SWAN RIVER TRUST

Fringing vegetation of the Canning, Southern and Wungong Rivers

Swan River Trust Report No 7 1993

214 St Georges Terrace PERTH
Western Australia 6000
Telephone: (09) 3279700
Fax: (09) 3279770

FRINGING VEGETATION OF THE CANNING, SOUTHERN AND WUNGONG RIVERS

Report to the Swan River Trust DrLJ Pen

Perth WA 6000

Report No 7,
April, 1993

The Canning, Southern and Wungong Rivers between the Nicholson Road bridge and the base of the dams on the Canning and Wungong, support ten plant communities. Two fringing forest communities commonly occupy the river floodway, one associated with the seasonally flooded areas, while the other with permanently swampy conditions. An introduced sedge with permanently swampy conditions. occasionally forms small stands, mostly near stormwater drain outfalls. Three forest or woodland types are sometimes found on the higher sections of river valley embankment. One low forest and three native sedge communities are found on the flood plain, the former on seldomly inundated flood plain, while the latter ones are found in low lying swampy areas. Two vegetation types, which are or were widespread in areas surrounding the rivers, occasionally fringe the river valleys.
One priority plant species for conservation, as listed by the Department of Conservation and Land Management Authority, was found along the Southern River.
The fringing vegetation of the rivers has been highly degraded through weed invasion, which has almost completely displaced the native understorey along all but the upper sections of the rivers. However, some native species are still successful, especially the two most common native trees, which have generally increased their cover-abundance along the Canning River over the last 50 years. Notwithstanding this their continued success is threatened in the long term by a variety of large exotic weeds which can hinder tree reg the long Ultimately, the corridors of habitat and the landscape attribute which the rivers provide to the eastern coastal plain in the metropolitan area will be lost if these major weeds are not controlled.

Severe erosion is only occasionally present along the rivers, although a section of extensive erosion occurs along the upper Wungong, below the scarp. Sediment deposits are quickly stabilised by introduced perennial grasses.

TERMS OF REFERENCE

In 1981 a study was undertaken by Pen of the peripheral vegetation of the Swan and Canning Rivers upstream to Tonkin Highway Bridge and Nicholson Road Bridge respectively. The study has proved invaluable as both a planning tool and as a basis for undertaking vegetation rehabilitation works.
This report is an extension of the 1981 study and outlines the status of vegetation along the Canning, Southern and Wungong Rivers.
It was jointly funded by the Swan River Trust and the Department of Planning and Urban Development.
The study will be used by the Trust to provide more sound environmental advice on the impact of proposed developments in the area.

CONTENTS

Foreword iii
Terms of reference iv
Acknowledgements iv

1. Introduction 1
1.1 Vegetation change 1
1.2 2. 1
General description and recent history of the river 3
2.1 Description of the study area 3
2.1.1 Canning River 3
2.1.2 Southern/Wungong River 3
2.2 Aims of the study 4
2. Vegetation description and mapping 4
3. Vegetation of the Canning, Southern and Wungong Rivers 5
4.1 Riverine fringing vegetation 5
4.24.34.4
8
Flood plain and wetland
Winter wet depression vegetation 8
Sandy rise vegetation 8
4. Native species replacement and regeneration 9
Loss of understorey species ©
Major weed infestations 9
Successful regeneration of native plant species 11
Vegetation change along the Canning between 1981 and 1991 14
5. Management 14
6.1 Erosion and siltation 14
6.2 Landscape 14
6.2.1 Landscape components 14
6.2.2 Landscape disruption 15
6.2.3 Loss of landscape 16 16
6.3 Rare and endangered priority species 16
6.4 Ecological corridors and wildlife habitat 16
6.4.1 The riverine corridor 16
6.4.2 Riverine aquatic habitat 16
6.5 Loss of trees 16
6.6 Associated wetlands 17 17
6.7
6.7 Native vegetation rehabilitation Native vegetation rehabilitation 20
6. References

Appendices

Appendix 1

River valley form and nomenclature

Appendix 2

Aerial photographs used to document vegetation changes between 1941 and 1991

Appendix 3

Aerial photographs used to map the vegetation along the Canning, Southern and Wungong Rivers

Appendix 4

Scientific names, vernacular names and short descriptions of plant species found along the Canning and Southern
Wungong Rivers between Nicholson Road bridge,
Cannington, and the Canning and Wungong Dams

List of figures

Figure 1.1 Canning, Southern and Wungong Rivers Study Area
Figure 5.1 Tree cover along the Canning River between the Nicholson Road bridge and the immediate Nicholson Roilway bridge in 1955, 1975 and 1991
upstream railway bridge in 1955,1975 and 1991
Figure 5.2 Tree cover along the Caning River between the bridge in 1963 and 1991
Figure 5.3 Tree cover along the Canning River between just Tree cover of the Burslem Drive bridge and the Tonkin Highway bridge in 1941, 1963 and 1991
Figure A1 Terms used to describe river valley form 46
List of maps
Index to vegetation and weed infestation maps 21
Vegetation Map 1 22
Vegetation Map 2 22
Vegetation Map 3 24
Vegetation Map 4 26
Vegetation Map 5 28
Vegetation Map 6 30
Vegetation Map 7 32
Vegetation Map 834
Vegetátion Map 9 36
Vegetation Map 10 38
Vegetation Map 11 40
Vegetation Map 1242
Legend to vegetation maps 57
Weed infestation Map 1 23
Weed infestation Map 2 23
Weed infestation Map 3 25
Weed infestation Map 4 27
Weed infestation Map 5 29
Weed infestation Map 6 31
Weed infestation Map 70 33
Weed infestation Map 8 35
Weed infestation Map 9 37
Weed infestation Map 10 39
Weed infestation Map 11 41
Weed infestation Map 12 43
Legend to weed infestation maps 59

1. INTRODUCTION

1.1 Vegetation change

The fringing vegetation of the Canning, Southern and Wungong Rivers today bares little resemblance to the natural vegetation which once lay along their river valleys and flood plains (Pen, 1981). Most of the native species have disappeared or drastically declined in abundance, leaving only the dominant native trees and a few relic native shrubs and sedges amongst a huge variety and abundance of weeds. Nevertheless, this new alien vegetation, along with the remaining native plant species, serve to protect the river valleys against erosion and provide a corridor of habitat for many native and introduced animals. These strips of fringing vegetation, which snake across the Perth metropolitan area, also serve to create breaks in the monotony of urban sprawl and to contribute towards the rural landscape of the eastern Swan Coastal Plain.

A description of the fringing vegetation of the Canning, Southern and Wungong Rivers today and recent and ongoing vegetation changes which have occurred as a result of 160 years of European settlememt are the subjects of this report.

1.2 General description and recent history of the rivers

The Canning and Wungong Rivers drain catchments mainly located in the Darling Range. The dry hot summers and cool wet winters, characteristic of the Perth region, result in highly seasonal river flows; high in winter and low in summer. The magnitude of winter flows has been greatly reduced by the placement of domestic water supply dams on these rivers.
From the base of the dams, the Canning and Wungong Rivers flow in a western direction through the Darling Range along deep river valleys for about 10 and 4 km , respectively (Fig. 1.1). Upon leaving the scarp they enter the Swan Coastal Plain and turn to flow in a northern or northwestern direction for a distance of 15 and 5 km , respectively. At its confluence with Neerigen Brook North the Wungong becomes the Southern River, and flows for a further 15 km in a northern direction until its confluence with the Canning River.
Land along the Canning and the Southern Rivers was first cleared in the 1830s and 1840s, but extensive clearing, for market gardens, orchards, dairies, vineyards and grazing, did not begin until the 1890s (Richards, 1991). Urban development along the Canning River was very slow before the 1940s and was only moderate in the 1950s and 60s, but has exploded since the 1970s (Hillar, 1986). Despite this, many paddocks and orchards remain along the Canning River on the coastal plain among dense residential development, while most of River on the coastal plain among dense residential development, while most of the Southern/Wungong River passes through a semi-rural area which is
becoming increasingly urban. Apart from the Swan River, no other rivers in the south-west have been subjected to such an intense and wide range of human activities as these three. Only in the scarp are relatively natural conditions found and even these have been greatly altered by damming. A pipehead dam was located on the Canning River in the 1920s and replaced by the current dam was completed in the 1940 s . Similarly a pipehead dam was located on the Wungong in the 1930s being replaced by the current dam in 1979.

2. THE STUDY AREA AND AIMS OF THE STUDY

2.1 Description of the study area

The study area lies between the Nicholson Road bridge on the Canning River and the bases of the Canning and Wungong dams. It includes the river floodways and the river valley embankments and a portion of land, usually about 10 to 20 m wide, either side of the valley. Where a definite river valley does not exist, such as where the Southern/Wungong River passes through broad flood plain, the Water Authority's 100 year flood levels were used to determine the extent of the study area (see Appendix 1).
The study area of the project was limited in its downstream extent to the Nicholson Road bridge because the river downstream of this point has been investigated and reported on a number of occasions in the past (Pen, 1981; Pen 1983; Brock and Pen, 1984; Thurlow et al., 1986).

2.1.1 Canning River

In the scarp below the Canning Dam the Canning River consists of a narrow channel of a few metres width, occupying a narrow floodway of about 70 m width. Near the dam the stream is broken by large pools of about 50 to 150 m in length and 20 m across. As the river leaves the scarp, the floodway, although not the channel, broadens from 70 to 150 m width, forming a shallow valley of a few metres to as much as 6 m below the immediate adjacent land. This situation basically continues right through to the river's confluence with the Southern River.
The Canning River broadens downstream of the Southern River, and the flood plain generally becomes more extensive, typically having a width of 50 to 100 m . It becomes very broad, extending over 300 m , at the base of the study area on the southern bank of the river near Nicholson Road bridge. Today most flood plain supports pasture or parkland. In places, the river takes a sharp turn and digs into sandy rises up to 20 m high. In other places it cuts through high flood plain consisting of deep alluvial soils. Seasonal backwaters and swampy areas commonly occur in low lying areas.
The upper 4 km of the Canning River in the scarp lies in forested land, while the lower 9 km passes through cleared farmland. On the coastal plain the river is bordered by paddocks, orchards and urban development, but beyond this narrow strip, there is mostly dense urban development.

2.1.2 Southern/Wungong River

The Wungong River leaves the forested scarp as a narrow river channel no more than a few metres across with a floodway of only about 20 m width. Between the South West Highway and Rowley Road it alternates between a narrow channel and broad floodway of about 100 m width with a floodfringeof up to 50 m wide. In this area and for about 600 m downstream the river passes through what are coalesced alluvial fans made up of sediment carried from the Darling Plateau and deposited at the foot of the scarp.
For about 600 m downstream of Rowley Road, the floodway and flood plain become quite broad until they narrow considerably as the river enters a man made canal or drain about 10 to 20 m across. This channel is a few metres below the adjacent land and is bordered by high levees, presumably created
when the channel was dug. Parts of the original river channel lie to the north when tive prevails until about 700 m before Forrest Road east the fiver plain broadens to about 70 m as the river aps it when Brook South, another man made drainage channel As thence As the river pa
Southern River.
Between Forrest Road and the border of the Cities of Armadale and Gosnells betwer enters a flat and low lying region broken only by small sandy rises of a few hectares in area and reaching only a few metres above the surrounding land. For this reason the floodway remains broad, about 70 m width, and the floodfringeextends up to a further 450 m from the floodway, although 100 to 200 m width is more typical. In places the sandy rises are very close to the river and as a consequence there is no floodfringe.
The river continues in this form downstream for about another 1 km until the river cuts into the Bassendean Dune complex. From here, until the river's confluence with the Canning River it resides in a shallow river valley of about 50 to 150 m across, bordered by sandy ridges rising from a few metres to 5 metres above the level of the main channel.
Forested land mostly surrounds the river in the scarp. On the coastal plain the river first passes through rural land and below Southern River Road, through increasing urban development.

2.2 Aims of the study

The aims of the study were as follows:

1. To classify the fringing vegetation of the Canning, Southern and Wungong Rivers between Nicholson Road bridge and the base of the Canning and Wungong Dams;
2. To map the plant communities along the rivers below the naturally forested areas of the scarp;
3. To identify the major management issues concerning the conservation of native fringing plant species in the study area, and
4. To consider the general quality of the vegetation and to make recommendations for its conservation and rehabilitation.

3. VEGETATION DESCRIPTION AND MAPPING

Black and white aerial photographs at 1:20 000 scale from the Department of Land Administration were obtained for the study area and sketchmaps were produced using a Ziess Aerosketchmaster to a $1: 10000$ scale. The sketchmaps were drawn up to convey information on the distribution of vegetation and wetation type river and land form and landuse (pasture or urban). They vegetation type,
These sketchmaps were then taken into the field and annotated with relevant information on landscape, plant communities and weed infestations. Transects of river form, along with the associated plant communities were Transects of river form, alon
sketched at regular intervals.

The Canning, Southern and Wungong Rivers between the junction of the Canning and. Southern Rivers and the base of the Canning and Wungong dams were examined between the 13 July and 2 August 1992. The Canning River between the Nicholson Road bridge and the mouth of the Southern River was surveyed on the 14 August 1992. The fringing vegetation below Butcher Road on the Canning River and below the South West Highway on the Wungong River was mapped (see Fig 1.1).
Unknown plant. species were submitted to the WA Herbarium for identification.
Vegetation was described on the basis of dominant species and projective foliage cover and height of the tallest stratum (Specht, 1981).

4. VEGETATION OF THE CANNING, SOUTHERN AND WUNGONG RIVERS

Appendix 4 contains the scientific names and a short descriptions of the common plant species of the study area. For clarity introduced weeds will be generally referred to by their. common name and native species by their scientific name

4.1 Riverine fringing vegetation

Melaleuca rhaphiophylla low open to closed forest

This plant community mainly consists of a dense canopy of the small paperbark (less than 10 m), Melaleuca rhaphiophylla, over seasonal standing water, or an understorey of arum lily (Zantedeschia aethiopica), or ephemeral grasses. Sometimes the tall shrubs/small trees Melaleuca viminea, M. polygaloides and Kunzea species are present. Occassionally, the tall shrub Astartea fascicularis is common in the understorey. In the study area the community is found on the Southern/Wungong River on the low lying waterlogged soils between Verna Street and Rowley Road (Maps 8 to 11) and along the lower Canning in swampy areas (Maps 1 and 2). In places the community is broken by the M. rhaphiophylla-Eucalyptus rudis open to closed forest (see below).

Eucalyptus rudis - M. rhaphiophylla ope? to closed forest

This is the most dominant community along the Canning and Southern/Wungong Rivers. Essentially it consists of the medium size tree (up to 30 m) flooded gum, E. rudis, and the small paperbark M. rhaphiophylla, over a huge range of introduced weeds. Chief among these weeds are arum lily, blackberry brambles (Rubus spp.), watsonia (Watsonia bulbillifera), soursob (Oxalis pes-caprae), guildford grass (Romulea rosea), the grasses watercouch (Paspalum distichum), paspalum (Paspalum dilatatum), buffalo (Stenotaphrum secundatum), kikuyu (Pennisetum clandestinum) and couch (Cynodon dactylon) and the vine bridle creeper (Myrsiphyllum asparagoides). Two native species, the bracken fern Pteridium esculentum, and the small tree Acacia saligna, act as weeds and are successful in this community.
Some of the larger introduced species represent a serious disruption to the upper storey and in the long term threaten to alter the native landscape which the rivers impart to the region. These species include edible fig (Ficus carica), castor oil bush (Ricinus communis), Japanese pepper (Shinus terebinthifolius), blackberry (Rubus spp.), bamboo (Bambusa spp.), fountain
grass (Pennisetum setaceum) and the introduced vines and creepers, bridle creeper (Myrsiphyllum asparagoides), morning glory (Ipomoea indica), Japanese honeysuckle (Lonicera japonica), dolichos pea (Dipogon lignosus) and blue honeysuckle (Lonicior). These will be discussed in greater detail in Section 5.2
The native understorey species of the once stable climax community of the river are all but gone today along both rivers below the scarp. Only the shrub Astartea fascicularis is consistently and sometimes commonly present. The large shrub Viminaria juncea is occasionally present along the Canning below the scarp, and common abo the scarp while the medium to large shrub Labichea lanceolata is aound in the Kelmscott region of the Canning iver and ocasioncolata is found in the Kelmsub Albizia Paraserianthes lophantha, is occasionally present along the upper Wungong River and the wattles Acacia pulchella and A. alata are sometimes present. The rush Juncus pallidus is commonly present but is never abundant. Other relic native species include the sedges Lepidosperma longitudinale, L. tetraquetrum, Baumea juncea, B, riparia and the grass Hemarthria uncinata. The shrub Darwinia citriodora is found in the study area along the Wungong River only.
Some hint of the original riparian plant community along the lower Canning on the coastal plain is given in the area between the Nicholson Road bridge and the Royal Street bridge. Here a number of tall shrub/small tree species are to be found as relics. They include Melaleuca viminea, Viminaria juncea, Calycopeplus ephedroides and a species of Kunzea. A number of sedges and rushes which ape rare elsewhere, are also present, including Lepidosperma longitudinale Bumea juncea, Schoenoplectus validus, Juncus kraussii and suad sonally inundated sites, the emergent aquatic . subsecundus. In some plant Triglochin procera is present and on higher year round damp pats.
Near the scarp, two middle storey large shrub/small tree native species Agonis linearifolia and Grevillea diversifolia, are important. On the Southern/Wungong River, Agonis is found above the Forrest Road bridge and the Grevillea, upstream of the base of the scapo Curiously on the Canning the mewhat sitream of McKenzi reversed with the Grevillea found of the scarp upstream of McKenzie Grove and with the Agonis upstream of thinaria juncea,
Highway bridge. In the scarp, other large shrubs such as Viminal Grevillea glabrata and Trymalium grandiflorum are also important and some native species including A. fasicularis, Lepidosperma longitudinale, L. tetraquetrum and B. riparia, which enjoy little or no success below the scarp, tetraquetrum and ly important.
On the basis of the presence or absence of Agonis linearifolia and Grevillea diversifolia four sub-communities were recognised. They are listed together with their diagnostic species below:

E. rudis - M. rhaphiophylla open-closed forest 1

E. rudis, M rhaphiophylla and Astartea fasicularis
E. rudis - M. rhaphiophylla open-closed forest 2

As for 1 and Agonis linearifolia

E. rudis - M. rhaphiophylla open-closed forest 3

$$
\text { As for } 1 \text { and Grevillea diversifolia }
$$

E. rudis - M. rhaphiophylla open-closed forest 4

As for 1 and Agonis. linearifolia and Grevillea diversifolia.

T. orientalis tall closed sedgeland

Small stands of the bulrush (T. orientalis) were common along both rivers These were mostly associated with stormwater runoff or recent physical disturbance. Unlike regions of the lower Canning and Swan Rivers, where bulrush is abundant and has displaced native plant communities, it does not appear to be a serious invader in the study area.

4.2 River valley embankment vegetation

\dot{E}. rudis - Eucalyptus calophylla open-closed forest,

E. calophylla open-closed forest and

E. marginatus - E. calophylla open forest-woodland

As the land rises above the floodway of the river, the E.rudis - M. rhaphiophylla low open to closed forest sometimes gives way to E. rudis $-E$. calophylla open forest and then E. calophylla open-closed forest. Occasionally, the large paperbark, M. preissiana, is a member of the upperstorey. Middle storey and understorey species are generally the same as for the E. rudis - M. rhaphiophylla low open-closed forest except that species typical of the Bassendean soils can be more important. Such species include Acacia pulchella, Xanthorrhoea preissii, veldt grass (Ehrharta calycina) and african love grass (Eragrostis curvula). In sandy areas, more typical of the river valley ridges of the Southern and Canning Rivers in the Gosnells municipality, Eucalyptus marginata joins E. calophylla to form an open forest or woodland. In this community, the small trees/large shrubs Hakea prostrata, Banksia littoralis and Jacksonia sternbergiana are typical and in wetter sites the braken fern, Pteridium esculentum, can be abundant.
As these vegetation types are found on the river valley ridges, they have generally been cleared for pasture and urban development and today little remains except some isolated small stands or very narrow bands on the fringe of the E. rudis - M. rhaphiophylla low closed-open forest which typically lines the rivers.

4.3 Flood plain and wetland vegetation

Acacia saligna low closed forest

The small tree Acacia saligna forms dense stands in a few areas of flood plain along the lower Canning (Maps 1 and 2). Understorey vegetation tends to be sparse in this community.

Juncus closed sedgeland

This is basically a single species community of a Juncus species, which grows to 1.5 m . It is found along the Southern River and wetlands between Armadale Road and Forrest Road (Map 10).

schoenoplectus validus tall closed sedgeland

This large rush, which grows to 2 m in height, forms extensive single species stands along the Swan River and some of Perth's wetlands. However, along the Canning and Southern Rivers it is quite uncommon, with only a rew stand mostly dotted along the lower Canning River below Nicholson Road bridge. In area between the study area, it is present as ond Street in Thornlie on the Canning (Maps 2 and 10).

Baumea articulata tall closed sedgeland

Another single species community, B. articulata which grows to 2.5 m , is found in many coastal wetlands including the nearby Forrestdale Lake. Two stands in the wetlands area between Armadale Road and Forrest Road are the only ones known to the author along the Canning or Southern/Wungong Rivers (Map 10).

4.4 Winter wet depression vegetation

Winter wet depression complex

Most of the land adjacent to the southeastern corner of the study area along the Southern/Wungong River is very low lying and becomes waterlogged or even flooded in winter. Much of this land has been cleared for pasture and now only supports relic trees of E. rudis, E. calophylla and the large paperbark Melaleuca preissiana. However, large relatively undisturbed areas remain to the east of the river and support a huge range of plant species which constitute many plant many plant communities. A the scope of this study and they will be recognised communities is beyond the scope of this study and the dominant species collectively as the winter wet depression complex. Ver, Verticordia species, include E. calophylla, a number of Kunzea species,
Melaleuca species and sedges of the family Restionaceae.
On occasion, this complex extends into the flood plain of the Southern/Wungong River and its extent within this zone has been mapped.

4.5 Sandy rise vegetation

Banksia-Allocasuarina-Eucalyptus todtiana low open forest

This vegetation type occupies the sandy rises of the surrounding low lying land and which on occasion come close to the rivers and occupy a portion of and Understorey species are present to various
 degrees, fres small trees Banksio latter is very rare. attenuata, B. menzeisii, B. todtiana, Xylomelum occidentale, the occasional Eucalyptus marginata and the shrubs Jacksonia furcellata, Xanthorrhoea preissii and Stirlingia latifolia the cycad (Macrozamia riedlei), and the weeds common lupin (Lupinus cosentinii), veldt grass, ephemeral veldt grass (Ehrharta longifolia), the grass Pentaschistis thunbergii and red natal grass (Rhynchelytrum repens).

5. NATIVE SPECIES REPLACEMENT AND REGENERATION

5.1 Loss of understorey species

Today, below the scarp, the understorey of riverine forest communities largely consists of a huge variety of introduced weeds. Some native species remain, but mostly only as isolated individuals or small groups, and their future would appear to be very precarious. These relic plants of the original understorey community represent the genetic stock associated with these rivers on the coastal plain. It may be that only a short time remains in which to utilise the seed of these plants in any rehabilitation programmes.

5.2 Major weed infestations

Although the understorey of the riverine forest could be described as a conglomeration of weed infestations, some of the larger weed species represent more serious infestation problems. This is because they threaten to completely dominate the vegetation in the long term and alter the landscape by replacing the native trees, either through competition or by killing them directly by smothering or indirectly by exacerbating the effects of fire. Presently the smaller weeds do not prevent the regeneration of E. rudis and M. rhaphiophylla, the medium shrub Astartea fasicularis or the large shrubs/small trees Agonis linearifolia and Grevillea diversifolia and some others. However some, if not all, of the weeds listed below may represent a long term threat to these native species.

Species considered to be a potential major long term problem are listed below:
Trees:
Castor oil bush (Ricinus communis)
Edible fig (Ficus carica)
Coral (Erythrina caffra)
Olive tree (Olea europaea)
Poplar tree (Populus sp.)
Japanese pepper (Shinus terebinthifolius)
Willow tree (Salix babylonica)
Victorian tea tree (Leptospermum laevigatum)
Acacia longifolia (Acacia longifolia)
Vines or creepers:

Blackberries (Rubus spp.)
Blue periwinkle (Vinca major)
Morning glory (Ipomea indica)
Japanese honeysuckle (Lonicera japonica)
Dolichos pea (Dipogon lignosus)
Bridle creeper (Myrsiphyllum asparagoides)
Common lantana (Lantana camara)

Figure 5.1: Tree cover along the Canning River between the Nicholson Road bridge and the immediately upstream railway bridge in 1955, 1975 and 1991

Giant grasses or bulrush: Giant reed (Arundo donax)

Fountain grass (Pennisetum setaceum)
Giant bamboo (Bambusa sp.)
Bamboo (Bambusa sp.)
Pampas grass (Cortaderia selloana)
Bulrush (Typha orientalis)
Canna lily (Canna x orchiodes)
Tall herb

Infestations of the above weed species, except bridle creeper which is present throughout the study area, are shown on the Weed Infestation maps. By far the worst infestation occurs over a one kilometre section of the Canning River upstream of the Orlando Street bridge (see Weed Infestation Map 6). Here the vines Japanese honeysuckle and morning glory are so abundant that they drape sections of the river valley and are smothering large trees.
A small infestation of the aquatic weed, Hydrocotyle ranunculoides, was found just above the Nicholson Road bridge.
The Victorian tea tree, Leptospermum laevigatum, was found infesting a few sites on the rivers (Weed Infestation Maps 5 and 7). Although this species is currently not a problem, the author has observed it to be vigorous invader on sandy soils in the Albany region, suggesting that it could be a potential invader of the sandy rise vegetation within the study area.

5.3 Successful regeneration of native plant species

On the coastal plain, the trees E. rudis and M. rhaphiophylla and the shrub Astartea fasicularis are successfully regenerating along the rivers. Near the scarp the small trees/large shrubs Agonis linearifolia and Grevillea diversifolia are regenerating also. All of these species will continue to be found along the rivers below the scarp in the long term. To a lesser extent the rushes Baumea juncea and Juncus pallidas are regenerating, but nowhere are they as abundant as they are in undisturbed sites that the author has seen elsewhere. This suggests that the long term future of these two species on the rivers below the scarp is threatened.
The successful regeneration of trees along three sections of the Canning River is illustrated in Figures 5.1 to 5.3. In all three sections there has been a general and often substantial increase in tree canopy since as early as 1941 through to 1991. In all cases this is mainly due to the regeneration of E. rudis and M. rhaphiophylla on farmland, which has become less intensively used as the surrounding landuse has become increasingly urban. In the past, heavy livestock grazing and trampling, cropping for hay and the maintenance of orchards probably took a heavy toll on seedlings and saplings. In the absence of these impacts upon the land today, these two native species are now thriving. Nevertheless, the land along the rivers is still heavily disturbed by human trampling, vehicles and frequent fire and this has encouraged the explosive regeneration in some areas of Acacia saligna, a species which is known to regeneration in some areas of Acac
exploit disturbed sites (Powell, 1990).

In the scarp, all native species are regenerating successfully. However, weed infestation remains a serious problem and could result in the extinction of many species along the rivers in the long term.

In paddocks and parklands there is little regeneration of trees. Park maintenance and the effects of heavy livestock grazing, such as trampling and ringbarking, largely prevent regeneration.
The large shrubs Jacksonia furcellata and J. sternbergiana thrive in disturbed sandy areas, as does Acacia saligna, and as a result these species are enjoying great success along the rivers today.

5.4 Vegetation change along the Canning between 1981 and 1991

In early 1981 the author surveyed the Canning River between the Nicholson In early 1981 Orlando Street bridge in Kelmscott (Pen, 1981). Comparison with the present study, suggests that the fringing 1981). Comparison whe vegetation over and major weed species pres In 1981 the tall reed fountain grass (Pennisetum the same level of abundance. In Thornlie and setaceum) occurred sparsely then it has greatly either side of the Orlando Street bridge in (see Weed Infestation Maps 2, 5 and 6).

6. MANAGEMENT

6.1 Erosion and siltation

The processes of erosion and siltation are typical of the riverine environment and are evident along both rivers.
When the river channel comes close to one side of the river valley, the valley embankment becomes, in effect, a steep channel embankment and serious embankment occur. Such erosion does occasionally occur in erosion of high ground trees and fence posts. The weed infestation maps places, undermining trees and fence posts ind along the rivers where this is tatace.
Sandy silt deposits are a more common sight than erosion, although they are quickly colonised and stablised by grasses (kikuyu, couch, buffalo or watercouch). Much of the sediment is probably not generated within the rivers themselves as for the most part they are well stabilised by peripheral vegetation. It is therefore probably carried into the river by tributaries which drain unstable rural or urban areas
Damage to fringing vegetation and soil erosion caused by trampling by livestock and humans is apparent in some areas along the rivers, particularly in the sections just below the scarp. The Wungong River between Rowley Road and the South West Highway, is extensively and seriouly affected by this form of erosion.

6.2 Landscape

6.2.1 Landscape components

In the study area, the main components of the landscape, from an ecologica perspective, are the dominant native trees and shrubs, pasture and orchards perspect landforms associated with the river or which are adjacent to it. These components will be present in a variety of combinations leading to different
viewscapes in different areas and positions of viewpoint. This section describes the various components or essential features of the landscape rather than particular viewscapes.

Riverine vegetation This consists of both Eucalyptus rudis and Melalleuca rhaphiophylla or just M. rhaphiopylla in swampy areas. This component is typical, not only of the rivers, but also of their tributaries.

Embankment vegetation Found above the level of the riverine vegetation on the river valley embankments, it consists of E. rudis and/or Eucalyptus calophylla, or in very wet areas, these two species and Melaleuca preissiana. In dry sandy areas, Eucalyptus marginata, Banksia littoralis and Hakea prostrata are important.

Winter wet depressions Along the Southern/Wungong River, these areas mostly support heavy pasture with groves of Myrtaceae species including M. rhaphiophylla, M. preissiana, M. viminea, M. polygouloides and Kunzea ericifolia and K. recurva. Wide pools of water are present in winter.

Pasture or parkland on flood plains This consists of scattered trees or groves of E. rudis, M. preissiana and E. calophylla over pasture. Usually they occur in single species stands with E. calophylla on slightly higher ground than the other two species.

Sandy rises A mixture of Banksia attenuata, B. menzeisii, B. ilicifolia, Allocasuarina fraseriana, Eucalyptus todtiana, Xylomelum occidentale and E. marginata over veldt grass and exposed grey-white sand.

Orchards Small citrus orchards are scattered along the length of the Canning River, mainly below the scarp and they add to the character of the river.
Steep " V " shaped slopes of the scarp The trees together with the steep slopes rising to the ridge tops characterise the river valley landscape of the Darling Range in the study area. The trees on the slopes are either large E. calophylla or stunted E. rudis over native understorey, pasture or small granite outcrops. In places the white barked Eucalyptus wandoo is important, though only near the escarpment.

6.2.2 Landscape disruption

Urban and rural development represent disruptions in the natural landscape, but it is not this form of disruption which is of concern. Elements of the natural landscape still remain in many areas, imparting a uniquely southwestern Australian landscape. These elements are mainly native trees, shrubs, rushes and sedges.

A number of introduced species have become conspicuous in the riverine vegetation. They include the giant reed (Arundo donax), the willow tree (Salix babylonica), the castor oil bush and the various species of vines and creepers (see Section 5.2). All of these represent major disruptions in the landscape. The edible fig currently does not disrupt the landscape. However given that it The edible fig currently does not disrupt the landscape. However given that it can grow to the size of a small tree, is quite common in the area and is deciduous means that it will form a major disruption in the landscape in the future. Two medium size introduced trees, also deciduous, the coral (Erythrina caffra) and the cape lilac (Melia azedarach) are often planted on land adjacent to the river and both contribute an alien effect to the landscape.

6.2.3 Loss of landscape

With increasing urbanization, many of the rural areas along the river which now support native trees over pasture or orchards will be lost. It is these rural areas, together with the riverine forested corridor which impart much of the unique character or landscape of the area. If they are lost, then the viewscape will be of a thin belt of forest surrounded by urban development

6.3 Rare and endangered and priority species

No species declared rare or endangered by the Department of Conservation and Land Management (CALM) were found along the rivers during the course of this study. However, the sedge Restio stenostachyus, which is listed as a priority species, was found under Melaleuca rhaphiophylla low closed forest on the western bank of the Southern River north of the Allen Road reserve (see Map 9).

6.4 Ecological corridors and wildlife habitat

6.4.1 The riverine corridor

The peripheral vegetation and the river itself provides a corridor of habitat. This corridor aids the growth of plant and movement of animal species up and . It also provides habitat for invertebrate, reptilian and birc Urban birdlife capable of breeding and living in urban parks also use it adiditan older native trees along the rivers are of ascer heavily than young trees, and hence art a pirger invertebrate provide more nectar for insects andirds. The high branches and auna which in turn supports reptiles and birds. The high branches and gnarled shape of the older trees also provide more nesting sites than do the young trees.
The effectiveness of the riverine corridor in enabling the safe movement of nimals up and down the river will be maximised by reducing the number and size of the breaks in the corridor and by increasing its width. This can be done by safe-guarding the existing vegetation and by rehabilitating those areas of loodway and adjacent embankments or floodfringe which now support little or no native vegetation.

6.4.2 Riverine aquatic habitat

The only relatively natural stream habitat remaining on the Canning or Southern/Wungong Rivers below the dams occurs in the forested regions in th scarp. Here most of the peripheral vegetation that existed prior to European settlement remains and actually grows into the river channel. As a result the flow of the water is retarded and emergent aquatic plants, such as Triglochin procera, are more successful than elsewhere. Such areas are today isolated by the upstream dam walls and the severely degraded conditions which occur downstream.

6.5 Loss of trees

In the study area, trees, particularly the large ones, provide habitat for invertebrates and birds, stabilise the river channel and the river valley embankment and contribute greatly to the landscape. Presently trees are being lost on rural land through ring barking by cattle and horses or by wiring of trees as part of fence lines or apparatus to operate pumping facilities. In some
areas of the rivers trees are being undermined by erosion (see Section 6.1). A more long term threat is the general ageing of trees in the absence of regeneration. This occurs in over grazed paddocks where stock eat young trees and in parklands where lawn maintenance prevents regeneration.

6.6 Associated wetlands

Between Armadale Road and Rowley. Road, there are three small wetlands (see Maps 10 and 11). These wetlands support extensive stands of Melaleuca rhaphiophylla low closed forest and Juncus closed sedgeland and small stands of Schoenoplectus validus, Baumea articulata and Typha orientalis tall closed sedgelands in close proximity to permanent and seasonal standing water bodies. As such, they provide valuable waterbird habitat, especially over the dry summer/autumn period

6.7 Native vegetation rehabilitation

The following is a list of the native plant species recommended for rehabilitation of the native vegetation, broken down into the various zones of the river valley. Species which are rare or restricted in distribution should receive special attention. These species are denoted by the asterisk (*).

River channel and floodway

Eucalyptus rudis	flooded gum
Melaleuca rhaphiophylla	swamp paperbark
Astartea fascicularis	
Agonis linearifolia	swamp peppermint
Viminaria juncea	golden spray
Grevillea diversifolia	valley grevillea
Grevillea glabrata (Scarp only)	smooth glabrata
Hakea trifurcata (Scarp only)	two leaf Hakea
Labichea lanceolata	tall Labichea
Paraserianthes lophantha	Albizia
Trymalium grandiflorum (Scarp only)	
Baumea juncea	twig rush
B. riparia	
Lepidosperma gladiatum	coastal sword sedge
(coastal plain)	
L. effusum (Scarp only)	
L. longitudinale	
L. tetraquetrum	

J. subsecundatus	
J. pallidus	giant rush
Hemarthria uncinata	mat grass
Calycopeplus ephedroides	

River valley embankment

Eucalyptus rudis	flooded gum
E. oalophylla	marri
Banksia littoralis	swamp Banksia
Hakea vania	variable leaf Hakea
Hakea trifurcatia	twolleaf Hakea
Acacia saligna	coojong
Viminaria junceai	golden spray
Pteridium esculentum	braken fern

Sandy embankment

Eucalyptus calophylla
E. marginata
E. todtiana

Allocasuarina fraseriana
Xylomelum occidentale
Banksia attenuata
B. grandis
B. ilicifolia
B. menziesii

Hakea prostrata
Hakea varia
Grevillea vestita
Acacia pulchella
Jacksonia furcellata
J. sternbergiana

Isolepis nodosa
Hardenbergia comptoniana

Winter wet depressions on flood plain

Melaleuca preissiana	modong paperbark
M. rhaphiophylla	swamp paperbark
M. viminea	mohan
M. polygaloides	grey honeymyrtle
Kunzea ericifolia (sandy)	spearwood
K. micrantha (sandy)	
Pericalymma ellipticum (sandy)	swamp tea tree

Near standing water

Baumea articulata* Schoenoplectus validus*
Juncus polyanthemus*
jointed twig rush lake club-rush sedge

7. REFERENCES

Brock M A and Pen L J (1984) Ecological studies of the Canning River Wetland. School of Environmental and Life Sciences, Murdoch University. City of Canning.
Hiller S M (1987) The Swan River and Regional Planning. In: Jacob J (Ed.) The Swan River Estuary: Ecology and Management, Curtain University Environmental Studies Group Report No. 1. pp. 244-255
Pen L J (1981) The peripheral vegetation of the Swan and Canning Rivers: past, present and future. Unpublished B Sc Honours thesis, Murdoch University.
Pen L J (1983) Peripheral vegetation of the Swan and Canning Estuaries 1981 Department of Conservation and Environment, Bulletin 113, July 1983.
Power R (1990) Leaf and Branch: Trees and Tall Shrubs of Perth. Department fonservation and Land Management.
Richards O (1991) Canning River Regional Park: Historical Survey. Canning iver Regional Park Management Committee. Department of Planning and Urban Development, Perth.
Specht, R L (1981) Foliage projective cover and standing biomass. In: Gillison N and Anderson D J (Eds) Vegetation Classification in Australia, CSIRO Canberra.
Thurlow B H, Chambers J and Klemm, V V (1986) Swan-Canning Estuarine System: Environment, Use and Future. Waterways Commission Report No. 9

NOT TO SCALE

APPENDIX 1

RIVER VALLEY FORM AND NOMENCLATURE

Figure A1 illustrates typical river valley form and the nomenclature used to describe it.
Each river consists of a floodway which resides in a valley, which may have very deep, as is the case in the scarp, very shallow, as is the situation for the Canning River in the study area below the scarp or almost non-existent, as in case of the Southern/Wungong River in the north-western part of the City of Armadale. Within the floodway water generally flows along a main channel, which will wander from one side of the floodway to another as the water moves downstream. Sometimes on the Canning there are two channels, a primary one, which always carries water, and a secondary one which will carry water in times of flood. At times of heavy discharge the entire floodway will carry water.

When the floodway is contained within a shallow or steep valley, the embankments on each side will contain the water from even the most severe flooding and therefore the extent of the extra floodfringeis minor. On the other hand, when there is no obvious valley form, the flood plain (i.e. floodway plus flood fringe) may extend over a very wide area. As mentioned above, significant flood plain areas are found in the low lying areas adjacent to the Southern/Wungong River between Allen Road and Forrest Road. Such an areas exist on the Canning at the very bottom of the study area.
Fringing vegetation seldom occupies the main channel, but where water movement is very slow, due to the frictional effects of vegetation or stream debris, some aquatic species are able to take root. On the other hand the channel embankment and the floodway support dense vegetation which may extend over a broad flood plain or up the river valley embankments. Flood plain and river valley embankments can support their own distinctive plant communities, which are often more relatively open than those of the floodway.

Figure A1: Terms used to describe river valley form.

APPENDIX 2

AERIAL PHOTOGRAPHS USED TO DOCUMENT VEGETATION CHANGES BETWEEN 1941 AND 1991
Figure 5.1
1955 WA195 Metropolitan Area (PWD) Run 4 No. 14
$1975 \quad$ WA1568 Metro Road Guide Rev. 1975 Scale 1:25 000 11.6.1975 Proj. Q98 Run 9 No. 5223
1991 WA2942(C) Metro Street Directory and Ext. Scale 1:20 $000 \quad$ 5.1.1991 Job no. 910400 Run 12 No. 5151
Figure 5.2
1963 WA838 Wanneroo - Lake Clifton 14.10.63 Proj. D28 Run 24 No. 5333
1991 WA2942(C) Metro Street Directory and Ext. Scale 1:20 $000 \quad$ 5.1.1991 Job no. 910400 Run 12 No. 5151

Figure 5.3
1941 Kelmscott Map 1453 (Mission No. KD710) Run 5 Nos 3906-3909
1963 WA838 Waneroo - Lake Clifton 14.10.1963 Run 25 No. 5293

1991 WA2938(C) Metro Street Directory \& Ext. Scale 1:20 000 4.1.1991 Job no. 910400 Run 13 No. 5177

APPENDIX 3

AERIAL PHOTOGRAPHS USED TO MAP THE VEGETATION ALONG THE CANNING, SOUTHERN AND WUNGONG RIVERS
Metro Street Directory \& Ext. 1:20 000 5.1.1991 Job no. 910400
WA2942(C) Run 12 Nos 5143-5152
WA2938(C) Run 13 Nos 5169-5179
WA2938(C) Run 14 Nos 5124-5137
WA2938(C) Run 15 Nos 5059-5065
WA2938(C) Run 16 Nos 5027-5029

APPENDIX 4

SCIENTIFIC NAMES, VERNACULAR NAMES AND SHORT DESCRITIONS OF PLANT SPECIES FOUND ALONG THE CANNING AND SOUTHERN/WUNGONG RIVERS BETWEEN NICHOLSON ROAD BRIDGE, CANNINGTON, AND THE CANNING AND WUNGONG DAMS

Scientific name	Common name	Description
Acacia alata	Winged wattle	medium shrub
Acacia longifolia		small tree
Acacia pulchella	Prickly Moses	shrub
Acacia saligna	Coojong	small tree
Agonis linearifolia	Swamp peppermint	large shrub - small tree
Allocasuarina fraseriana	Sheoak	small tree
Alternantera nodiflora	Joyweed	creeping herb
*Arctotheca calendula	Capeweed	small herb
*Arundo donax	Giant reed	tall grass
*Asclepias curassavica	Redhead cottonbush	perennial herb
* Astartea fascicularis		large shrub
*Aster subulatus	Wild aster	annual herb
*Avena barbata	Bearded oats	annual grass
Banksia aftenuata	Slender Banksia	small tree
Banksia grandis	Bull Banksia	small tree
Banksia ilicifolia	Holly Banksia	small tree
Banksia littoralis	Swamp Banksia	small tree
Banksia menziesii	Firewood Banksia	small tree
Baumea articulata	Jointed twig rush	giant sedge
Baumea juncea	Twig rush	sedge
Baumea riparia		large sedge
*Bolboschoenus caldwellii	Club rush	medium sedge

*Briza maxima	Quaking grass ${ }_{\text {Lesser }}$ quaking grass	annual grass annual grass
Calycopeplus ephedroides		tall shrub -small tree
*Canna x. orchiodes	Canna lily	large herb
Cassytha sp:	Doda	parasitic vine
Centella cordifolia		stoloniferus herb
*Chenopodium glaucum	Glaucous goosefoot	annual herb
*Conyza bonariesis	Tall fleabane	annual herb
Cotula coronopifolia	Waterbuttons	tiny herb
*Cynodon dactylon	Couch	perennial creeping grass
*Cyperus tenuiflorus	Scaly sedge	sedge
Darwinia citriodora	Lemon-scented Darwinia	medium shrub
Dichanthium fecundum		tall grass
*Dipogon lignosus	Dolichos pea	herbaceous twiner
Drosera macrantha	Bridal rainbow	tiny herb
*Ehrharta calycina	Perennial veldt grass	tufted shrub
*Eragrostis curvula	African lovegrass	tufted grass
*Erythrina caffra	Coral tree	medium tree
Eucalyptus calophylla	Jarrah	large tree
Eucalyptus rudis	Flooded gum	large tree
Eucalyptus todtiana	Pricklybark	medium tree
Eucalyptus wandoo	Wandoo	large tree
*Ficus carica	Edible fig	small tree
*Foeniculum vulgare	Fennel	large herb

*Gladiolus angustatus	Long tubed painted lady	bulbous annual herb
*Gomphocarpus fruticosus	Cottonbush	erect shrub
Grevillea diversifolia	Valley Grevillea	large shrub
Grevillea glabrata	Smooth Grevillea	large shrub
Hakea prostrata	Harsh Hakea	large shrub - small tree
Hakea ruscifolia	Candle Hakea	erect busy shrub
Hakea trifurcata	Two-leaf Hakea	erect shrub
Hakea varia	Variable leaf Hakea	large shrub - small tree
Hardenbergia comptoniana	Native Wisteria	twining shrub or climber
Hemarthria uncinata	Mat grass	creeping grass
Hibbertia hypericoides	Buttercup	medium shrub
*Holcus lanatus	Yorkshire fog	annual grass
*Homeria flaccida	Cape tulip	annual herb
Hydrocotyle ranunculoides		floating aquatic herb
*Ipomoea indica	Morning glory	herbaceous twiner
Isolepis nodosa	Knotted club-rush	sedge
*Isolepis prolifera	Budding club-rush	perennial herb
Jacksonia furcellata	Grey stinkwood	large shrub
Jacksonia sternbergiana	Stinkwood	large shrub
*Juncus acutus	Spiny rush	rush
Juncus holoschoenus	Jointleaf rush,	perennial rush
Juncus kraussii	Shorerush	rush
Juncus pallidus		rush
Juncus subsecundatus		rush
Juncus sp. (polyanthus)		rush

Kunzea ericifolia	Spearwood	large shrub - small tree
Kunzea micrantha		large shrub - small tree
*Lanatana camara	Common lantana	climbing shrub
Labichea lanceolata	Tall Labichea,	tall shrub
Lepidosperma longitudinale	Common sword sedge	sedge
Lepidosperma tetraquetrum		large sedge
Leptocarpus scariosus		sedge
Leptocarpus sp.		
*Leptospermum laevigatum	Coast teatree	tall shrub
*Lolium perenne	Rye grass	annual grass
*Lonicera japonica	Japanese honeysuckle	woody climber
*Lupinus cosentinii	Common lupin	annual herb
Lyginia barbata		sedge
Macrozamia riedlei	Zamia palm	cycad
Melaleuca aff. rhaphiophylla	Paperbark	small tree
Melaleuca polygaloides	Grey honeymyrtle	small tree
Melaleuca preissiana	Modong paperbark	medium tree
Melaleuca rhaphiophylla	Swamp paperbark,	small- medium tree
Melaleuca viminea	Mohan	small tree
Melaleuca sp.	Paperbark	small tree
*Melia azedrach	Cape Lilac	medium tree
*Myrsiphyllum asparagoides	Bridal creeper	delicate creeper/climber
Nuytsia floribunda	Christmas tree	small tree
*Olea europaea	Olive tree	small tree
*Oxalis pes-caprae	Soursob	perennial herb

Paraserianthes lophantha Albizia	large shrub Patersonia sp. *Paspalum dilatatum grass	Paspalum grass
*Paspalum distichum	perennial herb	
*Perennial tufted		

*Thunbergia alata	Blackeyed Susan	small creeping shrub
Trymalium grandiflorum		large shrub - small tree
Triglochin procera	Water ribbons	annual emergent aquatic herb
*Vinca major	Blue periwinkle	creeping perennial
Viminaria juncea	Golden spray	large shrub
Verticordia ? densiflora		shrub
*Watsonia bulbilifera	Wild watsonia	bulbous herb
Xanthorrhoea preissii	Blackboy	large shrub
Xylomelum occidentale	Woody pear	small - medium tree
*Zantedeschia aethiopica	Arum lily	herb

Legend Vegetation Map A3 fold out A4 RHS

LEGEND

\#	Blackberry brambles	Rubus spp
r	Weeping willow	Salix babylonica
111	Giant reed	Arundo donax
c	Coral	Erythrina caffra
-	Caster oil bush	Ricinus conmunis
-	Japanese pepper	Shinus terebinthifolius
*	Burush	Typha orientalis
口	Club-rush	Cypera spp
๑	Edible fig	Ficus crica
8	Blue periwinkle	Vinca major
\cdots	Cape liliac	Melia zedirrach
Δ	Hydrocotyle	Hydrocotyle ranunculoides
*	Pampas grass	Cortaderia selloana
古	Dolichos pea	Dipogon lignosus
«	True bamboo	Bambuss spp.
	True giant bamboo	Bambusa spp
\downarrow	Fountain grass	Pennisetum selaceum
	Poplar tree	Populus spp.
p	Common prickly pear	Opuntia stricta
N	Morring glory	Ipomea indica
R	Japanese honeysuckle	Lonicera japonica
	Pinaster pine	Pinus pinaster
	Grapevine	Vitisspp
+	Common lantana	Lantana camara
	Olive tree	Oleneuropen
	Canna lily	Canna x orchiodes
	Acacia longifolia	Accicia longiololia
	Victorian tea tree	Leptospermum lecoigatum
	Point of severe erosion	
	Foottridge	

