

Outline of presentation

Adaptations of species confined to a <u>Threatened</u>
 Ecological Community

Ironstone communities:

Onsequences of a Threatening process to a widespread community

Wandoo woodland decline: is climate change responsible?

Ironstone communi	ties: what are they?
→ Winter-wet shrublands	
Skeletal red soils (0-15 cm (sandy loams)	7
→ Over massive ironstone ro (up to 4m deep)	ck

How were they formed? • could have been forming since ± 1.5 million years ago → run-off of Fe rich water from scarp laterites → precipitation of Fe oxides/Fe hydroxides in zone of water table fluctuation (winter) ↓ coffee rock formation • iron rich impeding layers are common on coastal plain but at much greater depth! → ironstone communities: "islands" in a "sea" of much deeper Quaternary sand deposits

1. Spatially: where did they put their roots? 2. Temporally: when did they put them there? 3. Functional: what type of roots did they put where? (cluster versus non-cluster) clusters: dense outgrowth of lateral rootlets (involved in nutrient acquisition: mainly P and micronutrients)

Can these differences really explain:

a) their success in their own habitat

b) their failure in most others

Back to the field: a reciprocal transplant experiment

collect seeds of the 6 Hakea species

germinate species in glasshouse

transplant young seedlings to kangaroo-proof plots in field

Each site has 1 'homeplaying' species

Conclusions ironstone communities
ironstone Hakea's have a specialised root system morphology SPECTALISTS!
/increased chance of finding a crack
/
increased chance of surviving summer drought in their own habitat
decreased competitive ability in habitats on deeper soils ???
NOT SHOWN YET
WILVO
WHY?

Apparently no disadvantage in other habitats... why?

time...?
climate change?
setup of transplant experiment?
real regeneration: fire (nutrients)?
start with seeds?
cages/kangaroos?
initial weeding?
local herbivores not 'trained' for rare species?
there is no disadvantage?

	_
Conclusions shallow-soiled communities (1)	100
shallow-soil habitats: very drought-prone environments	
↓	
strong selection for drought avoidance (tolerance)	
root specialization	
\	
root system characteristics are more rigid	30001.777 11.6653.0
loss in phenotypically plasticity	
local specialisation traded off against flexibility to adapt to other environments (commonness versus rareness)	
	1
- adapt locally (specialisation: ecotypes)	
What works best? - just be flexible! (increased costs?	
phenotypic plasticity)! .I.	
limit/costs?	
Models evaluating costs and benefits of plasticity:	
- variable/unpredictable high resource environment	
henotypic plasticity	
- predictable stressfull environment specialisation	
shallow-soil environments	
many rare species worldwide!	
	1
Management implications?	
 revegetation/replanting or perennial vegetation can only be successful when there are 'available cracks' 	
• after fire	
after death of adultsopen, less dense areas are like	
that for a reason!	
 since it's all in the roots: using pot plants or cuttings with altered shoot-root ratio's may be problematic 	
 young seedlings need enough time to grow their roots (plant early winter, irrigate with unseasonal drought) 	
prevent competition with weeds or non-target species	
climate change (drought) may decrease recruitment	

Outline of presentation Outline of presentation Adaptations of species confined to a Threatened Ecological Community Ironstone communities: Consequences of a Threatening process to a widespread community Wandoo woodland decline: is climate change responsible?

General conclusions
• no clear indications about cause of the decline yet beetle larvae and fungi seem involved indirectly
→ Why now?
Increased stress: ● climate change ● salinity (clearing)

Future work (funds allowing...)

- Leaf physiology: what mechanism enables wandoo and powderbark to 'sustain such dry leaves'
- Start digging: get more insight in location and functioning of root systems
- Link between drought stress and pest/disease susceptibility

