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ABSTRACT: Many different methods of synthesizing and analyzing environmental monitoring data exist. 
Given the diversity of current environmental monitoring projects, and the large number of scientists and 
policy-makers involved, there is a critical need for a universal format that both summarizes data sets and 
indicates any potential need for management action. Control charts, originally developed for industrial 
applications, represent one way of doing this. Control charts indicate when a system is going ‘out of 
control’ by plotting through time some measure of a stochastic process with reference to its expected 
value. Control charts can be constructed for many different types of indicators, whether univariate or 
multivariate. Control charts are simple to interpret, and can easily be updated whenever additional data 
become available. The relative risks of Type I (i.e., concluding meaningful change has occurred when 
actually it has not) and Type II (i.e., concluding meaningful change has not occurred when in fact it 
has) errors are intuitive and easily adjusted, and one may define a threshold for action at any desired 
level. Control charts may often be more informative than traditional statistical analyses such as regres-
sions or parameter estimation with confidence intervals. The primary challenge in most situations will 
be determining a stable or baseline state for the ecological indicator in question.

Index terms: confidence intervals, control chart, control limit, ecological indicator, environmental 
monitoring

INTRODUCTION

Monitoring the ecological integrity of 
natural resources is an important activity 
for many government agencies, university 
researchers, and private foundations con-
cerned with conservation. As the world 
changes due to human-induced pressures 
and natural sources of variation, there 
is an increasing need to document these 
changes and take action, when necessary 
and possible, to halt or reverse undesirable 
trends. Frequently many individuals will 
be involved in this process for any vari-
able of interest. For example, some will be 
involved in data collection, others in data 
analysis, still others in interpretation, and a 
final group charged with making decisions 
based on the results.

The type of information needed may also 
vary; for example, at times one may be 
interested in a measure of central tendency 
(e.g., a mean) and at other times a measure 
of variability (e.g., a range). Given the 
large number of response variables that are 
currently being evaluated (or are planned 
for evaluation) and the plethora of statis-
tical (and astatistical) methods available 
for such analyses, the ultimate number 
of different types of data organization 
or analysis ‘products’ is very large. For 
example, data from monitoring projects 
could be analyzed by different types of 
regression approaches, ANOVAs, time 
series analyses, Monte Carlo modeling, 
plotted as simple graphs without the use 
of inferential statistics, etc. (e.g., Hatfield 

et al. 1996; Thomas 1996; Dixon et al. 
1998; Elzinga et al. 2001).

Ultimately, the critical component of this 
entire process rests with those charged with 
making decisions based on interpretation of 
data. These are frequently resource manag-
ers who may not have an in-depth knowl-
edge of statistics or busy administrators 
who may devote only a few minutes to any 
given issue. The production of many varied 
types of data summaries and analyses, some 
of which may be quite complicated, may 
have the effect of creating confusion and 
indecision. Thus, there exists a critical need 
for some type of ‘common currency’ for 
the process of data analysis and reporting 
in environmental monitoring programs. We 
need a universal format that summarizes 
the data and indicates any potential need 
for management action. Ideally, this format 
would be the same for any type of variable. 
It would be straightforward to interpret, 
simple to update, and easy for someone 
with little time and without a strong sta-
tistical background to obtain a basic, yet 
accurate understanding of the issue.

The solution lies in the use of control 
charts, originally developed for, and used 
frequently in, industrial applications. Con-
trol charts indicate when a system is going 
‘out of control’ by plotting through time 
some measure of a stochastic process with 
reference to its expected value. Control 
charts may be univariate or multivariate, 
representing one or more than one ‘quality 
characteristic.’

C O N S E R V A T I O N   I S S U E S
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CONTROL CHART FUNDAMENTALS

Control charts have a long history in 
industry as a component of statistical 
process control (e.g., Wetherill and Brown 
1991; Beauregard et al. 1992; Gyrna 2001; 
Montgomery 2001). The theoretical basis 
for a control chart is illustrated in Figure 1. 
The value of some ‘quality characteristic’ 
is plotted along the y-axis, whereas the 
x-axis represents time or sample number. 
There is a target or centerline value for 
an ‘in-control’ process. The actual value 
is expected to vary randomly around this 
centerline over time. Upper and lower 
‘control limits’ specify thresholds beyond 
which variability in the quality character-
istic indicates a process is ‘out of control.’ 
This type of control chart is known as a 
Shewhart control chart (Shewhart 1931).

Control charts may be constructed for 
numerous variables of interest, including 
measures of central tendency and vari-
ability. In manufacturing, control charts 
are also constructed for attribute or count 
data. In this case, the quality characteristic 
would represent a proportion or number.

Control charts have been suggested for 
use in natural resource monitoring (e.g., 
(McBean and Rovers 1998; Manly 2001), 
although such application of control charts 
appears very limited (see Atkinson et al. 
2003 for an example). In this paper, I fo-
cus on the application of control charts to 
natural resource monitoring, and employ 
somewhat different terminology than tra-
ditionally used in industry. I use the term 
‘indicator’ in place of quality characteristic, 
to represent the natural resource of inter-
est. I also employ the term ‘control limit’ 
more broadly, used here to represent any 
threshold at which management should be 
alarmed and consider action, regardless of 
the statistical basis of this threshold.

Most traditional control charts assume that 
observations come from a normal distri-
bution or that data can be transformed to 
normality. In industry, control limits are 
often set at a distance of three standard 
deviations on either side of the centerline 
(Wetherill and Brown 1991; Beauregard 
et al. 1992; Montgomery 2001). Thus, 
assuming a normal distribution centered 

at the centerline, the control limits would 
encompass 99.73% of the distribution.

Control limits may be constructed to con-
tain any desired proportion of the distribu-
tion (i.e., representing [1-α] confidence 
intervals for any α). In this case, choosing 
control limits is equivalent to specifying 
a critical region for testing the hypothesis 
that a specific observation is statistically 
different from the proposed centerline 
value. (It is crucial that the centerline 
value is representative of the true popula-
tion parameter.) Control limits could also 
be based on probabilistic thresholds other 
than confidence intervals (e.g., McBean 
and Rovers 1998).

If the observations cannot be assumed to 
come from a normal distribution, there are 
several options available beyond simple 
transformations of data. One option is to 

create subgroups of consecutive samples 
and then use the subgroup averages, which 
will be approximately normally distributed 
in accordance with the central limit theorem 
(see Beauregard et al. 1992; Montgomery 
2001). It is possible to construct control 
charts based on other distributions (e.g., a 
Poisson distribution as in Atkinson et al. 
2003) and construct analogous confidence 
limits, as long as the distributions are 
known. Distribution-free confidence limits 
may also be calculated, although these will 
usually be relatively wide and less sensitive 
to changes (Conover 1999).

It is not absolutely necessary to use val-
ues from a statistical sampling process 
to determine centerlines and thresholds 
for action. It is possible to subjectively 
choose a centerline value as the desired 
state and set threshold limits to match the 
amount of variability with which one is 

Figure 1. Theoretical basis for a control chart. In industry, the centerline value represents an ‘in-control’ 
process, which is analogous to a baseline or ‘normal’ (or target) value for ecological indicators.



68 Natural Areas Journal Volume 28 (1), 2008

comfortable for the variable of interest. It 
is crucial to realize that this approach has 
no statistical basis, and thus probabilities 
cannot be readily associated with the 
observations. This application also has a 
precedent in industry. Such charts, which 
plot observations without relevance to an 
underlying distribution, have been termed 
‘conformance charts.’ Threshold values, 
which may be subjective, are termed 
‘action limits’ (Beauregard et al. 1992). 
If taking this approach in the context of 
environmental monitoring, one should be 
very familiar with the system in question 
and, preferably, select values that are de-
fensible based on scientific data.

MULTIVARIATE CONTROL CHARTS

Most applications of control charts in 
industry have been of the univariate type. 
In environmental monitoring, however, 
we often simultaneously track multiple, 
inter-related variables, and frequently large, 
complex communities. Moreover, methods 
employing multivariate measures of spe-
cies assemblages may be more sensitive 
to change than single indicator species 
or univariate indices (e.g., the Shannon 
diversity index) (Clarke 1993; Pettersson 
1998). How does one produce a simple 
control chart that simultaneously sum-
marizes multiple variables?

In industry, the Hotelling T2 multivariate 
control chart has traditionally been used 
for simultaneous evaluation of two or 
more variables of interest. It is based on 
a chi-square statistic, and thus requires 
a multivariate normal distribution. Such 
conventional multivariate control charts 
are useful when the number of variables 
is relatively small (<10). When a relatively 
large number of variables are of simultane-
ous interest, the traditional approach has 
been to reduce the dimensionality of the 
problem, usually through principal compo-
nents analysis (Montgomery 2001).

A new type of multivariate control chart, 
however, has recently been proposed for 
use with complex ecological communities 
(described in Anderson and Thompson 
2004), and appears to have utility for 
long-term environmental monitoring. In 

contrast to other approaches, this method 
does not require any specific distributions 
of variables. In general, species abundances 
are not distributed as multivariate normal 
(Taylor 1961; Gaston and McArdle 1994). 
Traditional multivariate procedures are 
frequently not robust to violations of this 
assumption (Mardia 1971; Olson 1974).

The method requires species abundance 
data from one or more sites collected over 
a number of years. The data could represent 
species numbers, frequencies, biomass, etc. 
There is no limit to the number of species 
that could be included. Principle coordinate 
analysis (a.k.a. metric multidimensional 
scaling) is applied to the species abundance 
data. In theory, any distance or dissimilar-
ity measure could be used, although some 
may have advantages over others (Ander-

son and Thompson 2004). This produces 
an ordination in which a point from each 
observation period is plotted in multivariate 
p-space through time. The first two result-
ing coordinates are used to construct the 
control chart. The y-axis in the control chart 
represents the distance between two points 
in the ordination graph. The deviation of 
a particular observation can be based on 
the distance from each observation to a 
centroid based on all previous observations 
or from a mean calculated from a baseline 
set of observations. The user specifies the 
baseline period. A bootstrapping procedure 
may be used to obtain control limits, which 
can be set at any desired value. Only up-
per control limits are relevant, because all 
plotted values will be distances, which are 
positive. The final product is similar to a 
univariate control chart (Figure 2).

Figure 2. The basic elements of a multivariate control chart, based on the method of Anderson and 
Thompson (2004). The y-axis indicates the distance between the most recent observation and a ‘baseline’ 
average position of all or some previous observations, as determined by plotting the first two coordi-
nates determined by principle coordinate analysis. The control limit is determined by a bootstrapping 
procedure. Because all distances are positive, only an upper control limit is needed.
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DETERMINING THE CENTERLINE 
VALUE

There is a fundamental difference between 
the use of control charts in industrial pro-
cesses compared with natural resources 
monitoring. In industry, an engineer 
usually determines the centerline for the 
quality characteristic, and the machinery 
is designed and adjusted accordingly. 
Relatively little variability exists around 
the centerline, which may be known before 
any samples are taken. In natural resources 
monitoring, we are dealing with parameters 
that are often unknown (before the com-
mencement of monitoring) and are always 
changing, at least over some time scale. 
Relatively large variabilities frequently 
characterize environmental data. Issues 
of seasonality and phenology may also 
complicate the situation.

Thus it will usually be more difficult to 
determine a ‘normal’ or baseline state for 
any environmental indicator, whether uni-
variate or multivariate, relative to industrial 
applications. In some cases, we may have 
long-term datasets that provide a basis for 
determining the centerline. In other cases, 
however, we may have relatively little or no 
such data. The baseline value may be deter-
mined from a relatively short time period, 
although this baseline may be unstable, and 
re-evaluation of the robustness of this esti-
mate may be necessary over time as more 
data become available. Another option 
would be to combine empirical data with 
a subjective estimate of the desired state 
of the resource to determine a centerline 
value and control limits. This would be a 
somewhat ‘Bayesian’ approach, and would 
make calculation of probabilities difficult 
(or impossible). Finally, one may simply 
employ a set of ‘desired’ conditions (as in 
conformance charts in industry), although 
any thresholds would not be statistically 
based. Preferably, such decisions would be 
based on knowledge of the natural history 
of the system in conjunction with compa-
rable data from other systems.

How many observations are necessary to 
establish the baseline period? For industrial 
applications, something on the order of 
20 samples is usually recommended (Be-
auregard et al. 1992; Montgomery 2001). 

In environmental monitoring scenarios, 
it may not be practical to wait this long 
before establishing a baseline, especially 
if samples are collected annually, and 
baselines may need to be established based 
on a smaller number of samples (e.g., At-
kinson et al. 2003). In any case, there are 
no substitutes for good judgment. In some 
cases, it may be informative to evaluate 
multiple centerlines (e.g., Anderson and 
Thompson 2004).

INTERPRETATION

The most basic interpretation of a con-
trol chart is that the process is in control 
when observations fall within the control 
limits and out of control when observa-
tions exceed these limits. There are many 
other types of patterns, however, that are 
indicative of a smaller degree of change 
in the indicator over time. In fact, any 
non-random pattern may be indicative 
of an important change. For example, if 
one assumes a normal distribution, 50% 
of the observations would be expected to 
fall on either side of the centerline. If a 
number of consecutive observations fell 
on one side of the centerline, this would 
be cause for concern. A number of other 
recognized patterns that indicate a depar-
ture from randomness in control charts are 
described by Beauregard et al. (1992) and 
Montgomery (2001).

In a long-term environmental monitoring 
program, it must be realized that a single 
observation falling outside a control limit 
does not necessarily represent an out of 
control process. In the case of control limits 
representing (1-α) confidence intervals, it 
would be expected that α of the observa-
tions would fall within the control limits. 
Thus, one out of every 1/α observations 
would be expected to fall outside these 
limits based on natural variability in the 
system, independent of any systematic 
change. (For example, if α = 0.05, 1 out 
of every 20 observations would fall outside 
the limits.) Thus, an occasional observation 
above or below the control limits may not 
be cause for alarm, particularly if there 
are an equal number of observations fall-
ing above and below the upper and lower 
control limits, respectively.

As in more traditional statistical approach-
es, control charts allow for determination 
of the likelihood that certain observations 
are due to chance variability, rather than an 
actual trend. In traditional null hypothesis 
significance testing (NHST), this is known 
as evaluation of the Type I error rate. A 
Type I error in this case would represent 
change, concluding that one has found a 
significant change when there was none. 
Control charts allow for a very intuitive 
approach to evaluating the likelihood of 
such ‘false positives.’ For example, for 
a particular indicator we may assume a 
normal distribution (setting the centerline 
at the center of this distribution) and cal-
culate 95% confidence intervals to serve 
as control limits. The likelihood of various 
observations falling beyond a given control 
limit could be easily calculated.

The other type of mistake one could 
make when evaluating such data would 
be to conclude that the population is not 
changing when in fact it is (i.e., a Type II 
error). Evaluation of the Type II error rate 
is known as power analysis. Power is often 
relatively low in many NHST approaches to 
analyzing environmental monitoring data, 
especially during the first decade or so of 
monitoring (e.g., Gibbs and Melvin 1997; 
Hayes and Steidl 1997; Van Strien et al. 
1997; Gibbs et al. 1998). In environmental 
monitoring, it may often be desirable to 
control primarily for the Type II error rate, 
rather than the Type I error rate, which 
is what is usually done (i.e., α is usually 
specified in the statistical analysis, and 
power will be a function of α and other 
variables) (Lindley et al. 2000).

Adjustment and interpretation of both types 
of error are simple and straightforward in 
the use of control charts. Widening the 
control limits decreases the risk of a Type 
I error, and increases the risk of a Type 
II error. The opposite is true if the limits 
are narrowed.

COMPARISON WITH OTHER 
METHODS

The use of control charts has a number of 
advantages compared to more traditionally 
employed methods of evaluating envi-
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ronmental monitoring data. For example, 
regression analyses are frequently used 
in attempts to detect significant trends. 
The pattern of change in the parameter of 
interest may not be linear, however, nor 
very nearly approximate other commonly 
used regression functions. Moreover, many 
years may be required before enough data 
points are obtained so that a regression 
becomes ‘significant,’ as the P-value in 
such analyses is strongly influenced by 
sample size. The fewer observations, the 
less likely the relationship will be deemed 
significant, even if a real trend is occur-
ring (Utts 1988; Johnson 1999; Anderson 
et al. 2000). Greater natural variability in 
the variable of interest (more scatter of the 
points around the regression function) will 
extend this time even farther. In contrast, 
it is possible to obtain a ‘significant’ result 
from a control chart in a shorter period 
of time.

Most statistical methods of testing for a 
trend employ a NHST framework. NHST 
has been criticized, both in general and 
specifically as used for ecological data. 
We know that no two populations will be 
exactly the same at different points in time. 
If we fail to find a significant difference, 
it is simply because our sample size was 
too small or we were not able to measure 
the population accurately enough (or the 
population was too variable). Thus, our 
null hypothesis of no change is trivial, 
and known to be false before we begin 
(Cherry 1998; Johnson 1999; Anderson 
et al. 2000). Many statisticians have advo-
cated the use of parameter estimation along 
with confidence intervals instead of NHST 
(e.g., Carver 1993; Kirk 1996; Hoenig and 
Heisey 2001; Colegrave and Ruxton 2003; 
Nakagawa and Foster 2004).

Are control charts considered parameter 
estimation or null hypothesis significance 
testing? They contain elements of both. In a 
‘pure’ parameter estimation approach, one 
would estimate the value of the parameter 
of interest and construct a confidence inter-
val for each point in time, and then try to 
determine which points were different from 
each other. This is not always a straight-
forward task, however, and recent studies 
have shown that confidence intervals are 
frequently misinterpreted (Cumming et al. 

2004; Belia et al. 2005).

With a control chart approach, one con-
structs a control limit (which may represent 
a confidence interval or some threshold of 
biological significance) and compares suc-
ceeding observations to this limit. As such, 
one may be testing the hypothesis that an 
observation is different from the centerline 
value for each new observation, depending 
upon how control limits are defined. Thus, 
whether this approach qualifies strictly as 
a traditional null hypothesis significance 
test may be debated, and would vary from 
one application to another.

Unlike a traditional NHST, exact P-values 
are not reported with control charts (al-
though they could be calculated for each 
observation, assuming the appropriate 
distribution and what the control limits 
represent). The problem with P-values is 
that the 0.05 threshold is often interpreted 
as an absolute difference between night and 
day, regardless of whether P is 0.06 or 0.9 
(Yoccoz 1991; Kirk 1996; Robinson and 
Wainer 2002). In reality, two populations 
will rarely ever be exactly the same, but 
will vary to differing degrees. With control 
charts, one is able to see how far the ob-
servations fall from both the centerline and 
the established control limits. Additionally, 
with control charts, one would not neces-
sarily have to conclude that no difference 
exists over time in the parameter of interest, 
but rather that the observations are either 
within the specified range of acceptable 
values or not.

One advantage of control charts compared 
to a traditional NHST approach is that a 
number of potential nonrandom patterns 
may be evident from a control chart (as 
described above) and each type of pattern 
may contribute a unique component of 
information regarding the indicator. With a 
NHST approach, the primary conclusion is 
simply to reject or fail to reject the null hy-
pothesis. Although the tests associated with 
NHST may provide additional information, 
there is frequently a one-dimensional focus 
on the P-value.

Perhaps the primary advantage of using a 
NHST approach in a monitoring program is 
the fact that such an approach necessitates 

a yes-no decision (i.e., either the parameter 
of interest is changing or it is not). In such 
a case, rejection of the null hypothesis may 
trigger management action. The primary 
advantage of using control charts over 
a pure parameter estimation approach is 
that control charts establish a threshold for 
action, whereas simple parameter estima-
tion with associated confidence intervals 
does not.

In environmental monitoring, a frequent 
goal is to determine when an indicator has 
changed by a certain percentage (e.g., when 
a population has declined by 20%). Such a 
change is presumed to represent a biologi-
cally meaningful level at which manage-
ment should be concerned. Yet, this is not 
easy to accomplish with a traditional NHST 
approach. A power analysis is frequently 
employed in this context, yet one must be 
careful not to confuse the ‘effect size’ of the 
power analysis with the amount of absolute 
change in the population (Morrison 2007). 
In other words, with a traditional NHST 
approach, one is testing whether there is 
some non-zero difference, and thus any 
conclusions must relate to the hypotheses 
under test. For any test, the effect size for 
a given level of power will vary depending 
upon the other variables that enter into the 
calculation of power, such as sample size 
and the probability of a Type I error. Testing 
biologically meaningful hypotheses (e.g., a 
null hypothesis of <20% change) requires 
the use of a different type of sampling 
distribution than is available in most texts 
and computer software packages, and such 
null hypotheses are much more difficult 
to reject (Murphy and Myors 2004). In 
contrast, control charts allow one to easily 
determine when an indicator has changed 
by any given percentage. All one has to do 
is establish threshold limits as a percentage 
of the baseline value.

A HYPOTHETICAL EXAMPLE

Consider the following example: A popu-
lation of concern is monitored on an an-
nual basis. Each year, five surveys of the 
population are conducted on separate days 
over a two-week period. (We assume the 
population consists of long-lived organ-
isms and will change negligibly over a 
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two-week period.) Nine years of data are 
currently available. Management would be 
concerned if the population was found to 
decrease by 20%, and in that case would 
implement measures designed to further 
protect the population.

Three simple analysis techniques are ap-
plied to the data: (1) linear regression, (2) 
parameter estimation with confidence inter-
vals, and (3) a control chart approach. We 
assume that the data come from a normal 
distribution, which is required by the first 
two techniques, but not the control chart 
application in this particular example.

The regression is an inferential approach 
that tests the hypothesis that the population 
is changing (in this case, linearly) over 
time. In the example, the sample mean 
estimates are regressed against time (Figure 
3A). The regression reveals no significant 
trend by the traditional α = 0.05 thresh-
old (y = –2.06 x + 105.31, R = 0.623, P 
= 0.073). If one assumes the population 
has only recently begun to decline (see 
below) and uses only the last four years 
in the regression, then P = 0.33, due to the 
small sample size.

Parameter estimation with associated con-
fidence intervals is primarily a descriptive 
approach that, particularly in this example, 
conveys information on the uncertainty 
surrounding our estimates. Because our 
sample size for each point is relatively 
small (n = 5), the confidence intervals are 
relatively wide (Figure 3B). (The sample 
size chosen, however, may not be unreal-
istic for many environmental monitoring 
efforts.) The potential problem with this ap-
proach, as mentioned above, is in determin-
ing which points in time are “significantly” 
different from other points. For example, 
in comparing two independent means, 
95% confidence intervals may overlap to 
a certain extent and yet the means would 
still be considered statistically different at 
P = 0.05 (Schenker and Gentleman 2001; 
Cumming and Finch 2005).

For the control chart approach, we plot 
the sample means for each year. The first 
five years are selected to represent a base-
line, which, in this example, represents a 
population size of 100. This selection is 

Figure 3. Analysis of the same hypothetical data set by (A) linear regression, (B) parameter estimation 
with 95% confidence intervals, and (C) a control chart. The solid line in C represents a baseline deter-
mined from the first five years; the dashed lines represent control limits that indicate a 20% change 
from this baseline.
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somewhat arbitrary, because the first five 
(or six) years seem to vary randomly about 
a stable mean. Because of management’s 
voiced concern of detecting a 20% change, 
we set a control limit at 80 (and also at 120, 
to be able to detect meaningful changes in 
either direction). In year nine, the popula-
tion does decrease below the 20% change 
threshold, and triggers an alarm for man-
agement (Figure 3C).

Admittedly, one can contrive an example to 
support any argument, and in many cases, 
control charts may not represent a clearly 
advantageous approach. Another year or 
two of data and the regression in the ex-
ample may become significant at α = 0.05. 
Yet, if we are dealing with an endangered 
population in decline, the additional delay 
could prove costly. Of course, a less rigid 
view of interpreting P-values would help in 
many cases employing hypothesis tests.

Perhaps the biggest advantage of parameter 
estimation with confidence intervals is that 
the amount of variability in the parameter of 
interest is obvious, whereas with traditional 
control charts, it is hidden. Of course, there 
is no reason why confidence intervals, or 
some other measure of variability around 
the means (e.g., standard errors), could not 
be portrayed in control charts.

EXCEPTIONS

Although control charts could be employed 
in the majority of natural resource monitor-
ing efforts, they will not be effective in all 
cases. For example, control charts are not 
likely to be useful in the case of populations 
that exhibit extreme temporal variation 
(e.g., Thomas 1996), as it would be difficult 
to establish a meaningful baseline. Large 
amounts of variability, however, will be 
problematic for any attempt to demonstrate 
a significant trend (Gibbs et al. 1998). If 
the variable of interest is changing from 
the inception of the monitoring program, 
so that it is not possible to establish a 
stable baseline, a regression analysis may 
be more informative. Data sets consisting 
of presence-absence or categorical data 
may not easily lend themselves to the use 
of control charts. (These types of data 
preclude many other analyses as well.) 

Control charts could still be employed, 
however, to a certain extent, analogous to 
the analysis of attribute or count data in 
industry. For example, one could focus on 
the percentage of sites containing a certain 
species or on the number of plots matching 
a certain category of interest.

CONCLUSIONS

Control charts hold many potential advan-
tages for management: they are relatively 
easily to construct, their interpretation is 
straightforward, they provide a standard 
format for evaluation of many different 
variables, they can be easily updated when-
ever additional data become available, the 
relative risk of Type I and Type II error are 
intuitive and easily adjusted, and one may 
define a threshold for action at any desired 
level. They can be constructed for many 
different types of indicators – whether 
univariate or multivariate. Control charts 
may reveal a diversity of different types 
of non-random patterns, which may in-
dicate various potential concerns with 
the resource in question. For a given 
distribution, one may calculate a number 
of post hoc probabilities, most of which 
are simple and could be done by almost 
anyone with a basic knowledge of math-
ematics. Ultimately, all one really needs to 
know to interpret a control chart correctly 
is what the centerline represents, what the 
control limits represent, and what sort of 
distribution (if any) is assumed.

The primary disadvantage of the control 
chart approach has to do with the dif-
ficulties of determining the ‘normal’ or 
baseline state for the variable in question. 
Establishing the appropriate baseline will 
likely require an adequate amount of good 
judgment in addition to empirical data. A 
limitation of control charts is that they do 
not indicate a cause for any changes in the 
indicator of interest. Yet, few approaches 
to monitoring trends do, and manipula-
tive experiments are usually required to 
determine cause and effect. Control charts 
may be used, however, to evaluate correla-
tions with known disturbance events (as in 
Anderson and Thompson 2004).

Finally, it should be noted that control 

charts do not preclude the use of other 
more detailed or sophisticated statistical 
analyses. Rather, control charts represent 
a potential basic analysis for almost any 
data set – a sort of ‘quick look’ for busy 
managers to determine which variables 
are in the greatest need of more in-depth 
analyses.
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