Natural Diversity Recovery Catchments A case study

Ryan Vogwill

Outhe

Part 1: planning tools

Part 2: conceptual models, hypotheses, evaluation

Assessing biodiversity values

What are biodiversity values?

1. The benefits for human well-being where this encompasses survival, reproduction and other key human needs.

Why is natural biodiversity valuable?

- **Productive use values**
- **Consumptive use values**
- Aesthetics
- Health (physio-chem envt)
- Health (disease)
- Knowledge and educational values
- Recreation values
- Spiritual/philosophical/intrinsic values
- Opportunity values

Stakeholder Values	1	2	3	4	5	6	7	8	9	10	11	12	13	Total	Rank
Knowledge and educational values	7	2	1	6	3	4	3	3	3	3	4	3	6	48	1
Health (phys/chem envt)	5	7	2	2	5	2	1	7	5	5	3	2	8	54	2
Recreation values	2	4	6	1	1	1	7	5	6	6	6	7	3	55	3
Spiritual/philosophical values	8	6	4	5	7	6	4	1	1	1	1	4	9	57	4
Aesthetics	1	5	3	7	2	7	6	9	4	7	5	8	5	69	5
Opportunity values	6	1	5	8	4	5	5	2	8	2	7	9	7	69	5
Health (organisms)	9	3	7	9	6	3	2	8	7	4	2	6	4	70	7
Productive use values	3	9	9	3	9	9	9	4	2	8	9	1	1	76	8
Consumptive use values	4	8	8	4	8	8	8	6	9	9	8	5	2	87	9

Values (Personal)	1	2	3	4	5	6	7	8	9	10	11	12	13	Total	Rank
Spiritual/philosophical values	3	9	3	4	1	4	3	1	1	1	2	1	9	42	1
Health (phys/chem envt)	5	1	1	2	6	2	2	8	2	3	1	5	8	46	2
Aesthetics	9	6	2	1	4	5	1	7	3	8	3	4	5	58	3
Health (disease)	4	2	7	6	5	6	5	5	4	4	5	3	4	60	4
Recreation	8	3	6	3	7	1	4	4	5	6	4	8	3	62	5
Knowledge and educational values	2	8	8	5	2	3	6	6	7	2	6	2	6	63	6
Opportunity	1	7	9	7	3	7	7	2	6	9	7	9	7	81	7
Productive use	6	5	4	8	9	9	9	3	8	7	9	6	1	84	8
Consumptive use	7	4	5	9	8	8	8	9	9	5	8	7	2	89	9

Values based approach:

- Improves the following components of planning, eg goal definition
- Ensures all stakeholders understand the range of views, implications for group dynamics. Particularly important in long-term projects with multiple stakeholders

Goal Setting and threat analysis

- Identify either the stated priority values, or the assets that need to be managed to deliver those values
- Spatially and temporally bound
- Measurable (outcome measure)

Lake Warden goal

To recover the waterbird species richness and abundance, and living assemblages of the Lake Warden Wetland System, to a near natural state by the year 2030.

Note:

 1."A near natural state" is bench marked against early 1980s waterbird survey and data on lake hydrology
 2.Goal to deliver values of knowledge/education, health, recreation and spiritual/philosophical values
 3.The biodiversity assets need to be better specified

Biophysical threat analysis

Defines the key ecosystem processes that must be managed to achieve the goal

Forms the basis for cause-effect models and quantitative analysis

Issues:

- poor classification systems
- antagonistic-synergistic effects

Threat category	Management issue	Prob. goal failure current management	Prob. goal failure, extra management	Assumptions underlying probability assessments
	Altered hydrology, particularly salinity and acidity	1	0.2	Expected that 40-60 plant and invertebrate species, plus at least one bittern species, will become extinct in the catchment without management
Altered biogeochemical processes	Nutrient cycles, including eutrophication	0.2	0.01	Provided: nutrient stripping on agricultural drainage and plantations are maintained and revegetation extended; eutrophication should be controlled. Note that we have poor understanding of increasing nutrients and its implications.
	Carbon cycle and climate change	?	?	Needs to be calculated with downscaled climatic data that are not currently available. Note also that if plantations become non- viable, replacement land use may degrade conservation values further.
Impacts of introduced plants and animals	Environmental weeds	0.1	0.05	Acacia linearis, (Moraea flaccida and Moraea miniata), Genista linifolia, Typha orientalis, Watsonia spp and bamboo are already present, salt water couch, kikuya being established. Note also poplars, etc. that people are experimenting with.

Altered Hydrology – 1996-2006

Contribute to the development of improved drainage assessment, practice and policy.	No. NOIs processed	4	10,374	
	Land conservation plantings No. sites	99		
Revegetation (generally of cleared areas on private property)	No. seedlings	1,217,330	1,248,771	
Not including commercially prospective species.	Area planted	875		
	Km of fencing	157		
	No. of landholders involved	75		
	No. sites	46		
Revegetation with commercially prospective species (generally	, No. seedlings	853,937		
of cleared areas on private property) with main objective of	Area planted	1,918	605,146	
hydrological control. Includes fencing.	Km of fencing	18		
	No. of landholders involved	44		
	List (separately) of investigations, reports			
Engineering works on Crown lands to protect public asset	No. of sites treated	39	3,115,271	
values.	Length of structure; or	37		
	Area treated	1,300		
	List (separately) of investigations, reports	10		
Engineering works on private property to protect public asset	No. of sites treated	40		
values.	Length of structure; or	42	681,848	
	Area treated	225,000		
Monitoring and research/investigations (other than listed for particular project areas above).	List (separately) of investigations, reports	22	3,536,490	

Natural Diversity Recovery Catchments, Case Study – Part 2: Evaluation of outputs and outcomes.

Hydrological threatening processes, cause-effect relationships and the level of understanding required to manage the impacts of altered hydrology

Dr Ryan Vogwill

Supervising Hydrologist Natural Resources Branch Department of Environment and Conservation

Toolibin Lake – Physical Recovery Criteria

- Minimum depth to the water table beneath the lake and Toolibin Flats in spring, when the lake is dry, should be 1.5 metres
- The maximum salinity of lake water when the lake is full should be 1,000 mg/litre
- □ The maximum salinity of inflow to the lake.....should be 1,000 mg/litre

Outline

- The three domains of water
- Cause effect relationships in altered hydrology impacts
- Toolibin Lake hydrological benefit of intervention
- Biological response to hydrology changes
- Summary

3 Domains of Water Flow: Surface – Unsaturated – Saturated

- Hydrogeologists focus on the saturated zone.
- Hydrologists focus on surface water.
- Soil physicists focus on the unsaturated zone.
 - Everyone thinks their area is the most important.
- But without an understanding of all domains (and their interactions) you may not be making the correct interpretations of threatening hydrological processes at both asset and landscape scales.
 - Particularly if you want to assess impacts from and to vegetation

Altered Hydrology – Impact Conceptual Model

^{*}Note GW - groundwater

Ecophysiology – Toolibin Lake Hydrological Interventions Lake Toolibin Drawdown in m May1996 - May 2005

Toolibin Lake response of Intervention

Toolibin Lake response of Intervention

Toolibin Lake response of Intervention

Variation in vegetation response

Drivers for variability

•Unsaturated zone/Soils – Ability to flush salts out of the rooting zone.

•Hydrogeology – Drawdown from pumping.

•Hydrology – Proximity to inflow area and centre of lake (concentrations of salt).

•Ecophysiology of vegetation species and how that interacts with <u>ALL</u> of the above.

Ecophysiology – Toolibin Lake

Casuarina's - shallow rooted and adapted to less

10.0

- *Casuarina's* shallow rooted and adapted to less water (can apply a greater suction) root zone has experienced some flushing.
- *Melaleuca's* deeper rooted and adapted to more water (less suction) root zone has not experienced flushing.
- Need to understand soil, chemistry, moisture, hydraulics in high resolution.

Summary

- Cause effect diagrams are an excellent way to present and capture conceptual models of threatening process.
- Land clearing has created impacts, returning perennials to the landscape will mitigate these impacts however there is hysteresis in the hydrological response to planting trees or managing hydrology. *"The way back is not the same as the way there"*
 - Sometimes engineering solutions are required to allow plants to survive long enough to get established and/or control the water balance.
- Hydrology is expensive and difficult, we need more data at both a regional and local level covering all three hydrological domains.
 This needs to be put in the context of the impacts on biota.
- We need a better understanding of the water use and tolerances of both prospective commercial species and key wetland species (CRC FFI Biorisk) to optimise revegetation and hydrological impact mitigation.