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SUMMARY

L

2)

3)

Four small catchments (Crowea, Poole, Iffley and Mooralup)
were selected in 1975 to study the effect of heavy selection
cutting or clear-felling and subsequent regeneration on
streamflow, stream salinity and ground water levels in the
southern forest of Western Australia. The catchments were
chosen to represent a combination of rainfall, forest type,
soils and topography found in the region. They were logged
between November 1976 and March 1978. Regeneration bhegan
one to 30 months after the cbmpletion of logging. The
regrowth of the vegetation in these catchments and some
other areas which had experienced heavy selection cutting or
clear-felling since the 1880s was assessed in 1986 as part
of a related investigation by Stoneman et al. (1987), but

some of the results are also presented here.

During the study period (1976 through 1985) the annual
rainfall in the research area was generally below the mean
for 1926 through 1976. These dry conditions probably
influenced the magnitude and duration of the hydrologic
response to logging and subsequent regeneration, but not the
general trends. This should be considered if the results

from this research are applied in times of higher rainfall.

As a result of logging annual streamflow volumes increased
for two years (1977 and 1978) and then gradually declined
again as the vegetation regenerated. Although the trends
are somewhat obscured by the influence of annual variations
in rainfall, it appears that by about 1990, 11 to 12 years
after the beginning of regeneration, the annual streamflow
volumes will be back to their pre-logging values. 1In the
Mooralup catchment, where streamflow volumes are naturally
small due to the low annual rainfall and high potential

evapotranspiration, this may have happened by 1985.

ix



4)

5) .

6)

Flow-weighted mean annual stream salinities reached their
highest level one to three years after logging and have
declined since. The largest observed increase was 94 mg/L
TSS. Even at their highest level flow-weighted mean annual
stream salinities were be}ow 500 mg/L TSS which is
considered to be the upper limit for high quality drinking
water. Throughout the study period, the lowest values were
observed in the Mooralup catchment, despite its location in
the low rainfall zone, which prior to this study was
considered to be the most likely region where logging might
lead to high stream salinities. When streamflow and grouﬁd
water, which determine stream salinity, have attained the
level they would have been at without logging, stream
salinity should do the same. This has probably already
happened in the Mooralup catchment, and is likely to happen
in the early 1990s in the other three catchments.

Ground water levels rose for two to four years after logging
and then started to fall again. Although changes due to
annual variations in rainfall and evapotranspiration could
only partially be accounted for due to the lack of accurate
calibration with control bores, it seems that by 1991, 12 to
13 years after the beginning of regeneration, ground water
levels will reach the values they would have been at had

there been no logging.

The overstorey cover in regenerating karri stands reached
the density of unlogged stands after some ten years of
growth, continued to increase for another ten years and then
stabilised at a higher value than is typical for unlogged
stands. Total vegetation cover reached the unlogged value
within five years, rose for five more years and since
remained above the unlogged value. In jarrah regrowth areas
overstorey and total vegetation cover exceeded 70 per cent
of the value for unlogged forest within five years after
regeneration, 90 per cent within ten years, and reached the

unlogged level in 20 to 30 years.



1. INTRODUCTION.

It had long been recognised that the permanent removal of the
native perennial vegetation and its replacement with annual
crops and pastures can lead to large and persistent salinity
increases in the streams of south-west Western Australia (Wood
19245 Burvill 1947; Peck and Hurle 1973). However, little was
known quantitavely about the influence of logging and

subsequent regeneration on stream salinity.

For a variety of reasons the (then) Forests Department of
Western Australia changed its logging system in the southern
forest from relatively light selection cutting to clear-felling
of karri stands in 1967, and to heavy selection cutting of
jarrah stands in 1970. As under the former system, all

cut-over areas were regenerated to forest.

Heavy selection cutting and clear-felling, both followed by
regeneration of the cut-over areas to forest, had been
practised before in the southern forest from the late 1920s to
about 1940. No obvious effect on stream salinity was noted
then. However, no specific attempt was made to monitor any
possible effect. The scientific community was just beginning
to uncover the connection between increases in stream salinity
and clearing for agriculture. Consequently, logging and
subsequent regeneration to forest, a temporary and less severe
hydrologic disturbance than clearing for agriculture, was not

perceived to affect stream salinity.

By the early 1970s the effect of agricultural clearing on
stream salinity was more firmly established and the public
began to become aware of the problem. Heavy selection cutting
and clear-felling are a more significant hydrologic disturbance
than light selection cutting so that their re-introduction
raised some concern about their influence on stream salinity
(Forests Department of Western Australia 1973). 1In 1973 the

West Australian Minister for Conservation and Environment



therefore arranged the formation of a Steering Committee to
conduct research into the effects of the revised cutting
strategies on the water resources in the southern forest. The
Steering Committee initiated a number of research projects
which were then conducted by various government departments
(Steering Committee 1978, 1980). The Public Works Department
of Western Australia (which in 1985 became part of the Water
Authority of Western Australia) in co-operation with the Mines
Department of Western Australia and with some assistance from
the Commonwealth Scientific and Industrial Research
Organisation, Division of Soils, was given the task to
undertake several paired catchment studies. These studies
commenced in 1975. In order to collect some data under natural
forest conditions for calibrating the hydrologic response of
the paired catchments, logging could not be carried out until

1982. A third progress report on this research has recently

been prepared (Borg et al. 1987).

Since results from the paired catchment studies could not be
expected until well into the 1980s, the Forests Department of
Western Australia (which in 1985 became part of the Department
of Conservation and Land Management W.A.) with assistance from
the Mines Department of Western Australia was asked to conduct
similar but less sophisticated studies at the same time. Their
objective was to provide an early indication of the stream and
ground water response to logging and subsequent regeneration
under the revised cutting strategies. Four small catchments in
the southern forest were equipped for recqrding rainfall,
streamflow, stream salinity and ground water levels. They were
logged between November 1976 and March 1978 after one year of
hydrologic observation and then allowed to regenerate. "All of
the above parameters were gauged until the end - of 1985 when,
due to limited funds, data collection was reduced to the

monitoring of ground water levels.



The information obtained from these four catchments between
1975 and 1986 inclusive is analysed in this report. To aid the
understanding of the results, their presentation is preceded by
a description of the research area and its hydrology. A chapter
on the recovery of the vegetation cover after logging is
presented after the results section. The data in this chapter
were extracted from a related study by Stoneman et al. (1987),
This report was prepared under the direction of the Forest
Management Sub-Committee of the West Australian Steering

Committee for Research on Land Use and Water Supply.



2. DESCRIPTION OF THE RESEARCH AREA

2.1 Location, climate and vegetation

The southefn forest of Western Australia is defined as the
forested land in the State which drains into the Southern
Ocean. The change from light selection cutting to heavy
gelection cutting and clear-felling was implemented in an area
of 884 100 ha around the town of Manjimup. This part of the
southern forest has since been referred to as the Woodchip
Licence Area (Fig. 1, see inside back cover). The reéearch

discussed here was conducted in this area.

Mean annual rainfall in the area ranges from over 1400 mm in
the south-west to less than 700 mm in the north-east (Fig. 2).
Most of it arises from low pressure systems moving across the
region from a westerly direction. About 80 per cent of the
annual precipitation occurs from May through October. The mean
annual pan evaporation varies from 1150 mm in the south-west to
1450 mm in the north-east (Fig. 3). (Pan evaporation is a
rough estimate of potential evapotranspiration. Potential
evapotranspiration is defined as the amount of water which can
be removed by evaporation, transpiration or a combination of
both from an area which has an unrestricted supply of water.)
In contrast to rainfall, pan evaporation is lowest in winter
and highest in sunmer. As a result there is a water excess in
winter when rainfall exceeds pan evaporation, and a water
deficit in summer when pan evaporation exceeds rainfall. This
is illustrated in Figure 4 together with other climatic
characteristics of the region. Rainfall decreases with
distance from the coast while pan evaporation increases with
distance from the coast. Consequently, the water excess in
winter decreases with distance from the coast and the water

deficit in summer increases with distance from the coast.
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Mean annual rainfall in the research area. (Data from Loh and King 1978.)
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Manjimup: elevation 280 m
average annual pan evaporation 1285 mm
average annual rainfall 1047 mm
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Climatic characteristics of four locations in or near the research area. (Rainfall and temperatures based on
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Bureau of Meteorology data to the end of 1985.)



Within the area are 176 600 ha of karri forest and 418 800 ha of
jarrah forest (Table 1). This represents about 94 per cent of
all karri forest and about 20 per cent of all jarrah forest in

the State. Karri (Eucalyptus diversicolor) is the principal

species where the mean annual rainfall exceeds 1100 mm. It does
not occur where the mean annual rainfall is less than 1000 nm
(Churchill 1967) and is virtually restricted to loamy soils.

Jarrah (Eucalyptus mafginata) dominates areas with 1100 to

650 mm mean annual rainfall, but is also present in higher
rainfall areas where site conditions are not suitable for
karri. About a third of the karri population occurs in pure
stands, and the remainder in association with marri (Eucalyptus
calophylla). Most of the jarrah stands contain marri. The
proportion of marri in jarrah and karri forest varies between
sites, but is often as high as 50 per cent (Forests Department
of Western Australia 1973). A detailed description of the
vegetation in the region is given by Smith (1972), and Bradshaw

and Lush (1981).

Table 1: Vegetation types and area by land tenure in the research area as
at December 1986. (Data from the FMIS data base of the
Department of Conservation and Land Management W.A.)

Vegetation type

Tenure karri jarrah
forest forest other! cleared total
[hal [ha] [hal [ha] [ha]

Crown land managed by
the Department of
Conservation and Land
Management?2 . 165 900 393 900 156 100 1 700 717 600
Crown land managed
by Shires 600 1 400 800 1 500 4 300
Crown land managed
by other Government
organisations 200 800 1 400 2 400
Private property 9 900 22 700 17 600 109 600 159 800
TOTAL 176 600 418 800 175 900 112 800 884 100

! mostly coastal heath and shrubs
2  jncludes freehold land held in the name of the Executive Director



Some 109 600 ha of land in the area are cleared for
agficulture. Roughly 90 per cent of that is under pasture for
grazing cattle and sheep. The remaining 10 per cent produces
cereals and a variety of horticultural crops, such as beans,

potatoes, cauliflower, onions and peas.

2.2 Forestry

Logging in the area began in the early 1§OOS and was then
largely associated with clearing for agriculture. Planned
logging for timber production with subsequent regeneration of
the cut-over areas commenced in the late 1920s, under the
supervision of the newly created Forests Department, to stop
the exploitation and destruction of the forest and to ensure

sustainable timber yields for the future.

Karri naturally often occurs in fairly even-aged stands which
are the result of regeneration after the previous stand was
killed by fire (Mount 1964). Mature even-aged stands are
suited for clear-felling since they generally contain a large
volume of marketable timber per unit area. Furthermore, the
growth of karri seedlings is severely suppressed by the
presence of older vegetation (Rotheram 1982). After
clear-felling regeneration is vigorous because development of
the young trees is then not inhibited by competition from older
growth for light, nutrients and water. This had been
demonstrated by the prolific regeneration of karri stands near
Denmark and Boranup which were clear-felled in the 1880s.
Karri areas were therefore initially clear-felled, the good
timber removed and the remainder burnt as waste. However,
several factors led to a change to selective cutting by the

1940s.

The aim of logging was to produce sawlogs, most of which
were then processed to make high quality products for

export. Since any small or defective trees and most of



the marri trees, regardless of size, did not meet the
sawlog standards adopted by the timber mills at the time,

clear-felling generated a lot of waste.

- As more forest was assessed, it became apparent that many
large karri trees were dying due to old age or fire
damage. Under a lighter cutting regime where fewer trees
were removed per unit area, more forest would be accessed
and much of this timber could be salvaged before it
became useless. The roads and railways built in the
process would provide the infrastructure for the

beginnings of a fire protection system.

- Felling and disposing of trees with no commercial value
costs money. During the economic depression of the 1930s
this could be done at relatively low cost due to the
abundance of cheap labour. However, cheap labour became

scarce at the start of the Second World War.

- There was pressure to release clear-felled areas for
agriculture since to the layperson they appeared to be
devastated and of no future value to forestry. Retaining
trees created the impression that the area was still

growing useful trees and relieved most of this pressure.

Young jarrah and marri trees also grow better in the absence of
older growth. They are less effected by the presence of older
-vegetation than young karri and can thus develop into mature
trees. Hence jarrah forest naturally contains a wider range of
tree ages and sizes. Mixed-aged stands contain a relatively
small amount of marketable timber at any given time and are
suited for selective cutting where marketable older trees are
removed and young ones retained for future harvesting. Jarrah
stands were therefore always cut selectively for sawlogs.
However, marri in general and jarrah unsuited for sawlogs were

often ringbarked or felled to promote the growth of trees

- 10 -



retained for future sawlog harvesting. This practice continued
until the beginning of the Second World War when cheap labour
became unavailable. Since then only selective cutting of
sawlog quality trees was carried out. Additional information
on the history of logging in the southern forest is given by
White and Underwood (1974), Collins and Barrett (1980), and
Bradshaw and Lush (1981). A helpful explanation of forestry
terminology is given by McKinnell (1982).

Selective cutting for sawlogs poses a number of problems in

karri as well as jarrah forest:

- The waste from logging is burnt because it is a fire
hazard, because it would otherwise impede regeneration,
and because nutrients released from the resulting ashbed
enhance growth. However, retained trees are frequently
injured during such burns. This is especially
problematic in karri stands. An intense fire is required
to prepare a good seedbed for the germination of karri
seeds, but karri trees, young ones in particular, are
rather sensitive to fire. Jarrah and marri are more fire
tolerant. Also, their cut-over stands regenerate mostly
from lignotuberous advance growth. Because this does not

require an ashbed, a less intense burn is sufficient.
- Increased exposure to wind often damages retained trees.

- Competition from retained trees generally slows the

regeneration of cut-over areas.
- Regrowth is frequently damaged during the felling and

removal of trees in future logging operations or

subsequent waste-disposal burns.

- 11 -



- Good timber is continuously removed while trees
unsuitable for sawlogs are left standing. This gradually
lowers the productivity of a stand because the non-sawlog
quality trees occupy space which could be filled by more

productive trees, and because they retard regeneration.

All these factors contribute to a continuous reduction in
timber yield from a selectively cut forest. To obtain the same
amount of timber in the future a larger area would have to be
cut. This is not desirable ecologically because it would
disturb more flora and fauna habitats and, in jarrah forest,
increase the risk of spreading the root fungus Phytophthora
cinnamomi which causes jarrah dieback, nor economically since
the wider spread of logging operations would incur more road

construction, hauling and supervision.

An alternative to expanding the cut-over area is to increase
the productivity of a forest by removing non-sawlog quality
trees which occupy useful growing space and inhibit the
development of young trees. To achieve this and to overcome
the other disadvantages of selective cutting the Forests
Department returned to clear-felling of karri stands in 1967.
As most of the southern forest had been dedicated as State
forest by then, it was no longer necessary to retain trees to
avoid pressure to release clear-felled areas for agriculture.
Also, as a consequence of marketing efforts by the Forests
Department, timber mills now accepted smaller karri trees for
sawlogs, which reduced the amount of waste generated by
clear-felling. The silvicultural management of karri forest is
discussed in detail by White and Underwood (1974), Bradshaw and
Lush (1981), and Bradshaw (1985).

Mainly to reduce the area cut-over each year, and thus to
reduce the risk of spreading jarrah dieback without a
proportional reduction in timber yield, the Forests Department

decided in 1970 to move to a much heavier selective cutting of

- 12 -



jarrah forest for sawlogs. However, removal of marri and
non-sawlog quality jarrah was to take place as well to improve
the regrowth of logged areas and hence the productivity of the
regenerating forest. The intensity of the resulting cut
depends on the size and age distribution of the trees in the
stand to be logged and may range from light thinning to
clear-felling. This is very similar to the cutting regime
followed between the late 1920s and the beginning of World War
Two. For an in-depth review of silviculture of jarrah areas in

the southern forest refer to Bradshaw (1986).

The Forests Department always did, and now as part of the
Department of Conservation and Land Management still does, seek
uses and markets for non-sawlog quality timber to achieve a
better utilisation of the wood resources in a forest. Trees
unsuitable for sawlogs can often be chipped and turned into
wood pulp for paper production. Sawmill residues can also be
recycled for woodchips. Operating a woodchip mill in Western
Australié was first suggested in 1899 and contemplated several
times‘since, but could not be realised due to the lack of a
market for woodchips. After the decision to change from
relatively light selection cutting in general to heavy
selection cutting of jarrah stands and clear-felling of karri
stands the establishment of a woodchip mill was considered
again as a means to utilise some of the timber not suitable for
sawlogs which would otherwise be burnt as waste. In the early
1970s a market for woodchips was found in Japan, and the newly
founded West Australian Chip and Pulp Company finally opened a

woodchip mill near Manjimup in 1975.

The establishment of a chipmill made some aspects of forest
management more economical. Revenue could now be earned from
marri Lrees and non-sawlog quality karri trees which previously
had been cut down and burnt as waste at an expense, or left
standing in which case they occupied useful growing space and

slowed regrowth. Also, thinning of young regenerating stands



could now provide some income since their thinnings are usually
too small for poles or sawlogs, but suitable for chipwood.
Regenerating stands are often densely stocked. After several
years of growth this results in strong competition for
resources between individual trees and slows the advance of the
stand. A thinning operation at this time salvages trees which
would eventually die due to competition, and boosts the growth
of retained trees by reducing competition. Even-aged karri and
karri-marri regrowth stands are especially suited for thinning

since they yield a large amount of chipwood.

In other states of Australia some forests are cut primarily to
obtain chipwood. The primary objective of all logging
operations in Western Australia is to supply sawlogs. With
clear-felling only wood which would otherwise be burnt as waste
is taken away for chipping. With selection cutting only trees
which will not yield sawlogs and if left standing would
suppress regeneration or occupy useful growing space are
removed for woodchips. The logging operations are supervised
by the Department of Conservation and Land Management. All
suitable material must be processed for sawlogs and is not
permitted to be chipped. This is in the interest of the
Department of Conservation and Land Management as well as the
forest industry since sawlogs bring in more revenue than A

woodchips.

From its re-introduction in 1967 until the opening of the
chipmill in 1975, clear-felling was concentrated in pure karri
stands with a high proportion of sawlog quality timber. Where
marri was encountered early in this period it was felled and
burnt as waste. Towards the end of the period when the opening
of the chipmill was impending, marri was left standing and
regeneration of the cut-over area delayed so that it could be
removed for chipwood later. Until the opening of the chipmill
jarrah forest was only cut selectively for sawlogs and no marri

was felled. Felling of marri commenced after the chipmill was

opened.

- 14 -



Table 2 lists the sawlog and chipwood production since 1975,
Most marri trees contain an abundance of gum veins and gum
rings. After a tree is felled the gum dries out and the wood
disintegrates along those veins and rings. Hence marri cannot
generally be used for sawlogs and provides the bulk of the
chipwood. However, some marri stems have sufficiently few gum
veins and rings to be suited for sawlogs and are then processed
as such. Most karri trees are fit for sawmilling so that only
material too small or defective for sawlogs is released for
chipping. Jarrah provides only sawlogs because it yields too
little cellulose and requires a relatively high amount of
pulping chemicals to be economical for paper production

(Fallick 1987).

2.3 Water resources

The southern forest contains most of the Shannon, Warren and
Donnelly River basins. (By definition the Shannon River basin
includes the Gardner, Deep and Weld Rivers.) These basins
generate an average annual streamflow of 1550 x 106 m3 of
which 720 x 106 m3 are readily divertible (Collins and

Barrett 1980). This represents 39 per cent of all surface
water resources and 27 per cent of the combined surface and
ground water resources in south-west Western Australia. Less

than one per cent of that is currently used for public water

supplies.

The National Health and Medical Research Council (NH&MRC) in
conjunction with the Australian Water Resources Council (AWRC)
regards 1500 mg/L TSS (total soluble salts) as the maximum
salinity level for drinking water of satisfactory quality and
considers water with less than 500 mg/L TSS to be of excellent
quality (Department of Health 1980). These guidelines are
currently under review. A draft version of this review
(NH&MRC/AWRC 1986) states that a change in taste may be

detected at chloride concentrations above 400 mg/L. For the

- 15 -
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" ionic composition of surface Qaters in south-west Western
Australia (Loh et al. 1983) this corresponds to 700 to 800 mg/L
TSS. Up to 1000 mg/L TSS are generally acceptable, but levels
up to 1500 mg/L can be accepted where better quality water

cannot be procured at reasonable cost.

Table 3 gives the flow-weighted mean annual salinity for
several streams in the research area. The available record
from 1960 to 1985 for some of them is plotted in Figure 5.
(Flow-weighted mean annual stream salinity is the value that
would be obtained if all water which flows past a given point
in a year were collected, mixed and its salinity measured.)
Streams draining completely forested catchments (Table 3)
generally have a flow-weighted mean annual salinity between 100
and 200 mg/L TSS. Salinity is inversely proportional to
streamflow volume and can decrease by 50 to 100 mg/L TSS in
years of above average streamflow or increase by the same
amount when streamflow is below normal as illustrated by the
Weld River, Shannon River and Barlee Brook in Figure 5. Bigger
inecreases are possible in years of very low flow, especially in
areas with high soil salinities as shown by the Yerraminnup
Creek. Stream salinity also varies within a year. On days of
low streamflow it may reach 500 mg/L, or more where soil
salinity is high. On days of high streamflow, stream salinity

is often less than 100 mg/L.

Small streams like Carey Brook, the tributaries of Easter and
Quininnup Brooks, or Four Mile Brook are generally located in
relatively flat valleys high in the landscape. Larger streams
flow in more incised valleys lower in the landscape where soil
salinity is higher (Johnston et al. 1980). As a result larger
streams tend to have somewhat higher salinities. On the other
hand, the catchments of the aforementioned small streams have
never been logged, or in the case of Four Mile Brook not since
1940, while logging has taken place and is still going on in
the catchments of the larger streams. How much, if any, of the

differénce in stream salinity may be due to logging rather than

- 17 -
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Figure 5
Flow-weighted mean annual salinity of several streams in the research area from 1960 to 1985. (Data from
the Conrec data base of the Water Authority of Western Australia, and Public Works Department of
Western Australia 1984. Closed circles are for streams without significant agricultural development in
their catchments. Open circles are for streams with significant agricultural development in their
catchments. Different line types were chosen for clarity.)



landscape position cannot be ascertained since logging in the
catchments of the larger streams commenced several decades
before stream salinities were monitored. As a result of local
geologic, climatic and hydrologic characteristics small streams
can have salinities similar to those of larger streams (see
Yerraminnup Creek) or sometimes even higher salinities (see

Iffley catchment in section 5.4).

The re-introduction of heavy selection cutting had no notable
effect on the salinity of the Weld and Shannon Rivers (Fig.
5). Barlee Brook was not affected either, but since the change
in cutting strategy there was also little logging in its
catchments until 1986. The records for all other streams in
Table 3 are too short to make such a comparison. 1In the Weld
River, Shannon River and Barlee Brook catchments, the mean
annual rainfall is well above 1100 mm. The effect on stream
salinity of disturbance to the native vegetation generally
increases with decreasing mean annual rainfall (Collins and
Barrett 1980). The observation that the change in cutting
strategy did not affect stream salinity in these three
catchments should therefore not be extrapolated to areas of

lower mean annual rainfall.

Clearing for agriculture in areas with more than 1100 mm mean
annual rainfall had little effect on stream salinity (Table

3). However, as the mean annual rainfall decreases
agricultural development is associated with increasingly higher
flow-weighted mean annual stream salinities. Variations from
year to year and within a year become greater too. It can take
several decades for agricultural clearing to reach its full
impact on stream salinity (Hookey 1987). Hence, stream
salinity in catchments with agricultural development often
shows a rising trend as demonstrated by the Wilgarup and Warren
Rivers in Figure 5. In areas with less than 900 mm mean annual
rainfall the flow-weighted mean annual stream salinity can

frequently exceed 2000 mg/L TSS. Year to year variations of
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several thousand mg/L TSS are not uncommon, and within a year
stream salinity can range from a few hundred to over 10 000
mg/L TSS. If no steps are taken to restore the salt and water
balance to the state prior to clearing it will take several
hundred years for such streams to yield high quality drinking

water again (Peck and Hurle 1973; Hookey 1987).

Saline flows from agricultural areas are often diluted as they
move through forest. This is exemplified by the Warren River.
Most of its salinity arises in agricultural areas drained by
the Tone and Perup River. At Wheatley Farm, some 20 km
downstream of the confluence of those two tributaries, the
flow-weighted mean annual salinity of the Warren River is over
2000 mg/L TSS. At Barker Road crossing, after flowing through
mostly forest for some 75 km, it has decreased to less than
1000 mg/L TSS. To a lesser degree this dilution effect also

occurs in the Lefroy Brook between the Channybearup and Rainbow

Trail gauging stations.

Further details about stream water quality in the Shannon,
Warren and Donnelly River basins are.given elsewhere (Collins

and Barrett 1980; Steering Committee 1980).
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3. HYDROLOGY OF THE RESEARCH AREA

3.1 Hydrologic characteristics of mature forest areas

Hydrologic processes are strongly influenced by rainfall. This
report therefore differentiates between three rainfall zones

which are defined as:

high rainfall zone = areas where the mean annual

rainfall is greater than 1100 mm;

areas where the mean annual

1]

intermediate rainfall zone

rainfall is between 1100 mm and

900 mnm;

low rainfall zone = areas where the mean annual

rainfall is less than 900 mm.

All statements in this chapter refer to the southern forest
although some of the information presented was actually
obtained in catchments of similar hydrology in the jarrah

forest of the Darling Range to the north.

The soils in the southern forest typically consist of 30 to

100 cm of sandy to loamy material on top of 5 to 20 m of
clay-rich material (McArthur and clifton 1975). The latter
ranges in texture from sandy clay loam to clay but is hereafter
simply referred to as clay. The upper soil is very permeable
so that surface runoff is hardly ever generated because the
rainfall rate exceeds the infiltration capacity of the upper
soil. The permeability of the underlying clay, however, is
very low and water is frequently perched above it during the
wet season. Part of this water eventually infiltrates into the
clay to recharge soil moisture and ground water, and part of it
is removed by evapotranspiration. The remainder flows

downslope on top of the clay layer and discharges into



streams. Such shallow subsurface runoff is likely to

contribute over 90 per cent of the annual streamflow volume

(Stokes and Loh 1982).

After a large amount of rain hps fallen enough water may be
perched to completely saturate the soil above the clay
horizon. Any additional rainfall may then become surface
runoff. 1In winter complete soil saturation occurs frequently
in valleys since they receive water from rainfall as well as
shallow subsurface flow originating upslope. Nevertheless,
surface runoff apparently provides less than 5 per cent of the

annual streamflow volume (Stokes 1985).

Depth to ground water is related to mean annual rainfall and
fluctuates seasonally in response to the succession of water
excess in winter and water deficit in summer. Throughout this
report ground water is classified as subsurface water which
occurs in saturated soil and rock formations. Subsurface water
held in unsaturated soil and rock formations is referred to as
soil water. Following these definitions water retained in
saturated soil above the clay horizon would count as ground
water, but shall be called perched water instead because it

generally occurs intermittently and only in winter.

In the high rainfall zone ground water is generally quite close
to the soil surface, especially in the valleys, and during
winter the large water éxcess commonly leads to enough recharge
to raise ground water above the water level in the streams so
that it contributes to streamflow. 1In the low rainfall zone
ground water is typically well below the soil surface and the
smaller water excessrusuélly far from sufficient to lead to any
ground water discharge to streams. In the intermediate
rainfall zone the situation depends largely on local
conditions. Some areas discharge ground water to streams in
most winters, others occassionally or never. Ground water may
contribute around 10 per cent of the annual streamflow volume

in the high rainfall zone (Stokes and Loh 1982), but this



percentage decreases to nil in the low rainfall zone. Recent
data by Stokes (1985) suggest that even in the high rainfall
zone ground water contributes far less than 10 per cent of the

annual streamflow volume.

As a consequence of the water deficit, soil water is depleted
by evapotranspiration during the summer. This creates an
upward hydraulic gradient which causes water to flow from the
saturated zone towards the top of the unsaturated zone where it
is then removed by evapotranspiration. Some water in the
saturated zone may also be extracted directly by deeply rooted
plants. Which pathway is more important depends on the depth
to ground water, the hydraulic properties of the soil, the
depth to which roots penetrate and physiological properties of
the vegetation at the site. Lateral ground water flow may also
remove some water, but the amount appears to be smaller than
that consumed by evapotranspiration (Sharma et al. 1982).

These processes lead to a sufficient decline in ground water
level during summer to stop ground water discharge to streams
in most areas. Because of the dry conditions there is also
hardly any surface or subsurface runoff during summer. About
90 per cent of the annual streamflow volume is therefore
generated from May through October (Fig. 6) when most of the
rainfall occurs and the soils are wet. Small streams usually

stop flowing in summer.

Water which enters a catchment as rainfall (R) may leave it as
streamflow (Q), evaporation (E) or transpiration (T) or add to

soil and ground water storage (WS). This water balance can be

summarised as
AWS =R-Q-E - T

There may also be some ground water outflow from a catchment,
but in the research area this is generally less than one per
cent of the annual rainfall (Steering Committee 1980) and is

therefore not considered.
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Figure 6

Average monthly distribution of annual streamflow for three major streams in the research area. (Data
from Collins and Barrett 1980. The numbers in parentheses are the gauging station numbers.)
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The symbol A stands for ‘change in'. Soil and ground water
depletion during summer is generally about equal to the
replenishment during winter so that there is no significant
change in water storage from one year to the next (Sharma et
al. 1982). Streamflow typically exports 10 to 20 per cent of
the annual precipitation in the high rainfall zone, but less
than 5 per cent in the low rainfall zone where small streams
often do not flow at all in years of below average

precipitation,

Transpiration is defined here as the loss of water from within
living plants to the atmosphere. All other water loss to the
atmosphere is called evaporation. The magnitude of evaporation
and transpiration in the southern forest has not been evaluated
separately. However, evapotranspiration, the combination of
both processes, ranges from 80 to 90 per cent of the annual
precipitation in the high rainfall zone to 95 to 100 per cent

in the low rainfall zone (Fig. 7).

Because of the different mechanisms involved in water uptake by
plant roots and water movement in soil, more water can usually
be lost from a unit area of soil covered by vegetation than
from a unit area of bare soil (Hillel 1982). However, similar
amounts may be lost if the soil surface is wet. Vegetation
typically covers 70 to 90 per cent of the soil surface in
forested areas (Stoneman et al. 1987), and only during winter
when potential evapotranspiration is low is the soil surface
frequently wet. Evaporation from the soil is therefore
probably less than 10 per cent of the total annual rainfall,
In this report dead organic litter on the forest floor is
considered to be a part of the soil surface. Rainfall
intercepted by vegetation is subsequently lost to the
atmosphere. This form of evaporation, generally called
interception, is likely to consume 10 to 20 per cent of the
total annual rainfall (Schofield et al. 1987). Transpiration
therefore probably accounts for 60 to 70 per cent of the total
annual rainfall in the high rainfall zone, and 80 to 90 in the

low rainfall zone.
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south-west Western Australia. (Based on Loh 1982. Annual evapotranspiration was estimated as annual

rainfall minus annual streamflow.)



In south-west Western Australia rain and dry fallout
precipitate salt which was transferred into the atmosphere from
oceanic spray (Hingston and Gailitis 1976). The amount
precipitated decreases with distance from the coast (Fig. 8).
Dividing the total annual saltfall by the annual rainfall
yields an effective salt concentration of rainwater. This
value is about 35 mg/L TSS near the coast, but decreases

rapidly with distance from the coast (Fig. 8).

Evapotranspiration removes most of the water but leaves all
salt behind. Due to this concentration process surface and

shallow subsurface runoff, ground water, and hence streams have

" higher salinities than rainwater. Salt left on the soil

surface is eventually washed into the profile by rainfall, or
carried to a stream by surface runoff. Shallow subsurface
runoff moves most of the salt from the soil above the clay
horizon to a stream, but some is also transported into the clay
by infiltrating water. Ground water can discharge salts from
deeper parts of the soil profile directly to the streams.
However, water flowing from the saturated zone to the soil
surface, as typically encountered in summer, also carries salt
into the soil above the clay horizon and to the soil surface
where it may subsequently be removed by runoff. This could be
considered as indirect discharge of salt to streams by ground
water. It seems that ground water discharges more sa1£ via the

indirect than the direct pathway (Stokes 1985).

These processes leach most of the salt from the top 1 to 3 m of
a soil profile. Solute contents in this zone are therefore
generally well below 0.1 kg/ms. However, at greater depths
leaching is less complete and substantial amounts of salt have
accumulated. More than 3 kg/m3 TSS are not uncommon,
especially in the low rainfall zone. On hilltops and upper
slopes the salt content typically increases monotonically with
depth. On middle and lower slopes and in valleys it typically
increases to a maximum at an intermediate depth and then

decreases again. This pattern is commonly referred to
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as a salt bulge (Fig. 9). Salt bulges usually occur above the
saturated zone. While the causes for the different salt
distributions are not completely understood, it appears that
salt contents monotonically increasing with depth are usually
associated with net ground water recharge, while salt bulges
are mainly connected with net ground water discharge (Johnston

1981).

Salt is still accumulating. 1In the high rainfall zone probably
less than 10 per cent of the salt introduced to a catchment
each year by rainfall and dry fallout is retained. However,
there are some catchments in the high rainfall zone and even
some in the intermediate rainfall zone which have a net salt
discharge. These tend to be in areas where forest density has
been significantly reduced by past logging or jarrah dieback
(Schofield et al. 1987). 1In the low rainfall zone more than 50
per cent of the total annual saltfall is typically retained.
The portion retained also varies between catchments of similar

rainfall and years (Steering Committee 1980; Stokes 1985).

Soil salt storage in the research area currently ranges from
less than 5 kg/m2 TSS to nearly 65 kg/m2 TSS. It varies
greatly between sites within catchments and between catchments
of similar rainfall, but generally increases with decreasing
mean annual rainfall (Fig. 10). The values tend to be higher
in valleys and on lower slopes which are usually ground water
discharge areas. Comparing these values with the saltfall data
in Figure 8 suggests that it took several thousand years to
accumulate the present amounts of salt in the soils. Further
information on soil salinity in the area is provided by

Johnston et al. (1980).

Due to a variety of processes involved in the release of salt
from the soil matrix, low flows remove more salt per unit
quantity of water than high flows (Rhoades 1974). In general
the salinity of surface and shallow subsurface runoff is
therefore inversely related to runoff volume. Because of the

low salt content in the upper soil, it is usually well below



soil salt content [kg/m?]

depth below soil surface [m]

16 -

Figure 9
Two typical patterns of salt distribution in soils in the research area:
A. salt content increasing monotonically with depth (bore number 6078610);
B. salt bulge (bore number 6078617).
(Data from Johnston et al. 1980.)
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Figure 10

Soil salt storage in relation to mean annual rainfall at several bore locations in the research area. (Data
from Johnston et al. 1980. Crowea, Iffley and Mooralup are research catchments discussed in detail in this
study. The other seven catchments are discussed in detail by Borg et al. 1987.)

500 mg/L TSS, and frequently even less than 100 mg/L TSS
(Sharma et al. 1980; Stokes 1985). Ground water salinity is
generally less than 1000 mg/L TSS in the high rainfall zone,
but values above 10 000 mg/L TSS are common in the low rainfall
zone (Steering Committee 1980), reflecting the increase in salt
storage with decreasing mean annual rainfall. Because it has a
higher salinity than surface and shallow subsurface runoff,
even a small amount of ground water can have a large influence
on stream salinity. This is illustrated by data from the
Wights catchment near Collie, some 100 km north of Manjimup.
Stokes and Loh (1982) calculated that 60 per cent of the salt
but only 7 per cent of the water in its 1980 streamflow came
from ground water discharge. Shallow subsurface runoff
contributed 38 per cent of the salt, but 91 per cent of the
water. Just 2 per cent of the salt and 2 per cent of the water

were associated with surface runoff.



3.2 Hydrologic processes affected by logging

Logging removes vegetation and therefore reduces transpiration
and interception in cut-over areas. More water thus becomes
available for other parts of the water balance. Some of it
goes into storage which leads to a rise of the ground water
level. Hence, where ground water already contributed to
streanflow prior to logging, more ground water, and with it
more salt, will be discharged to the streams. 1In areas where
ground water did not contribute to streamflow prior to logging,
the rise in ground water level after logging may be sufficient
in some cases to result in ground water and associated salt
discharge to streams. A rise in ground water level is also
likely to lead to an increase in the indirect discharge of salt
by ground water since flow from the saturated zone towards the
soil surface generally increases the closer the ground water

level is to the soil surface (Hillel 1982).

Due to the increase in water storage, the soil profile is
generally wetter after logging than before. More of the soil
surface is exposed to the atmosphere, too. Both factors are
responsible for an increase in evaporation, but total
evapotranspiration is still less than prior to logging. The
wetter soil conditions also generate more shallow subsurface
and surface runoff and thus more streamflow since less rainfall
is now required to perch water above the clay horizon or
saturate the surface soil. The effect of a rise in ground
water level on stream salinity therefore depends on how much

increased runoff dilutes the additional salt discharge by

ground water.

Prior to this research there was no quantitative information on
how heavy selection cutting or clear-felling would influence
streamflow and stream salinity in the southern forest of
Western Australia, or how long any effect might persist after

regeneration. This was the general question addressed in this

study.
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Of particular interest was the situation in the low rainfall
zone in the north-east sector of the research area where
clearing for agriculture had caused large and persistent
increases in stream salinity. This raised some concern that
heavy selection cutting might lead to a serious stream salinity
problem, too (Forests Department of Western Australia 1973).
Logging in the north-east sector was therefore restricted to
the selective removal of sawlogs until research could show that
heavy logging was possible without causing significant
increases in stream salinity. Two experimental catchments, one
in this study and one in the paired catchment study mentioned
in the introduction, were logged intensively to examine the

effect of stream salinity.

In the high rainfall zone agricultural development had little
effect on stream salinity, and in the intermediate rainfall
zone the effect was moderate (Table 3). Furthermore, heavy
selection cutting or clear-felling followed by regeneration of
the cut-over area to forest is a less severe hydrologic
disturbance than clearing for agriculture. Hence, no serious
stream salinity increase was expected in these rainfall zones
and the change from light selection cutting to heavy selection
cutting and clear-felling was permitted without waiting for the

research results.
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4. INSTRUMENTATION AND MEASUREMENTS

Four small catchments were selected in 1975 to represent a
combination of mean annual rainfall, forest type, soils and
topography found in the southern forest. Their names and some
of their characteristics are given in Table 4 and their
locations are shown in Figures 1 and 2. Catchment maps are
presented in Appendix J. The catchments are of similar size to

areas cut in commercial logging operations.

All catchments were instrumented in a similar fashion during
1975. Four storage rain-gauges, each 127 mm in diameter, were
located in the Poole catchment and six in or near each of the
other three catchments. They were placed where substantial
gaps occurred in the tree canopy. Their location is indicated
on the maps in the Appendix J. Tall overstorey vegetation
which could have influenced the amount of rainfall collected
was cleared from near the gauges. The gauges were read at
least once a week and the values for each group of gauges
averaged to get a mean rainfall for the catchment. These means

were then summed to obtain the total annual rainfall.

At the outlet of every catchment a weir was constructed with a
stilling basin behind it. Figure 11 gives a schematic of such
an installation. 1In 1976 the water level in each stilling
basin was determined once every two or three days using a staff
gauge. With the procedure described below, this frequency of
measurement appears sufficient to estimate the total annual
streamflow volume in small catchments within 5 per cent of the
volume obtained from a continuous water level record (Herbert
and Ritson 1976). Since 1977 a floatwell installed in each
stilling basin and connected to a chart recorder supplied a
continuous record of the water level. An equation relating the
water level in the stilling basin to flow over the weir was
used to compute streamflow rates (U.S. Dept. of the Interior
1971). The streamflow rates for 1976 were then multiplied by

the time between measurements and summed to get the total
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Figure 11

Schematic of the type of gauging station constructed in the four research catchments. (Indicated
dimensions apply to the gauging station at Iffley but are similar for the gauging stations at Crowea, Poole
and Mooralup.)
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annual streamflow volume. The streamflow rates for all
subsequent years were integrated numerically over time to

obtain the total annual flow volume.

Once a week a 250 mL sample was taken from the top 10 em of
water in each stilling basin. The water samples were taken to
the laboratory to measure their electrical conductivity. The
temperature of each sample was determined shortly before the
conductivity measurements were taken. The readings from the
conductivity meter could thus be converted to equivalent —
electrical conductivities at 25°C using a conversion table. |
These values were then employed to calculate the concentration
of total soluble salts (TSS) in the sample from a regression
equation by Hatch (1976). Finally, a flow-weighted mean annual

stream salinity, S, was computed as

where Qi is the streamflow volume on the day when the water

sample with the TSS concentration Si was collected.

Ten 127 mm diameter holes were auger-drilled to bedrock in
every catchment to monitor ground water levels. They were
positioned to represent valley, midslope and upslope areas.

Two additional holes were located outside each catchment in
forested areas which were not to be logged. All bores were
drilled and counstructed by the Mines Department of Western
Australia and given a seven digit Australian Water Resources
Council identification number. However, for simplicity they
are referred to as bore number 1 through 48 in this report
(Appendix H). A 38 mm diameter PVC pipe, fitted to reach fromv
the bottom of the hole to 50 cm above the soil surface, was
inserted into each hole and packed into place with graded

sand. Each pipe was slotted from 150 cm below the soil surface
to the bottom of the hole, and its bottom end sealed with a
plug. For protection, an 89 mm diameter steel pipe was placed

over all PVC pipes. The steel pipes extend 50 cm above and
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100 cm below the soil surface and are cemented in at the soil
surface. 1In a few bores the water level rose beyond 50 cﬁ
above the soil surface after logging. The height of the steel
pipe in these bores was increased to accommodate the high water
levels. Removable caps were p}aced on top of all steel pipes
to prevent rain and debris from entering the bores. Bore
construction details are illustrated in Figure 12. The

location of the bores is marked on the maps in Appendix J.

The water level in every bore was determined once a month using
a tape measure with a small bailer attached to it. When
lowered down the PVC pipe the bailer makes a distinct sound
when it contacts the.water surface. The depth to water is then
read off the tape measure and corrected for the height of the
pipe above the soil surface. After that the bailer was lowered
a few centimetres below the water surface to collect a 100 mL
sample. The TSS concentration of this water sample was later

determined in the laboratory in the manner described above.

Rainfall, streamflow and stream salinity was monitored from the
beginning of 1976 to the end of 1985. The collection of bore
water level data commenced in May 1975 and is still going on.
The collection of bore water salinity data also began in May

1975, but was stopped in June 1986.

All four catchments were logged as part of commercial logging
operations. Due to management constraints the areas logged
therefore do not entirely match the actual catchment areas (see
Appendix J). At Crowea 108 ha of karri forest were
clear-felled and some 25 ha of jarrah forest logged using heavy
selection cutting to an estimated average basal area (over bark
at breast height) retention of 11 m2/ha. Most of the logging
took place from January 1977 until the end of July 1977.
However, some 10 ha of karri forest next to the stream and the
jarrah stand were not cut until the following summer. Logging
was completed in February 1978. At Poole 218 ha of karri

forest were clear-felled and 38 ha of jarrah forest logged
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Figure 12
Schematic of the type of bore constructed in the four research catchments.
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under heavy selection cutting to an estimated basal area
retention of 11 m2/ha. The karri forest at Poole contained a
substantial amount of jarrah. The bulk of the area was logged
from January 1977 to the end of August 1977. The remainder,
some 30 ha of karri forest adjacent to the stream and the
jarrah area, were cut during the next summer. Logging was
completed in March 1978. All cut-over areas at Crowea and
Poole were burnt in April 1978 to dispose of the waste from
logging. The karri areas were then regenerated by
hand-planting nursery-raised karri seedlings in a 2 m by 4 m

spacing. The jarrah areas were left to regenerate naturally.

At Iffley a total of 146 ha of jarrah forest were logged under
heavy selection cutting to a measured average basal area
retention of 11.4 m2/ha, which corresponds to 15.1 per cent
overstorey cover. Logging began in November 1976 and proceeded
to the end of May 1977. About 106 ha were cut in this period.
The other 40 ha which were adjacent to the main stream were cut
during the summer of 1977-78. Logging was finished in February
1978. At Mooralup some 166 ha of jarrah forest were logged
under heavy selection cutting to a measured average basal area
retention of 10.6 m2/ha, which corresponds to 14.2 per cent
overstorey cover. Logging commenced in December 1976 and was
completed by the end of May 1977. Waste disposal burns in the
cut-over areas at Iffley and Mooralup were carried out in
November 1979. They were then left to regenerate naturally.
Table 5 summarises logging and regeneration details for all

four catchments.
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5. RESULTS

5.1 General remarks

A graphical summary of the annual values of rainfall,
streamflow, stream salinity, minimum bore water level and
vegetation cover in the four catchments during the study period
is shown in Figure 13. The numbers on top of the rainfall bars
state the ratio between the rainfall in the respective year and
the mean annual rainfall for 1926 to 1976 inclusive.

Streamflow data are presented as annual streamflow volumes per
unit catchment area and are expressed in units of millimetres
to allow direct comparisons with annual rainfall. Streamflow
bars are plotted inside the rainfall bars and at the same
scale. The numbers at the top of the streamflow bars give the
annual streanflow as a fraction of the rainfall in the
respective year. All stream salinities are flow-weighted mean

annual values,

Ground water status in a given year is represented by the
average of the yearly minimum water level of all bores in a
catchment, relative to the 1976 value. The bores did not
become operational until May 1975 when some were already past
their minimum water level. This should be considered when

referring to the 1975 bore water level data.

The vegetation cover data for 1986 were obtained in the
catchments. GClear-felling and the subsequent controlled burn
reduced vegetation cover briefly to zero at Crowea and Poole in
1978. Basal area was measured at Iffley and Mooralup in
1978-79 and converted to overstorey cover using a correlation
between basal area and overstorey cover based on data from
Stoneman et al. (1987). The waste disposal burn in 1979
temporarily reduced the understorey cover to zero in both
catchments so that overstorey and total vegetation cover were
equal for a short time. All other cover data were inferred

from the information given in section 6.
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Figure 13
Annual values of rainfall, streamflow, flow-weighted mean stream salinity, minimum bore water level
(averaged for all bores in a catchment) and vegetation cover in the four research catchments from 1975 to
1986. (The numbers at the top of the rainfall bars give the ratio between the rainfall in the respective year
and the mean annual rainfall for 1926 to 1976 inclusive. The numbers at the top of the streamflow bars
give the annual streamflow as a fraction of the rainfall in the respective year.)
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Rainfall, streamflow, stream salinity, ground water level and
vegetation cover are discussed in detail in the following

sections.
5.2 Rainfall

The distribution of the mean annual rainfall in the southern
forest region was presented in Figure 2. The ischyets are
based on the average annual rainfall from 1926 to 1976
inclusive at 100 locations (Loh and King 1978). Figure 13
gives the annual rainfall measured in the four catchments
during the study. These data suggest that the average annual
rainfall for this period was between 17 per cent and 29 per
cent below the 1926 to 1976 mean estimated from Figure 2.
However, at the long-term gauging stations in the area the
average annual rainfall for 1976 to 1985 was only 4 per cent to
19 per cent below the 1926 to 1976 mean (Table 6). It was
suspected at first that the vegetation around the rain gauges
in the experimental catchments might be the reason for this
discrepancy. However, the discrepancy was similar before and
after logging so that it cannot be attributed to the
vegetation. Some of the difference may be due to the use of
127 mm diameter rain gauges in the research catchments while
all long-term recording stations employ gauges 203 mm in

diameter, or it may be due to spatial variations in rainfall.

Nevertheless, the average annual rainfall during the study
period was clearly below the 1926 to 1976 mean.. Years with low
rainfall are not unusual, but a period of below average
rainfall of such length was not previously recorded in the
area. This is illustrated by the annual rainfall data for
Manjimup and Bridgetown plotted in Figure 14, especially the
10-year moving average. However, the rainfall records for the
region are too short to determine whether the current sequence
of low rainfall is really abnormal, or whether the average

rainfall for 1926 to 1976 is a true representation of the
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Figure 14

Annual rainfall at Bridgetown and Manjimup from the opening of the gauging stations to 1986 inclusive.

(Data from Commonwealth Bureau of Meteorology records.)
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long-term mean. No gauging stations existed in the region
before 1887, four operated by 1900, and only 24 by 1920 (Loh
and King 1978).

1f the rainfall during this study was below normal, care must
be taken in extrapolating the results into the future when a
return to higher rainfall may alter the effects of logging on
the water resources. Higher rainfall typically generates more
surface and shallow subsurface runoff and hence more streamf low
as well as more ground water recharge which leads to higher
ground water levels. Higher ground water levels in turn lead
to an increased discharge of salt to the streams. The effect
on stream salinity depends on how much any increase in salt

discharge is diluted by an increase in runoff.
5.3 Streamflow

All annual streamflow data presented below are given as annual
streamflow volumes per unit catchment area, expressed in units
of millimetres to allow direct comparisons with the annual
rainfall figures. Based on the one year of pre-logging data
(1976) and information from other streams nearby, typical
annual streamflow under mature forest is likely to be 100 to
250 mm at Crowea, 20 to 150 mm at Poole, 50 to 200 mm at
1ffley, and 0 to 50 mm at Mooralup. These values vary with the
total annual rainfall and its distribution throughout the
year. Annual streamflow generally increases with annual
rainfall, but rainfall from December until May hardly ever
generates any streamflow because it is absorbed by the soils

which are usually dry during this period.

As a result of logging, the annual streamflow increased sharply
for two years (1977 and 1978) in all four catchments (Fig. 13).
_This was most pronounced in the Crowea and Poole catchments,
but less so in the Iffley and Mooralup catchments. The smaller
increase at Iffley, and in particular at Mooralup can be

attributed to the drier climatic conditions in these catchments.
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Also, while the Crowea and Poole catchments were essentially
clear-felled, significant amounts of vegetation were retained
at Iffley and Mooralup which most likely further moderated the

increase in streamflow.

Since 1979, concurrent with the regeneration of the cut-over
areas, streamflow gradually declined again in all four
catchments. This trend is somewhat obscured hecause streamflow
tends to vary with rainfall. Expressing annual streamflow as a
percentage of annual rainfall (Fig. 15) takes out ‘Some of the
variation due to different rainfall amounts but does not
account for differences in rainfall distribution. The data
indicate that in the Crowea, Poole and Iffley catchments
streamflow is likely to return to pre-logging values by about
1990, some 11 to 12 years after the beginning of regeneration.
In the Mooralup catchment, where streamflow is naturally low as
a consequence of low rainfall and high potential
evapotranspiration, it may already be back to pre-logging

levels.

The higher annual streamflow volumes at Crowea, Poole and
Iffley since logging arose from increased flow rates and longer
flow durations (Table 7). The situation at Mooralup is more
difficult to assess. 1In the low rainfall zone streamflow rates
are generally low and flow durations relatively short. Both
are therefore quite sensitive to variations in the amount and
distribution of rainfall and vary substantially between years.
Considering this and the fact that there is only one year of
pre-logging data for comparison, Table 7 suggests that the flow
period at Mooralup was not notably affected by logging and
subsequent regeneration, but that the relatively high flow
rates in 1978, 1981 and 1983 wére probably a consequence of

logging.
The streamflow response to logging and regeneration observed in

this study is consistent with observations from other parts of

the world. Hibbert (1967), and more recently Bosch and Hewlett
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(1982) reviewed a large number of data reported in the
scientific literature and concluded that streamflow generally
increases for one to two years after logging and then declines
again as the vegetation grows back. Data from experimental
catchments near Collie, about 100 km north of Manjimup, suggest
that in south-west Western Australia most of the increased
streamflow after logging comes from increased shallow

subsurface runoff (Williamson et al. 1987).

5.4 Stream salinity

Figure 13 gives the flow-weighted mean annual stream salinity
in the four research catchments during the study. All
discussion here is concerned with flow-weighted mean annual
stream salinity which is therefore simply referred to as stream
salinity in the remainder of this section. At Crowea and Poole
it roughly followed the changes in ground water level,
moderated by variations in streamflow. (Recall that surface
and shallow subsurface runoff genefate most of the flow, and
that ground water generates most of the salinity.) From 1976
to 1979, concurrent with the rise in ground water level as a
result of logging, stream salinity increased by 50 mg/L TSS at
Crowea, and by 94 mg/L TSS at Poole. The bigger increase at
Poole most likely resulted from the bigger rise in ground water
level (see section 5.5). Except in 1981 when it was lowered by
high flow volumes, stream salinity in both catchments remained
near the 1979 value until 1982-83 while the ground water levels
were high, but then fell again as the ground water levels
declined. The fall in 1984 might have been amplified by the
greater streamflow volume in that year. The slight increase in
stream salinity in 1985 was probably mostly a response to the
drop in streamflow rather than the small rise in ground water

leVel.

The rise in stream salinity and its temporary persistence at an
elevated level after logging occurred despite increased

streamflow. This means that the amount of salt released by the
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raised ground water levels was proportionally larger than the
amount which could be fully diluted by the increase in
streamflow. Nevertheless, even at its highest point stream
salinity was less than 200 mg/L TSS, which is far below the
500 mg/L TSS considered to be the upper limit for high quality
drinking water. The temporary increases of 50 and 94 mg/L TSS
observed at Crowea and Poole were therefore not a significant

deterioration of stream water quality.

At Tffley logging did not significantly influence the ground
water level until 1979. Hence stream salinity decreased from
1976 to 1978 in response to the increase in streamflow volume.
The elevated stream salinities in 1979 and 1980 on the other
hand were due to the raised ground water level. No explanation
was obvious for the drop in 1981. Considering the combination
of ground water level and streamflow volume, stream salinity in
1982 should have been higher, too. 1Its decline in 1983 and 1984
was consistent with the decline in ground water level, and in
1984 was possibly assisted by the higher streamflow. Lower

streamflow probably caused the stream salinity rise in 1985,

Prior to logging (1976) the stream salinity at Iffley was 352
mg/L TSS. 1In 1979, at its highest level after logging, it
reached 432 mg/L TSS, 80 mg/L above the pre-logging value. This
is a tolerable increase because stream salinity remained below
500 mg/L TSS. Since 1983, the fourth year after the beginning

of regeneration, it was less than the pre-logging value.

The temporary increase in stream salinity after logging was of
similar magnitude in the Crowea, Poole and Iffley catchments.
However, the total stream salinity at Iffley was about twice as
high. Comparison with Table 3 shows that the stream salinity
level at Iffley is uncharacteristically high for forested
catchments in the region. This is probably due to topographic
and geologic features at Iffley (Martin 1980) to which Johnston
et al. (1980) also attribute the unusually high soil salt

storages for a catchment with 1200 mm mean annual rainfall

(Fig. 10).
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In the Mooralup catchment stream salinity was not influenced by
changes in ground water level and only responded to variations
in streamflow. The highest observed value was 142 mg/L TSS in
1980. No pre-logging data were available for this area so that
it cannot be ascertained how logging influenced stream
salinity. However, at well below 200 mg/L TSS, stream salinity
at Mooralup is not a concern. Throughout the study period the
lowest stream salinities were observed in the Mooralup
catchment, despite its location in the low rainfall zone which
prior to this research was considered to be the most likely

region where logging might lead to high stream salinities.

1f streamflow and ground water return to the level they would
have been at had there been no logging, then stream salinity
should do the same. At Crowea and Poole this is likely to
happen in the early 1990s. The available ground water data do
not permit such an assessment for the Iffley catchment. Stream
salinity at Mooralup did not respond to changes in ground water
level and therefore probably did not increase after logging in
the first place. It may even have decreased slighply as a

result of the increase in streamflow.

5.5 Ground water

Variations in the amount and distribution of the annual
rainfall strongly influence the maximum ground water level in a
given year. The minimum ground water level is less affected
and thus better represents changes in ground water storage from
year to year. At times, some bores also had surface or shallow
subsurface runoff flowing directly into them, which distorts
the bore water level. It eventually equilibrates with the
ground water as the runoff water seeps from the bore into the
surrounding soil. Minimum bore water levels are generally not
affected by this problem since they usually occur in the dry
season when runoff hardly ever takes place. The lowest water
level in each bore was therefore cﬁosen to represent the ground
water status in a given year. Note that bore holes provide an

easy pathway for vertical ground water movement. Bore water
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levels therefore represent the height to which ground water
would rise if there were a non-restrictive flowpath. If a zone
of low permeability retards vertical ground water movement bore
water levels do not correspond to the actual position of the
ground water. This was the case in some areas at Crowea and
Iffley where no water was ponded on the soil surface although

the bore water levels were above the soil surface.

To summarise the ground water response the yearly minimum water
levels of all bores in a catchment were averaged. Only bores
which contained water throughout the study period were
considered. This was the case for six bores at Crowea, eight
at Poole, nine at Iffley and one at Mooralup. The deviations
from the 1976 value are plotted in Figure 13. At Crowea the
average minimum bore water level rose immediately after
logging, remained at an elevated but fairly constant level from
1979 to 1982 and then declined again. The pattern at Poole and
Iffley was similar, except that the bore water levels decreased
a little in 1977 before they started to rise. The slight
increase at Crowea and Poole in 1985 was caused by the
relatively high rainfall in the winter of 1984. All but one
bore in the Mooralup coupe were dry. The level in that bore
also fell slightly in 1977 and then increased. However, since

1979 it remained virtually unchanged.

The limited ground water response at Mooralup was most likely a
result of the dry climatic conditions in the area, low rainfall
combined with high potential evapotranspiration, coupled with
the fact that not all the vegetation was removed during
‘logging. Although the Iffley catchment is in a drier location
than the Crowea and Poole catchments, its comparatively small
ground water response was presumably partly due to the retained
vegetation, too. Regeneration at Crowea and Poole began in mid
1978, but not until late 1979 at Iffley, which is probably why
its average minimum bore water level peaked later. Soils,
geology and topography also influence the ground water system
and were most likely the cause for the larger response at Poole

though Crowea has the wetter climate.
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Figure 13 shows that by 1986 the average minimum bore water
level at Iffley was almost back to its pre-logging value, while
it was still considerably higher in the other three catchments.
However, minimum bore water levels are also influenced by annual
variations in rainfall and evapotranspiration. As a result of
below average rainfall control bore water levels in the southern
forest have generally declined from 1976 to 1986 (Table 8). The
bore water levels in the four research catchments are therefore
farther above the level they would be at had there been no
logging than Figure 13 suggests.

Table 8: Deviation of the 1986 minimum bore water
level from the 1976 minimum bore water
level for several groups of control bores
in the research area.

Change in bore water

Catchment Jlevel [m]
Lewin North® - .74
April Road South! -1.11
Yerraminnup North! | - .44
Crowea - .64
Poole - .44
Iffley -2.51

1 data from Borg and Loh (1987)

Water levels in the bores within each catchment are subject to
climatic variations, plus those caused by logging. The bores
installed in forested areas adjacent to the four catchments,
hereafter called control bores, were intended to monitor
fluctuations due to rainfall and evapotranspiration. The
difference in water level between those two groups of bores

represents the net effect of logging.

The control bores near the Mooralup catchment were dry. The
ones near the Iffley catchment were placed in an area logged
sometime between 1961 and 1970 using light selection cutting.

When the bores were constructed in 1975 it was thought that the
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previous relatively light logging would no longer influence the
bore water level. However, the water level in the Iffley
control bores fell considerably more than in any other group of
control bores in the region (Table 8). This suggests that
regeneration still affected the ground water level. No valid
comparisons could therefore be made between the bores in the

Iffley catchment and its respective control bores.

The control bores near the Crowea and Poole catchments were
placed in virgin forest and therefore truly reflect variations
in ground water level due to rainfall and evapotranspiration.
The difference in minimum water levels between control and
catchment bores at Crowea and Poole is shown in Figure 16,
Extrapolation from the last three data points suggests that
around 1991, 13 years after the start of regeneration, the bore
water levels at Crowea and Poole will reach the level they

would have been at had the catchments not been logged.

er level
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Figure 16
Deviation of the minimum water level of the Crowea and Poole catchment bores from the minimum water
level of the corresponding control bores from 1975 to 1986. (The deviation for 1976 was set equal to zero
and all others scaled accordingly. The minimum water level for each group of catchment bores was
obtained by averaging the minimum water level of all bores in the catchment. The minimum water level
for each group of control bores was obtained by averag)ing the minimum water level of all hores in the
group.
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However, the information in this Figure should be viewed with
some caution. Several years of pre-logging data are necessary
to accurately relate the water level response in control bores
to that of catchment bores. No such data were collected in
this study so that a one to one relationship was assumed,
despite the fact that events leading to a unit change in bore
water level in one area rarely cause the same magnitude of
change in another area, even if it is nearby (Borg et al.
1987). This may be the reason for the dip observed at Crowea
between 1980 and 1984. During this period the water level in
the control bores underwent a pronounced rise and fall while it

declined continuously in most catchment bores.

There are some data on the effect of logging and regeneration
on ground water levels reported in the scientific literature.
As in this study, they also show that ground water levels rise
for some time after logging and decline again as the cut-over
areas regénerate (Wilde et al. 1953; Trousdell and Hoover 19855;
Heikurainen 1967; Holstener-Jorgensen 1967, 1978; Williams and

Lipscomb 1981; Sharma et al. 1982; Biddiscombe et al. 1985).

When ground water rises into a salt bulge in the soil profile,
ground water salinity increases. If it rises further, or in a
soil profile where salinity increases with depth, ground water
salinity decreases. A rise (or fall) in ground water level can
thus lead to an increase or decrease in ground water salinity.
The rise and fall of the bore water levels in the four research
catchments had no discernable influence on bore water

salinity. Salinity data for all bores are listed in Appendix
1. Because there are seasonal fluctuations in bore water
levels and hence bore water salinities, annual minimum and
maximum values are given. Note that some values, especially
maximum ones, may have been distorted by surface and shallow

subsurface runoff entering a bore.



6. REGROWTH OF VEGETATION COVER

Logging causes a disturbance of the water and salt regime of a
catchment. How fast and how far these disturbances can be
reversed depends on how quiékLy and how well the vegetation,
and hence transpiration, recovers. Prior to logging the net
change in soil and ground water storage from year to year is
very small and the annual evapotranspiration can be estimated
as rainfall minus streamflow. For several years after logging
changes in water storage are significant and evapotranspiration
can no longer be evaluated like that. Estimating transpiration
by other means from a forest area is difficult and was not
attempted in this study, but some information can be deduced
from vegetation density. A survey was therefore conducted in
1986 to evaluate the density and structure of forests that have
regenerated in areas which were clear-felled or experienced
heavy selection cutting. - Several unlogged areas were sampled
as well to determine forest density and structure typical of
unlogged forest. The four experimental catchments from this
study and the seven from the paired catchment study are
included in the survey. The methods and full results are given
by Stoneman et al. (1987). This report discusses only some of

the implications for water use.

Transpiration from é catchment is determined by the combination
of meteorological conditions, transpiring area, available water
and water transport from the soil to the leaves and from the
leaves into the air. Vegetation cover is a measure of the
transpiring area. Its changes after logging are depicted in
Figure 17 for three combinations of forest type and rainfall
zone. All tree species are referred to as overstorey and all
other vegetation as understorey. 'Cover' refers to the
percentage of ground area covered by a vertical projection of
the overstorey or total vegetation canopy onto the ground

surface.
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The overstorey cover in karri regrowth forests reached the
value for unlogged areas about ten years after the start of
regeneration. It continued to increase for another ten years
and then appeared to stabilise at around 75 to 80 per cent,

- well above the 60 to 70 per cent common in unlogged stands.
Total vegetation cover reached the unlogged value in about five
years, continued to rise for another five years, and since then
has remained about five per cent above that of unlogged

stands. The relatively low values for the data points 17 and
41 years after regeneration were caused by controlled fuel

reduction burns which were carried out less than two years

before sampling.

In jarrah forest, independent of rainfall, the overstorey cover
exceeded 70 per cent of the value in unlogged stands within
five years after the beginning of regeneration, 90 per cent
within ten years, and reached the unlogged value in about 20 to
30 years. The recovery in terms of total vegetation cover was
similar. It is not clear from the data whether the vegetation
cover of jarrah regrowth forest will eventually exceed that of
unlogged stands. The overstorey cover was similar in all
rainfall zones. However, the amount of understorey vegetation

decreased with decreasing mean annual rainfall.

Given a similar species and age distribution, similar site
conditions and an adequate supply of water, evapotranspiration
increases with vegetation cover (Brookes 1950; Langford and
0'Shaughnessy 1979). However, in most of south-west Western
Australia annual evapotranspiration from forest is limited by a
lack of water (Fig. 18). In winter, when potential
evapotranspiration is low and most of the rainfall occurs,
there is usually no shortage of water. In summer, on the other
hand, when potential evapotranspiration is high and little
rainfall occurs, actual evapotranspiration is governed by the
amount of water stored in the soil. This amount is generally
smaller than that which could be removed by evapotranspiration

and is therefore consumed faster the higher the percentage of
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vegetation cover is. In south-west Western Australia a one per
cent difference in vegetation cover thus normally translates
into less than a per cent difference in annual

evapotranspiration.

The extent of the root system partly determines the amount of
soil water available to a plant. Roots of mature jarrah and
marri trees may reach depths in excess of 20 m, but 90 per cent
of all roots are in the top‘2 m of the soil profile, and 99 per
cent in the top 5 m (Carbon et al. 1980; Dell et al. 1983).
There are no studies on the root distribution of karri, but its
roots can also grow to a depth of 20 m or more (Campion 1926).
No studies exist on the root development with time for either
species, but judging from other plants the roots of these
eucalypts are likely to explore the top 1 to 3 m of the soil
profile within a year, and the top 5 m within three to five
years (Weaver 1920; Borg and Grimes 1986). Some roots will

grow deeper as the plants mature.

The annual fluctuations in ground water level in the southern
forest demonstrate that water is removed from substantial
depths, though it is not known how much flows through the soil
into the upper parts of the soil profile where it is
subsequently removed by shallow roots, how much is removed
directly by deep roots, and how much is removed by lateral
flow. With greater depth below the soil surface roots become
fewer, temperature and oxygen concentration lower, and
salinities higher, which creates increasingly unfavourable
conditions for water uptake by plant roots (Taylor 1983).
Furthermore, there is a resistance to water flow in roots which
increases with the distance water travels inside the roots.
The magnitude of this resistance for eucalypts has not been
studied, but if it is.large water uptake from greater depths
may be severely inhibited (Passioura 1972; Taylor and Klepper
1978). Direct water uptake by jarrah, marri and karri roots

from below 5 m is therefore probably small. While the lack of
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data does not permit any definite conclusions it seems likely
that the amount of soil water available to a regrowth forest
three to five years after regeneration is nearly the same as

for a mature forest.

Tree trunks also have a resistance to water flow which is
proportional to tree height (Hellkvist et al. 1974). To get
water to the leaves tall mature trees must overcome a higher
lift as well as a higher resistance than short young trees.
Data for mountain ash in Victoria further suggest that the
resistance per unit height of tree may be higher in old than in
young trees (Legge 1985 a,b). Even if there is no shortage of
available soil water, mature trees may therefore not be able to
supply water to the leaves as fast as it can be lost,
especially on warm, dry days. The result is a reduction in
stomatal opening and transpiration. During winter, young trees
may thus transpire more water per unit cover than mature

trees. This may be the case duping summer, too, or the younger
trees may just use the available water faster. So, it is
possible that a young regrowth forest with smaller vegetation
cover than an adjacent mature forest may consume as much or

even more water.

From the available data it is not possible to determine how
much water regrowth areas actually use compared with mature
forest. However, the bore water level data presented above
demonstrate that within five years after the beginning of
regeneration the regrowth forests start to deplete the
additional ground water storage which has accumulated since

logging.

In forested catchments in Victoria it was observed that, after
several years of regeneration, streamflow in regrowth stands
was less than in the mature stands they had replaced (Brookes
1950; Brookes and Turner 1963; Kuczera 1985). This was

apparently due to higher transpiration from the regenerating
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stands (Langford 1976) although there were no obvious
differences in vegetation density (Kuczera 1985). No such
response has yet been observed in the southern forest of
Western Australia which may at least in part be due to the
absence of suitable streamflow information. Nevertheless, it
is a distinct possibility in regenerating jarrah stands and
especially in regenerating karri stands since the latter

attain a higher vegetation density than unlogged stands.

Should a reduction in streamflow from regrowth stands occur
they can be thinned to reduce transpiration which leads to an
increase in streamflow (Shea et al. 1975; Stoneman, Schofield
and Bartle 1987). The assessment of the long term influence of
forest regeneration on streamflow is an objective of the paired
catchment studies mentioned in the introduction. The four
catchments discussed in this report could not be used for this
purpose. They were intended to provide an early indication of
the hydrologic response to the revised cutting strategies and
subsequent regeneration. As a result of this objective
streamflow data were collected for only one year prior to
logging which is not a sufficient base to judge how future
streamflows compare to pre-logging values. Furthermore, the
lack of calibration with nearby, uncut control catchments would
not allow one to accurately separate changes in streamflow
caused by changes in vegetation cover from changes brought

about by variations in climate.
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Location of the streamflow gauging stations listed in Table 3. (The streamflow gauging stations are

operated by the Water Authority of Western Australia.)

- 82 —

Kojonup @



Kojonup @

‘ @ Bridgetown
A A
009585 009510

Yornup

. 5
4009590 &
Northcliffe % A
= te
a,q
SCALE IN KILOMETRES
5 0 5 10 15 20
P ™ e e e
§ %
L)
' (3}
2% <
G 5“'0“ A
o
%
LEGEND
s walpol
Woodchip Licence Area boundary a "°
River '
_— River basin boundaries (
A 009590 Rainfall gauging station
.
Appendix B

Location of the rainfall gauging stations listed in Table 6. (The rainfall gauging stations are operatéd by
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Appendix H:

Minimum annual water level in each bore in the
four research catchments from 1975 to 1986. (Plus
signs indicate the height of the water level above
the soil surface, all other values indicate the
distance of the water level below the soil
surface. Different line types in the graphs were

chosen for clarity.)
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Appendix I: Maximum and minimum annual salinity (mg/L TSS) in

each bore in the four research catchments from

1975 to 1986.
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Appendix J: Distribution of soil types and areas logged in the

four research catchments.
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