

Predicting Flow and Quality Variability in Growing Urban Drainage

for managing impacts on urban ecosystems

Gavan McGrath, PhD, B.E. Env.
Research Scientist
Department of Biodiversity Conservation and Attractions
gavan.mcgrath@dbca.wa.gov.au
@GavanMcG

Stormwater/Drainage Impacts On Urban Ecosystems

Overview

How do stormwater networks grow?

 Can we use the network structure to predict flow variability and quality (without a complex model)?

Universal River Patterns

Characterizing River (Stormwater) Networks

78	72	69	71	58	49
74	67	56	49	46	50
69	53	44	37	38	48
64	58	55	22	31	24
68	61	47	21	16	19
74	53	34	12	11	12

Elevation

Flow direction

Flow Accumulation

Stream Network

Universal Signatures of Network Organization

Universal Signatures of Network Organization

Scaling of
Length of Stream
vs
Catchment Area

Amann, Jordan

Growth and Scaling of Stormwater

Oahu, Hawaii

1975

Stormwater Networks Scale Like Rivers!

Getting Function from Structure

Example for Combined Sewer Overflows

Linking Network Structure to Function

- Urban Observatory Dresden
- 665 mm/year
- 7,600 population
- River outfall

From Einstein to Hydrologic Variability

https://en.wikipedia.org/wiki/Brownian_motion

Flow Recession at Lochwitzbach

Flow Recession Analysis

From a Network To Flow Dynamics

From a Network To Flow Dynamics

Observed vs Modelled Variability

Rapid Scenario Assessment

Summary

- Stormwater networks have a characteristic structure – like rivers
 - Cross-cultural
 - More similar to rivers as they grow
 - Are engineers really in control?

- Stormwater network structure predicts function
 - Without calibration
 - Function grows with network
 - Variability predictable

Acknowledgements

- TU Dresden
 - P. Krebs
 - T. Kasebeburg
 - F. Blumesaat
 - J. D. Reyas-Silva
- Helmholtz Centre for Environmental Research
 - D. Borchardt

- Collaborators on Hydrological Synthesis
 - K. Paik
 - J. Jawitz
 - P.S.C. Rao
 - S. Yang

Einstein-like approach

Hydrology
$$\left\{\begin{array}{l} \frac{dQ}{dt} = -k\ Q^{\alpha} + \xi(t) \\ \end{array}\right\}$$
 Random (weather) forcing

Equations for Histograms

Flow, Water Quality, Overflows, UWWTP Loads, etc.

$$p_{q_{\rm c}}(Q_{\rm c}) = K \left\{ (Q_{\rm c} - Q_{\rm s})^{-\alpha} \exp \left[-\frac{\gamma}{k} \frac{(Q_{\rm c} - Q_{\rm s})^{2-\alpha}}{(2-\alpha)} + \frac{\lambda}{k} \frac{(Q_{\rm c} - Q_{\rm s})^{1-\alpha}}{(1-\alpha)} \right] + \frac{k}{\lambda} \delta(Q_{\rm c} - Q_{\rm s}) \right\}$$

Rainfall Variability + Sanitary Baseflow

