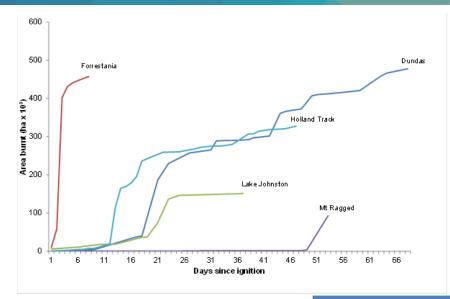





# Context

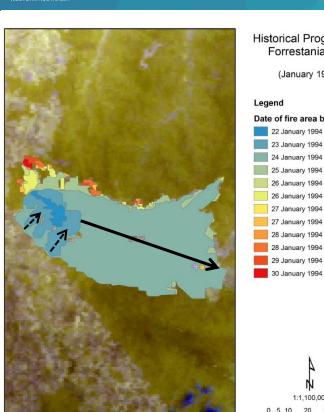
- When might prescribed burning make a difference to the spread of bushfires?
- Vegetation and fuel type
- Previous fire history
- Weather factors






Southwestern Australia showing location of five large fires (>90 000ha)

1990/91 fire season >700 000 ha burnt at: Lake Johnston Dundas Mt Ragged






## Re-constructed spread of five large fires Thanks Katherine Z and Vicky R!

| Fire          | Start date  | Duration of fire activity (days) | Final fire area<br>(ha x 1000) |
|---------------|-------------|----------------------------------|--------------------------------|
| Lake Johnson  | 19 Dec 1990 | 36                               | 151                            |
| Dundas        | 20 Dec 1990 | 70                               | 478                            |
| Mt Ragged     | 6 Jan 1991  | 53                               | 93                             |
| Forrestania   | 21 Jan 1994 | 9                                | 466                            |
| Holland Track | 5 Dec 2004  | 37                               | 311                            |





#### Historical Progression Forrestania Fire

(January 1994)

### Date of fire area burnt

23 January 1994

24 January 1994 25 January 1994

26 January 1994 7:45 am

26 January 1994 5:03 pm 27 January 1994 7:23 am

27 January 1994 4:51 pm

28 January 1994 7:02 am 28 January 1994 4:40 pm

29 January 1994

30 January 1994

## 1:1.100.000 Projection: Universal Transverse Mercator

MGA Zone 50 Datum: GDA94

### The remarkable spread of the 1994 Forrestania fire

22 Jan: ignited by lightning

23 Jan: 58 000 ha burnt, fire size increased by backfiring

24 Jan: Fire spread 80 km, area increase 350 000 ha

#### Weather Max temp 40°+

Dry adiabatic mixing to 5000m+

NNW winds 46 knots at 1000 m (900hPa) Linked to approaching low pressure system south of fire



# Vegetation and fuel type

Gimlet – 19 year-old saplings burnt by mild fire May 2012 – 95% deaths









## **Dundas Nature Reserve**

synchronous basal fire scars in an area burnt mildly during summer bushfire





## Forrestania

Vegetation structure change along previous fire boundaries







# Structural change in eucalypt woodlands near Lake Johnson burnt by high intensity bushfire in January 1991







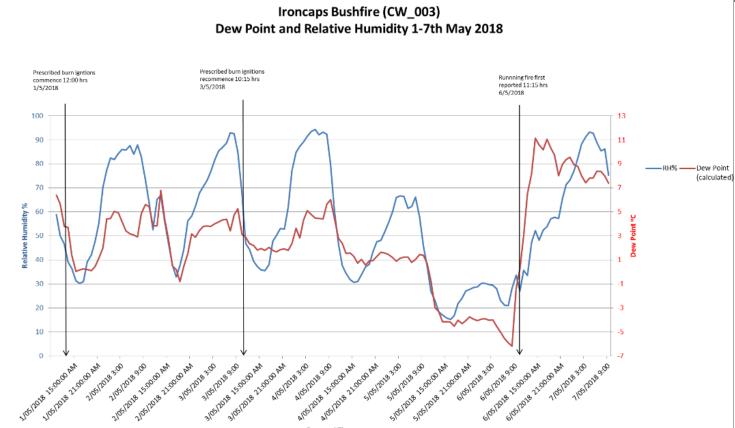


# Inputs for prescribed fire planning

- Vegetation mapping
  - structural type (woodland, mallee, shrub)
    dominant species (fire tolerance)
- Previous fire history (+severity)
  - structural condition
- Better understanding of fire response for key plant species, and tools to support practitioners






| Temperature<br>(C) | Dew Point<br>(C) | Rel<br>Humidity<br>(%) | Dead fuel<br>MC<br>(%) | Relative<br>rate of<br>spread |
|--------------------|------------------|------------------------|------------------------|-------------------------------|
| 25                 | 10               | 35                     | 7                      | X 1                           |
| 25                 | 0                | 20                     | 4.5                    | X 2.5                         |

Dew point drop out linked to:

- Shift in wind direction (eg on-shore to off-shore)
- Pre-frontal troughs
- Thermal mixing during the afternoon
- Descending dry air on lee slopes of ranges







Date and Time



## Weather factors

- Deployment of portable AWS to burn sites
- Building knowledge of good burning windows by good observation & recording
- Embedded meteorologist (MaxBurn)