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Predicting flow and quality variability in growing urban drainage
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The paucity of data in urban catchments is a constraint when it comes to planning waterwise urban development. In this talk I’ll present recent research where we investigated how urban stormwater infrastructure grows in time and how to use the network structure to estimate the variability of flows and water quality. We find that cumulative drainage area, pipe lengths and other catchment characteristics scale in almost an identical manner as natural rivers. So we conclude that the stormwater network structure is an inevitable outcome and not one designed by the engineer. We also applied an analysis of drainage network structure (i.e. the pipe network) to predict the characteristics of discharge following rainfall events, the flow recession exponent. From this and rainfall data we were able to predict the variability of discharge and water quality at 10 minute temporal resolution. The model compared well with a 17 year Storm Water Management Model simulation that had been extensively calibrated to data. The ability of such a simple model to reproduce these behaviours suggests a means to make predictions to better manage ungauged urban stormwater systems.
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Being able to model urban stormwater systems and how they grow can help us manage stormwater impacts on vulnerable urban ecosystems.
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Overview

How do stormwater networks grow?

Can we use the network structure to
predict flow variability and quality
(without a complex model)?
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Universal Signatures of Network
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Statistical evidence of scaling behavior in the fluvial landscape: finite-size scaling of total contributing catchment area. Empirical probability distributions of contributing area are simply derived by computing A at every location from topography and plotting the probability obtained by counting the relative proportion of sites anywhere in the catchment whose total contributing area exceeds a current value a, here expressed in square kilometers. Empirical plot for five nested subcatchments of different maximum area indicated in the legend. (Inset) Collapse plot of the probability distribution once properly rescaled. The empirical cutoff function is argued to behave as , where β is estimated at 0.44. F is shown to behave properly by collapsing into a single curve regardless of widely varying . Note that for and const for . The nested catchments belong to the Tanaro river basin (Italy).


Department of Biodiversity, y Biodiversity and
Conservation and Attractions - Conservation Science
\j

Universal Signatures of Network
Organization

103: 7000
s - Scaling of
1000 ™ Length of Stream

VS
Catchment Area

-
L

Length ~ Area%®

sl i PR S S A i
10! 10° 10° 10* 10°

Catchment Area (km?)

-
.2
LT

Maximum Stream Length (km)

Sassolas-Serrayet, Cattin, and Ferry, Nature Communications, 2018




Department of Biodiversity, y Biodiversity and
Conservation and Attractions - Conservation Science
\j

GOVERNMENT OF
WESTERN AUSTRALIA

Amann, Jordan

1970 1975

Pipeline ¥

Yang, S., Paik, K., McGrath, G. S., Urich, C,,

Krueger, E., Kumar, P., & Rao, P. S. C. (2017).

Water Resources Research, 53(11), 8966-8979.
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Stormwater Networks Scale Like Rivers!
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Getting Function from Structure
Example for Combined Sewer Overflows
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Linking Network Structure to Function
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From Einstein to
Hydrologic Variability
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Flow Recession at Lochwitzbach
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From a Network To Flow Dynamics
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Water Resources Research, Volume: 49, Issue: 8, Pages: 4900-4906, First published: 24 June 2013, DOI: (10.1002/wrcr.20379)
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From a Network To Flow Dynamics
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Observed vs Modelled Variability

Histogram of Flow Histogram of Ammonia
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Rapid Scenario Assessment
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Summary

Stormwater networks ¢ Stormwater network

have a characteristic structure predicts
structure — like rivers function
— Cross-cultural — Without calibration
— More similar to rivers — Function grows with
as they grow network
— Are engineers really in — Variability predictable
control?
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Einstein-like approach

Hydrology{ Z—f = —k Qa + ﬁ(t)

Random
Flow Recession _ » (weather) forcing

4

Equations for Histograms
Flow, Water Quality, Overflows, UWWTP Loads, etc.
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Rainfall Variability + Sanitary Baseflow

05 JFM
04 e 1)
T o 70
0.3 o ]
E £ 60
% 0.2 +: -
* o1 L
: Z. 50
0.0 T T 1 T T I T T I T T I I T 1T T 11
o 5 10 15 20 0 3 B g 12 000 004 008 0.12
. —1
Depth (mm) Time (d) pdf (L mg™)
0.7 MAM 16 3 b)
0.6 — ] -
05 ‘w12
- |
- 04 ] h
g 03 G °
0.2 4
o1 T T I T T I T T I T T I T [ I I I
00 0 3 6 g 12 0.00 0.10 0.20
. I T I I X -
Time (d) pdf(sL )

0o 2 4 @ 8 10 12 14
Inter—event time (d)



	Predicting Flow and Quality Variability in Growing Urban Drainage�for managing impacts on urban ecosystems�
	Stormwater/Drainage Impacts �On Urban Ecosystems
	Overview
	Universal River Patterns
	Characterizing River (Stormwater) Networks
	Slide Number 6
	Slide Number 7
	Growth and Scaling of Stormwater 
	Stormwater Networks Scale Like Rivers!
	Getting Function from Structure�Example for Combined Sewer Overflows
	Linking Network Structure to Function
	From Einstein to�Hydrologic Variability
	Process
	Flow Recession at Lochwitzbach
	Flow Recession Analysis
	From a Network To Flow Dynamics
	From a Network To Flow Dynamics
	Observed vs Modelled Variability 
	Rapid Scenario Assessment
	Summary
	Vision
	Acknowledgements
	Einstein-like approach
	Rainfall Variability + Sanitary Baseflow

