

Wunambal Gaambera Healthy Country Plan

LCI mammal and vegetation

So, did fire regimes change?

- YES
- 2011 onwards much increased EDS burning
- Decreased extensive, high intensity LDS fires
- Less variable fire extent after management less boom-bust burning cycle
- Smaller patch size
- More old growth (4+ years) patches
- NO decrease in annual area burnt

Did mammals change with fire management?

TABLE: Mean animals pre and post treatment (per 1000 trap nights). ANOVA using raw log transformed numbers of trapped animals. Trap effort included as a covariate within ANOVA.

Species		Pre-	Fire	Trap Effort	Management
		treatment	management		
Common species					
Conilurus penicillatus	+	0.1	5.9	0.01 (0.909)	5.83 (0.017) *
Dasyurus hallucatus	-	19.7	14.1	5.84 (0.017) *	2.77 (0.098) .
Isoodon auratus		5.3	4.4	<0.01 (0.998)	0.29 (0.592)
Isoodon macrourus	+	4.1	8.8	1.02 (0.315)	3.11 (0.080) .
Melomys burtoni	+	2.6	3.6	5.76 (0.018) *	2.75 (0.099) .
Mesembriomys macrurus	+	0.6	1.7	3.22 (0.075) .	3.94 (0.049) *
Pseudomys delicatulus	-	3.4	0.7	2.64 (0.106)	16.53 (<0.001) ***
Pseudomys nanus		4.1	12.1	0.06 (0.814)	1.84 (0.177)
Rattus tunneyi	-	10.1	6.2	55.85 (<0.001) ***	9.31 (0.003) **
Sminthopsis virginiae	+	<0.1	3.6	0.31 (0.581)	7.95 (0.005) **
Zyzomys argurus	-	26.8	18.4	3.82 (0.052) .	5.75 (0.018) *
Zyzomys woodwardi	+	3.1	4.9	10.07 (0.002) **	5.21 (0.024) *
Functional Groups					
Small Dasyurids	+	0.3	4.0	0.30 (0.587)	8.48 (0.004) **
Generalist Rodents		49.4	41.5	20.18 (<0.001) ***	0.02 (0.897)
Critical weight range marsupia	ıls	29.6	27.3	4.22 (0.042) *	0.49 (0.487)
Large specialist Rodents	+	2.5	12.5	10.54 (0.001) **	12.83 (<0.001) ***
					Ž.
Habitats					0
Mammals across all sites		81.6	85.3	15.98 (<0.001) ***	1.36 (0.246)
Sandstone sites		105.4	133.0	7.52 (0.008) **	2.12 (0.150)
Savanna volcanic woodlands	+	45.5	61.8	16.42 (<0.001) ***	10.62 (0.002) **

Why did some species improve under increased management? Explanatory variables

- "Increasers" had positive response to EDS (more so at sandstone sites)
- Neutral or negative response to LDS burning
- Positive response to increasing patchiness (decreasing distance to unburnt veg)
- Increased EDS burning benefits "increasers"

possible explanatory variables:- EDS fire, LDS fire, TSLF, Dist nearest UB, rainfall PW, Old growth patches canopy cover, ground layer cover, site

Conflurus & Kimberley rock rats showed classic "increaser" responses

- + response to EDS burning
- Negative/neutral response to LDS fire
- Positive response to increased patchiness

Did prescribed burning benefit threatened mammals?

- We can change fire regimes
- With change some species increased, some decreased
- Arboreal rats & large endemic rock rats, common bandicoots, small dasyurids were all "Increasers" & responded positively to EDS burning
- These high conservation value species
- Northern quolls & common rodents were "Decreasers"
- But sometimes "Decreaser" performance was buffered from declines in rocky sandstone (e.g. quolls)
- Could perhaps argue for a net benefit of fire management????
- Negative fire response of "Decreasers" suggests we need to consider their fire management more closely
- This study highlights the crucial importance of Monitoring of target biodiversity to make sure negative consequences don't occur, or can be Mitigated

