Alternative splicing of β -carbonic anhydrase genes and implications for the evolution of C₄ photosynthesis in School of Chemistry and Biochemistry, University of Western Australia, Perth WA, Australia the grass subtribe Neurachninae ARC Centre for Translational Photosynthesis, Research School of Biology, Australian National University,

- CSIRO Division of Plant Industry, Canberra ACT, Australia
- estern Australian Herbarium, Science and Conservation Division, Department of Parks and Wildlife, Perth

AM OLU

Harmony Clayton¹, Montserrat Saladie¹, Robert Sharwood², Vivien Rolland³, Terry Macfarlane⁴, Paul Hattersley¹, Martha Ludwig¹

BACKGROUND

Neurachninae

- Subtribe of Australian native grasses
- Three genera: Neurachne, Paraneurachne and Thyridolepis
- Among grasses, this is an ideal lineage for studying key steps in molecular evolution of C₄ photosynthesis
- Molecular phylogeny suggests two C_{4} origins, one C₂ origin
- Four species selected for study: Neurachne alopecuroidea (C_3) , N. minor (C_2) , N. munroi (C_4) , and Paraneurachne muelleri (C₄)

Christin et al. 2012

Photographs of Neurachninae plants growing at collection sites in Western Australia. A) N. alopecuroidea, C₃ B) N. minor, C₂ C) N. munroi, C₄ D) P. muelleri, C₄, photograph by Rowan Sage. Scale bar \approx 2 cm

Protein products of alternative splice forms show different subcellular locations

• GFP fusion constructs show Neurachninae CA1b is targeted to the cytosol

β -carbonic anhydrase (CA)

- Catalyses : $CO_2 + H_2O \leftrightarrow HCO_3^- + H^+$
- Small gene family
- Many roles in plants
- C_4 plants provides HCO_3^- to PEPC in the mesophyll cell cytosol

RESULTS/DISCUSSION

Alternative splicing of β -CA transcripts in Neurachninae

- Identified mRNAs encoding four distinct β -CA isoforms (CA1a, CA1b, CA2a, CA2b) from N. alopecuroidea, N. minor, N. munroi, and P. muelleri
- Noted identity in 3'-region of transcripts
- Sequence data from genomic DNA fragments showed the four transcripts are generated from only two genes via alternative splicing
- First experimental evidence of alternative splicing of plant β -CA transcripts •

- whereas CA1a shows species-specific localisation
- CA1a from N. alopecuroidea (C_3) , N. minor (C_2) , and P. muelleri (C_4) is targeted to the chloroplast
- CA1a from *N. munroi* (C₄) is cytosolic
- Multiple sequence alignment indicates 11 amino acids in Nterminal region of the CA1a isoforms are not present in N. munroi CA1a \rightarrow non-functional chloroplast transit peptide

GFP = green fluorescent protein signal from fusion protein, CHLO = signal from chlorophyll autofluorescence

Differential expression of splice forms at the transcript level

- Transcripts of CA1a and CA1b at least ten times more abundant than CA2a or CA2b transcripts in all species tested. Low expression in leaves suggests nonphotosynthetic function.
- CA1a transcripts more abundant than CA1b in *N. alopecuroidea* (C₃), *N. minor* (C₂), and *N. munroi* (C₄), **but not** in *P. muelleri* (C₄)

CONCLUSION

Two molecular mechanisms for increasing abundance of mRNAs encoding cytosolic β -CAs in C₄ Neurachninae species

- C₄ species have more transcripts encoding cytosolic isoforms than • chloroplastic isoforms. The opposite is the case in N. alopecuroidea (C₃) and N. minor (C_2).
- Two distinct evolutionary origins of C₄ photosynthesis in Neurachninae •
 - path appears different
 - N. munroi elimination of the CA1a chloroplast transit peptide
 - P. muelleri increased abundance of transcripts encoding the cytosolic CA1b

ACKNOWLEDGEMENTS

This research was supported by grants from the Australian Research Council and PhD scholarship funding from the Australian Government and the University of Western Australia.

REFERENCES

Christin PA, Wallace MJ, Clayton H, Edwards EJ, Furbank RT, Hattersley PW, Sage RF, Macfarlane T, Ludwig M (2012) Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae. J Exp Bot 63: 6297-6308