

Spatial and temporal variation in PFAS within an urban estuary and accumulation in biota

Peter Novak and Steeg Hoeksema

Dept Biodiversity, Conservation and Attractions

What is PFAS?

Contan

Department of **Biodiversity**, **Conservation and Attractions**

Arch Toxicol. 2018; 92(2): 705-716. Published online 2017 Oct 23. doi: 10.1007/s00204-017-2077-8

PFOS induces proliferation, cell-cycle progres phenotype in human breast epithelial cells

Paula Pierozan and Oskar Karlsson^{IX}

Toxic firefighting foam hazard 'as bad as asbestos'

Richard Wood 13/07/2018

RESEARCH ARTICLE | SEPTEMBER 01 2009

Toxicology and Applied Pharmacology

Volume 220 Jacue 1, 1 July 2008, Pages 23-32

perfluc enviror Fatihah Suja Water Sci Te

Legacy issues from toxic firefighting foam continue to be an issue

ration of gene exposed to PFOS

Posted 20 Oct 2018, 6:39am https://doi.c

In the Swan and Canning Estuary, Western Australia?

Aims of the study

- Determine the extent and distribution of PFAS in the Swan Canning Estuary and its catchment
 - Can potential sources be identified?
- How is PFAS accumulating in key aquatic species black bream (Acanthopagrus butcheri) and blue swimmer crabs (Portunas armatus)
 - Partitioning between body tissues
 - Differing accumulation in different regions of the estuary

Methods – surface water

- 20 estuary sites and 32 catchment sites were targeted for PFAS analysis.
- Samples were collected every 6 months from December 2016 to June 2018

Results – Surface water

- PFAS every site
- PFOS and PFHxS were the dominant compounds
- PFOS below detect (0.0003 μ g/L) at 1 site

Catchment									
Compound	Min	Max	Median	Detects	Count				
PFOS	0	4.1	0.0242	105	108				
PFHxS	0	1.8	0.0131	104	108				
PFOA	0	0.168	0.0067	87	108				
PFHpA	0	0.096	0.0048	97	108				
PFHxA	0	0.46	0.0096	102	108				
PFPA	0	0.27	0.00865	101	108				
PFBA	0	0.15	0	50	108				
PFBS	0	0.24	0.0042	100	108				
8:2 FTS	0	0.017	0	12	108				
6:2 FTS	0	0.66	0	43	108				
PFOS+PFHxS	0	5.9	0.03845	105	108				
\sum PFAS	0.0051	7.072	0.08725	108	108				

	Estuary							
Compound	Min	Max	Median	detects	count			
PFOS	0.0041	0.12	0.0215	80	80			
PFHxS	0.0022	0.051	0.00895	80	80			
PFOA	0	0.015	0.0024	71	80			
PFHpA	0	0.016	0.00135	71	80			
PFHxA	0.0005	0.036	0.00335	80	80			
PFPA	0	0.047	0.0051	78	80			
PFBA	0	0.025	0	23	80			
PFBS	0	0.029	0.0019	68	80			
8:2 FTS	0	0	0	0	80			
6:2 FTS	0	0.037	0	30	80			
PFOS+PFHxS	0.0063	0.149	0.03	80	80			
Σ PFAS	0.0101	0.353	0.0519	80	80			

PFAS in biota

Aims

- How is PFAS accumulating in key aquatic species black bream (*Acanthopagrus butcheri*) and blue swimmer crabs (*Portunas armatus*)
 - Partitioning between body tissues
 - Differing accumulation in different regions of the estuary

Methods – biota

- Blue swimmer crabs (*Portunas armatus*) and black bream (*Acanthopagrus butcherii*) were sampled
 - Crabs muscle and viscera (hepatopancreas, gills and gonads)
 - Bream muscle, liver, gonads and carcass

PFAS in Acanthopagrus butcheri

Mean PFOS+PFHxS concentrations in bream tissue were:

100

80

60

40

20

0

PFOS+PFHxS concentration (μg/kg)

Female

T.

Muscle

- Muscle 2.3 (±0.4 SE) μg/kg
- Carcass 10.3 (±1.8SE) μg/kg
- Liver 23.5 (±4.1SE)
 μg/kg

 Significant (P<0.05) regional difference in <u>female</u> PFAS concentration

🖩 Male

Carcass

Liver

PFAS in Portunas armatus

Key results

- A greater number of PFAS compounds were detected in *P. armatus*
- PFOS+PFHxS concentrations were higher in viscera
- PFOS+PFHxS concentrations were higher in female *P. armatus*

To what extent is PFAS accumulating?

Conclusion

- PFAS was detected throughout the estuary, its catchment and key biota species
- Catchment sources varied both seasonally and spatially, highest concentrations were consistently associated with water courses draining:
 - Perth Airport
 - Pearce Airbase
- In the estuary legacy PFAS dominated PFOS and PFHxS, elevated throughout the middle reaches of the Swan Estuary
- PFAS was detected in every biota specimen
 - Regional differences in PFAS concentration in female bream reflect different catchment sources?
 - Didn't accumulate with length postulated due to solubility with water
- Human health risk assessment completed

Conclusion

- Knowledge gaps
 - Groundwater in the Swan Canning Estuary
 - More broadly, toxicity effects on biota and ecosystem function at relevant concentrations
 - Multiple stressor approaches
- Remediation
 - Airport North Main Drain
 - Pilot trial commenced to test efficacy of PFAS removal by a constructed wetland.

Thank you to all involved in the Rivers and Estuaries Science Program at the Dept of Biodiversity, Conservation and Attractions.

For more information contact:

peter.novak@dbca.wa.gov.au

https://www.dpaw.wa.gov.au/management/swan-canningriverpark/ecosystem-health-and-management

Estuary and catchment links – Winter

PFAS accumulation in *A. butcheri*?

- Expected PFAS concentration to increase with size
- No significant relationship between fish length and concentration, nor Hepatosomatic index or gonadosomatic index
- Significant positive trend for female body burden
- Bioaccumulation factor = 207 (mean whole fish PFOS = 7.5 μg/kg, mean estuary water PFOS = 0.0361 μg/L

PFAS accumulation in P. armatus

- No significant relationship between size and muscle or viscera concentration
- No significant relationship between size and muscle load or viscera load for females, but
- Significant positive relationship for male viscera load

