

GOVERNMENT OF WESTERN AUSTRALIA

GEOLOGICAL EVOLUTION OF THE PALAEOPROTEROZOIC TALBOT TERRANE AND ADJACENT MESO- AND NEO-PROTEROZOIC SUCCESSIONS PATERSON OROGEN WESTERN AUSTRALIA

by A. H. Hickman and L. Bagas

GEOLOGICAL SURVEY OF WESTERN AUSTRALIA

DEPARTMENT OF MINERALS AND ENERGY

GEOLOGICAL SURVEY OF WESTERN AUSTRALIA

REPORT 71

GEOLOGICAL EVOLUTION OF THE PALAEOPROTEROZOIC TALBOT TERRANE, AND ADJACENT MESO- AND NEOPROTEROZOIC SUCCESSIONS, PATERSON OROGEN, WESTERN AUSTRALIA

by

A. H. Hickman and L. Bagas

Perth 1999

MINISTER FOR MINES The Hon. Norman Moore, MLC

DIRECTOR GENERAL L. C. Ranford

DIRECTOR, GEOLOGICAL SURVEY OF WESTERN AUSTRALIA David Blight

Copy editor: I. R. Nowak

REFERENCE

The recommended reference for this publication is:

HICKMAN, A. H., and BAGAS, L., 1999, Geological evolution of the Palaeoproterozoic Talbot Terrane, and adjacent Meso- and Neoproterozoic successions, Paterson Orogen, Western Australia: Western Australia Geological Survey, Report 71, 91p.

National Library of Australia Cataloguing-in-publication entry

Hickman, A. H. (Arthur Hugh), 1947-

Geological evolution of the Palaeoproterozoic Talbot Terrane, and adjacent Meso- and Neoproterozoic successions, Paterson Orogen, Western Australia

Bibliography. ISBN 0 7309 66488

- 1. Geology, Stratigraphic Proterozoic.
- 2. Orogeny Western Australia.
- 3. Geology, Stratigraphic Western Australia.
- I. Bagas, L. (Leon).
- II. Geological Survey of Western Australia.
- II. Title. (Series: Report (Geological Survey of Western Australia); 71).

551.71509941

ISSN 0508-4741

Printed by Lamb Print, Perth, Western Australia

Cover photograph:

Banded paragneiss of the c. 1800 Ma Butler Creek Formation in the southwest bank of the Rooney Creek (AMG 326096). Quartzite (white), psammitic gneiss, and semipelitic schist (dark grey) are interlayered at 5–30 cm intervals. These rocks represent metamorphosed and tectonically attenuated beds of sandstone, wacke, and silty shale.

Contents

Abstract	1
Introduction	1
Summary of geology	2
Palaeo- to early Neoproterozoic geology	2
Rudall Complex	6
Stratigraphic overview	6
Orthogneiss	11
Yeneena Supergroup and Tarcunyah Group	13
Dolerite dykes, quartz veins, and gossan	14
Structure	14
Pre-Yeneena Supergroup deformation	15
Yapungku Orogeny	15
D, structures	15
D_2 structures	16
Post-Yeneena Supergroup deformation	19
Miles Orogeny	19
D ₃ structures	19
D_{4} structures	19
Paterson Orogeny	21
D _e structures	21
Metamorphism	21
Previous work	21
Metamorphism in the Talbot Terrane	22
Metasomatism	22
Metamorphism of the Throssell Group	24
Summary of metamorphism	24
Geochronology	24
Tectonic evolution	26
Rudall Complex	27
Regional setting	27
Evidence from the Talbot Terrane	28
Throssell and Tarcunvah Groups	29
Regional setting	29
Evidence from the Throssell and Tarcunvah Groups	29
Late granitoids	30
Metallogenic implications	30
Mineral resources	31
Geochemical investigation	
Gold	31
Uranium (and associated gold, copper, lead, and zinc)	
Copper, lead, and zinc	35
Platinum-group elements (PGE)	. 35
Other metals (molybdenum, tungsten, tin, bismuth, and vanadium).	
Diamonds	36
Barite	
Mineral potential	
Acknowledgments	39
References	40

Appendix

1.	Analytical data from the Rudall 1:100 000 sheet	42

Figures

1.	Regional setting of the Talbot Terrane, and the regional distribution of the Yeneena Supergroup and the Tarcunyah Group	3
2.	Simplified geological map of the Talbot Terrane on the RuDALL 1:100 000 map, showing stratigraphy and major structures	4
3	Diagrammatic map of the geology (orthogneiss omitted) of the Talbot Terrane on part of the	+
5.	PUDALE 1:100,000 man distinguishing D from D structures and showing zones of peridotite	5
4	Model: 1.100 000 map, distinguishing D_2 from D_4 structures, and showing zones of periodite	
+. 5	Constalized stratigraphic columns through the stratigraphic succession of the Pudell Complex	/
5.	in the Tellbet Terrane	0
6	In the failed average authorized (<i>B</i> nor)	9
0. 7	S_2 -ionated augen orthognetiss (<i>ERga</i>)	12
7.	S_2 in augen orthogneiss (<i>ERga</i>) folded by F_4 folds	12
8.	S_2 in augen orthogneiss (<i>BRga</i>), folded and crenulated by F_4 folds	13
9.	Minor structures on Rudall: F ₂ axes	16
10.	Minor structures on Rudall: F ₄ axes and S ₄	17
11.	Stereographic projections plotting S ₂ foliations to estimate the pre-Throssell Group orientation	
	of S ₂ in the Poynton and Rooney Domains	18
12.	Diagrammatic cross section through Rudall River, showing major D ₂ and D ₄ structures	20
13.	Prograde metamorphic minerals of the Rudall Complex	23
14	Strike-slip faulting and deposition during the early stages of Yeneena Basin development.	
	Rudall–Broadhurst area	30
15.	Locations of prospects, mineral occurrences, and mineral anomalies on the	
	Rudall 1:100 000 map	32
16.	Economic geology of the Talbot Terrane, and the Throssell and Tarcunyah Groups on the	
	RUDALL 1:100 000 map	33
17.	Summary of main zones of known and interpreted mineral potential on the	
	Rudall 1:100 000 map	34

Tables

1.	Summary of tectono-stratigraphic domains in the Talbot Terrane	8
2.	Stratigraphy of the sedimentary succession of the Talbot Terrane	10
3.	Summary of deformation episodes affecting the Talbot Terrane, and the Throssell and	
	Tarcunyah Groups	15
4.	Geochronological results for the Paterson Orogen	25
5.	Geochronological data relevant to the evolution of the Paterson Orogen	27
6.	Summary of Proterozoic tectonic evolution on Rudall, with theoretical metallogenic	
	implications	37

Geological evolution of the Palaeoproterozoic Talbot Terrane, and adjacent Meso- and Neoproterozoic successions, Paterson Orogen, Western Australia

by

A. H. Hickman and L. Bagas

Abstract

Recent mapping of the RUDALL 1:100 000 sheet has provided considerably more-detailed geological data than were previously available from the reconnaissance mapping carried out by the Geological Survey of Western Australia in 1975–76. The new information has led to major reinterpretations of stratigraphy, structure, tectonic evolution, and mineral potential in the central (Talbot Terrane) part of the Palaeoproterozoic Rudall Complex in the Paterson Orogen.

The Palaeoproterozoic Talbot Terrane of the western part of the Rudall Complex contains a foreland basin-type clastic succession deposited east of the Archaean Pilbara Craton. The Pilbara Craton collided with a continental plate moving from the northeast, around 1760 Ma. As a result, the sedimentary succession was thrust and overfolded from the northeast and east, metamorphosed to amphibolite facies, and extensively intruded by sheets of granite–granodiorite.

The Meso- to Neoproterozoic Throssell Group of the Yeneena Supergroup, which unconformably overlies the Talbot Terrane, is a sandstone–shale–carbonate assemblage that was deposited by 900 Ma. The group was deposited in a northwesterly trending basin system, with terrigenous supply from the southwest. Transpressional upright folding and high-angle thrusting between about 900 and 700 Ma resulted in the main northwest-trending fold system (D_4) of the Miles Orogeny.

Gold, base metal, and uranium mineralization within and adjacent to the Talbot Terrane is chiefly syn- to post-Throssell Group in age and occurs on, or in close proximity to, northwesterly to north-northwesterly striking D_4 faults.

KEYWORDS: Paterson Orogen, Rudall Complex, Talbot Terrane, Yeneena Supergroup, Throssell Group, stratigraphy, structure, metamorphism, tectonic evolution, mineralization, mineral potential

Introduction

Mapping of the RUDALL* 1:100 000 sheet area during 1991 and 1992 by the Geological Survey of Western Australia (GSWA) provided information on the geology, tectonic evolution, and mineral potential of a well-exposed section of the Paterson Orogen (Hickman and Bagas, 1998).

The Paterson Orogen is a northwesterly trending orogenic belt of multiply folded and metamorphosed sedimentary and igneous rocks of Proterozoic age. The orogen can be subdivided into the Palaeoproterozoic Rudall Complex (Williams, 1990) and the unconformably overlying Meso- to Neoproterozoic Yeneena Supergroup (Throssell and Lamil Groups), and Neoproterozoic Tarcunyah Group (Williams and Bagas, in press).

The Rudall Complex consists of a broad imbricate zone of northeasterly and easterly dipping thrust sheets with crosscutting relationships that indicate progressively younger thrusts towards the east. Some of the thrusts are major faults separating distinct tectonostratigraphic terranes known as the Talbot, Connaughton, and Tabletop Terranes (Bagas and Smithies, 1998). This report will concentrate on the Talbot Terrane. Smithies and Bagas (1997) and Bagas and Smithies (1998) describe the Connaughton and Tabletop Terranes to the east.

^{*} Capitalized names refer to standard 1:100 000 map sheets

A. H. Hickman and L. Bagas

The Talbot Terrane comprises a metamorphosed succession of siliciclastic rocks in the western part of the Rudall Complex that occupies the central part of the northwestern Paterson Orogen in northwestern Western Australia, and is situated between the Great Sandy Desert and Little Sandy Desert (Fig. 1). The orogen extends southeastward and includes the Mesoproterozoic Musgrave Complex of central Australia (Williams and Myers, 1990).

Until recently, the limited understanding of the geology of the orogen relied on reconnaissance studies (Chin et al., 1980) and limited geochronological data (Chin and de Laeter, 1981). Subsequent studies have highlighted complexities both typical and atypical of Proterozoic orogenic belts (Clarke, 1991; Hickman and Clarke, 1994; Bagas et al., 1995; Smithies and Bagas, 1997; Bagas, 1998; Bagas and Smithies, 1998; Hickman and Bagas, 1998).

This Report provides a detailed account of the Palaeoproterozoic geology (Talbot Terrane) of the area, and the geology of the unconformably overlying Mesoto Neoproterozoic (Throssell Group) and Neoproterozoic (Tarcunyah Group). The Report does not describe in any detail the younger Neoproterozoic Savory Group or the Phanerozoic units in the region. These units are described in Hickman and Bagas (1998), which should be read with this Report.

Summary of geology

The Paterson Orogen is a northwest-trending belt of folded and metamorphosed Proterozoic igneous and sedimentary rocks that lies in the central part of Western Australia, and extends southeast to the Musgrave Complex (Williams and Myers, 1990). Within the study area there are three major subdivisions of the orogen the Palaeoproterozoic Rudall Complex, Meso- to Neoproterozoic Throssell Group of the Yeneena Supergroup, and the Neoproterozoic Tarcunyah Group of the greater Officer Basin (Fig. 1).

The Rudall Complex was subjected to a Palaeoproterozoic orogenic event, and the unconformably overlying Throssell and Tarcunyah Groups were deformed by Mesoproterozoic to Neoproterozoic orogenies.

The Rudall Complex is composed of gneiss, schist, and quartzite, which represent a range of igneous and sedimentary rocks deformed and metamorphosed during at least two pre-Throssell Group orogenic episodes. This report (see **Tectonic evolution**) interprets these events in terms of northeast–southwest plate collisions that resulted in the formation of fold-thrust belts, and partial melting. Orthogneiss constitutes about 50% of the Rudall Complex and was derived by metamorphism of a range of granitoid protoliths. The main protolith was porphyritic granite to monzogranite that intruded the sedimentary succession between about 1787 and 1765 Ma (see **Geochronology**). An earlier suite, forming part of a complex lithologically layered orthogneiss, crystallized at about 2015 Ma (see **Geochronology**). Available geochronology is inadequate to provide firm time constraints for the evolution of the Rudall Complex, but the D_1-M_1 collision probably occurred between 2015 and 1787 Ma, and D_2-M_2 occurred either during or after the period 1787–1765 Ma. Both these deformation events have been included in the Yapungku Orogeny (Bagas and Smithies, 1997; Bagas and Smithies, 1998).

The Yeneena Supergroup, as recently defined by Bagas et al. (1995), consists of the Throssell and Lamil Groups, but the latter is not present in the vicinity of the Talbot Terrane.

The Throssell Group is a sandstone-shalecarbonate succession, representing a range of depositional environments from fluviatile-deltaic to shelf. The age of the group is between 1250 and 900 Ma (see **Geochronology**), and initial deposition probably commenced in a strike-slip basin system, which later evolved into a northeast-deepening shelf environment responsible for the Lamil Group in the Telfer area.

The Tarcunyah Group is c. 800 Ma in age (Bagas et al., 1995), and represents deltaic to shallow-shelf sedimentation along the eastern margin of the Pilbara Craton. No D_4 structures have been identified in the Tarcunyah Group (Williams and Bagas, in prep.a,b), which indicates that deposition of the group followed tectonic closure of the Throssell Group basin.

Deformation of the Rudall Complex and Throssell Group during D_4 resulted in the formation of tight to isoclinal, upright, southeast-trending folds, and associated brittle–ductile faults and shear zones; metamorphism was greenschist facies.

The D_6 deformation, which also affects the Tarcunyah Group, involved a combination of upright folding, thrusting, and dextral strike-slip movements along a northwest-trending zone from the McKay Range on RUDALL to eastern THROSSELL (Williams and Bagas, prep.a), and further north to the eastern margin of the Gregory Range. East of this zone, D_6 effects appear to be minor, and are mainly confined to dextral strike-slip reactivation of D_4 faults and the formation of some new minor faults.

Palaeo- to early Neoproterozoic geology

This Report describes the Palaeo- to early Neoproterozoic geology of the Talbot Terrane (Rudall Complex), and adjacent formations of the Yeneena Supergroup and the Tarcunyah Group. The Neoproterozoic Savory Group is described elsewhere ((Hickman and Bagas, 1998). Figure 2 presents a simplified map of the Proterozoic geology on RUDALL, and Figure 3 (which omits orthogneiss) diagrammatically clarifies the regional distribution of sedimentary formations of the Rudall Complex.

Figure 1. Regional setting of the Talbot Terrane, and the regional distribution of the Yeneena Supergroup and the Tarcunyah Group

STRATIGRAPHY

Yeneena Supergroup	СТ	Connaughton Terrane
Throssell Group	OB	Officer Basin
Rudall Complex		
Peridotite	STRUC	TURE
Unassigned	$\frac{1}{\sqrt{1}} \cdots \rightarrow$	F ₂ anticline, overturned F ₂ syncline, overturned
Poynton Formation	$\frac{1}{\sqrt{\sqrt{1-1}}}$	F ₄ anticline
Butler Creek Formation		F_4 syncline F_4 anticline, overturned
Yandagooge Formation	\rightarrow	F ₄ syncline, overturned
Fingoon Quartzite		D ₂ thrust or lag D ₄ fault
Larry Formation		D ₆ fault

Figure 3. Diagrammatic map of the geology (orthogneiss omitted) of the Talbot Terrane on part of the RuDALL 1:100 000 map, distinguishing D₂ from D₄ structures, and emphasizing zones of peridotite

Rudall Complex

The Talbot Terrane consists of an arenaceous and pelitic succession (now paragneiss) intruded by pre- to synorogenic granitoids (now orthogneiss). The terrane is tectonically divided into ten crustal segments referred to as 'tectono-stratigraphic domains' (Fig. 4). The boundaries of these domains are principally major D₂ faults, but D₄ faults and the unconformity at the base of the Throssell Group also form some boundaries. Each domain has a distinctive assemblage of structures and lithostratigraphic units (Table 1) due to lateral transposition and variable rotation of adjacent segments. Thus, geometrical structural analysis of minor early structures is generally impossible (variable rotation) across domain boundaries, and differences between stratigraphic successions of adjacent domains reflect juxtaposition of sedimentary sequences more widely separated during deposition.

Figure 5 presents lithological columns for eleven areas, and relates these local successions to a possible regional stratigraphic succession. However, the stratigraphy of the Poynton, and Rooney Domains may not be related to that of the Fingoon, Warturnkurru and Butler Domains. In particular, a major fault separates the Poynton Domain from the Fingoon and Butler Domains precluding confident stratigraphic correlations between those areas. No stratigraphic succession has been established in the tectonically fragmented Clayton Domain, and the stratigraphic positions of some paragneiss units are therefore left unassigned. Hickman and Bagas (1998) have described these units. In addition, the successions of the Lalapa, Martu, and Parnngurr Domains are not correlated with the stratigraphic succession in central RUDALL.

For a detailed lithological description of the five formations see Hickman and Bagas (1998).

Stratigraphic overview

The regional distribution of the five defined formations in the Talbot Terrane is illustrated by Figure 3. Principal stratigraphic and lithological features of the succession, including derivation of name, type area and distribution, are summarized in Table 2.

Granitoid intrusion and tectonism fragment the succession, and metamorphism has destroyed most primary fabrics such as sedimentary structures. Lithological layering and rare graded bedding are the only recognizable sedimentary features, with the result that local younging directions cannot be directly determined. The regional extent of the relatively uniform lithological successions, and the nature of vertical facies changes, are consistent with the interpreted way-up. However, the relative ages of the successions of the Poynton Domain and the Fingoon–Warturnkurru Domains are uncertain (Hickman and Bagas, 1998).

The stratigraphic subdivision of the Talbot Terrane is lithostratigraphic, and based on regional continuity of successions. No unconformities are recognized within the succession, and contacts with orthogneiss are either tectonic or intrusive. The stratigraphic succession has been extensively fragmented by thrust faults of D_2 and D_4 generations, and the various tectono-stratigraphic domains contain distinct stratigraphic packages (Table 1). Correlation across domain boundaries is partly tentative, and no correlations have been made into the complexly disrupted stratigraphy of the Clayton Domain, or into the Lalapa, Martu, and Parnngurr Domains of eastern RUDALL.

Uncertainties in lithostratigraphic correlations between certain domains may only be resolved by acquiring more geochronological data. New isotopic evidence indicates that the depositional age of the Fingoon Quartzite in the Fingoon Domain is younger than 1790 ± 10 Ma (U-Pb data on clastic zircons, Nelson, 1995). Field observations suggest that the stratigraphically or structurally younger Yandagooge and Butler Creek Formations of the Poynton Domain were intruded by granitoids ranging in age between 1787 and 1765 Ma (zircon U-Pb data, Nelson, 1995). These data appear to establish that the augen orthogneiss (*PRga*)* and the sedimentary formations are of closely similar age, implying that both are genetically related to the same orogeny. Alternatively, it could be argued that the Fingoon Quartzite might be significantly younger (it is not known to be intruded by *BRga* granitoids that now form augen orthogneiss), and that the Fingoon Quartzite-Yandagooge Formation contact might be tectonic rather than stratigraphic. The field evidence of a transitional contact does not support this latter possibility, but lack of conclusive way-up criteria precludes firm conclusions. Generalized stratigraphic sections, from the Warturnkurru, Fingoon, Butler, and Poynton Domains are shown in Figure 5.

The depositional environments responsible for the succession are discussed under Tectonic evolution, but some preliminary observations are appropriate at this stage. The lithostratigraphic succession of the Rudall Complex appears to broadly define an orogenic cycle commencing with a mixed sandstone-mudstone (Larry Formation) to quartzite (Fingoon Quartzite) assemblage in the lowest part of the succession. The overlying Yandagooge Formation and Butler Creek Formation are composed of pelite, and rare carbonate rocks and turbidite, and a thick quartzite (Poynton Formation) completes the upper part of the cycle. The type of depositional system responsible for this succession cannot be directly determined owing to non-preservation of its eastern section, and because of destruction of important sedimentological criteria (e.g. facies relationships and sedimentary structures). However, by analogy with modern environments, the lithological character of the sedimentary assemblage indicates either intracratonic or continental margin deposition. Later in this Report (Tectonic evolution), additional geological evidence is used to favour deltaic-shelf to moderately deep-water deposition on a rifted continental margin. The continental landmass, which lay to the southwest and west of the shelf, was the southeastern part of the Pilbara Craton.

^{*} Rock codes refer to map accompanying Hickman and Bagas (1998).

7

Table 1.	. Summary	of tect	ono-stra	tigraphic	domains	in	the	Talbot	Terrane
----------	-----------	---------	----------	-----------	---------	----	-----	--------	---------

Domain	Rock units	Structural characteristics
Rooney	Psammitic gneiss, quartz–muscovite schist, and quartzite (assemblage correlated with Poynton Formation), and banded paragneiss (correlated with Butler Creek Formation). Minor sheets of <i>Brga</i> and local layers of amphibolite	Pervasive D_2 shearing and isoclinal folding have obliterated stratigraphic and intrusive relationships within this domain. S_2 now dips SSW, but prior to D_2 its inclination was probably low towards the north-northeast. Post- D_2 pegmatite veins occur locally
Poynton	The Poynton Formation and banded paragneiss correlated with the Butler Creek Formation are each intruded by thick sheets of <i>Prga. Pru</i> is common along, and close to, the SSW boundary of the domain	Mappable, large-scale folds in this domain are almost entirely D_4 structures, but these everywhere deform S_2 and tight to isoclinal F_2 folds. F_2 axes now generally plunge west WNW or ESE, and prior to D_4 would have had low plunges in these same directions. D_4 of the thrust contact with the Fingoon Domain establishes that its original dip was low, north-northeasterly. Likewise, low-angle D_2 thrusts, refolded by F_4 folds, occur in the eastern part of the domain
Butler	Domain is mainly composed of Butler Creek Formation, which stratigraphically overlies the Yandagooge Formation. Arenites that correlate with the Poynton Formation form a small outcrop in the east. Minor <i>Prga</i> intrusions	The relatively incompetent rock types of this domain have been complexly folded, first by F_2 isoclines and later by upright F_4 folds. Minor F_2 folds exhibit no prevailing orientation due to refolding by F_4 folds, but are probably related to a major F_2 syncline close to the lag-faulted boundary with the Fingoon Domain. F_4 folds plunge SE, except in the Rudall River area where plunge is NW.
Lalapa	Unassigned metasedimentary rocks and orthogneiss	This domain is an imbricated wedge between the Poynton, Butler, and Martu Domains. Major F_2 isoclines trend SE. The arcuate SW boundary fault transects earlier structures in the Butler Domain. Relative importance of D_2 and D_4 faulting is uncertain
Martu	Dominantly orthogneiss, except in the north where paragneiss may be correlated with the Butler Creek Formation. Schist and arenite in the south may be correlated with the Yandagooge and Poynton Formations	$\rm F_2$ isoclines show no prevailing plunge due to $\rm F_4$ refolding. The western boundary of domain is partly concealed, but appears to be an arcuate thrust
Parnngurr	Unassigned metasedimentary rocks with minor orthogneiss	Major N-trending F_2 isoclines are refolded by a SE-plunging F_4 synform. Domain is thrust onto the Martu Domain, and this D_2 fault is also folded by the F_4 fold
Fingoon	Fingoon Quartzite, Larry Formation, and orthogneiss with Yandagooge and Butler Creek Formations in the NW	Domain contains major F_2 recumbent folds intensely deformed by upright F_4 folds and F_4 faults. F_4 folds plunge NW in the northwest and NW and SE in the southeast due to the existence of a major NE-trending antiform (probably post- D_2 and pre- D_4). Domain is thrust SW onto Warturnkurru Domain, and the original D_2 age of this fault is established by F_4 folding in the northwest. However, it was reactivated during D_4
Warturnkurru	All formations except the Poynton Formation. Minor orthogneiss	Major folds are upright, tight-open F_4 structures except for an inferred F_2 syncline adjacent to the NE boundary with the Fingoon Domain. Major F_4 fold plunges change from NW to SE across the NE-trending antiform (see Fingoon Domain above), but the axis of this fold has been sinistrally displaced by D_4 movement along the Gap Thrust (Figs 2 and 14)
Clayton	Dominantly lithologically layered orthogneiss (B_{Rgx}) and K-feldspar orthogneiss (B_{Rga}) , with subordinate slices and xenoliths of unassigned metasedimentary units, metagabbro, and ultramafic rock	Most are of D_4 and D_6 age, but pre- D_4 structural complexity indicates D_2 imbrication. Orthogneiss (<i>Brgx</i>) contains S_1 foliation that is folded by isoclinal F_2 folds. F_4 folds change plunge from NW to SE, possibly due to ESE-trending D_6 transpressional folds. Isoclinal, fault-bounded wedges of Coolbro Sandstone are an unusual feature of this domain

Domain; PD, Poynton Domain; BD, Butler Creek Domain

11.01.99

Figure 5. Generalized stratigraphic columns through the stratigraphic succession of the Rudall Complex in the Talbot Terrane. The inset is a simplified version of Figure 4, showing the location of the generalized sections

AHH41b

Unit, symbol, maximum thickness	Name derivation; type area; distribution	Lithology and succession	$Relationships^{(a)}$
Poynton Formation <i>BRO</i> 1000 m	Poynton Creek (AMG330051); Poynton Creek, around AMG 330070; northeastern and northern parts of the Talbot Terrane—almost entirely restricted to the Poynton Domain	At Poynton Creek basal quartzite(<i>BRoq</i>) passes upward into interlayered psammitic gneiss, quartzite and quartz–muscovite schist (<i>BRom</i>). The upper part of the formation is dominantly quartz– feldspar–muscovite gneiss with minor semi-pelitic schist (<i>BRos</i>) and local biotite–plagioclase–quartz schist (<i>BRot</i>). Banded iron-formation (<i>BRoi</i>) occurs in tectonic contact with the Butler Creek Formation at Rooney Creek	Unconformably overlain by the Coolbro Sandstone (Yeneena Supergroup), and pervasively intruded by porphyritic granitoid protoliths (<i>Brga</i>)
			Conformity or disconformity
Butler Creek Formation <i>P_{RC}</i> >1000 m	Butler Creek (AMG 400961); Butler Creek, around AMG 400900; eastern part of the Talbot Terrane, north of the Rudall River, and northwest of Fingoon Range	Generally a monotonous succession of banded paragneiss containing thin layers of quartz–feldspar(–biotite) gneiss, quartz–biotite schist, and minor amphibole–chlorite schist. Thicker units of micaceous psammitic gneiss(<i>Brcs</i>), banded iron-formation (<i>Brci</i>), and muscovitic quartzite (<i>Brcq</i>) are locally distinguished. Psammitic units are mainly developed north of Rudall River	Pervasively interlayered with <i>PRga</i> and includes tectonite zones of intricately interleaved paragneiss and orthogneiss. North of Rudall River and northwest of Fingoon Range, lenticular serpentinite (<i>PRu</i>) bodies are present
			Conformable contact
Cassandra Member <i>Bryp</i> of the Yandagooge Formation <230 m	Cassandra mineral prospect (AMG 323853); around AMG 287895 to AMG 291902; around headwaters of Larry Creek on RuDALL	Iron-rich graphitic, pelitic schist, BIF and chert. BIF units (<i>PRypi</i>) are locally sufficiently thick to be mapped separately. Rock types of the member include ferruginous quartz–feldspar– biotite schist, andalusite (–staurolite)–graphite–garnet–quartz–biotite schist, graphite–sericite–biotite schist, and quartz–amphibole(grunerite)–pyrite–graphite schist (associated with BIF and chert). BIF contains magnetite, quartz, and cummingtonite–grunerite	Member in upper part of Yandagooge Formation
Yandagooge Formation <i>PRy</i> 1500 m	Yandagooge Creek (AMG 053310); NW Fingoon Range, around AMG 175005; SW BROADHURST (3353) and in the Fingoon Range area, RUDALL	Dominantly a pelitic to semipelitic assemblage of quartz–muscovite schist with hematitic biotite schist and thin intercalations of muscovitic quartzite. Features of the succession are a basal transitional assemblage of psammitic quartz–feldspar–muscovite gneiss, quartz–feldspar–muscovite gneiss, quartz–muscovite schist and inter- layered subordinate quartzite units (<i>PRys</i>), an uppermost unit of muscovitic quartzite (<i>PRyq</i>), and units of BIF or pyritic graphitic schist (<i>PRyi</i>). Local variations are a more arenaceous development of muscovite–feldspar–quartz gneiss (<i>PRya</i>), mainly north of Rudall River, an iron-rich pelitic unit (Cassandra Member, <i>PRyp</i>) in the SW Fingoon Range, and a pelite– carbonate–chert association in the upper part of the formation around the Tracy uranium deposit (on BROADHURST)	Extensively intruded by porphyritic granitoid protoliths of <i>Brga</i> in N RUDALL, but not intruded in the Warturnkurru Domain and the southern part of the Fingoon Domain. Locally contains lenticular serpentinite (<i>Bru</i>) bodies. Transitionally overlies the Fingoon Quartzite
			Conformable contact
Fingoon Quartzite <i>Enf</i> 1500 m	Fingoon Range, central RUDALL; around AMG 244932–248938 and AMG 289945–296955; Fingoon Range, NW RUDALL and SW BROADHURST	Dominantly massive or layered quartzite, but including quartz–muscovite schist with minor micaceous quartzite ($Brfm$), muscovitic quartzite with intercalations of quartz– muscovite schist ($Brfq$), and local quartz– feldspar–muscovite schist ($Brfs$). Pelitic and semipelitic components are most common towards the top of the formation. Pebbly beds locally occur near the base of the formation	Boundary contacts with ortho- gneiss insome areas

Table 2. Stratigraphy of the sedimentary succession of the Talbot Terrane

Table 2. (continued)

Unit, symbol, maximum thickness	Name derivation; type area; distribution	Lithology and succession	Relationships ^(a)
			Conformable contact
Larry Formation <i>P_{RW}</i> >1000 m	Larry Creek (AMG 288914); around AMG 236854–250870, and AMG 288914; Fingoon Range area, RUDALL	Quartz-feldspar-mica paragneiss containing quartz-mica schist and minor muscovitic quartzite is the dominant rock type. Psammitic gneiss and muscovitic quartzite (<i>PRwa</i>) occur close to the overlying Fingoon Quartzite. Pebbly beds occur locally near the top of the formation	Lowest formation of the succession. Base not exposed. Transitional contact with Fingoon Quartzite

NOTES: (a) excluding tectonic contacts

The Larry Formation, Fingoon Quartzite, and Yandagooge Formation are chiefly confined to the Fingoon and Warturnkurru Domains, although the Yandagooge Formation extends into the Butler Domain. Within the Fingoon Domain the Fingoon Quartzite becomes thinner to the northeast and the Yandagooge Formation becomes thicker to the southeast, although present thickness variations are probably partly tectonic. Way-up evidence is restricted to the upper part of the Larry Formation where fine-scale cross-bedding and graded bedding indicate younging towards the overlying Fingoon Quartzite.

In the Fingoon and Warturnkurru Domains, the Larry Formation is transitionally overlain by the Fingoon Quartzite. Thin quartzite bands are intercalated with an assemblage of pelitic schist and argillaceous arenites at the top of the Larry Formation. This transition could be interpreted either as a change from comparative deep to shallow environments, or as a transition between two types of shallow-water facies (e.g. estuarine or delta plain to shelf sands); however, insufficient diagnostic data are preserved.

One of the least tectonized contacts between the Fingoon Quartzite and Yandagooge Formation is preserved in the Warturnkurru Domain where quartzite and quartz-mica schist are intercalated at the base of the Yandagooge Formation. Quartzite forms thin layers throughout the Yandagooge Formation, but towards the northern part of the Fingoon Domain, feldspathic and argillaceous (poorly sorted) psammitic paragneiss makes up much of the formation. In the same direction, units of BIF and graphitic schist become less common and much thinner. These changes indicate a source of detritus to the northeast.

The Butler Creek Formation, a thick, monotonous succession of metamorphosed turbidite sediments and argillaceous units, abruptly overlies quartzite and pelitic schist in the Yandagooge Formation. The contact between the two formations is generally tectonized, but in one of the less deformed areas at the northwestern end of the Fingoon Range layer-parallel units across the boundary suggest stratigraphic continuity. The Butler Creek Formation is generally less than 1 km thick, but becomes thicker to the east and northeast. The formation is disrupted by, and interleaved with, sheets of orthogneiss, and its upper stratigraphic contact is not exposed.

The Poynton Formation, an upward-fining succession of metamorphosed quartzite, greywacke, and minor pelite and banded iron-formation (BIF), is almost entirely confined to the Poynton Domain, where it is underlain by banded paragneiss of the Butler Creek Formation (Hickman and Bagas, 1998).

Considering that the southwestern boundary of the Poynton Domain is a major thrust (Connaughton Thrust, Figs 2 and 4), the interpretation that the Poynton Formation is the youngest sedimentary formation of the Rudall Complex depends on its relationship to the Butler Creek Formation. An alternative interpretation would equate the Poynton Formation with the Fingoon Quartzite, and would require correlating the Butler Creek Formation of the Poynton Domain with the Larry Formation of the Fingoon and Warturnkurru Domains. These correlations are less probable because they would require fortuitous juxtaposition of lithologically similar paragneiss units of different ages in the vicinity of the Connaughton Thrust. Moreover, the Poynton Formation appears to overlie the Butler Creek Formation in the Butler Domain.

Metasedimentary units of the Clayton Domain may belong to the Fingoon Quartzite and Yandagooge Formation, but sheets of orthogneiss and tectonic slicing of the area obscure stratigraphic relations.

Orthogneiss

About 80% of the orthogneiss in the Talbot Terrane is a microcline–quartz–plagioclase–biotite augen gneiss (*BRga*) containing deformed megacrysts of K-feldspar, and is of age between 1765 and 1790 Ma (Hickman and Bagas, 1998). A further 10% of the orthogneiss is lithologically layered gneiss (*BRgx*) with xenoliths of amphibolite, serpentinite, BIF, and paragneiss. The remaining 10% is described in detail by Hickman and Bagas (1998), and will not be repeated here.

AHH81

Figure 6. S2-foliated augen orthogneiss (PRga), located 1 km north of Butler Creek at AMG 450927

17.02.99

 $S_{\rm 2}$ in augen orthogneiss (PRga) folded by $F_{\rm 4}$ folds, located 2 km north-northwest of the Tom Tit Prospect at AMG 201030 Figure 7.

Figure 8. S₂ in augen orthogneiss (*PRga*), folded and crenulated by F₄ folds (AMG 201030)

Protoliths for the augen orthogneiss (*PRga*) were porphyritic granite and monzogranite sheets and veins, which intruded most levels of the paragneiss succession, and the lithologically layered orthogneiss. A possible exception was the psammitic gneiss (*BRss*) in the northwestern part of the terrane, which may represent a post-augen orthogneiss (*PRga*) sedimentary unit. This relationship suggests that the granitoid protoliths of these two varieties of gneiss crystallized during separate intrusive events, consistent with current geochronological data (Hickman and Bagas, 1998). Furthermore, the layer-parallel foliation (S_1) in the lithologically layered orthogneiss (*PRgx*) is tightly folded (F_2) , whereas no S₁ has been recognized in the augen orthogneiss (*PRga*). The augen orthogneiss, however, contains, augen of K-feldspar that are variably foliated by S_2 mica alignment, and ranges from a poorly foliated porphyritic granite or monzogranite (Fig. 6) to a quartzfeldspar-muscovite schist (Fig. 7). The mica foliation is generally folded by F_4 folds (Fig. 8) or crenulated (S_4) by D_4 (see **Structure**).

The lithologically layered orthogneiss (BRgx) is almost entirely restricted to the Clayton Domain where contacts with unassigned metasedimentary units of the Rudall Complex are intrusive. However, it is possible that these metasedimentary rocks are older than the stratigraphic succession from the Larry Formation to the Poynton Formation. At no localities do units of the paragneiss succession unconformably overlie any types of orthogneiss, and no conglomerates containing orthogneiss clasts have been identified. In summary, field evidence indicates that most of the augen orthogneiss protoliths were younger than the paragneiss succession, whereas the lithologically layered orthogneiss includes granitoid protoliths that are older.

Yeneena Supergroup and Tarcunyah Group

Bagas et al. (1995) have redefined the stratigraphic name 'Yeneena Group' (Williams et al., 1976) into the Yeneena Supergroup (composed of the Throssell and Lamil Groups) and the Tarcunyah Group. The Tarcunyah Group now incorporates formations previously assigned to the 'Western Zone' succession of Williams (1990). Williams and Bagas (in prep.a) provide the fullest description of the Tarcunyah Group.

Recent work supports a Neoproterozoic age for the Tarcunyah Group (c. 800 Ma, Bagas et al., 1995), and isotopic evidence indicates that the age of the Throssell Group is probably younger than 1250 Ma, and probably older than 900 Ma (see **Geochronology**).

The contact between the Throssell and Lamil Groups is not exposed, although interpretation of aeromagnetic data suggests that it is a fault or unconformity (Hickman and Clarke, 1994; Hickman and Bagas, 1998). Hickman and Bagas (1988) give detailed lithological descriptions of the Yeneena Supergroup and Tarcunyah Group on RUDALL.

Dolerite dykes, quartz veins, and gossan

Dolerite (d) dykes have intruded the Rudall Complex in the northwestern part of the Talbot Terrane, and vary in trend from west-northwest to north-northwest. The dolerite exhibits low metamorphic grade and the dykes clearly post-date D_2 and D_4 structures. The later relationship establishes that they are younger than the Throssell Group, but no intrusion of the Throssell Group has been observed. Aeromagnetic data on THROSSELL and LAMIL show a suite of dolerite dykes striking northnortheast, and clearly later than F_4 folds. Williams (1992) describes similar dykes in the 'Savory Basin', and implies a post-600 Ma age, although no direct geochronology has been undertaken. If the west-northwesterly striking dykes are related to the dominant north-northeast set of dykes west and northwest from RUDALL, they may occupy late tensional fractures produced by the D₆ event (northnortheast to south-southwest compression). About 1.5 km south of the confluence of Gap Creek and the Rudall River, at AMG 178023*, a dolerite dyke intrudes a minor north-northwesterly trending fault, apparently of D_6 generation. The dolerite dyke is lenticular, poorly foliated along its margins, and has reacted with local orthogneiss to produce tachylitic veins of partly hybridized breccia. The dolerite is fine grained and consists of microphenocrysts of plagioclase in a granular matrix of augite, plagioglase, and opaque minerals.

Quartz veins (q) are widespread on RUDALL, and are generally located in faults and shear zones (Hickman and Bagas, 1998). Some of the veins (Appendix 1) are anomalous in cerium, lanthanum, barium, copper, arsenic, silver, and gold (see **Mineral resources**). Some veins also contain visible tourmaline or rutile.

Gossan or gossanous rock (go) units are limonite– goethite concentrations formed by surface oxidation of sulfide mineralization. Such sulfide mineralization is either epigenetic (generally accompanying quartz veining), or syngenetic and stratiform. All gossans identified during the mapping were sampled, and analytical results (Appendix 1) are discussed under **Mineral resources**.

Structure

The Rudall Complex is the product of many depositional, intrusive, tectonic and metamorphic events, apparently operating over a period of more than 1000 m.y., which include the Yapungku, Miles, and Paterson Orogenies (Bagas et al., 1995). The RUDALL map conveys something of the resulting geological complexity of the Talbot Terrane, but the true level of complexity is best appreciated at outcrop scale where isoclinally folded, compositionally layered paragneiss has commonly been 'sheeted' by granitoid phases, sheared and refolded. At outcrop scale, orthogneiss–paragneiss contacts are almost invariably parallel to compositional banding in the metasedimentary rocks, and it is generally impossible to determine the relative importance of tectonic interleaving and the intrusion of granitic sills.

Angular xenoliths of paragneiss and orthogneiss are visible in some outcrops of orthogneiss, but elsewhere lenticular paragneiss inclusions are clearly boundins or detached fold cores. At 1:25 000 and larger scales, intrusive contacts are indicated by discordant orthogneiss-paragneiss contacts without any evidence of oblique faulting. Most of the granitoid protoliths appear to have been emplaced as broadly concordant sheets, locally up to 3 km thick. These major intrusions have caused fragmentation of the stratigraphic succession, and in the process have limited the use of stratigraphic marker units for regional structural interpretation.

An important conclusion from the 1991–1992 mapping, and subsequent structural analysis, is that prior to deposition of the Yeneena Supergroup, the Rudall Complex was composed of nappes and thrust sheets, inclined and stacked towards the northeast.

Table 3 summarizes structures of the various deformation events that have affected the Talbot Terrane. Figures 2 and 3 illustrate the major structures, and Figures 9 and 10 show minor structures. Several important observations can be made from Figures 2, 3, 9, and 10. Firstly, major F_4 anticlines and synclines, so well developed in the Yeneena Supergroup of BROADHURST (Hickman and Clarke, 1994, fig. 6), are seen to extend deep into the Rudall Complex. An example is the Dunn Antiform, which has been traced 30 km southeast from the Watrara Range (BROADHURST) to the May Antiform on RUDALL. Secondly, the major D_4 faults continue into the Rudall Complex, and are interpreted to remain steeply inclined (>45°) at depths of 3-5 km below the unconformity. Thirdly, the existence of narrow, fault-bounded, synclinal outliers of Coolbro Sandstone within the Rudall Complex (e.g. along the Clayton Thrust, Fig. 2) demonstrates vertical movements of several kilometres along the larger faults. Fourthly, Figures 3 and 10 reveal a major, northeast-trending culmination or antiformal cross-fold through the centre of the Rudall Complex. Reversals of plunge of F_4 folds also occur on BROADHURST (Fig. 5; Hickman and Clarke, 1994), but are generally en echelon, and consistent with heterogeneous strain rather than fold interference. Finally, the statistical analysis of minor structures in the Poynton and Rooney Domains reveals the pre-Throssell Group orientation of D₂ structures (Fig. 11; discussed in detail under D_2 structures).

Hickman and Clarke (1994) recognized six phases of deformation on BROADHURST, D_1 and D_2 occurring prior to deposition of the Throssell Group, and these have been included in the Yapungku Orogeny (Bagas and Smithies, 1997).

^{*} Localities are specified by the Australian Map Grid (AMG) standard sixfigure reference system whereby the first group of three figures (eastings) and the second group (northings) together uniquely define position, on the RUDALL 1:100 000 sheet (unless otherwise noted), to within 100 m.

Table 3. Summary of deformation episodes affecting the Talbot Terrane, and the Throssell and Tarc	arcunyah Groups
---	-----------------

Event	Major structures	Minor structures	Metamorphism and magmatism
Early Yapungku Orogeny D ₁ : Regional layer-parallel shear, direction unknown	Identified on BROADHURST	S ₁ : Penetrative layer-parallel schistosity; alignment of mica, quartz, and feldspar	M ₁ : Low-pressure, middle amphibolite facies conditions (not recognized on RUDALL); local melting; granitoid intrusion
Yapungku Orogeny D ₂ : SW- and W- directed thrusting and overfolding	Tight to isoclinal F_2 folds (axes trend WNW to N and are overturned towards SSW); D_2 thrust zones	F_2 Isoclinal folds S_2 : Schistosity due to alignment of mica and quartz L_2 : Stretching lineation within S_2	M ₂ : Medium-pressure amphibolite facies; some melting of pelitic rocks
Early Miles Orogeny D ₃ : Local W- or NW- directed isoclinal-recumbent folding	Identified on BROADHURST	Local faulting and quartz veining of the Rudall Complex–Throssell Group unconformity	None identified
Miles Orogeny D ₄ : Regional deformation in response to SW-directed compression	Upright, tight to isoclinal F_4 folding about NW- trending axes, strike-slip fault system	S_4 : Axial surface cleavage inclined steeply NE L_4 : Stretching lineations plunge down-dip on S_4	M ₄ : Low greenschist facies; locally intense cataclasis and dynamic recrystallization
D_{5} : Local deformation; ?NE-directed stress release after D_{4}	Identified on BROADHURST	Identified on BROADHURST	None identified
Paterson Orogeny D_{6} : Brittle deformation in response to NNE-SSW compression	ENE- and N-striking near vertical strike-slip faults	S_6 : Strain-slip cleavage, axial to conjugate kink bands, deforming S_4	None identified

Pre-Yeneena Supergroup deformation

The Rudall Complex was multiply deformed and metamorphosed during the Yapungku Orogeny before deposition of the Yeneena Supergroup.

As described under **Tectonic evolution**, this deformation was related to plate collision, and involved progressive stacking of thrust slices. Thus, the present assignment of pre-Yeneena Supergroup structures to D_1 and D_2 episodes does not imply two distinct, short-term events. For D_2 , in particular, it is clear that F_2 and S_2 structures would have formed at different times in the different tectono-stratigraphic domains, and thrusting directions varied with time.

Metasedimentary rocks and the older varieties of orthogneiss (mainly PRgx) were deformed by the earliest recognized deformation, D₁, sometime after crystallization of the 2015 Ma orthogneiss and before crystallization of the augen orthogneiss protoliths during the period 1787–1765 Ma. All major rock units of the complex were affected by deformation assigned to D₂, which culminated at a currently unknown time after 1765 Ma (S₂ in *PRga*). This produced pervasive micaceous schistosity (grouped under S₂) parallel to the axial planes of F₂ folds. The S₂ schistosity is extremely well developed in K-feldspar augen orthogneiss (*PRga*),

but an earlier schistosity (S_1) has not been recognized in this unit. D_1 and D_2 structures are truncated by the unconformity at the base of the Throssell Group, and were deformed by post-Throssell Group folds (mainly F_4). Consequently, the present orientations of D_1 and D_2 structures are commonly very different from their original orientations, and cannot be used as criteria for structural classification.

Yapungku Orogeny

D₁ structures

A regional deformation prior to D_2 is evident from the widespread existence of layer-parallel penetrative schistosity (S₁), folded by F₂ isoclines and in places visibly deformed by cross-cutting S₂. The S₁ foliation is parallel to compositional layering in the paragneiss and quartzite units, suggesting that it is either an axial-plane foliation of major isoclinal (possibly recumbent) folds or it is associated with subhorizontal tectonic interleaving (thrusting). D₂ has obliterated any linear fabrics, which could have been used to establish the orientation of D₁ strain.

One kilometre north of the Rudall River (AMG 275030), a narrow shear zone folded by an isoclinal F_2 synform bounds a lenticular inlier of quartzite. If this quartzite belongs to the Fingoon Quartzite, the shear zone

Figure 9. Minor structures on the Rudall 1:100 000 map area, showing the plunge directions of minor F₂ folds

must be a pre- F_2 thrust because here the F_2 fold has deformed an inverted succession. To the southwest of this locality the main outcrop of Fingoon Quartzite contains large isoclinal F_2 folds deforming an early foliation (S_1), and refolded by the F_4 Dunn Antiform.

D₂ structures

Prior to mapping RUDALL, it was established that D_2 was characterized by tight to isoclinal folding in which a regional schistosity (S_2) was developed in all major rock units of the Rudall Complex (Clarke, 1991; Hickman and Clarke, 1994). The S₂ foliation is now (after rotation by F_4 folds) generally steeply inclined principally towards the northeast or southwest, but in F_4 axial regions it commonly dips northwest or southeast. Clarke (1991) used structural observations in the Yandagooge and Watrara Inliers of BROADHURST to propose that F_2 folds were originally recumbent, and formed in response to a regional northeast-trending shear regime. However, this interpretation made no allowance for reorientation of D₂ structures during D₄, an event that Clarke (1991) considered to have had negligible effect on the Rudall Complex.

Figure 10. Minor structures on the Rudall 1:100 000 map area, showing the plunge of F, folds, and S, cleavage

It must be emphasised that D_2 was not a single, shortterm event affecting all parts of the Rudall Complex at precisely the same time. This is established by D_2 thrust stacking (see **Tectonic evolution**), with structures in the northeast and east apparently overriding earlier structures to the southwest.

In an attempt to remove D_4 tilting from S_2 , and thus determine the attitude of S_2 immediately prior to deposition of the Throssell Group, S_2 observations within 1 km of the Rudall Complex–Throssell Group unconformity have been paired with observations of bedding

in the immediately overlying Coolbro Sandstone (significantly deformed by only D_4). Over a strike length of 50 km in the Poynton and Rooney Domains stereographic unfolding of 79 S₂ observations firmly establishes that before D_4 the local strike of S₂ was west-northwest, and its dip was dominantly between 20° and 40° towards the north-northeast (Fig. 11a–c). Given that minor F₂ folds are tight to isoclinal, and that S₂ is the axial-plane foliation of these structures, it is concluded that in the northeastern part of RUDALL the axes of any major F₂ folds must have trended west-northwest, and the folds were overturned towards the south-southwest. The plunge of

- A. Rooney Creek area, ${\rm S}_2$ unfolded to remove ${\rm F}_4$ tilt
- $\boldsymbol{B}.$ Poynton Synform, S_2 unfolded to remove F_4 tilt
- **C.** Contoured poles, a + b, S₂ unfolded to remove F₄ tilt, 1, 2.5, 5, 10% per 1% area
- D. Contoured poles, current (post-D₄) attitude of S₂

(all observations are plotted on the lower hemisphere)

AHH58

27.2.95

Figure 11. Stereographic projections plotting S_2 foliations to estimate the pre-Throssell Group orientation of S_2 in the Poynton and Rooney Domains

mesoscopic F_2 folds in northeastern RUDALL (Fig. 9) is now generally moderate to steep towards the westnorthwest. In this region F_4 folds plunge northwest at about 15 to 45° (Fig. 10), implying that prior to F_4 the west-northwesterly plunge of F_2 folds was low.

Major pre- F_4 folds occur in the Martu and Parnngurr Domains. Observations from CONNAUGHTON indicate that the folds are isoclinal, and prior to refolding during D_4 had subhorizontal axes trending in a northerly to northeasterly direction (Bagas and Smithies, 1998). The isoclines of the Martu and Parnngurr Domains are probably late D_2 structures, but they could belong to a separate phase.

To the north of the Rudall River, in the northern part of the Fingoon Domain, large, intraformational F_2 isoclines occur within the Fingoon Quartzite on the northeastern limb of the Dunn Antiform. These folds are interpreted to be parasitic isoclines on the tectonically attenuated, north-northeastern limb of the major F_2 anticline (Fig. 12). The northeastern boundary of the quartzite is a zone of extreme attenuation and faulting in which the Yandagooge and Butler Creek Formations are abnormally thin, or even absent. The Butler Creek Formation, however, shows a major increase in thickness in the May Creek area of the Butler Domain. The formation is probably thickened by complex isoclinal folding in the core of a F_2 synform.

The original orientation of D_2 structures in the central part of the Fingoon Domain, and in the Warturnkurru Domain has been obscured by complex tight to isoclinal F_4 folding, although F_2 folds have also been observed in F_4 axial regions near the Dione prospect (AMG 256906). These folds are isoclinal and plunge shallowly towards the north. Away from the F_4 axial regions and in areas of shearing, such as around 1 km southeast of Dione (AMG 265903), F_2 folds are parallel to F_4 folds. This observation indicates that F_2 folds have most likely been rotated towards parallelism with F_4 folds during progressive shearing. Therefore, the local F_4 effects on F_2 are generally difficult or impossible to determine in the field, especially in the Fingoon Quartzite.

The D_4 event reactivated D_2 shear zones, which would have been zones of weakness. Consequently, the recognition of D_2 shear zones within D_4 thrusts and normal (lag) faults depends on criteria such as extreme attenuation inconsistent with adjacent F_{4} folds, associated minor F₂ folds and faults, or sheared pre- D_4 intrusions of microgranite, aplite, or pegmatite. The D_2 shear zone along the northern boundary of the Fingoon Domain was refolded by the Dunn-May Antiform, and may extend southeast into the southwestern limb of the Poonemerlarra Syncline (Fig. 2). To the northwest of the Fingoon Range, the shear zone coincides with a D₄ fault near the Tom Tit prospect, but lenses of sheared quartzite are preserved 3 km east from Rudall Crossing, where this structure crosses the Rudall River (AMG 145065).

Another example of large-scale F_2 folding occurs 2 km south of Poynton Creek at AMG 310045. Here, northwest-plunging F_4 folds refold a westerly striking F_2

synclinal core of Poynton Formation, which flanked by ultramafic bodies and Butler Creek Formation.

Lenticular bodies of ultramafic rocks outcrop around the Rudall River. These rocks are apparently partially controlled by D_2 shear zones, and are orientated parallel to S_2 . This implies that the D_2 event included the emplacement of sheets of ultramafic rocks. Figure 3 shows that the distribution of ultramafic rocks is largely restricted to three west-northwesterly striking zones. The zones north of Rudall River and in the headwaters of Larry Creek, partly coincide with D_2 attenuation zones adjacent to the Fingoon Quartzite. Carr (1989) concluded that the ultramafic bodies of the Rudall River area might be Proterozoic analogues of 'Alpine-type' peridotites, and favoured solid-state emplacement.

Post-Yeneena Supergroup deformation

Four phases of deformation, D_3 to D_6 , have been recognized in the Throssell Group (Hickman and Clarke, 1994). Of these, local pre- D_4 movement along the Rudall Complex-Throssell Group unconformity probably represents D_3 , D_4 was the dominant event responsible for the major northwest-trending folds in the area, and D_6 faults crosscut and reactivate earlier structures. D_3 and D₄ are considered as progressive deformation events forming the Miles Orogeny (Bagas et al., 1995). Structures belonging to D_5 in the tectonic history of BROADHURST have not been observed elsewhere, probably due to the scarcity of good exposures of the Broadhurst Formation, however, to facilitate structural comparisons between different areas of the Paterson Orogen the tectonic nomenclature used on BROADHURST is retained. The D_6 event has been redefined as the Paterson Orogen by (Bagas et al., 1995; Bagas and Smithies, 1998).

Post- D_4 folds, faults and cleavage in the Savory Group, to the southwest of the study area, are assigned to the Paterson Orogeny (D_6 ; Hickman and Bagas, 1998). Williams (1992) has presented sedimentological and structural evidence that these structures formed after D_4 , and that they are younger than 670 Ma.

Miles Orogeny

D₃ structures

The Rudall Complex–Throssell Group unconformity along the southwestern limb of the Poynton Synform is faulted and quartz-veined parallel to bedding. This tectonic contact is transgressed and offset by northweststriking D_4 faults, implying significant horizontal or subhorizontal movement prior to D_4 , and post- D_2 .

D₄ structures

The D_4 event represents the main phase of the Miles Orogeny and produced structures trending about 300–320° in the Talbot Terrane of the Rudall Complex, and the Throssell Group.

NE

25.05.99

B. Post-D₄

AHH45b

Figure 12. Diagrammatic cross section through Rudall River, showing major D_2 and D_4 structures

The major structures in the Throssell Group on RUDALL and BROADHURST are upright to overturned, tight to isoclinal, northwesterly to west-northwesterly trending folds that are overturned to the southwest, and contain a variably developed axial-plane cleavage (S_4) dipping steeply northeast. The F_4 folds display reversals of plunge, and both the D_4 faults and folds exhibit en echelon patterns. This en echelon pattern suggests that most of the D_4 faults and folds may be related to strike-slip movement under broadly northeast–southwest compressive stress (see **Tectonic evolution**).

The limbs of F_4 folds are generally disrupted by northwesterly striking thrust or normal (lag) faults and shear zones that exhibit both down-dip and strike-slip movement. Vertical displacement along the D_4 thrusts and normal faults range from a few hundred metres to at least 3 km (e.g. Clayton Thrust at AMG 070010). The southwestern limbs of the anticlines are associated with high-angle thrusts, and complementary normal (lag) faults occur on their northeastern limbs. On a regional scale the faults intersect at acute angles and, overall, present an anastomosing system. The major D_4 folds and faults are shown on Figure 3, and minor D_4 structures are plotted on Figure 10.

The geometry of F_4 folds in the Talbot Terrane is complicated by their superimposition on pre-existing structures. Minor F_4 folds in the Rudall Complex commonly plunge far more steeply than F_4 folds in the Throssell Group, they are tight to isoclinal, have a more variable plunge in a northwest or southeast direction, and their axial surfaces are more steeply inclined. These characteristics make minor F_4 folds hard to distinguish from F_2 folds in the field, but the distinction between the fold generations can be made where F_4 folds deform S_2 (Figs 7 and 8).

Paterson Orogeny

*D*₆ structures

 D_6 structures consist of northerly to northwesterly striking dextral faults, east-northeasterly striking sinistral faults, strain-slip cleavage (S₆), and easterly trending open folds. These structures indicate a maximum compression in a north-northeast to south-southwest direction, which would have resulted in D₆ dextral movement along the D₄ faults. This movement would have formed oblique, transpressional F₆ folds trending easterly. The D₆ stress regime was similar to that during D₄, making the distinction between the two generations of structures difficult; however, the D₆ structures are far less intense than those formed during earlier episodes of deformation.

Metamorphism

The metamorphic history of the Paterson Orogen is related to its deformation (Table 3).

Deformation and metamorphism attributed to the Miles Orogeny (D_3-D_4) have overprinted earlier

structures, and earlier metamorphic mineral assemblages are incompletely preserved. Even so, there is evidence that the Talbot Terrane of the Rudall Complex underwent low-pressure metamorphism (M_1) at amphibolite facies during D_1 (Clarke, 1991), and abundant evidence that the terrane underwent moderate- to high-pressure metamorphism (M_2) at amphibolite facies (Smithies and Bagas, 1997). Evidence for M_1 is only rarely preserved in the Yandagooge Formation on BROADHURST (Hickman and Clarke, 1991), or in garnet cores that preserve sigmoidal trains of fine-grained epidote, hornblende, and titanite representing an early S_1 foliation (Bagas and Smithies, 1998).

Greenschist metamorphism (M_4), associated with D_4 of the Miles Orogeny, affected both the Rudall Complex and Throssell Group, but it is also possible that some greenschist assemblages in the Rudall Complex represent late M_2 retrogression. The Tarcunyah Group underwent little metamorphic alteration, with burial temperatures unlikely to have risen above 180°C (Bagas, et al., 1995). Any metamorphism of the group is restricted to dynamic effects close to faults.

Previous work

Chin et al. (1980) recognized two metamorphic events prior to deposition of the Throssell Group. The first event was associated with D₁, and produced middle- to upper-amphibolite mineral assemblages, with development of sillimanite, staurolite, and kyanite. Chin et al. (1980) imply associated partial melting to produce granitoid magmas. The second event accompanied D_{2} and was considered to be lower grade, with prograde garnet, muscovite and biotite (and possibly and alusite), and retrograde sericite, chlorite, tremolite, and epidote. Dynamic effects were said to characterize D_2 , with granulation of D_1 gneissic fabrics, alignment of platy minerals, and development of feldspar augen. Post-Throssell Group metamorphism was low grade, and dominated by dynamic effects associated with D_4 (D_3) of Chin et al., 1980).

Clarke (1991) considered that, on the limited evidence preserved, M_1 was a low-pressure, middleamphibolite facies event in the Yandagooge Inlier, with development of andalusite and staurolite, and probably accompanied by partial melting. Clarke (1991) stated that M_2 included prograde middleamphibolite facies assemblages with kyanite, biotite and staurolite, and garnet, biotite and staurolite (both assemblages including muscovite and quartz and, locally, plagioclase). Retrogressive chlorite, sericite, and fibrous sillimanite were considered to be syn- or post- D_2 .

Hickman and Clarke (1994) observed that M_4 metamorphism, associated with D_4 , did not exceed greenschist facies on BROADHURST. The principal effects were recrystallization of quartz, particularly in deformation zones, regrowth of calcite and dolomite along S_4 , and sericitic alteration.

Metamorphism in the Talbot Terrane

Any study of the metamorphic history of the western exposures of the Rudall Complex will be complicated by factors such as structural complexity, polymetamorphism with retrogression of early medium- to high-grade mineral assemblages characteristic of amphibolite facies, and the predominantly quartzofeldspathic composition of the unit.

It is clear that the Talbot Terrane of the Rudall Complex was metamorphosed to the amphibolite facies preceding deposition of the unconformably overlying Throssell Group that was metamorphosed to the lower greenschist facies. However, it is difficult to identify M_2 mineral assemblages because of M_2 recrystallization and M_4 retrogression. Even so, M_2 prograde metamorphic minerals are locally preserved, particularly in schists (Clarke, 1991; Hickman and Bagas, 1998). Metamorphic grades attained by quartzite, psammitic gneiss and most orthogneiss units are generally difficult to establish in the absence of useful index minerals. Quartzite and orthogneiss typically contain only retrogressive mineral assemblages, but exceptions include prograde garnet in orthogneiss and some relict sillimanite in quartzite.

Of approximately 400 samples petrographically examined from the Talbot Terrane only 90 provided useful mineral indicators of pressure– temperature conditions (Fig. 13). Figure 13 shows that most of the Talbot Terrane has been subjected to prograde amphibolite-facies metamorphism, and a postpeak M_2 and syn- M_4 retrogressive greenschist-facies metamorphism.

Clarke (1991) found relict andalusite and staurolite, apparently pre-dating S_2 , on BROADHURST, and assigned these to M_1 . Similar features have not been recognized on RUDALL. It is assumed that all, or virtually all, the medium- to high-grade minerals on Figure 13 form parts of M_2 assemblages. Metamorphic mineral assemblages vary according to protolith composition, and are summarized by Hickman and Bagas (1998).

The prograde mineral assemblages in pelitic schist are consistent with amphibolite facies metamorphism (Hickman and Bagas, 1998). The apparent absence of cordierite and andalusite, combined with the common abundance of garnet, indicates medium- to high-pressure conditions (Yardley, 1991, p. 78–82).

Protolith compositional changes from quartz sandstone to feldspathic sandstone, argillaceous sandstone, siltstone, and greywacke have resulted in more diverse metamorphic mineral suites. Most paragneiss consists of quartz and oligoclase (variably altered to sericite), with minor muscovite (commonly sericite), and variable biotite (partly altered to chlorite), chlorite, and epidote (locally enveloping biotite). Chlorite has commonly replaced (post-peak M₂) hornblende or actinolite, leaving relics of these medium-grade metamorphic minerals. Garnet (almandine) is common, but staurolite and kyanite are rare, which reflects the relatively low aluminium contents of most paragneiss protoliths. The mineral assemblages are consistent with prograde amphibolite facies metamorphism and greenschist facies retrogression.

The mineral assemblages of amphibolite units in the Rudall Complex indicate upper greenschist to amphibolite facies metamorphism. The absence of garnet suggests low- to medium-pressure conditions, and the relatively calcic compositions of plagioclase are consistent with amphibolite-facies metamorphism (Yardley, 1991, p. 93). Hornblende is generally green rather than blue-green, which indicates metamorphic grades similar to those applying to the staurolite, kyanite, and sillimanite zones of pelitic rocks (Yardley, 1991, p. 99). At AMG 351959, plagioclase is altered to calciumrich scapolite, and contains later sericite and epidote, and recrystallized oligioclase contains epidote, clinozoisite, chlorite, and sericite (GSWA sample 106925).

The presence of scapolite in several amphibolite units suggests local high-temperature alteration of plagioclase by acidic solutions (Winkler, 1965, p. 90). Furthermore, it is notable that scapolite appears to be associated with the contacts of intrusive granitoids (now orthogneiss). Examples can be found 1 km to the north of the Rudall River at AMG 278032 (sample 111833) and 3 km to the south of the junction of the Rudall River and Poonemerlarra Creek (AMG 351959; sample 106925).

Grunerite is generally present in the iron-rich layers of metamorphosed banded iron-formation. This indicates metamorphism at a grade between the garnet and sillimanite zones of pelitic rocks (amphibolite metamorphic facies: Turner and Verhoogen, 1960, p. 494). Garnet and minor actinolite accompany grunerite in banded iron-formation at AMG 984170, about 5 km north of RUDALL on BROADHURST, and on RUDALL biotite is retrogressed to chlorite and sericite (Sample 106917 at AMG 322955).

Anthophyllite in metamorphosed ultramafic rocks (serpentinite to serpentine-tremolite-chlorite(-talc) and actinolite-epidote rocks) is locally present, suggesting amphibolite facies, hornblende-hornfels facies or metasomatic conditions (Yardley, 1991), but the other minerals are characteristic of the greenschist facies.

Metasomatism

Large proportions of the metamorphosed sedimentary rocks of the Talbot Terrane are in close contact with sheet-like bodies of orthogneiss. In these contact zones dykes and veins of microgranite, pegmatite, and quartz are commonly ubiquitous, demonstrating widespread penetration by magmatic and hydrothermal fluids.

The preserved metasomatic minerals include tourmaline, scapolite, and sulfides. Tourmaline is widespread (Fig. 13), and occurs in veins of quartz and pegmatite, quartzite, quartz–muscovite schist, BIF, and tourmaline– quartz pods near orthogneiss contacts. These tourmaline occurrences indicate introduction of boron during granitoid emplacement.

AMPHIBOLITE FACIES METAMORPHIC MINERALS High pressure: Kyanite ♦ Staurolite Intermediate pressure (generally): Garnet High temperature: Sillimanite Cordierite

- Scapolite

Low-medium temperature and pressure:

- Green hornblende
- + Anthophyllite
- × Grunerite
- = Actinolite
- Retrogressed:
- Sericitized aluminosilicate
- Metasomatic:
- v Tourmaline

ΡT	TI
g s	R

Ρ

hrossell Group

Permian

ludall Complex

g orthogneiss

- s metasedimentary rocks
- Generalized boundary

Scapolite in amphibolite, as noted above, probably indicates penetration by chloride- and sulfate-bearing H_2O-CO_2 fluids. Sulfidation (inferred from limonitic gossans) is a feature of the wallrocks of certain minor felsic intrusions and many quartz veins, but mineralization widths are generally restricted to less than one metre. Potash metasomatism may explain the common occurrence of muscovite-rich schist along orthogneiss-paragneiss contacts, but this possibility has not been tested by geochemistry.

Contacts between ultramafic-mafic bodies and metasedimentary rocks locally exhibit contact metasomatism. For example, at AMG 315043, around 7 km southwest of Talbot Soak, banded paragneiss within 3 m of serpentinite has been converted to calc-silicate gneiss containing 21% Al₂O₂, 9% CaO, 5% Na₂O, 1189 ppm Sr, and depleted SiO₂ (sample 112486, Appendix 1). Lime metasomatism of non-calcareous sedimentary rocks in contact with ultramafic bodies may be due to Ca enrichment in residual solutions after crystallization of these bodies, or to Ca liberation during serpentinization (Turner and Verhoogen, 1960, p. 572). Calc-silicate gneiss associated with gabbro-paragneiss contacts outcrops 5 km to the south-southwest of Rudall Crossing (AMG 105020) and 3 km north-northeast of the Tom Tit prospect (AMG 215045). A similar association between calc-silicate gneiss and amphibolite was reported on BROADHURST (Hickman and Clarke, 1994, p. 12). At AMG 215045, north-northeast of the Tom Tit prospect, calc-silicate gneiss (*PRaa*) within psammitic gneiss and schist is interpreted, on petrographic evidence, as altered gabbro. Two samples (112303, 112304, Appendix 1) studied are composed of actinolite, plagioclase, clinozoisite and minor quartz, and include veins of epidote and epidote-carbonate-scapolite. Notable chemical features include high Al₂O₂ (~28%), CaO (~13–15%), Ni (~230 ppm), and low FeO(tot) (~2.5%), MgO (~4%) and V (~25 ppm). Ultramafic rocks are not exposed.

Metamorphism of the Throssell Group

The Throssell Group has been metamorphosed to the lower Greenschist facies. This metamorphism (M_4) is associated with D_4 of the Miles Orogeny, and its effects are most clearly seen in pelite and carbonate rocks of the Broadhurst Formation. The characteristic metamorphic assemblages are sericite, as growth and recrystallization of quartz in siltstone, chlorite growth in carbonate rocks, and calcite and dolomite regrowth along S_4 .

Summary of metamorphism

Pre-Yeneena Supergroup metamorphism of the Rudall Complex was mainly Barrovian. Pelitic schist, paragneiss and amphibolite units were metamorphosed at amphibolite facies, but present mineral assemblages are generally characteristic of lower grades due to retrograde alteration after the peak of M_2 , and during M_4 . Local high-temperature, low- to medium-pressure metamorphism and metasomatism are contact metamorphic effects that are associated with the intrusion of granitoids and, to a much lesser degree, the mafic bodies.

A more detailed study would be required to distinguish M_1 and M_2 assemblages, but available evidence suggests that M_1 assemblages are rarely preserved (Smithies and Bagas, 1997).

The Throssell Group was metamorphosed to the greenschist facies during the Miles Orogeny (D_3-D_4) , but the Tarcunyah (late- to post- D_4) was regionally metamorphosed below the greenschist facies.

Geochronology

Table 4 summarizes the geochronological results, sources of data, and cited interpretations obtained from the Paterson Orogen.

The Rudall Complex includes orthogneiss interpreted, by field observations, to represent two main pre- D_2 granitoid suites (*BRgx* and *BRga*). Both have recently been dated using zircon ion-microprobe U–Pb isotopic data (Nelson, 1995), and the younger orthogneiss (*BRga*) was also dated using the Rb–Sr method, by Chin and de Laeter (1981).

The mixed-zircon population ages of 2715-2577 Ma and 2015 ± 26 Ma, and the single-zircon population age of 1787 ± 12 Ma (Nelson, 1995) were obtained from the banded orthogneiss complex (PRgx). The sample giving the oldest date is a garnet-biotite-muscovite gneiss from drillcore. This gneiss may have been derived from, or may include material from, a sedimentary protolith. The 2015 \pm 26 Ma age may date a granitoid component, but uncertainty as to the precise nature of the sample requires follow-up investigations. The 1787 ± 12 Ma result was obtained on drillcore of orthogneiss (probably *PRga* intruding the *PRgx* orthogneiss complex). Numerous K-feldspar augen orthogneiss (*PRga*) samples have been dated at between 1790 and 1765 Ma (Table 4). This suggests that the granitoid protoliths for this suite were intruded at slightly different times in different parts of the Rudall Complex. Biotite granodiorite orthogneiss (*PRgd*), which intrudes quartzite correlated with the Larry Formation south of the Rudall River, has been dated at 1778 ± 17 Ma. The monzogranite protolith of an orthogneiss, that intruded the Larry Formation south of Graphite Valley, has been dated at 1801 ± 4 Ma. The zircon data and field relations between orthogneiss and paragneiss (this Report) indicate that protoliths of much of the paragneiss were deposited before about 1780 Ma. The orthogneiss with 2015 ± 26 Ma zircons contains abundant paragneiss enclaves and zircon xenocrysts dated between 2715 and 2577 Ma (Nelson, 1995). In the east Pilbara, 2750–2680 Ma rocks occur in the Gregory Range. From evidence presented in the section on Tectonic evolution it is probable that the eastern part of the Pilbara Craton was the main source region for sedimentary rocks

Table 4. Geochronological results for the Paterson Orogen

Age (Ma)	Rock suite	Dating method	Reference	Interpretation in reference ^(a)		
2715-2577	orthogneiss (<i>PRgx</i>) ^(b)	Ion microprobe U-Pb	Nelson (1995)	crystallization age of xenocrystic zircons		
2425 ± 7	orthogneiss (<i>Prga</i>) ^(b)	Ion microprobe U-Pb	Nelson (1995)	crystallization age of xenocrystic zircons		
2015 ± 26	orthogneiss (<i>PRgx</i>) ^(b)	Ion microprobe U-Pb	Nelson (1995)	age of granitoid crystallization		
1972 ± 4	orthogneiss (<i>PRgg</i>) ^(b) (sample 112310)	Ion microprobe U-Pb	Nelson (1995)	age of crystallization of early granitoid component of rock		
1802 ± 14	orthogneiss (<i>PRgg</i>) ^(b) (sample 112310)	Ion microprobe U-Pb	Nelson (1995)	age of crystallization of late granitoid veins		
1801 ± 4	orthogneiss (<i>Prge</i>) ^(b)	Ion microprobe U-Pb	Nelson (1995)	age of granitoid crystallization		
1795 ± 17	orthogneiss (<i>Erge</i>) ^(b)	Ion microprobe U-Pb	Nelson (1995)	age of granitoid crystallization		
1790 ± 17	orthogneiss (<i>Prga</i>) ^(b)	Ion microprobe U-Pb	Nelson (1995)	age of granitoid crystallization		
1787 ± 5	orthogneiss (PRga) ^(b)	Ion microprobe U-Pb	Nelson (1995)	age of granitoid crystallization		
1787 ± 12	orthogneiss (? <i>Erga</i> in <i>Ergx</i>) ^(b)	Ion microprobe U-Pb	Nelson (1995)	age of granitoid crystallization		
1778 ± 17	orthogneiss (<i>Prgd</i>) ^(b)	Ion microprobe U-Pb	Nelson (1995)	age of granitoid crystallization		
1775 ± 10	orthogneiss (<i>Prga</i>) ^(b)	Ion microprobe U-Pb	Nelson (1995)	age of granitoid crystallization		
1778 ± 16	aplite dyke ^(b)	Ion microprobe U-Pb	Nelson (1995)	age of aplite crystallization		
1765±15	orthogneiss (<i>Prga</i>) ^(b)	Ion microprobe U-Pb	Nelson (1995)	age of granitoid crystallization		
1533 ± 29	randomly selected samples from the Rudall River headwaters	Rb–Sr	Chin and de Laeter (1981)	uncertain		
1333 ± 44	orthogneiss, Connaughton	Rb–Sr	Chin and de Laeter (1981)	age of D_2 ; maximum age of Yeneena Supergroup		
1291 ± 10	pegmatite, Connaughton	Ion microprobe U-Pb	Nelson (1995)	crystallization age of pegmatite; pre- or syn-D ₂ ; maximum age of Yeneena Supergroup		
1132 ± 21	pegmatite veins intruding Rudall Complex ^(b)	Rb–Sr	Chin and de Laeter (1981)	possibly related to D_4 ; minimum age of Yeneena Supergroup post-dates D_4 ;		
1080	Runton Adamellite, TABLETOP	Two-point Rb-Sr	Chin and de Laeter (1981)	post-dates Yeneena Supergroup		
1067 ± 260	Runton Adamellite, TABLETOP	PbPb	G. L. Clarke and N. McNaughton (unpubl. data)	post-dates D_4 ; post-dates Yeneena Supergroup		
940	Warrabarty prospect, Braeside	Pb-Pb	I Fletcher (pers. comm.,1993)	age of epigenetic galena in Broadhurst Formation age of epigenetic galena in		
900	Nifty deposit, LAMIL	PbPb	I. Fletcher (quoted in Blockley and Myers, 1990)	Broadhurst Formation		
692 ± 6	mafic intrusion, Broadhurst	K–Ar	CRAE P/L data	age of crystallization		
690 ± 48	Mount Crofton Granite, Paterson Range	Pb-Pb	Goellnicht et al. (1991)	post-dates D ₄		
633 ± 13	Minyari monzogranite, Paterson Range	Ion microprobe U-Pb	Nelson (1995)	age of granitoid crystallization		
c. 620	Mount Crofton Granite, Paterson Range	Ion microprobe U-Pb	Nelson (1995)	age of granitoid crystallization		
601 ± 42	Mount Crofton Granite, Paterson Range	Rb–Sr	Williams (1992; data from Trendall, 1974)	post-dates D ₄		
595 ± 27	orthogneiss (<i>PRga</i>) ^(b)	Rb–Sr	Chin and de Laeter (1981)	alteration event post-dating \boldsymbol{D}_{4}		

NOTES: (a) Not necessarily accepted in this report (b) on RUDALL

of the Rudall Complex, but xenocrystic zircons of 2425–2000 Ma (Nelson, 1995) in the orthogneiss testify to additional unknown sources.

The age of D_2 , and therefore M_2 , is well constrained by isotopic data from an aplite dyke (GSWA sample 112341) east of Rudall airstrip. This dyke cuts a pyroxenite unit foliated by S_2 , but does not itself contain S_2 . The scatter of results (1870–1612 Ma) on individual zircon grains could be due to the contamination of the aplite, from the augen orthogneiss (*BRga*), and it is notable that seven grains have model ages of 1765–1703 Ma. A possible interpretation is that the aplite was intruded between 1765 and 1700 Ma. On this basis D_2 is considered to be c. 1760 Ma.

Chin and de Laeter (1981) presented a Rb-Sr isochron at 1333 \pm 44 Ma for an orthogneiss (*BRgo*) from southwestern Connaughton (their 48929 series). They interpreted this date as the age of the pervasive metamorphism and deformation in the Rudall Complex (D_2) . It was also considered to represent the oldest possible age for the Yeneena Supergroup. The sampling site for the 1333 Ma orthogneiss is 60 km southeast of the Rudall River in an area where banded orthogneiss appears to have been intruded by a K-feldspar-rich and biotite-poor granitoid that contains amphibolite (metadolerite and metagabbro) xenoliths (Bagas and Smithies, 1998). The later granitoid is now a poorly foliated orthogneiss, and though affected by D_4 , may be post- D_2 . The Throssell Group, about 700 m to the south, unconformably overlies these rocks. If the 1333 \pm 44 Ma result was obtained on the poorly foliated orthogneiss, this could provide an age for a felsic magmatic event after D₂ (see Tectonic evolution).

A locally tectonized pegmatite on northwestern Connaughton, interpreted as $post-D_2$, has a U–Pb zircon crystallization age of 1291 ± 10 Ma confirming that D_2 occurred prior to 1291 Ma. The relationship between this pegmatite and the Throssell Group has not been determined, but the total absence of any felsic igneous rocks in the Throssell Group suggests that the group may be younger than 1290 Ma.

Chin and de Laeter (1981) reported a Rb–Sr isochron age of 1132 ± 21 Ma from pegmatite dykes cutting orthogneiss in the Rooney Creek area and interpreted this as the minimum age for the Throssell Group. No pegmatite veins have been found in the Throssell Group, despite being extremely common in the immediately underlying Rudall Complex. If the 1132 Ma result dates pegmatite intrusion, this age represents a maximum age for the Throssell Group. If it is a metamorphic age, this metamorphism could be either pre- or post-Throssell Group. Accordingly, the result has limited significance without determination of the crystallization age of this pegmatite suite.

On the southeastern margin of the Pilbara Craton metamorphic biotite that pre-dates the Tarcunyah Group has provided Rb–Sr ages of 1226 Ma and 1194 Ma (de Laeter et al., 1977). Subject to the isotopic composition of the biotite not having been reset by later

metamorphism, these results provide a maximum age for the Tarcunyah Group and establish a significant metamorphic event in the eastern part of the Pilbara Craton at about 1200 Ma.

The Runton Adamellite, from RUNTON, gave a poorly constrained two-point Rb–Sr isochron age of 1080 Ma (Chin and de Laeter, 1981) and a Pb–Pb age of 1067 \pm 260 Ma (Clarke, G. L., and McNaughton, N., 1993, pers. comm.). This monzogranite is non-foliated to weakly foliated. It may post-date D₄ in the south-eastern part of the Paterson Orogen or it may be situated in a D₄ low-strain zone. There are no contact relationships between the monzogranite and the Yeneena Supergroup, thus preventing any reliable interpretation of these isotopic data in relation to the age of the Yeneena Supergroup.

Galena sampled from the Broadhurst Formation has provided Pb model ages between 940 and 520 Ma (Blockley and Myers, 1990; Fletcher, I., 1993, pers. comm.; Hickman and Clarke, 1994). The regional distribution of the galena isotopic data appears to establish that the minimum age of the Broadhurst Formation is 900 Ma.

Preliminary geochronological and biostratigraphic data suggests that the Savory Sub-basin, which unconformably overlies the Tarcunyah Group in the southwestern portion of RUDALL, evolved sometime between 900 and 600 Ma (Williams, 1992).

Several non-foliated to partly foliated granitoid intrusions, later than and sharply discordant to D_4 structures, intrude the upper part of the Lamil Group near Telfer. One of the non-foliated granitoids, the Mount Crofton Granite, gave a Rb–Sr age of about 601 ± 42 Ma (Williams, 1992 — recalculation of data in Trendall, 1974), Pb–Pb ages of 690 ± 48 Ma (McNaughton and Goellnicht, 1990; Goellnicht et al., 1991), and a zircon U–Pb age of c. 620 Ma (Nelson, 1995). This demonstrates that D_4 is older than 620 Ma in the northern part of the Paterson Orogen.

From the geochronological results reported here, and the geological knowledge of the Paterson Orogen, the chronological sequence of events is summarized in Table 5.

Tectonic evolution

Understanding the tectonic evolution of a geological terrane such as the Paterson Orogen not only serves to explain the relationships between its components, but is essential to permit an informed evaluation of its mineral potential.

Completion of the mapping of RUDALL in 1992 provided sufficient evidence to warrant a new interpretation of the geological history of the orogen, and this has been presented by Hickman et al. (1994) and Hickman and Bagas (1995). Accordingly, only a brief outline of the tectonic evolution of the area need be given here.

Table 5. Geochronological	data relevant	to the evolution o	f the l	Paterson	Orogen
---------------------------	---------------	--------------------	---------	----------	--------

Isotopic age (Ma)	Geological event
2015 ± 26	crystallization of some <i>Brgx</i> granitoid protoliths
pre-1800	deposition of Larry Formation
c. 1800	crystallization of some granitoid protoliths (<i>Prge</i> and <i>Prgg</i>)
1790–1765	crystallization of granitoid protoliths of <i>Prga</i> and <i>Prgd</i>
pre-1780	deposition of Rudall Complex sedimentary protoliths
1765-1700	metamorphism, M ₂ , accompanying D ₂
1333 ± 44	metamorphism of an orthogneiss (<i>Prgo</i>), CONNAUGHTON
1291 ± 10	crystallization of a pegmatite dyke, CONNAUGHTON
c. 1300	deposition of Manganese Subgroup of the Bangemall Group, unconformably underlying the Tarcunyah Group
c. 1200	metamorphic biotite in rocks of the Gregory Granitic Complex, unconformably underlying the Tarcunyah Group
1132 ± 21	crystallization or metamorphism of pegmatite dykes
1080	crystallization or metamorphism, Runton Adamellite
940-820	galena mineralization in Throssell Group
800-600	evolution of the Savory Sub-basin
c. 620	minimum age for emplacement of $post-D_4$ granitoids

Rudall Complex

Mapping of the Talbot Terrane in the Rudall Complex has revealed geological features that show the Rudall Complex to be the product of continental collision (Hickman and Clarke, 1994; Bagas and Smithies, 1998; Hickman and Bagas, 1998). Given the geological constraints so far determined, the appropriate evolutionary model is provided by the Himalayas (Smithies and Bagas, 1997). Windley (1984) and Park (1988) provide good reviews of this type of orogenic belt.

In examining the stage-by-stage evolution of the Talbot Terrane, it is necessary to consider and attempt to explain the principal geological features, which are listed below:

- The Talbot Terrane occupies a broad imbricate zone of stacked northeast- and east-dipping thrust sheets. Individual thrusts are commonly convex towards the southwest, and cross-cutting relationships indicate progressively younger thrusts towards the northeast. Some of the thrusts are major faults separating distinct tectono-stratigraphic domains.
- The deformed rocks within the sheets are principally metamorphosed siliciclastic sedimentary rocks and granitoids; volcanic rocks are rare.
- At least three episodes of felsic magmatism are present, the oldest of which involved granitoid intrusion into part of the sedimentary succession.
- No basal unconformity to the sedimentary succession has been recognized, and no thrust slices of basement have been identified for the Talbot Terrane.
- The sedimentary succession is indicative of a siliciclastic shelf along a continental margin. Facies

and thickness changes suggest basin elongation north– south or northwest–southeast, with relatively deepwater mud and turbidite thickening eastwards.

- Sandstone with a high feldspar content indicates erosion of felsic volcanic or granitic rock, possibly from an adjacent penecontemporaneous volcanic arc.
- Long, narrow belts of sheared flysch-like sedimentary rocks; serpentinized peridotite and lenses of amphibolite may represent allochthonous slices of an ophiolite succession.
- Most parts of the Talbot Terrane now exposed were metamorphosed to amphibolite facies, indicating that the present erosional surface reveals middle levels (15–20 km) of the Proterozoic crust. Deeper levels of at least 40 km have been recognized in the Connaughton Terrane to the east (Smithies and Bagas, 1997).

Regional setting

To the west of the Paterson Orogen the Capricorn Orogen contains 2000–1600 Ma metasedimentary rocks lithologically similar to those of the Rudall Complex. The tectonic interpretations of the Capricorn Orogen by Thorne and Seymour (1991) and Tyler (1991) invoke a convergent plate-tectonic model involving B-subduction between the Pilbara and Yilgarn Cratons. Tyler (1991, p. 80–83) makes a case for oblique collision of these geologically different Archaean cratons at about 2000–1600 Ma. In the Gascoyne Complex this collision was accompanied by extensive intrusion of granitoids at 1800–1500 Ma (Muhling, 1988). Sedimentary rocks in the northern part of the Capricorn Orogen were deposited on the southern margin of the Pilbara Craton

A. H. Hickman and L. Bagas

in a foreland basin – active margin environment. Along the southern margin of the Capricorn Orogen, deposits of the former Glengarry Basin (now subdivided into the Yerrida, Bryah, and Padbury Basins by Pirajno et al., 1996) were derived from erosion of the Yilgarn Craton, probably in sag, rift, and foreland basin environments (Pirajno et al., 1996).

Although the limited geochronological data point to broadly contemporaneous evolution of the Rudall Complex and the Capricorn Orogen, there are clearly important geological differences between these tectonic units:

- Lack of imbricate interleaving of metasedimentary rocks and granitoids over the greater part of the Capricorn Orogen.
- Higher metamorphic grade of the Rudall Complex compared with that of most of the Capricorn Orogen (excluding the Gascoyne Complex).
- The east-west to northeast-southwest trend of the Capricorn Orogen compared to the northwestsoutheast trend of the Rudall Complex (and corresponding difference in directions of thrusting).

Accordingly, the relevance to the Rudall Complex of information derived from the Capricorn Orogen mainly relates to the identification of the tectonic processes that were operating in northwestern Australia at about 2000–1600 Ma (Bagas and Smithies, 1997).

Evidence from the Talbot Terrane

The first recognizable stage in the evolution of the Talbot Terrane involved the deposition of a c. 5000 m-thick siliciclastic succession, Larry Formation – Butler Creek Formation, probably prior to 1780 Ma. The succession indicates shoreline–shelf–slope environments in a subsiding foreland basin on the eastern margin of a continent. The felsic source region for parts of the Yandagooge Formation could have been either a volcanic arc or a fold-thrust belt lying to the northeast of the Talbot Terrane.

A pre-1765 Ma age for the Poynton Formation is inferred from the observations that it contains S_2 , and that it was intruded by protoliths of the K-feldspar augen orthogneiss in the Poynton Domain (*Brga*, GSWA sample 112379; see **Geochronology**). The lowest part of the Poynton Formation consists of well-sorted quartz sands and minor pebble beds, a shallow-shelf facies quite distinct from the underlying turbidite units of the Butler Creek Formation. No angular unconformity has been observed, but a disconformity could be present.

The granitoids in the Rudall Complex are all assumed to bear an intrusive relationship to the sedimentary succession, and most are probably genetically related to the orogenic belt. The Rudall Complex exhibits features expected of a plate-tectonic regime and, in the absence of adequate geochemical data, its granitoids could currently be interpreted in terms of either magmatic arc or fold thrust belt environments (Smithies and Bagas, 1997). This is similar to other Proterozoic orogenic belts of Western Australia, but appears to differ from intracontinental environments of central Australia (Wyborn, 1988; Foden et al., 1988).

The layered orthogneiss (*PRgx*) in the Talbot Terrane contains both S_1 and S_2 foliation, but only S_2 has been recognized in the K-feldspar orthogneiss (*PRga*). Providing this is not merely a consequence of the general homogeneity of the latter (making S_1 – S_2 distinction difficult) the inference must be that the D_1 event (sub-horizontal thrusting) occurred prior to crystallization of the K-feldspar orthogneiss protoliths (mainly biotite monzogranite and biotite granite). Thus, D_1 could have led to partial melting, and the intrusion of sheets of the K-feldspar granitoids into the layered orthogneiss and the metasedimentary succession.

The stratigraphic succession of the Talbot Terrane contains no mafic volcanic rocks, but sheared serpentinized ultramafic bodies (peridotite), associated with pelitic schist and turbiditic metasedimentary rocks, occurs in three west-northwesterly trending zones (Fig. 3). The best developed of these zones extends 50 km from southeast of Rudall Crossing to northeast of May Creek and coincides with a major tectonic break along the southwestern boundary of the Poynton Domain. Scattered mafic amphibolite lenses represent metamorphosed dolerite and gabbro. Lithologically, the assemblage is similar to compressed and attenuated ophiolitic units in many of the world's orogenic belts, for example the Himalayas (Windley, 1984). From a detailed study of the ultramafic units, Carr (1989) concluded that they represent slices of Proterozoic oceanic crust. On structural evidence the sedimentary rocks of the Rudall ultramafic zones originated northeast of the Talbot Terrane, and the assemblage is one which could have formed in a marginal basin environment.

The deformation and metamorphism assigned to D_2-M_2 indicate a major collision, based on isotopic data, culminating between 1760 and 1500 Ma (see **Geochronology**). An advancing plate (no remnants of this have yet been identified, but may be concealed beneath the Canning Basin) produced overfolding and thrusting from the northeast and east (Smithies and Bagas, 1997; see **Structure**). The extent of deformation suggests a continent–continent collision (Bagas and Smithies, 1997).

There are substantial isotopic data for an important event of metamorphism and felsic magmatism at 1250–1100 Ma, but there is currently no conclusive evidence that this preceded deposition of the Yeneena Supergroup. As mentioned above (see **Geochronology**), felsic intrusions have been dated at 1247 ± 5 Ma (crystallization age), 1132 ± 21 Ma (?metamorphic age), and c. 1080 Ma. On the southeastern margin of the Pilbara Craton sheared Archaean granitoids at Lookout Rocks provided Rb–Sr biotite ages of 1226 Ma and 1194 Ma (de Laeter et al., 1977). This biotite forms part of a metamorphic foliation in rocks that are unconformably overlain by strata now assigned to the Tarcunyah Group (de Laeter et al., 1977), which shows that the Tarcunyah Group is younger than 1194 Ma. The age relationship of this foliation with the Yeneena Supergroup is, however, unknown. Clarke (1991) referred to the c. 1250 Ma episode as the 'Watrara Orogeny', but correlated it with D_2 . This is no longer accepted because S_2 (foliation produced by D_2) is cut by aplite (GSWA sample 112341) that is dated at 1778 ± 16 Ma (Nelson, 1995).

The total absence of felsic intrusions in the Throssell Group suggests that the c. 1250 Ma event occurred before deposition of the Yeneena Supergroup, but further geochronology is required to resolve this issue, particularly on post- D_2 pegmatite bodies underlying the Rudall Complex–Yeneena Supergroup unconformity.

Throssell and Tarcunyah Groups

Despite important differences such as lower metamorphic grade and less structural complexity, the Yeneena Supergroup does have two features in common with the Rudall Complex:

- The overall lithological succession is that of a continental margin. For the Yeneena Supergroup the interpretation that a continental landmass lay to the southwest is supported by abundant palaeocurrent data, and by lateral facies changes.
- Deformation (D₄) included northeast-southwest compression, upright folding, and thrusting from the northeast, and total crustal shortening of many kilometres.

These similarities suggest that the evolution of the Yeneena Basin (Fig. 1) might represent later stages in a long-lived and interrupted northeast-southwest convergence. The interpretation developed by Hickman et al. (1994) is that plate convergence was significantly retarded after the major collision of D_2 (in much the same way as collision reduced convergence of the Indian and Eurasian plates during evolution of the Himalayan orogenic belt — Windley, 1984). Plate collision impeded further subduction with the result that strike-slip faulting mainly accommodated later crustal shortening. The Yeneena Basin developed as a strike-slip basin or, more probably, as a series of such basins.

Regional setting

There is no evidence concerning the northern or eastern margins of the Yeneena Basin. The observation that the basal succession of the group on southern CONNAUGHTON (Bagas and Smithies, 1998) is very similar to that in the northeastern part of BALFOUR DOWNS (Williams, 1989) suggests that a northwesterly trending continental margin lay to the southwest of the Talbot Terrane, and to the west of the Telfer–Nifty region. Palaeocurrent data from the Throssell Group (Coolbro Sandstone), and Tarcunyah Group (Gunanya Sandstone, and Choorun Formation) support transport of clastic material from the southwest (Fig. 14).

The extent and orientation of the Paterson Orogen demonstrate continental-scale convergence varying from northeast-southwest in the east Pilbara to north-south in central Australia. In view of the fact that orogenic belts are typically oriented parallel to the sedimentary basins that they deform, it is probable that the Yeneena Basin was elongate northwest-southeast.

Evidence from the Throssell and Tarcunyah Groups

On sedimentological grounds, the sandstone-shalecarbonate succession of the Yeneena Supergroup could be either a continental-margin succession or part of an intracontinental basin. From the evidence already discussed it is clear that the source of clastic detritus lay to the southwest and west, and that the overall deepening of the basin was to the northeast. The succession commences with basal conglomerate in most areas, and this commonly fills channels cut into the underlying basement. Basal conglomerate is everywhere thin (generally <10 m), and conglomerate is absent from the overlying fluviodeltaic clastic rocks of the Coolbro Sandstone. Thus, deposition in the Yeneena Basin in the study area commenced in a continental environment of stream channels and alluvial fans, and progressed, probably due to subsidence, to a deltaic-shallow shelf environment. Stratigraphic and structural features described by Hickman et al. (1994) and Hickman and Bagas (1995) support a northwesterly striking strike-slip basin system produced by syndepositional northeast-southwest compression (Fig. 14).

The northwest-trending D₄ faults of the Miles Orogen exhibit both strike-slip and down-dip movement. The faults are curved and anastomosing, and break the area into lenticular, northwest-elongate blocks. This type of pattern is characteristic of strike-slip regimes elsewhere (Mitchell and Reading, 1986). In the Broadhurst Range-Rudall River area the curvatures and convergent relationships of the Southwest Thrust and the Mount Isdell magnetic lineament (Hickman and Clarke, 1994) would be consistent with strike-slip faults towards the northwestern end of a strike-slip basin (dextral movement). Such a basin would be deepest in the north and northeast (i.e. along the northern side of the Broadhurst Range). If the Mount Isdell fault was subaqueous (given the regional northeasterly slope off the Pilbara Craton), clastic sediment would be derived from the southwest. However, the supply of terrigenous material would be limited in southern RUDALL where the basin was shallower and the southwestern faulted margin curved eastwards (Fig. 14), preventing or limiting downthrow to the northeast.

Deformation of the Throssell Group occurred mainly during D_3 and D_4 . D_3 was a phase of recumbent folding whereas D_4 produced northwest- and southeast-plunging, tight to isoclinal, overturned folds with axial planes dipping steeply northeast. Most F_4 fold limbs are sheared and partly replaced by high-angle faults (thrusts and lag faults). Where fault planes are exposed they generally show more than one linear fabric, testifying to reactivation, mostly during D_6 . D_4 movement appears to have

Figure 14. Strike-slip faulting and deposition during the early stages of Yeneena Basin development, RUDALL-BROADHURST area

been down-dip, with lineations generally plunging between 50° north-northeast and 50° east. The folds themselves are arranged en echelon, and are now considered to be transpressional in origin. Such folds could be produced within a northwest-trending strike-slip fault system, under either dextral or sinistral movement. In either situation, the maximum compressive stress would have been close to northeast-southwest (~30°). Thus, the direction of crustal shortening during D_4 was similar to that during D_2 .

Only the Gunanya Sandstone and the Waters Formation represent the Tarcunyah Group on Rudall. These are shallow-shelf sedimentary units, probably unconformably overlying the Throssell Group (Bagas et al., 1995).

Late granitoids

The Mount Crofton Granite suite on PATERSON post-dates D_4 structures (Chin et al., 1982) and has been dated at c. 620 Ma (zircon U–Pb; Nelson D., 1993, pers. comm.). The suite is described by Goellnicht et al. (1991) who conclude that the granitoids are syn- to post-collisional. No representatives of this granitoid suite have been identified in the study area.

Metallogenic implications

Interpretations of depositional and tectonic settings are used in assessing mineral potential, because particular types of mineral deposit are associated with specific geological environments. Table 6 summarizes phases in the Proterozoic evolution of the Talbot Terrane, and suggests types of mineralization, which might be present. The following section describes known mineralization and past exploration, and comments on mineral potential.

Mineral resources

The Paterson Orogen remained largely unexplored until the early 1970s because of remoteness, difficult terrain, and a lack of permanent water. The mineral potential of the Paterson Orogen became apparent with the discovery of the Telfer gold deposit on PATERSON in 1971 and the Kintyre uranium deposit on BROADHURST in 1985.

During the last twenty years of exploration, numerous subeconomic and rare economic stratabound mineral deposits and fault-controlled vein-type deposits, including gold, base metals, uranium and platinum-group elements (PGE), have been found throughout the Paterson Orogen. Many of the deposits in the Rudall Complex occur in carbonaceous or sulfidic schist, are hydrothermal in origin, formed late in the history of the complex, and are supergene-enriched to varying degrees.

As exploration is at an early stage, and mining companies are still investigating most mineral occurrences on RUDALL, no information on recent discoveries of mineralization has been published. Hickman and Bagas (1998) have described the exploration history of the area in detail.

Geochemical investigation

During mapping of RUDALL, 395 samples were collected and analysed for trace elements, and 31 of the rock samples were analysed for major elements (Appendix 1). The analytical data were processed by selecting appropriate anomaly criteria, which are outlined on Figure 15. Application of these criteria defined 144 samples as 'geochemically anomalous'. Certain elements (Ag, As, Cd, Co, Ga, Ge, Nb, Sb, Sc, Sn, Ta, U) did not reach 'anomaly concentrations' in any of the 395 samples, although some elevated contents (e.g. Ag, Sn, and U between 10 and 50 ppm) are worth noting. The locations of anomalous samples are shown in Figures 15 and 16, and Figure 17 shows the main zones of known and interpreted mineral potential on RUDALL.

Two important features were revealed by the study:

- 1. Anomalous results for particular elements tend to cluster in specific areas or zones; and
- Most anomalies are accompanied by recurring interelement correlations that are consistent with particular types of mineralization.

The results and conclusions of the geochemical study are integrated with descriptions of mineralization identified by mineral exploration.

Gold

The geochemical investigation, which accompanied the GSWA mapping, revealed four areas that contain gold anomalies (Figs 15 and 16). Two of these areas contain clusters of anomalous samples at Poynton Creek and Dunn Creek, both localities being situated close to the southwestern boundary of the Poynton Domain.

At Poynton Creek the gold occurs in gossanous quartz veins related to northwest-striking D_4 faults, and ranges up to 4.07 ppm. However, results of a follow-up sampling program indicate that gold mineralization is erratic. Host rocks of the auriferous veins at Poynton Creek are mainly quartzite and banded paragneiss.

The Dunn Creek anomalies average about 0.1 ppm gold and occur mostly in pyritic quartz veins of D_2 or D_4 age. An exception is a unit of calc-silicate gneiss (samples 112303A, 112304A) in which 0.08–0.12 ppm gold and copper anomalies occur in metasomatized gabbro. The gneiss is situated in the core of the Dunn Antiform, and merits further investigation.

About 3 km northeast from Fandango (AMG 155954) an isolated gold anomaly (sample 112366) was detected in quartz veins in pelitic schist and BIF of the Yandagooge Formation. Tourmaline in the schist and BIF indicates locally extensive boron metasomatism. The locality is situated on a north-northwesterly striking D_4 or D_6 fault.

About 3 km east from Talbot Soak (AMG 408071) a semipelitic member of the Coolbro Sandstone includes quartzite (sample 111817) and metasiltstone (sample 111816). Both samples exhibit a strong yellow-brown discolouration due to alteration of disseminated pyrite, and contain gold (1.10 and 0.53 ppm respectively). A transported lateritic pseudogossan (samples 111818, 9) located 600 m to the northwest contains minor silver (8–17 ppm). The semipelitic unit is poorly exposed, but forms a valley between thick sandstone members of the formation. The unit has a distinctive aeromagnetic signature, which can be traced at least 30 km along strike. Samples of vein quartz and gossan (samples 111803-5, 9, 10) collected up to 7 km along strike contain anomalous gold associated with elevated Ba, but the most prospective units are pyritic sedimentary rocks.

Uranium (and associated gold, copper, lead, and zinc)

Subeconomic traces of uraninite and coffinite have been located at the Bilbo (AMG 291898), Cassandra (around AMG 323853), Dione (around AMG 258905), and Minder (AMG 322806) prospects. The Cassandra and Minder deposits occur in D_4 structures, and are related to late- or post- D_4 hydrothermal alteration.

The Bilbo and Dione mineralization is restricted to flat-lying regolith zones which are interpreted as secondary dispersions derived from primary shear-zone related mineralization. These zones contain uraninite in

Figure 15. Locations of prospects, mineral occurrences, and mineral anomalies on the RudalL 1:100 000 map area

association with traces of pyrite, galena, chalcopyrite, Ni–Co arsenate, and Bi–Sb minerals. Dione contains up to 0.1 ppm Au, and the nearby Io uranium prospect contains up to 0.19 ppm Au.

The Cassandra Prospect (AMG 322853) includes a number of uranium anomalies, in association with Au (\leq 3 ppm), Ag, Cu, and Pb, in the Yandagooge Formation. The mineralization, including uraninite and coffinite, occurs as veins in D₄ fractures and shears, and in association with silicified pegmatite and chlorite,

sericite, hematite, and albite hydrothermal alteration. This indicates that the mineralization is late- or post- D_4 .

The uranium mineralization at Minder is associated with Pb–Cu–Zn–Bi sulfides, and is in albite-altered shear zones in iron-rich pelite at or near pegmatite margins. Uraninite fills fractures in pyrite and the wallrocks show albite alteration indicative of hydrothermal activity. The mineralization includes traces of galena, chalcopyrite, sphalerite, and Pb–Bi sulfides.

Figure 16. Economic geology of the Talbot Terrane, and the Throssell and Tarcunyah Groups on the Rudall 1:100 000 map area

Figure 17. Summary of main zones of known and interpreted mineral potential on the RuDALL 1:100 000 map area

The Fandango uranium anomaly (AMG 150953) differs from the other uranium occurrences on RUDALL in that it is hosted by fractured Coolbro Sandstone, and is close to the contact of this formation with the Broadhurst Formation. The fractures occur close to the axis of the Camelot Syncline (F_4) and are commonly filled with quartz–limonite veins. The sandstone host rock is strongly brecciated, with matrix material being extensively sericitized and kaolinized. This kaolinitic matrix is also rich in zircon (>1%) which must account for part of the uranium anomaly. The mineralization may be entirely structurally controlled, and late- or post- D_4 , or it could be due to hydrothermal alteration of a heavy mineral band.

GSWA geochemical investigations revealed no rocks containing more than 50 ppm U. Several samples were reported as containing about 30 ppm U, and these were mainly associated with copper anomalies in gossanous quartz veins.

Copper, lead, and zinc

The Broadhurst Formation of the Throssell Group hosts stratabound and stratiform copper, lead, and zinc mineralization. These deposits occur at essentially the same stratigraphic level in shale–carbonate units and have been interpreted as Mount Isa-style base metal deposits. Examples include the Nifty deposit on LAMIL, and the Maroochydore deposits on BROADHURST, thus indicating that the Broadhurst Formation is prospective (Ferguson, 1999) over a large area. Copper in association with uranium also occurs at or near the Coolbro Sandstone – Broadhurst Formation contact, for example the Sunday Creek prospect on BROADHURST (Hickman and Clarke, 1994).

CRAE has shown that the Broadhurst Formation in the Camelot Syncline on RUDALL contains elevated As, Pb, U, Cu, Zn and Fe, and traces of Au in chloritic shale, graphitic schist, and carbonate. The western extension of the Camelot Syncline merits further exploration beneath Permian cover.

Geochemical analyses of the samples collected during mapping revealed significant copper anomalies (Cu >1000 ppm) at three localities (samples 111828, 113153, 113190) and minor anomalies at numerous localities (Figs 15 and 16, Appendix 1). The copper anomalies are commonly associated with elevated uranium contents, and positive inter-element correlations occur with Pb, Zn and Ni. As noted below, general low-level copper anomalies are also associated with major Mo, Au and Bi anomalies.

Field relationships of the quartz veins and gossans containing copper anomalies show four types of mineralization. About half of the anomalous samples are gossans or gossanous vein quartz occupying northwesterly striking faults (chiefly D_4). Another group involves stratabound or stratiform sulfide mineralization in BIF, chiefly within the Yandagooge Formation, but also in the Poynton Formation. Calc-silicate gneiss, representing metasomatized mafic amphibolite (samples 112303A,

112304A, 112413), contains copper anomalies, and shale of the Broadhurst Formation west of the Southwest Thrust includes pyrite zones (gossan samples 113198, 99) containing weakly anomalous Cu and Zn.

Scattered lead and zinc anomalies are present in the Rudall Complex (Figs 15 and 16, Appendix 1). Concealed carbonate units in the Tarcunyah Group offer most scope for future exploration.

Platinum-group elements (PGE)

Platinum and palladium occur as minor accessories in the Kintyre uranium deposit on BROADHURST, in trace concentrations in some U-Cu-Pb-Zn deposits in the Rudall Complex (Hickman and Clarke, 1994), and in anomalous concentrations in mafic and ultramafic rocks on RUNTON. This indicates that the potential for significant PGE mineralization is relatively high and is not restricted to areas of major ultramafic-mafic intrusions. Goldplatinum mineralization at Coronation Hill, in the South Alligator Valley of the Northern Territory, occurs in volcanic and sedimentary rocks of the Palaeoproterozoic El Sherana and South Alligator Groups included in the Pine Creek Inlier, although no ultramafic-mafic intrusions are known in the area. This PGE mineralization may have resulted from supergene enrichment of Proterozoic PGE placers, or by the introduction of hydrothermal fluids related to concealed felsic igneous activity (Stuart-Smith et al., 1988). The geology of the mineralization in the Pine Creek Inlier (Stuart-Smith et al., 1988) is somewhat similar to that of the Rudall Complex, therefore warranting further exploration for PGE in the Paterson Orogen.

Other metals (molybdenum, tungsten, tin, bismuth, and vanadium)

The geochemical investigation by GSWA revealed isolated anomalies for certain metals, some of which may be significant for future exploration.

Molybdenum, mainly associated with copper, exceeded 100 ppm at three localities (Appendix 1). Two of those, located close to the Poynton Creek gold anomalies, occur in D_4 quartz veins close to ultramafic lenses. Sample 111834 contains abundant granular tourmaline, and is hosted by sheared K-feldspar augen orthogneiss; in addition to molybdenum it contains 178 ppm Bi. Sample 112849 is hosted by calc-silicate gneiss (sample 112486) developed along a contact between banded paragneiss and serpentinized peridotite. The third significant molybdenum anomaly (sample 112967) occurs in a gossanous pelitic member of the Fingoon Quartzite about 10 km north of the McKay Range. Other molybdenum anomalies (Appendix 1) include an association with minor bismuth (sample 112318) in the area of the Dunn Creek gold anomalies. Here, lenticular, slightly sulfidic quartz lenses occupy a dextral west-northwesterly trending D_4 fault.

A. H. Hickman and L. Bagas

Bismuth anomalies, apart from those associated with uranium and molybdenum, are relatively few. Of these, the most marked occurs in the southern part of the Poynton Creek area where a magnetite-bearing quartzite (sample 111844) at the top of the Fingoon Quartzite is folded by a northwest-plunging F_4 anticline. The weak mineralization (Bi–Cu–Pb) is stratabound, and may be related to nearby pegmatite sheets.

Most of the 395 samples collected were not analysed for tungsten owing to probable contamination during ring-mill grinding. Where a chrome mill was used four samples (111822, 111847, 112308, 112329) were reported to contain between 30 and 55 ppm W. Three of the samples were collected from gossanous zones in turbiditic paragneiss close to the southern boundary of the Poynton Domain, and the fourth (sample 111822) from arenaceous paragneiss within the Poynton Domain. All have relatively high nickel contents (237–708 ppm Ni), and two are close to ultramafic bodies. Gold contents are anomalous, but not high.

No significant tin mineralization was detected during the mapping, and only one pegmatite and one orthogneiss were included in the geochemical investigation. Three samples (114208, 114211, 114213) from the Tarcunyah Group of the McKay Range were reported to contain weakly anomalous tin, and the molybdenum anomaly (sample 112967) in the Fingoon Quartzite 10 km north from the McKay Range returned 37 ppm Sn. This grouping of tin anomalies in a range of rock types from the McKay Range area suggests hydrothermal activity.

Vanadium anomalies are restricted to a zone close to the southern boundary of the Poynton Domain. Most are associated with limonitic argillaceous units, in which vanadium exhibits positive correlations with gallium, barium, and silver.

Diamonds

CRAE has been conducting diamond exploration in the Paterson Orogen since 1978, and Stockdale explored the region in 1984. A number of kimberlitic indicators and microdiamonds have been detected, although no kimberlites have yet been found. These kimberlitic indicators and microdiamonds may have originated from Permian glacial sedimentary rocks.

Barite

Chin et al. (1980), who discovered veins up to 0.3 m wide 4 km southwest from Watrara Pool, first reported barite mineralization on RUDALL. These veins were re-examined during the present investigation, and additional mineralization was recorded between this locality and an area around AMG 020048. Hickman and Bagas (1998) give a description of the veins.

Geochemical analyses (samples 111307-113117, Appendix 1) indicate that $BaSO_4$ content of the veins ranges up to about 80% (47% Ba), the chief impurities being iron (hematite) and silica. Although the largest vein

is over 100 m long and up to 4 m thick, the general level of impurities and the remote location make the deposits subeconomic. Analytical data on the range of rock types collected from the veins reveal no significant base- or precious-metal mineralization, although one sample (113115) contains anomalous molybdenum and weakly anomalous copper. Strontium exhibits a strong positive correlation with barium.

In the Clayton Domain, and close to the southern boundary of the Poynton Domain, barium anomalies are associated with anomalous contents of rubidium, strontium, cerium, lanthanum, and yttrium (Figs 15 and 16; Appendix 1). Somewhat similar anomalies also occur around Larry Creek, 3-5 km south of the Rudall River confluence. In the Clayton Domain the association is accompanied by local copper, lead, and molybdenum anomalies, and may be partly related to post-D₂ felsic intrusions of microgranite, aplite, and felsite. Along the southern boundary of the Poynton Domain the Ba anomalies occur in the same zone as gold, copper, molybdenum, lead, bismuth, and tungsten anomalies. As discussed below (in **Mineral potential**), these anomaly belts appear to coincide with zones of major faulting.

Combined high concentrations of barium (>1000 ppm) and manganese (>10 000 ppm) are restricted to shallow-water sedimentary rocks of the Tarcunyah Group (Figs 15 and 16). This is interpreted to be a consequence of evaporitic and oxidizing environments during deposition of the Tarcunyah Group, and has no direct economic significance.

Mineral potential

The Paterson Orogen has proven potential for gold, Cu–Pb–Zn and uranium mineralization. Additionally, mineral exploration and the present mapping and geochemical investigations have indicated significant prospectivity for Pb–Zn, molybdenum, bismuth, and possibly tungsten, nickel, chromium, and PGE mineralization.

No economic mineral deposits have yet been discovered within the area covered by this report, but exploration is still at an early stage and has so far been undertaken without the assistance of a detailed geological framework. Exploration has chiefly involved the examination and drilling of targets identified from airborne geophysics.

Figures 15 and 16 summarize the existing geochemical anomaly data on RUDALL, and Figure 17 interprets this information in terms of zones of mineral potential. Table 6 includes a more general and theoretical assessment of the mineral potential of the orogen based on regional geology and tectonic evolution. Figure 17 shows that three northwest-striking zones encompass all known significant gold anomalies in the area. The central zone includes the Poynton Creek and Dunn Creek gold anomalies, and is a belt of D₂ and D₄ faulting close to the southern boundary of the Poynton Domain. The overall movement along this zone is northeastern block down, with dextral displacement. The southern zone

		_	
 	 	-	

Potential mineralization

Tectonically emplaced and mobilized pre-

Greisen-related Sn-W etc. (but probably too

existing deposits

fragmented to be economic)

GSWA Report

71

D_c Late strike-slip Strike-slip faults and transpressional folds; Brittle deformation **Ouartz** veins Epigenetic Au in quartz veins reactivation of D₄ structures Clastic deposition Foreland basin Savory Group Development of the Tarcunyah Basin: supratidal to Waters Formation and Syn-depositional NNW- to WNW-trending Sabkha-type Cu-Pb-Zn, Copperbelt-type Tarcunvah Basin (in the shallow-water. locally fluviatile-Gunanya Sandstone faults, dominantly dextral strike-slip, but Cu-Co with accompanying vertical movement greater Officer Basin) deltaic Epigenetic Au in quartz veins producing growth faults; slump folding from basin margin Erosion Fold-thrust belt (inactive) Unconformity D₄ SW-directed movement Dominantly transpressional fold-Silicified shear zones Upright to overturned, generally tight to Epigenetic Au in quartz veins. Hypothermal isoclinal NW-trending folds and NEand basin closure thrust belt base metals inclined thrusts Stable carbonate shelf NE-deepening shelf, gradual Isdell Formation Mississippi Valley-type, carbonate-hosted Pb-Zn (most potential in shallow-water subsidence facies) ?Marine transgression ?Unconformity Rapid subsidence Pelagic deposition Broadhurst Formation McArthur River-type Fe-Pb-Zn, Copperbelt-type Cu-Co Unconformity-related vein-style U (with Development of Broadhurst Dominantly transtensional basin, Coolbro Sandstone elongate NW-SE and deepening NE. associated Cu, Pb, Bi, PGE, and Au) on, or Range strike-slip basin Broadhurst basin close to faults Deep erosion Inactive fold-thrust belt Unconformity Retarded convergence Post-collisional deformation. Crustal Microgranite, aplite, and Local NW-trending folds U-enrichment in granitoids thickening and melting pegmatite D₂ collision, SW-directed Fold-thrust belt ?Svn-collisional Nappes, and NE- to E-inclined stacked Greisen-related Sn-W, with Cu, Mo, and Li granitoids. May include thrust sheets some *Erga* Post-D, to early D₂ partial melting Sill-form granitoid sheets, associated Widespread granitoid K-feldspar augen Pegmatite minerals. Granitoid intrusion thickening), or subduction-related orthogneiss protoliths dykes, pegmatite and veins emplacement-related hydrothermal Au magmatic arc (PRga)Clastic deposition, local Rifted shelf, adjacent volcanic arc Poynton Formation Sandstone: stratabound U. Shale-BIF: volcanism sedex-type massive sulfides

Lithologically layered

Granitoid protoliths for

lithologically layered

orthogneiss (*PRgx*)

orthogneiss (*PRgx*)

Layer-parallel shear zones

Sill-form granitoid sheets

Table 6. Summary of Proterozoic tectonic evolution on RUDALL, with theoretical metallogenic implications

Structure

Unit/feature

STRIKE-SLIP REGIME

PLATE REGIME

D, Subhorizontal tectonic

interleaving

Granitoid intrusion

Phase

Environment

?Thin-skinned thrusting along fold-

?Partial melting beneath rifted basin

thrust belt margin

Table	6.	(continued	I)
-------	----	------------	----

	Phase	Environment	Unit/feature	Structure	Potential mineralization
CONVERGENT-	Clastic deposition	Subsiding foreland basin with shoreline, shelf and slope environments; probable rifting; adjacent marginal basin	Larry Formation, Fingoon Quartzite, Yandagooge Formation, and Butler Creek Formation		 (a) Shelf sand and mud: stratabound sandstone-type U. (b) Carbonaceous mud and BIF: sedex-type massive sulfides (c) Ultramafic-mafic: serpentinite-hosted Cr, Ni, or PGE. Metabasalt-hosted Cyprus-style Cu-Fe

follows the southwestern boundary of the Fingoon Domain where overall movement is southwestern block down, with sinistral displacement (along the central and northwestern sections). Both zones include the Yandagooge Formation, with the central zone also involving mineralization of the Butler Creek and Poynton Formations.

Most of the gold mineralization is hosted by D_4 faults and known deposits therefore appear to be syn- or post- D_4 in age. However, because D_4 faults commonly coincide with D_2 faults, and probably also with growth faults during deposition of the Throssell Group, the original age of gold mineralization is uncertain.

The northern zone of gold mineralization is confined to a shale–siltstone unit of the Coolbro Sandstone and, if epigenetic, clearly must be post-Throssell Group in age.

Uranium mineralization is confined to a relatively narrow northwest-striking belt along the southwestern boundary of the Fingoon Domain. This belt is essentially a D_4 graben, and may have been a down-faulted block during deposition of the Coolbro Sandstone. Uranium deposits are hosted by fractures in the Yandagooge Formation, presumably not far below the level of the unconformity at the base of the Coolbro Sandstone. Figure 17 shows uranium potential declining southeast from the Minder area, based on the interpretation that the Coolbro Sandstone probably wedged out in this area (Fig. 14). Potential for uranium mineralization in the Poynton and Rooney Domains is considered to be low due to an absence of suitable pelitic or carbonate hostrocks close to the basal Coolbro Sandstone unconformity.

Nickel, chromium, and PGE mineralization may be present in the ultramafic rocks of the Rudall Complex, and PGE mineralization could be associated with uranium. However, because most of the ultramafic bodies are small and fragmented, mineral potential is considered to be relatively low. Figure 17 shows four zones with Ba–REE–Cu–Mo potential. The western zone, in the Clayton Domain, coincides with a belt of major D_4 thrusts and normal (lag) faults, but it is unclear to what extent these have acted as conduits for hydrothermal fluids. The northern zone partly corresponds to the central zone of gold mineralization (discussed above). Other shaded areas on Figure 17 chiefly involve the Yandagooge and upper Fingoon Formations where these units are dislocated by D_4 and D_6 faults. Although copper and molybdenum are commonly associated, the apparent absence of high-level intrusions and associated alteration, and the present deep erosion levels make it unlikely that mineralized porphyrystyle systems are preserved.

The Tarcunyah Group on RUDALL is composed of shallow-water arenites, shale, and carbonate rocks. The succession occupies an area of about 1000 km² (Fig. 17), but is largely concealed and has not yet been explored. The geochemical investigation revealed local copper anomalies, and the belt is clearly prospective for sabkha-type Cu–Pb–Zn, and possibly Copperbelt-type Cu–Co or Mississippi Valley-type carbonate-hosted Pb–Zn deposits. The basal beds of this group are also known to be prospective for gold and copper mineralization on BLANCHE-CRONIN (Bagas and Smithies, in prep.).

Acknowledgments

The authors thank Rio Tinto Exploration Pty Ltd (formerly CRAE) and PNC Exploration (Australia) Pty Ltd for their generous assistance during the fieldwork, access to colour aerial photographs, topographic maps, and helpful discussions.

References

- BAGAS, L., 1998, Geology of the Gunanya 1:100 000 sheet, Western Australia: Western Australia Geological Survey, 1:100 000 Geological Series Explanatory Notes, 10p.
- BAGAS, L., GREY, K., and WILLIAMS, I. R., 1995, Reappraisal of the Paterson Orogen and Savory Basin: Western Australia Geological Survey, Annual Review 1994–95, p. 55–63.
- BAGAS, L., and SMITHIES, R. H., 1997, Palaeoproterozoic tectonic evolution of the Rudall Complex, and comparison with the Arunta Inlier and Capricorn Orogen: Western Australia Geological Survey, Annual Review 1996–97, p. 110–115.
- BAGAS, L., and SMITHIES, R. H., 1998, Geology of the Connaughton 1:100 000 sheet, Western Australia: Western Australia Geological Survey, 1:100 000 Geological Series Explanatory Notes, 38p.
- BAGAS, L., and SMITHIES, R. H., in prep., Geology of the Blanche– Cronin 1:100 000 sheet, Western Australia: Western Australia Geological Survey, 1:100 000 Geological Series Explanatory Notes.
- BLOCKLEY, J. G., and MYERS, J. S., 1990, Proterozoic rocks of the Western Australian Shield — geology and mineralization, *in* Geology of the Mineral Deposits of Australia and Papua New Guinea *edited by* F. E. HUGHES: Australasian Institute of Mining and Metallurgy, Monograph 14, p. 607–615.
- CARR, H. W., 1989, The geochemistry and platinum group element distribution of the Rudall River ultramafic bodies, Paterson Province, Western Australia: University of Western Australia, BSc Honours thesis (unpublished).
- CHIN, R. J., WILLIAMS, I. R., WILLIAMS, S. J., and CROWE, R. W. A., 1980, Rudall, Western Australia: Western Australia Geological Survey, 1:250 000 Geological Series Explanatory Notes, 22p.
- CHIN, R. J., and de LAETER, J. R., 1981, The relationship of new Rb–Sr isotopic dates from the Rudall Metamorphic Complex to the geology of the Paterson Province: Western Australia Geological Survey, Annual Report 1980, p. 132–139.
- CHIN, R. J., HICKMAN, A. H., and TOWNER, R. R., 1982, Paterson Range, Western Australia (2nd edition): Western Australia Geological Survey, 1:250 000 Geological Series Explanatory Notes, 29p.
- CLARKE, G. L., 1991, Proterozoic tectonic reworking in the Rudall Complex, Western Australia: Australian Journal of Earth Sciences, v. 38, p. 31–44.
- de LAETER, J. R., HICKMAN, A. H., TRENDALL, A. F., and LEWIS, J. D., 1977, Geochronological data concerning the eastern extent of the Pilbara Block: Western Australia Geological Survey, Annual Report 1976, p. 56–62.
- FERGUSON, K. M., 1999, Lead, zinc and silver deposits of Western Australia: Western Australia Geological Survey, Mineral Resources Bulletin 15, 314p.
- FODEN, J. D., BUICK, I. S., and MORTIMER, G. E., 1988, The petrology and geochemistry of granitic gneisses from the east Arunta Inlier, central Australia: implications for Proterozoic crustal development: Precambrian Research, v. 40/41, p. 233–259.
- GOELLNICHT, N. M., GROVES, D. I., and McNAUGHTON, N. J., 1991, Late Proterozoic fractionated granitoids of the mineralized

Telfer area, Paterson Province, Western Australia: Precambrian Research, v. 51, p. 375–391.

- HICKMAN, A. H., and BAGAS, L., 1995, Tectonic evolution and economic geology of the Paterson Orogen — a major reinterpretation based on detailed geological mapping: Western Australia Geological Survey, Annual Review 1993–94, p. 67–76.
- HICKMAN, A. H., and BAGAS, L., 1998, Geology of the Rudall 1:100 000 sheet, Western Australia: Western Australia Geological Survey, 1:100 000 Geological Series Explanatory Notes, 30p.
- HICKMAN, A. H., and CLARKE, G. L., 1994, Geology of the Broadhurst 1:100 000 sheet, Western Australia: Western Australia Geological Survey, 1:100 000 Geological Series Explanatory Notes, 40p.
- HICKMAN, A. H., WILLIAMS, I. R., and BAGAS, L., 1994, Proterozoic geology and mineralization of the Telfer–Rudall region, Paterson Orogen: Excursion Guidebook No. 5, 12th Australian Geological Convention, September 1994: Geological Society of Australia (WA Division), 56p.
- McNAUGHTON, N. J., and GOELLNICHT, N. M., 1990, The age and radiothermal properties of the Mt Crofton Granite: Australian Journal of Earth Sciences, v. 37, p. 103–106.
- MITCHELL, A. H. G., and READING, H. G., 1986, Sedimentation and tectonics, *in* Sedimentary environments and facies *edited by* H. G. READING: Oxford, Blackwell Scientific Publications, p. 471–519.
- MUHLING, J. R., 1988, The nature of Proterozoic reworking of early Archaean gneisses, Mukalo area, Southern Gascoyne Province, Western Australia: Precambrian Research, v. 40/41, p. 341–362.
- NELSON, D. R., 1995, Compilation of SHRIMP U–Pb zircon geochronology data, 1994: Western Australia Geological Survey, Record 1995/3, 244p.
- PARK, R. G., 1988, Geological structures and moving plates: Glasgow, Blackie and Son Ltd., 337p.
- PIRAJNO, F., BAGAS, L., SWAGER, C. P., OCCHIPINTI, S. A., and ADAMIDES, N. G., 1996, A reappraisal of the Glengarry Basin: Western Australia Geological Survey, Annual Review 1995–96, p. 81–87.
- SMITHIES, R. H., and BAGAS, L, 1997, High pressure amphibolitegranulite facies metamorphism in the Paleoproterozoic Rudall Complex, central Western Australia: Precambrian Research, v. 83(4), p. 243–265.
- STUART-SMITH, P. G., NEEDHAM, R. S., and BAGAS, L., 1988, Stow Region, Northern Territory: Bureau of Mineral Resources, 1:100 000 Geological Series Explanatory Notes, 35p.
- THORNE, A. M., and SEYMOUR, D. B., 1991, Geology of the Ashburton Basin: Western Australia Geological Survey, Bulletin 139, 141p.
- TRENDALL, A. F., 1974, The age of a granite near Mount Crofton, Paterson Range Sheet: Western Australia Geological Survey, Annual Report 1974, p. 92–96.
- TURNER, F. J., and VERHOOGEN, J., 1960, Igneous and metamorphic petrology: New York, McGraw-Hill (International Series in the Earth Sciences), 403p.

- TYLER, I. M., 1991, The geology of the Sylvania Inlier and the southeast Hamersley Basin: Western Australia Geological Survey, Bulletin 138, 108p.
- WILLIAMS, I. R., 1989, Balfour Downs, W.A. (2nd edition): Western Australia Geological Survey, 1:250 000 Geological Series Explanatory Notes, 38p.
- WILLIAMS, I. R., 1990, Yeneena Basin, *in* Geology and mineral resources of Western Australia: Western Australia Geological Survey, Memoir 3, p. 277–282.
- WILLIAMS, I. R., 1992, Geology of the Savory Basin Western Australia: Western Australia Geological Survey, Bulletin 141, 115p.
- WILLIAMS, I. R., and BAGAS, L., in prep.a, Geology of the Throssell 1:100 000 sheet, Western Australia: Western Australia Geological Survey, 1:100 000 Geological Series Explanatory Notes.
- WILLIAMS, I. R., and BAGAS, L., in prep.b, Geology of the Poisonbush 1:100 000 sheet, Western Australia: Western Australia Geological Survey, 1:100 000 Geological Series Explanatory Notes.

- WILLIAMS, I. R., BRAKEL, A. T., CHIN, R. J., and WILLIAMS, S. J., 1976, The stratigraphy of the Eastern Bangemall Basin and Paterson Province: Western Australia Geological Survey, Annual Report, 1975, p. 79–83.
- WILLIAMS, I. R., and MYERS, J. S., 1990, Paterson Orogen, *in* Geology and mineral resources of Western Australia: Western Australia Geological Survey, Memoir 3, p. 274–75.
- WINDLEY, B. F., 1984, The evolving continents (2nd edition): Chichester, Wiley, 399p.
- WINKLER, H. G. F., 1965, Petrogenesis of metamorphic rocks: New York, Springer-Verlag, 220p.
- WYBORN, L. A. I., 1988, Petrology, geochemistry and origin of a major Australian 1880–1840 Ma felsic volcano-plutonic suite: a model for intracontinental felsic magma generation: Precambrian Research, v. 40/41, p. 37–60.
- YARDLEY, B. W. D., 1991, An introduction to metamorphic petrology: New York, Longman, 248p.

Appendix 1

Analytical data from the RUDALL 1:100 000 sheet

NOTES: All analyses performed by Chemistry Centre (W.A.).

Major- and trace-element analyses of mafic rocks by X-ray fluorescence (XRF) after fusion of samples within lithium tetraborate, except FeO, C, and volatiles, which were determined titrimetrically.

S was measured from the titration of SO₂ with KO₃.

F was determined using a specific-ion electrode after decomposition of the sample by heating with concentrated H_2SO_4 .

Trace-element concentrations were determined by XRF analysis of pressedpowder samples, with the following exceptions:

- Felsic rocks were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES; for Co, Cr, Cu, Ni, V, and Zn) or inductively coupled plasma mass spectrometry (ICP-MS);
- Ce, La, Li, and Sc were determined by ICP-AES after a mixed (total) acid digest;
- Cs was determined by graphite furnace atomic absorption spectroscopy;
- Au was determined by classical fire assay with an atomic absorption finish.

Standard certified reference materials, analysed simultaneously with silicate analyses, included NBS-688, NIM-P, SY-2, NIM-G, and FER-1.

Appendix 1

Analytical data from the RUDALL 1:100 000 sheet

			Wh	ole rock and trac	e element analysi	s		
GSWA no. Rock type	106944 paragneiss	106945 paragneiss	106955 paragneiss	106959 orthogneiss	106997 quartz vein	110051 meta-BIF	110052 limonitic schist	110065 quartzite
Latitude	22°37'43"	22°38'22"	22°37'43"	22°39'11"	22°38'38"	22°31'51"	22°31'41"	22°35'48"
Longitude	122°20'27"	122°19'52"	122°21'45"	122°21'51"	122°29'19"	122°22'18"	122°23'09"	122°22'15"
				Perce	ent			
SiO ₂	73.00	76.60	73.00	71.30	95.70	48.50	25.90	87.20
TiO ₂	0.53	0.54	0.32	0.35	0.11	< 0.05	0.34	0.18
Al_2O_3	13.60	11.50	14.50	14.70	3.12	0.76	5.32	2.81
Fe ₂ O ₃	3.01	3.52	1.91	1.25	0.69	46.70	57.60	6.37
FeO	0.28	0.37	0.34	1.27	0.24	2.14	0.23	0.34
MnO	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.05	0.06	< 0.05
MgO	0.77	0.35	0.85	0.75	0.49	< 0.05	0.48	0.13
CaO	0.13	1.16	0.73	2.54	< 0.05	< 0.05	< 0.05	0.19
Na ₂ O	< 0.05	3.00	2.65	3.00	< 0.05	< 0.05	< 0.05	< 0.05
K ₂ O	1.92	2.21	4.69	4.08	< 0.05	0.14	1.96	0.13
P_2O_5	0.05	0.11	< 0.05	0.08	< 0.05	0.07	0.23	< 0.05
LOI	6.50	1.29	1.86	1.33	0.61	1.19	7.95	2.15
S	0.09	0.03	<0.01	0.01	< 0.01	< 0.01	0.01	0.11
С	nd	nd	nd	nd	nd	nd	nd	nd
-0=	0.04	0.01	< 0.01	<0.01	<0.01	< 0.01	0.01	0.05
Others	0.58	0.31	0.25	0.23	0.02	0.08	0.11	0.06
Total	100.4	101	101.2	101	100.9	99.5	100.2	99.6
	-0.01	-0.01	-0.01	Parts per	million	0.04	0.02	0.04
Au	<0.01	<0.01	<0.01	<0.01	<0.01	0.04	0.02	0.04
Ag	<5	<5	<5	<5	<5	<5	34	<5
As	<4	<4	<4	<4	<4	<4	5	<4
Ba D:	3 982	1 5/4	1 219	965	50	156	368	186
	<4	<4	<4	<4	<4	<4	<4	<4
Ca	<5	< 3	< 3	< 3	< 3	< 3	< 3	<5
Ce	211	6	140	118	15	<0 nd	55 nd	17 nd
Ct Ct	41	-1	8	6	16	10	45	23
Cu	15	4	-1	-1	10	21	-1	13
Ga	15	18	15	17	4	8	4	8
Ge	<3	<3	<3	<3	<3	3	3	<3
La	108	41	90	61	8	<5	20	15
Li	7	<6	8	18	<6	<6	20	<6
Mn	<380	<380	<380	465	<380	<380	465	<380
Мо	<6	<6	<6	<6	<6	<6	<6	6
Nb	15	25	11	10	<7	<7	<7	<7
Ni	14	<3	4	<3	5	4	27	4
Pb	10	5	15	40	<4	<4	8	20
Rb	105	50	144	146	<2	3	49	2
Sb	nd	nd	nd	nd	nd	<4	<4	4
Sc	11	9	5	5	<2	4	8	5
Sn	<4	<4	<4	<4	<4	41	6	<4
Sr	72	99	143	257	9	<2	15	23
Та	<5	<5	<5	<5	<5	6	7	<5
Те	nd	nd	nd	nd	nd	<6	<6	<6
Th	33	24	30	26	4	<2	7	2
U	<2	3	3	3	<2	<2	<2	2
V	79	16	31	29	15	248	56	81
W	5	6	<4	<4	<4	nd	nd	nd
Y	39	80	23	20	3	2	21	6
Zn	32	38	7	39	7	9	50	10
Zr	251	485	202	207	32	<5	118	27

			W	ole rock and trac	e element analys	is		
GSWA no.	110066	110068	110071	110073	111816	111817	111827	111838
Rock type	quartzite	quartzite	quartzite	limonitic	siltstone	quartzite	limonitic	meta-BIF
	220251/08			quartzite			quartzite	
Latitude	22°35'48"	22°36'00"	22°35'12"	22°35'23"	22°32'30"	22°32'30"	22°35′18″	22°33′50″
Longitude	122°22'15″	122°22'23"	122°22'24"	122°21'21"	122°25'27"	122°25'27"	122°20'03"	122°17'33"
				Perc	ent			
SiO ₂	85.50	75.40	84.40	56.70	82.10	91.20	23.20	52.30
TiO ₂	0.15	0.09	0.22	0.08	0.31	0.10	0.20	0.09
Al ₂ Õ ₂	2.75	13.50	4.33	1.28	6.68	1.62	4.02	0.91
Fe ₂ O ₂	8.76	0.60	6.97	35.30	5.04	4.78	61.30	43.20
FeO	0.28	0.17	0.29	0.28	0.26	0.31	< 0.10	0.62
MnO	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.09	< 0.05
MgO	< 0.05	0.18	0.07	< 0.05	0.12	< 0.05	< 0.05	0.20
CaO	0.06	0.84	0.09	< 0.05	< 0.05	< 0.05	< 0.05	0.31
Na ₂ O	< 0.05	3.41	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
K ₂ Ó	< 0.05	4.58	1.09	0.06	0.92	< 0.05	0.44	0.20
P.O.	< 0.05	< 0.05	< 0.05	0.77	< 0.05	< 0.05	1.19	0.23
LOI	1.95	1.08	1.86	5.87	4.32	1.04	9.32	1.01
S	0.04	< 0.01	0.07	0.02	0.02	0.07	0.03	0.03
C	nd	nd	nd	nd	nd	nd	nd	nd
-0=	0.02	< 0.01	0.04	0.01	0.01	0.03	0.02	0.02
Others	0.05	0.23	0.17	0.05	0.19	0.22	0.30	0.08
Total	99.5	100.1	99.5	100.4	100	99.3	100.1	99.1
				Danta non	million			
Δ11	0.05	0.96	0.07	2 15	0.53	1 10	0.05	0.03
Δσ	<5	<5	<5	10	<5	<5	36	<5
As	<1	<1	<1	-1	<1	<1	-1	<1
Ra	105	13/0	000	78	1 158	1 751	1 133	532
Bi	<4	<4	<4	<4	<4	<4	<4	<4
Cd	<5	<5	<5	<5	<5	<5	<5	<5
Ce	31	49	30	26	<6	29	61	8
Co	nd	nd	nd	nd	nd	nd	nd	nd
Cr	24	4	46	14	49	11	41	22
Cu	27	<4	8	7	<4	16	655	10
Ga	6	13	7	-3	7	-3	055	10
Ge	<3	<3	<3	<3	<3	<3	-3	4
La	9	28	15	11	5	16	33	<5
Li	-6	20 <6	-6	-6	-6	-6	-6	<6
Mn	<380	<380	<380	<380	<380	<380	697	<380
Mo	12	<500	<500	<500	<500	<500	<6	<500
Nb	<7	<7	<7	<7	<7	<7	<7	<7
Ni	<3	<3	6	83	6	5	112	4
Ph	40	28	31	<4	<4	4	<4	4
Rh	<2	103	41	<2	56	<2	10	3
Sh	<2	-1	-1	<2	-1	<2	-1	-1
Sc	7	3	7	8	10	<7	0	3
Sn	-1	-1	-1	-1	10	<2	-1	-1
Sr	0	235	4	0	16	32	35	38
Ta	-5	~5	-5	-5	-5	-5	-5	5
Те	<6	<6	<6	<6	<6	<6	<6	-6
Th	3	22	16	3	13	7	5	<2
III II		24	10	5 7	-2	~	30	2
v	73	0	4	42	10	18	04	10
W	13 nd	7 nd	+U nd	+∠ nd	77 nd	10 nd	74 nd	17 nd
V	0	16	12	10	17	0	52	12
ı 7n	ל ד	2	10	62	1/	Э Л	113	12
ZII 7r	26	0	150	18	101	4 61	72	23 ~5
L 1	20	109	1.59	+0	171	01	12	~5

				_ Whole rock a	nd trace element	analysis		
GSWA no.	111844	112303A	112304A	112312	112324A	112326	112327	112367
Rock type	quartzite	gneiss	gneiss	meta-BIF	meta-BIF	pegmatite	pelitic	meta-BIF
							ferruginous schist	
Latitude	22°35'05"	22°33'50"	22°33'50"	22°33'26"	22°32'35"	22°32'35"	22°32'35"	22°36'02"
Longitude	122°19'40"	122°14'35"	122°14'35"	122°15′25″	122°11'54"	122°11'54"	122°11'54"	122°11'42"
					Percent			
SiO ₂	89.30	46.70	46.30	46.60	46.00	37.50	24.50	39.60
TiO ₂	0.10	0.06	0.09	0.09	0.06	1.18	1.55	< 0.05
Al ₂ O ₃	0.83	28.6	27.00	1.53	0.75	31.30	17.70	0.81
Fe ₂ O ₃	7.54	0.67	1.20	44.60	50.20	13.30	32.20	56.50
FeO	0.36	1.56	1.61	3.28	1.23	0.62	4.94	0.43
MnO	< 0.05	0.05	0.06	0.25	0.15	0.05	1.21	0.17
MgO	< 0.05	3.68	4.67	< 0.05	< 0.05	0.71	5.34	< 0.05
CaO	< 0.05	15.10	12.70	0.89	< 0.05	0.91	1.48	< 0.05
Na ₂ O	< 0.05	1.83	2.14	< 0.05	< 0.05	1.12	0.22	< 0.05
K ₂ O	0.09	0.24	0.92	< 0.05	0.07	7.06	3.44	< 0.05
P_2O_5	< 0.05	< 0.05	< 0.05	< 0.05	0.05	0.42	1.09	0.27
LOI	0.76	1.31	3.08	2.02	1.01	4.85	5.60	1.79
S	0.03	0.18	0.17	< 0.01	0.01	0.05	< 0.01	0.01
С	nd	nd	nd	0.03	0.03	nd	0.03	0.03
-O=	0.02	0.09	0.08	< 0.01	0.01	0.02	< 0.01	0.01
Others	0.13	0.13	0.19	0.05	0.12	0.55	0.25	0.03
Total	99.1	100	100.1	99.3	99.7	99.6	99.6	99.6
				Pa	rts per million			
Au	0.05	0.08	0.12	0.07	0.06	0.07	0.06	0.07
Ag	<5	<5	<5	<5	<5	<5	<5	<5
As	<4	<4	<4	<4	<4	<4	<4	<4
Ba	596	15	162	204	883	2 829	349	38
Bi	118	<4	<4	7	<4	5	<4	<4
Cd	<5	<5	<5	<5	<5	<5	<5	<5
Ce	<6	<6	<6	11	<6	121	174	9
Co	nd	nd	nd	nd	nd	nd	nd	nd
Cr	14	88	110	17	10	186	163	15
Cu	117	317	602	<4	19	36	129	46
Ga	3	17	14	<3	<3	28	25	<3
Ge	<3	<3	<3	0	5	3	4	5
La	6	<5	<5	1	<5	/3	113	5
L1 Mm	<0	<0	11	<0	<0	1/0	/4	<0
Ma	< 380	307	403	1 947	1 102	307	9 5/5	1 517
Nb	<0	<0	<0	<0	<0	<0	<0	<0
NG	<7	225	233	23	21	19	116	23
Dh	71	10	233	25	21	36	6	23
Ph	5	10	14	15	24	254	142	~?
Sh	-1	-1	15	<2	-1	234	-4	<2
Sc	3	6	7	2	~7	17	27	<7
Sn	-1	-1	-1	-1	<2	6	27	<2
Sr	10	220	212	38	~7	222	28	13
ы Та	10	220	212	50	<2	6	20 <5	-5
Те	~5	~5	~5	~5	~5	<6	~5	~5
Th	10	<0	<0	3	<0	33	25	<0
III II	10	<2	<2	~?	<2	33	23	<2
v	84	23	31	20	24	1/6	242	22
w	o4 nd	23 nd	nd	∠7 nd	24 nd	140 nd	242 nd	23 nd
v	2	~2	2	10	5	35	16	0
7n	2- 1	15	25	10	24	24	150	200
Z11 7r	4 31	15	23	22	24 14	24	139 87	20 5
	51	50	30	22	14	250	0 /	5

			Whole roc	k and trace elemen	t analvsis		
GSWA no.	112370	112371	112374	112375	112380	112387	112398
Rock type	breccia	breccia	breccia	breccia	conglomerate	conglomerate	meta-breccia
Latitude	22034134"	22°35'00"	22°34'16"	22°34'04"	22°30'56"	22°31'50"	22031/05"
Longitude	122°10'48"	122°10'57"	122°10'43"	122°11'45″	122°09'15"	122°09'24"	122°05'54"
SiO	81.10	71.80	61.40	Percent	02.20	55.00	46 50
310 ₂	0.22	/1.80	01.40	0.01	93.30	0.18	40.30
110 ₂	0.22 8.22	0.49	17.00	0.91	0.00	0.18	0.09
AI_2O_3	0.23	9.63	17.00	0.30	2.02	21.00	1.75
Fe_2O_3	2.51	7.55	4.51	7.08	0.28	21.00	40.2
reu Meo	0.19	0.51	<0.10	0.00	0.14	0.55	0.51
MIO M-O	< 0.03	< 0.03	0.07	0.00	< 0.03	< 0.03	0.03
MgO	0.12	0.3	0.11	1.41	< 0.05	2.08	< 0.05
CaO N= O	0.12	0.21	0.03	0.15	< 0.03	5.44	0.03
Na ₂ O	< 0.05	< 0.05	0.28	< 0.05	< 0.05	0.57	< 0.05
K ₂ O	0.37	/./8	14.40	5.34	2.26	2.72	0.05
P_2O_5	0.07	0.11	<0.05	0.17	<0.05	< 0.05	0.18
LOI	0.71	1.23	1.17	1.84	0.22	7.37	1.72
S	<0.01	0.02	<0.01	<0.01	0.01	0.06	0.02
С	nd	nd	nd	nd	0.05	ND	0.05
-O=	< 0.01	0.01	<0.01	< 0.01	0.01	0.03	0.01
Others	0.23	0.23	0.43	0.41	0.22	0.23	0.04
Total	99.7	99.9	99.9	99.6	99.4	99.2	99.2
				Parts per million			
Au	0.07	0.07	0.06	0.05	0.06	0.06	0.07
Ag	<5	<5	<5	<5	<5	<5	<5
As	<4	<4	<4	<4	<4	<4	<4
Ba	989	875	3 285	627	1 713	665	56
Bi	<4	<4	<4	<4	<4	<4	<4
Cd	<5	<5	<5	7	<5	<5	<5
Ce	200	252	7	105	30	273	140
Co	nd	nd	nd	nd	ND	nd	nd
Cr	18	48	<4	20	17	28	21
Cu	<4	<4	<4	13	<4	<4	21
Ga	5	7	6	11	<3	7	4
Ge	<3	<3	<3	<3	<3	<3	3
La	153	173	9	779	16	102	7
Li	29	14	<6	54	<6	<6	nd
Mn	<380	<380	542	465	<380	<380	387
Mo	<6	<6	<6	<6	<6	<6	<6
Nb	<7	<7	<7	8	<7	8	<7
Ni	4	8	<3	17	<3	7	17
Pb	14	17	11	16	5	11	75
Rb	217	237	304	193	54	61	<2
Sb	<4	<4	<4	<4	<4	<4	<4
Sc	4	8	<2	10	<2	2	nd
Sn	<4	<4	<4	<4	<4	<4	<4
Sr	91	45	60	37	61	156	9
Та	<5	<5	<5	<5	<5	<5	<5
Те	<6	<6	<6	<6	<6	<6	<6
Th	11	38	7	38	8	8	2
U	3	5	3	7	3	3	<2
V	27	59	62	131	8	354	28
W	nd	nd	nd	nd	nd	nd	nd
Y	53	22	15	174	40	64	22
Zn	7	14	5	42	7	<3	46
Zr	107	123	41	142	24	66	21

				Trace eleme	ıt analvsis onlv			
GSWA no. Rock type	106941 gossan	106947 gossan	106948 meta-BIF	106960 meta-BIF	106962 gossan	106968 meta-BIF	106971 quartz vein	106977 gossan
Latitude Longitude	22°37'26" 122°19'07"	22°38'59" 122°20'47"	22°38'59" 122°20'47"	22°40'01" 122°21'28"	22°40'31" 122°21'44"	22°41'36" 122°23'45"	22°40'51" 122°25'50"	22°40'18" 122°26'39"
				Da	noont			
Fe ₂ O ₃	nd	nd	nd	nd	nd	nd	nd	nd
				Parts p	er million			
Au	0.06	0.06	0.06	0.06	0.06	0.08	0.07	0.06
Ag	nd	nd	nd	nd	nd	nd	nd	nd
As	8	<4	<4	<4	<4	<4	<4	5
Ba	243	96	154	382	802	1 923	383	172
Bi	<4	<4	<4	7	<4	<4	<4	<4
Cd	<5	<5	<5	<5	<5	<5	<5	<5
Ce	48	209	<6	377	120	11	<6	<6
Co	nd	nd	nd	nd	nd	nd	nd	nd
Cr	15	95	10	30	21	-1	8	11
Cu	124	58	10	5	<1	<4	5	54
Ga	3	-3	3	3	<3	<3	-3	3
Ga	-3	<3	-2	0	10	4	<3	3
	21	51	<5	121	10	4	<5	-5
La	51	51	< 5	151	51	<	<	< 3
LI	0>	<0	<0	0	/	0>	<0 	<0 1
Mn	nd	nd	nd	nd	nd	nd	nd 11	nd
MO	<0	<0	0	/	<0	<0	11	<0
Nb	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--></td></td></td>	</td <td><!--</td--><td><!--</td--></td></td>	</td <td><!--</td--></td>	</td
N1	197	141	4	16	11	5	3	59
Pb	75	37	<4	8	10	<4	4	8
Rb	4	5	<2	5	<2	<2	5	<2
Sb	<4	<4	<4	<4	<4	<4	<4	<4
Sc	26	17	<2	7	3	<2	<2	35
Sn	5	<4	<4	<4	<4	<4	<4	<4
Sr	26	8	20	156	48	15	30	20
Та	<5	<5	<5	<5	<5	<5	<5	<5
Te	<6	<6	<6	<6	<6	<6	6	<6
Th	2	3	2	26	2	3	2	<2
U	9	4	<2	7	2	<2	<2	3
V	72	41	24	95	76	23	17	300
W	nd	nd	nd	nd	nd	nd	nd	nd
Y	42	27	2	59	26	8	<2	45
Zn	210	145	10	76	12	10	3	164
Zr	21	26	14	80	21	<5	16	37

				Trace element	nt analysis only			
GSWA no. Rock type	106981 gossan	106988 gossan	106990 gossan	106991 meta-BIF	106998 gossan	106999 meta-BIF	107000 gossan	110057 gossan
Latitude Longitude	22°40'57" 122°26'23"	22°38'08" 122°27'20"	22°38'24" 122°27'34"	22°38'26" 122°27'44"	22°39'00" 122°28'43"	22°39'00" 122°28'37"	22°38'00" 122°28'38"	22°36'02" 122°22'05"
				Po	rcont			
Fe ₂ O ₃	nd	17.00						
				Parts p	er million			
Au	0.04	0.03	0.05	0.04	0.04	0.04	0.04	0.01
Ag	nd	8						
As	<4	51	31	<4	6	<4	<4	<4
Ba	121	42	117	45	914	111	264	162
Bi	<4	<4	<4	<4	<4	<4	<4	<4
Cd	<5	<5	<5	<5	<5	<5	<5	<5
Ce	19	9	57	6	48	96	62	132
Co	nd	11						
Cr	13	17	13	11	10	58	143	nd
Cu	63	55	155	<4	62	709	552	38
Ga	<3	3	<3	<3	<3	6	4	6
Ge	<3	<3	3	9	<3	3	3	<3
La	13	8	24	<5	61	59	40	72
Li	<6	<6	<6	<6	<6	<6	<6	<6
Mn	nd	52						
Мо	<6	9	<6	<6	<6	<6	<6	14
Nb	<7	<7	<7	<7	<7	8	<7	<7
Ni	4	30	55	25	373	99	111	38
Pb	<4	194	118	12	19	126	25	52
Rb	4	<2	<2	<2	2	<2	5	9
Sb	<4	<4	4	<4	<4	<4	<4	<4
Sc	10	<2	5	4	17	29	45	17
Sn	<4	<4	<4	<4	<4	<4	<4	<4
Sr	4	6	102	29	19	18	9	16
Та	<5	<5	<5	<5	<5	<5	<5	<5
Те	<6	<6	<6	<6	<6	<6	<6	6
Th	3	<2	2	<2	<2	12	5	8
U	<2	5	<2	<2	<2	8	3	11
V	21	86	49	17	318	70	1 486	67
W	nd	<4						
Y	3	12	35	8	252	48	40	30
Zn	6	823	448	107	390	202	242	40
Zr	13	11	31	10	12	122	38	44

				Trace elemen	et analysis only			
GSWA no. Rock type	110058 gossan	110059 quartz vein	110060 gossan	110061 quartz vein	110062 quartz vein	110063 ferruginous quartz vein	110064 quartz vein	110067 quartz vein
Latitude Longitude	22°36'02" 122°22'05"	22°35'42" 122°22'00"	22°35'40" 122°21'59"	22°35'40" 122°21'59"	22°35'43" 122°22'05"	22°35'43" 122°22'05"	22°35'48" 122°22'15"	22°35'52" 122°22'15"
				Ре	cent			
Fe ₂ O ₃	55.10	1.03	60.20	1.36	1.67	15.00	2.29	0.96
				Parts p	er million			
Au	0.02	0.01	0.01	0.01	0.01	0.04	0.01	0.21
Ag	<5	<6	<5	<6	<6	8	<6	<6
As	10	<4	4	<4	<4	<4	<4	<4
Ba	169	<11	2 656	26	12	49	111	<11
Bi	<4	<4	<4	<4	<4	<4	<4	<4
Cd	<5	<2	<5	2	<2	<2	<2	<2
Ce	90	<6	24	6	20	8	14	<6
Co	25	<3	39	<3	<3	6	<3	<3
Cr	nd	nd	nd	nd	nd	nd	nd	nd
Cu	109	<4	41	18	4	34	11	<4
Ga	4	<3	6	<3	<3	<3	<3	<3
Ge	3	<3	<3	<3	<3	<3	<3	<3
La	105	<5	18	<5	11	<5	12	<5
Li	<6	<6	<6	<6	<6	<6	<6	<6
Mn	132	12	231	32	18	183	38	23
Мо	<6	<2	<6	<2	<2	11	<2	<2
Nb	<7	<7	<7	<7	<7	<7	<7	<7
Ni	144	<3	79	4	4	34	8	3
Pb	48	<4	<4	4	19	27	9	<4
Rb	4	<2	<2	<2	<2	<2	<2	<2
Sb	<4	<4	<4	<4	<4	<4	<4	<4
Sc	12	<2	15	<2	<2	16	2	<2
Sn	<4	<4	<4	<4	<4	<4	<4	<4
Sr	22	<2	32	2	4	11	7	2
Та	<5	<5	<5	<5	<5	<5	<5	<5
Те	<6	<1	<6	9	<1	2	2	1
Th	6	<2	3	<2	<2	<2	<2	<2
U	4	<2	9	<2	<2	10	<2	<2
V	93	4	224	15	8	114	15	3
W	17	<4	10	<4	<4	<4	<4	<4
Y	80	<2	40	<2	<2	7	4	2
Zn	240	<3	106	3	4	52	3	4
7	22	.E	10	-5	.5	7	-5	

Bi

U

V

W

Y

Zn

Zr

<4

2

15

7

6

12

64

14

17

35

244

15

<4

33

19

<5

24

25

5

8

19

38

258

26

12

20

122

47

<4

3

5

<5

Trace element analysis only GSWA no. 110070 110072 110077 110080 110083 110085 110087 110078 Rock type quartz vein gossan quartz vein gossan gossan ferruginous gossan gossan quartz vein Latitude 22°35'20" 22°35'21" 22°34'07" 22°34'00" 22°34'03" 22°32'18" 22°32'18" 22°32'11" Longitude 122°20'54" 122°22'13" 122°21'21" 122°22'20" 122°20'50" 122°21'26" 122°21'26" 122°18'33" Percent Fe₂O₃ 3.46 77.6 74.9 8.09 77.10 77.40 61.30 2.23 Parts per million < 0.01 0.01 Au 0.03 0.01 0.01 0.02 0.01 0.01 <6 <5 <5 7 <5 <5 <5 <6 Ag 16 14 As <4 <4 <4 <4 <4 <4 Ba 32 80 392 1 019 227 708 390 60 <4 <4 <4 <4 <4 <4 <4 <4 Cd 2 <5 <5 <5 <5 <5 <5 <2 42 94 43 109 20 10 Ce <6 <6 Co <3 39 41 8 1855 24 <3 nd Cr nd nd nd nd nd nd nd 9 28 17 47 Cu 46 <4 41 <4 Ga <3 3 <3 <3 3 <3 7 <3 <3 <3 <3 <3 5 3 3 <3 Ge La <5 <5 50 37 15 32 8 7 Li <6 <6 <6 <6 <6 <6 <6 <6 Mn 15 104 319 979 67 248 403 282 <2 <2 Mo <6 <6 <6 <6 <6 <6 <7 <7 Nb <7 <7 <7 <7 <7 <7 Ni 12 60 176 149 214 218 164 6 Pb <4 5 139 28 <4 16 4 <4 Rb 2 <2 <2 <2 <2 7 15 2 Sb <4 <4 <4 <4 <4 <4 <4 <4 Sc <2 34 30 <2 3 4 4 <2 <4 <4 <4 <4 <4 <4 <4 <4 Sn 2 8 39 20 41 4 21 26 Sr Та <5 <5 <5 <5 <5 <5 <5 <5 11 <6 <6 <6 <1 Te 1 <6 <6 Th <2 2 2 <2 5 <2 19 <2 <2 3 6 4 7 14 2 6 10337 218 22 55 70 6 38

				Trace eleme	nt analvsis onlv			
GSWA no. Rock type	111803 ferruginous quartz vein	111804 quartz vein	111805 quartz vein	111809 gossan	111810 gossan	111818 gossan	111819 gossan	111821 gossan
Latitude Longitude	22°30'30" 122°23'20"	22°30'30" 122°23'20"	22°30'30" 122°23'20	22°31'14" 122°24'25"	22°31'14" 122°24'25"	22°32'12" 122°25'17"	22°32'12" 122°25'17"	22°35'32" 122°24'50"
				Pe	ercent			
Fe ₂ O ₃	27.60	5.29	5.73	44.60	73.80	49.60	34.30	10.90
				Parts p	er million			
Au	0.05	0.03	0.05	0.03	0.01	0.05	0.01	0.02
Ag	<6	<6	<6	<5	33	8	17	5
As	11	<4	5	16	12	5	7	<4
Ba	334	556	334	1 015	205	580	392	718
Bi	<4	<4	<4	<4	<4	<4	<4	<4
Cd	2	<2	<2	<5	<5	<5	<5	<5
Ce	27	9	<6	38	22	8	12	281
Co	6	4	8	64	35	6	<3	58
Cr	nd	nd	nd	nd	nd	nd	nd	nd
Cu	40	12	26	32	32	<4	<4	23
Ga	<3	<3	<3	<3	4	<3	3	<3
Ge	3	<3	<3	3	<3	<3	5	<3
La	5	<5	<5	18	8	12	6	242
La	<6	0	<6	-6	<6	-6	<6	11
Mn	1 835	135	360	5 517	1 228	96	8	414
Mo	-2	~2	200	-6	1 220	<i>7</i> 0	<6	-14
Nb	~7	~7	~7	<0	<0	<0	<0	<0
Ni	57	13	18	209	66	20	15	108
Dh	8	15	-1	13	7	-1	5	8
I U Dh	5	-2	14	13	12	12	16	-2
Sh	-1	<2	14	12	13	13	10	<2
50	2	<7	<7	<7	<7	<7	2	2
SC Sn	-1	<2	<2	<2	5	<2	-4	-4
SII Sr	<7	~+	< 4	4	27	7	<# 5	25
51 To	<2	-5	-5	44	-5	-5	-5	25
Та	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3
Th	2	1		<0	2	<0	<0	<0
III II	4	-2	$\frac{2}{2}$	0	-2	-2	2	11
V	15	12	∠ 5	26	24	21	50	22
v XX7	5	15	- 1	50	24 6	∠1 5	50	33 5
vv V	50	<4	<4	15	0	5	<4	5 124
I Zu	5U 27	15	5	24	14	12	14	124
Zn Zr	3/	15	21	82	/0	15	11	0
Σľ	970	31	3	50	45	20	31	3

Trace element analysis only 111825 GSWA no. 111822 111828 111829 111830 111834 111835 111839 Rock type silcrete quartz vein quartz vein quartz vein quartz vein gossan gossan gossan 22°35'22" Latitude 22°35'32" $22^{\circ}36'28''$ 22°35'22" 22°35'22" 22°34'35" 22°34'06" 22°34'02" Longitude 122°20'03" 122°24'50" 122°25'00" 122°20'03" 122°20'03" 122°18'47" 122°18'27" 122°17'34" Percent Fe₂O₃ 63.50 4.42 4.36 57.10 43.30 3.46 3.29 3.73 Parts per million 0.01 Au 0.02 0.01 0.05 0.01 < 0.01 0.04 0.04 35 <5 6 34 <5 <6 <6 <6 Ag 5 As 6 <4 <4 <4 <4 <4 <4 Ba 985 943 68 198 250 137 17 <11 <4 <4 <4 178 8 Bi <4 <4 <4 Cd <5 <5 <2 <5 <5 2 <2 2 87 Ce <6 32 26 16 12 <6 <6 Co 60 8 12 21 10 10 25 5 Cr nd nd nd nd nd nd nd nd 2 473 68 227 228 104 236 Cu 13 6 Ga <3 12 <3 5 3 18 <3 <3 3 <3 <3 3 4 <3 <3 <3 Ge La 8 15 12 <5 35 8 <5 <5 Li <6 55 <6 <6 <6 <6 <6 <6 799 Mn 321 18 152 150 274 73 29 <2 125 2 <2 Mo <6 <6 <6 <6 9 <7 <7 <7 <7 Nb <7 <7 <7 Ni 524 20 29 161 53 21 10 13 37 Pb 61 18 21 5 12 4 <4 Rb 32 24 <2 18 <2 15 2 <2 Sb <4 <4 <4 <4 <4 <4 <4 <4 Sc <2 7 <2 8 <2 7 <2 <2 <4 <4 <4 <4 <4 <4 <4 <4 Sn 4 8 28 50 <2 <2 62 10Sr Та <5 <5 <5 <5 <5 <5 <5 <5 2 8 4 <6 <6 <1 <6 Te <6 Th 2 12 <2 103 25 <2 <2 6 2 14 10 32 <2 2 <2 U 7 V 822 103 9 91 41 79 3 W 39 <4 <4 16 7 <4 <4 <4 Y 12 8 2 25 30 <2 23 6 Zn 85 15 13 152 47 77 5 13 267 5 105 12 99 <5 <5 Zr 11

	Trace element analysis only									
GSWA no. Rock type	111840. gossan	111841 ferruginous quartz yein	111842 quartz vein	111845 gossan	111846 ferruginous quartz vein	111847 gossan	111848 ferruginous quartz vein	111850 gossan		
Latitude Longitude	22°35'12" 122°19'17"	22°35'03" 122°19'10"	22°35'03" 122°19'10"	22°34'10" 122°19'55"	22°34'10" 122°19'55"	22°34'13" 122°19'53"	22°34'13" 122°19'53"	22°33'55" 122°19'45"		
				Pe	rcent					
Fe ₂ O ₃	50.90	41.20	5.13	72.50	42.20	75.40	5.19	13.20		
				Parts p	er million					
Au	0.01	0.02	0.02	0.01	0.07	0.02	0.75	4.07		
Ag	<5	<6	<6	29	<6	36	<5	9		
As	5	<4	<4	<4	<4	<4	<4	4		
Ba	409	266	24	332	76	35	<11	78		
Bi	<4	<4	<4	<4	<4	<4	<4	<4		
Cd	<5	</td <td><?</td><td><5</td><td><?</td><td><5</td><td><5</td><td><5</td></td></td>	</td <td><5</td> <td><?</td><td><5</td><td><5</td><td><5</td></td>	<5	</td <td><5</td> <td><5</td> <td><5</td>	<5	<5	<5		
Ce	<6	70	<6	24	14	432	<6	<6		
Co	16	22	4	18	6	52	6	13		
Cr	nd	nd	nd	nd	nd	nd	nd	nd		
Cu	171	101	21	285	305	219	26	658		
Ga	<3	101	<3	205	-3	3	<3	<3		
Ge	<3	3	<3	~3	3	3	<3	<3		
La	<5	33	<5	23	6	78	<5	<5		
Li	<6	-6	<6	25 <6	<6	 <6	<6	<6		
Mn	03	507	63	413	465	184	27	<0 60		
Mo	93 -6	1	03	415	405	-6	21	8		
Nb	<0	-7	-7	<0	<2	<0	<0	-7		
NG NG	~7	208	16	150	283	708	63	</td		
Dh	12	208	10	139	203	115	03	0		
PU Dh	11	10	19	5	93	115	9	10		
KD Ch	<2	10	<2	5	<2	<2	<2	<2		
SD S-	<4	<4	<4	<4	<4	<4	<4	<4		
Sc	16	5	<2	8	3	5	<2	<2		
Sn	<4	<4	<4	<4	<4	4	<4	4		
Sr	8	19	6	13	5	<2	<2	8		
1a T	<5	<5	<>>	<5	<5	<5	<5	<5		
le	<6	2	3	<6	<1	<6	<6	51		
Th	<2	10	13	4	<2	2	<2	<2		
U	3	18	4	/	102	9	3	<2		
V	213	102	31	99	102	41	14	10		
W	9	17	<4	17	25	53	<4	<4		
Y	42	41	10	9	10	42	2	<2		
Zn	58	171	21	48	80	125	18	17		
Zr	<5	36	10	25	<5	26	5	<5		

	Trace element analysis only									
GSWA no. Rock type	111851 gossan	111873 metagabbro	111874 metadiorite	111875 metagabbro	111876 ultramafic	111877 meta-BIF	111878. gossan	111879 gossan		
Latitude Longitude	22°33'55" 122°19'45"	22°35'13" 122°26'05"	22°35'13" 122°26'05"	22°35'13" 122°26'05"	22°35'13" 122°26'05"	22°31'35" 122°28'43"	22°31'35" 122°28'48"	22°31'35" 122°28'48"		
				Der	roont					
Fe ₂ O ₃	17.60	6.99	4.00	8.99	12.00	76.90	49.10	51.90		
				Parts p	er million					
Au	0.74	0.02	0.01	0.01	0.01	0.01	0.01	0.01		
Aσ	11	.</td <td><?.</td><td><?.</td><td><2</td><td><2</td><td><2</td><td><?.</td></td></td></td>	.</td <td><?.</td><td><2</td><td><2</td><td><2</td><td><?.</td></td></td>	.</td <td><2</td> <td><2</td> <td><2</td> <td><?.</td></td>	<2	<2	<2	.</td		
As	5	<4	<4	<4	<4	6	6	<4		
Ba	168	492	82	200	552	19	448	<11		
Bi	4	<4	<4	<4	<4	<4	<4	<4		
Cd	<5	<5	<5	<5	<5	<5	<5	<5		
Ce	<6	<6	<6	<6	<6	19	82	26		
Co	10	nd	nd	nd	nd	nd	nd	nd		
Cr	nd	613	97	117	159	4	24	~4		
Cu	935	30	43	7	11	28	647	78		
Ga	<3	10	14	10	8	<3	<3	4		
Ge	<3	<3	<3	<3	< 3	3	3	3		
La	<5	<5	<5	<5	<5	16	64	11		
Li	<6	nd	nd	nd	nd	nd	nd	nd		
Mn	53	1 105	639	1 029	1 073	868	50 710	1 540		
Mo	11	<2	<2	<2	<2	<2	5	2		
Nh	<7	<7	<7	<7	<7	21	16	21		
Ni	6	247	138	608	712	14	56	59		
Ph	-1		13	6	1	-1	8	6		
Rh	<2	11	7	2	$\frac{1}{2}$	<2	~2	~2		
Sh	<2	<4	-4	<4	<4	<2	<2	<2		
Sc	<2	nd	nd	nd	nd	nd	nd	nd		
Sn	<2	<4	<4	<4	<4	8	8	-4		
Sr	12	08	160	61	36	25	152	63		
T ₂	<5	-5	<5	<5	~5	25 <5	-5	<5		
Те	17	<6	<6	<5	<6	<5	<5	7		
Th	-2	2	<0	<0	<0	<0	3	-2		
II	~ <u>~</u>	<2	<2	<2	<2	<2	\sim	<2		
V	37	76	62	28	40	11	50	12		
W	-1	nd	nd	20 nd	nd	nd	nd	nd		
v	<7	5	5	2	3	13	20	27		
1 7n	10	10	37	62	64	35	165	27 75		
ZII 7r	-5	47	52	18	12	11	50	15		
Z 1	<)	33	55	10	12	11	50	11		

	Trace element analysis only									
GSWA no. Rock type	111880 quartz vein	111881 quartz vein	111882 quartz vein	111883 quartz vein	111884 felsic rock	111885 quartz vein	111886 quartz vein	111887 quartz vein		
Latitude Longitude	22°31'35" 122°28'48"	22°31'35" 122°28'48"	22°31'35" 122°28'48"	22°31'35" 122°28'48"	22°31'21" 122°29'42"	22°34'44" 122°20'50"	22°34'46" 122°20'51"	22°34'46" 122°20'51"		
				Do	noont					
Fe ₂ O ₃	3.00	1.0	< 0.07	<0.07	5.00	0.44	0.76	0.69		
				Parts p	er million					
Au	0.01	0.01	0.01	0.01	0.01	0.02	0.02	< 0.01		
Ag	<2	<2	<2	<2	<2	<5	<5	<5		
As	<4	<4	<4	<4	<4	<4	<4	<4		
Ba	<11	26	12	16	52	28	26	52		
Bi	<4	<4	<4	<4	<4	<4	<4	<4		
Cd	<5	<5	<5	<5	<5	<5	<5	<5		
Ce	<6	7	<6	<6	<6	<6	<6	92		
Co	nd	nd	nd	nd	nd	nd	nd	nd		
Cr	-1	-1	-1	-1	2 666	13	23	17		
Cu	<4	<4	<4	<4	2 000	-1	-1	-1		
Ga	<3	<3	<3	<3	~3	~3	<3	<7		
Ga	<3	<3	<3	<3	<3	<3	<3	<3		
	< 5	<5	<5	<5	<5	<5	<5	22		
La	< J nd	<.j	<.) nd	< J nd	< J	< J	<.)	32 nd		
LI	240	12 5(0	14	1.094	110 570	nd 	IIU d	na		
Mn	249	13 560	44	1 084	579	nd	nd	nd		
Mo	<2	<2	<2	<2	<2	<0	<0	<6		
Nb	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--></td></td></td>	</td <td><!--</td--><td><!--</td--></td></td>	</td <td><!--</td--></td>	</td		
N1	5	8	5	5	2 203	5	6	5		
Pb	<4	<4	4	<4	<4	<4	<4	23		
Rb	<2	<2	3	<2	<2	<2	<2	<2		
Sb	<4	<4	<4	<4	<4	<4	<4	<4		
Sc	nd	nd	nd	nd	nd	nd	nd	nd		
Sn	<4	<4	<4	<4	<4	<4	<4	<4		
Sr	7	32	<2	2	2	<2	<2	22		
Та	<5	<5	<5	<5	<5	<5	<5	<5		
Te	<6	<6	<6	<6	<6	<6	<6	<6		
Th	<2	<2	2	<2	2	<2	<2	5		
U	<2	<2	<2	<2	<2	<2	<2	<2		
V	<3	<3	<3	<3	55	<3	21	33		
W	nd	nd	nd	nd	nd	nd	nd	nd		
Y	2	3	<2	<2	<2	<2	<2	5		
Zn	6	13	<3	3	43	<3	<3	<3		
Zr	<5	10	<5	<5	<5	<5	<5	11		

Trace element analysis only 111893B GSWA no. 111888 111889 111890 111891 111892 111893A 111893C Rock type quartz vein ultramafic quartzite quartz vein quartz vein quartz vein quartz vein gossan 22°34'50" Latitude 22°34'46" 22°30'28" 22°34'50" $22^\circ 34' 50''$ 22°34'57" 22°34'57" 22°34'57" Longitude 122°20'55" 122°20'51" 122°28'50" 122°20'55" 122°20'55" 122°20'54" 122°20'54" 122°20'54" Percent Fe₂O₃ 1.09 17.30 4.18 1.22 3.98 25.20 0.56 0.90 Parts per million 0.01 Au < 0.01 0.01 0.01 < 0.01 0.01 0.01 0.02 <5 14 <5 <5 <5 18 <5 <5 Ag As <4 <4 <4 <4 <4 <4 <4 <4 Ba 31 83 594 498 35 321 <11 <11 <4 <4 <4 <4 Bi <4 <4 <4 <4 Cd <5 <5 <5 <5 <5 <5 <5 <5 Ce <6 11 <6 10 <6 130 <6 <6 Co nd nd nd nd nd nd nd nd 9 Cr 18 1 0 9 5 44 13 89 8 9 105 21 10Cu <4 <4 <4 <4 <4 Ga <3 14 3 7 19 26 <3 <3 <3 <3 <3 <3 <3 <3 <3 Ge <3 La <5 5 <5 <5 <5 44 <5 <5 Li nd nd nd nd nd nd nd nd Mn nd nd nd nd nd nd nd nd 7 Mo <6 8 <6 <6 <6 <6 <6 Nb <7 <7 <7 <7 <7 <7 <7 <7 Ni 7 411 15 6 1173 6 4 Pb <4 <4 <4 <4 <4 6 <4 <4 Rb <2 3 <2 12 <2 <2 <2 <2 Sb <4 <4 <4 <4 <4 <4 <4 <4 Sc nd nd nd nd nd nd nd nd <4 <4 <4 7 <4 Sn <4 <4 <4 2 9 12 187 3 33 <2 <2 Sr Та <5 <5 <5 <5 <5 <5 <5 <5 <6 <6 <6 <6 <6 Te <6 <6 <6 Th <2 <2 4 5 <2 9 <2 <2 <2 <2 <2 3 <2 5 <2 <2 U V 15 299 194 14 37 574 <3 3 W nd nd nd nd nd nd nd nd Y 2 <2 12 16 <2 21 <2 <2 Zn 5 127 13 3 22 57 <3 <3 <5 71 7 34 <5 <5 68 18 Zr

	Trace element analysis only									
GSWA no.	111893D	111893E	111894A	111894B	111894C	111895A	111895B	111895C		
Rock type	quartz vein	quartz vein	quartz vein	ironstone	quartz vein	gossan	quartz vein	quartz vein		
Latitude	22°34'57"	22°34'57"	22°35'26"	22°35'26"	22°35'26"	22°35'16"	22°35'16"	22°35'16"		
Longitude	122°20'54"	122°20'54"	122°21'17"	122°21'17"	122°21'17"	122°21'07"	122°21′07″	122°21'07"		
				Pe	rcent					
Fe ₂ O ₃	0.92	1.34	11.70	62.20	0.99	25.00	1.32	0.80		
				Parts p	er million					
Au	0.01	0.01	0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01		
Ag	<5	<5	8	11	<5	17	<5	<5		
As	<4	<4	<4	<4	<4	<4	<4	<4		
Ba	21	28	243	1 887	27	135	13	50		
Bi	<4	<4	<4	<4	<4	<4	<4	<4		
Cd	<5	<5	<5	<5	<5	<5	<5	<5		
Ce	24	9	46	38	<6	9	6	<6		
Со	nd	nd	nd	nd	nd	nd	nd	nd		
Cr	14	15	34	112	8	31	7	9		
Cu	<4	<4	12	64	<4	57	<4	<4		
Ga	<3	<3	<3	6	<3	4	<3	<3		
Ge	<3	<3	<3	<3	<3	<3	<3	<3		
La	6	5	30	40	<5	7	<5	<5		
Li	nd	nd	nd	nd	nd	nd	nd	nd		
Mn	nd	nd	nd	nd	nd	nd	nd	nd		
Мо	<6	<6	<6	<6	<6	9	<6	<6		
Nb	<7	<7	<7	<7	<7	<7	<7	<7		
Ni	3	5	16	53	5	37	5	3		
Pb	5	9	<4	6	<4	<4	<4	<4		
Rb	<2	<2	<2	<2	<2	<2	<2	<2		
Sb	<4	<4	<4	<4	<4	<4	<4	<4		
Sc	nd	nd	nd	nd	nd	nd	nd	nd		
Sn	<4	<4	<4	<4	<4	<4	<4	<4		
Sr	7	7	21	35	2	35	<2	<2		
Та	<5	<5	<5	<5	<5	<5	<5	<5		
Те	<6	<6	<6	<6	<6	<6	<6	<6		
Th	<2	<2	<2	3	<2	<2	<2	<2		
U	<2	<2	4	8	<2	4	<2	<2		
V	<3	8	136	1 025	5	271	7	4		
W	nd	nd	nd	nd	nd	nd	nd	nd		
Y	<2	<2	4	13	<2	8	<2	<2		
Zn	<3	5	19	68	<3	46	<3	<3		
Zr	<5	<5	12	43	<5	16	<5	<5		
Zn Zr	<3 <5	5 <5	19 12	68 43	<3 <5	46 16	<3 <5	<		

Trace element analysis only 111895D 112314 GSWA no. 111895E 111895F 112306 112307 112308 112309 Rock type quartz vein ironstone quartz vein quartz vein quartz vein ferruginous quartz vein ferruginous quartz vein quartz vein 22°35'16" 22°35'16" 22°35'16" 22°33'27" 22°33'27" 22°34'33" 22°34'10" 22°32'55" Latitude 122°21'07" 122°21'07" 122°21'07" 122°13'47" 122°13'47" 122°16'18" 122°17'08" 122°14'33" Longitude Percent Fe₂O₃ 68.10 1.34 1.09 0.95 0.64 29.40 8.56 13.90 Parts per million < 0.01 < 0.01 < 0.01 0.10 0.08 0.07 0.10 Au 0.08 <5 <5 <5 <5 <5 9 Ag 6 <5 <4 9 <4 <4 As <4 <4 6 <4 Ba 166 12 <11 33 <11 310 110 116 <4 Bi <4 <4 <4 <4 <4 4 <4 Cd <5 <5 <5 <5 <5 <5 <5 <5 28 56 <6 7 <6 <6 29 Ce <6 Co nd nd nd <3 <3 479 4 10 Cr 110 118 nd nd nd nd nd 102 Cu <4 <4 <4 817 95 207 6 4 <3 <3 <3 <3 <3 <3 3 Ga <3 <3 <3 <3 4 <3 <3 <3 Ge La 12 17 <5 5 <5 <5 11 <5 Li nd nd nd <6 <6 <6 <6 <6 Mn nd nd nd 28 17 569 41 30 <6 <6 <6 7 28 Mo <6 <6 <6 <7 <7 <7 <7 <7 Nb <7 <7 <7 Ni 37 4 4 4 4 414 2113 574 Pb 4 <4 <4 <4 <4 350 6 <2 <2 Rb <2 <2 3 <2 3 2 Sb <4 <4 <4 <4 <4 <4 <4 <4 nd <2 Sc nd nd <2 <2 5 <2 Sn <4 <4 <4 <4 <4 <4 <4 <4 Sr 44 6 <2 4 <2 25 34 4 Та <5 <5 <5 <5 <5 <5 <5 <5 Те <6 <6 <6 <6 <6 <6 <6 <6 <2 Th 2 <2 <2 <2 <2 2 2 3 <2 <2 <2 <2 <2 2 <2 U V 4 3 <3 <3 184 9 346 16 W nd nd nd <4 <4 30 7 <4 Y 2 <2 20 <2 18 <2 <2 5 Zn 75 <3 <3 3 <3 148 21 47 Zr 76 <5 <5 <5 <5 <5 11 6

	Trace element analysis only										
GSWA no.	112318	112320	112322	112328	112329	112337	112342	112343	112344		
Rock type	quartz,	quartz	gossan	gossan	gossan	quartz	quartz	quartz	quartz		
	vein	vein				vein	vein	vein	vein		
Latitude	22°32'43"	22°32'44"	22°32'24"	22°32'12"	22°32'12"	22°32'47"	22°34'48"	22°34'48"	22°34'48"		
Longitude	122°13'43"	122°13'23"	122°12'03"	122°11'52"	122°11'52"	122°10'15"	122°13'58"	122°13'58"	122°13'58"		
					Percent						
Fe ₂ O ₃	1.80	5.66	58.30	58.30	66.80	2.43	1.04	5.85	3.05		
					Parts per milli	on					
Au	0.08	0.10	0.07	0.07	0.07	0.08	0.08	0.07	0.07		
Ag	<5	<5	<5	<5	<5	<5	<5	<5	<5		
As	<4	<4	<4	<4	<4	<4	<4	4	<4		
Ba	38	44	137	380	94	19	210	1 478	179		
Bi	35	4	<4	<4	<4	<4	<4	<4	<4		
Cd	<5	<5	<5	<5	<5	<5	<5	<5	<5		
Ce	<6	<6	64	25	43	21	194	8	9		
Co	21	13	10	8	32	<3	<3	64	<3		
Cr	nd	nd	nd	nd	nd	nd	nd	nd	nd		
Cu	132	125	39	360	810	<4	6	14	6		
Ga	<3	<3	10	7	5	<3	<3	<3	3		
Ge	3	<3	3	<3	3	<3	<3	<3	<3		
La	<5	<5	37	11	25	11	89	<5	7		
Li	<6	<6	<6	<6	<6	<6	51	<6	18		
Mn	41	23	122	268	303	32	118	38	41		
Mo	72	6	<6	<6	<6	<6	<6	6	<6		
Nb	<7	<7	<7	<7	<7	<7	<7	<7	<7		
Ni	10	13	21	71	237	8	4	11	5		
Pb	45	5	5	5	13	6	14	10	5		
Rb	<2	<2	<2	51	7	<2	4	<2	13		
Sb	<4	<4	<4	<4	<4	<4	<4	<4	<4		
Sc	<2	<2	50	6	6	<2	3	<2	4		
Sn	<4	<4	<4	5	<4	<4	<4	<4	<4		
Sr	3	<2	10	27	8	2	92	18	9		
Та	<5	<5	<5	<5	<5	<5	<5	<5	<5		
Те	<6	<6	<6	<6	<6	<6	<6	<6	<6		
Th	5	<2	<2	4	7	2	11	<2	5		
U	<2	<2	6	4	14	<2	<2	9	3		
V	7	<3	605	53	90	16	19	63	33		
W	<4	<4	6	10	34	<4	<4	<4	<4		
Y	<2	<2	24	32	56	6	18	<2	8		
Zn	15	8	78	147	188	<3	3	3	3		
Zr	<5	<5	67	40	49	<5	39	<5	62		

Trace element analysis only 112346 112351 GSWA no. 112345 112347 112349 112350 112348 Rock type quartz vein quartz vein quartz vein quartz vein gossan gossan gossan 22°34'47" Latitude $22^{\circ}34'48''$ 22°34'47" 22°34'47" 22°34'40" 22°34'47" 22°35'23" Longitude 122°13'58" 122°13'44" $122^{\circ}13'44''$ 122°13'28" 122°13'18" 122°13'18" 122°13'24" Percent Fe₂O₃ 4.06 62.50 1.35 65.40 1.08 0.56 63.4 Parts per million 0.07 0.07 Au 0.09 0.07 0.08 0.07 0.07 <5 <5 <5 <5 <5 <5 <5 Ag 5 As 4 <4 <4 <4 <4 <4 Ba 233 520 858 1 341 98 16 36 <4 16 <4 <4 Bi <4 <4 <4 Cd <5 <5 <5 <5 <5 <5 <5 52 Ce 10 13 16 <6 <6 <6 Co 99 30 <3 31 7 <3 51 Cr nd nd nd nd nd nd nd 39 12 30 5 448 Cu $<\!\!4$ 111 Ga <3 5 6 3 <3 <3 14 <3 3 <3 <3 <3 <3 Ge 4 La <5 31 7 16 <5 <5 <5 19 Li <6 <6 <6 <6 <6 <6 Mn 20 390 76 243 44 16 1 390 Mo <6 <6 <6 <6 <6 <6 <6 <7 <7 Nb <7 <7 <7 <7 <7 Ni 14 91 5 132 6 5 279 7 44 7 Pb 16 41 <4 <4 Rb <2 18 <2 2 <2 2 <2 Sb <4 <4 <4 <4 <4 <4 <4 Sc <2 6 <2 29 <2 <2 42 <4 <4 <4 <4 <4 <4 Sn <4 5 2 13 325 39 39 47 Sr Та <5 <5 <5 <5 <5 <5 6 <6 <6 <6 <6 <6 Te <6 <6 Th <2 4 <2 4 3 <2 <2 U 2 8 <2 15 <2 <2 <2 7 5 V 25 34 3 222 321 W <4 9 <4 12 <4 <4 <4 Y 2 <2 19 <2 21 <2 31 Zn 3 237 5 159 6 <3 80 5 70 10 26 <5 <5 26 Zr

	Trace element analysis only									
GSWA no. Rock type	112352 gossan	112353 quartz vein	112359 quartz vein	112360 quartz vein	112361 ferruginous	112366 quartz vein	112368 gossan	112376 ferruginous		
Latitude Longitude	22°35'47" 122°13'25"	22°36'19" 122°14'17"	22°34'46" 122°12'03"	22°34'46" 122°12'03"	22°34'46" 122°12'03"	22°36'55" 122°11'05"	22°36'10" 122°12'45"	22°34'04" 122°11'45"		
				Per	cent					
Fe ₂ O ₃	48.30	1.14	0.84	1.66	9.88	7.36	75.70	10.30		
				Parts p	er million					
Au	0.06	0.07	0.08	0.09	0.08	0.11	0.07	0.07		
Ag	5	<5	<5	<5	5	<5	<5	<5		
As	5	<4	<4	<4	5	<4	73	28		
Ba	991	27	95	1011	191	46	160	199		
Bi	<4	<4	<4	<4	<4	<4	<4	<4		
Cd	<5	<5	<5	<5	<5	<5	<5	<5		
Ce	50	<6	6	669	19	42	<6	<6		
Co	30	<3	<3	<3	4	8	16	61		
Cr	nd	nd	nd	nd	nd	nd	nd	nd		
Cu	16	41	<4	4	12	17	90	11		
Ga	19	<3	<3	<3	<3	8	10	6		
Ge	3	<3	<3	<3	<3	<3	4	3		
La	22	<5	<5	413	15	23	<5	<5		
Li	22 <6	<6	<6	0	-6	13	<6	19		
Mn	180	33	35	263	378	172	156	288		
Mo	109	-6	-6	203	578	-6	+50	200		
Nh	<0	<0	<0	<0	-7	<0	<7	<0		
IND NE	0	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><1</td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><1</td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><1</td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><1</td></td></td>	</td <td><!--</td--><td><1</td></td>	</td <td><1</td>	<1		
Dh	< 3	-1	5	7	0	15	< 3	130		
PU DL	0	<4	<4	26	20	<4	<4	<4		
KD Ch	03	<2	10	30	<2	04	0	1		
50	3	<4	<4	<4	<4	<4	<4	<4		
Sc	1	3	<2	<2	<2	<2	21	<2		
SII	<4	<4	<4	<4	<4	<4	<4	<4		
Sr	92	2	10	41	/	5	85	33		
Ta T	<5	<5	<5	<5	<5	<5	<5	<5		
le	<6	<6	<6	<0	<0	<0	<0	<6		
Th	2	2	3	14	4	10	<2	<2		
U	<2	<2	<2	3	6	2	<2	<2		
V	189	168	9	19	46	51	262	109		
W	12	<4	<4	4	<4	<4	22	21		
Y	15	6	<2	59	11	14	21	14		
Zn	6	5	4	4	9	71	178	23		
Zr	147	8	8	24	8	71	45	35		

Trace element analysis only GSWA no. 112377 112378 112386 112394 112395 112401 112402 112403 Rock type quartz vein quartz vein quartz vein gossan quartz vein ferruginous gossan gossan quartz, vein 22°32′03″ 22°34'04" 22°34'04" 22°26'33" 22°26'33" 22°32'03" 22°32'03" 22°32'03" Latitude 122°11'45" 122°11'45" 122°09'29" 122°02'20" 122°02'20" 122°05'32" 122°05'32" 122°05'32" Longitude Percent Fe₂O₃ 4.40 27.00 1.90 1.67 26.50 2.00 28.00 64.90 Parts per million 0.07 0.07 0.07 0.07 0.01 0.01 < 0.01 Au 0.12 <5 <5 <5 <5 <2 <2 Ag <5 <2 76 <4 <4 10 <4 <4 As <4 <4 Ba 172 623 50 47 1 203 373 36 3 983 <4 Bi <4 <4 <4 <4 <4 <4 <4 Cd <5 <5 <5 <5 <5 <5 <5 <5 <6 190 50 84 <6 59 7 24 Ce 25 Co <3 47 <3 5 nd nd nd Cr nd nd 36 170 5 nd nd nd 909 173 Cu 5 61 <4 204 6 Ga 10 17 <3 <3 <3 <3 <3 3 <3 <3 5 <3 3 4 Ge <3 <3 92 La 30 40 <5 6 45 <5 10 42 33 Li <6 <6 <6 nd nd nd Mn 38 315 120 26 42 21<5 3 073 <6 <6 <2 3 9 Mo <6 <6 <6 <7 7 <7 <7 <7 <7 Nb 14 <7 Ni 4 <3 6 13 262 1066 172 Pb 7 24 4 36 13 23 11 7 <2 24 Rb 136 <2 <2 <2 <2 6 <4 Sb <4 <4 <4 <4 <4 <4 <4 <2 <2 nd Sc 15 <2 <2 nd nd Sn <4 <4 <4 <4 <4 <4 <4 <4 Sr 18 175 4 5 347 18 3 51 Та <5 <5 <5 <5 <5 <5 <5 <5 Te <6 <6 <6 18 <6 <6 <6 <6 Th 5 14 3 <2 <2 4 <2 7 2 3 2 <2 2 <2 9 10 U V 31 13 76 19 26 12 62 92 W 5 27 <4 <4 19 nd nd nd Y 34 5 4 <2 2 3 4 28 Zn <3 44 4 9 217 36 239 Zr 7 151 <5 <5 23 25 <5 23

	Trace element analysis only									
GSWA no. Rock type	112404 quartz vein	112404 112405 uartz vein gossan	112406 quartz vein	112407 ferruginous quartz vein	112408 quartz vein	112412 amphibolite	112413 ferruginous carbonate	112415 quartz vein		
Latitude Longitude	22°32'03" 122°05'32"	22°31'55" 122°05'32"	22°31'31" 122°04'57"	22°31'31" 122°04'57"	22°33'55" 122°08'20"	22°33'16" 122°03'35"	22°33'16" 122°03'35"	22°31'04" 122°01'25"		
				Pe	rcent					
Fe ₂ O ₃	5.00	59.90	1.00	12.00	3.00	16.00	41.00	2.00		
				Parts p	er million					
Au	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01		
Ag	<2	<2	<2	<2	<2	<2	<2	<2		
As	<4	7	<4	<4	<4	<4	7	<4		
Ba	17	132	34	1 074	5 226	159	2 142	156		
Bi	<4	<4	<4	<4	<4	<4	<4	7		
Cd	<5	<5	<5	<5	<5	<5	<5	<5		
Ce	<6	7	<6	25	12	24	<6	88		
Co	nd	nd	nd	nd	nd	nd	nd	nd		
Cr	21	51	4	<4	18	111	7	5		
Cu	7	72	17	29	22	<4	446	133		
Ga	<3	<3	<3	<3	<3	17	<3	<3		
Ge	<3	3	<3	<3	<3	-3	4	<3		
La	18	9	<5	15	<5	9	20	61		
Li	nd	nd	nd	nd	nd	nd	nd	nd		
Mn	27	103	30	52	60	2 372	26 220	64		
Mo	~2	193	-7	-2	-2	2 312	20 220	6		
NIL	<2	4	~2	~2	<2	2	4	-7		
NG NG	~7	201	5	16	20	04	19	</td		
Dh	12	201	5	10	20	94	129	0		
PD	12	4	00	13	13	45	14	19		
KD Ch	<2	<2	<2	38	4	45	<2	3		
SD	<4	<4	<4	<4	4	<4	<4	<4		
Sc	nd	nd	nd	nd	nd	nd	na	nd		
Sn	<4	<4	<4	<4	<4	<4	44	<4		
Sr	11	13	5	19	1/1	106	617	52		
Та	<5	<5	<5	<5	<5	<5	<5	<5		
Te	<6	<6	<6	<6	<6	<6	<6	<6		
Th	<2	<2	2	7	2	4	<2	<2		
U	3	2	<2	2	2	<2	28	5		
V	21	60	5	23	9	380	467	20		
W	nd	nd	nd	nd	nd	nd	nd	nd		
Y	2	27	<2	15	17	34	12	31		
Zn	12	255	8	20	12	153	215	<3		
Zr	<5	31	<5	101	43	88	85	28		

	Trace element analysis only									
GSWA no. Rock type	112416 quartz vein	112417 gossan	112418 gossan	112419 quartz vein	112420 quartz vein	112421 quartz vein	112422 quartz vein	112423 quartz vein		
Latitude Longitude	22°31'04" 122°01'25"	22°30'41" 122°0'45"	22°31'51" 122°0'10"	22°35'34" 122°21'25"	22°35'34" 22°21'25"	22°35'34" 122°21'25"	22°35'34" 122°21'25"	22°35'34" 122°21'25"		
				Dor	cont					
Fe ₂ O ₃	1.00	42.00	12.00	1.47	2.32	1.43	1.59	1.29		
				Parts pe	er million					
Au	0.01	0.02	0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01		
Ag	<2	<2	<2	<5	<5	<5	<5	<5		
As	<4	28	<4	<4	<4	<4	<4	<4		
Ba	23	189	91	43	78	74	14	15		
Bi	<4	6	<4	<4	<4	<4	<4	<4		
Cd	<5	<5	<5	<5	<5	<5	<5	<5		
Ce	<6	129	<6	10	16	43	<6	<6		
Co	nd	nd	nd	nd	nd	nd	nd	nd		
Cr	<4	13	<4	21	30	27	18	12		
Cu	4	518	9	<4	<4	<4	<4	<4		
Ga	<3	<3	<3	<3	<3	<3	<3	<3		
Ge	<3	3	<3	<3	<3	<3	-3	<3		
La	<5	55	<5	<5	8	16	<5	<5		
Li	nd	nd	nd	nd	nd	nd	nd	nd		
Mn	24	206	5	nd	nd	nd	nd	nd		
Mo	<2	200	2	<6	<6	<6	<6	<6		
Nb	<7	10	~7	<7	<7	<0	<7	<0		
Ni	5	169	6	4	9	6	6	4		
Ph	-1	14	8	-1	-1	-1	-1	-1		
Rh	<2	14	7	<7	2	3	~2	<7		
Sh	<2	-1	5	<2	-1	-1	<2	<2		
Sc	nd	nd	nd	nd	nd	nd	nd	nd		
Sn	-4	-1	-1	11u	-1	-4	-4	-1		
Sr	<2	26	4	2	<7	6	~7	<7		
51 To	<2	20 <5	-5	-5	<2	-5	<2	<2		
Та	<5	<5	<5	<5	<5	<5	<5	<5		
Th	<0	<0 4	<0	2	1 0	1 0	2	<0		
111 TT	<2	4	2	-) -)	-2	-2	~2	<2		
V	< <u>~</u>	3 22	∠ 0	<u> </u>	<2 14	~2	< <u><</u>	< <u>-</u>		
v N/	4	22 md	0	40 nd	14 nd	20 nd	4	U		
vv V	na 12	na 121	na	na	na	na	na	na -2		
1	<2	121	2	5	0	5	<2	<2		
Zn Zr	<3	230	3 -5	<3	4	<3	<3	<3		
Zr	<5	29	<5	36		74	<5	<5		

	Trace element analysis only									
GSWA no.	112424	112425	112426	112427	112428	112429B	112430	112431		
Rock type	quartzite	quartz vein	quartz vein	quartz vein	gossan	felsic rock	quartz vein	gossan		
Latitude	22°35'29"	22°35'29"	22°35'29"	22°35'29"	22°35'29"	22°35'37"	22°35'37"	22°35'37"		
Longitude	122°21'27"	122°21'27"	122°21'27"	122°21'27"	122°21'27"	122°21'28"	122°21′28″	122°21'28"		
				Ре	cent					
Fe ₂ O ₃	2.86	3.19	1.50	1.04	10.10	8.54	1.13	49.90		
				Parts p	er million					
Au	< 0.01	< 0.01	0.01	0.01	< 0.01	< 0.01	0.02	0.02		
Ag	<5	<5	<5	<5	7	7	<5	<5		
As	<4	<4	<4	<4	<4	<4	<4	<4		
Ва	481	78	77	44	184	1 168	63	360		
Bi	<4	<4	<4	<4	<4	<4	<4	<4		
Cd	<5	<5	<5	<5	<5	<5	<5	<5		
Ce	69	36	14	<6	149	171	<6	<6		
Co	nd	nd	nd	nd	nd	nd	nd	nd		
Cr	41	27	19	19	54	16	20	323		
Cu	<4	<4	<4	<4	<4	<4	<4	50		
Ga	4	<3	<3	<3	5	25	<3	12		
Ge	<3	<3	<3	<3	<3	<3	<3	<3		
La	62	28	11	<5	80	69	<5	<5		
Li	nd	nd	nd	nd	nd	nd	nd	nd		
Mn	nd	nd	nd	nd	nd	nd	nd	nd		
Mo	<6	-6		-6	-6	-6	-6	/G		
Nb	<0	<7	<7	<7	<7	11	<7	<7		
Ni	0	6	5	1	1/	20	1	<7		
Dh	7	16	-1	-1	28	20	-1	18		
I U Dh	21	10	<7	<7	-2	23	<2	18		
KU Sh	21	<2	<2	~2	~2	4	<2	<2		
50	<4 nd	<4 nd	<4 nd	4	4 nd	<4 nd	<4 nd	<4 nd		
SC	nd - 4	11d	110	110	11d	11d	nd - 1	na 1		
511	10	~4	24	<4	12	57	<4	~4		
Sr	18	9	3	<2	13	57	<2	1		
1a T	<5	<5	<5	<5	<5	<5	<5	<>>		
Te	<0	<6	<0	<0	<0	<6	<6	<6		
Th	11	4	4	<2	15	6	<2	4		
U	<2	<2	<2	<2	2	<2	<2	<2		
V	31	26	8	3	163	314	4	/85		
W	nd	nd	nd	nd	nd	nd	nd	nd		
Y	1	<2	2	<2	3	2	<2	3		
Zn	3	3	<3	<3	7	58	<3	29		
Zr	88	12	28	<5	23	251	<5	75		

Trace element analysis only 112434 112439 GSWA no. 112432 112433 112437 112438 112435 112436 Rock type ferruginous ferruginous gossan quartz vein ferruginous gossan gossan gossan quartz vein quartz vein quartz vein 22°35'37" Latitude 22°35'37" 22°35'37" 22°35'24" 22°35'24" 22°35'24" 22°35'21" 22°35'21" Longitude 122°21'22" 122°21'22" 122°21'25" 122°21'28" 122°21'28" 122°21'28" 122°21'22" 122°21'25" Percent Fe₂O₃ 25.00 25.30 25.20 3.95 4.68 25.30 4.60 9.12 Parts per million 0.01 < 0.01 0.01 Au 0.01 0.01 0.01 0.01 0.01 15 14 14 <5 5 14 <5 5 Ag As <4 4 <4 4 <4 <4 <4 <4 Ba 625 1 399 822 720 1 099 835 16 47 Bi <4 <4 <4 <4 <4 <4 <4 <4 Cd <5 <5 <5 <5 <5 <5 <5 <5 20 10 Ce 35 <6 12 24 10 <6 Co nd nd nd nd nd nd nd nd Cr 103 30 187 40 40 149 10 13 9 Cu 17 <4 <4 <4 <4 <4 <4 Ga 8 14 9 3 <3 5 <3 <3 <3 <3 <3 <3 <3 <3 <3 Ge <3 La 11 16 <5 5 19 5 <5 8 Li nd nd nd nd nd nd nd nd Mn nd nd nd nd nd nd nd nd Mo 7 <6 8 <6 <6 10 <6 <6 <7 <7 Nb <7 <7 <7 <7 <7 <7 Ni 20 44 18 7 9 13 12 31 4 Pb <4 10 22 <4 6 <4 6 Rb <2 <2 <2 2 2 2 <2 <2 <4 Sb <4 <4 <4 <4 <4 <4 <4 Sc nd nd nd nd nd nd nd nd <4 5 4 <4 <4 <4 Sn <4 <4 9 2 4 18 27 14 16 38 Sr Та <5 <5 <5 <5 <5 <5 <5 <5 <6 <6 6 <6 Te <6 <6 <6 <6 Th 6 5 5 6 7 21 <2 2 3 3 3 <2 <2 2 <2 <2 U 7 V 317 561 383 32 44 26 266 W nd nd nd nd nd nd nd nd Y 9 5 6 7 5 6 <2 4 Zn 38 52 42 <3 3 19 9 17 79 <5 155 89 112 88 12 Zr 61

	Trace element analysis only											
GSWA no. Rock type	112440 quartz vein	112441 ferruginous quartz yein	1 112442B tous felsic	112443 quartz vein	112444 quartz vein	112445 gossan	112446 gossan 22°35'24" 122°21'22"	112447 gossan 22°35'24" 122°21'22"				
Latitude Longitude	22°35'21" 122°21'25"	22°35'21" 122°21'25"	22°35'24" 122°21'22"	22°35'24" 122°21'22"	22°35'24" 122°21'22"	22°35'24" 122°21'22"						
				Per	rcent							
Fe ₂ O ₃	2.92	2.10	6.21	1.12	1.53	54.50	15.60	25.00				
				Parts p	er million							
Au	0.01	0.01	0.01	0.01	0.11	0.01	0.02	< 0.01				
Ag	<5	<5	<5	<5	<5	<5	10	11				
As	<4	<4	<4	<4	<4	6	<4	<4				
Ba	298	88	304	<11	<11	163	15	114				
Bi	<4	<4	<4	<4	<4	<4	<4	<4				
Cd	<5	<5	<5	<5	<5	<5	<5	<5				
Ce	13	21	27	<6	<6	<6	<6	<6				
Co	nd	nd	nd	nd	nd	nd	nd	nd				
Cr	30	25	86	0	18	130	64	314				
Cu	-1	-1	8	-1	10	35	13	12				
Ga	<3	<3	28	<7	<3	5	3	5				
Ga	<3	<3	28	<3	<3	-3	-2	-3				
	< 3	11	26	<5	<5	<5	<5	<5				
La	o	11 nd	20 nd	< J	< J	< J nd	<.)	<.) nd				
LI	110 1	110	nd	nd l	nd 1	nd 1	nu d	nu d				
Mn	nd	nd	nd	nd	nd	nd	nd	nd				
MO	<0	<0	<0	<0	<0	<0	0	<0				
ND	</td <td><!--</td--><td>8</td><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td>	</td <td>8</td> <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td>	8	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--></td></td></td>	</td <td><!--</td--><td><!--</td--></td></td>	</td <td><!--</td--></td>	</td				
N1	10	10	15	5	0	87	24	42				
Pb	<4	<4	10	<4	<4	7	5	9				
Rb	5	2	<2	<2	<2	<2	<2	<2				
Sb	<4	<4	<4	<4	<4	<4	<4	<4				
Sc	nd	nd	nd	nd	nd	nd	nd	nd				
Sn	<4	<4	<4	<4	<4	<4	<4	<4				
Sr	5	3	24	<2	<2	24	2	2				
Та	<5	<5	<5	<5	<5	<5	<5	<5				
Te	<6	<6	<6	<6	<6	<6	<6	<6				
Th	5	6	4	<2	2	5	3	5				
U	<2	<2	<2	<2	<2	2	<2	2				
V	16	15	362	5	14	560	127	326				
W	nd	nd	nd	nd	nd	nd	nd	nd				
Y	8	7	4	<2	<2	13	6	2				
Zn	4	5	14	<3	<3	87	21	35				
Zr	74	75	145	5	<5	54	14	29				
	Trace element analysis only											
--------------------------------	-----------------------------	------------	-----------------------------	-------------------	------------	------------	------------	--	--	--	--	--
GSWA no.	112448	112449	112450	112451	112452	112453	112454					
Rock type	gossan	gossan	ferruginous quartz, vein	quartz vein	gossan	gossan	quartzite					
Latitude	22°35'27"	22°35'27"	22°35'18"	22°35'18"	22°35'18"	22°35'18"	22°35'18"					
Longitude	122°21'20"	122°21'20"	122°21'21"	122°21'21"	122°21'21"	122°21'21"	122°21'21"					
				Percent								
Fe ₂ O ₃	25.00	25.00	9.40	1.04	25.00	25.00	5.46					
				Parts per million								
Au	0.01	0.01	< 0.01	< 0.01	0.02	< 0.01	0.01					
Ag	13	13	6	<5	12	14	<5					
As	<4	<4	<4	<4	<4	<4	<4					
Ва	219	198	52	<11	113	298	122					
Bi	<4	<4	<4	<4	<4	<4	<4					
Cd	<5	<5	<5	<5	<5	<5	<5					
Ce	<6	<6	<6	<6	<6	<6	54					
Со	nd	nd	nd	nd	nd	nd	nd					
Cr	300	41	40	10	136	47	36					
Cu	18	20	4	<4	15	15	<4					
Ga	8	4	<3	<3	9	13	6					
Ge	<3	<3	<3	<3	<3	<3	<3					
La	<5	<5	<5	<5	<5	<5	20					
Li	nd	nd	nd	nd	nd	nd	nd					
Mn	nd	nd	nd	nd	nd	nd	nd					
Мо	<6	6	<6	<6	<6	6	<6					
Nb	<7	<7	<7	<7	8	<7	<7					
Ni	41	19	13	5	48	15	13					
Pb	6	<4	<4	<4	4	5	<4					
Rb	<2	13	<2	<2	<2	2	<2					
Sb	<4	<4	<4	<4	<4	<4	<4					
Sc	nd	nd	nd	nd	nd	nd	nd					
Sn	<4	<4	<4	<4	<4	<4	<4					
Sr	4	5	<2	<2	4	13	7					
Та	<5	<5	<5	<5	<5	<5	<5					
Те	<6	<6	<6	<6	<6	<6	<6					
Th	3	2	2	<2	5	4	9					
U	5	3	<2	<2	5	4	<2					
V	513	174	81	5	282	668	39					
W	nd	nd	nd	nd	nd	nd	nd					
Y	10	8	2	<2	8	7	7					
Zn	33	15	8	<3	40	28	7					
Zr	58	52	8	<5	57	73	79					

				Trace eleme	nt analvsis onlv			
GSWA no.	112455	112456	112457	112458	112459	112460	112461	112462
Rock type	felsic rock	gossan	gossan	gossan	gossan	gossan	quartz vein	gossan
Latitude	22°35'18"	22°35'18"	22°35'18"	22°35'18"	22°35'18"	22°35'18"	22°35'16"	22°35'16"
Longitude	122°21′21″	122°21′21″	122°21'21"	122°21'21"	122°21'21"	122°21'21"	122°21'19"	122°21'19"
				Pe	rcent			
Fe ₂ O ₃	9.11	21.20	64.10	52.10	55.10	25.00	10.50	25.50
				Parts p	er million			
Au	0.01	0.16	< 0.01	0.01	< 0.01	0.01	0.02	0.02
Ag	<5	11	6	7	5	12	7	16
As	<4	<4	<4	<4	<4	<4	<4	<4
Ва	279	380	466	378	247	280	115	2090
Bi	<4	<4	<4	<4	<4	<4	<4	<4
Cd	<5	<5	<5	<5	<5	<5	<5	<5
Ce	36	77	126	<6	373	10	12	<6
Со	nd	nd	nd	nd	nd	nd	nd	nd
Cr	66	43	105	171	91	51	8	50
Cu	<4	13	73	34	43	16	84	39
Ga	22	7	9	9	8	4	4	19
Ge	<3	<3	<3	<3	<3	<3	<3	<3
La	18	54	86	<5	239	6	9	<5
Li	nd	nd	nd	nd	nd	nd	nd	nd
Mn	nd	nd	nd	nd	nd	nd	nd	nd
Мо	<6	8	<6	<6	<6	7	<6	10
Nb	7	<7	<7	<7	<7	<7	<7	11
Ni	21	21	31	19	47	34	14	26
Pb	4	5	<4	<4	5	5	<4	6
Rb	4	<2	<2	<2	<2	<2	<2	<2
Sb	<4	<4	<4	<4	<4	<4	<4	<4
Sc	nd	nd	nd	nd	nd	nd	nd	nd
Sn	<4	<4	<4	<4	<4	<4	<4	6
Sr	24	102	148	6	365	11	7	20
Та	<5	<5	<5	<5	<5	<5	<5	<5
Те	<6	<6	<6	<6	<6	<6	<6	<6
Th	4	3	<2	7	<2	5	3	10
U	<2	3	4	5	4	7	<2	3
V	393	140	615	736	421	227	14	70
W	nd	nd	nd	nd	nd	nd	nd	nd
Y	2	5	7	8	10	11	8	6
Zn	53	29	42	64	81	49	12	35
Zr	165	61	72	53	99	45	46	241

Y

Zn

Zr

17

63

27

10

46

121

Trace element analysis only GSWA no. 112463 112464 112465 112467 112468 112469 112470 112466 Rock type ferruginous felsic gossan gossan gossan gossan gossan gossan quartz vein rock22°35'17" Latitude 22°35'16" 22°35'16" 22°35'17" 22°35'17" 22°35'17" 22°35'17" 22°35'17" Longitude 122°21'18" 122°21'18" 122°21'19" 122°21'19" 122°21'18" 122°21'18" 122°21'18" 122°21'18" Percent Fe₂O₃ 66.50 25.20 9.50 9.21 67.10 25.20 60.90 25.20 Parts per million 0.01 0.01 0.01 0.04 Au 0.01 0.01 < 0.01 0.01 7 12 6 6 11 14 10 12 Ag As <4 <4 <4 <4 4 <4 <4 <4 Ba 1 316 734 241 264 382 658 494 447 <4 Bi <4 <4 <4 <4 <4 <4 <4 Cd <5 <5 <5 <5 <5 <5 <5 <5 Ce <6 <6 <6 14 <6 48 62 <6 Co nd nd nd nd nd nd nd nd Cr 51 30 15 10 53 99 23 239 37 58 10 18 61 14 24 Cu 14 Ga 3 9 <3 26 7 7 4 6 <3 <3 <3 <3 <3 <3 <3 <3 Ge La <5 <5 <5 7 <5 21 36 <5 Li nd nd nd nd nd nd nd nd Mn nd nd nd nd nd nd nd nd Mo <6 <6 <6 <6 <6 8 <6 <6 9 Nb <7 <7 <7 <7 <7 <7 <7 Ni 47 15 6 25 7 14 24 37 10 7 10 12 Pb 10 13 13 6 Rb <2 <2 <2 <2 <2 <2 <2 <2 4 Sb <4 <4 <4 <4 <4 <4 <4 Sc nd nd nd nd nd nd nd nd <4 <4 <4 <4 <4 <4 <4 Sn <4 9 38 8 22 15 8 8 13 Sr Та <5 <5 <5 <5 <5 <5 <5 <5 <6 <6 <6 <6 Te <6 <6 <6 <6 Th 2 6 2 5 2 4 7 6 U 6 <2 <2 <2 3 5 3 <2 V 172 24 23 300 817 143 199 979 W nd nd nd nd nd nd nd nd

<2

9

10

2

31

189

4

57

40

5

41

108

13

37

97

4

61

37

	Trace element analysis only										
GSWA no. Rock type	112471 gossan	112472 gossan	112473 gossan	112474 quartz vein	112475 quartz vein	112476 quartz vein	112477 quartz vein	112478 quartz vein			
Latitude Longitude	22°35'17" 122°21'18"	22°35'33" 122°21'34"	22°35'33" 122°21'34"	22°35'30" 122°21'34"	22°35'36" 122°19'53"	22°35'36" 122°19'53"	22°34'07" 122°19'49"	22°34'07" 122°19'49"			
				Dou	aont						
Fe ₂ O ₃	63.90	25.00	24.90	1.54	1.60	1.06	1.04	0.90			
				Parts p	er million						
Au	0.04	0.04	0.04	0.04	0.04	0.03	0.04	0.04			
Ag	10	13	13	<5	<5	<5	<5	<5			
As	<4	<4	<4	<4	<4	<4	<4	<4			
Ba	254	140	49	19	59	27	<11	54			
Bi	25	<4	<4	<4	<4	<4	<4	<4			
Cd		<5	<5	<5	<5	<5	<5	<5			
Ce	18	<6	<6	<6	<6	<6	<6	54			
Co	nd	nd	nd	nd	nd	nd	nd	nd			
Cr	113	11	12	10	90	20	12	24			
Cu	76	-1	-1	-1	-1	-1	-1	24 ~1			
Ga	8	<3	<3	<7	<3	<3	<3	<7			
Ga	-2	<3	<3	<3	<3	<3	<3	<3			
Le	20	<5	<5	<5	<5	<5	<5	146			
	29 nd	< J	<.)	< J	<.) nd	e d	<.)	140 nd			
LI	nu d	nu 1	nu d	nd l	nu d	nd d	nu d	nd l			
Mn	nd	nd	nd	nd	nd	nd	nd	nd			
MO	<0	<0	0	<0	<0	<0	<0	<0			
Nb	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--></td></td></td>	</td <td><!--</td--><td><!--</td--></td></td>	</td <td><!--</td--></td>	</td			
N1	33	36	52	4	37	14	5	6			
Pb	13	<4	<4	<4	<4	15	<4	18			
Rb	<2	<2	<2	<2	24	<2	<2	<2			
Sb	<4	<4	<4	<4	<4	<4	<4	<4			
Sc	nd	nd	nd	nd	nd	nd	nd	nd			
Sn	<4	<4	<4	<4	<4	<4	<4	<4			
Sr	110	5	2	<2	<2	2	<2	15			
Та	<5	<5	<5	<5	<5	<5	<5	<5			
Te	<6	<6	<6	<6	<6	<6	<6	<6			
Th	6	2	<2	<2	2	<2	<2	<2			
U	3	<2	<2	<2	<2	<2	<2	<2			
V	789	31	12	3	12	5	<3	<3			
W	nd	nd	nd	nd	nd	nd	nd	nd			
Y	9	2	3	<2	<2	<2	<2	16			
Zn	52	42	28	<3	6	5	<3	<3			
Zr	73	25	<5	<5	7	<5	<5	<5			

Trace element analysis only 112486B GSWA no. 112479 112480 112481 112484 112485 112482 112483 Rock type quartz vein quartz vein quartz vein quartz vein quartz vein quartz vein calc silicate quartz vein 22°34'07" Latitude 22°34'07" 22°34'07" 22°34'07" 22°34'07" 22°34'07" 22°34'07" 22°34'00" Longitude 122°19'49" 122°19'49" 122°19'49" 122°19'55" 122°19'49" 122°19'40" 122°19'46" 122°19'46" Percent Fe₂O₃ 3.70 1.24 1.39 1.83 0.96 1.02 1.19 1.76 Parts per million 0.05 Au 0.04 0.03 0.04 0.04 0.04 0.03 0.04 <5 <5 <5 <5 <5 <5 <5 6 Ag As <4 <4 <4 <4 <4 <4 <4 Ba 237 29 33 27 47 93 120 95 <4 <4 <4 <4 <4 <4 <4 Bi <4 Cd <5 <5 <5 <5 <5 <5 <5 <5 54 47 Ce 53 17 46 6 11 82 Co nd nd nd nd nd nd nd nd 25 29 Cr 27 20 44 12 10 131 11 5 Cu <4 <4 <4 <4 <4 <4 Ga <3 <3 <3 <3 <3 <3 3 11 <3 <3 <3 <3 <3 <3 <3 Ge <3 La 108 24 49 <5 5 5 41 26 nd Li nd nd nd nd nd nd nd Mn nd nd nd nd nd nd nd nd Mo <6 <6 <6 <6 <6 <6 <6 <6 <7 <7 21 Nb <7 <7 <7 <7 <7 Ni 31 8 9 16 5 6 8 106 9 Pb 50 20 <4 11 <4 <4 25 Rb <2 2 3 <2 <2 7 15 7 Sb <4 <4 <4 <4 <4 <4 <4 <4 Sc nd nd nd nd nd nd nd nd <4 <4 <4 <4 <4 Sn <4 <4 <4 3 5 10 19 1 189 26 6 <2 Sr Та <5 <5 <5 <5 <5 <5 <5 <5 <6 <6 <6 <6 <6 Te <6 <6 <6 Th <2 <2 2 <2 <2 <2 17 13 2 <2 <2 <2 <2 <2 <2 <2 U V 9 <3 3 <3 8 8 43 6 nd W nd nd nd nd nd nd nd Y 5 2 7 4 5 <2 4 7 Zn 22 <3 <3 4 <3 3 4 15 9 7 7 <5 <5 <5 45 463 Zr

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Trace element analysis only										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	GSWA no. Rock type	112487 quartz vein	112488 quartz vein	112489 quartz vein	112490 quartz vein	112491 quartz vein	112492 quartz vein	112493 quartz vein	112494 quartz vein				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Latitude Longitude	22°34'00" 122°19'55"	22°34'00" 122°19'55"	22°34'00" 122°19'55"	22°34'00" 122°19'55"	22°34'00" 122°19'55"	22°34'00" 122°19'55"	22°34'08" 122°19'54"	22°34'08" 122°19'54"				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					Do	cont							
Parts per billionAu 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.02 Ag<5	Fe ₂ O ₃	2.18	0.86	1.03	1.27	0.76	1.02	2.65	0.94				
Au 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.02 Ag<5					Parts p	er million							
Ag < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 $<$	Au	0.03	0.02	0.02	0.02	0.02	0.01	0.01	0.02				
As <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4	Ag	<5	<5	<5	<5	<5	<5	<5	<5				
Ba9517<1130<11<115632Bi<4	As	<4	<4	<4	<4	<4	<4	<4	<4				
Bi < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 4 < 6 < 6 < 6 < 6 < 6 < 6 < 23 < 12 < 12 < 29 < 8 27 < 37 < 19 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	Ba	95	17	<11	30	<11	<11	56	32				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Bi	<4	<4	<4	<4	<4	<4	<4	<4				
Ce 18 -6 -6 -6 -6 -6 -6 -6 23 12 Co nd Cr 57 17 12 29 8 27 37 19 Cu -4 -4 -4 -4 -4 -4 -5 -44 Ga 4 -3	Cd	<5	<5	<5	<5	<5	<5	<5	<5				
CondndndndndndndndndCr571712298273719Cu<4	Ce	18	<6	<6	<6	<6	<6	23	12				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Co	nd	nd	nd	nd	nd	nd	nd	nd				
CucdcdcdcdcdcdcdcdGa4cdcdcdcdcdcdcdGa4cdcdcdcdcdcdcdGecdcdcdcdcdcdcdcdLa8c5c5c5c5c5c5c5cfLindndndndndndndndndMnndndndndndndndndndMoc6c6l66c6c6c6c6c6Nbc7c7c7c7c7c7c7Pb58c443c4c4c4c4c4c4c4c4c4c4kc4c4c4c4c4c4kc4c4c4c4c4c4kc4c4c4c4c4c4kc4c4c4c4c4c4kc4c4c4c4c4c4kc4c4c4c4c4c4kc4c4c4c4c4c4kc4c4c4c4c4c4kc4c4c4c4c4c4kc4c4c4c4c4c4k	Cr	57	17	12	29	8	27	37	19				
Ga4 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 </td <td>Cu</td> <td><4</td> <td><4</td> <td>90</td> <td><4</td> <td><4</td> <td><4</td> <td>5</td> <td><4</td>	Cu	<4	<4	90	<4	<4	<4	5	<4				
Ge -3	Ga	4	<3	-3	<3	<3	<3	-3	<3				
CCC3 <td>Ge</td> <td>~3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td> <td><3</td>	Ge	~3	<3	<3	<3	<3	<3	<3	<3				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	La	8	<5	<5	<5	<5	<5	<5	7				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Li	nd	nd	nd	nd	nd	nd	nd	nd				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn	nd	nd	nd	nd	nd	nd	nd	nd				
ND < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 $<$	Mo	11d <6		166	110 <6	11d	11d	110 <6	11u				
No $\zeta 7$ ζ	Nh	<0	<0	-7	<0	<0	<0	<0	<0				
M5067959117Pb58<4	NU NG	26	</td <td>~/</td> <td><!--</td--><td>5</td><td><!--</td--><td>11</td><td>~7</td></td></td>	~/	</td <td>5</td> <td><!--</td--><td>11</td><td>~7</td></td>	5	</td <td>11</td> <td>~7</td>	11	~7				
rb36 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <2 <2 <2 <2	Dh	5	8	-1	12	-1	-1	11	-1				
R0 57 42 42 2 42 42 42 42 42 53 42 Sb 44 <	FU Dh	27	0	<4	43	<4	<4	<4 5	<4				
S0 $\zeta 4$ $\zeta 2$ $\zeta 2$ $\zeta 2$ $\zeta 2$ ζ	KU Sh	57	<2	<2	2	<2	<2	5	<2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	<4 nd	<4 nd	<4 nd	<4 nd	<4 nd	<4 nd	<4 nd	<4 nd				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SC	nu - 4	nu - 4	nu 1	110	110	110	nu 1	na 1				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SII	21	<4 4	24	<4	<4	<4	14	<4 0				
Ia<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5<5 <td>51</td> <td>21 15</td> <td>4</td> <td>-5</td> <td>-5</td> <td><2</td> <td><2</td> <td>14</td> <td>0</td>	51	21 15	4	-5	-5	<2	<2	14	0				
Ie<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<60<6	1a T-	<3	<5	<3	<3	<5	<5	<3	<3				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Te	<0	<0	<0	<0	<0	<0	<0	<0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Th	5	<2	<2	<2	<2	<2	4	2				
v 28 4 <3 3 <3 <3 <3 <14 <3 WndndndndndndndndndY6 <2 <2 <2 <2 <2 <2 <2 <2 Zn1118410 <3 <3 <3 <3 <3 Zr51 <5 <5 <5 <5 <5 <5 <6 8	U	<2	<2	<2	<2	<2	<2	<2	<2				
wndndndndndndndndY6 $<\!\!2$ $<\!\!2$ $<\!\!2$ $<\!\!2$ $<\!\!2$ $<\!\!2$ $<\!\!2$ $<\!\!2$ Zn1118410 $<\!\!3$ $<\!\!3$ $<\!\!5$ $<\!\!3$ Zr51 $<\!\!5$ $<\!\!5$ $<\!\!5$ $<\!\!5$ $<\!\!5$ $<\!\!6$	V	28	4	<3	3	<3	<3	14	<3				
Y0<2<2<2<2<23<2Zn1118410<3	W	nd	nd	nd	nd	nd	nd	nd	nd				
Zn1118410<3<35<3 Zr 51<5	Y 7	6	<2	<2	<2	<2	<2	3	<2				
Zr 51 <5 <5 <5 <5 26 8	Zn	11	18	4	10	<3	<3	5	<3				
	Zr	51	<5	<>	<>	<5	<>	26	8				

Trace element analysis only GSWA no. 112495 112496 112497 112498B 112498C 112499A 112499B 112498A Rock type quartz vein quartz vein quartz vein quartz vein quartz vein quartz vein gossan gossan Latitude $22^{\circ}34'08''$ 22°34'08" 22°34'08" 22°34'08" $22^\circ\!34'\!08''$ 22°34'08" 22°34'14" 22°34'14" 122°19'54" 122°19'54" 122°19'55" Longitude 122°19'54" 122°19'54" 122°19'54" 122°19'54" 122°19'55" Percent Fe₂O₃ 1.02 1.12 0.92 1.30 1.34 0.87 68.20 74.10 Parts per million 0.01 < 0.01 Au 0.01 0.01 0.02 0.02 0.02 0.02 <5 <5 <5 <5 <5 <5 7 8 Ag As <4 <4 <4 <4 <4 <4 8 7 Ba 28 112 11 21 35 <11 1 117 502 <4 Bi <4 <4 <4 <4 <4 <4 <4 Cd <5 <5 <5 <5 <5 <5 <5 <5 70 Ce 13 21 <6 13 15 11 12 Co nd nd nd nd nd nd nd nd Cr 13 30 25 25 18 20 94 92 20 43 Cu <4 <4 <4 <4 <4 <4 Ga <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 Ge <3 3 La 6 11 <5 <5 6 <5 47 23 Li nd nd nd nd nd nd nd nd Mn nd nd nd nd nd nd nd nd Mo <6 <6 <6 <6 <6 <6 <6 <6 Nb <7 <7 <7 <7 <7 <7 <7 <7 Ni 5 10 8 6 10 6 4 105 4 572 Pb <4 4 4 <4 <4 <4 <4 4 Rb <2 <2 <2 <2 2 <2 <2 <2 Sb <4 <4 <4 <4 <4 <4 <4 <4 Sc nd nd nd nd nd nd nd nd <4 <4 <4 <4 <4 Sn <4 <4 <4 2 2 5 42 8 <2 <2 88 Sr Та <5 <5 <5 <5 <5 <5 <5 <5 <6 <6 <6 <6 <6 Te <6 <6 <6 Th 2 <2 <2 2 2 <2 <2 <2 <2 <2 <2 <2 <2 <2 3 2 U 7 7 V <3 3 4 <3 443 455 W nd nd nd nd nd nd nd nd Y <2 <2 <2 3 2 5 86 48 Zn <3 <3 <3 <3 4 <3 344 248 <5 <5 <5 8 <5 <5 <5 16 Zr

	Trace element analysis only										
GSWA no. Rock type	112499C gossan	112499D quartz vein	112499E gossan	112499F quartz vein	112499G gossan	112500A gossan	112500B ferruginous quartz vein	112500C quartz vein			
Latitude Longitude	22°34'14" 122°19'55"	22°34'14" 122°19'55"	22°34'14" 122°19'55"	22°34'14" 122°19'55"	22°34'14" 122°19'55"	22°34'17" 122°19'52"	22°34'17" 122°19'52"	22°34'17" 122°19'52"			
				Pe	rcent						
Fe ₂ O ₃	63.5	1.54	64.50	1.02	4.22	25.00	11.00	2.12			
				Parts p	er million						
Au	0.04	0.02	0.03	0.01	0.01	0.02	0.02	0.02			
Ag	5	<5	<5	<5	<5	12	6	<5			
As	<4	<4	<4	<4	<4	4	<4	<4			
Ba	112	18	244	<11	31	135	180	71			
Bi	<4	<4	<4	<4	<4	<4	<4	<4			
Cd	10	<5	<5	<5	15	<5	<5	<5			
Ce	961	6	15	7	1 920	17	33	<6			
Co	nd	nd	nd	nd	nd	nd	nd	nd			
Cr	34	21	252	16	34	1 682	78	10			
Cu	00	-1	312	10	24	136	15	19			
Cu	-3	<7	7	<7	-3	2	13	<7			
Ga	<3	<3	-3	<3	<3	-2	<3	<3			
	142	<5	< 5	<5	246	12	< 3	< 5			
La	145	< J nd	nd	< J	240 nd	13	o	< <u>)</u>			
Li	nd	nd	nd	nd	nd	nd	nd	nd			
Mn	na	nd	nd	nd	nd	nd	nd	nd			
Mo	<0	<6	<6	<0	<0	<6	7	<6			
Nb	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--></td></td></td>	</td <td><!--</td--><td><!--</td--></td></td>	</td <td><!--</td--></td>	</td			
N1	732	26	6/3	12	44	502	1/6	26			
Pb	124	<4	50	<4	143	27	32	<4			
Rb	<2	<2	<2	<2	<2	<2	<2	<2			
Sb	<4	<4	<4	<4	<4	<4	<4	<4			
Sc	nd	nd	nd	nd	nd	nd	nd	nd			
Sn	<4	<4	5	<4	<4	<4	<4	<4			
Sr	5	<2	16	<2	5	6	18	8			
Та	<5	<5	<5	<5	<5	<5	<5	<5			
Те	7	<6	<6	<6	<6	<6	<6	<6			
Th	<2	<2	12	<2	<2	8	2	<2			
U	9	<2	10	<2	29	9	4	<2			
V	20	<3	188	4	8	185	33	21			
W	nd	nd	nd	nd	nd	nd	nd	nd			
Y	79	<2	32	<2	92	26	46	4			
Zn	146	3	223	<3	7	63	21	5			
Zr	17	<5	46	<5	<5	111	12	<5			

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	112101
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	quartz vein
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22°33'58" 122°19'47"
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Parts per millionAu 0.02 0.05 0.02 0.03 0.02 0.04 Ag <5 ndnd561513As <4 4 <4 <4 <4 <4 Ba11 467 1 217240765193188Bi <4 <4 <4 8 <4 <4 Cd <5 <5 <5 <5 <5 <5 Ce <6 231010071 <6 <6 Condndnd1816 <3 <3 Cr18 87 8 10922 51 4	0.94
Au 0.02 0.05 0.05 0.02 0.03 0.02 0.04 Ag <5 ndnd 5 6 15 13 As <4 4 <4 <4 <4 <4 Ba11 467 1217 240 765 193 188 Bi <4 <4 <4 8 <4 <4 <4 Cd <5 <5 <5 <5 <5 <5 Ce <6 23 10 100 71 <6 <6 Condnd 18 16 <3 <3 Cr 18 87 8 109 22 51 4	
Ag<5ndnd<561513As<4	0.03
As<44<4<4<4<4<4Ba114671 217240765193188Bi<4	<5
Ba114671 217240765193188Bi<4	<4
IacIacIacIacIacIacIacBi<4	19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	<4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<5
	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nd
C_1 10 07 0 107 22 51 7	14
	-4
C_{11} C_{12} C_{13} C	<3
G_{α} ζ_{β} ζ_{β	<3
CC $\langle J \rangle$ $\langle J \rangle$ $+$ $\langle J \rangle$ $J \rangle$ J	<5
La V 12 / J1 2J V V	nd.
Li ilu vo vo ilu ilu ilu ilu ilu	nd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	110
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<0
ND $ $	<1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
Pb 13 9 114 499 11 64 <4	<4
Rb <2 <2 16 20 25 2 <2	8
Sb <4 <4 <4 <4 <4 <4 <4 <4	<4
Se nd 21 28 nd nd nd nd	nd
Sn <4 8 <4 <4 4 4 3/	<4
Sr 4 2/ 13 66 35 11 6	<2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<6
Th <2 5 <2 18 3 4 <2	5
U < 2 2 7 4 5 5 < 2	<2
V <3 227 15 113 45 494 9	<3
W nd nd nd 6 10 10 5	nd
Y <2 39 38 30 34 11 <2	<2
Zn 4 150 329 234 182 107 <3	<3
Zr <5 74 <5 158 43 34 5	<5

	Trace element analysis only										
GSWA no. Rock type	113102 quartz vein	113103 quartz vein	113104 quartz vein	113105 quartz vein	113106 quartz vein	113107 barite	113108 gossan	113109 gossan			
Latitude Longitude	22°33'58" 122°19'47"	22°33'58" 122°19'47"	22°33'58" 122°19'47"	22°33'56" 122°19'45"	22°33'55" 122°19'45"	22°31'21" 122°02'13"	22°31'21" 122°02'13"	22°31'21" 122°02'13"			
				Dor	roont						
Fe ₂ O ₃	1.46	4.10	1.26	0.84	1.39	11.00	45.00	33.00			
				Parts p	er million						
Au	0.04	0.02	0.02	0.05	0.19	< 0.01	< 0.01	< 0.01			
Ag	<5	<5	<5	<5	<5	<2	<2	<2			
As	<4	<4	<4	<4	<4	<4	8	11			
Ва	<11	<11	108	13	20	476 000	49 660	64 420			
Bi	<4	<4	<4	<4	<4	4	<4	<4			
Cd	<5	<5	<5	<5	<5	<5	<5	<5			
Ce	<6	<6	<6	9	<6	222	17	21			
Co	nd	nd	nd	nd	nd	nd	nd	nd			
Cr	19	20	17	11	17	27	<4	<4			
Cu	<4	<4	<4	<4	56	145	22	37			
Ga	<3	3	~3	<3	<3	<3	<3	<3			
Ge	<3	-3	-3	<3	<3	<3	4	6			
La	<5	<5	<5	<5	<5	<5	11	8			
Li	nd	nd	nd	nd	nd	nd	nd	nd			
Mn	nd	nd	nd	nd	nd	38	-5	-5			
Ma	110	110	110	110	110	5	10	10			
Nh	<0	<0	<0	<0	<0	-7	10	19			
IND N:	</td <td><1</td> <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td>10</td></td></td></td></td></td>	<1	</td <td><!--</td--><td><!--</td--><td><!--</td--><td><!--</td--><td>10</td></td></td></td></td>	</td <td><!--</td--><td><!--</td--><td><!--</td--><td>10</td></td></td></td>	</td <td><!--</td--><td><!--</td--><td>10</td></td></td>	</td <td><!--</td--><td>10</td></td>	</td <td>10</td>	10			
INI Dh	0	0	0	3	0	28	4	15			
Pb	4	<4	4	<4	<4	6	5	4			
Rb	<2	<2	2	<2	<2	12	3	<2			
Sb	<4	4	<4	<4	<4	4	5	<4			
Sc	nd	nd	nd	nd	nd	nd	nd	nd			
Sn	<4	<4	<4	<4	<4	<4	<4	<4			
Sr	4	<2	./	<2	<2	8 4 / 4	851	861			
Ta	<5	<5	<5	<5	<5	<5	5	<5			
Te	<6	<6	<6	<6	<6	<6	<6	<6			
Th	2	<2	2	2	<2	<2	<2	<2			
U	<2	<2	<2	<2	<2	<2	7	2			
V	<3	62	<3	<3	4	165	201	7			
W	nd	nd	nd	nd	nd	nd	nd	nd			
Y	<2	<2	<2	<2	<2	17	5	12			
Zn	<3	<3	<3	<3	<3	14	<3	<3			
Zr	<5	<5	<5	<5	<5	<5	<5	<5			

		Trace element analysis only											
GSWA no. Rock type	113110 barite	113111A chert	113112 barite	113113 quartz vein	113114A barite	113115 gossan	113116 barite	113117 gossan					
Latitude Longitude	22°31'21" 122°02'13"	22°31'21" 122°02'13"	22°31'21" 122°02'13"	22°31'21" 122°02'13"	22°31'21" 122°02'13"	22°31'10" 122°02'00"	22°31'10" 122°02'00"	22°31'10" 122°02'00"					
				г	Domaont								
Fe ₂ O ₃	13.00	4.00	5.00	2.00	12.00	15.00	5.00	18.20					
				Parts	per million								
Au	0.01	0.01	0.01	0.01	0.01	< 0.01	0.01	0.01					
Ag	<2	<2	<2	<2	<2	<2	<2	<2					
As	16	<4	8	<4	4	4	<4	4					
Ba	216 300	34 750	176 400	10 250	231 300	142 000	470 400	129 800					
Bi	4	<4	<4	<4	5	<4	12	<4					
Cd	<5	<5	<5	<5	<5	<5	<5	<5					
Ce	100	124	70	12	124	27	212	30					
Co	nd	nd	nd	nd	nd	nd	nd	nd					
Cr	13	11	10	6	10	<4	18	<4					
Cu	66	8	49	<4	69	138	125	119					
Ga	<3	<3	<3	<3	<3	<3	<3	<3					
Ge	<3	<3	<3	<3	<3	3	<3	3					
La	5	52	<5	5	15	7	<5	<5					
Li	nd	nd	nd	nd	nd	nd	nd	nd					
Mn	14	25	<5	17	67	129	<5	52					
Мо	5	<2	3	<2	5	50	2	20					
Nb	<7	<7	<7	<7	9	<7	<7	<7					
Ni	17	8	14	5	20	15	25	15					
Pb	7	4	<4	<4	17	<4	10	<4					
Rb	3	55	<2	5	91	<2	<2	<2					
Sb	4	<4	4	<4	<4	<4	7	<4					
Sc	nd	nd	nd	nd	nd	nd	nd	nd					
Sn	<4	<4	<4	<4	<4	<4	<4	<4					
Sr	3 007	567	2 803	198	4 285	1 625	8 137	1 327					
Та	<5	<5	<5	<5	<5	<5	<5	<5					
Те	<6	<6	<6	<6	<6	<6	<6	<6					
Th	<2	5	<2	<2	10	<2	<2	<2					
U	6	3	<2	<2	2	2	<2	3					
V	53	17	37	8	44	114	117	128					
W	nd	nd	nd	nd	nd	nd	nd	nd					
Y	12	28	3	<2	53	6	6	3					
Zn	6	5	7	<3	10	<3	10	<3					
Zr	<5	<5	<5	<5	<5	<5	<5	<5					

	Trace element analysis only										
GSWA no. Rock type	113118 quartz vein	113119 ferruginous chert	113120 quartz vein	113121 quartz vein	113123 gossan	113124 quartz vein	113125 quartz vein	113126 gossan			
Latitude Longitude	22°31'40" 122°01'50"	22°31'48" 122°01'57"	22°31'25" 122°01'48"	22°31'25" 122°01'48"	22°31'19" 122°01'55"	22°31'19" 122°01'55"	22°32'38" 122°02'01"	22°32'38" 122°02'01"			
				Per	cent						
Fe ₂ O ₃	< 0.07	31.00	< 0.07	1.00	76.90	1.00	6.99	11.00			
				Parts p	er million						
Au	0.02	0.03	0.02	0.02	0.02	0.01	0.02	0.02			
Ag	<2	<2	<2	<2	<2	<2	<2	<2			
As	<4	<4	<4	<4	18	<4	10	<4			
Ba	409	396	55	76	895	304	96	645			
Bi	<4	<4	<4	<4	<4	<4	<4	<4			
Cd	<5	<5	<5	<5	<5	<5	<5	<5			
Ce	<6	<6	<6	<6	15	<6	<6	<6			
Co	nd	nd	nd	nd	nd	nd	nd	nd			
Cr	8	37	5	10	14	5	5	16			
Cu	<4	13	8	8	49	<4	87	14			
Ga	<3	5	<3	<3	4	<3	6	6			
Ge	<3	3	<3	<3	3	<3	~3	<3			
La	<5	<5	<5	<5	<5	<5	<5	<5			
Li	nd	nd	nd	nd	nd	nd	nd	nd			
Mn	12	-5	11d	-5	336	-5	04	50			
Mo	-2	\sim	<>	~	80	~	5	-2			
Nb	<2	12	<2	<2	-7	<2	-7	<2			
NG NG	~/	13	</td <td><!--<br-->6</td> <td>107</td> <td>5</td> <td>20</td> <td>11</td>	<br 6	107	5	20	11			
INI Dh	5	20	4	0	20	5	29	11			
PU Dh	<4	12	<4	<4	29	<4	5 041	9			
KD	<2	<2	<2	<2	5	5	2	0			
SD S-	<4	<4	<4	4	<4	<4	<4	<4			
Sc	nd 14	nd	nd	nd	nd	nd	nd	nd			
Sn	<4	<4	<4	<4	5	<4	<4	<4			
Sr	13	8	2	3	51	10	5	54			
Ta	<5	<5	<5	<5	<5	<5	<5	<5			
le	<0	<0	<0	<0	<6	<0	<6	<6			
Th	<2	<2	<2	<2	2	<2	<2	2			
U	<2	<2	<2	<2	9	<2	<2	<2			
V	<3	323	<3	14	80	3	157	84			
W	nd	nd	nd	nd	nd	nd	nd	nd			
Y	<2	2	<2	2	18	<2	<2	5			
Zn	<3	10	<3	<3	128	<3	135	6			
Zr	<5	<5	<5	<5	62	6	26	25			

		Trace element analysis only										
GSWA no. Rock type	113127 quartz vein	113128 pelite	113129 shale	113130 conglomerate	113131 conglomerate	113132 conglomerate	113133 gossan	113134 gossan				
Latitude Longitude	22°32'38" 122°02'01"	22°33'32" 122°02'25"	22°33'34" 122°02'43"	22°33'34" 122°02'43"	22°33'34" 122°02'43"	22°33'34" 122°02'43"	22°35'48" 122°02'36"	22°35'48" 122°02'36"				
				Dow	aant							
Fe ₂ O ₃	4.00	6.99	13.00	5.99	10.00	16.00	83.90	54.10				
				Parts pe	r million							
Au	0.02	0.02	0.02	0.02	0.02	0.01	< 0.01	0.02				
Ag	<2	<2	<2	<2	<2	<2	2	<2				
As	7	<4	8	<4	4	7	20	12				
Ba	299	837	1 111	888	689	943	867	708				
Bi	<4	<4	<4	<4	<4	<4	<4	<4				
Cd	<5	<5	<5	<5	<5	<5	<5	<5				
Ce	<6	94	110	154	237	345	46	278				
Co	nd	nd	nd	nd	nd	nd	nd	nd				
Cr	5	128	50	21	39	13	<4	10				
Cu	42	<4	<4	<4	<4	<4	<4	397				
Ga	3	24	16	7	10	10	4	8				
Ge	<3	<3	<3	<3	<3	<3	13	4				
La	<5	47	70	87	121	182	18	17				
Li	nd	nd	nd	nd	nd	nd	nd	nd				
Mn	17	486	107	142	120	69	159	251				
Mo	<2	<2	<2	<2	<2	2	25	7				
Nh	<7	17	14	10	18	- 7	<7	21				
Ni	9	46	17	11	16	10	<3	94				
Ph	121	13	15	8	14	13	<4	<4				
Rh	<2	144	212	63	121	48	</td <td>4</td>	4				
Sh	<4	<4	<4	<4	4	<4	<4	<4				
Sc	nd	nd	nd	nd	nd	nd	nd	nd				
Sn	<4	5	7	<4	<4	<4	<4	<4				
Sr	8	68	26	27	39	28	7	24				
Ta	< 5	<5	_0 <5	<5	<5	-0 <5	<5	< 5				
Te	6	<6	<6	<6	<6	<6	<6	<6				
Th	</td <td>21</td> <td>28</td> <td>42</td> <td>99</td> <td>18</td> <td><2</td> <td>4</td>	21	28	42	99	18	<2	4				
U	<2	2	8	3	10	4	2	11				
v	45	123	116	59	115	119	11	54				
W	nd	nd	nd	nd	nd	nd	nd	nd				
Y	<2	27	61	25	99	33	13	63				
Zn	14	40	20	-0	15	6	<3	126				
Zr	6	179	287	485	2 059	205	<5	30				

				Trace elemen	t analysis only			
GSWA no. Rock type	113135 gossan	113136 sandstone	113137 alluvium	113138 quartz vein	113139 quartz vein	113140 chert	113141 quartz vein	113142 quartz vein
Latitude Longitude	22°34'23" 122°01'54"	22°34'00" 122°0'05"	22°34'00" 122°0'05"	22°33'34" 122°0'23"	22°33'37" 122°0'08"	22°35'14" 122°02'44"	22°35'15" 122°02'31"	22°35'05" 122°01'46"
				Dow	aant			
Fe ₂ O ₃	35.00	5.00	5.00	1.00	2.00	5.00	4.00	3.00
				Parts pe	r million			
Au	0.01	0.01	< 0.01	0.01	0.01	0.01	0.02	0.01
Ag	<2	<2	<2	<2	<2	<2	<2	<2
As	11	<4	<4	<4	<4	<4	<4	<4
Ba	213	158	172	16	165	1440	112	491
Bi	<4	<4	<4	<4	<4	<4	<4	<4
Cd	<5	<5	<5	<5	<5	<5	<5	<5
Ce	37	310	370	<6	<6	143	26	23
Co	nd	nd D	nd	nd	nd	nd	nd	nd
Cr	32	24	24	11	18	5	6	20
Cu	-1	24 ~1	24 </td <td>166</td> <td>26</td> <td>-1</td> <td>-1</td> <td>20 <1</td>	166	26	-1	-1	20 <1
Ga	<3	6	4	-3	-3	11	<7	8
Ga	<3	-3	-2	<3	<3	-2	<3	-3
Ge Lo	<5	<3	<5	< 5	< 5	<3	< 3	<5
	10	1/0	150	< J	< J nd	0.5 nd	nd	17
LI	225	11d	110	12	na 5	10	110	122
Mn	255	24	23	12	5	42	<>>	132
MO	4	<2	<2	<2	9	<2	<2	<2
Nb	17	/	/	</td <td><!--</td--><td>10</td><td><!--</td--><td><!--</td--></td></td></td>	</td <td>10</td> <td><!--</td--><td><!--</td--></td></td>	10	</td <td><!--</td--></td>	</td
N1	131	11	10	5	6	10	6	9
Pb	19	11	8	66	<4	16	<4	9
Rb	9	63	33	<2	<2	184	<2	56
Sb	4	4	<4	<4	<4	<4	<4	<4
Sc	nd	nd	nd	nd	nd	nd	nd	nd
Sn	<4	<4	<4	<4	<4	<4	<4	<4
Sr	26	15	15	2	9	91	3	23
Та	<5	<5	<5	<5	<5	<5	<5	<5
Те	<6	<6	<6	<6	<6	<6	<6	<6
Th	2	29	19	2	<2	34	<2	8
U	3	6	5	<2	<2	4	<2	2
V	48	65	60	<3	13	37	11	33
W	nd	nd	nd	nd	nd	nd	nd	nd
Y	130	209	149	2	<2	34	<2	26
Zn	132	7	6	27	<3	10	<3	8
-	1.4	204	202	-	-	201	-	0.6

		Trace element analysis only											
GSWA no. Rock type	113143 quartz vein	113144 schist	113145 gossan	113146 quartz vein	113147 quartz vein	113148 gossan	113149 quartz vein	113150 quartz vein					
Latitude Longitude	22°34'57" 122°01'42"	22°34'57" 122°01'42"	22°34'17" 122°03'26"	22°34'17" 122°03'26"	22°34'17" 122°03'26"	22°34'17" 122°03'26"	22°34'17" 122°03'26"	22°34'20" 122°03'25"					
				Pe	rcent								
Fe ₂ O ₃	< 0.07	6.99	83.90	3.00	5.99	17.00	1.00	3.00					
				Parts p	er million								
Au	0.01	0.01	0.01	0.01	0.01	0.02	0.01	< 0.01					
Ag	<2	<2	<2	<2	<2	<2	<2	<2					
As	<4	<4	22	<4	<4	5	<4	<4					
Ba	213	1 386	745	476	924	1 024	290	46					
Bi	<4	<4	<4	<4	<4	<4	<4	<4					
Cd	<5	<5	<5	<5	<5	<5	<5	<5					
Ce	2.4	212	33	12	46	25	17	21					
Co	nd	nd	nd	nd	nd	nd	nd	nd					
Cr	9	165	10	4	5	8	<4	6					
Cu	<4	<4	6	<4	<4	<4	<4	<4					
Ga	<3	14	< 3	<3	13	13	<3	<3					
Ge	<3	<3	7	<3	<3	<3	<3	<3					
La	12	62	17	7	22	16	8	10					
Li	nd	nd	nd	nd	nd	nd	nd	nd					
Mn	37	622	188	8	76	85	20	51					
Mo	</td <td><2</td> <td>21</td> <td><2</td> <td><2</td> <td><2</td> <td><2</td> <td><2</td>	<2	21	<2	<2	<2	<2	<2					
Nb	<2	8	~7	<7	<7	<7	<7	<2					
Ni	6	65	8	5	7	8	5	0					
Dh	-1	4	7	-1	8	12	-1	5					
I U Dh	11	260	2	2	125	147	<2	-2					
Sh	-1	209	-1	-1	125	-4	<2	<2					
50	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4	~ 4					
Sc	11u	11u	110	11U	110	11u	11u	iiu					
SII Su	<4 5	25	20	<4 0	12	21	4	~4					
51 To	5	25	20	9	12	21	-5	-5					
Та	<5	<5	<5	<5	<5	<5	<5	<5					
Th	<0	11	<0	<0	11	<0 11	<0	20					
111 TT	<2	2	4	<2	6	11	<2	-2					
U V	<2	ے 119	200	<2	0	156	<2	<2					
V NV	4	611	299	د ا	80	130	<>>	24					
w	na	na	na	nd	nd 51	na	na	na					
I Z	9	50	28	3	51	00	23	10					
∠n 7	6	124	8	5	11	13	<3	<3					
Zr	<5	133	5	<5	52	63	<5	<5					

				Trace elemen	nt analysis only			
GSWA no. Rock type	113151 mylonite	113152 quartz vein	113153 gossan	113154 quartz vein	113155 conglomerate	113156 gossan	113157 shale	113158 shale
Latitude Longitude	22°35'34" 122°04'04"	22°36'15" 122°05'21"	22°36'15" 122°05'21"	22°36'15" 122°05'21"	22°35'52" 122°05'35"	22°35'47" 122°05'38"	22°35'47" 122°05'38"	22°35'47" 122°05'38"
				Do	reent			
Fe ₂ O ₃	2.00	2.00	67.90	3.00	4.00	54.90	15.00	4.00
				Parts p	er million			
Au	0.01	0.01	< 0.01	0.01	0.01	0.01	0.01	0.01
Ag	<2	<2	<2	<2	<2	<2	<2	<2
As	<4	<4	10	<4	<4	26	<4	<4
Ba	129	325	1 004	407	455	327	195	439
Bi	<4	<4	5	<4	<4	<4	<4	<4
Cd	<5	<5	<5	<5	<5	<5	<5	<5
Ce	60	<6	<6	<6	31	23	61	46
Co	nd							
Cr	7	5	7	<4	29	24	60	42
Cu	58	<4	2 718	25	<4	<4	114	<4
Ga	6	<3	<3	<3	6	5	22	10
Ge	<3	<3	3	~3	<3	-3	<3	-3
La	25	<5	<5	<5	17	18	34	24
La	nd							
Mn	14	16	50	23	62	3 671	800	373
Mo	-2	2	59	23	-2	5 071	-7	575
Nb	<2	-7	-7	-7	~7	-+	22	<2
NG	6	6	748	6	18	130	62	31
Dh	11	84	740	110	5	139	02	51
ru Dh	11	04 -2	-2	110	01	<4 12	4 50	122
KU Sh	00	<2	<2	<2	91	43	52	125
SU S-	<4	<4	<4	<4	<4	<4	<4	<4
Sc	nd	nd	nd	nd 14	nd	nd	nd	nd
SII	3	<4	<4	<4	<4	<4	<4	4
Sr	8	13	55	12	29	94	1/	13
1a T	<5	<5	<5	<5	<5	<5	<5	<5
le	<6	<0	8	<0	<0	<6	<6	<0
Th	5	<2	<2	<2	16	7	8	13
U	3	<2	5	<2	4	9	2	3
V	27	10	257	24	44	183	452	62
W	nd							
Y	19	<2	14	2	17	20	25	21
Zn	7	14	8	16	12	250	156	16
Zr	86	10	<5	6	115	73	283	98

				Trace eleme	nt analysis only			
GSWA no. Rock type	113159 quartz vein	113160 hematite	113161 gossan	113162 breccia	113163 sandstone	113164 ferruginous sandstone	113165 shale	113166 quartz vein
Latitude Longitude	22°35'28" 122°04'51"	22°35'15" 122°04'57"	22°35'05" 122°05'10"	22°34'57" 122°04'47"	22°36'33" 122°06'10"	22°36'33" 122°06'10"	22°36'27" 122°06'11"	22°36'14" 122°06'39"
				Pe	rcent			
Fe ₂ O ₃	7.99	80.90	10.00	1.00	51.90	51.90	4.00	1.00
				Parts p	er million			
Au	0.01	0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	0.01
Ag	<2	<2	<2	<2	<2	<2	<2	<2
As	7	<4	4	<4	16	22	<4	<4
Ba	235	956	454	649	478	288	166	127
Bi	<4	<4	5	<4	<4	<4	<4	<4
Cd	<5	<5	<5	<5	<5	<5	<5	<5
Ce	<6	8	22	<6	66	10	10	<6
Co	nd	nd	nd	nd	nd	nd	nd	nd
Cr	<4	<4	8	5	47	41	19	9
Cu	98	<4	7	<4	<4	<4	<4	<4
Ga	< 3	<3	<3	4	9	7	<3	<3
Ge	<3	3	<3	<3	<3	<3	<3	<3
La	<5	6	12	<5	49	7	5	<5
Li	nd	nd	nd	nd	nd	nd	nd	nd
Mn	106	75	5 642	20	48	104	26	7
Mo	25	<2	12	<2	3	<2	<2	<2
Nh	<7	<7	<7	<7	22	<7	<7	<7
Ni	9	6	23	7	5	9	18	6
Ph	36	16	19	<4	7	8	5	<4
Rh	</td <td><2</td> <td>17</td> <td>108</td> <td>30</td> <td>35</td> <td>8</td> <td><2</td>	<2	17	108	30	35	8	<2
Sh	<4	4	<4	<4	<4	<4	<4	<4
Sc	nd	nd	nd	nd	nd	nd	nd	nd
Sn	<4	<4	<4	<4	<4	<4	<4	<4
Sr	9	62	36	6	27	16	55	4
Ta	<5	<5	<5 <5	<5	<5	<5	<5	<5
Те	9	<6	<6	<6	<6	<6	<6	<6
Th	<2	2	6	2	5	6	3	<2
U	<2	<2	12	<2	9	7	<2	<2
v	16	43	21	6	329	404	18	<3
W	nd	nd	nd	nd	nd	nd	nd	nd
Y	3	5	15	4	337	4	9	<2
Zn	4	< 3	17	4	<3	4	6	<3
7.	~5	13	41	6	12		20	-5

				Trace eleme	nt analysis only			
GSWA no. Rock type	113167 quartz vein	113168 ferruginous quartz vein	113169 ferruginous quartz vein	113170 gossan	113171 gossan	113172 ferricrete	113173 gossan	113174 ferruginous quartz vein
Latitude Longitude	22°36'17" 122°06'39"	22°36'18" 122°06'39"	22°36'13" 122°06'39"	22°36'13" 122°06'39"	22°36'13" 122°06'39"	22°36'13" 122°06'39"	22°36'10" 122°06'41"	22°36'10" 122°06'41"
				Do	rcont			
Fe ₂ O ₃	2.00	8.99	5.99	15.00	11.00	72.90	13.00	5.00
				Parts p	er million			
Au	0.01	< 0.01	< 0.01	0.01	0.02	0.01	0.01	< 0.01
Ag	<2	<2	<2	<2	<2	<2	<2	4
As	<4	4	6	6	16	9	4	<4
Ва	136	95	271	195	574	1 049	309	827
Bi	<4	<4	<4	<4	<4	<4	<4	<4
Cd	<5	<5	<5	<5	<5	<5	<5	<5
Ce	<6	<6	19	7	<6	63	<6	15
Co	nd	nd	nd	nd	nd	nd	nd	nd
Cr	5	11	9	13	13	26	9	10
Cu	<4	<4	5	<4	4	20	18	<4
Ga	<3	3	-3	<3	<3	3	<3	<3
Ge	<3	-3	<3	<3	<3	-3	3	<3
La	<5	<5	22	5	<5	38	<5	6
Li	nd	nd	nd	nd	nd	nd	nd	nd
Mn	42	7	102	03	155	11 300	583	2 318
Mo	-2	10	-2	<i>93</i>	3	7	202	2 510
Nb	<2	19	<2	-7	-7	-7	~7	-7
INU NE	</td <td><!--</td--><td><!--</td--><td>12</td><td><!--</td--><td>50</td><td><!--</td--><td>10</td></td></td></td></td>	</td <td><!--</td--><td>12</td><td><!--</td--><td>50</td><td><!--</td--><td>10</td></td></td></td>	</td <td>12</td> <td><!--</td--><td>50</td><td><!--</td--><td>10</td></td></td>	12	</td <td>50</td> <td><!--</td--><td>10</td></td>	50	</td <td>10</td>	10
INI Dh	4	0	8 7	12	8 7	39	20	10
PU Dh	<4	<4	2	20	-2	4	29	2
KD Ch	12	10	2	<2	<2	4	<2	3
SD	<4	<4	<4	<4	<4	5	<4	<4
Sc	nd	nd	nd	nd	nd	nd	nd	na
Sn	<4	<4	<4	<4	<4	<4	<4	<4
Sr	4	2	12	20	34	12	13	26
Ta	<5	<5	<5	<5	<5	<5	<5	<5
le	<0	<0	<0	<6	<0	<0	<6	<6
Th	2	3	2	2	2	<2	<2	2
U	<2	2	<2	14	2	5	<2	3
V	15	36	14	53	31	312	11	32
W	nd	nd	nd	nd	nd	nd	nd	nd
Y	<2	<2	6	7	2	22	2	4
Zn	<3	<3	7	67	7	30	6	9
Zr	9	<5	12	13	10	37	6	14

Trace element analysis only 113182 GSWA no. 113175 113176 113177 113180 113181 113178 113179 Rock type calc silicate calc silicate gabbro ferruginous ferruginous ferruginous dolerite gossan sandstone sandstone conglomerate 22°35'14" 22°34'59" Latitude 22°35'42" 22°35'14" 22°38'08" 22°38'08" 22°38'08" 22°37'27" Longitude 122°07'50" 122°07'29" 122°07'29" 122°07'29" 122°07'50" 122°06'46" 122°07'36" 122°07'36" Percent Fe₂O₃ 12.00 1.00 4.00 5.00 54.10 64.90 23.00 16.00 Parts per million 0.01 0.01 0.01 Au < 0.01 0.01 < 0.01 < 0.01 < 0.01 <2 <2 <2 <2 <2 <2 <2 <2 Ag 15 19 29 5 As <4 <4 <4 <4 Ba 223 375 215 433 1790 1054 922 767 16 <4 <4 Bi <4 <4 <4 <4 <4 Cd <5 <5 <5 <5 <5 <5 <5 <5 9 38 79 Ce <6 18 <6 35 69 Co nd nd nd nd nd nd nd nd Cr 10 7 196 348 34 27 93 51 652 172 <4 200 Cu <4 7 <4 <4 Ga 3 13 13 12 7 5 9 25 <3 <3 <3 <3 3 3 <3 Ge <3 La 5 8 7 5 31 29 39 36 Li nd nd nd nd nd nd nd nd Mn 180119 689 944 7 12 <5 1440 <2 5 <2 <2 25 5 Mo 16 <2 <7 <7 <7 <7 19 Nb <7 <7 16 Ni 16 7 100 96 8 8 <3 53 9 Pb 39 16 12 31 4 4 11 Rb <2 35 48 83 38 22 89 36 Sb <4 <4 <4 <4 <4 <4 <4 <4 Sc nd nd nd nd nd nd nd nd <4 <4 <4 <4 <4 4 <4 Sn 5 79 35 108 24 250 267 227 155 Sr Та <5 <5 <5 <5 <5 <5 <5 <5 8 <6 <6 <6 Te <6 <6 <6 <6 Th 3 4 2 3 7 4 12 8 4 2 <2 <2 4 4 <2 U 5 V 127 9 44 95 243 342 274 448 W nd nd nd nd nd nd nd nd Y 9 5 14 7 119 113 4 45 Zn 9 15 48 50 <3 <3 4 143 12 70 85 67 30 69 319 66 Zr

	Trace element analysis only										
GSWA no. Rock type	113183 gossan	113184 quartz vein	113185 quartz vein	113186 quartz vein	113187 gossan	113188 meta-BIF	113189 meta-BIF	113190 gossan			
Latitude Longitude	22°36'50" 122°12'00"	22°36'50" 122°12'00"	22°36'47" 122°12'04"	22°36'47" 122°12'04"	22°36'47" 122°12'04"	22°36'37" 122°11'51"	22°36'37" 122°11'51"	22°36'37" 122°11'51"			
				Do	roont						
Fe ₂ O ₃	72.90	< 0.07	1.00	2.00	40.00	54.90	62.90	56.90			
				Parts p	er million						
Au	0.01	0.01	< 0.01	<0.01	0.01	< 0.01	0.01	< 0.01			
Aσ	.</td <td><2</td> <td><?.</td><td><?</td><td><2</td><td><?</td><td><2</td><td><2</td></td></td></td>	<2	.</td <td><?</td><td><2</td><td><?</td><td><2</td><td><2</td></td></td>	</td <td><2</td> <td><?</td><td><2</td><td><2</td></td>	<2	</td <td><2</td> <td><2</td>	<2	<2			
As	<4	<4	<4	<4	<4	<4	<4	<4			
Ba	106	19	12	19	219	45	69	292			
Bi	<4	<4	<4	<4	<4	<4	<4	<4			
Cd	<5	<5	<5	<5	<5	<5	<5	<5			
Ce	37	<6	13	6	133	8	19	34			
Co	nd	nd	nd	nd	nd	nd	nd	nd			
Cr	13	21	-1	20	10	20	34	118			
Cu	525	-1	<1	10	256	32	37	1/13			
Ga	323	<	<3	-3	250	-3	1	6			
Ga	3	<3	<3	<3	3	4	3	-3			
	11	<5	5	<5	54	4	11	15			
	nd	nd	nd	nd	D4	nd	nd	nd			
Mn	171	16	10	10	107	285	552	566			
Ma	1/1	40	19	10	107	565	552	300			
NIO	<2	<2	<2	<2	<2	<2	<2	5			
IND N:	</td <td><1</td> <td><!--</td--><td><!--</td--><td>18</td><td>14</td><td><!--</td--><td><!--</td--></td></td></td></td>	<1	</td <td><!--</td--><td>18</td><td>14</td><td><!--</td--><td><!--</td--></td></td></td>	</td <td>18</td> <td>14</td> <td><!--</td--><td><!--</td--></td></td>	18	14	</td <td><!--</td--></td>	</td			
IN1 Dh	109	0	0	9	151	04	92	293			
PD	23	<4	<4	<4	28	<4	4	/0			
KD	2	2	<2	<2	2	<2	<2	15			
Sb	<4	<4	<4	<4	<4	<4	<4	<4			
Sc	nd	nd	nd	nd	nd	nd	nd	nd			
Sn	<4	<4	<4	<4	<4	<4	<4	<4			
Sr	5	<2	<2	2	17	18	<2	7			
Ta	<5	<5	<5	<5	<5	<5	<5	<5			
Te	<6	<6	<6	<6	<6	<6	<6	<6			
Th	3	<2	<2	2	6	<2	4	8			
U	9	<2	<2	<2	12	<2	3	27			
V	14	<3	<3	5	80	54	66	578			
W	nd	nd	nd	nd	nd	nd	nd	nd			
Y	45	<2	4	2	39	9	11	42			
Zn	236	3	4	7	91	81	122	254			
Zr	20	<5	<5	8	100	6	8	76			

				Trace eleme	ent analysis only			
GSWA no. Rock type	113191 gossan	113192 ferruginous	113193 pelite	113194 schist	113195 gossan	113196 gossan	113197 gossan	113198 gossan
Latitude Longitude	22°36'32" 122°11'51"	quartz vein 22°34'32" 122°06'12"	22°34'32" 122°06'12"	22°37'14" 122°05'39"	22°41'13" 122°07'28"	22°41'13" 122°07'28"	22°41'13" 122°07'28"	22°41'13" 122°07'28"
				P	arcont			
Fe ₂ O ₃	73.90	10.00	5.99	2.00	27.00	64.90	69.90	46.90
				Parts	per million			
Au	0.01	0.01	< 0.01	0.01	0.01	0.01	0.01	0.01
Ag	<2	<2	<2	<2	<2	3	<2	<2
As	<4	<4	<4	<4	18	76	88	97
Ва	375	321	271	2 407	3 298	3 897	2 041	5 904
Bi	<4	<4	<4	<4	<4	<4	<4	<4
Cd	7	<5	<5	<5	<5	<5	<5	<5
Ce	535	10	12	65	56	23	36	23
Co	nd	nd	nd	nd	nd	nd	nd	nd
Cr	<4	4	12	7	46	6	6	<4
Cu	7	183	19	<4	<4	182	234	537
Ga	<3	<3	11	12	8	<3	3	6
Ge	<3	<3	<3	<3	4	3	<3	3
La	278	7	7	33	35	12	19	23
Li	nd	nd	nd	nd	nd	nd	nd	nd
Mn	96	152	540	130	30	3 065	2 560	371
Мо	2	<2	<2	<2	2	<2	5	3
Nb	<7	<7	<7	11	23	<7	<7	20
Ni	35	30	27	10	<3	171	89	171
Pb	27	15	6	18	15	7	31	9
Rb	4	16	34	135	107	6	11	44
Sb	<4	<4	<4	<4	<4	<4	<4	<4
Sc	nd	nd	nd	nd	nd	nd	nd	nd
Sn	<4	<4	<4	<4	7	<4	<4	6
Sr	23	97	9	141	98	53	40	50
Та	<5	<5	<5	<5	<5	<5	<5	<5
Те	<6	12	<6	<6	<6	<6	<6	<6
Th	3	2	6	14	18	6	2	7
U	<2	<2	<2	<2	4	10	4	5
V	10	36	106	39	122	98	52	70
W	nd	nd	nd	nd	nd	nd	nd	nd
Y	16	4	7	15	25	31	34	20
Zn	66	6	31	17	6	233	83	238
Zr	25	25	65	147	141	27	30	31

	Trace element analysis only										
GSWA no. Rock type	113199 gossan	113200 ferruginous quartz vein	114201 gossan	114202 quartz vein	114203 gossan	114204 gossan	114206 gossan	114207 gossan			
Latitude Longitude	22°41'13" 122°07'28"	22°42'00" 122°09'33"	22°43'44" 122°08'15"	22°43'44" 122°08'15"	22°42'43" 122°07'00"	22°55'14" 122°25'33"	22°55'14" 122°25'33"	22°58'10" 122°23'40"			
				Pe	rcent						
Fe ₂ O ₃	43.00	8.99	54.10	1.00	56.90	76.90	70.90	36.00			
				Parts p	er million						
Au	0.01	< 0.01	0.01	0.01	< 0.01	0.01	< 0.01	0.01			
Ag	<2	<2	<2	<2	3	3	3	2			
As	91	10	18	<4	29	12	55	51			
Ba	629	392	875	162	1 378	750	2 348	1 451			
Bi	<4	<4	<4	<4	<4	<4	<4	<4			
Cd	<5	<5	<5	<5	<5	<5	<5	<5			
Ce	37	74	185	<6	23	9	10	107			
Co	nd	nd	nd	nd	nd	nd	nd	nd			
Cr	42	5	24	12	78	8	~4	54			
Cu	301	179	36	<4	<4	60	<4	69			
Ga	5	-3	6	<3	6	3	<3	9			
Ge	3	~3	<3	<3	4	~3	<3	4			
La	21	9	66	5	8	<5	<5	62			
Li	nd	nd	nd	nd	nd	nd	nd	nd			
Mn	226	402	201	102	146	1 856	2 000	422			
Mo	220	402	291	-2	-2	1 850	2 009	+22			
Nb	4	-7	~7	<2	<2	-7	-7	22			
NG NG	19	12	103	5	5	59	22	20			
Dh	99 47	15	103	5	14	58	55	20			
PU Dh	47	21	13	<4	14	<4	<4 1 <i>5</i>	11 54			
KD	3	<2	58	<2	22	4	15	54			
SD S-	0	<4	<4	4	<4	<4	<4	<4			
Sc	nd	nd	nd	nd	na	nd	nd	na			
Sn	<4	<4		<4	20	<4	<4	10			
Sr	34	48	60	8	38	43	39	95			
1a T	<5	<5	<>>	<5	<5	<5	<5	<5			
le	<6	<0	<6	<0	<6	<0	<0	<6			
Th	4	2	8	<2	5	3	5	48			
U	17	<2	3	<2	2	<2	2	1(0)			
V	138	77	58	<3	129	39	32	169			
W	nd	nd	nd	nd	nd	nd	nd	nd			
Y	3	23	33	2	5	12	11	46			
Zn	166	6	108	<3	9	64	33	33			
Zr	10	12	46	<5	24	21	19	1 091			

	Trace element analysis only											
GSWA no. Rock type	114208 gossan	114209 gossan	114210 gossan	114211 gossan	114212 gossan	114213 carbonate	114214 quartz vein	114215 hematite	114216 sandstone			
Latitude Longitude	22°58'10" 122°23'40"	22°58'10" 122°23'40"	22°59'53" 122°23'21"	22°56'45" 122°22'39"	22°57'12" 122°23'20"	22°56'48" 122°27'34"	22°56'38" 122°28'00"	22°56'38" 122°28'00"	22°56'33" 122°28'42"			
Fe ₂ O ₃	38.00	40.00	42.00	24.00	Percent 68.90	26.00	3.00	78.90	4.00			
					Parts per milli	on						
Au	0.01	0.01	< 0.01	0.01	0.01	< 0.01	0.01	0.01	0.01			
Aσ	3	2	.</td <td><2</td> <td>4</td> <td>2</td> <td><2</td> <td>3</td> <td><?.</td></td>	<2	4	2	<2	3	.</td			
As	58	12	6	5	14	4	<4	28	16			
Ba	2 220	1 572	1 121	1 766	344	204	28	1 387	73			
Bi	<4	<4	<4	<4	<4	<4	<4	<4	<4			
Cd	<5	<5	<5	<5	<5	<5	<5	<5	<5			
Ce	138	29	41	23	31	9	<6	<6	15			
Co	nd	nd	nd	nd	nd	nd	nd	nd	nd			
Cr	65	45	13	<4	17	4	13	4	19			
Cu	275	22	17	68	<4	86	<4	546	<4			
Ga	14	5	3	<3	3	<3	<3	<3	3			
Ge	4	4	3	3	<3	<3	<3	4	<3			
La	90	21	38	25	12	10	<5	<5	8			
Li	nd	nd	nd	nd	nd	nd	nd	nd	nd			
Mn	7 514	176	55 540	13 510	7 863	8 083	88	961	26			
Мо	3	<2	<2	2	2	7	<2	8	<2			
Nb	24	20	15	17	<7	14	<7	<7	<7			
Ni	38	19	354	77	188	38	30	40	7			
Pb	7	<4	9	<4	11	<4	7	<4	11			
Rb	70	53	39	24	24	5	5	3	44			
Sb	<4	<4	<4	<4	<4	<4	<4	<4	<4			
Sc	nd	nd	nd	nd	nd	nd	nd	nd	nd			
Sn	22	<4	4	27	7	41	<4	<4	<4			
Sr	107	101	20	182	70	140	17	26	11			
Та	<5	5	<5	<5	<5	<5	<5	<5	<5			
Те	<6	<6	<6	<6	<6	<6	<6	<6	<6			
Th	20	8	4	<2	5	<2	<2	4	7			
U	9	2	14	<2	11	7	<2	2	2			
V	191	122	76	105	154	37	9	36	32			
W	nd	nd	nd	nd	nd	nd	nd	nd	nd			
Y	31	18	25	19	34	30	2	9	7			
Zn	103	40	318	8	274	6	20	33	7			
Zr	122	63	31	83	41	28	5	8	78			

	Trace element analysis only											
GSWA no.	114217	114218	114219	114220	114221	114222	114223	114224	114225			
Rock type	sandstone	sandstone	ferruginous	gossan	ferruginous	quartz vein	alluvium	ferruginous	ferruginous			
			sandstone		siltstone	-		shale	siltstone			
Latitude	22°56'33"	22°56'33"	22°56'40"	22°57'14"	22°57'02"	22°57'02"	22°57'05"	22°55'21"	22°48'48"			
Longitude	122°28'42"	122°28'42"	122°29'10"	122°28'52"	122°28'55"	122°28'55"	122°10'10"	122°09'11"	122°0'27"			
					Percent							
Fe ₂ O ₃	2.00	3.00	47.90	16.00	17.00	3.00	37.00	28.00	40.00			
					Parts per millio	n						
Au	< 0.01	0.01	< 0.01	0.01	< 0.01	0.01	0.01	< 0.01	< 0.01			
Ag	<2	<2	<2	<2	<2	<2	<2	<2	<2			
As	<4	7	16	10	<4	10	8	<4	<4			
Ba	327	365	2 592	852	1 240	4 697	66	457	645			
Bi	<4	<4	<4	5	<4	<4	<4	<4	<4			
Cd	<5	<5	<5	<5	<5	<5	<5	<5	<5			
Ce	19	71	43	8	7	14	19	6	11			
Co	nd	nd	nd	nd	nd	nd	nd	nd	nd			
Cr	16	26	<4	6	11	12	203	114	16			
Cu	<4	<4	<4	17	<4	<4	25	<4	18			
Ga	<3	3	<3	<3	4	<3	5	4	6			
Ge	<3	<3	3	<3	<3	<3	<3	4	<3			
La	7	32	24	<5	5	6	15	<5	11			
Li	nd	nd	nd	nd	nd	nd	nd	nd	nd			
Mn	16	72	27	16 180	50	851	78	<5	102			
Мо	<2	<2	2	<2	<2	<2	<2	<2	<2			
Nb	<7	<7	17	<7	<7	<7	17	16	17			
Ni	7	6	4	190	12	17	21	9	81			
Pb	10	18	11	34	14	12	25	10	7			
Rb	68	28	19	8	83	20	2	<2	41			
Sb	<4	<4	<4	6	<4	<4	<4	<4	<4			
Sc	nd	nd	nd	nd	nd	nd	nd	nd	nd			
Sn	<4	<4	<4	<4	<4	<4	<4	<4	<4			
Sr	20	35	21	143	53	57	6	19	39			
Та	<5	<5	<5	<5	<5	<5	<5	5	<5			
Te	<6	<6	<6	<6	<6	<6	<6	<6	<6			
Th	5	8	2	2	6	3	4	6	2			
U	2	2	<2	4	4	2	2	4	2			
V	19	20	9	59	126	29	475	97	77			
W	nd	nd	nd	nd	nd	nd	nd	nd	nd			
Y	12	10	14	19	11	15	14	3	17			
Zn	8	5	11	17	9	52	47	3	76			
Zr	100	81	28	53	93	25	65	34	110			