Mycena aff. fumosa	S	W		7	7	14
134	Mycena aff. subcapillaris	S	L				
44	Mycena aff. subgallericulata	S	W	_			_
80	Mycena carmeliana	S	W	5			5
50	Mycena mijoii	S	L	2			2

Sp #	Species	Life Mode ¹	Substrate ²	Control	Shelterwood	Gap Release	TOTAL
66	Mycena pura	S	S/L				
144	Mycena sanguinolenta	S	S	5	40	6	51
163/260	Mycena sp. "brown-grey, on wood"	S	W		10	12	22
51	Mycena sp. "buff umbrella"	S	L/T	96	5	25	126
336	<i>Mycena</i> sp. "dk brown on burnt ground" <i>Mycena</i> sp. "light brown striate/white stems, on	S	S				
285	wood"	S	W				
27	Mycena sp. "long stem"	S	W				
376	Mycena sp. "small brown with decurrent gills"	S	W		6		6
326	Mycena sp. "small buff on wood - bleach"	S	W		1		1
352	Mycena sp. "small creamy yellow-white"	S	L/Bk			15	15
165	Mycena sp. "small grey - bleach"	S	S/L	2	1		3
88	Mycena sp. "tiny white with decurrent gills"	S	S				
64	Mycena sp. "tiny white, on twigs"	S	Т				
308	Mycena sp."grey-brown,/no bleach"	S	S	1			1
302	Mycena sp."nipple umbrellas"	S	W				
312	Mycena sp."pink, bleach"	S	S/L				
295	Mycena sp."small buff"	S	L				
182	Mycena spp. (unidentified)	S	W	6	27	0	33
164	Nidula candida	S	L/T				
127	Omphalina aff. umbellifera	S	S		34	3	37
112	Omphalina chromacea	S	S/LICHEN				
122	Omphalina sp. "orange in moss - on log"	S	MOSS				
213	<i>Omphalotus nidiformis</i> Orange parasite on white resupinate polypore	S	W		4	1	5
130	(sp.116)	Р		4			4
104	Panellus ligulatus	S	W				
339	Panellus sp on ground	S	S				
343	Panellus sp. "soft brown"	S	W				
311	Panus fasciatus	S	W				
356	Paxillus sp. "robust with bulbous base"	М	S	3			3
179	Paxillus sp. "yellow, brown scales"	М	S		1	2	3
291	Paxillus sp."orange-brown"	М	S	3	1		4
332	Peziza "praetervisa"	S	S				
256	Peziza sp. "white cup"	?	S				
330	Peziza tenacella	S	S				
300	Peziza whitei	М	S				
136	Phellinus gilvus	S	W	2	10	4	16
37	Phellinus sp. "yellow rim"	S	W	3		3	6
70	Phellodon niger	S	L/S	5	13		18
87	Phellodon sp."brown, white margin"	S	L/S		5		5
160	Pholiota highlandensis	S	L	16	39	19	74
119	Pholiota multicingulata	S	W	9	26	2	37
363	Piptoporus australiensis	S	W	1			1
353	Pisolithus sp. 'small, stalked"	М	S			1	1
192	Plectania sp. "black"	S	L				
133	Pluteus attromarginata	S	W				
248	Pluteus cervinus	S	W				
47	Pluteus lutescens "orange"	S	W				
47b	Pluteus lutescens "yellow-green"	S	W	0	2		2
4	Pluteus sp. "brown velvet"	S	S	1	1		2
157	Podoserpula pusio	S/M?	L/S				
277	Polypore "beige"	S	W				
13	Polypore "brown with white margin"	S	W				

 333 361 116 313 109 145 236/219 155 17 229 250 337 359 98 177 331 129 280 176 366 351 52 	Polypore "long white shelf" Polypore "on dead waterbush" Polypore "white resupinate on twig" Polypore "white resupinate" Polyporus citreus Poria sp. "purple splash" Poronia ericii Postia (Tyromyces) peliculosa Protubera canescens Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii Pulvinula sp.	S S S S S C S S S S S S S S	W W/T T/W W/T W Dung W S S/L L L L S S/S		1 3		1 3
361 116 313 109 145 236/219 155 17 229 250 337 359 98 177 331 129 280 176 366 351 52	Polypore "white resupinate on twig" Polypore "white resupinate" Polyporus citreus Poria sp. "purple splash" Poronia ericii Postia (Tyromyces) peliculosa Protubera canescens Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	S S S C S M? S S S S S	W/T T/W W/T W Dung W S S/L L L S				
116 313 109 145 236/219 155 17 229 250 337 359 98 177 331 129 280 176 366 351 52	Polypore "white resupinate" Polyporus citreus Poria sp. "purple splash" Poronia ericii Postia (Tyromyces) peliculosa Protubera canescens Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	S S C S M? S S S S S S	T/W W/T W Dung W S S/L L L L S				
 313 109 145 236/219 155 17 229 250 337 359 98 177 331 129 280 176 366 351 52 	Polyporus citreus Poria sp."purple splash" Poronia ericii Postia (Tyromyces) peliculosa Protubera canescens Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	S S C S M? S S S S S S	W/T W Dung W S S/L L L S		3		3
109 145 236/219 155 17 229 250 337 359 98 177 331 129 280 176 366 351 52	Poria sp."purple splash" Poronia ericii Postia (Tyromyces) peliculosa Protubera canescens Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	S C S M? S S S S S	W Dung W S S/L L L S		3		3
145 236/219 155 17 229 250 337 359 98 177 331 129 280 176 366 351 52	Poronia ericii Postia (Tyromyces) peliculosa Protubera canescens Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	C S M? S S S S S	Dung W S S/L L L S		3		3
236/219 155 17 229 250 337 359 98 177 331 129 280 176 366 351 52	Postia (Tyromyces) peliculosa Protubera canescens Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	S M? S S S S S	W S S/L L L S				
155 17 229 250 337 359 98 177 331 129 280 176 366 351 52	Protubera canescens Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	M? S S S S S	S S/L L L S				
17 229 250 337 359 98 177 331 129 280 176 366 351 52	Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	S S S S	S/L L S				
229 250 337 359 98 177 331 129 280 176 366 351 52	Psathyrella sp. Psathyrella sp. Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	8 8 8 8	L L S				
250 337 359 98 177 331 129 280 176 366 351 52	Psathyrella sp. Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	S S S	L S				
 337 359 98 177 331 129 280 176 366 351 52 	Psathyrella sp. Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	S S	S				
 359 98 177 331 129 280 176 366 351 52 	Psathyrella sp. "brown with white skirt" Psathyrella sp. "very tall, slender" Psilocybe coprophila Pulvinula archerii	S					
98 177 331 129 280 176 366 351 52	<i>Psathyrella</i> sp. "very tall, slender" <i>Psilocybe coprophila</i> <i>Pulvinula archerii</i>		S				
177 331 129 280 176 366 351 52	Psilocybe coprophila Pulvinula archerii	S			7		7
 331 129 280 176 366 351 52 	Pulvinula archerii		L	14	11		25
129 280 176 366 351 52		С	Dung	11	26	2	39
280 176 366 351 52	Pulvinula sp	S	S				
280 176 366 351 52		S	S				
176 366 351 52	Pulvinula sp.	S	S				
366 351 52	Pycnoporus coccineus	S	W			10	10
351 52	Pyronema sp.	S	S				
52	Ramaria / Clavulina "creamy white"	М	S		14		14
	Ramaria aff. aurea "yellow, flat tops" Ramaria holorubella "purple-pink with pink	М	S	4			4
	tips"	М	S				
102	Ramaria ochroceosalmonicolor	М	S	10	29	31	70
139	Ramaria sp. "bright-yellow"	М	S				
242	Ramaria sp. "cream/flat"	М	S			2	2
247	Ramaria sp. "lemon yellow"	М	S		1	2	3
86	Ramaria sp. "orange-red, yellow stem"	М	S	1	1		2
367	Ramaria sp. "small yellow"	M?	S		2		2
254	Ramaria vesatilis "purple"	М	S				
79	Resupinatus cineroscens	S	T/Bk				
187	Resupinatus sp."veined underside"	S	W		100		100
209	Rickinella fibula	S	Moss				
69	Russula adusta	М	S				
90	Russula aff. cyanoxantha	М	S		1		1
89	Russula clelandii group	М	S		4	1	5
202	Russula flocktoniae	М	S				
92	Russula neerimea	М	S				
178	Russula persanguinea (white stem)	М	W				
	Russula sp. "grey-white"	М	S				
	<i>Russula</i> sp. "white/white/white"	S	S		1		1
	Russula sp."purple-mottled"	М	S				
	Ryvardinia campyla	S	Ŵ				
	Sarcodon sp. "brown"	S	S				
	Scleroderma sp."yellow/yellow mycelium"	M	S				
	Scutellina aff. margaritacea	S	W/T				
	Simocybe sp."olive"	S	W				
	Slime Mould Stemonitis herbatica	5	W NUTS				
	Sphaerobolus stellatus	S	L				
	-	S S	L W				
	Stocchorinum en "orannu vallouv arust"	S S	W W				
94 62	Steccherinum sp. "creamy yellow crust" Steccherinum sp."tiered white shelves"		14/		1		1

Sp #	Species	Life Mode ¹	Substrate ²	Control	Shelterwood	Gap Release	TOTAL
149/141/152	Stereum illudens Stereum sp. "grey-brown white hirsute, purple	S	W	3	3	4	10
5&84	fertile layer"	S	W				
325	Stereum sp. "purple margin - algae"	S	W				
67	Stropharia semiglobata	С	DUNG		2	1	3
266	Thelephora sp. "terrestris"	М	S/HOST				
16	Thelephore "translucent funnels"	S	S/MOSS				
268	Thelephore sp."brown/yellow-orange"	М	S				
19	Trametes lilacino-gilva	S	W	2	5		7
63	Trametes versicolor (brown or grey)	S	W	100		12	112
60	Tremella mesentericia	S	W	1			1
287	Tremella sp."cloudy yellowish white"	S	W		6		6
289	Tremella sp."tiny yellow knobs"	S	W				
288	Tremella sp."yellow buttons"	S	W				
211	Tricholoma sp.	М	S				
161	Tricholoma sp. "grey-white"	М	S	3			3
54	Tricholoma eucalypticum	М	S	5	11	14	30
322	Truffle "black gleba"	М	S				
321	Truffle "pink gleba"	М	S				
258	Truffle "sticky"	М	S				
189	Tubaria rufofulva	S	W				
305	Tylopilus sp."yellow"	М	S				
2	Xerula australis	S	S				
175	Xylaria hypoxylon	S	W	10			10
377	Number of fruitbodies Number of Species			1433 80	2214 98	830 61	4477 142

 1 S = saprotrophic, M = mycorrhizal, P = parasitic, C = coprophilous 2 S = soil, L = litter, T = twigs, Bk = bark, W = wood

CRYPTOGAMS

Ray Cranfield

Introduction

'Cryptogams' is the collective name for the Lichen, Moss and Liverwort flora. Some species of lichens are important indicators of ecosystem health, being sensitive to changes and disturbance in the environment in which they grow. Many colonize primary substrates such as rocks and bare organic matter and are active in the initial breakdown of these materials. Mosses also play an important role in the stabilization of bare soil. Cryptogams are a major component of the biodiversity of forest ecosystems, and many species in Western Australia are yet to be named.

The object of this component of FORESTCHECK is to:

- Record species richness and abundance in each FORESTCHECK grid and treatment
- Record species habitat and substrate preference, and
- Monitor the effect of disturbance on cryptogam communities

Monitoring

The cryptogam flora was monitored in August 2004. At each of the 8 grids, the presence and frequency of each species along with the macro and microhabitat that each species occurred on was recorded.

Voucher Specimen Processing

All specimens collected this year have been identified or phrase named for ease of redetermination. Information gained from several ongoing cryptogam studies has become available and several names used in this report reflect these changes. Once again several samples of terrestrial algae were collected and prepared for incorporation in the state collection held at the WA Herbarium.

All collections have been prepared for database entry and label generation prior to submitting these vouchers to the Herbarium. A total of 346 collections (308 lichens, 29 mosses and 8 liverworts) were made from the 8 grids in the Perth Hills. These collections represent 80 species of lichens, 8 species of moss and 4 species of liverworts, making a total of 92 species of cryptogams. A further 8 collections of terrestrial algae were collected and 4 fungal collections. It should be noted that the lateness of this collection compared to previous years shows a reduction in microscopic fungi collections but no real impact upon the other cryptogams normally sampled.

Preliminary Results and Discussion

Species and habitats

A total of 92 species of cryptogams were recorded on the grids in the Perth Hills (Table 1). The number of liverwort species recorded was relatively low. This may be a reflection of the dryness of these northern sites when monitored or the may have a naturally low occurrence. The opening up of these sites, which allows increased exposure to the hot drying elements, may also have and impact upon all species of cryptogams associated with the northern grids. However, the end effect upon liverwort species and other sensitive cryptogams is as yet unknown and is dependent

on their ability to re-establish and on the time frame required to achieve the same species levels that may have been present prior to logging.

	Exte	ernal Co	ntrol	Sł	nelterwo	od	Gap Release	
Taxa								
Grids	FC21	FC24	FC27	FC20	FC23	FC26	FC22	FC25
Mosses (B)								
Barbula calycina	+			+		+	+	+
Campylopus Introflexus	+	+	+	+	+	+	+	+
Ceratodon purpureus ssp. convolutus		+						
Didymodon torquatus	+		+			+	+	+
Fissidens tenellus		+						
Rhynchostegium tenuifolium var. tenuifolium	+							
Rosulabryum torquescens	+			+	+			
Sematophyllum subhumile var. contiguum	+	+		+		+	+	
		-		·				
Liverworts (H)								
Austrofossombronia australis							+	
Cephaloziella exiliflora	+	+		+	+	+		
Fossombronia altiamellosa	+							
Frullania probosciphora				+				
Lichens (L)								
<i>Buellia</i> sp.		+	+	+	+	+	+	+
Calicium glaucellum	+	+			+			
Calicium victorianum subsp. desidiosum			+		+			
Chaenotheca brunneola			·		+			
Chaenothecopsis pusilla	+							
Cladia aggregata	+	+	+	+			+	+
Cladia schizopora	+	+	+	+	+	+	+	+
Cladonia cervicornis var. verticillata			·		+	·		
Cladonia krempelhuberi	+	+	+	+	+		+	
Cladonia merochlorphaea		+	·	+	+		+	
Cladonia praetermissa				+				
Cladonia ramulosa				+	+		+	
Cladonia rigida	+	+	+	+	+	+	+	
Cladonia scabriuscula	+	I	+		+	+	1	
Cladonia sulcata	+		+	+		+	+	
Cladonia tessellata	, +		, i		+		1	
Cladonia ustulata	1	+						
Cladonia usiniana Cladonia sp. (scraggy)		1						+
Collema sp.		+						1
Diploschistes scruposus	+	+		+	+	+	+	+
Diploschistes strictus	+						+	
Diploschistes strictus Diploschistes sp.	1	+	+				+	
Ephebe lanata		+	'				+	
Flavoparmelia ferrax		I			+		I	
Flavoparmelia haysonii					1	+	+	
Graphis sp. (black beans)	+					Т	т	
<i>Graphis</i> sp. (black beans)	T					+		
Graphis sp. (black buns) Graphis sp. (black rays)		+			1	Ŧ	+	
<i>Graphis</i> sp. (black rays) <i>Graphis</i> sp. (conglomerate)		т			+ +		Ŧ	
<i>Gruphis</i> sp. (congromerate)					т			

Table 1. Presence/Absence of Cryptogam taxa located on each FORESTCHECK grid(Names in **bold text** are the nominated indicator species).

Table 1 cont. Taxa	Exte	ernal Co	ntrol	Sł	elterwo	od	Gap Release	
Grids	FC21	FC24	FC27	FC20	FC23	FC26	FC22	FC25
<i>Graphis</i> sp. (tram lines)					+	+		
<i>Graphis</i> sp. (writhing mass)					+			
Hafellia disciformis					+			
<i>Hyperphyscia</i> sp. <i>Hypocenomyce australis</i>	+						+	
	Ŧ	++	+ +	+		+		
Hypocenomyce foveata	+	+	+	+	+	Ŧ	+	+
Hypocenomyce scalaris Hypogymnia subphysodes var. subphysodes	+	+	Ŧ	+	+		Ŧ	Ŧ
Leptogium sp.	Т	т		Т	+			
Menegazzia platytrema					+			
Ochrolechia subrhodotropa		+			1			
Ochrolechia sp. (G. Kantavilas 306/92)		+	+	+		+		
<i>Ochrolechia</i> sp. (Cream doughnuts)		+				I		
Ochrolechia sp. (RC 20178a)		I	+		+			
Pannoparmelia wilsonii	+	+	+	+	+	+		
Paraporpidia glauca	+	I	+	+		I		+
Parmelina conlabrosa	+	+		+	+		+	
Ramboldia stuartii	+	+		+	+	+	+	+
Rhizocarpon geographicum		·				+		
Tephromela atra	+	+		+	+			
Thysanothecium hookeri		+						
Thysanothecium scutellatum	+	+	+		+	+	+	
Toninia sp.						-	+	
Trapeliopsis sp.			+				+	
Usnea inermis	+	+	+	+	+	+	+	
Usnea scabrida subsp. scabrida		+						
Usnea nidulifera		+						
Usnea sp. (leuco)		+						
Xanthoparmelia sp. (RC20150)			+		+	+	+	+
Genus sp (black hairy stepping stones)		+					+	
Genus sp. (blue apo)			+				+	
Genus sp. (brown apo)		+						
Genus sp. (brown patch RC20318)			+		+			
Genus sp. (cactus)						+		
Genus sp. (coral)			+				+	
Genus sp. (coral squares)			+			+		
Genus sp. (green crumbs)	+							
Genus sp. (green crust)	+	+	+	+	+	+	+	
Genus sp. (green flecks)	+						+	
Genus sp. (grey corn cobs)							+	
Genus sp. (grey crust)	+						+	
Genus sp. (grey squamules)	+	+	+					
Genus sp. (soot)							+	
Genus sp. (tan apo flake)					+			
Genus sp. (tar spot)								+
Genus sp. (yellow domes)							+	
Genus sp. (U8)								
Genus sp. (U15)							+	
Genus sp. RC20125						+		
Genus sp. RC20132						+		
Genus sp. RC20171						+		

Comparing the number of cryptogams recorded on each grid shows that treatments and environmental effects influenced the species numbers (Fig 1). On the external controls there appeared to be an influence due to the drying effect between the northern (FC25-27) and southern sites (FC20-24). In both the shelterwood and gap release grids differences in species can be attributed to effects of site age (time since treatment) and moisture availability. As may be expected the gap release showed the greatest decline in species and reflected the time since treatment. It appears that the longer the grid remained undisturbed the nearer the number of species present approached the level present in the external controls. An analysis of the species present is required to determine if the species composition in the gap release grids represents what was originally present or represents species that are in a phase of succession.

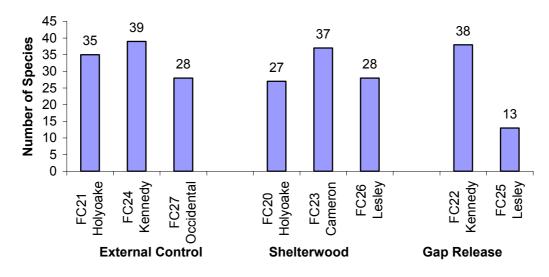
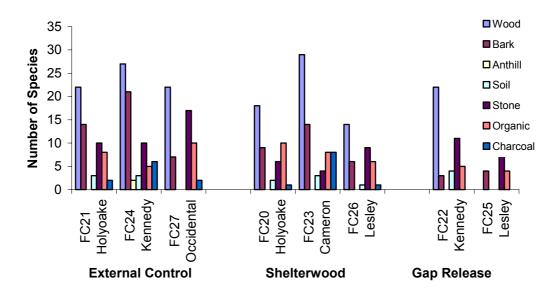
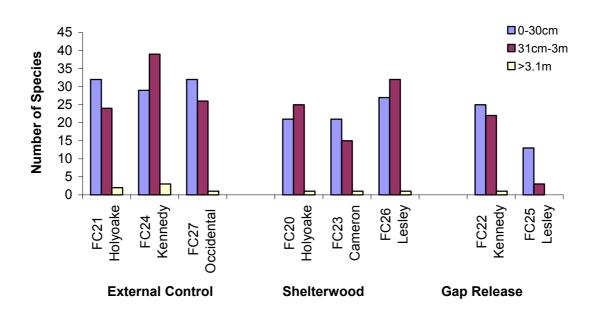



Figure 1. The number of species of cryptogams on each FORESTCHECK grid in the Perth Hills.


Generally all the grids had suitable substrates with all seven types classified present. The degree of disturbance and time since treatment is reflected in the number of species recorded on each substrate (Fig. 2), with wood (old logs) and the bark of older trees in the control grids being the most utilized substrate. Generally most sites had all of the required habitats and differences were generally dependant on the age of the substrate. For cryptogams, time after fire is important and species substitution can be observed when primary species are replaced over time by subsequent species. On the gap release sites, although required substrates were present they were not always colonized because they are not yet mature enough to be colonized.

The total number of cryptogams occurring on the available substrates was recorded for each grid along with the position they occupied within the stratal level (Fig 3). Most grids indicated that at ground level (0-30 cm) the number of species was fairly stable while at shrub level (31 cm-3 m) a higher species ratio was recorded which may be related to a moisture and thermal barrier. At tree level (>3.1 m) there were fewer species and they were recorded in lower numbers in the treated (shelterwood and gap release) grids than in the controls. Their presence is possibly linked to the age of the

regrowth trees and to the number of older trees retained in the shelterwood grids. The degree of accuracy of accessing the tree (>3.1 m) species is limited, however, and is dependant upon sampling material that occurs on fallen tree limbs. The result of this is that the number of species recorded in the tree layer may be lower than expected. A more thorough survey of canopy species should be considered where tree removal has occurred, as they may be a high-risk group.

Figure 2. The number of cryptogam species colonizing the available microhabitats (substrates) on FORESTCHECK grids in the Perth Hills.

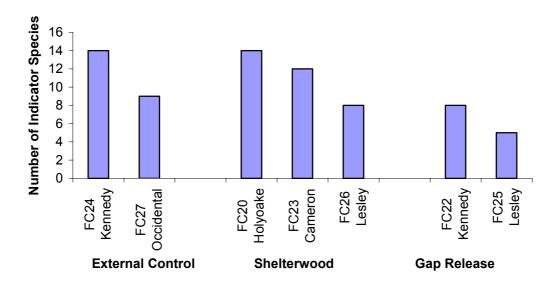


Figure 3. The number of cryptogam species recorded in three strata on FORESTCHECK grids in the Perth Hills.

An understanding of the growth requirements of individual cryptogam species and the effects of modified external influences is required to ensure the long term viability and diversity of these taxa. The number of individual species of lichens, mosses and liverworts occurring on each substrate and in each level of strata is included in Appendix II.

Indicator Species

In the 2002-3 report a list of possible indicator species was presented. In 2003-4, the use of potential indicator species continued to be investigated. At each grid the presence of each potential indicator species was noted and in most instances the list of species present was close to the possible twenty-one species listed (Fig. 4). Preliminary examination of the indicator species indicates that species not being present on a grid represents a habitat that has been lost or modified. However, the possibility that a species may have a limited geographical range cannot as yet be ruled out. FORESTCHECK includes Jarrah forest that extends over a large geographical range and as yet we do not have detailed information on the extent of the range of all the potential indicator species.

Figure 4. The number of potential indicator species (from a possible 21) recorded on each FORESTCHECK grid in the Perth Hills.

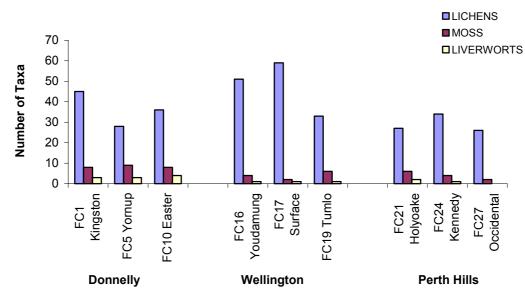
Several species on the original list have undergone taxonomic review and as a result have been subject to name changes, these changes are detailed in Table 2. An additional species that colonizes old decaying wood, *Graphis* sp. (black rays), was added to the list in 2003-4.

Other species that show up as possible indicators have been included in Table 1 (bold type). In establishing this and previous lists an attempt has been made to include species that have specific requirements of either substrate or landscape position. It is anticipated that in the final report in 2006 that a list of indicator species can be presented along with the rationale as to why they are selected and what their absence may indicate.

Code No.	Group	Taxon	Redetermined Name
(a) <u>Redeter</u>	mined In	dicator Taxa	
23	Н	<i>Fossombronia</i> sp. (leafy & lettuce)	= Fossombronia altilamellosa
8	L	Neuropogon sp	= Usnea sp. (leuco)
10	L	Parmotrema cooperi	= Remelia reticulata
18	В	Sematophyllum contiguum	= Sematophyllum subhumile var. contiguum
21	В	Ceratodon purpureus	= Ceratodon purpureus subsp. convolutes
(b) Additio	nal Taxa		
28	L	Graphis sp. (blackrays)	

Table 2. Recent name changes (a) of potential FORESTCHECK Indicator Species and additional taxa (b) that were added to the list in 2003-4 (B = moss, H = liverwort and L = lichen).

Comparison of all Three FORESTCHECK Locations


A preliminary overview of all FORESTCHECK locations (Donnelly, Wellington and Perth Hills) was undertaken in an attempt to discern similarities and differences between the three areas.

Common species

Seventeen species of lichens, 3 species of moss and 2 species of liverworts were found to be common to 90% of the grids in the three FORESTCHECK locations. Many of these species appear on the proposed indicator species list. The common lichens were: *Cladia aggregata, Cladia schizopora, Cladonia krempelhuberi, Cladonia ramulosa, Cladonia rigida, Cladonia sulcata, Graphis* sp. (blackrays), *Hypocenomyce foveata, Hypocenomyce scalaris, Hypogymnia subphysodes* var. *subphysodes, Ochrolechia* sp. (G. Kantavilis 306/92), *Pannoparmelia wilsonii, Paraporpidia glauca, Ramboldia stuartii, Tephromela atra, Thysanothecium scutellatum and Usnea inermis.* The common mosses were: *Barbula calycina, Campylopus introflexus* and *Sematophyllum subhumile* var. *contiguum* and the common liverworts: *Cephaloziella exiliflora* and *Chiloscyphus semiteres*.

External control and gap release grids Species richness

There was some variation observed in the number of species recorded on the control grids at each location and between locations (Fig. 5). As the preferred habitat substrates for most species are represented on most grids, the variation may be the result of varying climatic conditions and vegetation densities on each grid and between locations. The lower number of liverwort species recorded at Wellington and the Perth Hills for example, may be indicative of the warmer drier conditions on these grids.

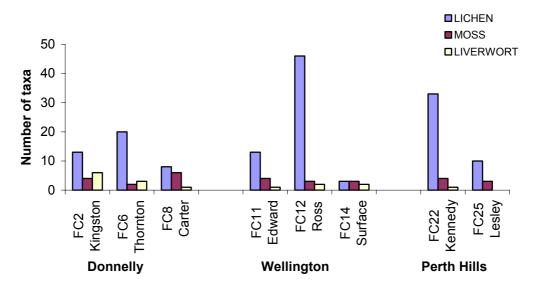
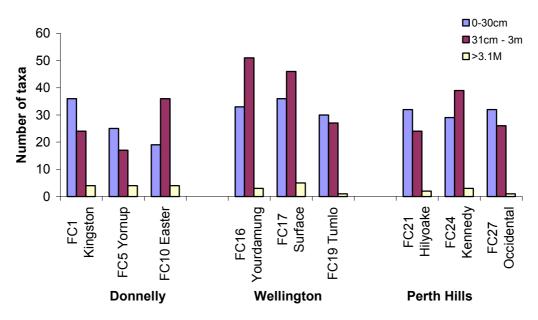
Figure 5. The number of cryptogam taxa recorded on external control sites at the Donnelly, Wellington and Perth Hills FORESTCHECK locations.

The lower number of taxa recorded on the gap release sites (Fig. 6) is a direct result of disturbance and habitat loss or by either tree harvesting or fire or both. The loss of micro climatic niches is known to impact on several cryptogam species resulting in the loss of species or reduced population sizes. The time since treatment on the gap release sites is important in the recovery of the cryptogam flora. On disturbed sites recovery is influenced directly by the increase in size and density of understorey vascular flora and by tree species densities. Early strong regrowth of tree saplings can retard the establishment of many cryptogams as a direct result of too much shading and lack of aged substrates. Further management practices, such as thinning, may have the effect of either delaying or speeding up the recovery of the cryptogam flora on these sites and further investigation is needed in order to understand what impact this intervention would entail.

Strata occupied

The use of particular levels of strata by various cryptogam flora in the external control grids varied between each location. At Donnelly and the Perth Hills the majority of species were generally recorded on the ground layer (0-30 cm) while at Wellington the shrub layer (30 cm- 3 m) was the dominant strata for the majority of species (Fig. 8). The number of species recorded in the tree layer (>3 m) was low at all three locations but noticeably lower in the Perth Hills. This variation may be a reflection of the change in moisture and temperature from north to south in the locations.

On the gap release sites (Fig. 8), the loss of older trees, and the high proportion of mature shrub cover, has reduced the level of suitable substrates for cryptogam establishment. Rapid tree re-growth, dense canopy cover, and the removal of debris by fire in the early stages appear to restrict the establishment of ground and shrub layer occupation. The ground level appears to be the desired location for most cryptogams but in most instances it is a reflection of the predominance of moss species and liverworts on these sites in the wetter areas.

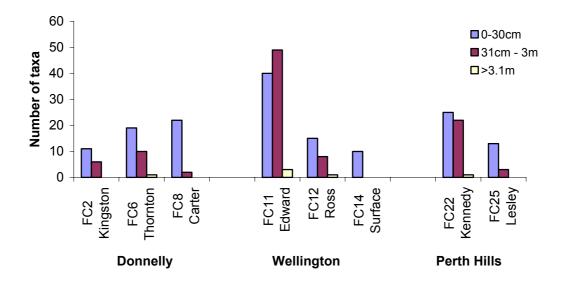

Figure 6. The number of cryptogam taxa recorded on gap release sites at the Donnelly, Wellington and Perth Hills FORESTCHECK locations

Figure 7. The number of cryptogam taxa occupying the different levels of forest strata in the control grids at the Donnelly, Wellington and Perth Hills FORESTCHECK locations.

Conclusion

As more data become available difference in treatments may be seen, but will pose many unanswered questions. In most instances the variations may be minor and when viewed in the big picture will appear insignificant. On the other hand as we are dealing with microhabitat variations any changes that appear to be small can and do have significant impact on the cryptogam flora.

Figure 8. The number of cryptogam taxa occupying the different levels of forest strata in the gap release grids at the Donnelly, Wellington and Perth Hills FORESTCHECK locations.

The interdependence upon site variables, which may be altered or removed, may result in a changed micro flora population. The ability to rebuild these population niches might not be achievable, and if they can be re-established it may take an extended and unknown period of time. The 5-year monitoring program for these sites will help address these issues.

		Ext	ernal Co	ntrol	Sh	elterwood	Gap Release		
GF	RIDS	FC21	FC24	FC27	FC20	FC23	FC26	FC22	FC25
		Holyoake	Kennedy	Occidental	Holyoake	Cameron	Lesley	Kennedy	Lesley
Number of Voucher Collections		55	59	52	41	56	36	46	19
GF	ROUPS								
	(Number of spec	eies)							
L	Lichens	27	34	26	21	34	23	33	10
В	Moss	6	4	2	4	2	4	4	3
Η	Liverwort	2	1	0	2	1	1	1	0
Ha	bitats								
	(Number of indiv	vidual cryp	togam rec	ords)					
1	Wood	22	27	22	18	29	14	22	0
2	Bark	14	21	7	9	14	6	3	4
3	Anthill	0	2	0	0	0	0	0	0
4	Soil	3	3	0	2	3	1	4	0
5	Stone	10	10	17	6	4	9	11	8
6	Organic Material	8	5	10	10	8	6	5	4
7	Charcoal	2	6	2	1	8	1	0	0
Sti	ratal Position								
	(Number of indiv	vidual cryp	togam rec	ords)					
1	0-30 cm	32	29	32	21	21	27	25	13
2	31 cm-3 m	24	39	26	25	15	32	22	3
3	3.1 m	2	3	1	1	1	1	1	0
T		D41. 11''	1		-631)				
In	dicator Species for	Perth Hil	ls sites (fi 14	rom a total 8	11 of 21)	10	9	9	4

Appendix I. The number of cryptogams recorded in the Perth Hills FORESTCHECK grids showing groups, habitats and level of strata occupied.

				Μ	icroha	bitats			Sti	ratal Level	S
Grid / Groups		Wood	Bark	Ant Hill	Soil	Stone	Organic	Charcoal	Ground 0-30cm	Shrub 31cm-3m	Tree 3.1m -
Exter	rnal (Control									
FC21	L	19	12	0	1	8	6	2	23	23	2
	В	2	2	0	2	2	2	0	10	0	0
	Н	1	0	0	1	0	0	0	1	1	0
FC24	L	24	19	2	0	7	2	4	22	37	3
	В	0	0	0	2	2	2	0	6	0	0
	Η	1	0	0	0	0	0	0	1	1	0
FC25	L	15	6	0	0	16	7	0	24	22	2
	В	1	1	0	0	0	3	0	4	0	0
	Н	0	0	0	0	0	0	0	0	0	0
Shelt	erwo	od									
FC20	L	16	9	0	0	6	6	1	17	23	1
	В	0	0	0	1	1	4	0	5	0	0
	Н	2	0	0	0	0	0	0	0	2	0
FC23	L	24	14	0	0	5	4	7	19	32	1
	В	1	0	0	2	0	3	1	5	1	0
	Н	1	0	0	0	0	0	0	0	1	0
FC26	L	9	5	0	1	7	1	0	14	9	3
	В	0	0	0	0	1	4	0	5	0	0
	Н	1	0	0	0	0	0	0	0	1	0
Gap]	Relea	se									
FC22	L	25	3	0	0	8	7	0	21	23	1
	В	1	0	0	3	0	0	0	4	0	0
	Н	1	0	0	1	0	0	0	1	0	0
FC25	L	0	2	0	0	5	1	0	7	2	0
	В	0	0	0	0	0	3	0	3	0	0
	Η	0	0	0	0	0	0	0	0	0	0

Appendix II. The number of individual cryptogam species in each group (B = moss, H = liverwort and L = lichen) recorded in the Perth Hills FORESTCHECK grids showing, habitats and level of strata occupied.

VASCULAR PLANTS

Bruce Ward and Ray Cranfield

Introduction

The vegetation complexes of the south-west forests are considered to be relatively stable and resilient to natural disturbances such as fire. In most circumstances, and in time, the species that were present before the disturbance, are generally present after the event, although abundances may change. Where logging is concerned, disturbance includes fire as well as physical/mechanical disturbance to the vegetation and the soil. Changes in species richness and abundance are used to determine the short term impact of logging on vascular plants. Longer term impacts, which allows for post-disturbance responses, will be assessed in subsequent monitoring of FORESTCHECK sites.

The object of this component of the FORESTCHECK program is to;

• monitor vascular plant species richness and abundance on each of the FORESTCHECK sites

This report highlights the results of the third round of FORESTCHECK monitoring.

Field and lab Work

Vegetation was monitored during October 2004. Spring was targeted as the best time to monitor understorey vascular plants as this coincides with the peak flowering time for most species. Species richness was determined using four $30m \times 30m$ plots in each grid (32 in total) and 1 m x 1 m plots were used to analyse species abundance with 20 per plot (640 in total). 126 species were identified for the 1 m x 1 m quadrats and 188 for the 30 m x 30 m quadrats. A complete species list is attached (Appendix 1).

Results and Discussion

Species Richness

A total of 188 species were recorded from the 30 m x 30 m plots and 126 species in total from the 1 m x1 m plots, 18 of which were unique and not found in the 30 m x 30 m plots. This increased the number of species to 206 (see Table 1 for comparison of species numbers).

Species richness across the treatments has shown little variation and no apparent loss of species due to logging activities. Any loss in species would be reflected in lower species richness than was recorded for external controls. The gap release treatment has the highest number of species and this may be due to its location in the Yarragil vegetation /soil complex. This complex is in a valley floor and is evidently more diverse than the uplands associated with Dwellingup 1 and 2 vegetation/soil associations.

Location and Year	Number o	of species	% D:cc	Number of		
	30 m x 30 m1 m x 1 mPlotsPlots		- Difference	weed species		
Donnelly 2002	203	158	78%	24		
Wellington 2003	181	116	64%	10		
Perth Hills 2004	206	126	61%	4		

Table 1. The number of vascular plant species recorded at FORESTCHECK sites in the Donnelly, Wellington and Perth Hills districts.

Comparing species richness for the three FORESTCHECK sites (Table 1) shows that minor differences do occur. Differences in species numbers between Donnelly and Wellington were mainly due to higher annual weeds at the Donnelly sites. The Perth Hills sites had a higher number of species mainly due to a mixture of site types. These site types have soil/vegetation complexes ranging from valley floor to uplands, and species numbers were more variable. Comparing species richness in the Perth Hills (Fig. 1) shows a similar trend across the range of treatments, with no apparent impact from logging treatments evident

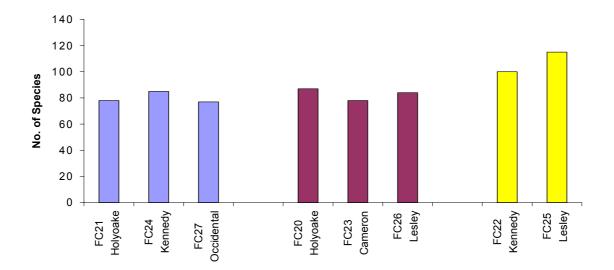
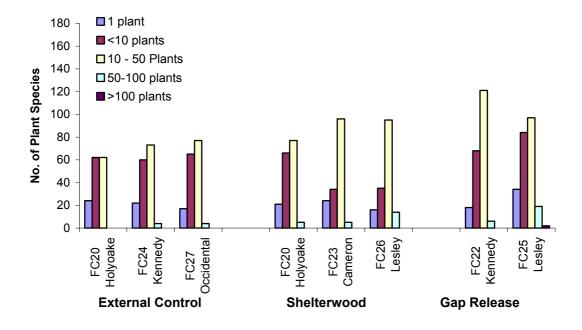



Figure 1. The number of vascular plant species recorded in each FORESTCHECK grid in the Perth Hills.

Species Abundance

Comparing species abundance across all treatments shows that there appears to be no apparent impact with logging treatments (Fig. 2, Table 2, Fig. 3).

There were 140 species common to all FORESTCHECK grids and for the external control treatment there were 23 species that were unique and not found in either the shelterwood or gap release treatments. In the shelterwood treatment, 17 were unique and not found in either the external control or gap release treatments. In the gap release treatment, 37 unique species were recorded as not being present in the other two treatments.

Figure 2. The number of plant species per frequency group for each FORESTCHECK grid (30 m x 30 m plots) in the Perth Hills.

Table 2. The num	iber of plant species pe	r frequency group	for each FORESTCHECK
grid (30 m x 30 m	plots) in the Perth Hill	S.	

Plant	External Control			Sh	elterwood	Gap Release		
Frequency	FC20	FC24	FC27	FC21	FC23	FC26	FC22	FC25
Group	Holyoake	Kennedy	Occidental	Holyoake	Cameron	Lesley	Kennedy	Lesley
1 plant	24	22	17	21	24	16	18	34
<10 plants	62	60	65	66	34	35	68	84
10 – 50 plants	62	73	77	77	96	95	121	97
50 – 100 plants >100 plants		4	4	5	5	14	6	19 2
Total	148	159	163	169	159	160	213	236

Species lists derived from the 1000 m^2 plots showed that 188 species were unique to these plots with an additional 18 species unique to the 1 m^2 plots. Combined, these made up the 206 species recorded for the Perth Hills FORESTCHECK sites.

Life-form composition was generally consistent across each treatment. While there appears to be no significant short term impacts due to logging, the number of small woody shrubs is higher in the gap release, but the number of geophytes is significantly lower (Fig. 4).

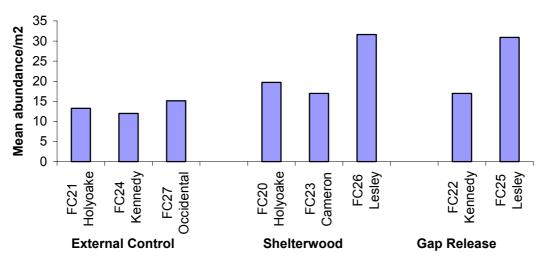
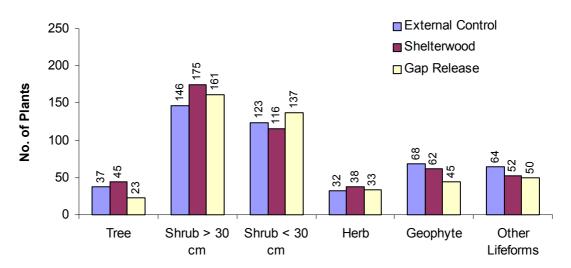



Figure 3: The mean abundance of vascular plants in each FORESTCHECK grid in the Perth Hills.

Figure 4: The number of individual plants in each life-form category for each of the logging treatments in the Perth Hills FORESTCHECK sites.

Vegetation heights were quite variable between the various grids (Fig 5). However this did not appear to be the result of time since fire and was more likely due to dominant species associated with the different soil types.

The vegetation structure in each grid appears to be dependent on the position of the grid in the landscape. For example, grids FC20, FC23 and FC24 are on ridges and the vegetation is quite low. The height and density of the vegetation increased as the position of the grid was nearer to the lower slopes (Fig. 6). The time since fire may also influence the vegetation density; however, this trend was not clear.

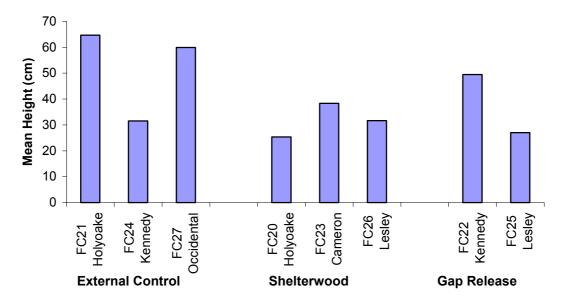


Figure 5: Mean vegetation heights in each of the Perth Hills FORESTCHECK grids.

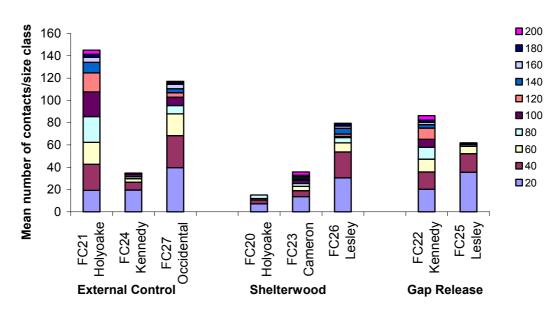


Figure 6: The vegetation structure in each grid as determined from the mean number of levy contacts in height classes up to 2m.

Specimen Processing

The area around each grid was used to search for and voucher flowering plant specimens. In total 123 vouchers were collected, representing c. 60% of the species recorded. In order to achieve a complete set of voucher specimens for this site further vouchering will need to be undertaken during the next monitoring session.

Data Base Management

Raw field data were verified and entered into the established FORESTCHECK data system where species richness and abundance information can be retrieved. Processed voucher specimens were databased in the W.A. Herbarium system under MAX system program. These data are unique and specimen information can be retrieved for each site.

Conclusions

Following three years of monitoring vascular plants in the FORESTCHECK program, preliminary analysis of the data suggests that:

- Species richness within the first three locations of FORESTCHECK (Donnelly, Wellington and Perth Hills) is similar and differences in numbers of species can be attributed to introduced weed species. There are many species common to all sites, and some unique to each site.
- Comparison of the three FORESTCHECK locations (Donnelly, Wellington and Perth Hills) has shown that harvesting treatments have not significantly affected species richness and abundance of vascular plants. However there are early indications that on some sites, some life-form groups are favoured by logging while others may be disadvantaged. Site attributes (soil type, landform, climate), soil condition and time since fire may be responsible for variations within treatments.

Issues

There is still a need to track the occurrence of priority species that may be present on monitoring sites (none located so far in the current grids).

Operating Plan Revision

There is no need for any major revision to the operating plan.

APPENDIX 1: Total species list for Perth Hills sampling

Taxon Name	TaxonID	SpCode	Life Form		Fire Response
Acacia browniana	3247	ACABRO	S	Р	A1
Acacia browniana var. browniana	11731	ACABRO	S	Р	A1
Acacia celastrifolia	3254	ACACEL	S	Р	A1
Acacia drummondii	3311	ACADRU	S	Р	A1
Acacia drummondii subsp. drummondii	11661	ACADRUDR	S	Р	A1
Acacia extensa	3331	ACAEXT	S	Р	A1
Acacia huegelii	3374	ACAHUE	S	Р	A1
Acacia nervosa	3454	ACANER	S	Р	A1
Acacia pulchella	3502	ACAPUL	S	Р	A1
Acacia urophylla	3591	ACAURO	S	Р	A1
Adenanthos barbiger	14970	ADEBAR	S	Р	B2
Agrostocrinum scabrum	1261	AGRSCA	G	Р	B3
Aira cupaniana	185	AIRCUP	GR	А	A1
Allocasuarina fraseriana	1728	ALLFRA	Т	Р	B1
Amperea ericoides	4585	AMPERI	DS	Р	B2
Amphipogon amphipogonoides	194	AMPAMP	DS	Р	B2
Amphipogon strictus	199	AMPSTR	GR	Р	B3
Astroloma ciliatum	6323	ASTCIL	DS	Р	B2
Astroloma pallidum	6334	ASTPAL	DS	Р	B2
Austrodanthonia caespitosa	17950	AUSCAE	GR	Р	B3
Baeckea camphorosmae	5336	BAECAM	S	Р	B2
Banksia grandis	1819	BANGRA	Т	Р	A2
Billardiera floribunda	3157	BILFLO	V	Р	A1
Billardiera variifolia	3165	BILVAR	V	Р	A1
Boronia crenulata	4413	BORCRE	DS	Р	A1
Boronia denticulata	4416	BORDEN	DS	Р	A1
Boronia ovata	4432	BOROVA	DS	Р	A1
Boronia spathulata	4441	BORSPA	S	Р	B2
Bossiaea aquifolium subsp. aquifolium	14396	BOSAQUAQ		Р	A1
Bossiaea eriocarpa	3710	BOSERI	S	Р	A1
Bossiaea ornata	3714	BOSORN	S	Р	A1
Brachyscome iberidifolia	7878	BRAIBE	Н	А	A1
Burchardia umbellata	1387	BURUMB	G	Р	B3
Caesia micrantha	1276	CAEMIC	G	Р	B3
Caladenia flava	1592	CALFLA	G	Р	B3
Caladenia flava subsp. flava	15348	CALFLAFL	G	Р	B3
Caladenia latifolia	1599	CALLAT	G	Р	B3
Caladenia reptans	1613	CALREP	G	Р	B3
<i>Caladenia</i> sp.	-44	CALSP.	G	Р	B3
Calytrix amethystina	5438	CALAME	G	Р	B3
Calytrix leschenaultii	5465	CALLES	S	Р	Al
Chamaescilla corymbosa	1280	CHACOR	G	P	B3
Chorizema nanum	12765	CHONAN	DS	P	A1

Taxon Name	TaxonID	SpCode		Life Style	Fire Response
Chorizema rhombeum	3761	CHORHO	DS	P	A1
Clematis pubescens	2929	CLEPUB	V	P	A1
Comesperma calymega	4550	COMCAL	DS	P	B2
Conostylis aculeata	1418	CONACU	DS	P	B2 B3
Conostylis setigera	1454	CONSET	DS	P	B3
Corymbia calophylla	17104	CORCAL	T	P	A2
Corynotheca micrantha	1285	CORMIC	S	P	B3
Cyanicula gemmata	15114	CYAGEM	Ğ	P	B3
Cyathochaeta avenacea	768	CYAAVE	Z	P	B3
Dampiera linearis	7454	DAMLIN	DS	P	A1
Daucus glochidiatus	6218	DAUGLO	Н	A	A1
Daviesia decurrens	3805	DAVDEC	S	Р	B2
Daviesia incrassata	3816	DAVINC	S	Р	A1
Desmocladus fasciculatus	17691	DESFAS	Z	Р	B3
Desmocladus flexuosus	16595	DESFLE	Z	Р	B3
Dianella revoluta	1259	DIAREV	Н	Р	B3
<i>Dillwynia</i> sp.	-39	DILSP.	S	Р	A1
Diuris longifolia	1635	DIULON	G	Р	В3
Diuris sp.	-43	DIUSP.	G	Р	B3
Drosera bulbosa	3092	DROBUL	G	Р	B3
Drosera erythrorhiza	3095	DROERY	G	Р	B3
Drosera huegelii	3102	DROHUE	G	Р	B3
Drosera pallida	3118	DROPAL	G	Р	B3
Drosera pycnoblasta	3125	DROPYC	G	Р	B3
<i>Drosera</i> sp.	-40	DROSP.	G	Р	B3
Drosera stolonifera	3131	DROSTO	G	Р	B3
Dryandra lindleyana	16672	DRYLIN	S	Р	B2
Dryandra sessilis	1932	DRYSES	S	Р	B2
Eucalyptus marginata	5708	EUCMAR	Т	Р	A2
Gastrolobium spinosum	3924	GASSPI	S	Р	A1
Gompholobium capitatum	3948	GOMCAP	S	Р	A1
Gompholobium knightianum	3950	GOMKNI	DS	Р	A1
Gompholobium marginatum	3951	GOMMAR	DS	Р	A1
Gompholobium sp.	-45	GOMSP.	S	Р	A1
Gompholobium tomentosum	3957	GOMTOM	S	Р	A1
Grevillea pulchella	2078	GREPUL	S	Р	B2
Grevillea synapheae subsp. synapheae	14421	GRESYNSY		Р	B2
Grevillea wilsonii	2122	GREWIL	S	Р	B2
Haemodorum paniculatum	1470	HAEPAN	Η	Р	B3
Hakea amplexicaulis	2128	HAKAMP	S	Р	B2
Hakea lissocarpha	2175	HAKLIS	S	Р	B2
Hakea ruscifolia	2203	HAKRUS	S	Р	B2
Hemigenia rigida	6868	HEMRIG	DS	Р	B2
Hibbertia amplexicaulis	5109	HIBAMP	S	Р	B2
Hibbertia commutata	5114	HIBCOM	S	Р	B2

	Taxon Name	TaxonID	SpCode		Life Style	Fire Response
	Hibbertia hypericoides	5135	HIBHYP	S	Р	B2
	Hibbertia montana	5146	HIBMON	DS	Р	B2
	Hibbertia sp.	-41	HIBSP.	S	Р	B2
	Hovea chorizemifolia	3964	HOVCHO	DS	Р	B2
	Hovea trisperma var. grandiflora	12907	HOVTRIGR	S	Р	A1
	Hyalosperma demissum	12742	HYADEM	Н	А	A1
	Hybanthus debilissimus	5218	HYBDEB	DS	Р	A1
	Hydrocotyle callicarpa	6226	HYDCAL	Н	А	A1
	Hypocalymma angustifolium	5817	HYPANG	S	Р	B2
*	Hypochaeris glabra	8086	HYPGLA	Н	А	A1
	Hypoxis occidentalis	1503	HYPOCC	Н	Р	B3
	Isotoma hypocrateriformis	7396	ISOHYP	Н	А	A1
	Kennedia coccinea	4037	KENCOC	V	Р	A1
	Kennedia microphylla	4041	KENMIC	V	Р	A1
	Kennedia prostrata	4044	KENPRO	V	Р	A1
	Labichea punctata	3669	LABPUN	DS	Р	B2
	Lagenophora huegelii	18585	LAGHUE	G	Р	B3
	Lasiopetalum floribundum	5033	LASFLO	S	Р	A1
	Lechenaultia biloba	7568	LECBIL	S	Р	A1
	Lepidosperma leptostachyum	936	LEPLEP	Ζ	Р	B3
	Lepidosperma squamatum	945	LEPSQU	Ζ	Р	B3
	Leptomeria cunninghamii	2342	LEPCUN	S	Р	A1
	Leucopogon capitellatus	6367	LEUCAP	S	Р	B2
	Leucopogon propinquus	6436	LEUPRO	S	Р	B2
	Leucopogon verticillatus	6454	LEUVER	S	Р	B2
	Levenhookia pusilla	7676	LEVPUS	Н	А	A1
	Logania serpyllifolia	6511	LOGSER	DS	Р	B2
	Lomandra caespitosa	1223	LOMCAE	DS	Р	B3
	Lomandra hermaphrodita	1228	LOMHER	DS	Р	B2
	Lomandra integra	1229	LOMINT	DS	Р	B3
	Lomandra purpurea	1240	LOMPUR	DS	Р	B3
	Lomandra sericea	1243	LOMSER	DS	Р	B3
	Lomandra sonderi	1244	LOMSON	DS	Р	B3
	<i>Lomandra</i> sp.	-32	LOMSP.	DS	Р	В3
	Lomandra spartea	1245	LOMSPA	DS	Р	В3
	Lomandra suaveolens	1246	LOMSUA	DS	Р	B2
	Macrozamia fraseri	18119	MACFRA	С	Р	A1
	Macrozamia riedlei	85	MACRIE	С	Р	B3
	Millotia tenuifolia	8106	MILTEN	Н	А	A1
	Mirbelia dilatata	4090	MIRDIL	S	Р	A1
	Monotaxis grandiflora	4662	MONGRA	DS	Р	A1
	Neurachne alopecuroidea	492	NEUALO	GR	Р	B3
	Olax benthamiana	2365	OLABEN	S	Р	Al
	Opercularia hispidula	7348	OPEHIS	Š	Р	Al
*	Orobanche minor	7122	OROMIN	Н	А	A1

	Taxon Name	TaxonID	SpCode		Life Style	Fire Response
*	Oxalis corniculata	4349	OXACOR	G	Р	B3
	Paraserianthes lophantha	3618	PARLOP	S	Р	A1
	Patersonia babianoides	1542	PATBAB	G	Р	B3
	Patersonia occidentalis	1550	PATOCC	DS	Р	B3
	Patersonia pygmaea	1551	PATPYG	DS	Р	B3
	Patersonia umbrosa	1553	PATUMB	DS	Р	B3
	Pentapeltis peltigera	6245	PENPEL	S	Р	B2
	Persoonia longifolia	2267	PERLON	S	Р	B2
	Persoonia saccata	2273	PERSAC	S	Р	B2
	Phyllangium paradoxum	16177	PHYPAR	Η	А	A1
	Phyllanthus calycinus	4675	PHYCAL	DS	Р	B2
	Pimelea rosea	5261	PIMROS	S	Р	A1
	<i>Pimelea</i> sp.	-42	PIMSP.	S	Р	A1
	Pimelea spectabilis	5264	PIMSPE	S	Р	A1
	Pimelea suaveolens	5266	PIMSUA	S	Р	B2
	Platysace commutata	6248	PLACOM	S	Р	A1
	Platysace filiformis	6253	PLAFIL	S	Р	A1
	Podotheca angustifolia	8182	PODANG	Н	А	A1
	Poranthera microphylla	4691	PORMIC	DS	А	A1
	Pteridium esculentum	57	PTEESC	F	Р	B2
	Ptilotus manglesii	2742	PTIMAN	G	Р	B3
	Pyrorchis nigricans	16367	PYRNIG	G	Р	B3
	Scaevola platyphylla	7636	SCAPLA	S	Р	A1
	Scaevola striata	7646	SCASTR	DS	А	A1
	Senecio glomeratus	8206	SENGLO	Н	А	A1
	Senecio hispidulus	8208	SENHIS	S	А	A1
	Senecio leucoglossus	8212	SENLEU	S	А	A1
	Sollya fusiformis	8922	SOLFUS	S	Р	U
	Sowerbaea laxiflora	1312	SOWLAX	G	Р	B3
	<i>Sphaerolobium</i> sp.	-33	SPHSP.	S	Р	B2
	Sphaerolobium medium	4207	SPHMED	S	Р	B2
	Stackhousia monogyna	4733	STAMON	S	Р	B2
	Stylidium amoenum	7684	STYAMO	DS	Р	A1
	Stylidium calcaratum	7696	STYCAL	Η	А	A1
	Stylidium ciliatum	7702	STYCIL	DS	Р	A1
	Stylidium junceum	7745	STYJUN	Η	А	A1
	Stylidium luteum	7757	STYLUT	DS	Р	A1
	Stylidium piliferum	7774	STYPIL	DS	Р	A1
	Stylidium schoenoides	7798	STYSCH	DS	Р	A1
	<i>Stylidium</i> sp.	-37	STYSP.	DS	Р	A1
	Stylidium spathulatum	7799	STYSPA	DS	Р	A2
	Styphelia tenuiflora	6476	STYTEN	S	Р	A1
	Synaphea petiolaris	2324	SYNPET	S	Р	B3
	Templetonia drummondii	4251	TEMDRU	DS	Р	A1
	Tetraria capillaris	1034	TETCAP	S	Р	B3

Taxon Name	TaxonID	SpCode	-	Life Style	Fire Response
Tetraria octandra	1036	TETOCT	Ζ	Р	B3
<i>Tetraria</i> sp.	-38	TETSP.	Ζ	Р	B3
Tetrarrhena laevis	667	TETLAE	GR	Р	B3
Tetratheca hirsuta	4535	TETHIR	S	Р	A1
Tetratheca hispidissima	4536	TETHIS	S	Р	A1
Thelymitra crinita	1705	THECRI	G	Р	B3
Thomasia foliosa	5080	THOFOL	S	Р	A1
Thysanotus manglesianus	1338	THYMAN	G	Р	B3
Thysanotus multiflorus	1339	THYMUL	Н	Р	B3
Thysanotus tenellus	1354	THYTEN	Н	Р	B3
Trachymene pilosa	6280	TRAPIL	Н	А	A1
Tremandra stelligera	4548	TRESTE	DS	Р	B2
Trichocline spathulata	8251	TRISPA	G	Р	B3
Tricoryne elatior	1361	TRIELA	DS	Р	A1
Tricoryne humilis	1362	TRIHUM	DS	Р	A1
Tripterococcus brunonis	4737	TRIBRU	DS	Р	A1
Trymalium floribundum	4841	TRYFLO	S	Р	A1
Trymalium ledifolium	4842	TRYLED	S	Р	A1
Xanthorrhoea gracilis	1253	XANGRA	Х	Р	B2
Xanthorrhoea preissii	1256	XANPRE	Х	Р	B2
Xanthosia atkinsoniana	6283	XANATK	S	Р	B2
Xanthosia candida	6284	XANCAN	DS	Р	B2
Xanthosia huegelii	6289	XANHUE	DS	Р	A1

* = Introduced Species

INVERTEBRATES

Janet Farr, Allan Wills and Tom Burbidge

Introduction

Invertebrates, including the class Insecta, comprise over 75% of this planet's biodiversity and therefore represent a crucial component in any ecosystem. Invertebrates play a major role in decomposition, nutrient recycling and provide an important food source for vertebrates. In addition a wide range of species are already known to be exclusive to the southwest forests of Western Australia, and some of these are Gondwanan relicts. Despite this, current knowledge of the invertebrate taxa present in the Jarrah forest is limited.

The objectives of this component of FORESTCHECK monitoring are to:

- Monitor and record the species of invertebrates in the various treatments of managed Jarrah (gap release, shelterwood) and uncut forest.
- Analyse trends in species composition, richness and abundance
- Monitor the presence of Gondwanan relic and affinity invertebrate species with respect to the above treatments
- Monitor the presence of known insect pest species.

Field and lab Work

Sampling at Perth Hills was carried out in November (spring) 2003 and March (autumn) 2004 using the protocol formerly established at Donnelly. To briefly summarize; active capture samples, involving sweeping, beating, and habitat searches of coarse woody debris (CWD) and litter were conducted once at each site for a total time of 1 person hour per capture/habitat method. Light traps were run for 3 nights simultaneously at each site (except when light trap failure occurred for sites FC20, FC22, FC23, FC25), achieving one trap night per week for three weeks; pitfall traps were opened for 10 days simultaneously at each site. Captures were bagged and labelled according to site and other capture details in the field, then transported in an insulated container back to a base camp were they were stored in a portable freezer. At the conclusion of a sampling period, specimens were then transported to the laboratory in Manjimup where they were sorted and assigned to morphospecies. This report examines invertebrate captures made in Perth Hills District and includes some comparison with the former Donnelly and Wellington samples.

Results

The Perth Hills (sampling initiated 2003) samples increased the number of morphospecies to 960 (Appendix 1). Figure 1 shows the cumulative captures for the successive sampling locations.

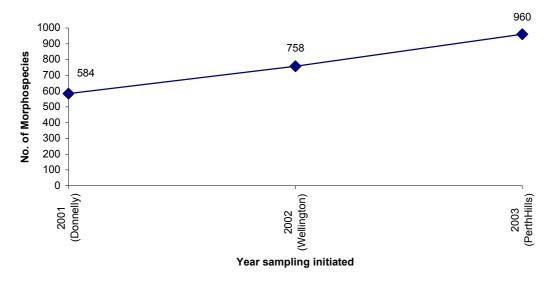


Figure 1. Cumulative number of morphospecies from 2001 (Donnelly) to 2003 (Perth Hills)

In total 450 morphospecies were collected from Perth Hills compared to 381 and 587 from Wellington and Donnelly Districts respectively (Appendix II). Of those collected from Perth Hills, 18 were considered Gondwanan relicts and a further 12 species had Gondwanan affinities, compared to 25 and 32 respectively for Donnelly. A species of *Peripatus* (Sp. 937) caught at the Cameron shelterwood (FC23) is a Pangea relict and represents the link between annelids and arthropods. The numbers of morphospecies for orders where 10 or more morphospecies have been assigned are compared for Donnelly and Wellington Districts in Figure 2.

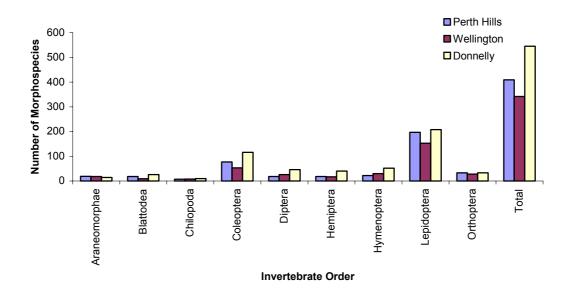


Figure 2. Comparison of Perth Hills, Donnelly and Wellington District morphospecies numbers for orders where ten or greater morphospecies have been assigned.

Overall, Perth Hills was second to Donnelly in species diversity, with this pattern repeated in Coleoptera (beetles), Diptera (flies), Hemiptera (bugs), and Hymenoptera

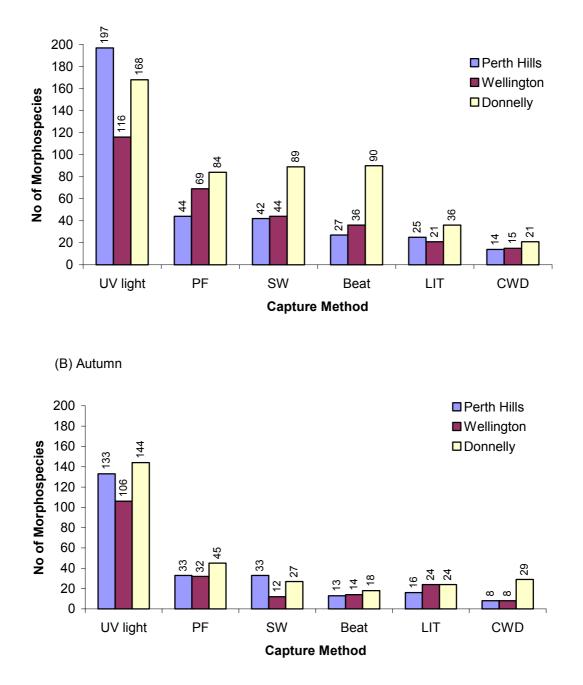
(wasps). Lepidoptera (moths) and Blattodea (cockroaches) had similar capture numbers for Perth Hills and Donnelly. Captures in Araneomorpha (spiders), Chilopoda (centipedes) and Orthoptera (crickets and grasshoppers) were similar at all sample districts.

Comparing capture methods

Light trapping resulted in the most abundant and diverse captures (Table 1) with a spring capture of 197 morphospecies comprising 3499 individuals. As expected, diversity and abundance for all capture methods are highest in spring.

Capture Method	No. of Mo	rphospecies	Abundance		
	Spring	Autumn	Spring	Autumn	
Light	198	133	3499	762	
Pitfall	44	33	131	103	
Sweep	42	23	100	34	
Beat	27	13	113	39	
CWD	14	8	24	14	
Litter	25	16	35	26	

Table 1. Number of morphospecies and specimen abundance for Perth Hills District in spring and autumn for each capture method (CWD = coarse woody debris).


Figure 3 compares the number of morphospecies for each capture method from Perth Hills, Wellington and Donnelly Districts. Abundance comparisons are shown in Figure 4. In spring, with the exception of the light trap captures, the Donnelly captures are more diverse (Fig. 3a). For autumn Donnelly appears marginally more diverse, however for sweep, beat and litter captures there is little difference between sample districts (Fig 3b).

For abundance, spring light trap captures were most abundant for Perth Hills with 3500 individuals compared to 1511 individuals for Donnelly (Fig 4a). In autumn, light trap capture abundance for Perth Hills was lower compared to Wellington and Donnelly (Fig. 4b). Coarse woody debris sample abundance was also low for Perth Hills compared to Donnelly. For the other capture techniques there were no strong differences.

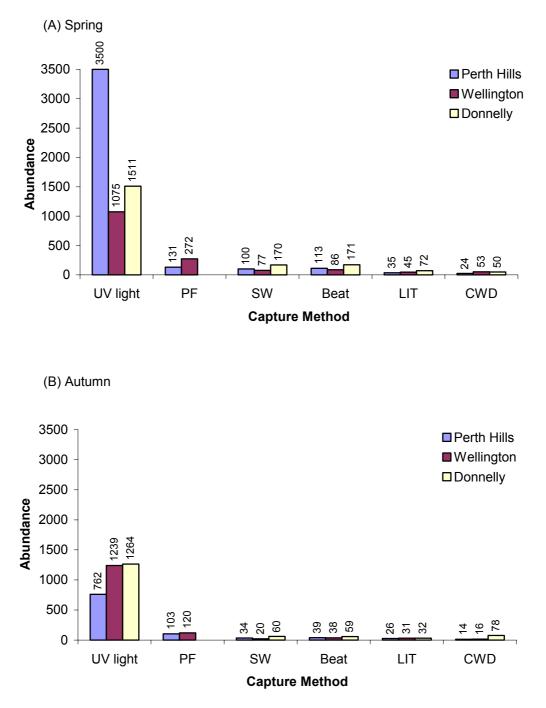

Comparing sample grids and silvicultural treatments

Figure 5 shows Perth Hills grid comparisons for silvicultural treatments expressed as the total morphospecies and abundance for all capture methods and summed for spring and autumn seasons. The shelterwood treatment site of Lesley (FC26) had the greatest number of species (212). The lowest number of species was collected at two external control treatments, Holyoake (FC21) and Kennedy (FC24) where 135 and 134 species were captured respectively. The greatest number of individuals (1023) was captured at the gap release site Lesley (FC25), whilst the least abundance (303) was again found at the external control treatment Kennedy (FC24).

Figure 3. The number of morphospecies in spring (A) and autumn (B) for each capture method; Perth Hills, Wellington and Manjimup Districts compared. (PF= pitfall trap; SW = sweep net; Beat = beating tray; cwd = coarse woody debris search; LIT = litter search)

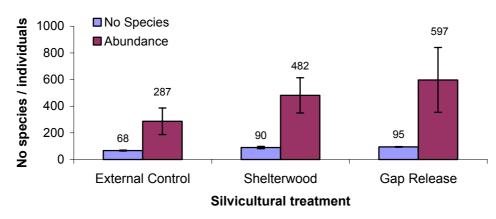
Figure 4. Abundance (measured as the number of individual specimens captured) in spring (A) and autumn (B) for each capture method, from Perth Hills, Wellington and Donnelly. (UV Light = light trap captures; PF= pitfall trap captures; SW = sweep net; Beat = beating tray; LIT = litter search; CWD = coarse woody debris search)

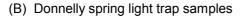
Figure 5. Comparison of individual Perth Hills treatment grids for total morphospecies (no. of species) and abundance (no. of individuals), for all capture methods, summed for both seasons.

Comparison of the means between treatments indicates the controls are less diverse and have less invertebrate abundance (Table 2). This trend, although present for number of species, in the Wellington samples is less apparent.

Silvicultural	Perth	Hills	Wellin	igton
Treatment	No. of Species	Abundance	No. of Species.	Abundance
External Control Shelterwood Gap Release	149.0 ± 15.0 187.7 ± 13.9 185.0 ± 1.0	$\begin{array}{c} 439.0 \pm 121.8 \\ 668.7 \pm 123.4 \\ 776.0 \pm 247.0 \end{array}$	$108.0 \pm 12.8 \\ 116.3 \pm 0.9 \\ 120.0 \pm 7.2$	337.3 ± 31.7 329.7 ± 16.3 357.0 ± 53.2

Table 2. Comparison of means $(\pm SE)$ for number of species and abundance (number of individuals) at Perth Hills and Wellington in respect to silvicultural treatment.


The number of morphospecies and abundance (number of individuals captured at each grid) for active (beat, sweep, coarse woody debris and litter searches), light and pitfall trap capture techniques in spring and autumn are shown in Table 3.


Figure 6 shows comparisons for silvicultural treatments for light trap captures between Perth Hills and Donnelly in spring. For Perth Hills species diversity and abundance is lowest in the control. This trend is also apparent for the active capture method but not for pit fall captures. For Donnelly there is little variation between treatments for the spring captures. However in autumn, the control site is also lowest in diversity and abundance (Fig. 7). This trend is not present in the Perth Hills autumn data with the exception of light trap abundance.

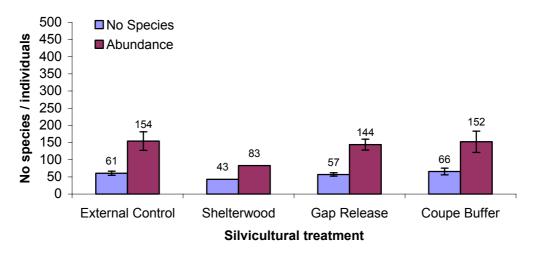

Treatment	Site No	Site No	Site No	Site No	Site No	Location	Location Season		Active capture		Light trap		Pitfall trap		All capture methods	
				No. Spec	Abund.	No. Spec	Abund.	No. Spec	Abund.	No. Spec	Abund.					
External Control	FC21	Holyoake	AU	12	24	15	35	8	13	35	72					
External Control	FC21	Holyoake	SP	16	35	69	206	15	20	100	261					
External Control	FC24	Kennedy	AU	6	7	36	87	5	6	47	100					
External Control	FC24	Kennedy	SP	15	19	61	169	10	14	86	202					
External Control	FC27	Occidental	AU	12	15	56	135	11	16	79	166					
External Control	FC27	Occidental	SP	16	20	73	485	11	11	100	516					
Shelterwood	FC20	Holyoake	AU	11	15	40	70	9	9	60	94					
Shelterwood	FC20	Holyoake	SP	16	44	107	303	6	20	129	367					
Shelterwood	FC23	Cameron	AU	13	14	30	76	7	14	50	104					
Shelterwood	FC23	Cameron	SP	18	26	79	739	16	19	113	784					
Shelterwood	FC26	Lesley	AU	10	15	68	164	10	15	88	194					
Shelterwood	FC26	Lesley	SP	26	39	85	403	12	21	123	463					
Gap Release	FC22	Kennedy	AU	10	12	37	90	5	6	52	108					
Gap Release	FC22	Kennedy	SP	29	58	97	354	8	9	134	421					
Gap Release	FC25	Lesley	AU	11	11	33	103	15	24	59	138					
Gap Release	FC25	Lesley	SP	22	29	92	840	11	16	125	885					

Table 3. Number of morphospecies and abundance (number of individuals captured at each grid) for active (beat, sweep, coarse woody debris, litter), light and pitfall trap capture techniques in spring and autumn for Perth Hills District.

(A) Perth Hills spring light trap samples

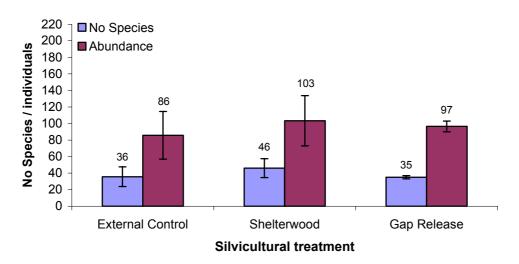
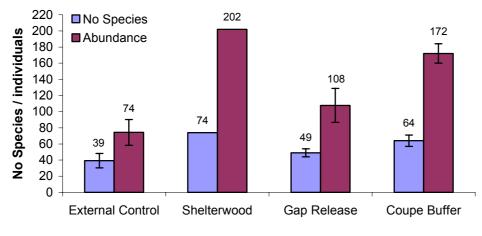


Figure 6. Mean (\pm SE) spring light trap captures against treatment grids for (A) Perth Hills and (B) Donnelly. (No Species = number of morphospecies; abundance = number of individuals).

Species differences


Table 4 shows the most frequent species captured for Perth Hills, Wellington and Donnelly. Trichopteran 145 was the most common species collected in Perth Hills and Wellington and also features in the 10 most common species captured in Donnelly. Species 52 (the introduced honey bee) was the only other species present in the top 10 of all sample sites. At Perth Hills scorpions and grasshoppers were more common than at the other sample sites.

There were 137 morphospecies common to Perth Hills, Wellington and Donnelly (Figure 8). Of the 960 total morphospecies, 202 were exclusive to Perth Hills (45% of the Perth Hills capture), 118 to Wellington (30% of the Wellington capture) and 299 were exclusive to Donnelly (51% of the Donnelly capture).

(A) Perth Hills autumn light trap samples

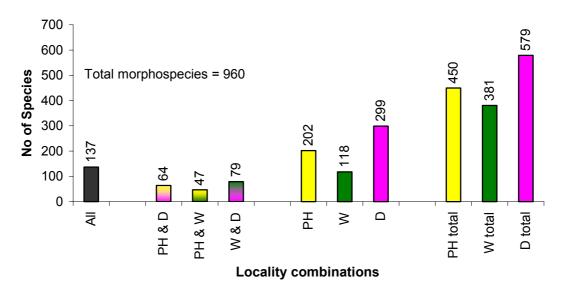


Figure 7. Mean ($n = 3, \pm SE$) autumn light trap captures against treatment grids for (A) Perth Hills and (B) Donnelly (note: Donnelly shelterwood is for n=1). (No Species = number of morphospecies; abundance = number of individuals).

Table 4. The ten most frequent species captured for Perth Hills, Wellington and Donnelly (Capture frequency is the number of times a specimen is collected at its respective sample site and is not to be confused with abundance levels which refer to the total number of specimens collected; capture frequency ranks relate to Perth Hills samples, eg. a rank of 6 for a Wellington specimen means this species was the 6th most frequent species at Perth Hills, a rank >23 indicates single specimen only found in Perth Hills, a rank = 0 indicates no specimen captured in Perth Hills.).

Sample Site	Species no	Capture Frequency	Perth Hills Capture frequency rank	Order	Family	Genus
Perth Hills	145	32	1	Trichoptera		
	14	26	2	Coleoptera	Hydrophilidae	
	144	23	3	Trichoptera		
	39	22	4	Lepidoptera	Noctuidae	
	424	21	5	Lepidoptera	Geometridae	
	52	20	6	Hymenoptera	Apidae	Apis (honey bee)
	235	20	6	Orthoptera	Acrididae	
	880	19	7	Scorpionida		
	634	19	7	Lepidoptera	Geometridae	
	633	17	8	Lepidoptera	Geometridae	
	872	17	8	Orthoptera	Acrididae	Goniaea
	48	17	8	Lepidoptera		
Wellington	145	26	1	Trichoptera		
U	11	20	22	Lepidoptera	Thaumetopoeidae	Ochrogaster
	1	19	21	Lepidoptera	Carthaeidae	Carthaea
	16	19	16	Diptera	Tipulidae	
	423	19	12	Hymenoptera	Formicidae	Iridomyrex
	39	18	22	Lepidoptera	Noctuidae	·
	52	18	6	Hymenoptera	Apidae	Apis (honey bee)
	374	18	17	Lepidoptera	Notodontidae	1 () /
	326	18	17	Lepidoptera	Geometridae	
	630	17	24	Lepidoptera	Geometridae	
Donnelly	52	64	6	Hymenoptera	Apidae	Apis (honey bee)
•	6	54	0	Lepidoptera	Arctiidae	/
	235	45	6	Orthoptera	Acrididae	
	373	28	0	Lepidoptera	Hepialidae	Abantiades
	39	28	4	Lepidoptera	Noctuidae	
	145	26	1	Trichoptera		
	18	26	15	Lepidoptera	Noctuidae	Agrotis
	376	26	24	Lepidoptera		C
	423	24	12	Hymenoptera	Formicidae	Iridomyrex
	16	23	16	Diptera	Tipulidae	~

Figure 8: Number of species common and exclusive to Perth Hills (PH) Wellington (W) and Donnelly (D). (All refers to number of species common to all sites; locality combinations such as PH & D refers to the number of species common to both sites; a single locality shows the number of species exclusive to that site; location totals refer to total morphospecies for the respective site and is included for comparison)

Pest presence

The forest pests Jarrah leafminer and gumleaf skeletonizer were absent from all grid locations (Table 5). Bullseye borer was present at all sites except Lesley gap (FC25).

Table 5. Pest presence and abundance assessment at each site (JLM = Jarrah leafminer; GLS =
gumleaf skeletonizer; $BEB =$ bullseye borer; $0 =$ absent, $1 =$ present, $2 =$ abundant).

Treatment	Site No	Location	JLM	GLS	BEB
External Control	FC21	Holyoake	0	0	1
External Control	FC24	Kennedy	0	0	1
External Control	FC27	Occidental	0	0	1
Shelterwood	FC20	Holyoake	0	0	1
Shelterwood	FC23	Cameron	0	0	1
Shelterwood	FC26	Lesley	0	0	1
Gap Release	FC22	Kennedy	0	0	1
Gap Release	FC25	Lesley	0	0	0

Spec No	Order	Family	Subfamily	Genus	Species	Status
1	Lepidoptera	Carthaeidae		Carthaea	saturnioides	Κ
2	Lepidoptera	Geometridae	Oenochrominae	e Arhodia	sp	Κ
3	Lepidoptera	Thaumetopoeid	lae	Epicoma	melanosticta	Κ
4	Lepidoptera	Notodontidae		Destolmia	lineata	Κ
5	Lepidoptera					
6	Lepidoptera	Arctiidae				Κ
7	Lepidoptera	Thaumetopoeid	lae	Ochrogaster	sp. 1	Κ
8	Lepidoptera	Thaumetopoeid		Ochrogaster	sp 2	Κ
9	Lepidoptera	Thaumetopoeid		Ochrogaster	sp. 3	Κ
10	Lepidoptera	Thaumetopoeid		Ochrogaster	lunifer	Κ
11	Lepidoptera	Thaumetopoeid	lae	Ochrogaster	sp.4	Κ
12	Lepidoptera	Geometridae				Κ
13	Coleoptera	Dytiscidae				
14	Coleoptera	Hydrophilidae				
15	Coleoptera	Elateridae				
16	Diptera	Tipulidae				Κ
17	Coleoptera	Scarabaeidae		Onthophagus	ferox	Κ
18	Lepidoptera	Noctuidae		Agrotis	munda	Κ
19	Lepidoptera	Geometridae		Chlorocoma	dicloraria	Κ
20	Lepidoptera					
21	Lepidoptera					
22	Lepidoptera	Geometridae		Chlorocoma	sp.	Κ
23	Lepidoptera	Geometridae				Κ
24	Lepidoptera	Geometridae				Κ
25	Lepidoptera					
26	Coleoptera	Elateridae				
27	Blattodea	Blaberidae		Cololampra	sp.	Κ
28	Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx	sp.1	
29	Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx	sp.2	
30	Lepidoptera	Noctuidae		Dasypodia	selenophora	
31	Lepidoptera	Geometridae		Parepisparis	excusata	Κ
32	Lepidoptera	Thaumetopoeid	lae			Κ
33	Lepidoptera					
34	Lepidoptera	Lymantriidae		Teia	athlophora	Κ
35	Lepidoptera	Thaumetopoeid	lae	Ochrogaster	sp.5	Κ
36	Lepidoptera	Thaumetopoeid	lae	Ochrogaster	sp.6	Κ
37	Lepidoptera					Κ
38	Lepidoptera					
39	Lepidoptera	Noctuidae				Κ
40	Lepidoptera	Noctuidae		Persectania	sp.	Κ
41	Lepidoptera	Geometridae				Κ
42	Lepidoptera	Geometridae		Gastrina	cristaria	Κ
43	Lepidoptera	Pyralidae?				Κ
45	Lepidoptera	Zygaenidae		Pollanisus	viridipulverulenta	Κ
46	Lepidoptera	Geometridae				
47	Lepidoptera	Geometridae				
48	Lepidoptera					
49	Hemiptera	Cicadidae		Cicadetta	sp.	
50	Lepidoptera	Geometridae				Κ

Appendix I. Morphospecies list for FORESTCHECK invertebrates for June 2004. (K = assigned indicator species; GA = species with Gondwanan affinities; GR = suspected Gondwanan relic species

Spec No	Order	Family	Subfamily	Genus	Species	Status
51	Diptera	Muscoidea				
52	Hymenoptera	Apidae		Apis	melifera	Κ
53	Diptera	Calliphoridae		Calliphora		
54	Diptera	Syrphidae		-		
55	Coleoptera	Dytiscidae				
56	Coleoptera	Chrysomelidae				
57	Lepidoptera	Notodontidae		Danima	banksiae	Κ
58	Lepidoptera	Notodontidae				Κ
59	Lepidoptera	Geometridae				Κ
60	Lepidoptera					
61	Lepidoptera					
62	Lepidoptera					Κ
63	Lepidoptera					
64	Lepidoptera	Oecophoridae				Κ
65	Lepidoptera	· · · · I · · · · ·				
66	Lepidoptera	Geometridae				
67	Lepidoptera					
68	Diptera	?				
69	Trichoptera					GR
70	Coleoptera	Scarabaeidae	Melolonthinae	Heteronvx	sp.3	
71	Lepidoptera			11000.000	5p.0	
72	Lepidoptera	Geometridae				
73	Lepidoptera	Geometriaue				
74	Lepidoptera	Noctuidae				
75	Lepidoptera	Noctuidae				
76	Lepidoptera	rootuluuo				
77	Lepidoptera					
78	Lepidoptera	Zygaenidae		Pollanisus	viridipulverulenta	ιK
79	Lepidoptera	Geometridae	Oenochrominae		sp.	K
80	Lepidoptera	Geometridue	oenoenonnue	moun	5p.	K
81	Lepidoptera	Limacodidae		Doratifera	sp.	K
82	Lepidoptera	Geometridae		Doruigeru	5p.	n
83	Lepidoptera	Geometridae				
84	Lepidoptera	Pyralidae		Uresiphita	ornithopteralis	Κ
85	Lepidoptera	Geometridae		Oresiphila	orninopierans	IX.
86	Lepidoptera	Geometridae				
80 87	Hymenoptera	Ichneumonidae		Ophion	sp.	GA
88	Diptera	Pyrgotidae		Opmon	зр.	K
89	Mecoptera	Meropeidae		Austromerope	poultoni	GR
90	Lepidoptera	Limacodidae		Austromerope	pounom	K
91	Lepidoptera	Anthelidae		Chenuala	sp.	K
92	Lepidoptera	Tortricidae ?		Chenudud	зр.	К
93	Coleoptera	Carabidae				
93 94	Coleoptera	Scarabaeidae	Melolonthinae	Hotorony	sp.4	
94 95	Lepidoptera	Geometridae	wicioioinuiinae	11οιοι Οπγλ	зр.т	
93 96	Lepidoptera	Geometridae				
90 97	Lepidoptera	Geometridae				
97 98	Coleoptera	Curculionidae	Gonipterinae	Oxyops	nictinannis	
98 99	Coleoptera	Lycidae	Joinplei Illae	Metriorrhynchi	pictipennis	К
99 100	-	Curculionoidea	Belidae	wieiriorrnynChl	wsp.	к GR
100	Coleoptera		Denuae			UK
101	Coleoptera	Chrysomelidae				

Spec No	Order	Family	Subfamily	Genus	Species	Status
103	Coleoptera	Curculionidae	Aterpinae	Rhinaria	aberrans (?)	
104	Lepidoptera					
105	Hemiptera	Pentatomidae				Κ
106	Orthoptera	Tettigoniidae				Κ
107	Hemiptera					
108	Hemiptera	Membracidae				Κ
109	Hemiptera					
110	Hemiptera					
111	Lepidoptera					
112	Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta	sp.	
113	Coleoptera	Curculionidae	Entiminae	Polyphrades	aesalon (?)	
114	Coleoptera	Curculionidae				
115	Coleoptera	Chrysomelidae				
116	Coleoptera	?				
117	Hemiptera	Pentatomidae				
118	Orthoptera	Tettigoniidae				
119	Blattodea	Blaberidae		Calolampra	sp.1	Κ
120	Blattodea	Blatellidae		Neotemnopteryx	sp.	Κ
121	Blattodea	Blatellidae		Platyzosteria	sp.1	Κ
122	Blattodea	Blatellidae		Platyzosteria	sp.2	Κ
123	Dermaptera				•	Κ
125	Diptera	Drosophilidae				
126	Diptera	Tabanidae				
127	Diptera	?				
128	Diptera	Muscoidea				
129	Diptera	Syrphidae				
130	Diptera	Syrphidae				
131	Neuroptera	Hemerobeidae				GR
132	Mantodea					
133	Lepidoptera	Noctuidae				
134	Diptera	Muscoidea				
135	Coleoptera	Elateridae				
136	Diptera	Tachinidae				Κ
137	Lepidoptera	Noctuidae				
138	Lepidoptera					
139	Lepidoptera	Noctuidae				
140	Lepidoptera	Noctuidae				
141	Lepidoptera	Tineidae		Moerarchis	australasiella	Κ
142	Diptera	Therevidae				Κ
143	Diptera	Syrphidae				
144	Trichoptera	J I				GR
145	Trichoptera					GR
147	Blattodea	Blaberidae		Calolampra	sp.2	-
148	Blattodea	Blaberidae		<i>P</i>	-F	
149	Orthoptera	Tettigoniidae				К
150	Hemiptera	Reduvidae				K
151	Trichoptera					GR
151	Hemiptera	Pentatomidae				010
155	Coleoptera	Scarabaeidae	Melolonthinae	Linaretrus	sp.	
155	Coleoptera	Chrysomelidae		2.p	~r·	
100	Conceptora					
156	Coleoptera	Curculionidae				

Spec No	Order	Family	Subfamily	Genus	Species	Status
158	Coleoptera	?				
159	Coleoptera	?				
160	Coleoptera	Curculionidae	Gonipterinae	Gonipterus	sp.	
161	Coleoptera	Curculionidae	Gonipterinae	Oxyops	fasciata	Κ
162	Coleoptera	Scarabaeidae	Melolonthinae	Liparetrus	jenkinsi	
163	Hemiptera	Reduviidae		1	,	
164	Hemiptera					
165	Diptera	Asilidae				GA
166	Hemiptera					
167	Orthoptera	Tettigoniidae				
168	Coleoptera	Belidae		Rhinotia	sp.	GR
169	Coleoptera	Curculionidae				
170	Hemiptera					
171	Coleoptera	Scarabaeidae	Melolonthinae	Liparetrus	sp.	
172	Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx	sp.	
173	Coleoptera	?				
174	Orthoptera	Acrididae				Κ
175	Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta		
176	Hemiptera	Pentatomidae				
177	Hemiptera					
178	Diptera	Tabanidae				GA
179	Diptera	Drosophilidae				
180	Orthoptera	Gryllidae				K
182	Coleoptera	Chrysomelidae				
183	Hymenoptera	Colletidae				K
184	Hymenoptera	Doryctinae				
185	Lepidoptera	Noctuidae		Periscepta	polystieta	K
186	Hymenoptera	Colletidae				K
187	Hemiptera					
188	Hemiptera	a 1 · 1	D			
189	Coleoptera	Scarabaeidae	Dynastinae	Cryptodus	sp.	K
190	Blattodea	Blatidae				K
191	Coleoptera	Phycosecidae	Phycosecis	T ·	. 1	
192	Coleoptera	Tenebrionidae	Lagriinae	Lagria	aneouiobcea	GA
193	Coleoptera	Coccinellidae		Coccinella	repanda	
194 105	Coleoptera	? ?				
195 196	Diptera Hemiptera	? Reduviidae				
190 197	Lepidoptera	Reduvildae				
197	Coleoptera	Lycidae				
198	Coleoptera	Curculionidae				
200	Hemiptera	Curcunomaac				
200	Coleoptera	Belidae		Araiobelus		GR
201	Orthoptera	Tettigoniidae		Artuoberus		UK
202	Hymenoptera	Colletidae				
203	Diptera	Asilidae				GA
204	Diptera	Muscoidea				0/1
205	Diptera	Syrphidae				
200	Hemiptera	Cicadidae		Cicadetta	sp	K
208	Coleoptera	Lycidae		Metriorrhynchu	-	K
209	Coleoptera	Curculionidae			r	K
210	Coleoptera	Curculionidae	Entiminae	Aesolithna	sp	

Spec No	Order	Family	Subfamily	Genus	Species	Status
212	Coleoptera	Scarabaeidae	Melolonthinae	Liparetrus	sp	
214	Coleoptera	Curculionidae				
215	Coleoptera	?				
216	Orthoptera	Gryllidae				
217	Diptera	Asilidae				GA
218	Orthoptera	Tetigoniidae				K
219	Blattodea	Blattidae		Platyzosteria		K
220	Coleoptera	Elateridae				
221	Hemiptera	Pentatomidae				
222	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp2	
223	Chilopoda				~p=	
224	Chilopoda					
225	Chilopoda					
226	Chilopoda					
220	Chilopoda					
228	Chilopoda					
228	Chilopoda					
229	Hemiptera	Pseudococcidae				
230	Orthoptera	Acrididae				K
231	Orthoptera	Acrididae		Conigog	(n)	K
	-	Acrididae		Goniaea Goniaea	sp	
233	Orthoptera			Goniaea	sp	K
235	Orthoptera	Acrididae				K
236	Lepidoptera					CD
237	Odonata	Zygoptera				GR
238	Lepidoptera					
239	Hemiptera					
240	Hemiptera	Pentatomidae				K
241	Hemiptera					
242	Diptera	Syrphidae				
243	Hymenoptera	Evaniidae				
244	Coleoptera	Curculionidae				K
245	Diptera	Bombyliidae				K
246	Orthoptera	Tetigoniidae				K
248	Coleoptera	Chrysomelidae	Chrysomelinae			
249	Hemiptera					
250	Mecoptera	Bittacidae		Harpobittacus	sp	GR
251	Hemiptera	Pentatomidae				
252	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp1	
253	Coleoptera	Carabidae				
254	Blattodea	Blattidae		Platyzosteria	sp	
257	Dermaptera					Κ
258	Dermaptera					Κ
259	Diplopoda					
260	Diplopoda					Κ
261	Amphipoda					GR
262	Isopoda					GR
264	Coleoptera	Carabidae	Harpalinae	?Cenogmus	sp	GA
265	Coleoptera	Carabidae	Esydrinae		- r · · ·	GA
265	Blattodea	Blattidae		Platyzosteria		K
267	Chilopoda	_ and a		- 1.1.7205101 W		11
267	Orthoptera	Tettigoniidae				
269	Blattodea	retugonnede				

Spec No	Order	Family	Subfamily	Genus	Species	Status
270	Hemiptera	Reduviidae				
271	Araneomorphae	e				
275	Hymenoptera	Formicidae		Iridomyrmex	sp3	
276	Orthoptera					
277	Chilopoda					
278	Orthoptera					
279	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp4	
280	Coleoptera	Carabidae		Carenum	sp	GA
281	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp3	
282	Blattodea	Blattidae		Platyzosteria	sp	Κ
283	Mygalomorpha	e				GR
284	Hemiptera	Reduviidae				Κ
285	Araneomorphae	e				
286	Araneomorphae	e Sparassidae				
287	Coleoptera	Scarabaeidae				
288	Coleoptera	Carabidae		Chlaenius		GA
289	Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx	sp	
290	Coleoptera	Curculionidae	Molytinae	Helanotranes	roei	К
291	Coleoptera	Curculionidae	Molytinae	Tranes	vigorsii	K
292	Blattodea	Blaberidae		Laxta		K
293	Orthoptera	Acrididae		Phaulacridium	vitatum	K
294	Orthoptera	? ?		1 nauraer taram	<i>inann</i>	IX.
295	Hymenoptera	Pompilidae				
296	Lepidoptera	Lycinidae				K
290 297	Lepidoptera	Nymphalidae	Heteronympha	Marona	duboulayi	K
299	Coleoptera	Buprestidae	neteronympha	Merope	uubbuluyi	K
300	Coleoptera	Curculionidae	Amycterinae			K
301	Hemiptera	Membracidae	Amyetermae			K
302	Hemiptera	Membracidae				K
302	Phasmatodea	Memoracidae				К
		Acrididae		Conigo		K
304	Orthoptera			Goniae		
305	Neuroptera	Mermelontidae		C	11	GR
306	Lepidoptera	Nymphalidae	CI 1.	Geitoneura	klugit	K
307	Coleoptera	Chrysomelidae	Chrysomelinae	-	sp.	K
308	Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta	sp.	Κ
309	Mantodea					
310	Orthoptera	D 11				
311	Hemiptera	Reduviidae				K
312	Diptera	Asilidae				GA
314	Orthoptera					
315	Lepidoptera					
316	Lepidoptera					
317	Lepidoptera	Geometridae				
318	Lepidoptera	Geometridae				
319	Lepidoptera	Tineidae		Moerarchis	clathrella	Κ
320	Lepidoptera	Geometridae		Arhodia	sp.	Κ
321	Lepidoptera	Geometridae				Κ
322	Lepidoptera	Limacodidae		Doratifera	quadirguttata	Κ
323	Lepidoptera	Geometridae				
324	Lepidoptera	Tineidae		Moerarchis	sp.	Κ
325	Lepidoptera	Psychidae		Iphierga	euphragma	Κ
326	Lepidoptera	Geometridae			-	

Spec No	Order	Family	Subfamily	Genus	Species	Statu
327	Lepidoptera	Geometridae				
328	Lepidoptera	Saturnidae		Opodiphthera	helena	Κ
329	Lepidoptera	Noctuidae				Κ
330	Lepidoptera	Geometridae		Crypsiphora	ocultaria	Κ
331	Lepidoptera	Oecophoridae		Wingia	aurata	Κ
332	Lepidoptera	Lymacodidae		Doratifera	sp.	Κ
333	Lepidoptera	Pyralidae			- F	
334	Lepidoptera	Geometridae		Gastrina	cristarina	Κ
336	Lepidoptera	Noctuidae		Chrysodeixis	argentifera	Κ
337	Lepidoptera					
338	Lepidoptera	Geometridae				
339	Lepidoptera	Geometridae				
340	Coleoptera	Carabidae	Chlaeniiae			
341	Lepidoptera	Pyralidae				
342	Lepidoptera	Pyralidae				
343	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp.5	
344	Lepidoptera	Noctuidae	5	2	1	Κ
345	Lepidoptera	Noctuidae				Κ
345	Lepidoptera	Noctuidae				Κ
346	Lepidoptera	Noctuidae				Κ
347	Coleoptera	Scarabaeidae	Melolonthinae	Heteronvx		
349	Coleoptera	Curculionidae		110001 010,00		Κ
350	Lepidoptera					
351	Coleoptera	Cerambycidae		Uracantha	triangularis	Κ
352	Lepidoptera	Anthelidae		Anthela	sp.	K
353	Coleoptera	Scarabaeidae		Colpochila	sp.	K
354	Coleoptera	Scarabaeidae		Cryptodus	dynastinae	K
355	Lepidoptera	Geometridae		Crypiouus	aynasiinae	к
356	Lepidoptera	Pyralidae				
357	Lepidoptera	Geometridae		Eucyclodes	buprestaria	K
358	1 1	Geometridae		Eucycloues	oupresiuriu	К
	Lepidoptera	Scarabaeidae	Malalanthinga	Hotonomu		
359	Coleoptera	Hemerobiidae	Melolonthinae	Heleronyx		CD
360	Neuroptera			Character		GR
361	Neuroptera	Chrysopidae		Chrysopa		GR
362	Lepidoptera	0 1 1		TT /		
363	Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx		
364	Lepidoptera	Noctuidae				
365	Lepidoptera	Pyralidae				
366	Lepidoptera					
367	Lepidoptera	G 1' '1				
368	Coleoptera	Curculionidae	Amycterinae			Κ
369	Lepidoptera					
370	Lepidoptera	Notodontidae		Hylaeora	dilucida	K
371	Lepidoptera	Lasiocampidae		Entometa	fervens	K
372	Lepidoptera	Hepialidae		Abantiades	hydrographis	GA
373	Lepidoptera	Hepialidae		Abantiades	ocellatus	GA
374	Lepidoptera	Notodontidae				K
375	Lepidoptera	Geometridae				Κ
376	Lepidoptera					
377	Lepidoptera	Geometridae		Phallaria	ophiusaria	Κ
379	Lepidoptera	Noctuidae		Peripyra	sanguinipucta	Κ
380	Lepidoptera					

Spec No	Order	Family	Subfamily	Genus	Species	Status
381	Lepidoptera	Anthelidae				K
382	Lepidoptera					
383	Lepidoptera					
384	Lepidoptera	Geometridae		Pholodes	sp.1	K
385	Lepidoptera	Geometridae		Pholodes	sp.2	K
386	Lepidoptera	Noctuidae				
387	Lepidoptera					
388	Lepidoptera	Noctuidae		Pantydia	sp.	
389	Lepidoptera	Geometridae				Κ
390	Lepidoptera	Notodontidae				Κ
391	Lepidoptera	Noctuidae				
392	Lepidoptera	Geometridae				Κ
393	Lepidoptera	Geometridae				Κ
394	Lepidoptera					
395	Lepidoptera	Geometridae				
396	Lepidoptera	Oecophoridae				
397	Lepidoptera	Pyralidae				
398	Lepidoptera	Limacodidae		Doratifera	sp.	Κ
399	Lepidoptera			2 0. ang e. a	SP.	
400	Neuroptera	Myremeleontida	ae			GR
401	Lepidoptera	Pyralidae	~~			on
402	Lepidoptera	Geometridae				
403	Lepidoptera	Geometridae				K
404	Lepidoptera	Thaumetopoeida	ae	Oenosandra	sp.	K
405	Lepidoptera	Noctuidae	ae	o enosanara	5p.	IX.
406	Lepidoptera	ivoetuidue				
407	Lepidoptera					
408	Hymenoptera					
409	Hymenoptera	Formicidae				
410	Blattodea	Blaberidae				K
411	Lepidoptera	Diaberidae				IX.
412	Lepidoptera	Noctuidae				K
413	Lepidoptera	ivoetuluue				IX.
414	Lepidoptera					
415	Lepidoptera	Geometridae				K
416	Coleoptera	Scarabaeidae	Melolonthinae	Heterowy	sp.	K
417	Lepidoptera	Geometridae	Weiolonumide	Gastrina	sp.	K
418	Coleoptera	Scarabaeidae	Melolonthinae		sp.	K
419	Lepidoptera	Sedidodeidde	Weiolonumide	Петенул	зр.	
420	Lepidoptera					
421	Lepidoptera					
421	Lepidoptera					
423	Hymenoptera	Formicidae	Dolichoderinae	Iridomurar	sp.2	K
423	Lepidoptera	Geometridae	Donenodermae	пиотутех	sp.2	K
425	Lepidoptera	Geometridae				K
423 426	Lepidoptera	Lasiocampidae		Entometa	sn	K
420 427	Coleoptera	Scarabaeidae	Melolonthinae		sp.	ĸ
427 428	-	Scalabaciuae	wieloioinuiinae	пенегопул		
428 429	Lepidoptera					
	Lepidoptera					
430	Lepidoptera					
431	Lepidoptera	Duralidaa				V
432	Lepidoptera	Pyralidae				K

Spec No	Order	Family	Subfamily	Genus	Species	Status
433	Mantodea	Mantidae		Archimantis	sp.	K
434	Lepidoptera					
435	Lepidoptera	Noctuidae				Κ
436	Lepidoptera	Geometridae				Κ
437	Coleoptera	Lucanidae		Syndesus	sp.	Κ
438	Lepidoptera					
439	Coleoptera	Carabidae	Carabinae			GA
440	Coleoptera	Dytiscidae				
441	Lepidoptera					
442	Lepidoptera					
443	Lepidoptera					
444	Coleoptera	Elateridae				
445	Lepidoptera	Artctiidae	Arctiinae	Spilosoma	sp.	Κ
446	Lepidoptera			T. T	-F .	Κ
449	Lepidoptera	Noctuidae				Κ
450	Lepidoptera	Geometridae		Thalaina	clara	K
451	Lepidoptera	Geometridae				Κ
452	Lepidoptera					K
453	Lepidoptera					
454	Lepidoptera					
455	Lepidoptera	Geometridae		Gastrina	cristaria	
456	Lepidoptera	000000000000				
457	Lepidoptera	Anthelidae				К
458	Phasmatodea					
459	Lepidoptera					
460	Lepidoptera	Pyralidae	Epipaschinae			
462	Coleoptera	Curculionidae	Gonipterinae	Oxyops		
463	Coleoptera	Chrysomelidae	-	Chrysophtharta	SD.	Κ
464	Diptera	Tachinidae)		SP.	K
465	Coleoptera	Chrysomelidae	Chrvsomelinae	Chrysophtharta	SD.	Κ
466	Diptera	Tabanidae	- J		-F .	
467	Diptera	Tabanidae				GA
468	Araneomorphae					Κ
469	Scorpionida				Scorpion sp2	Κ
470	Coleoptera	Curculionidae	Gonipterinae	Oxyops	r r	
471	Coleoptera	Chrysomelidae	Paropsinae	Chrysophtharta		
472	Araneomorphae	•	1	<i>J</i> 1		
473	Diptera	Tabanidae				
475	Hemiptera	Pentatomidae				Κ
476	Coleoptera	Cerambycidae	Laminae			
477	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	callima	Κ
478	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp.7	Κ
479	Blattodea	Blaberidae	5	2	1	
480	Diptera	Calliphoridae		Calliphora		
481	Hymenoptera	Pompilidae		1		GA
482	Hemiptera	Reduviidae				Κ
483	Blattodea	Blaberidae				
484	Dermaptera					Κ
485	Orthoptera					
486	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp1	
487	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp.6	
488	Coleoptera	Curculionidae	Gonipterinae	Gonipterus	-	

Spec No	Order	Family	Subfamily	Genus	Species	Status
489	Hemiptera					K
490	Blattodea					
491	Dermaptera					
492	Dermaptera					
493	Hymenoptera	Braconinae				Κ
494	Hymenoptera	Pompilidae				
495	Diptera	Tabanidae				
496	Coleoptera	Curculionidae	Amycterinae		Acantholophus	Κ
497	Araneomorpha					
498	Diptera	Muscoidea				
500	Hymenoptera	Evaniidae				Κ
501	Orthoptera	Acrididae				Κ
502	Araneomorpha	e				
503	Hemiptera	Eurymelidae		Pogonoscopus	sp.	Κ
504	Hymenoptera					
505	Hymenoptera	Sphecidae				Κ
506	Diptera	Bombylidae				Κ
507	Blattodea					
508	Blattodea					Κ
509	Blattodea					
510	Hymenoptera	Formicidae				
511	Coleoptera	Scarabaeidae		Onthophagus		
512	Hemiptera	Reduviidae				Κ
513	Hemiptera	Pentatomidae				Κ
514	Coleoptera	Curculionidae				
515	Hymenoptera	Ichneumonidae				GA
516	Hymenoptera	Pompilidae				
517	Lepidoptera	Geometridae				
518	Lepidoptera	Noctuidae				
519	Isopoda	collective sp.				
520	Annelida	collective sp.				
521	Platyhelminthe	S				
522	Dermaptera					
525	Blattodea	Blattidae	*****			K
526	Orthoptera	Stenopelmatidae		Onosandrus	sp.	K
527	Hemiptera	Gelastocoridae		Nerthra	sp.	
528	Coleoptera	Carabidae				K
529	Coleoptera	Carabidae				Κ
530	Diptera	Anthomyiidae				
531	Diptera	Tabanidae				GA
532	Diptera	Asilidae	D 1.	4 . 1 1 .		GA
533	Hymenoptera	Ichneumonidae	Branchinae	Australoglypta	sp.	
534	Hymenoptera	Mutilidae	Dell'she designed	T · 1	1	
535	Hymenoptera	Formicidae	Dolichoderinae	•	sp1	V
536 527	Araneomorpha			Supunna Supunna	albopunctata	K
537	Araneomorpha			Supunna	<i>picta</i> sp1	K
538 520	Mygalomorpha	enemesiidae			juvenile	GR
539 540	Isopoda					
540	Isopoda Dintora	Asilidae				C A
541	Diptera	Formicidae	Ponerinae	Prionopella	sp.	GA
542	Hymenoptera					

Spec No	Order	Family	Subfamily	Genus	Species	Status
545	Hymenoptera	Colletidae	***			
546	Hymenoptera	Colletidae				
547	Blattodea	Blaberidae		Laxta	sp2	Κ
548	Orthoptera	Acrididae				
550	Coleoptera	Scarabaeidae	Melolonthinae			
552	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp1	
553	Araneomorpha	e Ctenidae				
554	Araneomorpha	e Lycosidae				
555	Orthoptera	Gryllidae	*****			
557	Coleoptera	Carabidae	***			Κ
558	Coleoptera	Carabidae	Pentagonicinae	Scapodes	boops	
560	Araneomorpha	e Gnaphosidae	****			
562	Coleoptera	Scarabaeidae	Melololonthina	eHeteronyx	sp.	
564	Diptera	Asilidae	***	2	1	GA
565	Diptera	Syrphidae				
567	Mygalomorpha		****	Chenistonia	sp1	GR
568	Scorpionida	ie i veine sindue		Chemstonia	Scorpion sp1	K
570	Blattodea	Blaberidae	***		sp4	K
570	Coleoptera	Elateridae			зрт	IX.
573	Hemiptera	Reduviidae	****			
576	Orthoptera	Acrididae		Cedarinia	sp2	
577	Diptera	Tipulidae	***	Ceaurinia	3p2	
579	Diptera	Sarcophagidae	***			
580	Hymenoptera	Mutilidae				
580	Mygalomorpha			Chenistonia	an?	GR
584	Hymenoptera	Tiphiidae	***	Chenisioniu	sp2	GA
585	Mygalomorpha	-			iuwanila	GR
585 587		Carabidae	***		juvenile	K
588	Coleoptera					K
	Diptera	Tipulidae				
589	Lepidoptera	Noctuidae		N		CD
590	Mygalomorpha Diatta daa			Nemesiidae	juvenile	GR
591	Blattodea	Blatellidae		Neotemnopteryx	•	
592	Blattodea	Blattidae		Polyzosteria	sp.	17
593	Lepidoptera	Hesperiidae		Hesperilla	chrysotricha	K
594	Lepidoptera	Nymphalidae	****	Vanessa	kershawi	K
596	Hymenoptera	Colletidae	* * * *			
597	Araneomorpha	-		genus2	sp1	
598	Lepidoptera	Noctuidae	de de de			C 1
603	Diptera	Tabanidae	***			GA
604	Hymenoptera	Tiphiidae				GA
607	Hymenoptera	Pompilidae	***			GA
608	Orthoptera	Gryllidae				
609	Orthoptera	Gryllidae				
611	Hymenoptera	Pompilidae	***			GA
612	Hymenoptera	Pompilidae				GA
613	Orthoptera	Acrididae				
614	Hymenoptera	Tiphiidae				GA
616	Hymenoptera	Pompilidae	****			GA
617	Hymenoptera	Pompilidae				GA
618	Orthoptera	Gryllidae				
619	Hymenoptera	Pompilidae				GA
620	Araneomorpha	e Trochanteridae		Rebilus	sp.	

Spec No	Order	Family	Subfamily	Genus	Species	Status
621	Coleoptera	Elateridae				
622	Hymenoptera	Pompilidae		Cryptocheilus	fabricolor	GA
623	Chilopoda					
628	Coleoptera	Staphylinidae	****			Κ
629	Scorpionida				Scorpion sp3	Κ
630	Lepidoptera	Geometridae				
631	Lepidoptera	Pyralidae				Κ
632	Lepidoptera	Geometridae				
633	Lepidoptera	Geometridae				
634	Lepidoptera	Geometridae				
635	Lepidoptera	Pyralidae				
636	Coleoptera	Elateridae				
637	Lepidoptera	Geometridae				
638	Lepidoptera	Geometridae				
639	Lepidoptera	Geometridae				
640	Lepidoptera	Noctuidae				
641	Lepidoptera	Pyralidae				
642	Lepidoptera	Noctuidae				
643	Lepidoptera	Noctuidae (?)				
644	Lepidoptera	Geometridae				
645	Lepidoptera	Pyralidae				
646	Lepidoptera	Pyralidae				
647	Lepidoptera	J				
648	Lepidoptera	Noctuidae				
649	Lepidoptera	Noctuidae				
650	Lepidoptera	Noctuidae				
651	Coleoptera	Dytiscidae		Lancetes	sp.	
652	Lepidoptera	Pyralidae (?)			1	
653	Neuroptera	Hemerobiidae				GR
654	Coleoptera	Cerambycidae		Coptocercus	rubripes	
655	Lepidoptera	Geometridae		1	1	
656	Lepidoptera	Noctuidae				
657	Lepidoptera					Κ
658	Lepidoptera	Gelechiodea				
659	Lepidoptera	Noctuidae		Chrysodeixis	sp.	
660	Lepidoptera			2	1	
661	Lepidoptera					
662	Lepidoptera					
663	Lepidoptera	Geometridae		Heliomystis	sp.	
664	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		
665	Coleoptera	Chrysomelidae	Chrysomelinae	Paropsis	sp.	Κ
667	Coleoptera	Chrysomelidae	Chrysomelinae	Paropsis	sp.	Κ
669	Hemiptera	Pentatomidae				
670	Hemiptera	Pentatomidae				
671	Isopoda					
672	Orthoptera	Gryllidae				
673	Coleoptera	Cerambycidae		Stenoderus	suturalis	
674	Mantodea					
675	Diptera	Muscidae				
676	Diptera	Conopoidea	Conopidae			
677	Coleoptera	Chrysomelidae	-	Chrysophtharta	sp.	
678	Hemiptera	Pentatomidae	(green)			

Spec No	Order	Family	Subfamily	Genus	Species	Status
679	Hemiptera	Lygaeidae				
680	Hemiptera	Pentatomidae				
681	Orthoptera	Acrididae	Acridinae			
682	Dermaptera	Anisolabididae	Isolabellinae			
683	Diptera	Bombylidae				Κ
684	Coleoptera	Cleridae				
685	Hymenoptera	Thyninae				GR
686	Lepidoptera	Noctuidae		Uraba	lugens	Κ
687	Neuroptera	Mantispidae				GR
688	Orthoptera					
689	Lepidoptera	Noctuidae				
690	Orthoptera	Acrididae	Catantopinae	Cedarinia	sp.	
691	Lepidoptera	Geometridae				
692	Lepidoptera	Thaumetopoeida	e			K
693	Lepidoptera	Lasiocampidae				
694	Lepidoptera	Geometridae				
695	Coleoptera	Cleridae		Eleale	sp.	
696	Hymenoptera	Colletidae				
697	Hymenoptera	Gasteruptiidae				
698	Hymenoptera	Ichneumonidae				
699	Hymenoptera	Pompiilidae				
700	Hemiptera	Coreidae		Amorbus	bispinus	
701	Coleoptera	Buprestidae		Melobasis	sp.	
702	Coleoptera	Curculionidae		Gonipterus	1	
703	Orthoptera	Acrididae	Acridinae	1		
704	Hymenoptera	Colletidae				
705	Orthoptera					
706	Blattodea	Blattidae				
707	Coleoptera	Chrysomelidae	Chrysomelinae	Paropsis	sp.	
708	Orthoptera					
709	Coleoptera	Curculionidae				
710	Coleoptera	Curculionidae	Entiminae			
711	Coleoptera	Tenebrionidae		Oectosis	sp.	Κ
712	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp.	
713	Orthoptera	Tetrigidae				
714	Hemiptera	Reduvidae				
715	Orthoptera					
716	Chilopoda					
717	Diplopoda					
718	Mantodea					
719	Diptera	Bombyliidae				
720	Hymenoptera	Sphecidae				
721	Mygalomorpha	eIdiopidae		?Eucytops	sp.	GR
722	Orthoptera	Acrididae		Cedarinia	sp3	
723	Hymenoptera	Sphecidae				
724	Araneomorphae	e Miturgidae				
725	Araneomorphae	e Stiphidiidae		?Balami	volucripes	
726	Orthoptera	Acrididae		Cedarinia	sp2?	
727	Coleoptera	Carabidae				GA
728	Hymenoptera	Formicidae				
729	Orthoptera	Acrididae				
730	Hymenoptera	Colletidae				

Spec No	Order	Family	Subfamily	Genus	Species	Status
731	Araneomorphae	e Zoridae				
732	Araneomorphae	e Stiphidiidae		Balami	sp.	
733	Araneomorphae	e Lycosidae				
734	Dermaptera					Κ
735	Araneomorphae	e Stiphidiidae		Balami	volucripes	
736	Coleoptera	Curculionidae				
737	Hymenoptera	Formicidae		Pachycondyla	sp.	
738	Orthoptera	Eumasticidae				
739	Mantodea	Amorphoscelidae	e	Paroxypilus	?tasmaniensis	
740	Araneomorphae	e				
741	Araneomorphae	e Lycosidae				
742	Araneomorphae	e Gnaphosidae				
743	Araneomorphae	e Lycosidae				
744	Coleoptera	Curculionidae	Amycterinae			Κ
745	Diptera	Bombyliidae				
746	Coleoptera	Carabidae				GA
747	Coleoptera	Carabidae		?Notonomus	sp.	GA
748	Coleoptera	Curculionidae	Amycterinae			Κ
749	Lepidoptera	Bombycidae				
750	Lepidoptera					
751	Diptera	Asilidae				
752	Neuroptera	Hemerobiidae				GR
752	Lepidoptera	Geometridae (?)				OK
754	Lepidoptera	Geometridae (!)				
755	Lepidoptera	Lasiocampidae				
756	Lepidoptera	Geometridae				
757	Lepidoptera	Geometridae				
758	Lepidoptera	Geometridae				
759	Lepidoptera	Geometridae				
760	Lepidoptera	Geometridue				
761	Lepidoptera	Hepialidae		Abantiades		K
762	Coleoptera	Cerambycidae		Phoracantha	semipunctata	ix.
764	Hemiptera	Fulgoridae		1 noraeanina	semipunetata	
765	Lepidoptera	Geometridae				
766	Lepidoptera	Noctuidae (?)				
767	Mantodea	Mantidae				
768	Lepidoptera	Pyralidae (?)				
769	Lepidoptera	Noctuidae				
770	Lepidoptera	Noctuidae				
771	Lepidoptera	Noctuidae				
772	Lepidoptera	Geometridae (?)				
773	Lepidoptera	(.)				
774	Coleoptera	Dytiscidae		Eretes		
775	Diptera	Asilidae		Li cici		
776	Lepidoptera	Geometridae				
777	Blattodea	Blattidae	Michells cocky	Polvzosteria	mitchelli	К
778	Coleoptera	Tenebrionidae	cooky	Oectosis	sp.2	
779	Hemiptera	Pentatomidae	(nymph)	5	- <u>r</u>	
781	Blattodea	Blaberidae	(Laxta	sp.2	K
782	Orthoptera	Pyrgomorphidae		Lanca	5p.2	13
782	Araneomorphae					
784	Mantodea	-				

Spec No	Order	Family	Subfamily	Genus	Species	Status
785	Phasmatodea	(grey stick insect				
786	Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta	sp.	
787	Hemiptera	Cicadellidae				
788	Araneomorphae	;				
789	Mantodea					
790	Hymenoptera					
791	Orthoptera					
792	Diptera	Tipulidae				K
793	Araneomorphae	;				
794	Araneomorphae	;				
795	Coleoptera	Lycidae				
796	Hymenoptera	Tiphiidae				
797	Lepidoptera					
798	Lepidoptera					
799	Lepidoptera	Noctuidae				
800	Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta	sp.	
801	Hymenoptera	Tiphiidae	-		•	GR
802	Coleoptera	Lycidae		Metriorrhynchu	ssp.	Κ
803	Coleoptera	Chrysomelidae	Chrysomelinae		sp.	
804	Coleoptera	Chrysomelidae	-	Chrysophtharta	1	
805	Coleoptera	Chrysomelidae	•	Chrysophtharta	-	
806	Hymenoptera	Tiphiidae	5	V 1	1	GR
807	Coleoptera	Chrysomelidae	Chrysomelinae	Chalcolampra	sp.	Κ
808	Coleoptera	Chrysomelidae	Chrysomelinae	Chrysophtharta	sp.	
809	Orthoptera	Gryllidae	-		-	
810	Diptera	Asilidae				
811	Orthoptera	Gryllidae		Apterogryllus	sp2	
812	Araneomorphae	Miturgidae				
813	Hymenoptera	Pompilidae				
814	Coleoptera	Curculionidae				
815	Chilopoda					
816	Orthoptera	Eumasticidae				
817	Coleoptera	Curculionidae				
818	Diptera	Muscidae				
819	Lepidoptera	Thaumetopoeida	e	Ochrogaster	sp5	K
820	Lepidoptera	Geometridae		0	•	
821	Lepidoptera	?				
822	Neuroptera	Chrysopidae		Chrysopa	sp.	GR
823	Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx	sp.	
824	Coleoptera	Scarabaeidae		-	-	
825	Coleoptera	Trogidae		Omorgus	sp.	Κ
826	Coleoptera	Scarabaeidae	Melolonthinae	Maechidius	sp.	
827	Lonidontoro	Geometridae	prob same as		-	
827 828	Lepidoptera	?	776 (battered)			
	Lepidoptera					
829 820	Lepidoptera	? Coometridee (2)				
830 821	Lepidoptera	Geometridae (?)		$D_{1} = 0$	610	17
831	Coleoptera	Geotrupidae		Blackbolbus	sp.	K
832	Lepidoptera	Geometridae		Lissomma	sp.	
833	Lepidoptera	Noctuidae				
834	Orthoptera	Gryllidae				
835	Lepidoptera	Geometridae				

Spec No	Order	Family	Subfamily	Genus	Species	Status
836	Lepidoptera	Geometridae				
837	Lepidoptera	Pyrallidae (?)				
838	Hemiptera	Pentatomidae				
839	Coleoptera	Carabidae	?			
840	Lepidoptera	Lepidoptera	?			
841	Coleoptera	Curculionidae	?			
842	Coleoptera	Carabidae	?			
843	Coleoptera	Curculionidae	?			
844	Lepidoptera	Noctuidae		Agrotis	sp.	
845	Coleoptera	Scarabaeidae	Melolonthinae	Colpochila	deceptor	Κ
846	Coleoptera	Scarabaeidae	Melolonthinae	Colpochila	sp.	Κ
847	Lepidoptera	Noctuidae				
848	Coleoptera	Trogidae		Omorgus	sp.	
849	Lepidoptera	?				
850	Coleoptera	Dytiscidae		Lancetes	sp.	
851	Coleoptera	Carabidae			-	
852	Coleoptera	Curculionidae				
853	Lepidoptera	Noctuidae				
854	Mantodea	Amorphoscelida	ae Paraoxypilinae			
855	Lepidoptera	?				
856	Lepidoptera	?				
857	Orthoptera	Gryllidae				
858	Lepidoptera	Geometridae				
859	Lepidoptera	Noctuidae	Mythimna (?)			
861	Lepidoptera	?				
862	Lepidoptera	Geometridae				
863	Hemiptera	Reduviidae				
864	Lepidoptera	?				
865	Coleoptera	·				
866	Lepidoptera	?				
867	Lepidoptera	?				
868	Orthoptera	Acrididae	Oxyinae			
869	Coleoptera	Curculionidae	Amycterinae	Acantholophus	sp.	K
870	Lepidoptera	Lycaenidae	7 mily etermine	neumotophus	5p.	IX.
871	Orthoptera	Acrididae		Goniaea	sp.	K
872	Orthoptera	Acrididae		Goniaea	sp.	K
873	Orthoptera	Tettigoniidae		Gomucu	зр.	к
874	Blattodea	Tettigoinidue				
875	Chilopoda					
876	Diplopoda					
877	Chilopoda					
878	Blattodea					
879	Scorpionida					
880	Scorpionida					
881	Orthoptera	Tetrigidae				
882	Orthoptera	Tettigoniidae				
883	Orthoptera	Eumastacidae				
884	Diptera	Tabanidae				
885	Hemiptera	Reduviidae				
885	Hemiptera	Reduviidae				
880 887	Araneomorph					
888	Hymenoptera	Formicidae				
000	rrymenoptera	ronnicidae				

Spec No	Order	Family	Subfamily	Genus	Species	Status
889	Hymenoptera	Formicidae				
890	Orthoptera	Acrididae		Cedarinia	sp.	
891	Blattodea					
892	Orthoptera	Acrididae		Cedarinia	sp.	
893	Hymenoptera	Apoidea	Colletidae			Κ
894	Hymenoptera	Vespoidea				
895	Lepidoptera	Limacodidae		Doratifera	sp.	
896	Lepidoptera	?				
897	Orthoptera	Tettigoniidae				
898	Coleoptera	Curculionidae		Oxyops	sp.	
899	Blattodea					
900	Lepidoptera	?				
901	Diptera	Tabanidae				
902	Orthoptera	Tettigoniidae				
903	Orthoptera	Tettigonidae				Κ
904	Coleoptera	Tenebrionidae				
905	Blattodea					
906	Coleoptera	Curculionidae	Amycterinae	Acantholophus	sp.	Κ
907	Diptera	Bombylidae	2	1	1	Κ
908	Mecoptera	Bittacidae		Harpobittacus	sp.	Κ
909	Coleoptera	Elateridae		1	1	
910	Coleoptera	Curculionidae	Amycterinae			Κ
911	Coleoptera	Curculionidae	5			
912	Coleoptera	Coccinellidae		Parapriasus	sp.	
913	Coleoptera	Chrysomelidae		Paropsis	sp.	
914	Coleoptera	Carabidae	Licininae	Dicrochile	sp.	
915	Lepidoptera	?			1	
916	Hemiptera	Cicadidae	?			
910 917	Lepidoptera	?	1			
918	Lepidoptera	?				
919 919	Lepidoptera	Geometridae				
920	Lepidoptera	?				
920 921	Lepidoptera	?				
921	Lepidoptera	Pyralidae		Hedonota	recurvella	
922 923	Lepidoptera	Geometridae		Heaonoia	recurvenu	
924	Coleoptera	Silphidae		Ptomaphila	lacrymosa	GR
924 925	Lepidoptera	Geometridae		Тютарний	iucrymosu	UK
926	Blattodea	Blaberidae				
927	Lepidoptera	Geometridae				
928	Lepidoptera	Pyralidae (?)				
929	Diptera	Tachinidae				
930	Coleoptera	Tenebrionidae		Chalcopteroide	s sn	K
931	Orthoptera	Tettigoniidae		Charlopierolae	5 sp.	к
932	Araneomorpha	-				
933	Araneomorpha					
935 934	Coleoptera	Curculionidae	Amycterinae			K
935	Coleoptera	Trogidae	2 my ctermae	Omorgus		K
935 936	Blattodea	11051000		Oniorgus		K
930 937	Onychophora			Peripatus		GR
937 938	Araneomorpha	e ?		1 0111/11/11/11/11		UI(
939 939	Araneomorpha					
	mancomorpila					

Spec No	Order	Family	Subfamily	Genus	Species	Status
941	Araneomorphae	Gnaphosidae				
942	Lepidoptera	Geometridae				
943	Lepidoptera	Tortricidae				
944	Lepidoptera	?				
945	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp.	
946	Lepidoptera	?				
947	Lepidoptera	?				
948	Lepidoptera	Pyralidae				
949	Neuroptera	?				GR
950	Lepidoptera	?				
951	Coleoptera	Scarabaeidae	Melolonthinae	Heteronyx	sp.	
952	Hymenoptera	Formicidae				
953	Lepidoptera	Pyralidae				
954	Lepidoptera	?				
955	Lepidoptera	Geometridae		Hypobapta	percomptaria	Κ
956	Coleoptera	Carabidae		Philophloeus	eucalypti	
957	Lepidoptera	Pyralidae				
958	Lepidoptera	CANT FIND				
959	Coleoptera	Histeridae				
960	Hemiptera	Pentatomidae				
961	Blattodea					
962	Hemiptera	Pentatomidae				
963	Hemiptera					
964	Hemiptera					
965	Araneomorphae	:				
966	Diplopoda					
967	Blattodea	CAN'T FIND				
968	Blattodea					
969	Gastropoda					
970	Coleoptera	Curculionidae	Amycterinae			
971	Blattodea		-			
972	Araneomorphae	Corrinidae (?)				
973	Phasmatodea					
974	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia	sp.	
975	Araneomorphae	Gnaphosidae	-	-	•	
976	Lepidoptera	Geometridae	Oenochrominae	;		Κ
977	Lepidoptera	Geometridae				
978	Lepidoptera	?				
979	Lepidoptera	Pyralidae				
980	Orthoptera	Tettigoniidae				
981	Mantodea	Mantidae	Mantinae			
982	Lepidoptera	Pyralidae				
983	Lepidoptera	?				
984	Lepidoptera	?				
985	Lepidoptera	?				
986	Lepidoptera	?				
987	Lepidoptera	Arctiidae		Utetheisa	pulchelloides	
988	Orthoptera	Tettigoniidae				
989	Coleoptera	Elateridae				Κ
990	Hemiptera	Pentatomidae				
991	Coleoptera	Scarabaeidae	Melolonthinae			
992	Coleoptera	Carabidae				

Spec No	Order	Family	Subfamily	Genus	Species	Status
993	Coleoptera	Curculionidae				
994	Orthoptera	Tettigoniidae				
995	Coleoptera	Tenebrionidae				
996	Lepidoptera	Noctuidae				
997	Coleoptera	Elateridae				
998	Hymenoptera	Formicidae	Myrmeciinae	Myrmecia		
999	Dermaptera	Spongiphoridae				
1000	Coleoptera	Carabidae				
1001	Mantodea	Mantidae	Mantinae			
1002	Hymenoptera	Pompilidae				GA
1003	Lepidoptera	Noctuidae				
			Protoneuridae			
1004	Odonata	Zygoptera	(?)			GR
1005	Odonata	Zygoptera				GR
1006	Hymenoptera		Formicidae			
1007	Araneomorpha	e Zodariidae				
1008	Orthoptera	Stenoplmatidae				
1009	Orthoptera	Tettigoniidae				
1010	Orthoptera	Acrididae				
1011	Hymenoptera	Formicidae				
1012	Coleoptera	Tenebrionidae		Helea	sp.	Κ
1013	Orthoptera	Tettigoniidae				
1014	Coleoptera	Curculionidae	Amycterinae			Κ
1015	Araneomorpha	e Zodariidae				
1016	Blattodea					
1017	Hymenoptera	Pompilidae				GA
1018	Lepidoptera	?				
1019	Lepidoptera	?				
1020	Lepidoptera	?				
1021	Coleoptera	Scarabaeidae	Dynastinae	Semanopterus	sp2	

BIRDS

G.L. Liddelow and Frank O'Connor

Introduction

All eight Perth Hills FORESTCHECK grids were monitored for diurnal birds in the spring of 2003. The object of recording birds in FORESTCHECK is to monitor the impacts of logging and associated burning on bird species composition and abundance. This is to be achieved by:

- Recording species richness and abundance within each treatment (control, shelterwood and gap release)
- Comparing species richness and abundance between each treatment
- Analysing trends within species between treatments

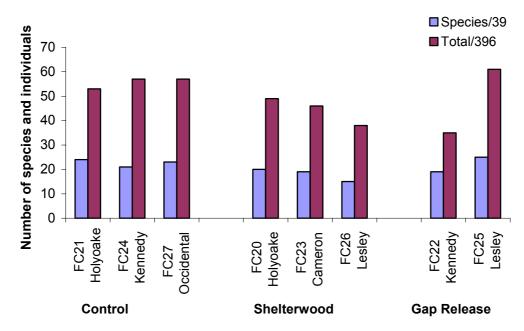
Monitoring

The Science Division did not have personnel available to undertake bird counts in 2003, therefore monitoring was contracted to Frank O'Connor, from Birds Australia, who used sight and sound to identify birds.

Preliminary Results and Discussion

Diurnal birds

Thirty-nine species of birds were recorded in the eight grids with 18 of these having 10 or more individuals (Table 1). There were no obvious differences between the treatments (shelterwood and gap release) and the controls. An average of 54 individuals and 23 species was recorded in the controls with an average of 44 individuals and 18 species and 48 individuals and 22 species recorded in the shelterwood and gap release treatments respectively (Fig. 1). The total number of species and individuals recorded in each treatment (control, shelterwood and gap release) is shown in Table 2.


Nine species were recorded as occurring in only one treatment (either control, shelterwood or gap release, see Table 1); however, none would be expected to be restricted to that treatment.

Records the Red-eared Firetail Finch (*Stagonoplura oculata*) are interesting in that in the northern forest it is largely restricted to riparian habitats, and both records of this species were adjacent to such habitats. The northern record at Lesley forest block was in the gap release grid and is near the extremity of its range (Abbott 1999). The other interesting species was the Rufous Tree-creeper (*Climactus rufa*), which we did not record on any of the monitoring sites and according to Abbott (1999) it is "widespread but patchy and uncommon in the northern Jarrah forest". Similarly the Red-Winged Fairy-Wren (*Malurus elegans*) was recorded in the Occidental control site and provides a slight extension of its range as other records of this species are from Zamia, Reservoir and Ashendon forest blocks.

The density of the birds this year was similar to that recorded in the Kingston Study in a "low year". The Perth Hills sites had 9.9 birds/ha, and Kingston had 10.4 birds/ha. In the Wellington sites in 2002-3 15.5 birds /ha were recorded and in the Donnelly sites in 2001-2 only 5.8 birds/ha were recorded.

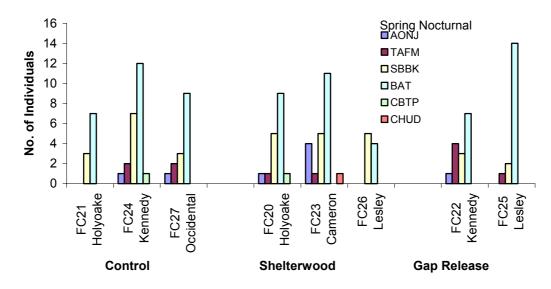
Table 1: Bird species and number of individuals recorded in the Perth Hills	
FORESTCHECK grids.	

RAOU	Common Name	Scientific Name	Total	Control	Shelter- wood	Gap Release
34	Common Bronzewing	Phaps chalcoptera	2	2		
224	Wedge-tailed Eagle	Aquila audax	1			1
259	Purple-crowned Lorikeet	Glossopsitta porphyrocephala	1	1		
264	Forest Red-tailed Black Cockatoo	Calyptorhynchus banksii naso	11	7	2	2
266	Baudin's Cockatoo	Calyptorhynchus baudinii	2		1	1
289	Western Rosella	Platycercus icterotis	2	1		1
290	Red-capped Parrot	Platycerus spurius	11	7	4	
294	Australian Ringneck	Platycerus zonarius	11	5	5	1
322	Laughing Kookaburra	Dacelo novaeguineae	2	1	1	
326	Sacred Kingfisher	Todiramphus sanctus	2			2
344	Shining Bronze-Cuckoo	Chrysococcyx lucidus	7	5	2	
361	Grey Fantail	Rhipidura fuliginosa	18	10	5	3
380	Scarlet Robin	Petroica multicolor	3	2	1	
394	Western Yellow Robin	Eopsaltria griseogularis	16	6	6	4
398	Golden Whistler	Pachycephala pectoralis	28	14	10	4
401	Rufous Whistler	Pachycephala rufiventris	4	1	2	1
408	Grey Shrike-thrush	Colluricincla harmonica	19	9	5	5
424	Black-faced Cuckoo-Shrike	Coracina novaehollandiae	2		2	
463	Western Greygone	Greygone fusca	36	11	15	10
465	Weebill	Smicrornis brevirostis	1		1	
472	Western Thornbill	Acanthiza inornata	23	6	10	7
476	Broad-tailed (Inland) Thornbill	Acanthiza apicalis	25	8	11	6
488	White-browed Scrubwren	Sericornis frontalis	4	4		
532	Splendid Fairy-wren	Malurus splendens	2	1		1
538	Red-winged Fairy-wren	Malurus elegans	2	2		
549	Varied Sittella	Daphoenositta chrysoptera	6	5		1
565	Spotted Pardalote	Pardalotus punctatus	15	4	7	4
574	Silvereye	Zosterops lateralis	11	5	2	4
578	Western White-naped Honeyeater	Melithreptus chloropsis	11	4	5	2
592	Western Spinebill	Acanthorhynchus superciliosus	22	7	7	8
597	Brown Honeyeater	Lichmera indistincta	9	1	5	3
631	Yellow-winged (New Holland) honeyeater	Phylidonyris novaehollandiae	2	2		
638	Red Wattlebird	Anthochaera carunculata	10	4	3	3
651	Red-eared Firetail	Stagonopleura oculata	2	1	-	1
697	Grey Currawong	Strepera veriscolor	10	4	2	4
710	Western Little Wattlebird	Anthochaera lunulata	8	4	2	2
794	Carnaby's Cockatoo	Calyptorhynchus latirostris	1	•	-	1
930	Australian Raven	Corvus coronoides	14	8	2	4
976	Striated Pardalote	Pardalotus striatus	40	15	15	10
		Total Species	39	33	27	28
		Total Individuals	396	167	133	96

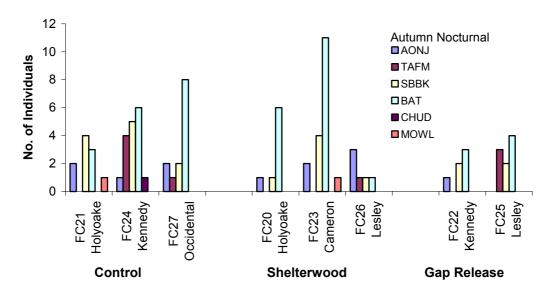
Figure 1. The number of bird species and individuals recorded in each FORESTCHECK grid in the Perth Hills.

Table 2. Total number of bird species and individuals recorded in each treatment in the Perth Hills.

	External Control	Shelterwood	Gap Release	Total	
Species	33	27	28	39	
Individuals	167	133	96	396	


The Gray and Kingston studies have shown that bird species composition and numbers change as the understorey density and fuel age varies with time since logging and associated burning. These changes will continue for some considerable time and as we will only be monitoring these sites on a 5-6 year rotation it is important that the Gray and Kingston studies continue in order to document changes that do occur over time.

Nocturnal Birds (and mammals)


No surprises were encountered in the recording of nocturnal birds in this round of monitoring (Figs 2 and 3).

Boobook owls (*Ninox novaeseelandiae*) were recorded on all sites in both spring and autumn, as was expected for this, the true forest owl of the south-west forests. Masked owls (*Tyto novaehollandiae*) were recorded twice in autumn, in the control at Holyoake block near Dwellingup and at the Cameron block shelterwood site. These sites are similar to where Masked owls have been recorded in the other

FORESTCHECK sites at Donnelly and Wellington where farmland clearing is close by and provides a woodland type of habitat that is preferred by this species.

Figure 2. Nocturnal birds (and mammals) recorded in the spring on FORESTCHECK grids in the Perth Hills (AONJ = Australian owlet nightjar (*Aegotheles cristatus*), TAFM = tawny frogmouth (*Podargus strigoides*), SBBK = southern boobook owl (*Ninox novaeseelandia*), BAT = bat, CBTP = common brush tail possum (*Trichosurus vulpecular*), CHUD = chuditch (*Dasyurus geoffroii*).

Figure 3. Nocturnal birds (and mammals) recorded in the autumn on FORESTCHECK grids in the Perth Hills (AONJ = owlet nightjar, TAFM = tawny frogmouth, SBBK = southern boobook owl, BAT = bat, CHUD = chuditch, MOWL = masked owl)

Owlet Nightjar (*Aegotheles cristatus*) and Tawny Frogmouth (*Podargus strigoides*) recording rates was similar to the other FORESTCHECK sites and are typical of the south-west forest.

Due to the large home ranges of owls it is not always possible to monitor nocturnal birds on a site basis and there is a need to monitor them on a landscape basis where treatments have taken place.

While undertaking the nocturnal bird surveys, a number of mammal species, including Chuditch, Brushtail Possum and a range of insectivorous bats, were also recorded (see Figs 2 and 3).

Specimen Processing

No bird specimens were processed in 2003-4.

Data Management

The database developed by Amanda Mellican has worked well and this keeps all FORESTCHECK bird data in the same format.

Reference

Abbott, I. (1999). The avifauna of the forests of south-west Western Australia: changes in species, composition, distribution, and abundance following anthropogenic disturbance. CALMScience Supplement 5: 1-176.

MAMMALS AND HERPETOFAUNA

G.L. Liddelow

Introduction

The object of recording mammals and herpetofauna in FORESTCHECK is to monitor the impacts of logging and associated burning on species status and abundance. This is to be achieved by:

- Trapping and recording the suite of medium- and small-sized mammals, reptiles and amphibians on each FORESTCHECK grid
- Recording the presence of small mammals in nest boxes placed within each grid
- Comparing species richness, abundance, sex ratios and trap percentages between treatments within and between FORESTCHECK sites

The species and abundance of feral animals is also recorded with the use of sand pads placed at regular intervals along pre-determined tracks and roads within each FORESTCHECK site.

Monitoring

Trapping at all eight grids was carried out in spring 2003 and autumn 2004. The program went according to plan and only one day of rain prevented checking of sand pads. The day of rain did not interfere with the pit trapping. Sheffield traps were again used in both spring and autumn and this will be the norm in the future for this program.

Voucher Specimens

45 individual specimens were lodged with the WA Museum and these included 7 species of skink, 1 snake, 2 species of gecko, 2 species of pygopod and 2 possibly 3 species of amphibians (Table 1).

Preliminary Results

Trapping

A total of 209 individuals were caught in the spring and autumn trapping sessions (Table 2) with 159 individuals being trapped in the spring and 50 in the autumn.

There were 8 mammals, 142 reptiles and 9 amphibians trapped in the spring and 15 mammals, 35 reptiles and no amphibians trapped in the autumn (Fig. 2).

The highest total number of captures occurred in the shelterwood treatement followed by the controls, with the lowest number occurring in the gap release treatment. Spring resulted in a far greater number of captures than autumn on all sites.

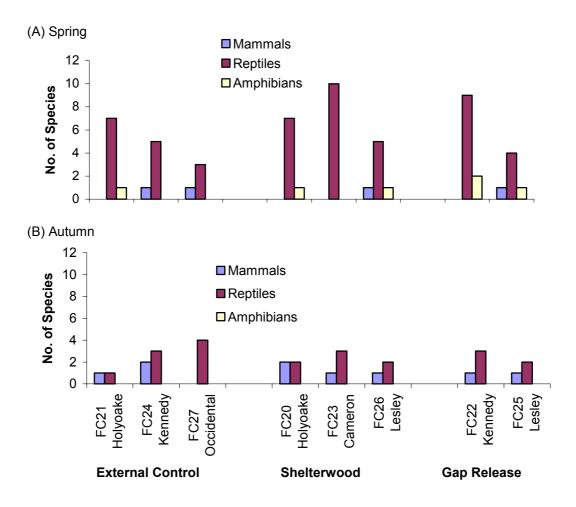

FC Field # Museum #		Museum Name		
FC100	154721	Menetia greyii		
FC110	154717	Ctenotus labillardieri		
FC111	154716	Egernia napoleonis		
FC125	154718	Ramphotyphlops australis		
FC126	154719	Diplodactylus polyophthalmus		
FC127	154720	Lerista distinguenda		
FC128	154722	Heleioporus sp.		
FC101	154712	Menetia greyii		
FC105	154708	Lialis burtonis		
FC106	154709	Morethia obscura		
FC107	154711	Lerista distinguenda		
FC108	154703	Hemiergis initialis		
FC109	154707	Egernia napoleonis		
FC129	154714	Crinia georgiana		
FC130	154715	Crinia georgiana		
FC131	154710	Morethia obscura		
FC102	154698	Ramphotyphlops australis		
FC104	154700	Christinus marmoratus		
FC112	154699	Aprasia pulchella		
FC113	154701	Ctenotus labillardieri		
FC114	154702	Lerista distinguenda		
FC115	154704	Morethia obscura		
FC116	154706	Heleioporus inornatus		
FC132	154705	Crinia georgiana		
FC133	154703	Morethia obscura		
FC103		Specimen lost		
FC117	154723	Aprasia pulchella		
FC118	154724	Diplodactylus polyophthalmus		
FC119	154727	Hemiergis initialis		
FC120	154728	Lerista distinguenda		
FC121	154725	Morethia obscura		
FC134	154726	Morethia obscura		
FC122	154697	Lerista distinguenda		
FC123	154694	Egernia napoleonis		
FC124	154695	Ctenotus labillardieri		
FC135	154696	Aprasia pulchella		
FC136	154685	Morethia obscura		
FC137	154688	Morethia obscura		
FC138	154687	Lerista distinguenda		
FC139	154689	Menetia greyii		
FC140	154686	Egernia napoleonis		
FC141	154693	Morethia obscura		
FC142	154690	Ramphotyphlops australis		
FC143	154692	Acritoscincus trilineatum		
FC144	154691	Lerista distinguenda		

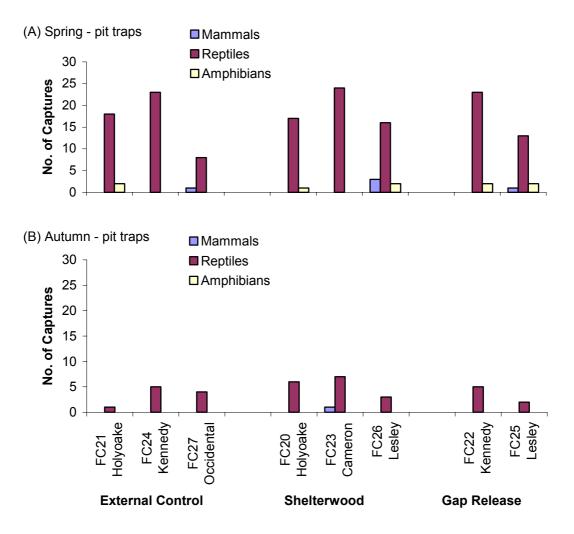
Table 1. Specimens from the Perth Hills FORESTCHECK grids that were lodged with the WA Museum

Species	External Control		Shelterwood		Gap Release	
-	Spring	Autumn	Spring	Autumn	Spring	Autumn
MAMMALS						
Antichinus flavipes				1		2
Cercartetus concinnus	1		3		1	
Dasyurus geoffroii		2		2		
Rattus rattus				1		
Trichosurus vulpecula						
vulpecula	3	5		2		
REPTILES¹						
Acritoscincus trilineatum	1					
Aprasia pulchella	1		2		3	
Christinus marmoratus					2	
Ctenotus labillardieri	1		2		1	
Diplodactylus polyophthalmus	1			2		
Egernia napoleonis	3		5			
Hemiergis initialis	4		4			
Lerista distinguenda	24	2	26	6	17	3
Lialis burtonis	1					
Menetia greyii	5	5	8	7	2	2
Morethia linocellata			3		5	
Morethia obscura	5	2		1	4	1
<i>Morethia</i> sp.			1			
Parasuta gouldii		1				
Pogona minima	1			2		1
Ramphotyphlops australis	2		4		2	
Tiliqua rugosa			1			
Varanus rosenbergi					1	
AMPHIBIANS					-	
Crinia georgiana	2				2	
Heleioporus eyrei	-		2		1	
Heleioporus sp.			1		1	
TOTAL / 209	55	17	62	24	42	9

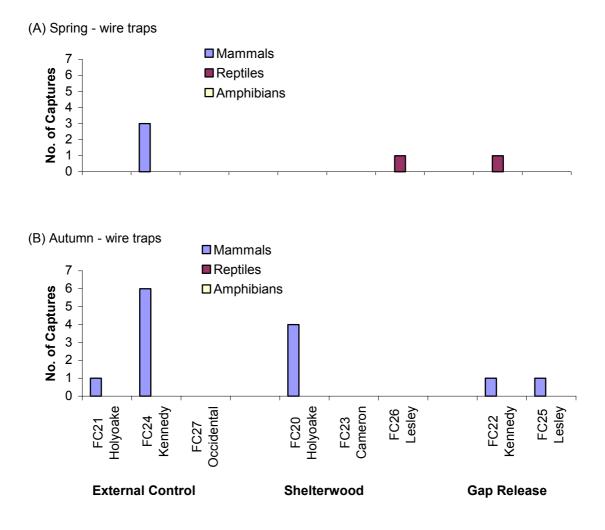
Table 2: The species and abundance of mammals, reptiles and amphibians recordedin traps on the Perth Hills FORESTCHECK sites in 2003-4.

¹ Sightings of the common death adder (*Acanthophis antarticus*) were recorded on the Occidental control (FC27) and Lesley shelterwood (FC26) grids.

Figure 2. The number of individual mammals, reptiles and amphibians recorded in traps in spring (A) and autumn (B) on the Perth Hills FORESTCHECK sites


Pit trapping was the most successful method (Fig. 3) with all but 2 of the 177 reptiles trapped, all 9 frogs and 6 of the 23 mammals trapped in pits. Apart from 1 Mardo (*Antechinus flavipes*), all of the mammals caught in wire traps were possums and chuditch (Fig. 4).

Sandpads

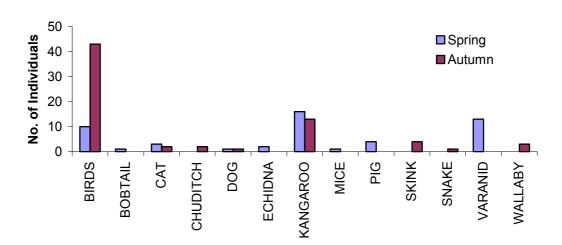

As was the case last year, the sand pads were installed and monitored on a landscape scale with the pads at 1 km intervals over a distance of 52 km, and monitored in spring of 2003 and autumn 2004. This technique will be used at all future sites due the results from the first year of monitoring in Donnelly, where the pads were placed only at the grids and they did not give a true indication of activity over the area being monitored.

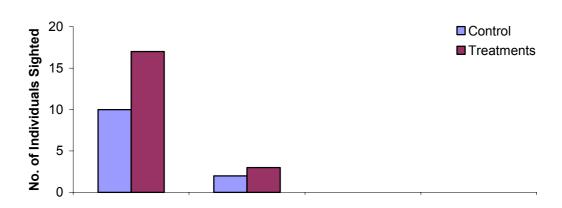
As we are mainly interested in monitoring the presence of feral animals on the sandpads, it was pleasing not to record any fox activity in either season. There was one dog recorded in both sessions and the presence of 4 pigs is of concern (Fig. 5).

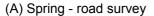
Birds and kangaroos again accounted for the largest number of tracks recorded in both seasons and there was a large number of varanids (13) in spring (Fig. 5).

Figure 3. The number of individual mammals, reptiles and amphibians recorded in pit traps in the spring (A) and autumn (B) on the Perth Hills FORESTCHECK sites

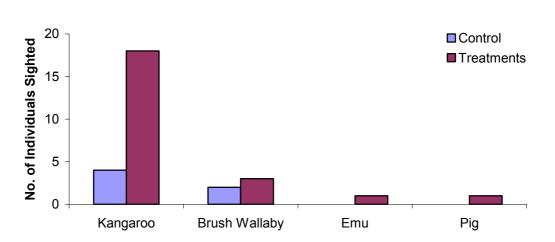
Figure 4. The number of individual mammals, reptiles and amphibians recorded in wire traps in the spring (A) and autumn (B) on the Perth Hills FORESTCHECK sites

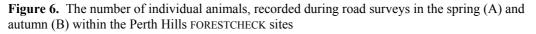


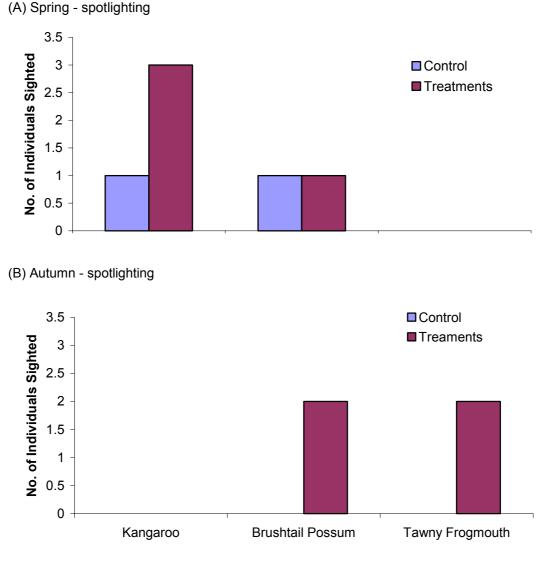

Figure 5. The number of individual animals, recorded on sandpads in the Perth Hills FORESTCHECK sites


Road Survey

The road surveys of macrovertebrates were undertaken on a landscape basis, with emphasis on differences between treatments combined and controls. The distance covered was approximately 50 km.


Figure 6 shows that Western Grey Kangaroos (*Macropus fuliginosus*) dominated the counts, with the treatments having a higher number recorded than in the controls. This is not surprising as the younger regrowth of the understorey plants provide a food base. If the controls were of a younger fire successional stage these numbers should be similar.


Western Brush Wallaby (*Macropus irma*) numbers were low, but this seems to be constant in the northern Jarrah forest. The numbers are too low to draw any conclusions about treatments and controls.


(B) Autumn - road survey

Spotlighting

Except in Kingston and the Perup forest in the south or Batalling forest east of Collie, spotlight surveys result in few records. The surveys in this year's monitoring area were no different. A total of 4 Brushtail Possums were seen in the two seasons, along with 4 Kangaroos and 2 Tawny Frogmouths (Fig. 7). We know from trapping and the Nocturnal Bird Surveys that other species are present but were not located during this survey technique. A combination of techniques is necessary to ensure recording of all species present within a forest area.

Figure 7. The number of individual animals, recorded during spotlight surveys in the spring (A) and autumn (B) within the Perth Hills FORESTCHECK sites.

Issues

No sampling method issues were encountered. All techniques are now finalized and no further alterations to the Operating Plan are foreseen.

DATA MANAGEMENT AND STORAGE

Amanda Mellican and Verna Tunsell

Introduction

We are responsible for entering the collected data into electronic format for Macro Vertebrates, Diurnal Birds, Nocturnals, Mammals and Herpetofauna, Vascular Plants, Fungi and Cryptogams, and the collected voucher specimens (Flora, Cryptogams and Fungi), and obtaining the electronic data from the remaining groups.

Data Entry

An excel program applying Visual Basic was developed for each of the survey sheets. There are two parts in the program: Data entry and Data correction. The aim is to save time and to reduce typing errors during the data entry process.

As an example, in the Trapping Field Data Sheet, there are 12 fields for the data entry (Location, Treatment, Personnel, Date, Trap point, Species, Weight, Tag #1, Tag #2, Sex, Breeding Condition and Comments). Places of location, names of treatment, names of personnel and gender are known and they are created as drop-down lists. As for the species, common species name was pre-listed in the program. Date as in Day, Month and Year (from 2001 to 2010) was also created as drop down lists. Thus, location, treatment and personnel are only entered once for all the records for a particular data sheet. If there was nothing to comment on, then the program will automatically record in the Comments section as "No comment". If any one of the fields is missing or left as blank, an error message is given and the data would not be inserted into data file until all the fields are selected or filled. Species code, scientific name and common name are also automatically recorded into the data file depending upon the selected common species. Record number is automatically written into the data file.

To date all the survey sheets have been completed by Verna Tunsell. A Metadata form as shown in Appendix A is also completed.

Data Validation

Amanda Mellican validates the data for all the groups that we are responsible for. The validation date will be recorded in the metadata form. Then a DESCRIPTIONS file (which indicates the lists of an individual field, and codes and descriptions of an individual field), and the validated DATA file will be sent to the leader of the individual group.

Data Storage

All the individual sampling data will be saved and backed up as individual files on the network drive. The data are saved and secured since the network drive is backed up at COB everyday. The final version of the validated data will be printed and kept in a filing cabinet and eventually archived with the library at the completion of the project.

Collected Specimens

The 209 Vascular Plants, 185 Fungi and 411 Cryptogam specimens collected during the period, have been identified (as far as possible), prepared, and lodged at the WA Herbarium. The fungi collection is housed at the Tony Annels Herbarium in Manjimup to enable further work to be carried out.

Each specimen is allocated its own barcode so that each is unique and is readily located by electronic means or by physical means as required.

Vascular plant specimens are pressed and dried, then mounted, with specialized herbarium tape, on card, and placed in separate folders.

Cryptogams are dried (friable specimens are stabilised with emulsion), placed on a card with adhesive to keep the specimen together (Mosses are washed prior to drying to remove debris). The specimens are then secured in cardboard boxes to prevent damage.

Fungi specimens are also dried and placed into greaseproof paper, then into zip lock bags, those small enough then go into similar boxes to cryptogams, the larger remain unboxed.

The specimens that have been lodged at the WA Herbarium have also been data based on the Max system and submitted electronically. Max was developed by Simon Woodman and Paul Gioia and is used as the primary means of submitting specimen information to the Herbarium. There are many facets to Max; the sections used for FORESTCHECK are the collecting book, specimen tables and reporting facilities. (Examples attached, see Appendix B).

Appendix A – Example of Metadata Form

Group Name \rightarrow

Leader \rightarrow

Contact Officer \rightarrow

No	File Name	File Size (KB)	File Type	Date (completed)	Name of Data Entry Person	Validated Date

Appendix B: Example of Flora Labels generated in MAX

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Diuris aff. corymbosa Lindl.

Orchidaceae

Identified by:

Tuberous perennial dwarf shrub, height to 40 cm, width to 5 cm: flowers yellow/red-brown. State forest; hill slope: brown to grey clayey sand with 2% laterite outcrops. Soil pH 6-6.5 Occasional. Forest with associated Eucalyptus marginata, Banksia grandis and Allocasuarina fraseriana. Population flowering: 20%

Loc.: Plot FC26 Lesley forest block, W of Poison Gully, N off Brookton Highway,

Lat. 32° 9' 8"S Long. 116° 13' 15"E (WGS84)

Coll. R J Cranfield FC462 Date: 06/10/2003

Voucher: Forestcheck monitoring program.

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Kennedia coccinea Vent.

Papilionaceae

Identified by:

Climbing perennial shrub, flowers red. State forest; hill slope: brown to grey clayey sand with 2% laterite outcrops. Soil pH 6-6.5 Frequent. Forest with associated Eucalyptus marginata, Banksia grandis and Allocasuarina fraseriana. Population flowering: 50%.

Loc.: Plot FC26 Lesley forest block, W of Poison Gully, N off Brookton Highway,

Lat. 32° 9' 8"S Long. 116° 13' 15"E (WGS84)

Coll. R J Cranfield FC463 Date: 06/10/2003

Voucher: Forestcheck monitoring program.

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Trymalium ledifolium Fenzl

Rhamnaceae

Identified by:

Open-compact erect perennial dward shrub, Height 40 cm Width 35 cm; flowers cream. State forest; hill slope: brown to grey clayey sand with 2% laterite outcrops. Soil pH 6-6.5 Locally abundant. Forest with associated Eucalyptus marginata, Banksia grandis and Allocasuarina fraseriana. Population flowering: 70%.

Loc.: Plot FC26 Lesley forest block, W of Poison Gully, N off Brookton Highway,

Lat. 32° 9' 8"S Long. 116° 13' 15"E (WGS84)

Coll. R J Cranfield FC464 Date: 06/10/2003

Voucher: Forestcheck monitoring program.

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Lechenaultia biloba Lindl.

Goodeniaceae

Identified by:

Open erect perennial dwarf shrub, height 30 cm, width 40 cm; flowers blue. State forest; hill slope: brown to grey clayey sand with 2% laterite outcrops. Soil pH 6-6.5 Frequent Forest with associated Eucalyptus marginata, Banksia grandis and Allocasuarina fraseriana. Population flowering: 30%

Loc.: Plot FC26 Lesley forest block, W of Poison Gully, N off Brookton Highway,

Lat. 32° 9' 8"S Long. 116° 13' 15"E (WGS84)

Coll. R J Cranfield FC465 Date: 06/10/2003

Voucher: Forestcheck monitoring program.

Appendix C: Example of Cryptogam Label generated in Max

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Xanthoparmelia sp.

Parmeliaceae

Identified by: R.J. Cranfield 18/08/2004 Lichen: active growth phase; thallus foliose, grey green; growing in exposed and sheltered wet positions on stone on ground layer. Chemistry: Cortex K+ yellow; Medulla K-. Hill; bare to littered gravelly moist sandy clay soil over laterite with 1-2 cm of new litter; contour range 300; erosion present due to logging. Frequent on occasional sites. Forest with three life form density classes, with associated vegetation Eucalyptus marginata, Allocasuarina fraseriana and Banksia grandis. Floristic richness 51-100 species with few to moderately abundant seedlings and saplings.

Loc.: Forest monitoring plot 25, Lesley forest block, approximately 400 m N from Brookton Highway,

Lat. 32° 10' 51.1"S Long. 116° 15' 17.1"E (WGS84)

Coll. R.J. Cranfield 20080 Date: 26/07/2004

Voucher: Forestcheck Monitoring Program.

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Genus sp.(algae)

Algae

Identified by: R.J. Cranfield

17/08/2004

Algae: active growth phase; red; growing in wet positions on dead and decaying wood in shrub layer. Hill; bare to littered gravelly moist sandy clay soil over laterite with 1-2 cm of new litter; contour range 300; erosion present due to logging. Occasional on isolated sites. Forest with three life form density classes, with associated vegetation Eucalyptus marginata, Allocasuarina fraseriana and Banksia grandis. Floristic richness 51-100 species with few to moderately abundant seedlings and saplings.

Loc.: Forest monitoring plot 25, Lesley forest block, approximately 400 m N from Brookton Highway,

Lat. 32° 10' 51.1"S Long. 116° 15' 17.1"E (WGS84)

Coll. R.J. Cranfield 20081 Date: 26/07/2004

Voucher: Forestcheck Monitoring Program.

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Campylopus introflexus

Dicranaceae

Identified by: R.J. Cranfield

23/08/2004

Moss: active growth phase; growing in exposed and sheltered wet positions on organic material in ground layer. Hill; bare to littered gravelly moist sandy clay soil over laterite with 1-2 cm of new litter; contour range 300; erosion present due to logging. Numerous on frequent sites. Forest with three life form density classes, with associated vegetation Eucalyptus marginata, Allocasuarina fraseriana and Banksia grandis. Floristic richness 51-100 species with few to moderately abundant seedlings and saplings.

Loc.: Forest monitoring plot 25, Lesley forest block, approximately 400 m N from Brookton Highway,

Lat. 32° 10' 51.1"S Long. 116° 15' 17.1"E (WGS84)

Coll. R.J. Cranfield 20082 Date: 26/07/2004

Voucher: Forestcheck Monitoring Program.

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Genus sp.(algae)

Algae

Identified by: R.J. Cranfield

18/08/2004

Algae: active growth phase; green terrestrial; growing in sheltered wet positions on decaying wood in ground and shrub layer. Hill; bare to littered gravelly moist sandy clay soil over laterite with 1-2 cm of new litter; contour range 300; erosion present due to logging. Frequent on occasional sites. Forest with three life form density classes, with associated vegetation Eucalyptus marginata, Allocasuarina fraseriana and Banksia grandis. Floristic richness 51-100 species with few to moderately abundant seedlings and saplings.

Loc.: Forest monitoring plot 25, Lesley forest block, approximately 400 m N from Brookton Highway,

Lat. 32° 10' 51.1"S Long. 116° 15' 17.1"E (WGS84)

Coll. R.J. Cranfield 20083 Date: 26/07/2004

Voucher: Forestcheck Monitoring Program.

Appendix D: Example of Fungi label generated in Max

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Amanita sp. "small robust, yellow-buff, bulbous base"

Amanitaceae

Identified by:

Fruiting on soil in litter.

Cap: to 4.6 cm, planar-convex, pale cinnamon, surface slightly tacky. Margin curves inwards. Raggedly appendiculate. Margin smooth. White scraps of universal veil.

Gills: cream, convex, margin fimbriate (x10), close, two sets of lamellulae. Gills under hang cap margin. Stipe: slender, sturdy, 6 mm wide at apex to 1 cm at base (bases at start of volva), to 6.6 long including volva (to 2.8 cm long x 1.4 cm wide) white to creamy. Fragile ring high up under gills, zone of powdery scales beneath ring. Volva marginate, bulbous with scraps of tissue at margin. Odour: hot, peppery. Plain: bare gravelly moist loose weedy brown clay loam over laterite with 2% outcropping; new litter to 5 cm deep.

Loc.:

Lat. 34° 5' 20"S Long. 116° 22' 0"E (WGS84)

Coll. R.M. Robinson, R.H. Smith FC592 Date: 14/06/2004

Voucher:

PERTH 6640184

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Marasmius crinisequi

Tricholomataceae

Identified by:

Fruiting on leaves. Plain: bare gravelly moist loose weedy brown clay loam over laterite with 2% outcropping; new litter to 5 cm deep. Forest (shelterwood) with associated Eucalyptus marginata, Corymbia calophylla, Pteridium esculentum, Macrozamia riedlei, and Persoonia longifolia.

Loc.: Forest Check Monitoring Plot 3, Tinkers Flat Road, 800 m S of Kingston Road, Kingston Forest Block,

Lat. 34° 5' 20"S Long. 116° 22' 0"E (WGS84)

Coll. R.M. Robinson, L. McGurk. FC593 Date: 14/06/2004

Voucher: Forestcheck Monitoring Program.

PERTH 6640176

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Postia peliculosa

Fungi

Identified by:

Fruiting on Eucalyptus marginata. Plain: bare gravelly moist loose weedy brown clay loam over laterite with 2% outcropping; new litter to 5 cm deep. Forest (shelterwood) with associated Eucalyptus marginata, Corymbia calophylla, Pteridium esculentum, Macrozamia riedlei, and Persoonia longifolia.

Loc.: Forest Check Monitoring Plot 3, Tinkers Flat Road, 800 m S of Kingston Road, Kingston Forest Block,

Lat. 34° 5' 20"S Long. 116° 22' 0"E (WGS84)

Coll. R.M. Robinson, L. McGurk. FC594 Date: 14/06/2004

Voucher: Forestcheck Monitoring Program.

PERTH 6640168

WESTERN AUSTRALIAN HERBARIUM, PERTH Flora of Western Australia

Dermocybe clelandii (yellow mycelium, glutinous cap)

Cortinariaceae

Identified by:

Fruiting in litter on ground. Plain: bare gravelly moist loose weedy brown clay loam over laterite with 2% outcropping; new litter to 5 cm deep. Forest (shelterwood) with associated Eucalyptus marginata, Corymbia calophylla, Pteridium esculentum, Macrozamia riedlei, and Persoonia longifolia.

Loc.: Forest Check Monitoring Plot 3, Tinkers Flat Road, 800 m S of Kingston Road, Kingston Forest Block,

Lat. 34° 5' 20"S Long. 116° 22' 0"E (WGS84)

Coll. R.M. Robinson, L. McGurk. FC595 Date: 14/06/2004

Voucher: Forestcheck Monitoring Program.

PERTH 6640141

2004 Vegetation List 28/10/2004 Life Form Life Style Fire Respo SpCode TaxonID Taxon Name 14970 ADEBAR S Ρ B2 Adenanthos barbiger Ρ 3247 ACABRO S A1 Acacia browniana P A1 Acacia browniana var. browniana 11731 ACABROBR S P S A1 3254 ACACEL Acacia celastrifolia S Ρ A1 **3311 ACADRU** Acacia drummondii P A1 11661 ACADRUDR S Acacia drummondii subsp. drummondii P A1 S 3331 ACAEXT Acacia extensa P S A1 3374 ACAHUE Acacia huegelii Ρ S A1 3454 ACANER Acacia nervosa Ρ A1 3502 ACAPUL S Acacia pulchella 3591 ACAURO S P A1 Acacia urophylla P **B**2 14970 ADEBAR S Adenanthos barbiger Ρ G **B**3 1261 AGRSCA Agrostocrinum scabrum GR A A1 185 AIRCUP Aira cupaniana P **B1** 1728 ALLFRA т Allocasuarina fraseriana 194 AMPAMP DS Ρ **B2** Amphipogon amphipogonoides Ρ 4585 AMPERI DS **B2** Amperea ericoides Р **B**3 199 AMPSTR GR Amphipogon strictus Ρ **B2** DS 6323 ASTCIL Astroloma ciliatum Ρ B2 6334 ASTPAL DS Astroloma pallidum P 17950 AUSCAE GR **B3** Austrodanthonia caespitosa P **B2** 5336 BAECAM S Baeckea camphorosmae P A2 Т Banksia grandis 1819 BANGRA Ρ A1 3157 BILFLO V Billardiera floribunda Ρ 3165 BILVAR V A1 Billardiera variifolia DS Ρ A1 4413 BORCRE Boronia crenulata 4416 BORDEN DS P A1 Boronia denticulata Ρ A1 4432 BOROVA DS Boronia ovata P **B**2 4441 BORSPA S Boronia spathulata P A1 S Bossiaea aquifolium subsp. aquifolium 14396 BOSAQUAQ S P A1 3710 BOSERI Bossiaea eriocarpa Ρ 3714 BOSORN S A1 Bossiaea ornata Brachyscome iberidifolia 7878 BRAIBE Н A A1 P **B**3 1387 BURUMB G Burchardia umbellata Ρ **B**3 1276 CAEMIC G Caesia micrantha Ρ **B**3 5438 CALAME G Calytrix amethystina P **B**3 1592 CALFLA G Caladenia flava P **B**3 Caladenia flava subsp. flava 15348 CALFLAFL G Ρ **B**3 G 1599 CALLAT Caladenia latifolia Ρ S A1 5465 CALLES Calytrix leschenaultii P G **B**3 1613 CALREP Caladenia reptans Ρ **B**3 -44 CALSP. G P **B**3 1280 CHACOR G Chamaescilla corymbosa Ρ 12765 CHONAN DS A1 Chorizema nanum P A1 DS 3761 CHORHO Chorizema rhombeum Р A1 2929 CLEPUB V Clematis pubescens Ρ **B**2 4550 COMCAL DS Comesperma calymega P **B**3 1418 CONACU DS Conostylis aculeata P **B**3 DS 1454 CONSET Conostylis setigera т Ρ A2 17104 CORCAL Corymbia calophylla 1285 CORMIC S Ρ **B**3 Corynotheca micrantha P 768 CYAAVE Ζ **B**3 Cyathochaeta avenacea P **B**3 Cyanicula gemmata 15114 CYAGEM G

Appendix E: Example of Specimen Table generated in Max

* = Alien species

Appendix F: Example of File Report generated in Max showing unique bar code allocated to each specimen.

COLLECT N	OSHEETNO	nple of Fungi report FAMILY	GENUS	SPECIES
		Amanitaceae	Amanita	sp. "small robust, yellow-buff, bulbous base"
FC592 FC593		Tricholomataceae	Marasmius	crinisequi
	6640168		Postia	peliculosa
FC594 FC595	and the second second	Cortinariaceae	Dermocybe	clelandii (yellow mycelium, glutinous cap)
			Truffle	"pink gleba"
FC596	6640133		Truffle	"black gleba"
FC597	6640125	Construction of the second second second	Cortinarius	sp. "viscid - pink"
FC598		Cortinariaceae		sp. "rusty brown suede"
FC599		Crepidotaceae	Crepidotus	sp. "grey robust"
FC600		Tricholomataceae	Clitocybe	sp. "glutinous cap/rooting stem"
FC601		Cortinariaceae	Cortinarius	sp. "yellow with orange brown fibrils"
FC602		Cortinariaceae	Cortinarius	sp. "light brown striate/white stems, on wood"
FC603		Tricholomataceae	Mycena	
FC604		Pluteaceae	Pluteus	lutescens
FC605		Boletaceae	Boletus	sp."bown/yellow pores which stain blue"
FC606		Stereaceae	Stereum	illudens
FC607		Stereaceae	Stereum	sp. "purple margin - algae"
FC608	6640362	Crepidotaceae	Crepidotus	sp."small brown"
FC609	6640354	Tricholomataceae	Resupinatus	cinerascens
FC610	6640346	Tricholomataceae	Mycena	sp. "small buff on wood - bleach"
FC611	6640338	Fungi	Polypore	"white resupinate"
FC612	6640311	Tricholomataceae	Mycena	"austrocapillaris" (bleach)
-C613	6640303	Cortinariaceae	Dermocybe	sp. "small olive"
-C614	6640281	Tricholomataceae	Mycena	sp. "brown-grey, on wood"
-C615	6640273	Boletaceae	Boletus	sp."red-brown/golden yellow - intense blue stain
-C616	6640443	Cortinariaceae	Democybe	clelandii (yellow mycelium)
FC617		Cortinariaceae	Cortinarius	sp."orange yellow"
FC618		Ramariaceae	Ramaria	sp. "orange-red, yellow stems"
FC619	6640419		Agaric	"viscid buff, long stem"
FC620		Pezizaceae	Peziza	tenacela
FC621		Otideaceae	Pulvinula	archerii
		Pezizaceae	Peziza	"praetervisa"
FC622		Strobilomycetaceae		sp."yellow"
FC623		Clavariaceae	Clavulinopsis	sp. "grey-brown"
FC624			Panellus	sp. "soft brown"
=C625		Tricholomataceae	Polypore	"small on waterbush"
FC626	6640508			"yellow brown - moist"
FC627	6640494		Agaric	sp."yellow"
FC628		Strobilomycetaceae		"yellow brown - moist"
FC629	6640478		Agaric	
FC630		Strobilomycetaceae		sp."yellow"
FC631		S Cortinariaceae	Cortinarius	sp. "fawn brown"
FC632		5 Cortinariaceae	Cortinarius	fibrillosus
FC633	6640591	Russulaceae	Russula	persanguinea (white stem)
FC634	6640583	8 Entolomataceae	Entoloma	sp. "tall, grey-brown"
FC635	6640575	5 Lentinellaceae	Lentinellus	sp. "brown cap, saw-toothed gills"
FC636	6640567	' Tricholomataceae	Clitocybe	semi occulta "large"
FC637	6640559	Tricholomataceae	Mycena	sp. "dark brown on burnt ground"
FC638	6640540) Pezizaceae	Peziza	tenacela
FC639	6640702	2 Coprinaceae	Psathyrella	sp.
FC640) Pezizaceae	Peziza	"praetervisa"
FC641) Otideaceae	Anthracobia	muelleri
FC642		2 Fistulinaceae	Fistulina	hepatica

Example of Fungi report showing unique barcode number

* = Alien species