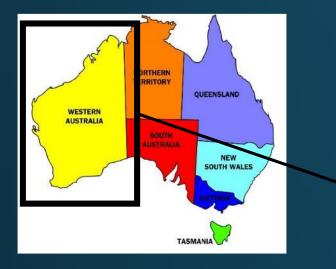
Cockatoo Hindlimb Paralysis Syndrome (CHiPS) the past, present and future

Rebecca Vaughan-Higgins^{1,2} Simone Vitali¹, Anna Le Souef^{1,2}, Flaminia Coiacetto³ and Kristin Warren²

1. Perth Zoo, Western Australia

2. Conservation Medicine Program, Murdoch University, Western Australia

3. Pathology Dept, Murdoch University, Western Australia



Department of Primary Industries and Regional Development

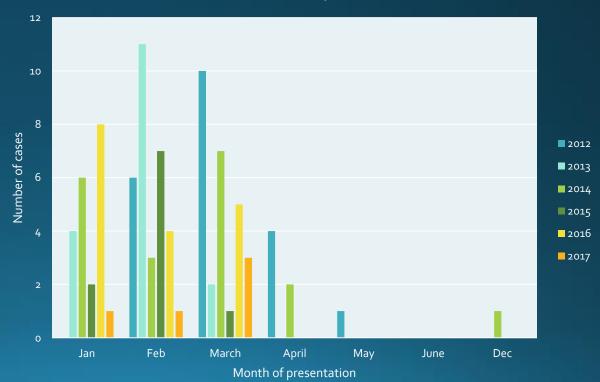
- One of 3 Black Cockatoo species endemic to WA
- 'Threatened' at state, national & international level
- Main breeding area in the wheatbelt; populations move to the Swan Coastal Plain in summer

Carnaby's Cockatoos in Perth

Perth Zoo and Carnaby's Cockatoo

- Cooperative program
- Dept Parks & Wildlife (DPaW) to treat sick and injured Black Cockatoos since 2000
- 200 birds admitted per year; approximately half Carnaby's cockatoos
- Triage, treatment & supportive care

The Emergence of "CHiPS"


Cockatoo Hindlimb Paralysis Syndrome ("CHiPS") was first defined as a disease entity in 2012, when a cluster of 21 Carnaby's Cockatoos presented with varying degrees of hindlimb paresis or paralysis from January to June.

Epidemiology 2012-2017

- Only Carnaby's Cockatoos affected (n=90)
- No gender or age specificity
- Most cases found within 15km of Perth city
- 88% of cases presented at PZVD from January to March

Number of CHiPS cases by month 2012-2017

DIFFERENTIAL DIAGNOSES FOR HINDLIMB PARESIS/PARALYSIS IN BIRDS

- Anticholinesterase pesticide poisoning (organophosphates, carbamates)
- Organochlorine pesticide poisoning
- Other pesticides (e.g. pyrethrins, glyphosate, imidacloprid)
- Heavy metal poisoning
- Other toxin (e.g. rodenticides, mycotoxins)
- Spinal trauma
- Nutritional deficiency/resource competition
- Infectious disease: virus/bacterial/parasitic
- Botulism

ACTIONS FOR REFINING DIFFERENTIAL LIST

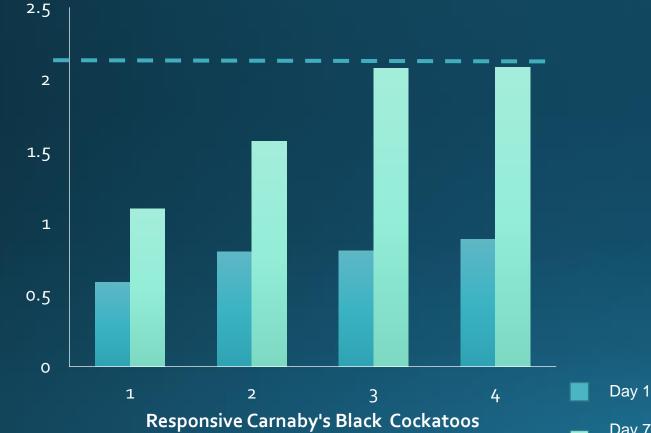
- Clinical and post mortem examination; index case definition
- 2. Toxin source investigation
- 3. Tissue residue examinations: pesticides, heavy metals
- 4. Cholinesterase (ChE) levels in blood and brain

Clinical and post mortem examination

Examination	Findings
General examination	 No evidence of primary trauma (bruising, fractures) Ulceration over keel associated with prolonged recumbency No regurgitation (common in black cockatoos with heavy metal poisoning)
Neurological examination & systematic evaluation of paresis/paralysis	 No significant changes other than presenting paresis/paralysis Neurological deficit ranging from reduced foot clench and reduced voluntary leg movement, through to full paralysis. Deep pain generally present. Loss of cloacal tone commonly seen.
Radiography	No significant changes
Clinical pathology – CBC/biochemistry	 No significant changes
Gross pathology	 Often poor body condition and secondary ulceration over keel No evidence of primary spinal trauma
Histopathology	 No evidence of infectious process, nutritional deficiency or primary trauma

CHiPS Index Case

- Carnaby's Cockatoos only
- Birds of any age and gender
- Bilateral paresis or paralysis not associated with primary trauma
- No other neurological signs (eg cranial nerve involvement, tremors, seizures)
- Good appetite but variable body condition
- No signs of infection or systemic illness
- Cases can recover with supportive nursing alone


Clinical evaluation

- Initial exam under manual restraint triage
- GA, radiographs, clinical examination within 24-48hrs of admit, serum store for future AChE analysis & NTE assays
- Supportive care & housing modification
- Monitoring of CHiPs signs q 3 days to reassess & evaluate prognosis
- If severe, not compatible with future release eg. severe respiratory distress, severe keel trauma, poor body condition euthanased & necropsied collecting brain, crop, liver & GIT for future toxicologic examination & serum & plasma store.

ChE Levels as an Indicator of anti-ChE Pesticide Exposure

i) Serum ChE in Recovering CHiPS cases

ChE kU/L

DOI: 10.7589/2015-02-047

Journal of Wildlife Diseases, 52(3), 2016, pp. 000–000 © Wildlife Disease Association 2016

DEVELOPMENT OF REFERENCE RANGES FOR PLASMA TOTAL CHOLINESTERASE AND BRAIN ACETYLCHOLINESTERASE ACTIVITY IN FREE-RANGING CARNABY'S BLACK-COCKATOOS (CALYPTORHYNCHUS LATIROSTRIS)

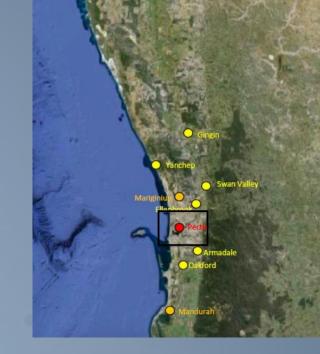
Rebecca Vaughan-Higgins,^{1,5} Simone Vitali,¹ Andrea Reiss,^{1,2} Shane Besier,³ Tom Hollingsworth,⁴ and Gerard Smith³

¹ Veterinary Department, Perth Zoo, 20 Labouchere Road, South Perth, Western Australia 6151, Australia

² Zoo and Aquarium Association Australasia, Bradley's Head Road, Mosman, New South Wales 2088, Australia ³ Animal Health Laboratories, Department of Agriculture and Food, 3 Baron-Hay Court, South Perth, Western Australia 6151, Australia

⁴ Department of Food and Agriculture, South Western Hwy. and Verschuer Place, Bunbury, Western Australia 6230, Australia

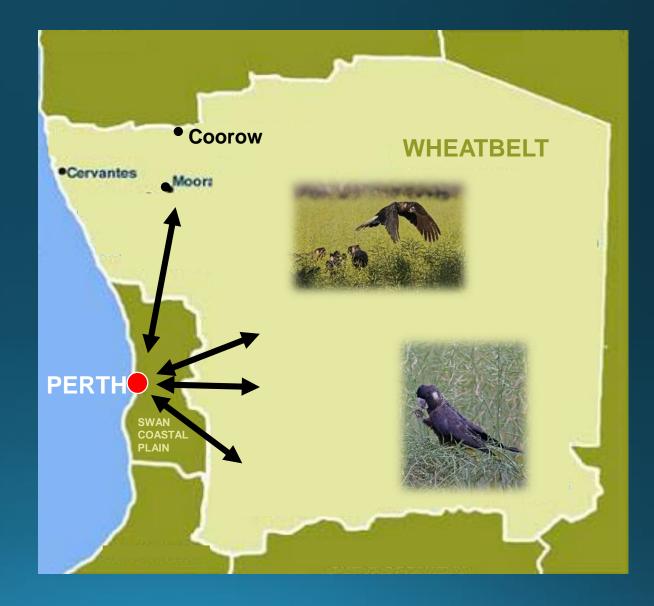
⁵ Corresponding author (email: Rebecca.Vaughan@perthzoo.wa.gov.au)


ABSTRACT: Published avian reference ranges for plasma cholinesterase (ChE) and brain acetylcholinesterase (AChE) are numerous. However, a consistently reported recommendation is the need for species- and laboratory-specific reference ranges because of variables, including assay methods, sample storage conditions, season, and bird sex, age, and physiologic status. We developed normal reference ranges for brain AChE and plasma total ChE (tChE) activity for Carnaby's Black-Cockatoos (*Calyptorhynchus latirostris*) using a standardized protocol (substrate acetylthiocholine at 25 C). We report reference ranges for brain AChE (19–41 μ mol/min per g, mean 21±6.38) and plasma tChE (0.41–0.53 μ mol/min per mL, mean 0.47±0.11) (*n*=15). This information will be of use in the ongoing field investigation of a paresis-paralysis syndrome in the endangered Carnaby's Black-Cockatoos, suspected to be associated with exposure to anticholinesterase compounds and add to the paucity of reference ranges for plasma tChE and brain AChE in Australian psittacine birds. *Key words:* Anticholinesterase compounds, black cockatoos, psittacine, reference ranges.

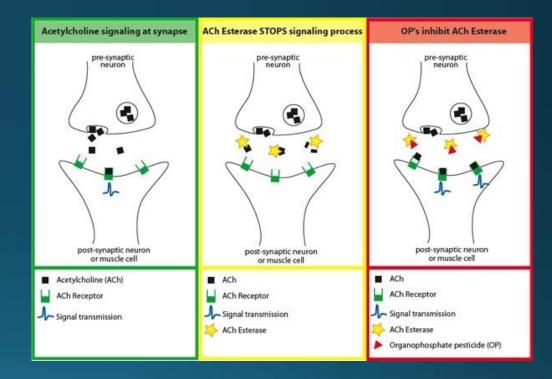
Day 7-13

Grossett et al 2014 mean plasma ChE cockatoos

Toxin source investigation


- Investigation of pesticide use in high caseload areas
 - No changes in practices for many years
 - The only pesticides in use known to be toxic to birds
 - pyrethrins; no Organophosphates (OP's) or carbamates reported
 - No reports of other affected species
- Exposure in inland breeding areas delayed or variable effect
 CHiPS seasonal pattern coincides with influx of Carnaby's Cockatoos from the wheatbelt

Wheatbelt Exposure to Pesticides


Wheatbelt Mortality Events – OP poisoning?

- Live birds with CHiPS signs and dead hens in nest hollows found at Coorow (2009, n=16) and Coorow (2012, n=7).
- At the time of year the mortalities occurred (September-October), growers are routinely spraying canola crops with organophosphate (OP) pesticides.
- Carnaby's Cockatoos feed extensively on canola during breeding; other black cockatoo species do not feed on canola.

Anti-cholinesterase compounds and their toxicity in non-target species

- Include organophosphates (OP's) carbamates, neonicitinoids
- Acetylcholine (ACh) is a neurotransmitter
- Acute exposure can result in death by respiratory or cardiac arrest
- Sublethal exposures can lead to a range of systemic biochemical, physiological and behavioural effects

Anti-cholinesterase compounds

- Accidental or deliberate OP poisoning reported in many wild Australian native birds including sulphur-crested cockatoos, corellas and galahs.
- In humans, can cause acute, intermediate or 'delayed neuropathy syndrome' OPIDN

AOP	OPIDN
 Acute onset Varying degrees of muscle paralysis 	•Onset up to 2-3 weeks following exposure to OPs (Emerick et al 2012)
•Death due to cardiac or respiratory arrest	•Flaccid paralysis of hindlimbs
•Birds more sensitive when compared to mammals (Walker 1982, Goldstein et al 1999)	•Paralysis of forelimbs in severe cases
 Birds of prey feeding on baited animals (Goldstein et al 1999, Elliot et al 1997) Other birds feeding on crops (Benson et al 1971, White et al 1983, Flickinger et al 1984) 	

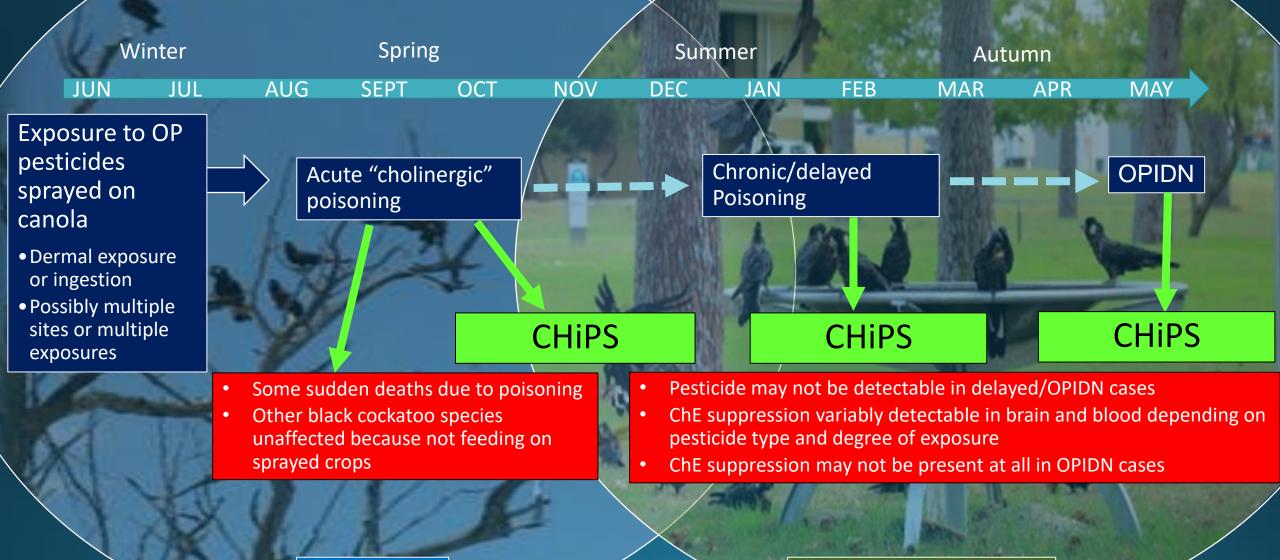
Diagnosis acute OP toxicity cf. delayed neuropathy

AOP	OPIDN	Mode of action	
Necropsy: No significant findings	No significant findings	AOP	OPIDN
Histopathology: No significant findings	Sensory-motor axonopathy (Emerick et al 2012) •CNS and PNS •Wallerian degeneration	 Binding and phosphorylation by OPs Within hours of exposure Disturbances in synaptic transmission in CNS and PNS Binding and phosphorylatio	 Inhibition and ageing of Neuropathy target esterase (NTE) Binding and phosphorylation by OPs Within hours of exposure (Correll et al 1990, Sogorb et al 2010)
•Cholinesterase quantification •Plasma (BChE) •Brain (AChE) •>20% inhibition diagnostic for exposure •>50% inhibition diagnostic for toxicity	 •NTE quantification & Reactivation •70-80% inhibition diagnostic (Emerick et al, 2012) •Inability to reactivate •Toxicology 		•Time dependent process
•Toxicology			

Testing hypothesis: "CHiPS is caused by anticholinesterase toxin"

Not able to conduct experimental studies.

However:


- Some birds responded to atropine (antidote to OPs)
- Some birds have been found to recover if provided with supportive care for at least 1 week
- NTE assays significant difference between the CHiPS and control cases for NTE inhibition.

Responses consistent with anti-cholinesterase toxicity +/- a delayed onset OP induced neuropathy

Further examinations undertaken

Examination	Findings
OP panel (13 pesticides commonly used in WA) in digestive tract contents	all samples negative
Carbamates (9 pesticides commonly used in WA) in digestive tract contents (n=14)	all samples negative
Imidacloprid in digestive tract contents (n=14) Imidacloprid & Clothianidin (n=2) -2017	all samples negative Low levels (n=1)
Fipronil in digestive tract contents (n=2)	all samples negative
 Heavy metals in fat, muscle, liver and skin (n=10): lead, mercury cadmium, nickel and zinc chromium copper and zinc (Coorow birds; n=2) 	 not detected detected in subclinical quantities detected in subclinical quantities elevated in liver samples (46-100mg/kg; cf 30-60mg/kg Macdonald et al 2010) – general ill health
Viral testing	Viral testing (Newcastle Disease Virus, Beak and Feather Disease Virus, Avian Influenza) – negative

Current Hypothesis

WHEATBELT

SWAN COASTAL PLAIN

Ongoing Investigations

- Repeated & thorough histological examination of CHiPS cases, and development of new assays for testing out the OPIDP theory
- Establishing 'normal ranges' for heavy metals in liver of black cockatoos (*underway*)
- Ecological investigation in targeted breeding areas
- Further toxicology testing (e.g. eggshells, tissue using metabolomics)

Source: https://estore.parrots.org/products/carnaby-cockatoo-1

Acknowledgements

We acknowledge the work and dedication of the staff of the Perth Zoo Veterinary Department, WA Department of Parks and Wildlife, Kaarakin Black Cockatoo Centre and Native Animal Rescue Rehabilitation Centre.

Our thanks go to the Chemistry Centre of WA, Department of Agriculture and Food WA, and VetPath Clinical Laboratory for advice, interpretation and support provided, and to the Department of Agriculture NSDI fund for additional funding.

Sincere thanks to those pastoralists of the wheatbelt whose love of Carnaby's Cockatoos and dedication to citizen science has enabled insights into CHiPS and the lives of Carnaby's Cockatoos in the breeding season.

Additional Images: R.Dawson, K.Lightbody, P.Brigg

- Benson D & Baker D, 1971. Effects of a mid-April application of Azodrin-5 on wildlife populations in northeastern Colorado wheatlands. Fort Collins, CO: Colorado State University.
- Correll L & Ehrich M, 1990. A microassay method for neurotoxic esterase determinations. *Fundamental and applied toxicology*.
- Emerick GL, Ehrich M, Jortner BS, Oliveira RV, DeOliveira GH, 2012. Biochemical, histopathological and clinical evaluation of delayed effects caused by methamidophos isoforms and TOCP in hens: Ameliorative effects using control of calcium homeostasis. *Toxicology* 302:88-95.
- Elliott JE, Wilson LK, Langelier KM, Mineau P, Sinclair PH, 1997. Secondary poisoning of birds of prey by the organophosphorus insecticide, phorate. *Ecoxtoxicology* 6:219-231.
- Ellman G, Courtney D, Andres V & Featherstone R, 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. *Biochemical Pharmacology*. 7: 88-95.
- Holas O, Musilek K, Pohanka M & Kuka K, 2012. The progress in the cholinesterase quantification methods. *Expert Opinion in Drug Discovery*. 1-17.
- Fairbrother A. (1996) Cholinesterase-inhibiting pesticides. In: Fairbrother A, Locke LN, Hoff GL editor. Noninfectious Diseases of Wildlife. ed 2. Ames, IA: Iowa State University; p. 52–60
- Fildes, K. J., Szabo, J. K., Hooper, M., Buttemer, W. A. & Astheimer, L. (2009). Plasma cholinesterase characteristics in native Australian birds: significance for monitoring avian species for pesticide exposure. Emu: austral ornithology, 109 (1), 41-47.
- Goldstein MI, Lacher TE, Woodbridge B, Bechard MJ, Canavelli SB, Zaccagninni ME, Cobb GP, Scollon EJ, Tribolet R, Hooper MJ, 1999. Monocrotophos-induced mass mortality of Swainson's Hawks in Argentina, 1995-6. Ecotoxicology 8: 201-214.
- Hill EF, Fleming WJ. (1982) Anticholinesterase poisoning of birds: Field monitoring and diagnosis of acute poisoning. Environ Toxicol Chem. 1982;1:27–38
- Ludke, J. L., Hill, E. F. M., and Dieter, M. P. (1975). Cholinesterase (ChE) response and related mortality among birds fed ChE inhibitors. Archives of Environmental Contamination and Toxicology 3: 1–21. doi: 10.1007/ BF02221128
- Radcliffe, J. C. (2002). Pesticide Use in Australia. Australian Academy of Technological Sciences and Engineering: Melbourne.
- Sogorb M, Gonzalez-Gonzalez I, Pamies D, Vilanova E 2010. An alternative *in vitro* method for detecting neuropathic compounds based on acetylcholinesterase inhibition and on inhibition and aging of neuropathy target esterase (NTE). *Toxicology in Vitro*. 24: 942-952.
- Soliman S, Curley A & El-Sebae A, 1981. A direct method to assay neurotoxic esterase activity. *Toxicology Letters*. 9: 283-288.
- Sonne C, Alstrup A & Therkildsen, 2012. A review of the factors causing paralysis in wild birds: Implications for the paralytic syndrome observed in the Baltic Sea. Science of the Total Environment. 416: 32-39.
- Walker, 1983. Pesticides and birds: Mechanisms of selective toxicity. *Agriculture, Ecosystems and Environment*. 9: 211-226.
- White D, Mitchell C, Kolbe E & Ferguson W, 1983. Azodrin poisoning of waterfowl in rice fields in Louisiana, USA. Journal of Wildlife Diseases. 19: 373-375.