

Department of **Biodiversity**, **Conservation and Attractions**

GOVERNMENT OF WESTERN AUSTRALIA

Yarraloola annual desktop fire regime monitoring: 2019

Version: 2

Approved by: Russell Palmer

Last Updated: 25/08/2020

Custodian: Department of Biodiversity, Conservation and Attractions Review date:

Version number	Date approved	Approved by	Brief Description
1	5/08/2020	Russell Palmer	Minor edits, page numbering, page header
1	11/08/2020	Tessa Elvey, Jason Rossendell	Minor edits and formatting
2	25/08/2020	Tessa Elvey, Jason Rossendell	Formatting, additional land systems graphs added, minor edits

Yarraloola annual desktop fire regime monitoring: 2019

Jane Chapman¹ and Katherine Zdunic² ¹Research Officer (Remote Sensing) ²Senior Research Officer (Remote Sensing)

August 2020

Department of **Biodiversity**, **Conservation and Attractions** Department of Biodiversity, Conservation and Attractions Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: (08) 9219 9000 Fax: (08) 9334 0498

www.dbca.wa.gov.au

© Department of Biodiversity, Conservation and Attractions on behalf of the State of Western Australia 2019 January 2019

This work is copyright. You may download, display, print and reproduce this material in unaltered form (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the *Copyright Act 1968*, all other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to the Department of Biodiversity, Conservation and Attractions.

This report/document/publication was prepared by Jane Chapman and Katherine Zdunic

Questions regarding the use of this material should be directed to: Katherine Zdunic - Senior Research Officer Remote Sensing and Spatial Analysis Program Department of Biodiversity, Conservation and Attractions Locked Bag 104 Bentley Delivery Centre WA 6983 Phone: 9219 9584 Email: Katherine.zdunic@dbca.wa.gov.au

The recommended reference for this publication is: Department Biodiversity, Conservation and Attractions, 2020, *Yarraloola annual desktop fire regime monitoring: 2019*, Department of Biodiversity, Conservation and Attractions, Perth.

Disclaimer If the information presented in this report is delivered or published external to Rio Tinto please notify the Remote Sensing and Spatial Analysis Program, Department of Biodiversity, Conservation and Attractions of the publication. This document is available in alternative formats on request.

Please note: urls in this document which conclude a sentence are followed by a full point. If copying the url please do not include the full point.

Contents

S	umma	ry		1					
1	Data			3					
	1.1	Land systems mapping							
	1.2	Nor	thern Quoll and Pilbara Olive Python boundary	4					
2	Meth	odol	logy	6					
	2.1	Fire	e metrics	6					
	2.1	.1	Vector data cleaning6	6					
	2.1	.2	Graphing fire metrics	6					
3	Resu	ılts		7					
	3.1 Total area and proportion burned in each fire mapping year								
	3.1	.1	Across Yarraloola LMA and mapped NQ and POP habitat10)					
	3.1	.2	Land systems 12	2					
4	Data	limit	tations	. 33					
	4.1	Spa	atial resolution	. 33					
	4.2	Fire	e date attribution	. 33					
	4.3	Size	e class distribution of fire scars	. 33					
	4.4	Missing annual fire scar data							
	4.5	Lan	dsat 7 SLC-Off missing data strips	. 34					
R	eferer	ices		. 36					
D	ata de	liver	יזייע ייש אונער איז	. 37					

Figures

Figure 1 Yarraloola Land Management Area, the background image is a Landsat 8 satellite image.	2
Figure 2 Yarraloola Land Management Area with land systems mapping and Northern Quoll and Pilbara Olive Python habitat boundary, the background image is a Landsat 8 satellite image	5
Figure 3: Fires which occurred on Yarraloola Station and within a 10km buffer during 2019, the background image is a Landsat 8 satellite image, the image date is 24 th December 2019 and was used to map the 2019 fires	9
Figure 4 Total area (ha) burnt per year across Yarraloola LMA and NQ & POP habitat1	1
Figure 5 Total percentage burnt per year across Yarraloola LMA and NQ & POP habitat range	1

Figure 6 Total area (ha) burnt per year across Yarraloola LMA land systems for each year of available fire mapping
Figure 7 Total percentage burnt per year across Yarraloola LMA land systems for each year of available fire mapping
Figure 8 Alternative graph for total area (ha) burnt per year across Yarraloola LMA land systems for each year of available fire mapping
Figure 9 Alternative graph for total percentage burnt per year across Yarraloola LMA land systems for each year of available fire mapping
Figure 10 Total area (ha) burnt per year across the Boolgeeda land system for each year of available fire mapping
Figure 11 Total area (ha) burnt per year across the Cane land system for each year of available fire mapping
Figure 12 Total area (ha) burnt per year across the Capricorn land system for each year of available fire mapping
Figure 13 Total area (ha) burnt per year across the Kumina land system for each year of available fire mapping
Figure 14 Total area (ha) burnt per year across the Mallina land system for each year of available fire mapping
Figure 15 Total area (ha) burnt per year across the McKay land system for each year of available fire mapping
Figure 16 Total area (ha) burnt per year across the Newman land system for each year of available fire mapping
Figure 17 Total area (ha) burnt per year across the Nanutarra land system for each year of available fire mapping
Figure 18 Total area (ha) burnt per year across the Peedamulla land system for each year of available fire mapping
Figure 19 Total area (ha) burnt per year across the River land system for each year of available fire mapping
Figure 20 Total area (ha) burnt per year across the Robe land system for each year of available fire mapping
Figure 21 Total area (ha) burnt per year across the Rocklea land system for each year of available fire mapping
Figure 22 Total area (ha) burnt per year across the Sherlock land system for each year of available fire mapping
Figure 23 Total area (ha) burnt per year across the Stuart land system for each year of available fire mapping
Figure 24 Total area (ha) burnt per year across the Urandy land system for each year of available fire mapping
Figure 25 Location of missing data across the Yarraloola LMA for Landsat image date 02/03/2012

Tables

Table 1 Fire metrics covered in the report for the period 1999 – 2019	1
Table 2 Datasets used in the Yarraloola fire metric analysis	3
Table 3 Land systems and area statements over the Yarraloola Land Management Area.	4
Table 4 Metrics and their associated graphs and tables	7
Table 5 Area statistics for each zone; area statements were used to calculate metrics based on these zones.	7
Table 6 Total area and percentage of land burnt (ha) over Yarraloola LMA and NQ & POP habitat for each year of available fire mapping.	. 10
Table 7 Total area in hectares of area burnt over Yarraloola LMA within the landsystems for each year of available fire mapping.	. 12
Table 8 Total percentage of area burnt over Yarraloola LMA within the land systems for each year of available fire mapping.	. 13
Table 9 Historical fire mapping image sources and dates over Yarraloola pastoral lease	. 34
Table 10 Percentage of area within the Yarraloola LMA which is missing data for affected image dates	. 35

Summary

This report addresses the tasks outlined in the document "Scope of Works - DPaW TSOP Fire Regime Monitoring 2019" and includes fire metrics over the Yarraloola Land Management Area (LMA) for the time period 1999 – 2019.

The fire metrics contained in this report are listed in Table 1.

Metric	Status					
 Total area (ha) and proportion burned each year across entire study area within land system units within mapped NQ & POP habitat 	Achieved					

The project area known as the Yarraloola Land Management Area (LMA) is indicated in blue on Figure 1, and indicates the area subject to analysis, the LMA covers 163,214 hectares. In order to understand fires that occur close to or overlap this boundary a 10km buffer area for the provided vector mapping of the fires is delivered for map production use only. The composite land system mapping and fauna habitat areas used in the analysis have been supplied by Rio Tinto (2016_Yarraloola_LandSystems_exported_mga50 and Yarraloola_potential NQ & POP habitat FINAL_trans.shp).

For information on image processing, fire mapping and satellite imagery please see previous monitoring reports by Chapman and Zdunic (2016). Methodology describing the creation of the fire scar dataset will not be included in this update.

1

Figure 1 Yarraloola Land Management Area, the background image is a Landsat 8 satellite image.

1 Data

Fire metrics were calculated using a combination of datasets provided by Rio Tinto and the Department of Biodiversity, Conservation and Attractions. Table 2 displays the datasets used.

Table 2 Datasets used in the Yarraloola fire metric analysis.

Dataset	Source	Description
Yarra_Fire_Monitoring_Study_Area_exported.shp	Rio Tinto	Yarraloola LMA
		boundary
Yarra_Fire_Monitoring_Project_Area_trans.shp	Rio Tinto	Yarraloola LMA
		boundary
2016_Yarraloola_LandSystems_exported_mga50.shp	Rio Tinto	Land system
		boundaries
Yarraloola_potential NQ & POP habitat	Rio Tinto	Northern Quoll and
FINAL_trans.shp		Pilbara Olive Python
		habitat extent
Yarraloola Station_exported.shp	Rio Tinto	Yarraloola LMA
		boundary
Pilbara_fires_Z50_1999.shp	DBCA	Fire scar boundaries
Pilbara_fires_Z50_2001.shp	DBCA	Fire scar boundaries
Pilbara_fires_Z50_2003.shp	DBCA	Fire scar boundaries
Pilbara_fires_Z50_2004.shp	DBCA	Fire scar boundaries
Pilbara_fires_Z50_2006.shp	DBCA	Fire scar boundaries
Pilbara_fires_Z50_2007Oct.shp	DBCA	Fire scar boundaries
Pilbara_fires_Z50_2008.shp	DBCA	Fire scar boundaries
Pilbara_fires_Z50_2009.shp	DBCA	Fire scar boundaries
114075_2010-2011_FireScars.shp	DBCA	Fire scar boundaries
114075_2011-2012_FireScars.shp	DBCA	Fire scar boundaries
11475_2012-2013_FireScars.shp	DBCA	Fire scar boundaries
Fortescue_and_Offshore_Fires_2013_2014.shp	DBCA	Fire scar boundaries
Fortescue_River_Catchment_fire_mapping_2015.shp	DBCA	Fire scar boundaries
201516_Pilbara_Fire_Mapping_mga50.shp	DBCA	Fire scar boundaries
201617_114075_afed.shp	DBCA	Fire scar boundaries
114075_dec16_to_dec17_rio_2017_update.shp	DBCA	Fire scar boundaries
114075_160918_060119_mga50.shp	DBCA	Fire scar boundaries
Yarraloola_201920_fires_10kmbuffer.shp	DBCA	Fire scar boundaries

1.1 Land systems mapping

The land systems mapping dataset was provided by Rio Tinto. This dataset was used to calculate area-based statistics for land systems within the Yarraloola LMA. The total areas and the description for each Land system are listed in Table 3. Figure 2 displays a map of Yarraloola LMA and the supplied mapping.

Alea.		
Land system ID	Description	Area (hectares)
NNT	Nanutarra Land System	23,623.19
SRK	Sherlock Land System	11,343.65
CPN	Capricorn Land System	11,146.45
RIV	River Land System	6,465.81
ROB	Robe Land System	13,055.07
BGD	Boolgeeda Land System	17,482.28
URY	Urandy Land System	12,728.45
STT	Stuart Land System	23,992.98
NEW	Newman Land System	32,332.09
ROC	Rocklea Land System	2,313.85
CAN	Cane Land System	1,843.26
KUM	Kumina Land System	662.55
MAL	Mallina Land System	1,746.83
MCK	McKay Land System	170.98
PED	Peedamulla Land System	4,306.59

Table 3 Land systems and area statements over the Yarraloola Land Management Area.

1.2 Northern Quoll and Pilbara Olive Python boundary

An ESRI shapefile with the habitat extent of the Northern Quoll (NQ) and Pilbara Olive Python (POP) was provided by Rio Tinto. Mapped habitat for both NQ and POP is based on land system mapping (van Vreeswyk *et al.*, 2004) and represents a coarse estimate of available habitat within the LMA. The total area of the fauna habitat covers 65,665 hectares of Yarraloola LMA. Figure 2 displays a map of the fauna habitat within Yarraloola LMA. Throughout this document the habitat area for the fauna will be referred to as the NQ and POP habitat.

Figure 2 Yarraloola Land Management Area with land systems mapping and Northern Quoll and Pilbara Olive Python habitat boundary, the background image is a Landsat 8 satellite image.

2 Methodology

The methodology describes the calculation of the fire metric statistics.

2.1 Fire metrics

Metrics were derived from the fire scar datasets using ArcGIS 10.6.1. This software is geographic information systems software that allows the viewing, analysis and storage of spatial data.

2.1.1 Vector data cleaning

Fire scar vectors were examined for errors in the data, which might cause errors in the area statistics. Duplicate polygons can sometimes occur when the same fire is mapped more than once, this is more common around the edges of Landsat scene boundaries. To find duplicate polygons within each year of fire scar mapping the "Count Overlapping Polygons" toolbox in ArcGIS was used (Honeycutt, 2012). Duplicate polygons were then deleted. Part of the cleaning process was to ensure all data were in the same coordinate system and that all datasets had been repaired using the "Repair Geometry" tool in ArcGIS.

Once all the individual years of fire scar datasets were cleaned they were merged into one shapefile and clipped to the Yarraloola LMA 10km buffer shapefile using the "Clip" tool in ArcGIS. This dataset was further clipped to the Yarraloola LMA area of interest.

2.1.2 Graphing fire metrics

Graphs were produced using the statistical package R. This enables repeatability in the graphing as a script has been produced for each graph and annual updates require the latest data to be entered (R Core Team, 2017).

3 Results

The results address the fire metrics requested and listed in Table 1. The results are structured according to Table 4.

Table 4 Metrics and their associated graphs and tables.

Metric	Category	Graphs/ tables
3.1 Total area (ha) and	3.1.1 Across entire study	Table 6
proportion burned each year.	area	Figure 4 and Figure 5
	3.1.1 Within mapped NQ &	Table 6
	POP habitat	Figure 4 and Figure 5
	3.1.2 Within land systems	Table 7 and Table 8
		Figure 6 and Figure
		7 Alternative style
		graphs:
		Figure 8 and Figure 9
		Individual land
		system graphs:
		Figures 10 - 24

To provide context of each variable across the Yarraloola LMA the area of the study site, POP and NQ habitat and land systems that fire metrics were calculated for are displayed in Table 5.

Table 5 Area statistics for each zone; area statements were used to calculate metrics based on these zones.

Zone	Total area (ha)	% of study area
Yarraloola LMA	163213.70	100
POP NQ Habitat	65,665.00	40.23
NNT	23,623.19	14.47
SRK	11,343.65	6.95
CPN	11,146.45	6.83
RIV	6,465.81	3.96
ROB	13,055.07	8.00
BGD	17,482.28	10.71
URY	12,728.45	7.80
STT	23,992.98	14.70
NEW	32,332.09	19.81
ROC	2,313.85	1.42
CAN	1,843.26	1.13
KUM	662.55	0.41
MAL	1,746.83	1.07
MCK	170.98	0.10
PED	4,306.59	2.64

3.1 Total area and proportion burned in each fire mapping year

The following statistics show total area burnt in hectares for each year of available fire mapping. A variety of graphs and tables are presented for each fire metric to allow for different options to be explored. Metrics calculated are provided as;

Total area (ha) and proportion burned each year:

- across the entire study area
- within mapped NQ and POP habitat
- within land systems

Fires that occurred during 2019 on Yarraloola and within 10km of the boundary are shown in Figure 3 below.

Yarraloola annual desktop fire regime monitoring: 2019

Figure 3: Fires which occurred on Yarraloola Station and within a 10km buffer during 2019, the background image is a Landsat 8 satellite image, the image date is 24th December 2019 and was used to map the 2019 fires.

3.1.1 Across Yarraloola LMA and mapped NQ and POP habitat

The NQ and POP habitat and total Yarraloola area metrics have been combined in both the tables and figures as the NQ and POP habitat is a subset of the total area and this reduces the number of tables, graphs and figures. Table 6 displays the total area of land mapped as burnt over Yarraloola and the NQ and POP habitat. The percentages based on these area figures are also displayed in Table 6. Graphs of the area statements are displayed in Figure 4 and percentages values are displayed in Figure 5.

Table 6 Total area and percentage of land burnt (ha) over Yarraloola LMA and NQ & POP habitat for each year of available fire mapping.

YEAR	1999	2001	2003	2004	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
TOTAL AREA BURNT (HA)	5,488	46,470	9,824	3,182	42,330	1,293	2,268	10,84 3	2,188	522	23,531	1,986	20,362	1,205	6,655	5,507	36,554	6,560
% BURNT	3	28	6	2	26	1	1	7	1	<1	14	1	12	1	4	3	22	4
TOTAL AREA OF NQ/POP HABITAT BURNT	477	13,717	5,490	105	21,888	187	211	2,009	203	1	8,460	402	15,871	28	13,38	3,034	15,710	4,851
% BURNT	1	21	8	<1	33	<1	<1	3	<1	<1	13	1	24	<1	2	5	24	7

Yarraloola annual desktop fire regime monitoring: 2019

Figure 4 Total area (ha) burnt per year across Yarraloola LMA and NQ & POP habitat.

Figure 5 Total percentage burnt per year across Yarraloola LMA and NQ & POP habitat range.

3.1.2 Land systems

Table 7 displays the total area of land mapped as burnt across the different land system units. The percentages based on these area figures are displayed in Table 8. Graphs of the area statements are displayed in Figure 6 and percentages of those figures are displayed in Figure 7. Alternative graphs for displaying the metrics for the land systems across Yarraloola LMA are displayed in Figure 8 and Figure 9. These display the same data but give an alternative visual representation.

Table 7 Total area in hectares of area burnt over Yarraloola LMA within the land systems for each year of available fire mapping.

YEAR	1999	2001	2003	2004	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
NNT	565	9,481	441	309	6,253	0	65	3,111	0	2	5,033	75	19	53	706	2,585	7,237	93
SRK	1,429	2,274	477	0	2,643	141	307	0	228	0	1,360	0	1,472	233	943	307	2,221	10
CPN	28	3,696	87	936	2,314	338	0	205	203	0	2,657	245	27	4	609	236	1,780	77
RIV	147	1,056	588	365	245	0	3	0	0	0	378	0	437	0	51	96	1,012	350
ROB	601	4,954	946	7	1,101	85	167	0	0	0	2,778	186	729	0	291	53	1,252	1,040
BGD	710	3,300	1,596	0	6,432	0	56	891	85	0	2,620	0	1,526	38	508	767	5,441	428
URY	715	3,183	643	0	4,780	815	22	67	1,672	0	2,273	0	528	657	1,424	29	2,299	437
STT	57	12,55 0	932	753	504	0	1,637	4,711	0	519	2,748	1,084	363	196	2,111	0	5,846	225
NEW	117	3,425	3,724	38	15,10 2	0	93	214	0	0	2,628	378	12,455	0	0	1,421	8,263	3,707
ROC	0	64	322	0	1,126	0	0	113	0	0	0	0	1,938	0	0	0	0	101
CAN	65	780	10	58	0	0	0	267	0	0	218	0	163	0	9	0	141	0
KUM	0	43	13	0	44	0	0	27	0	0	0	18	285	0	0	0	172	0
MAL	715	486	0	0	828	0	0	0	0	0	61	0	419	0	0	8	560	0
МСК	0	0	42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	93
PED	339	1,177	1	716	959	0	0	1,070	0	0	777	0	0	24	3	4	330	0

YEAR	1999	2001	2003	2004	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
NNT	2	40	2	1	26	0	0	13	0	0	21	<1	<1	<1	3	11	31	<1
SRK	13	20	4	0	23	1	3	0	2	0	12	0	13	2	8	3	20	<1
CPN	<1	33	1	8	21	3	0	2	2	0	24	2	<1	0	5	2	16	1
RIV	2	16	9	6	4	0	<1	0	0	0	6	0	7	0	1	1	16	5
ROB	5	38	7	<1	8	1	1	0	0	0	21	1	6	0	2	<1	10	8
BGD	4	19	9	0	37	0	0	5	0	0	15	0	9	0	3	4	31	2
URY	6	25	5	0	38	6	0	1	13	0	18	0	4	5	11	<1	18	3
STT	<1	52	4	3	2	0	7	20	0	2	11	5	2	1	9	0	24	1
NEW	<1	11	12	<1	47	0	0	1	0	0	8	1	39	0	0	4	26	11
ROC	0	3	14	0	49	0	0	5	0	0	0	0	84	0	0	0	0	4
CAN	4	42	1	3	0	0	0	14	0	0	12	0	9	0	1	0	8	0
KUM	0	7	2	0	7	0	0	4	0	0	0	3	43	0	0	0	26	0
MAL	41	28	0	0	47	0	0	0	0	0	3	0	24	0	0	<1	32	0
MCK	0	0	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	54
PED	8	27	0	17	22	0	0	25	0	0	18	0	0	1	<1	<1	8	0

Table 8 Total percentage of area burnt over Yarraloola LMA within the land systems for each year of available fire mapping.

Figure 6 Total area (ha) burnt per year across Yarraloola LMA land systems for each year of available fire mapping.

Figure 7 Total percentage burnt per year across Yarraloola LMA land systems for each year of available fire mapping.

Figure 8 Alternative graph for total area (ha) burnt per year across Yarraloola LMA land systems for each year of available fire mapping.

Figure 9 Alternative graph for total percentage burnt per year across Yarraloola LMA land systems for each year of available fire mapping.

Figure 10 Total area (ha) burnt per year across the Boolgeeda land system for each year of available fire mapping.

Figure 11 Total area (ha) burnt per year across the Cane land system for each year of available fire mapping.

Figure 12 Total area (ha) burnt per year across the Capricorn land system for each year of available fire mapping.

Figure 13 Total area (ha) burnt per year across the Kumina land system for each year of available fire mapping.

Figure 14 Total area (ha) burnt per year across the Mallina land system for each year of available fire mapping.

Figure 15 Total area (ha) burnt per year across the McKay land system for each year of available fire mapping.

Figure 16 Total area (ha) burnt per year across the Newman land system for each year of available fire mapping.

Figure 17 Total area (ha) burnt per year across the Nanutarra land system for each year of available fire mapping.

Figure 18 Total area (ha) burnt per year across the Peedamulla land system for each year of available fire mapping.

Figure 19 Total area (ha) burnt per year across the River land system for each year of available fire mapping.

Figure 20 Total area (ha) burnt per year across the Robe land system for each year of available fire mapping.

Figure 21 Total area (ha) burnt per year across the Rocklea land system for each year of available fire mapping.

Figure 22 Total area (ha) burnt per year across the Sherlock land system for each year of available fire mapping.

Figure 23 Total area (ha) burnt per year across the Stuart land system for each year of available fire mapping.

Figure 24 Total area (ha) burnt per year across the Urandy land system for each year of available fire mapping.

4 Data limitations

4.1 Spatial resolution

Landsat satellite imagery has a 30 m pixel resolution for the reflectance bands which are used for extracting fire scars. Small fires less than 30 m X 30 m and detailed edging around larger fires are not able to be extracted at this resolution. Due to the uncertainty around the smaller fires any isolated area of mapped 'fire' less than 1 hectare is deleted from the final dataset.

4.2 Fire date attribution

At this current time it is not possible to attribute the fire scar data with monthly date attribution for every month of the year. Fire scars are currently mapped using a difference image between two dates which are generally one year apart; occasionally they are mapped more frequently. Using this method we are only capable of showing the change in the vegetation between those two dates and as such can only determine that the fire occurred at some point in that year interval.

4.3 Size class distribution of fire scars

To calculate metrics based on the size class distribution of fire scars it must first be possible to attribute the fire scars with a more accurate date. The fire scars represent an annual change in vegetation cover over an area. For example; if a fire starts in March and burns 50 ha before extinguishing then another fire starts in June and burns another 50 hectares right up to the boundary of the March fire an annual snapshot of that area would show one larger fire of 100 ha rather than two smaller 50 ha fires a few months apart in age. Calculating metrics based on size class distribution using the current fire scar data could overestimate the percentage of larger fires.

4.4 Missing annual fire scar data

Historical fire scar data for years 2000, 2002 and 2005 is not available; therefore, comparisons of annual changes in fire scar area cannot be made for the period 1999 – 2006. Where there are greater than annual gaps the fire scars identified could have occurred at any time within the two-year period between image dates. This impacts the fire metric analysis in that statistics such as average burnt area per year cannot be calculated across the entire time period.

The table below indicates the imagery dates for previous years fire mapping.

Source data	Image date	Mapping Year
NCAS	23/11/1999	1999
NCAS	16/02/2002	2001
NCAS	21/06/2004	2003
NCAS	16/02/2005	2004
NCAS	06/02/2007	2006
NCAS	04/10/2007	2007
NCAS	10/01/2009	2008
NCAS	14/02/2010	2009
USGS	23/12/2010	2010
USGS	12/02/2012	2011
USGS	02/03/2013	2012
USGS	25/02/2014	2013
USGS	16/03/2015	2014
USGS	29/12/2015	2015
USGS	31/12/2016	2016
USGS	18/12/2017	2017
USGS	06/01/2019	2018
USGS	24/12/2019	2019

Table 9 Historical fire mapping image sources and dates over Yarraloola pastoral lease

4.5 Landsat 7 SLC-Off missing data strips

During the period November 2011 to April 2013 the only available Landsat imagery was from Landsat 7 ETM+ and this imagery had missing data lines ('stripes') which affects the detection and attribution of fires scars. This results in some fires having 'stripes' of missing mapping which then affects the calculation of areas, fuel age and fire frequency.

Landsat images affected by the Scan Line Corrector (SLC) failure are missing approximately 22% of data. Generally the most area lost is towards the edges of the scene with the middle of a scene unaffected. Figure 25 shows an example of the area of the Yarraloola LMA affected by the SLC failure in 2012. The white stripes in the image represent missing data.

Figure 25 Location of missing data across the Yarraloola LMA for Landsat image date 02/03/2012.

Landsat 7 images affected by the SLC failure were used for the fire mapping in years 2012 and 2013. Within the Yarraloola LMA approximately 5.7% of the Landsat 7 image data was missing for the 2012 mapping and approximately 5.8% of the Landsat 7 image was missing for the 2013 mapping.

Table 10 Percentage of area within the Yarraloola LMA which is missing data for affected image dates.

Landsat 7 image date	Percentage of area no data
12/02/2012	5.7
02/03/2013	5.8

References

Chapman, J., Zdunic, K., (2016). Yarraloola annual desktop fire regime monitoring: 2015. Department of Parks and Wildlife, Kensington, WA.

Honeycutt, D., (2012). "Counts overlapping polygons". ArcMap toolbox, http://www.arcgis.com/home/item.html?id=1dd4a6832b3d40b494dbf8521cc5134c

R Core Team, (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

van Vreeswyk, A. M., Leighton, K. A., Payne, A. L., and Hennig, P., (2004). An inventory and condition survey of the Pilbara region, Western Australia, Department of Agriculture and Food, Western Australia. Technical Bulletin 92, 424p.

Data delivery

Datum and projection: GDA 94 MGA50

Date delivered: 25/08/2020

Contact: Katherine Zdunic/Jane Chapman, Remote Sensing Science, Department of Biodiversity, Conservation and Attractions

17 Dick Perry Avenue, Kensington. Katherine.Zdunic@DBCA.wa.gov.au, Jane.Chapman@dbca.wa.gov.au

Dataset Delivered	Format	Description
Yarraloola_Fire_1998_2019_10km_buff	ESRI shapefile	Fire scar mapping for Yarraloola LMA and surrounding area within a 10 km buffer for the time period 1999 – 2019 for all available years
Yarraloola_2019_Fire_stats_report	PDF	This report document
Yarraloola_graphs	JPEG	The graphs contained in the report as JPEGs derived from the raw data
yarraloola_total_area_burnt_years_stats_2019	Excel csv	Raw data