. Neville Marchant nevillem@herb.sid

USER-FRIENDLY NUMBER CRUNCHING
PROGRAMMING LANGUAGES

Have you ever wanted to do some calculations or
statistics, but you were unable do so because your
existing software was inadequate? Have you ever wanted
to do some simple modelling or simulations? Have you
ever thought of applying computer-intensive statistics in
your work?

In the early big-iron-dinosaur days (read mainframes),
the first new zillion-dollar computer on campus caused
much excitement. It was cool to sign up for computer
course and to be seen at the computing centre. Almost
everybody had a flirt with Fortran, but only the desperate
persisted, as Fortran and the mainframe environment
soon sorted out the dedicated from the boys & girls.

Fortunately the need to hang around computing centres
and to learn Fortran or Basic was never an issue for me.
Back in Canada at the Uni of Alberta. a new IBM (of
course) 360 was purchased and each department could
have a remote IBM Selectric terminal with a fantastic
golf-ball printing head — real cutting edge stuff.

There was a new mysterious language so strange and
weird, it looked like it was a greek dialect. It was called
APL — A Programming Language — great for
crunching numbers.

APL was created by Ken Iverson, a mathematician who
originally devised the language as a new system of math
notation. IBM decided to implement his system as a
computer language, and U of Alberta was one the first to
support it on their shiny new blue mainframe.

The language required one to leamm a new symbol set
which was daunting and this requirement continues to
scare people away from APL. But when I cleared this
hurdle, the simplicity of the language was captivating.
Every thing was an array or matrix; control structures for
looping were seldom needed; execution was from right
to left and data typing was minimal being either literal or
numeric.

The mathematical similarities coupled with vector-
matrix operations makes APL programs extraordinarily
succinct. Programs in Basic that require 40 lines of code,
can sometimes be done in 2 or 3 lines. Learning APL can
also be damaging because once you use it, you are
forever spoiled. To this day, I shudder when I look at a
bloated Basic program; the mind rebels at the thought of
learning another language for it seems such a backward
step.

An endearing feature of APL comes from the fact that it
is an interpreted language. This allows one to use APL as
a powerful calculator. Thus, it is easy to translate

complex mathematical formulae into APL and get an
immediate result.

APL is therefore great for statistics. Milliken & Johnson,
authors of the two volume Analysis of Messy Data
provide computational-intensive methods for dealing
with incomplete data sets and the lack of replication.
Standard stats packages do not fully support many of
their procedures and the authors point to APL as a
possible remedy.

APL has been ported to microcomputers for sometime
now, and I have used two versions. They are powerful
and complete implementations of APL, but my major
complaint is the upgrade policies. The move to the 32 bit
window environment is desirable, but the upgrade
treadmill is prohibitively expensive, presumably because
of the small niche market occupied by APL coupled with
the philosophy that greed is good.

Fortunately, an inexpensive alternative to APL has
emerged; Iverson and associates have produced a new
dialect of APL which they call “J.” Why J? “Because its
easy to type” says one of the authors. Fair enough! J
retains the flavour of APL with extensions that improve
the language. The Greek symbols have gone having been
replaced by standard ASCII characters thus removing a
major learning obstacle.

J, Ver. 2.6 for Windows, can be purchased from an
Australian Distributor for a mere $85.00 plus the cost of
manuals for about the same price. The manuals are not
crash hot as the Iverson’s style can be rather dense, but
adequate nonetheless. A bonus stats pack/tutorial can be
down-loaded on the net for free. Its about a Mbyte
Postcript file which needs a special viewer.

Version 3.0 is under development; it is 32 bit and should
be a enhanced screamer. If you enjoy an rewarding
intellectual challenge then try J. It is a ultra-powerful,
convenient, easily programmable language/calculator
that produces hard copy, provides unlimited storage and
talks to data sets held in spreadsheets and
databases.(Sorry HP; put your toys away).

To sum up: there is no mucking about with J; the
language gets down business right away. It even hooks
into Visual Basic (ugh!). This allows one to put a pretty
face on J. Needless to say, I haven't bothered to look in
to this feature.

Jjackk@wood.calm.wa.gov.au

(The above s/ware & tools can be downloaded from]
homepage: http://www.jsoftware.com/head. htm! -Ed).

