## Comparative marine biodiversity of the Rowley Shoals 2007: Benthic assemblages

Marine Science Program Data Report Series MSPDR7 November 2008

Suzanne C. Long and Thomas H. Holmes

Marine Science Program Science Division Department of Environment and Conservation



Department of Environment and Conservation Our environment, our future

#### This report can be cited as:

Long SC and Holmes TH (2009) Comparative marine biodiversity of the Rowley Shoals 2007: Benthic assemblages data report. Marine Science Program Data Report Series: MSPDR7. January 2009. Marine Science Program, Department of Environment and Conservation, Perth, Western Australia. 59p.

**Cover images:** (small images, left to right) Australian Institute of Marine Science (AIMS) research vessel the RV Solander; benthic biodiversity survey team at Cunningham Island, Imperieuse Reef, (L-R) Dr John Huisman, Steve Dutton, and Dr Katharina Fabricius; the RV Solander passing through Mermaid Channel; fish on reef flat in Clerke Reef Iagoon; and (large image) bommie in Clerke Reef Iagoon on calm day. Photos - Department of Environment and Conservation/ Marine Science Program

## SUMMARY

A major marine biodiversity survey of the Rowley Shoals, led by the Australian Institute of Marine Science in collaboration with the Western Australian Department of Environment and Conservation, was undertaken from 1-17 December 2007. The multidisciplinary survey aimed to collect data that could directly inform management of the Rowley Shoals Marine Park and the Mermaid Reef National Marine Nature Reserve. This data report provides a record of the data collected, the sites sampled and the methods used by the DEC-led component of the expedition only; that being quantitative surveys of the benthic marine biodiversity. The full set of results and analysis of this work will be presented in a forthcoming Technical Report.

The coral reef communities of the Rowley Shoals are generally in excellent condition. Many key marine species – such as sharks, maori wrasse, and commercially important invertebrates - appear to be more abundant at the Rowley Shoals than most other coral reefs worldwide. Some coral communities show evidence of serious damage by recent cyclone activity, but encouraging signs of recovery are evident, with apparently high rates of coral recruitment. Loss of resilience of these reefs would mean that the capacity for recovery from such acute disturbance events would be limited. Compilation of the benthic assemblages monitoring data acquired during this survey with other data from previous years will enable long-term trends in benthic community condition to be detected over time.

Algal biodiversity of the Rowley Shoals was quantitatively surveyed, whilst the biodiversity of Western Australian soft corals was studied for the first time during this trip. These surveys will facilitate increased understanding of the important ecological role played by macroalgae (including Crustose Coraline Algae (CCA)) and soft corals on Western Australian reefs, via production of basic photo ID guides to the macroalgae and soft corals of the Rowley Shoals. The results of the other projects conducted during this survey are not covered in this data report and will be reported in detail elsewhere.

## TABLE OF CONTENTS

| SU | JMMARY                                                                          | II  |
|----|---------------------------------------------------------------------------------|-----|
| TA | ABLE OF CONTENTS                                                                | III |
| LI | ST OF FIGURES                                                                   | IV  |
| LI | ST OF TABLES                                                                    | IV  |
| 1  | INTRODUCTION                                                                    | 1   |
| 2  | METHODS                                                                         | 2   |
| ,  | 2.1 Study Location                                                              |     |
|    | 2.2 SURVEY LOCATIONS                                                            |     |
|    | 2.3 SURVEY DESIGN                                                               |     |
|    | 2.4 SAMPLING METHODS                                                            |     |
|    | 2.4.1 Benthic video transects                                                   |     |
|    | 2.4.2 Biodiversity survey                                                       |     |
|    | 2.4.3 Haphazard Photoquadrats                                                   |     |
|    | 2.5 DATA ANALYSIS                                                               | 9   |
| 3  | DATA MANAGEMENT                                                                 | 11  |
|    |                                                                                 |     |
|    | <ul> <li>3.1 DIGITAL VIDEO RECORDS</li></ul>                                    |     |
|    | 3.3 DATA SHEETS                                                                 |     |
|    | 3.4 DIGITAL PHOTOQUADRATS                                                       |     |
|    | 3.5 DIGITAL STILL PHOTOGRAPHS                                                   |     |
|    | 3.6 REPORT ARCHIVALS                                                            |     |
| 4  | DATA/RESULTS                                                                    |     |
|    | 4.1 Benthic Video Transects                                                     | 12  |
|    | 4.2 BIODIVERSITY SURVEY                                                         |     |
|    | 4.3 HAPHAZARD PHOTOQUADRATS                                                     |     |
|    | 4.4 RECORD OF ANY SIGNIFICANT OBSERVATIONS OR PROBLEMS ENCOUNTERED IN THE FIELD |     |
|    | 4.4.1 Coral disease observations                                                |     |
|    | 4.4.2 Corallivores                                                              | 16  |
|    | 4.4.3 Sharks                                                                    | 17  |
|    | 4.4.4 Turtles                                                                   | 18  |
|    | 4.4.5 Spawning sea cucumbers                                                    |     |
|    | 4.4.6 Nocturnal fauna observations                                              |     |
|    | 4.4.7 Whale shark at Clerke Reef                                                | 19  |
| 5  | ACKNOWLEDGEMENTS                                                                | 20  |
| 6  | REFERENCES                                                                      | 20  |
| 7  | APPENDICES                                                                      | 22  |
|    | APPENDIX 1: PHOTO ID GUIDE TO THE MACROALGAE OF THE ROWLEY SHOALS               | 22  |
|    | APPENDIX 2: PHOTO ID GUIDE TO THE SOFT CORALS OF THE ROWLEY SHOALS              |     |
|    | APPENDIX 3: BENTHIC VIDEO TRANSECT RAW DATA                                     |     |
|    | APPENDIX 4: HAPHAZARD PHOTOQUADRATS RAW DATA                                    | 25  |
|    | APPENDIX 5: MAPS OF ANCHORING ZONES AT CLERKE AND MERMAID                       | 31  |
|    | APPENDIX 6: DISTURBANCE HISTORY OF THE ROWLEY SHOALS                            |     |
|    | APPENDIX 7: DRAFT MEDIA STATEMENT                                               | 36  |

## **LIST OF FIGURES**

| Figure 1. Location of the Rowley Shoals, north-western Australia                                           |
|------------------------------------------------------------------------------------------------------------|
| Figure 2a-c. Location of survey sites on (a) Imperiuese, (b) Clerke and (c) Mermaid reefs. Sites           |
| labelled 'RS' are AIMS long term monitoring sites7                                                         |
| Figure 3. Outline of transect survey design conducted at each site                                         |
| Figure 4. RS Imperieuse NE crest and slope 071206_550.jpg. Low resolution version showing wide             |
| angle (a); detail showing maximum resolution available (b)13                                               |
| Figure 5. Plate Acropora colony showing possible symptoms of white syndrome in the vicinity of long-       |
| term monitoring site AIMS-1995-RS3-1 at Imperieuse Reef in December 2007. Note completely                  |
| dead, turf-covered plate and corymbose forms nearby14                                                      |
| Figure 6. Detail of (a) edge of infected plate Acropora colony showing distinct bands of living (left),    |
| recently dead (white, middle) and algae-covered (right) tissue, in the vicinity of AIMS-1995-RS3-1         |
| at Imperieuse Reef in December 2007; and (b) disease front on another colony at the same site              |
| (photo courtesy of John Huisman)15                                                                         |
| Figure 7. (a) Apparently pathological condition affecting plate Acropora colonies near the finish mark     |
| of DEC-2007-I23 at Imperieuse Reef in December 2007, (b) Detailed view of same                             |
| Figure 8. Feeding aggregation of corallivorous Drupella cornus (~10 individuals) that has consumed a       |
| small acroporid colony. The lack of macroalgal settlement to the white coral skeleton indicates            |
| that this colony was eaten very rapidly and recently, probably within a few days                           |
| Figure 9. Dr Katharina Fabricius fending off an unusually inquisitive turtle in the vicinity of AIMS-1995- |
| RS2-1 at Clerke Reef, 10 December 200718                                                                   |
| Figure 10. Unidentified pair of extraordinary-looking fish with extremely long fins that appeared to be    |
| mimicking a cubozoan jellyfish. Lower image is a detailed version of the upper image. Image                |
| courtesy of lain Field                                                                                     |
| Figure 11. Small (~4 m long) whale shark (Rhincodon typus) alongside the RV Solander at Clerke             |
| Reef on the evening of 9 Dec 2007 (Image courtesy of Iain Field)                                           |
|                                                                                                            |

## LIST OF TABLES

| Table 1. GPS coordinates (WGS84) of sites at which video transects were recorded in December        |    |
|-----------------------------------------------------------------------------------------------------|----|
| 2007. These sites are mapped in Figures Xa-c. A = algal samples; SC = soft coral samples            | 5  |
| Table 2. Areas in which series of haphazard georeferenced benthic photoquadrats were made,          |    |
| Rowley Shoals, 1-17 Dec 2007.                                                                       | 8  |
| Table 3. Full list of benthic categories used for analysis of the video transects                   | 10 |
| Table 4. Soft Coral families and genera identified during the biodiversity survey of the Rowley Sho |    |
| December 2007 (from Fabricius 2008).                                                                | 12 |

## **1 INTRODUCTION**

Coral reef communities are naturally highly dynamic ecosystems. This dynamism is expressed in terms of shifts over time in competitively dominant species and relative cover of some of the key components of these communities: hard corals, soft corals, and algae. Shifts occur in response to both acute and chronic disturbances. Shifts observed in coral reef communities elsewhere include domination of substrate by soft corals or algae following stress-related reductions in hard coral cover, or the loss of sensitive habitat-forming corals like branching acroporids due to acute disturbances such as bleaching. Both of these scenarios can cause significant detrimental flow-on effects to the ecosystem as a whole. Understanding the responses of coral reef communities to different kinds of disturbance is essential for effective conservation management, particularly as the nature of these responses signal the health of the ecosystem, which can also be thought of as its resilience to inevitably increasing levels of environmental stress.

Due to their isolation and protection from most human impacts, the Rowley Shoals are likely to be amongst the most pristine coral reef environments remaining in the world (Bellwood *et al.* 2003; Gilmour *et al.* 2007). As coral reefs continue to degrade worldwide, careful management of the Rowley Shoals will be required to establish and maintain them as regional and potentially global benchmarks for coral reef biodiversity conservation. However, successful management requires informed decision-making. Although all three shoals are managed by State or Commonwealth Departments as marine protected areas, information about trends in marine biodiversity over time is essential for comparison and assessment of the effectiveness of the different management regimes in effect (or shortly to be in effect) across the three shoals. We do not yet have a sufficiently quantitative understanding of the benthic assemblages of the Rowley Shoals that any such trends could be identified. This is a significant constraint to informed management.

The southern two shoals, Clerke and Imperieuse, are managed by the Department of Environment and Conservation (DEC). These two shoals were gazetted in 1990 and extended in 2005 under the Conservation and Land Management Act 1984 (CALM Act) as the Rowley Shoals Marine Park (RSMP). The management of the RSMP is outlined in the Rowley Shoals Marine Park Draft Management Plan and indicative management plan for extensions to the existing marine park 2004 (Department of Conservation and Land Management and the Marine Parks and Reserves Authority 2004). The RSMP is managed as a multiple-use marine park including general use, recreation and sanctuary (no-take) zones. The Department of Fisheries (DoF) is responsible for the management and regulation of recreational and commercial fishing, aquaculture and pearling within the RSMP under the Fish Resources Management Act 1994 (FRM Act).

Apart from the potential negative effects of climate change, the principal human impacts on the shoals derive from multi-day, charter-based recreational diving and fishing visits. Private vessel visitation also occurs, and pressures from illegal foreign fishing activity, although probably sporadic at present (Naomi Wolfe, Department of Water and Resources, pers. comm. 2006), may increase over time.

Qualitative and quantitative surveys of components of benthic marine biodiversity (hard corals, soft corals, algae) have been conducted at different times at various shoals by different agencies (DEC, AIMS, WA Museum) using diverse methods. Following the recent compilation and synthesis of these data by Gilmour et al. (2007), the stage was set for a collaborative, comprehensive survey to both build on previous work and enable informed assessment of the effectiveness of various management regimes for conserving benthic marine biodiversity over time.

#### Objectives:

We intended to collect quantitative information about the distribution and abundance of key components of benthic marine biodiversity (hard corals, soft corals, and algae). These data will:

• enable local spatial comparisons between the three Rowley Shoals, which although biologically and geologically similar have differing histories of pressures and management;

- in combination with comparable historical records from the Rowley Shoals, serve as a temporal baseline for longer-term monitoring of trends over time; and
- in combination with comparable datasets from other oceanic shoals off northwestern Australia, enable a timely overview of the regional and global conservation status of these coral reef communities to be undertaken.

Benthic communities at the Rowley Shoals have been surveyed sporadically using a variety of methods since 1994. Our survey in 2007 will construct a reasonably detailed temporal snapshot of benthic communities at all three Rowley Shoals, documenting algal and soft coral biodiversity quantitatively for the first time. A forthcoming technical report will view this snapshot in the context of the historical quantitative data, such that trends over time may be identified. The snapshot will also act as a unifying baseline upon which all future monitoring, and our understanding of benthic communities at the Rowley Shoals, can build.

## 2 METHODS

## 2.1 Study Location

The Rowley Shoals is comprised of three emergent reefs - Mermaid, Clerke and Imperieuse - located approximately 300 km west-northwest of Broome, Western Australia, along the edge of the continental shelf (Figure 1). The shoals are characterised by high diversity, with upwards of 530 fish, and 214 coral species currently recorded at the location (Gilmour *et al.* 2007). Due to their issolation, they also remain largely unaffected by commercial and traditional fishing practices, resulting in relatively high abundances of shark, trochus, holothuria and giant clam. The northern-most reef, Mermaid, falls within Commonwealth Waters and was gazetted in 1991 as a Marine National Nature Reserve under the National Parks and Wildlife Conservation Act 1975. The southern two shoals, Clerke and Imperieuse, were gazetted in 1990 and extended in 2005 under the Conservation and Land Management Act 1984 (CALM Act) as the Rowley Shoals Marine Park (RSMP).

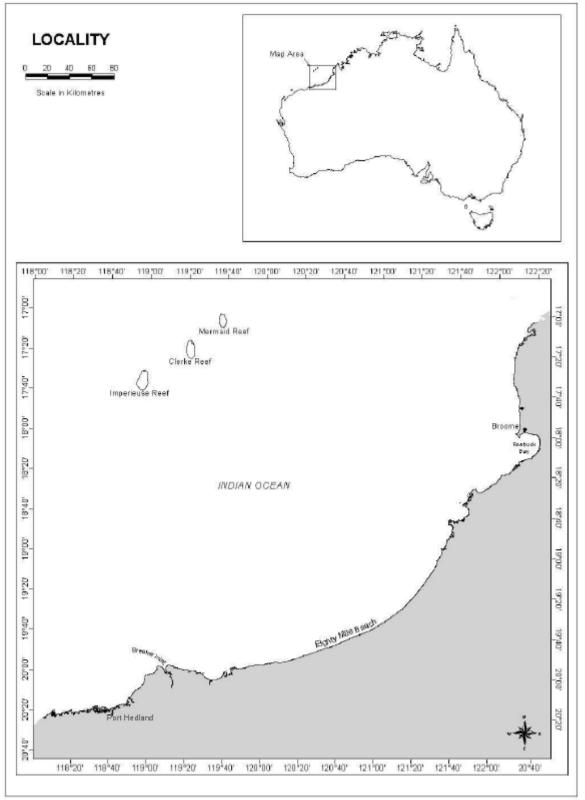



Figure 1. Location of the Rowley Shoals, north-western Australia.

## 2.2 Survey Locations

Benthic video transects and taxonomic biodiversity surveys were conducted at 10 sites on Clerke Reef, and 8 sites at both Imperiuese and Mermaind Reefs (total of 26 sites; Table 1, Figure 2a-c). Twenty-three of the sites were selected and identified from a historical list from previous DEC and WAM (2001 Rowley Shoals expedition), and AIMS (Long Term Monitoring sites) expeditions (see

Grubba *et al.* 2002 for description on how the original sites were selected and established). Due to the observed similarities between habitats across the three shoals, and the lack of known major disturbances, such as cyclones, since the last comprehensive survey, it was deemed unnecessary to revisit all of these historical sites. 2007 sites were selected on the basis of (a) the pre-existence of quantitative benthic cover data for that site, and/or (b) the need to balance study design in terms of the survey objectives. The remaining three sites, at Imperiuese (I23, I24) and Clerke (C25) reef's, were new sites established during this expedition. These were judged necessary to acquire baseline observations from different management zones, and to survey locations of particularly high human use, scientific interest or conservation value.

|           |             |                 | GPS coordinates |           |          |           |                                                                                                                                        |              |            |            |                                                                                                                                              |
|-----------|-------------|-----------------|-----------------|-----------|----------|-----------|----------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|           |             |                 | start           |           | finish   |           |                                                                                                                                        |              |            |            |                                                                                                                                              |
| Date      | R<br>e<br>f | Site name       | lat             | long      | lat      | long      | Habitat description                                                                                                                    | Depth<br>(m) | Sampl<br>A | les?<br>SC | Remarks                                                                                                                                      |
| 2/12/2007 | 1           | AIMS-1995-RS3-1 | 17.5484         | 118.9738  | 17.5507  | 118.9737  | Slope NE                                                                                                                               | 6 - 9        | v          | v          | Acropora plates with white band syndrome                                                                                                     |
| 2/12/2007 | İ           | DEC-2001-I14    | 17.54897        | 118.96654 | 17.55138 | 118.9651  | Lagoon                                                                                                                                 | 10           | v          | v          | none                                                                                                                                         |
| 3/12/2007 | Ι           | DEC-2007-123    | 17.50957        | 118.93439 | 17.50681 | 118.93583 | Slope NW                                                                                                                               | 9            | n          | ý          | none                                                                                                                                         |
| 3/12/2007 | I           | DEC-2001-I19    | 17.57958        | 118.93665 | 17.58214 | 118.93602 | Southern lagoon, shallow, dominated by<br>powdery sand (huge infauna activity) with<br>occasional sparse Acropora thickets             | 6            | n          | n          | Poor visibility                                                                                                                              |
| 3/12/2007 | I           | DEC-2001-I13    | 17.5599         | 118.94205 | 17.56247 | 118.94195 | Middle of lagoon, fragile forms of<br>Acropora, occasional bommies                                                                     | 6            | n          | n          | Poor visibility                                                                                                                              |
| 4/12/2007 | Ι           | DEC-2001-I9     | 17.61058        | 118.97475 | 17.61278 | 118.97434 | Slope SE. Highly rugose                                                                                                                | 7 - 13       | у          | n          | White band syndrome?                                                                                                                         |
| 4/12/2007 | I           | DEC-2001-I12    | 17.5888         | 118.9637  | 17.5911  | 118.9640  | Southern lagoon, undisturbed fragile<br>Acropora forms interspersed with bommies                                                       | 12           | у          | у          | none                                                                                                                                         |
| 6/12/2007 | Т           | DEC-2007-124    | 17.6092         | 118.96384 | 17.61143 | 118.96307 | Southern lagoon, undisturbed fragile<br>Acropora forms interspersed with bommies                                                       | 7 - 10       | у          | n          | 110 cm clam                                                                                                                                  |
| 7/12/2007 | с           | DEC-2007-C25    | 17.3155         | 119.3675  | 17.3144  | 119.3692  | Southern edge of eastern lagoon. Murky shallow lagoon edge with very occasional bommies.                                               | 4 - 7        | y          | n          | none                                                                                                                                         |
| 7/12/2007 | с           | DEC-2001-C5     | 17.34925        | 119.31541 | 17.35244 | 119.31586 | Slope SW, reef crest at about 7 m then<br>reef slope. Spur and groove structure,<br>many large soft corals and sea whips<br>below 12 m | 9 - 12       | y          | n          | Many juv maori wrasse                                                                                                                        |
| 8/12/2007 | с           | AIMS-1995-RS2-1 | 17.2843         | 119.3769  | 17.2867  | 119.3771  | Slope NE, low profile reef subject to strong wave action                                                                               | 6 - 10       | n          | n          | Many long dead plates. Many<br>deeper plates with white bands -<br>coral disease? Temperature<br>logger attached to stake at<br>northern end |
| 8/12/2007 | с           | DEC-2001-C3     | 17.27987        | 119.32131 | 17.28142 | 119.32047 | Slope NW, steep slope, low rugosity, high wave action. Large areas of Acropora rubble. Many Acropora recruits.                         | 7 - 9        | у          | у          | none                                                                                                                                         |
| 9/12/2007 | с           | DEC-2001-C20    | 17.30749        | 119.3713  | 17.30974 | 119.37156 | Eastern lagoon, shallow lagoon, patches<br>of Acropora rubble on bommie shoulders -<br>destroyed thickets?                             | 5 - 7        | у          | у          | none                                                                                                                                         |

Table 1. GPS coordinates (WGS84) of sites at which video transects were recorded in December 2007. These sites are mapped in Figures Xa-c. A = algal samples; SC = soft coral samples.

|            |   |                 | GPS coordina    | ates                                     |                                                |                                                    |                                                                                                                                                                                      |           |     |       |                                                                                                                                               |
|------------|---|-----------------|-----------------|------------------------------------------|------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|            | R |                 |                 |                                          |                                                |                                                    |                                                                                                                                                                                      |           |     |       |                                                                                                                                               |
|            | e |                 | start           |                                          | finish                                         |                                                    |                                                                                                                                                                                      | Dep<br>th | Sam | ples? | -                                                                                                                                             |
| Date       | f | Site name       | lat             | long                                     | lat                                            | long                                               | Habitat description                                                                                                                                                                  | (m)       | Α   | sc    | Remarks                                                                                                                                       |
| 9/12/2007  | С |                 | 17.2477         | 119.3447                                 | Not recorded<br>currents; app                  | d due to strong<br>prox 300m west<br>depth contour | North slope, quite strong current, low profile,<br>many Pocillopora and Sarcophyton-like softies,<br>high energy environment                                                         | 6 - 7     | y   | у     | Drupella observed                                                                                                                             |
| 10/12/2007 | С | DEC-2001-C12    | 17.3032         | 119.3359                                 | 17.3051                                        | 119.3346                                           | Lagoon, patches of rubble, many clams, occasional bommie.                                                                                                                            | 12        | у   | n     | none                                                                                                                                          |
| 10/12/2007 | С | DEC-2001-C11    | 17.3448         | 119.3511                                 | 17.3473                                        | 119.3511                                           | Southern lagoon, patches of rubble, occasional bommie, many juv maori wrasse                                                                                                         | 6         | у   | n     | none                                                                                                                                          |
| 11/12/2007 | С | DEC-2001-C21    | 17.3197         | 119.3607                                 | 17.3220                                        | 119.3606                                           | Small inner lagoon. Shallow lagoonal habitat with occasional bommies.                                                                                                                | 8         | у   | n     | T1 started twice                                                                                                                              |
| 11/12/2007 | С | DEC-2001-C9     | 17.3559         | 119.3842<br>e to strong currer           | currents; tran<br>southerly d<br>depth contour |                                                    | SE Slope. Steep slope/wall with strong spur and<br>groove structure.                                                                                                                 | 8         | у   | n     | No evidence of white band<br>disease amongst plate<br>Acroporids. Filmed at 90 degrees<br>to substrate.<br>Vid will be challenging to analyse |
| 12/12/2007 | N | DEC-2001-M5     | direction along | 7 m contour adjac<br>5, further inshore) | ent to 17.1272                                 | ° 119.5943° (old                                   | SW slope. Surge and strong currents.                                                                                                                                                 | 8         | у   | n     | due to frequent changes of direction.                                                                                                         |
| 12/12/2007 | N | DEC-2001-M1     | 17.02767        | 119.61792                                | 17.02745                                       | 119.61633                                          | Steep slope, not many fish. Shark listening station along T4, large porites bommie at finish                                                                                         | 12        | -   | -     | none                                                                                                                                          |
| 12/12/2007 | N | AIMS-1994-RS1-1 | 17.0659         | 119.6497                                 | -                                              | -                                                  | Near vertical walls into blue water. Lots of soft corals and encrusting hard corals. Strong current off reef flat                                                                    | 8         | _   | _     | none                                                                                                                                          |
| 13/12/2007 | N | DEC-2001-M4     | 17.0762         | 119.5962                                 | 17.0774                                        | 119.5956                                           | Almost completely destroyed reef, large areas of<br>turf covered rubble, some acroporid recruits but<br>most substrate still unstable                                                | 7-8       | -   | -     | non                                                                                                                                           |
| 14/12/2007 | N | DEC-2001-M7     | 17.1641         | 119.6277                                 | 17.16352                                       | 119.62491                                          | Southern tip/slope of Mermaid. Rugose, every<br>stable surface was covered in pocilloporid and<br>acroporid recruits, few large coral colonies xpt<br>encrusters and the odd Porites | 10        | v   | n     | none                                                                                                                                          |
| 14/12/2007 | N | DEC-2001-M13    | 17.0891         | 119.63474                                | 17.09034                                       | 119.62421                                          | Northern lagoon. Patches of fragile Acropora<br>with occasional small bommies sporting<br>enormous plates. Some dead thickets covered<br>in algae.                                   | 12        | y   | n     | none                                                                                                                                          |
| 15/12/2007 | N | DEC-2001-M11    | 17.13371        | 119.6339                                 | 17.13336                                       | 119.63336                                          | Southern lagoon. Transects ran around<br>"hillocks" of staghorn rubble, clams and fungiids.<br>Deeper areas with sparse fine Acropora,<br>fungiids, and rubble with turf.            | 8 -<br>12 | n   | n     | none                                                                                                                                          |
| 15/12/2007 | N | DEC-2001-M12    | 17.11469        | 119.63474                                | 17.11421                                       | 119.63484                                          | Middle lagoon. Transects ran around "hillocks"<br>of staghorn rubble, clams and fungiids. Deeper<br>areas with sparse fine Acropora, fungiids, and<br>rubble with turf at 15 - 20 m. | 8 -<br>12 | n   | n     | none                                                                                                                                          |

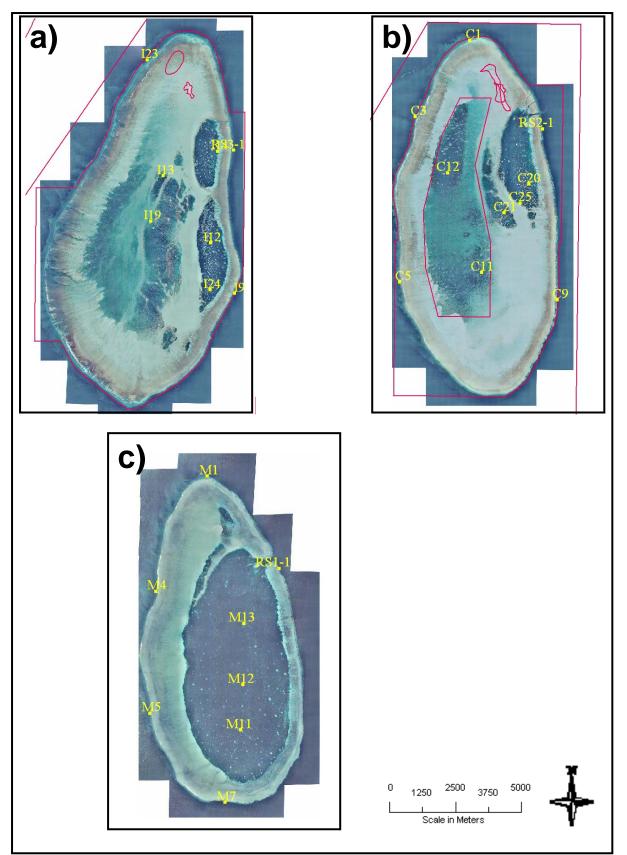



Figure 2a-c. Location of survey sites on (a) Imperiuese, (b) Clerke and (c) Mermaid reefs. Sites labelled 'RS' are AIMS long term monitoring sites.

In addition, a series of haphazard benthic photoquadrats were obtained from all three reefs. Two habitats were sampled using this method: shallow reef crests in the vicinity of the northernmost AIMS

LTM site at each reef, and sheltered lagoonal environments within Clerke and Mermaid (Table 2). For the lagoonal areas, images were made both inside and outside the anchoring zones (Table 2, Appendix 6 (anchoring zones)).

 Table 2. Areas in which series of haphazard georeferenced benthic photoquadrats were made, Rowley Shoals, 1-17 Dec 2007.

| Date     | Reef | Site                                               | Habitat                                                                                                                                                                                    | #        |
|----------|------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|          |      |                                                    |                                                                                                                                                                                            | quadrats |
| 6/12/07  | Ι    | AIMS-1995-RS3-1                                    | NE crest and slope, ranging from 1-13 m depth                                                                                                                                              | 70       |
| 8/12/07  | С    | Lagoon near anchoring zone                         | Sheltered lagoon with sand, rubble and Acropora thickets, 8-16 m depth; quadrats inside/outside anchoring zone                                                                             | 53       |
| 10/12/07 | С    | AIMS-1995-RS2-1                                    | NE crest and slope, ranging from 1-16 m depth                                                                                                                                              | 84       |
| 16/12/07 | М    | NE reef crest and<br>lagoon near anchoring<br>zone | Shallow 2-4 m reef crest in vicinity of AIMS-1995-RS1-<br>1; sheltered lagoon with sand, rubble and Acropora<br>thickets, ~15 m depth, with quadrats both<br>inside/outside anchoring zone | 58       |

## 2.3 Survey Design

Five replicate 50 x 1 metre transects were conducted at each site (Figure 3). Transects were run linearly, starting from the site marker and following the depth contour of the site. Ten metre gaps were maintained between quadrats, for a total survey length of ~290 metres (i.e. 50+10+50+10+50+10+50+10+50 m). This is the standard adopted by the AIMS long-term monitoring program for benthic habitats on the GBR, and use of this method ensures comparability of results with historical data from the Rowley Shoals.

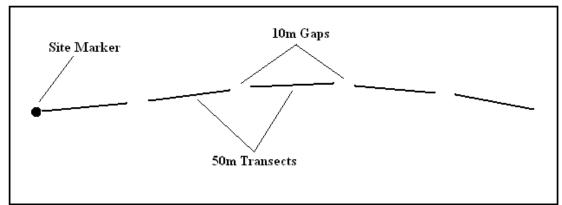



Figure 3. Outline of transect survey design conducted at each site

## 2.4 Sampling Methods

## 2.4.1 Benthic video transects

In most cases, sites were identified using historical coordinates, and the start of the first transect was marked by the deployment of a weighted buoy at those coordinates. At established AIMS sites, star pickets have been driven into the reef as permanent markers of the start and finish of each transect. For new sites, the start of the first transect was sited so as to permit all five transects to be laid within similar habitat.

As stated above, five 50 m transects were surveyed at each site. Use of a cotton spool rather than a tape measure to delineate each transect enabled each site to be completed easily within one dive. The first diver was responsible for laying the cotton, keeping to the depth contour and establishing the start and finish of each transect. Transects were laid linearly, with ~10 m between transects. The transects were videoed by the second diver, according to the established methods of AIMS and the Marine Science Program, swimming slowly (10 metres/min) with the camera ~50 cm above the substrate. A float was deployed at the completion of the final transect at each site. The GPS coordinates of the starting and finishing floats were recorded on the data sheet for each site, along with general habitat notes including depth. Notes were also made about the number of Acanthaster

planci and feeding aggregations of the corallivorous gastropod Drupella observed along each transect. Photographs and notes were made of any observed incidences of coral disease.

#### 2.4.2 Biodiversity survey

Although the replicate video transect method described above is relatively quick and enables repeatable quantification of benthic cover for a given area, identification of organisms to lower taxonomic levels can be problematic. To facilitate identification of the poorly-known algal and soft coral species from the video record, taxonomic experts Dr John Huisman and Dr Katharina Fabricius examined the vicinity of each transect in situ, making notes, photographs and collections where necessary. In the case of soft corals, transects commenced at ~20 m depth and ascended gradually, finishing at ~5 m depth over a horizontal distance of ~300 m. All octocorals encountered were identified (so far as possible in the field), most were photographed, and samples were taken of new observations for later taxonomic analysis. The resultant basic field guides to the algae and soft corals of the Rowley Shoals (Appendices 1 & 2) will enable non-specialists to tentatively identify taxa from the transect video (although obviously in many cases identification to lower taxonomic levels is impossible without microscopic examination). This should permit quantitative taxonomic discrimination within these key components of the benthic community to a degree that has not hitherto been possible in Western Australia.

#### 2.4.3 Haphazard Photoquadrats

Using a digital camera, GPS and tripod system developed by Dr Andrew Heyward (AIMS), a series of highly detailed, haphazard, georeferenced benthic photoquadrats was obtained for several areas at the three reefs. This was a pilot study to investigate the method's usefulness for assessing rates of coral recruitment, cover of various groups including crustose coralline algae, rates of recovery from anchor damage, and benthic habitat mapping. With the GPS running in track mode and the camera making high resolution images at 5 second intervals, the camera/tripod assembly was repeatedly lowered over the side of a small boat to the bottom, left for ~10 sec, and retrieved. GPS coordinates were later inserted into the EXIF data for each image using the software Downloader Pro.

## 2.5 Data Analysis

Transect videos were analysed using the standard AIMS point sampling method that is now used worldwide for coral reef monitoring programs, and which has been used historically at the Rowley Shoals by both AIMS and DEC. Two hundred points were sampled per transect, during which the organism or substrate occurring under each point were classified into the detailed benthic categories described in Page *et al.* (2001). The full list of benthic categories used in the analyses is given in Table 3.

|              | gories used for analysis of the vide |
|--------------|--------------------------------------|
| Benthos Code | Benthos Description                  |
| AA           | Algal assemblage                     |
| AB           | Abiotic                              |
| AC           | Acropora not ACR or ACB              |
| ACB          | Branching Acropora                   |
| ACC          | Caespitose Acropora                  |
| ACD          | Digitate Acropora                    |
| ACE          | Encrusting Acropora                  |
| ACH          | Staghorn Acropora                    |
| ACO          | Corymbose Acropora                   |
| ACS          | Submassive Acropora                  |
| ACT          | Tabulate Acropora                    |
| ACX          | Bottlebrush Acropora                 |
| AO           | Algae Other                          |
| BG           | Blue-Green Algae                     |
| CA           | Coralline algae                      |
| СВ           | Branching non-Acropora               |
| CE           | Encrusting non-Acropora              |
| CF           | Foliose non-Acropora                 |
| CHL          | Heliopora                            |
| CL           | Solitary coral                       |
| СМ           | Massive non-Acropora                 |
| CME          | Millepora                            |
| CMR          | Mushroom coral                       |
| CS           | Submassive non-Acropora              |
| CST          | Distichopora                         |
| СТ           | Tabulate non-Acropora                |
| DC           | Dead coral (recent)                  |
| DCA          | Algae on Dead Coral                  |
| HA           | Halimeda                             |
| MA           | Macroalgae                           |
| OT           | Other organisms                      |
| R            | Rubble                               |
| RCK          | Reefal substrate                     |
| S            | Sand                                 |
| SA           | Arborescent Soft Coral               |
| SAE          | Arb & Enc Soft Coral                 |
| SB           | Branching Soft Coral                 |
| SC           | Soft coral                           |
| SCC          | Capitate Soft Coral                  |
| SD           | Digitate Soft Coral                  |
| SE           | Encrusting Soft Coral                |
| SER          | Errect Soft Coral                    |
| SI           | Silt                                 |
| SL           | Lobate Soft Coral                    |
| SM           | Massive Soft Coral                   |
| SP           | Sponge                               |
| SPB          | Sponge Branching                     |
| SPE          | Sponge Encrusting                    |
| SPF          | Sponge Foliaceous                    |
| SPL          | Sponge Blade                         |
| SPM          | Sponge Massive                       |
| TA           | Turf algae                           |
| UNK          | Unknown                              |
| WA           | Water                                |
| ZO           | Zoanthid                             |
| 20           | Zoanano                              |

#### Table 3. Full list of benthic categories used for analysis of the video transects.

## **3 DATA MANAGEMENT**

## 3.1 Digital Video Records

All mini digital video (MDV) footage collected during the survey is held at two locations:

- MDV masters have been archived in the Rowley Shoals Marine Park Long Term Monitoring Program – Video Archive – Marine Science Program file (box) 2008/001941 held at the Information Management Branch, Department of Environment and Conservation, 17 Dick Perry Avenue, Kensington, Western Australia. Ph: (08) 9334 0333.
- MDV copies have been stored at the Marine Science Program, Science Division, Department of Environment and Conservation, 17 Dick Perry Avenue, Kensington, Western Australia. Ph: (08) 9334 0333.

## 3.2 Benthic Video Database

The analysed benthic video database is contained within a Microsoft Access database file and stored in the following locations:

- The Rowley Shoals Marine Park Long Term Monitoring Program Video Archive Marine Science Program file (box) 2008/001941 held at the Information Management Branch, Department of Environment and Conservation, 17 Dick Perry Avenue, Kensington, Western Australia. Ph: (08) 9334 0333.
- 2. The Rowley Shoals file on the MSP server at the Kensington offices. Ph. (08) 9334 0333.

## 3.3 Data Sheets

Copies of the data sheets collected during the 2008 survey are contained within the Rowley Shoals coporate data file, stored at the Marine Science Program offices, Kensington (File 2008/004448-1).

## 3.4 Digital Photoquadrats

All digital photoquadrats taken during the survey are archived on the MSP server at the Kensington offices. Ph. (08) 9334 0333.

## 3.5 Digital Still Photographs

All digital still photographs taken during the survey are archived in the image library on the MSP server at the Kensington offices. Ph. (08) 9334 0333.

## 3.6 Report Archivals

Hard copies of this report will be held at the following locations:

- 1. Marine Science Program, Science Division, Department of Environment and Conservation, 17 Dick Perry Avenue, Western Australia, 6152. Ph: (08) 9334 0333.
- 2. Woodvale Library, Science Division, Department of Environment and Conservation, Ocean Reef Road, Woodvale, Western Australia, 6026. Ph: (08) 9405 5100 Fax: (08) 9306 1641.
- Archives, Woodvale Library, Science Division, Department of Environment and Conservation, Ocean Reef Road, Woodvale, Western Australia, 6026. Ph: (08) 9405 5100 Fax: (08) 9306 1641 (CD also attached).
- 4. Department of Environment and Conservation: Exmouth, 20 Nimitz St, Exmouth, Western Australia, 6007. Ph: (08) 99478000 Fax: (08) 99478050.
- 5. Department of Environment and Conservation: Regional Office Karratha, Lot 3 Anderson Rd, Karratha Industrial Estate, Karratha, WA, 6714. Ph: (08) 91431488 Fax: (08) 91441118.

6. Serials Section, State Library of Western Australia. Alexander Library Building, Perth Cultural Centre, Perth, Western Australia, 6000.

A digital copy of this report is held on the MSP Server at the Kensington offices. Ph: (08) 9334 0229

## 4 DATA/RESULTS

## 4.1 Benthic Video Transects

Twenty-three long-term monitoring sites were resurveyed, and three new sites were established (Table 1). A summary of the video transect analyses is referred to in Appendix 3 in this report. Data has been processed and categorized into the percentage cover for each of the benthic categories, down to the replicate transect level. Although this version has been modified so that it can be placed into this report, the original version is stored within a Microsoft Access database.

## 4.2 Biodiversity Survey

Outcomes from the macroalgal and soft coral surveys can be found in Huisman (2009) and Fabricius (2008) respectively (refer to Appendices 1 and 2 for further detail). See Table 4 below for a summary of soft corals identified during the 2007 survey.

| Leather corals and         | Phototroph/ | Gorgonians (sea  | Phototroph/ | Blue coral, encrusting | Phototroph/ |
|----------------------------|-------------|------------------|-------------|------------------------|-------------|
| aborescent taxa Heterotrop |             | fans, sea whips) | Heterotroph | taxa and taxa with     | Heterotroph |
|                            |             |                  |             | large polyps           |             |
| Alcyoniidae                |             | Subergorgiidae   |             | Helioporidae           |             |
| Sinularia                  | р           | Annelia          | Н           | Heliopora              | р           |
| Dampia                     | р           |                  |             |                        |             |
| Cladiella                  | р           | Melithaeidae     |             | Clavulariidae          |             |
| Sarcophyton                | р           | Melithaea        | Н           | Clavularia             | р           |
| Lobophytum                 | р           |                  |             |                        |             |
|                            |             | Acanthogorgiidae |             | Xeniidae               |             |
| Nephtheidae                |             | Acanthogorgia    | Н           | Xenia                  | р           |
| Nephthea                   | р           |                  |             |                        |             |
| Litophyton                 | р           | Plexauridae      |             | Briareidae             |             |
| Stereonephthya             | p + H       | Euplexaura       | Н           | Briareum               | р           |
| Scieronephthya             | Н           | Echinogorgia     | Н           |                        |             |
| Dendronephthya             | Н           | Menella          | Н           |                        |             |
| Lemnalia                   | р           | Astrogorgia      | Н           |                        |             |
| Paralemnalia               | р           |                  |             |                        |             |
|                            |             | Gorgoniidae      |             |                        |             |
| Nidaliidae                 |             | Rumphella        | р           |                        |             |
| Siphonogorgia              | Н           | Hicksonella      | р           |                        |             |
| Chironeohthya              | Н           |                  |             |                        |             |
|                            |             | Ellisellidae     |             |                        |             |
|                            |             | Ellisellia       | Н           |                        |             |
|                            |             | Junceella        | p + H       |                        |             |

| Table 4. Soft Coral families and g | enera identified during | g the biodiversity | survey of the Rowley \$ | Shoals, |
|------------------------------------|-------------------------|--------------------|-------------------------|---------|
| December 2007 (from Fabricius 20   | 08).                    |                    |                         |         |
|                                    |                         |                    |                         |         |

## 4.3 Haphazard Photoquadrats

The full sets of high resolution images are available on the MSP server. An example is given in Figure 4. These sets include images which are unsuitable for quantitative analyses due to having been taken whilst the tripod was not settled on the substrate; such georeferenced images may however prove to be of use for benthic habitat mapping purposes. (For example, the lagoon of Mermaid Reef was frequently too deep (>16 m) for the tripod to reach the substratum. However, many of these

georeferenced images provide good general overviews of the underwater landscape and thus have not been discarded). Of these sets, those images selected as being appropriate for further quantitative analyses are listed along with their depth class, habitat and GPS coordinates (WGS84) in Appendix 4.

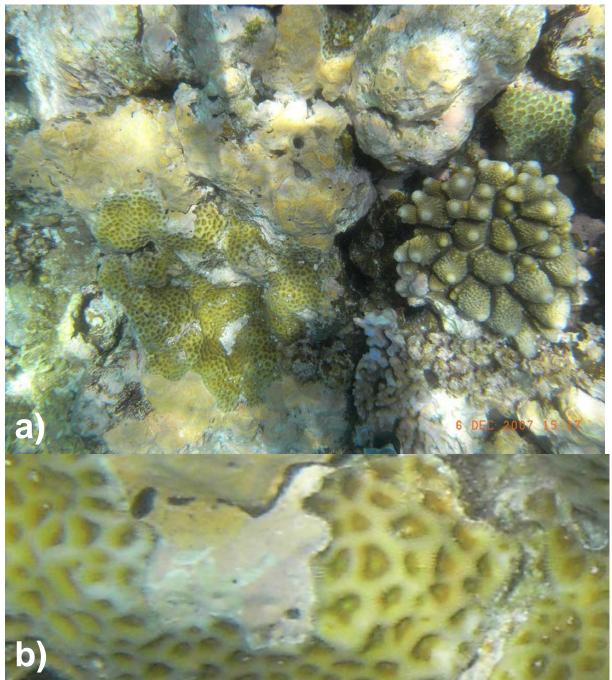



Figure 4. RS Imperieuse NE crest and slope 071206\_550.jpg. Low resolution version showing wide angle (a); detail showing maximum resolution available (b).

This method works reasonably well in the field and can generate considerable amounts of data (images) in a relatively short period of time, without the risks and constraints associated with having scuba divers in the water. Consequently, although these images could not be analysed prior to the publication of this data report, the potential usefulness of this method for future Marine Science Program research should be investigated in the following ways:

• Using Coral Point Count software and the benthic categories given in Table 1 to generate percent cover of each category, enabling comparison of these results with those generated by the conventional video transect method at each northeastern crest/slope site.

- Using Coral Point Count software and the benthic categories given in Table 1 to generate percent cover of each category for lagoonal images, enabling statistical comparison of lagoonal benthic assemblages between reefs and inside/outside anchoring zones.
- Using image analysis software to measure the size/two-dimensional area of coral recruits identified in the northeastern crest/slope images, to compare rates of coral recruitment and the size and taxonomic composition of recruited corals in similar habitats across the three reefs.
- Assessment of whether a combination of these approaches could be used for statistically robust quantitative monitoring of condition and/or recovery of benthic assemblages in areas in which diving-based research is not feasible.

## 4.4 Record of any significant observations or problems encountered in the field

#### 4.4.1 Coral disease observations

An unusually high number of dead plate *Acropora* colonies was observed along transects at long-term monitoring sites on the reef slope of eastern Imperieuse Reef (AIMS-1995-RS3-1 and DEC-2001-I9). Approximately 5-10% of live plate colonies in the vicinity of these sites showed features tentatively identified as symptomatic of white syndrome (Figure 5). These plates were in situ and not physically damaged, and there was no evidence of Crown of Thorns Starfish (COTS) predation. Qualitative observations suggested that the frequency of infection was highest at approximately 10 m and decreased with increasing depth.



Figure 5. Plate Acropora colony showing possible symptoms of white syndrome in the vicinity of long-term monitoring site AIMS-1995-RS3-1 at Imperieuse Reef in December 2007. Note completely dead, turf-covered plate and corymbose forms nearby.

Similar observations were made near the long-term monitoring site on the northeastern slope of Clerke Reef (AIMS-1995-RS2-1; Figure 6). To quantify the extent of infected colonies at this site, we filmed another parallel series of monitoring transects at a depth of 10 m, several metres deeper than AIMS-1995-RS2-1. This should enable future surveys to calculate the rate of colony death and infection at this site.

The northeastern slope of Mermaid Reef (AIMS-1994-RS1-1) was quite different in topography to Clerke and Imperieuse, being much steeper and with limited appropriate habitat for plate Acropora corals. Nonetheless several symptomatic colonies were also identified in this area.

Close inspection of symptomatic colonies along the deeper transect at AIMS-1995-RS2-1 showed that many hosted aggregations of *Drupella*. However, it is unclear whether these corallivores were responsible for the observed pathology or were secondarily opportunistically attacking the disease-weakened coral (*Drupella* are known to aggregate at areas where coral has been damaged).

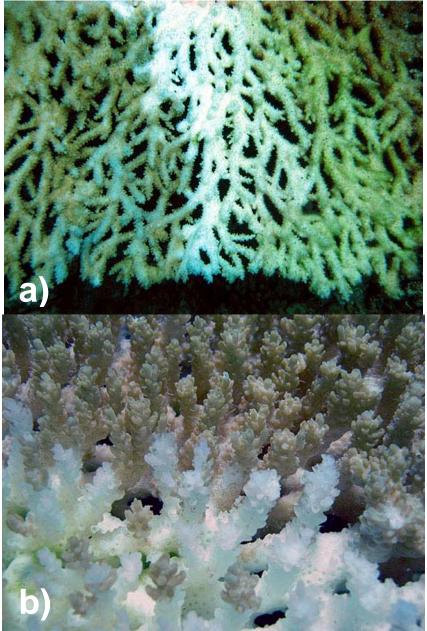



Figure 6. Detail of (a) edge of infected plate Acropora colony showing distinct bands of living (left), recently dead (white, middle) and algae-covered (right) tissue, in the vicinity of AIMS-1995-RS3-1 at Imperieuse Reef in December 2007; and (b) disease front on another colony at the same site (photo courtesy of John Huisman).

Samples from two symptomatic colonies were inspected microscopically shortly after collection. The white-brown front on the first sample showed many cases in which the front passed directly through polyps, such that half the polyp was white and the other brown. Zooxanthellae were observed escaping from damaged tissues at the front. White areas appeared to be bare skeleton, with little or no tissue attached. The second sample, however, from the Cod Hole at Mermaid Reef, had quite a different microscopic appearance. In this case shreds of live tissue remained in the vicinity of the

Another apparently pathological condition affecting plate *Acropora* colonies was observed patchily across Imperieuse and Clerke reefs (Figure 7). The apparent loss of coral skeleton as well as living tissue in affected areas means that these dead patches are unlikely to be COTS feeding scars. Further scientific opinion will be sought regarding these observations.

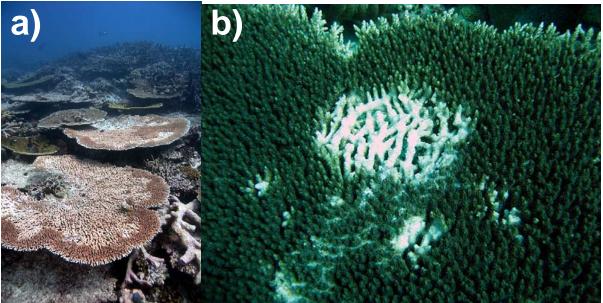



Figure 7. (a) Apparently pathological condition affecting plate Acropora colonies near the finish mark of DEC-2007-I23 at Imperieuse Reef in December 2007, (b) Detailed view of same.

#### 4.4.2 Corallivores

Only two *Acanthaster planci* were observed during the entire period of field operations, indicating that crown-of-thorns starfish are currently not in sufficient numbers to pose a threat to Rowley Shoals coral communities (at least at depths <30 m).

However, *Drupella* feeding aggregations were observed on all three reefs (Figure 8). Aggregations were always in association with *Acropora* or *Pocillopora* colonies, which have been reported to be preferred prey species for *Drupella* elsewhere in the Indo-Pacific, including Ningaloo Reef. Qualitative observations indicated that Rowley Shoals aggregations were generally less common and composed of fewer, larger individuals relative to aggregations at Ningaloo Reef. As previously mentioned, aggregations were also observed in association with some plate Acropora colonies appearing to show symptoms of white syndrome (see above). It is possible that *Drupella* feeding aggregations could be the causative agent of the relatively high incidence of plate acroporid colony death observed at these sites.



Figure 8. Feeding aggregation of corallivorous Drupella cornus (~10 individuals) that has consumed a small acroporid colony. The lack of macroalgal settlement to the white coral skeleton indicates that this colony was eaten very rapidly and recently, probably within a few days.

It is recommended that a microscopic study be made of tissue consumption patterns associated with *Drupella* predation of plate *Acropora* corals. Sufficient understanding of these patterns might in future enable symptoms of *Drupella* predation to be relatively easily distinguished from disease-caused pathologies in the field.

#### 4.4.3 Sharks

As reported by Meekan & Cappo (2004), Rowley Shoals shark populations appear to be healthy. Although no quantitative observations were made, the Rowleys benthic team saw around three sharks per dive, compared to around one shark every five days by research teams on the Great Barrier Reef (Katharina Fabricius, pers comm.). Grey reef sharks, whitetip and blacktip reef sharks appeared to dominate shark assemblages, and rarely appeared concerned by the presence of divers. Grey reef sharks seemed the most aggressive of these species, with threatening behaviour towards divers observed on a couple of occasions (Mermaid lagoon). Care should be taken when diving in the vicinity of this species in all future activities at the Rowley Shoals. Whitetips regularly closely approached divers working in lagoons. The largest shark seen was a great hammerhead (*Sphyrna mokarran*) approximately 2.5-3 m in length, which very closely approached the benthic team at site DEC-2001-C3.

#### 4.4.4 Turtles

Relatively few turtles were observed during field operations at the Rowley Shoals compared to reefs in more coastal regions of Western Australia (such as the Montebellos/Barrow Island or Ningaloo Reef). It is unknown whether the Rowley Shoals normally supports few turtles, or whether at this time of year Rowley Shoals turtles have migrated towards coastal nesting beaches for the reproductive season. Anecdotal reports of an individual turtle that regularly approaches divers in the vicinity of AIMS-1995-RS2-1 (the northernmost transect) at Clerke Reef were confirmed by the benthic team (Figure 9).



Figure 9. Dr Katharina Fabricius fending off an unusually inquisitive turtle in the vicinity of AIMS-1995-RS2-1 at Clerke Reef, 10 December 2007.

No turtle tracks were observed on 2 December 2007 at Cunningham Island (Imperieuse Reef). Fourteen green turtle tracks were observed on Bedwell Island (Clerke Reef) on 10 December 2007, although it is unknown over what time period these tracks had been made. At least one of these appeared to have resulted in a nest successfully being dug, although no attempt was made to verify whether eggs had been laid. However, given the limited area available and in line with previous reports, it seems unlikely that significant turtle nesting occurs at the Rowley Shoals.

#### 4.4.5 Spawning sea cucumbers

Individual spawning sea cucumbers (*Bohadaschia graffei*) were observed on several occasions during the survey, usually in the late afternoon/early evening.

#### 4.4.6 Nocturnal fauna observations

Night-time shark-fishing activities off the back deck of the RV Solander afforded many opportunities to make natural history observations of the marine organisms attracted to the lights and berley trail. The assemblage of organisms attracted to the vessel each night was highly variable and unpredictable. On a couple of nights very large numbers of crab megalopae clustered around the vessel (visible as bright spots in Figure 10), crawling out onto any available surface, including up fishing lines. On several separate occasions, numerous small (~20 cm long) banded eels (possibly *Myrichthys colubrinus*) were observed swimming on the surface for long periods, possibly feeding on small organisms attracted to the lights. These may have been juveniles, as adults of this species group are diurnal and benthic in shallow reef flat habitats. Notably, none of the larger predatory fish present were observed to attack these eels, the banded pattern and swimming style of which is thought to

mimic the banded sea krait, *Laticauda colubrina*. (It's interesting that this form of protection apparently works despite the fact that no sea snakes have ever been reported from the Rowley Shoals.) Other observations of note included the brief presence of a pair of unidentified extraordinary fish (Figure 10), which were seen on a couple of occasions on a single night. These small fish (~10 cm SL, and apparently quite deep-bodied) had extremely elaborated streamers on their fins which, along with their closely paired, smooth swimming style, made them appear superficially similar to a cubozoan jellyfish. No attacks were observed on these slow-moving, fragile-looking fish.



Figure 10. Unidentified pair of extraordinary-looking fish with extremely long fins that appeared to be mimicking a cubozoan jellyfish. Lower image is a detailed version of the upper image. Image courtesy of lain Field.

## 4.4.7 Whale shark at Clerke Reef

On 9 Dec 2007, a whale shark (*Rhincodon typus*) twice approached the RV Solander while the vessel was anchored in the vicinity of AIMS-1995-RS2-1 at Clerke Reef. The shark was relatively small (~ 4 m long) and thin (Figure 11) and on both occasions – once at around midday, and once just after sunset - came within metres of the Solander's hull for at least 15 minutes, before slowly swimming

away. Figure x has been entered into the global whale shark ID database by Dr Iain Field, and no matches for this individual have been found (although the image is borderline in quality for identification purposes).



Figure 11. Small (~4 m long) whale shark (Rhincodon typus) alongside the RV Solander at Clerke Reef on the evening of 9 Dec 2007 (Image courtesy of lain Field).

Whale sharks have been anecdotally reported from the Rowley Shoals<sup>1</sup> but it is unknown whether the Shoals constitute important habitat for a resident or transient population of these globally threatened sharks.

## **5 ACKNOWLEDGEMENTS**

This survey was led by the Australian Institute of Marine Science (AIMS) in collaboration with the Western Australian Department of Environment and Conservation (DEC). The project was funded by the AIMS, DEC, the Western Australian Museum and the Commonwealth Department of Environment Heritage and the Arts. In-kind support was provided by Charles Darwin University (Ian Field). The time and effort of volunteers who provided field support was greatly appreciated. In particular we would like to thank the master and crew of the AIMS research vessel the Solander.

## **6 REFERENCES**

Bellwood DR, Hoey AS, Choat JH (2003) Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecology Letters, 6, 281-285.

Fabricius K (2008) A brief photo guide to the shallow-water octocorals of the Rowley Shoals, Western Australia. In. AIMS and DEC. 39p.

Gilmour J, Cheal AJ, Smith LD, Underwood JN, Meekan M, Fitzgibbon B, Rees M (2007) Data compilation and analysis for Rowley Shoals: Mermaid, Imperieuse and Clerke reefs. In. Prepared for the Department of the Environment and Water Resources by the Australian Institute of Marine Science, Perth, Western Australia. 118p.

Grubba T, Cary J, Lapwood M (2002) Rowley Shoals Marine Reserves Monitoring Program: Establishment of long-term benthic monitoring sites in the Rowley Shoals Marine Park and Mermaid Reef Marine National Nature Reserve in October 2001. Data Report MMS/Oss/RSH-53/2002.

<sup>&</sup>lt;sup>1</sup> For example http://www.escuba.com/articles/index.asp?WCI=Article1&WCE=79

Marine Conservation Branch, Department of Conservation and Land Management, Fremantle, Western Australia (unpublished report). 265p.

Huisman J (2009) A brief photo ID guide to the macroalgae of the Rowley Shoals. DEC, Perth. 25p.

Long SC, Armstrong S, Fabricius K, Field I, Cook K, Coquhoun J, Huisman J (2008) Comparative marine biodiversity survey of the Rowley Shoals (1-17 Dec 2007): metadata report. In: (ed. MSP-2008-01 MSP). DEC, Perth. 14p.

Meekan MG, Cappo M (2004) Non-destructive techniques for rapid assessment of shark abundance in northern Australia. In. AIMS report for the Department of Agriculture, Fisheries and Forestry, Townsville. 36p.

## 7 APPENDICES

## Appendix 1: Photo ID guide to the macroalgae of the Rowley Shoals

A brief photo ID guide to the plants of the Rowley Shoals



These images and identifications were made **by Dr John Huisman** during a marine biodiversity survey of the Rowley Shoals (1-17 December 2007). While this guide does not represent a complete inventory of the plants of the Rowley Shoals, the most common shallow forms are likely to be included. This basic photo-based guide is intended to be used to assist non-specialists in further study of this ecologically important but relatively little-known group in Western Australia's tropical coral reef environments.

#### Further information: Huisman J. (2000) Marine plants of Australia, University of Western Australia Press, Perth.

#### Contents

| 4  |
|----|
| 11 |
| 18 |
| 21 |
| 25 |
|    |
|    |



Huisman J (2009) A brief photo ID guide to the macroalgae of the Rowley Shoals. DEC, Perth.

This guide is in its final stages of production and is not yet available online.

## Appendix 2: Photo ID guide to the soft corals of the Rowley Shoals



A brief photo guide to the shallow-water octocorals of the Rowley Shoals, Western Australia

#### Katharina Fabricius

Australian Institute of Marine Science PMB 3, Townsville Q4810 Email: <u>k.fabricius@aims.gov.au</u>

Report to the Department of Environment and Conservation, Government of Western Australia. Jamary 2008





Fabricius K (2008) A brief photo guide to the shallow-water octocorals of the Rowley Shoals, Western Australia. AIMS and DEC. 39p.

Available online from DEC at http://www.naturebase.net/component/option,com\_hotproperty/task,view/id,161/Itemid,755/

## Appendix 3: Benthic video transect raw data

The analysed benthic video database are contained within a Microsoft Access database file and stored in the following locations:

- The Rowley Shoals Marine Park Long Term Monitoring Program Video Archive Marine Science Program file (box) 2008/001941 held at the Information Management Branch, Department of Environment and Conservation, 17 Dick Perry Avenue, Kensington, Western Australia. Ph: (08) 9334 0333.
- 4. The Rowley Shoals file on the MSP server at the Kensington offices. Ph. (08) 9334 0333.

The data has been analysed down to replicate transect level and summaries to percent cover for each of the benthic categories.

## Appendix 4: Haphazard photoquadrats raw data

These images described in the following tables are the set selected for usefulness from the full range available on the MSP server at the Kensington offices. Ph. (08) 9334 0333.

# Table Ap4a: Haphazard photoquadrats made on the northeastern crest and slope of Imperieuse Reef on 6 December 2007, in the vicinity of the northernmost AIMS LTM site (AIMS-1995-RS3-1). Depth class: s = 1-4 m (regularly emersed); m = 5-10 m; d = >10 m. Habitat = spur or groove. GPS coordinates in WGS84 datum.

| datum.<br>Image filename.jpg                | Latitude        | Longitude        | Depth | Habitat       |
|---------------------------------------------|-----------------|------------------|-------|---------------|
|                                             |                 | -                | class |               |
| RS Imperieuse NE crest and slope 071206_8   | 17° 32' 08.0" S | 118° 58' 21.5" E | d     | groove        |
| RS Imperieuse NE crest and slope 071206_17  | 17° 32' 07.7" S | 118° 58' 21.6" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_35  | 17° 32' 08.5" S | 118° 58' 20.9" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_55  | 17° 32' 08.4" S | 118° 58' 21.4" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_43  | 17° 32' 09.8" S | 118° 58' 20.1" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_77  | 17° 32' 09.7" S | 118° 58' 20.2" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_83  | 17° 32' 09.5" S | 118° 58' 20.2" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_87  | 17° 32' 09.4" S | 118° 58' 20.5" E | s     |               |
|                                             |                 |                  |       | crest of spur |
| RS Imperieuse NE crest and slope 071206_93  | 17° 32' 09.2" S | 118° 58' 20.9" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_120 | 17° 32' 11.2" S | 118° 58' 20.5" E | S     | crest of spur |
| RS Imperieuse NE crest and slope 071206_126 | 17° 32' 11.2" S | 118° 58' 20.7" E | S     | crest of spur |
| RS Imperieuse NE crest and slope 071206_131 | 17° 32' 11.1" S | 118° 58' 20.8" E | S     | crest of spur |
| RS Imperieuse NE crest and slope 071206_136 | 17° 32' 11.0" S | 118° 58' 21.0" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_144 | 17° 32' 10.8" S | 118° 58' 21.4" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_165 | 17° 32' 13.1" S | 118° 58' 20.3" E | S     | crest of spur |
| RS Imperieuse NE crest and slope 071206_168 | 17° 32' 13.0" S | 118° 58' 20.3" E | S     | crest of spur |
| RS Imperieuse NE crest and slope 071206_174 | 17° 32' 12.9" S | 118° 58' 20.4" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_181 | 17° 32' 12.8" S | 118° 58' 20.6" E | S     | groove        |
| RS Imperieuse NE crest and slope 071206_183 | 17° 32' 12.7" S | 118° 58' 20.6" E | S     | crest of spur |
| RS Imperieuse NE crest and slope 071206_185 | 17° 32' 12.7" S | 118° 58' 20.6" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_190 | 17° 32' 12.6" S | 118° 58' 20.8" E | m     | crest of spur |
| RS Imperieuse NE crest and slope 071206_192 | 17° 32' 12.5" S | 118° 58' 20.8" E | m     | crest of spur |
| RS Imperieuse NE crest and slope 071206_199 | 17° 32' 12.4" S | 118° 58' 21.0" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_205 | 17° 32' 12.3" S | 118° 58' 21.1" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_208 | 17° 32' 12.2" S | 118° 58' 21.2" E | s     | groove        |
| RS Imperieuse NE crest and slope 071206_211 | 17° 32' 12.1" S | 118° 58' 21.3" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_216 | 17° 32' 12.0" S | 118° 58' 21.4" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_223 | 17° 32' 11.9" S | 118° 58' 21.7" E | S     | crest of spur |
| RS Imperieuse NE crest and slope 071206_249 | 17° 32' 08.8" S | 118° 58' 19.9" E | S     | crest of spur |
| RS Imperieuse NE crest and slope 071206_268 | 17° 32' 08.7" S | 118° 58' 20.2" E | m     | crest of spur |
| RS Imperieuse NE crest and slope 071206_272 | 17° 32' 08.7" S | 118° 58' 20.3" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_276 | 17° 32' 08.6" S | 118° 58' 20.4" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_280 | 17° 32' 08.6" S | 118° 58' 20.5" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_283 | 17° 32' 08.5" S | 118° 58' 20.6" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_287 | 17° 32' 08.5" S | 118° 58' 20.8" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_291 | 17° 32' 08.4" S | 118° 58' 20.9" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_296 | 17° 32' 08.4" S | 118° 58' 21.0" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_301 | 17° 32' 08.3" S | 118° 58' 21.2" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_305 | 17° 32' 08.2" S | 118° 58' 21.3" E | m     | groove        |
| RS Imperieuse NE crest and slope 071206_330 | 17° 32' 07.6" S | 118° 58' 19.5" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_334 | 17° 32' 07.6" S | 118° 58' 19.6" E | s     | crest of spur |
| RS Imperieuse NE crest and slope 071206_337 | 17° 32' 07.5" S | 118° 58' 19.6" E | s     | crest of spur |

| Image filename.jpg                          | Latitude        | Longitude        | Depth<br>class | Habitat       |
|---------------------------------------------|-----------------|------------------|----------------|---------------|
| RS Imperieuse NE crest and slope 071206_346 | 17° 32' 07.4" S | 118° 58' 19.8" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_357 | 17° 32' 07.2" S | 118° 58' 20.0" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_359 | 17° 32' 07.2" S | 118° 58' 20.0" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_367 | 17° 32' 07.1" S | 118° 58' 20.4" E | m              | groove        |
| RS Imperieuse NE crest and slope 071206_372 | 17° 32' 07.0" S | 118° 58' 20.5" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_390 | 17° 32' 06.7" S | 118° 58' 19.2" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_393 | 17° 32' 06.6" S | 118° 58' 19.2" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_397 | 17° 32' 06.5" S | 118° 58' 19.3" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_400 | 17° 32' 06.5" S | 118° 58' 19.4" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_408 | 17° 32' 06.4" S | 118° 58' 19.7" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_412 | 17° 32' 06.3" S | 118° 58' 19.8" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_418 | 17° 32' 06.2" S | 118° 58' 20.1" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_435 | 17° 32' 06.0" S | 118° 58' 18.9" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_440 | 17° 32' 05.9" S | 118° 58' 18.9" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_441 | 17° 32' 05.8" S | 118° 58' 18.9" E | m              | groove        |
| RS Imperieuse NE crest and slope 071206_450 | 17° 32' 05.7" S | 118° 58' 19.1" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_455 | 17° 32' 05.7" S | 118° 58' 19.1" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_458 | 17° 32' 05.6" S | 118° 58' 19.1" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_460 | 17° 32' 05.6" S | 118° 58' 19.1" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_469 | 17° 32' 05.5" S | 118° 58' 19.2" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_479 | 17° 32' 05.3" S | 118° 58' 19.5" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_483 | 17° 32' 05.2" S | 118° 58' 19.5" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_486 | 17° 32' 05.2" S | 118° 58' 19.6" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_491 | 17° 32' 05.1" S | 118° 58' 19.7" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_498 | 17° 32' 04.9" S | 118° 58' 19.9" E | m              | groove        |
| RS Imperieuse NE crest and slope 071206_517 | 17° 32' 04.3" S | 118° 58' 17.8" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_519 | 17° 32' 04.3" S | 118° 58' 17.8" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_534 | 17° 32' 03.9" S | 118° 58' 18.2" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_538 | 17° 32' 03.8" S | 118° 58' 18.3" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_540 | 17° 32' 03.7" S | 118° 58' 18.4" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_543 | 17° 32' 03.7" S | 118° 58' 18.4" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_548 | 17° 32' 03.5" S | 118° 58' 18.6" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_550 | 17° 32' 03.5" S | 118° 58' 18.6" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_555 | 17° 32' 03.4" S | 118° 58' 18.8" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_562 | 17° 32' 03.3" S | 118° 58' 19.0" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_571 | 17° 32' 03.3" S | 118° 58' 19.0" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_579 | 17° 32' 03.3" S | 118° 58' 19.2" E | s              | crest of spur |
| RS Imperieuse NE crest and slope 071206_586 | 17° 32' 03.2" S | 118° 58' 19.6" E | d              | groove        |

| Table Ap4b: Haphazard photoquadrats made on the eastern crest and slope of Imperieuse Reef on 6     |
|-----------------------------------------------------------------------------------------------------|
| December 2007. Depth class: s = 1-4 m (regularly emersed); m = 5-10 m; d = >10 m. Habitat = spur or |
| groove. GPS coordinates in WGS84 datum.                                                             |

| Image filename.jpg                        | Latitude        | Longitude        | Depth<br>class | Habitat       |
|-------------------------------------------|-----------------|------------------|----------------|---------------|
| RS Imperieuse E crest and slope 071206_2  | 17° 36' 32.7" S | 118° 58' 31.2" E | s              | crest of spur |
| RS Imperieuse E crest and slope 071206_21 | 17° 36' 32.7" S | 118° 58' 31.6" E | m              | groove        |
| RS Imperieuse E crest and slope 071206_31 | 17° 36' 35.0" S | 118° 58' 30.6" E | s              | crest of spur |
| RS Imperieuse E crest and slope 071206_41 | 17° 36' 35.2" S | 118° 58' 31.0" E | m              | groove        |
| RS Imperieuse E crest and slope 071206_51 | 17° 36' 36.3" S | 118° 58' 28.6" E | s              | crest of spur |
| RS Imperieuse E crest and slope 071206_72 | 17° 36' 36.2" S | 118° 58' 28.8" E | m              | groove        |

| Image filename.jpg                      | Latitude        | Longitude        | Depth<br>class | Habitat       |
|-----------------------------------------|-----------------|------------------|----------------|---------------|
| RS Clerke NE crest and slope 071210_2   | 17° 17' 02.4" S | 119° 22' 34.4" E | m              | groove        |
| RS Clerke NE crest and slope 071210_6   | 17° 17' 02.2" S | 119° 22' 34.4" E | m              | groove        |
| RS Clerke NE crest and slope 071210_12  | 17° 17' 02.0" S | 119° 22' 34.3" E | m              | groove        |
| RS Clerke NE crest and slope 071210_18  | 17° 17' 01.8" S | 119° 22' 34.3" E | m              | groove        |
| RS Clerke NE crest and slope 071210_22  | 17° 17' 01.7" S | 119° 22' 34.3" E | m              | groove        |
| RS Clerke NE crest and slope 071210_26  | 17° 17' 01.5" S | 119° 22' 34.2" E | m              | groove        |
| RS Clerke NE crest and slope 071210_30  | 17° 17' 01.4" S | 119° 22' 34.2" E | m              | groove        |
| RS Clerke NE crest and slope 071210_35  | 17° 17' 01.2" S | 119° 22' 34.2" E | m              | groove        |
| RS Clerke NE crest and slope 071210_40  | 17° 17' 01.0" S | 119° 22' 34.2" E | m              | groove        |
| RS Clerke NE crest and slope 071210_54  | 17° 17' 00.8" S | 119° 22' 34.0" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_58  | 17° 17' 00.6" S | 119° 22' 33.9" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_60  | 17° 17' 00.6" S | 119° 22' 33.9" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_65  | 17° 17' 00.4" S | 119° 22' 33.8" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_67  | 17° 17' 00.3" S | 119° 22' 33.7" E | S              | crest of spur |
| RS Clerke NE crest and slope 071210_69  | 17° 17' 00.2" S | 119° 22' 33.7" E | S              | crest of spur |
| RS Clerke NE crest and slope 071210_73  | 17° 17' 00.1" S | 119° 22' 33.7" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_75  | 17° 16' 60.0" S | 119° 22' 33.7" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_78  | 17° 16' 59.9" S | 119° 22' 33.6" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_82  | 17° 16' 59.7" S | 119° 22' 33.6" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_87  | 17° 16' 59.5" S | 119° 22' 33.5" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_90  | 17° 16' 59.4" S | 119° 22' 33.4" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_92  | 17° 16' 59.3" S | 119° 22' 33.4" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_94  | 17° 16' 59.2" S | 119° 22' 33.4" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_96  | 17° 16' 59.1" S | 119° 22' 33.4" E | S              | crest of spur |
| RS Clerke NE crest and slope 071210_99  | 17° 16' 59.0" S | 119° 22' 33.4" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_103 | 17° 16' 58.8" S | 119° 22' 33.3" E | S              | crest of spur |
| RS Clerke NE crest and slope 071210_106 | 17° 16' 58.8" S | 119° 22' 33.3" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_114 | 17° 16' 58.5" S | 119° 22' 33.3" E | S              | crest of spur |
| RS Clerke NE crest and slope 071210_121 | 17° 16' 58.2" S | 119° 22' 33.1" E | m              | groove        |
| RS Clerke NE crest and slope 071210_126 | 17° 16' 57.9" S | 119° 22' 33.0" E | m              | groove        |
| RS Clerke NE crest and slope 071210_129 | 17° 16' 57.8" S | 119° 22' 33.0" E | m              | groove        |
| RS Clerke NE crest and slope 071210_134 | 17° 16' 57.5" S | 119° 22' 32.9" E | m              | groove        |
| RS Clerke NE crest and slope 071210_138 | 17° 16' 57.4" S | 119° 22' 32.8" E | m              | groove        |
| RS Clerke NE crest and slope 071210_142 | 17° 16' 57.2" S | 119° 22' 32.8" E | m              | groove        |
| RS Clerke NE crest and slope 071210_146 | 17° 16' 57.0" S | 119° 22' 32.7" E | m              | groove        |
| RS Clerke NE crest and slope 071210_151 | 17° 16' 56.8" S | 119° 22' 32.6" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_152 | 17° 16' 56.7" S | 119° 22' 32.5" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_155 | 17° 16' 56.6" S | 119° 22' 32.5" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_158 | 17° 16' 56.5" S | 119° 22' 32.4" E | S              | crest of spur |
| RS Clerke NE crest and slope 071210_163 | 17° 16' 56.2" S | 119° 22' 32.3" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_166 | 17° 16' 56.1" S | 119° 22' 32.2" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_171 | 17° 16' 55.9" S | 119° 22' 32.1" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_174 | 17° 16' 55.9" S | 119° 22' 32.1" E | S              | crest of spur |
| RS Clerke NE crest and slope 071210_185 | 17° 16' 55.6" S | 119° 22' 32.1" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_187 | 17° 16' 55.5" S | 119° 22' 32.1" E | S              | crest of spur |
| RS Clerke NE crest and slope 071210_190 | 17° 16' 55.4" S | 119° 22' 32.0" E | S              | crest of spur |

| Image filename.jpg                      | Latitude        | Longitude        | Depth<br>class | Habitat       |
|-----------------------------------------|-----------------|------------------|----------------|---------------|
| RS Clerke NE crest and slope 071210_192 | 17° 16' 55.3" S | 119° 22' 31.9" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_193 | 17° 16' 55.3" S | 119° 22' 31.9" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_195 | 17° 16' 55.2" S | 119° 22' 31.9" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_198 | 17° 16' 55.1" S | 119° 22' 31.9" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_213 | 17° 16' 54.9" S | 119° 22' 31.6" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_215 | 17° 16' 54.8" S | 119° 22' 31.5" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_217 | 17° 16' 54.7" S | 119° 22' 31.5" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_219 | 17° 16' 54.6" S | 119° 22' 31.5" E | S              | crest of spur |
| RS Clerke NE crest and slope 071210_224 | 17° 16' 54.4" S | 119° 22' 31.3" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_226 | 17° 16' 54.4" S | 119° 22' 31.3" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_244 | 17° 16' 53.6" S | 119° 22' 32.6" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_246 | 17° 16' 53.5" S | 119° 22' 32.6" E | m              | groove        |
| RS Clerke NE crest and slope 071210_249 | 17° 16' 53.4" S | 119° 22' 32.6" E | m              | groove        |
| RS Clerke NE crest and slope 071210_251 | 17° 16' 53.3" S | 119° 22' 32.5" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_253 | 17° 16' 53.2" S | 119° 22' 32.5" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_258 | 17° 16' 53.1" S | 119° 22' 32.4" E | m              | crest of spur |
| RS Clerke NE crest and slope 071210_260 | 17° 16' 53.0" S | 119° 22' 32.4" E | m              | groove        |
| RS Clerke NE crest and slope 071210_279 | 17° 16' 53.0" S | 119° 22' 32.1" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_283 | 17° 16' 52.9" S | 119° 22' 31.9" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_296 | 17° 16' 53.0" S | 119° 22' 32.7" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_301 | 17° 16' 52.8" S | 119° 22' 32.6" E | m              | groove        |
| RS Clerke NE crest and slope 071210_304 | 17° 16' 52.9" S | 119° 22' 32.6" E | m              | groove        |
| RS Clerke NE crest and slope 071210_308 | 17° 16' 52.8" S | 119° 22' 32.5" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_311 | 17° 16' 52.8" S | 119° 22' 32.4" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_312 | 17° 16' 52.7" S | 119° 22' 32.4" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_314 | 17° 16' 52.7" S | 119° 22' 32.3" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_316 | 17° 16' 52.7" S | 119° 22' 32.3" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_319 | 17° 16' 52.6" S | 119° 22' 32.2" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_321 | 17° 16' 52.6" S | 119° 22' 32.2" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_322 | 17° 16' 52.6" S | 119° 22' 32.1" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_332 | 17° 16' 52.4" S | 119° 22' 31.8" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_335 | 17° 16' 52.3" S | 119° 22' 31.7" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_337 | 17° 16' 52.3" S | 119° 22' 31.7" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_339 | 17° 16' 52.2" S | 119° 22' 31.6" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_343 | 17° 16' 52.1" S | 119° 22' 31.5" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_345 | 17° 16' 52.0" S | 119° 22' 31.4" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_347 | 17° 16' 52.0" S | 119° 22' 31.3" E | s              | crest of spur |
| RS Clerke NE crest and slope 071210_350 | 17° 16' 51.9" S | 119° 22' 31.2" E | s              | crest of spur |

| Table Ap4d. Haphazard photoquadrats made in the lagoon of Clerke Reef on 8 December 2007, in the         |
|----------------------------------------------------------------------------------------------------------|
| vicinity of anchoring zone. Depth class: s = 1-4 m (regularly emersed); m = 5-10 m; d = >10 m. Habitat = |
| inside or outside anchoring zone. GPS coordinates in WGS84 datum.                                        |

| Image filename.jpg         | Latitude        | Longitude        | Depth<br>class | Habitat |
|----------------------------|-----------------|------------------|----------------|---------|
| RS Clerke lagoon 071208_1  | 17° 16' 59.5" S | 119° 21' 40.6" E | d              | lagoon  |
| RS Clerke lagoon 071208_4  | 17° 16' 59.4" S | 119° 21' 40.7" E | d              | lagoon  |
| RS Clerke lagoon 071208_6  | 17° 16' 59.5" S | 119° 21' 42.1" E | d              | lagoon  |
| RS Clerke lagoon 071208_9  | 17° 17' 00.4" S | 119° 21' 44.7" E | d              | lagoon  |
| RS Clerke lagoon 071208_14 | 17° 16' 58.5" S | 119° 21' 46.0" E | d              | lagoon  |
| RS Clerke lagoon 071208_16 | 17° 16' 58.4" S | 119° 21' 46.1" E | d              | lagoon  |

| Image filename.jpg          | Latitude        | Longitude        | Depth<br>class | Habitat |
|-----------------------------|-----------------|------------------|----------------|---------|
| RS Clerke lagoon 071208_22  | 17° 16' 57.6" S | 119° 21' 46.5" E | d              | lagoon  |
| RS Clerke lagoon 071208_24  | 17° 16' 57.4" S | 119° 21' 46.6" E | d              | lagoon  |
| RS Clerke lagoon 071208_28  | 17° 16' 56.9" S | 119° 21' 46.8" E | d              | lagoon  |
| RS Clerke lagoon 071208_30  | 17° 16' 56.6" S | 119° 21' 46.9" E | d              | lagoon  |
| RS Clerke lagoon 071208_31  | 17° 16' 56.4" S | 119° 21' 46.9" E | d              | lagoon  |
| RS Clerke lagoon 071208_33  | 17° 16' 56.2" S | 119° 21' 47.0" E | d              | lagoon  |
| RS Clerke lagoon 071208_36  | 17° 16' 55.9" S | 119° 21' 47.0" E | d              | lagoon  |
| RS Clerke lagoon 071208_39  | 17° 16' 55.6" S | 119° 21' 47.1" E | d              | lagoon  |
| RS Clerke lagoon 071208_43  | 17° 16' 55.1" S | 119° 21' 47.2" E | d              | lagoon  |
| RS Clerke lagoon 071208_46  | 17° 16' 54.8" S | 119° 21' 47.2" E | d              | lagoon  |
| RS Clerke lagoon 071208_50  | 17° 16' 54.3" S | 119° 21' 47.4" E | d              | lagoon  |
| RS Clerke lagoon 071208_51  | 17° 16' 53.8" S | 119° 21' 47.5" E | d              | lagoon  |
| RS Clerke lagoon 071208_54  | 17° 16' 53.2" S | 119° 21' 47.7" E | d              | lagoon  |
| RS Clerke lagoon 071208_57  | 17° 16' 53.0" S | 119° 21' 47.9" E | d              | lagoon  |
| RS Clerke lagoon 071208_60  | 17° 16' 51.7" S | 119° 21' 48.8" E | d              | lagoon  |
| RS Clerke lagoon 071208_61  | 17° 16' 46.7" S | 119° 21' 50.0" E | d              | lagoon  |
| RS Clerke lagoon 071208_66  | 17° 16' 45.6" S | 119° 21' 50.4" E | d              | lagoon  |
| RS Clerke lagoon 071208_74  | 17° 16' 44.0" S | 119° 21' 51.2" E | d              | lagoon  |
| RS Clerke lagoon 071208_80  | 17° 16' 43.0" S | 119° 21' 51.6" E | d              | lagoon  |
| RS Clerke lagoon 071208_82  | 17° 16' 42.7" S | 119° 21' 51.8" E | d              | lagoon  |
| RS Clerke lagoon 071208_85  | 17° 16' 42.2" S | 119° 21' 52.0" E | d              | lagoon  |
| RS Clerke lagoon 071208_86  | 17° 16' 42.2" S | 119° 21' 52.0" E | d              | lagoon  |
| RS Clerke lagoon 071208_89  | 17° 17' 11.8" S | 119° 21' 52.6" E | d              | lagoon  |
| RS Clerke lagoon 071208_91  | 17° 17' 05.7" S | 119° 21' 36.4" E | d              | lagoon  |
| RS Clerke lagoon 071208_93  | 17° 17' 04.8" S | 119° 21' 38.7" E | d              | lagoon  |
| RS Clerke lagoon 071208_95  | 17° 17' 04.6" S | 119° 21' 39.0" E | d              | lagoon  |
| RS Clerke lagoon 071208_98  | 17° 17' 04.5" S | 119° 21' 39.2" E | d              | lagoon  |
| RS Clerke lagoon 071208_99  | 17° 17' 04.4" S | 119° 21' 39.3" E | d              | lagoon  |
| RS Clerke lagoon 071208_100 | 17° 17' 04.2" S | 119° 21' 39.4" E | d              | lagoon  |
| RS Clerke lagoon 071208_101 | 17° 17' 04.1" S | 119° 21' 39.4" E | d              | lagoon  |
| RS Clerke lagoon 071208_102 | 17° 17' 04.0" S | 119° 21' 39.5" E | d              | lagoon  |
| RS Clerke lagoon 071208_103 | 17° 17' 03.9" S | 119° 21' 39.5" E | d              | lagoon  |
| RS Clerke lagoon 071208_104 | 17° 17' 03.7" S | 119° 21' 39.7" E | d              | lagoon  |
| RS Clerke lagoon 071208_105 | 17° 17' 03.5" S | 119° 21' 39.8" E | d              | lagoon  |
| RS Clerke lagoon 071208_106 | 17° 17' 03.6" S | 119° 21' 57.2" E | d              | lagoon  |

| Table Ap4e: Haphazard photoquadrats made at Mermaid Reef on 8 December 2007, on the reef crest in         |
|-----------------------------------------------------------------------------------------------------------|
| the vicinity of AIMS-1995-RS1-1 and in the lagoon in the vicinity of anchoring zone. Depth class: s = 1-4 |
| m (regularly emersed); m = 5-10 m; d = >10 m. Habitat = crest, groove or for lagoon sites inside/outside  |
| anchoring zone. GPS coordinates in WGS84 datum.                                                           |

| Image filename.jpg                        | Latitude        | Longitude        | Depth<br>class | Habitat       |
|-------------------------------------------|-----------------|------------------|----------------|---------------|
| RS Mermaid NE crest and lagoon 071213_600 | 17° 03' 49.1" S | 119° 38' 54.6" E | m              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_605 | 17° 03' 49.1" S | 119° 38' 54.6" E | m              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_609 | 17° 03' 49.1" S | 119° 38' 54.6" E | m              | groove        |
| RS Mermaid NE crest and lagoon 071213_613 | 17° 03' 49.1" S | 119° 38' 54.5" E | m              | groove        |
| RS Mermaid NE crest and lagoon 071213_624 | 17° 03' 48.9" S | 119° 38' 54.4" E | m              | groove        |
| RS Mermaid NE crest and lagoon 071213_627 | 17° 03' 48.8" S | 119° 38' 54.3" E | m              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_631 | 17° 03' 48.8" S | 119° 38' 54.2" E | m              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_633 | 17° 03' 48.7" S | 119° 38' 54.2" E | m              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_636 | 17° 03' 48.7" S | 119° 38' 54.1" E | s              | crest of spur |

| Image filename.jpg                         | Latitude        | Longitude        | Depth<br>class | Habitat       |
|--------------------------------------------|-----------------|------------------|----------------|---------------|
| RS Mermaid NE crest and lagoon 071213_640  | 17° 03' 48.7" S | 119° 38' 54.0" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_641  | 17° 03' 48.6" S | 119° 38' 54.0" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_642  | 17° 03' 48.6" S | 119° 38' 54.0" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_643  | 17° 03' 48.6" S | 119° 38' 54.0" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_646  | 17° 03' 48.6" S | 119° 38' 53.9" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_648  | 17° 03' 48.6" S | 119° 38' 53.8" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_652  | 17° 03' 48.6" S | 119° 38' 53.7" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_653  | 17° 03' 48.6" S | 119° 38' 53.7" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_656  | 17° 03' 48.6" S | 119° 38' 53.6" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_685  | 17° 03' 54.1" S | 119° 38' 55.8" E | m              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_687  | 17° 03' 54.2" S | 119° 38' 55.8" E | m              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_701  | 17° 03' 54.4" S | 119° 38' 55.2" E | m              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_703  | 17° 03' 54.4" S | 119° 38' 55.2" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213 708  | 17° 03' 54.6" S | 119° 38' 55.1" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_709  | 17° 03' 54.7" S | 119° 38' 55.1" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_753  | 17° 03' 59.4" S | 119° 38' 57.6" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_756  | 17° 03' 59.7" S | 119° 38' 57.5" E | s              | crest of spur |
| RS Mermaid NE crest and lagoon 071213_776  | 17° 04' 44.2" S | 119° 38' 37.5" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_779  | 17° 04' 44.3" S | 119° 38' 37.4" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_783  | 17° 04' 44.3" S | 119° 38' 37.3" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_787  | 17° 04' 44.2" S | 119° 38' 37.3" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_791  | 17° 04' 44.2" S | 119° 38' 37.3" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_795  | 17° 04' 44.1" S | 119° 38' 37.2" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_799  | 17° 04' 44.0" S | 119° 38' 37.2" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_735  | 17° 04' 44.0" S | 119° 38' 37.2" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_809  | 17° 04' 43.9" S | 119° 38' 37.1" E | d              |               |
| RS Mermaid NE crest and lagoon 071213_809  | 17° 04' 43.9" S | 119° 38' 37.1" E | d              | lagoon        |
|                                            |                 |                  |                | lagoon        |
| RS Mermaid NE crest and lagoon 071213_817  | 17° 04' 43.8" S | 119° 38' 37.1" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_823  | 17° 04' 43.7" S | 119° 38' 37.0" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_828  | 17° 04' 43.6" S | 119° 38' 37.0" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_833  | 17° 04' 43.5" S | 119° 38' 36.9" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_838  | 17° 04' 43.4" S | 119° 38' 36.9" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_846  | 17° 04' 43.3" S | 119° 38' 36.8" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_852  | 17° 04' 43.2" S | 119° 38' 36.8" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_856  | 17° 04' 43.2" S | 119° 38' 36.7" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_897  | 17° 04' 46.3" S | 119° 38' 22.7" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_900  | 17° 04' 46.3" S | 119° 38' 22.5" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_905  | 17° 04' 46.2" S | 119° 38' 22.3" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_910  | 17° 04' 46.2" S | 119° 38' 22.0" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_914  | 17° 04' 46.1" S | 119° 38' 21.9" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_920  | 17° 04' 46.0" S | 119° 38' 21.9" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_925  | 17° 04' 46.0" S | 119° 38' 21.8" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_932  | 17° 04' 45.9" S | 119° 38' 21.8" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_939  | 17° 04' 45.7" S | 119° 38' 21.7" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_944  | 17° 04' 45.7" S | 119° 38' 21.6" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_995  | 17° 04' 44.6" S | 119° 38' 20.8" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_999  | 17° 04' 44.5" S | 119° 38' 20.7" E | d              | lagoon        |
| RS Mermaid NE crest and lagoon 071213_1005 | 17° 04' 44.3" S | 119° 38' 20.6" E | d              | lagoon        |

## Appendix 5: Maps of anchoring zones at Clerke and Mermaid

Extensive anchor damage has been reported within the designated anchor areas at Clerke and Mermaid reefs. Although visual inspection of the areas was not possible during this field survey, series of haphazard photoquadrats were made in the vicinity at each reef (Appendix 4). Analysis of these may permit some assessment to be made of the extent of the damage and potential for recovery. Note that the installation of moorings within Clerke and Mermaid lagoons in 2007 should result in substantial reduction in potential for anchor damage in future in these areas.

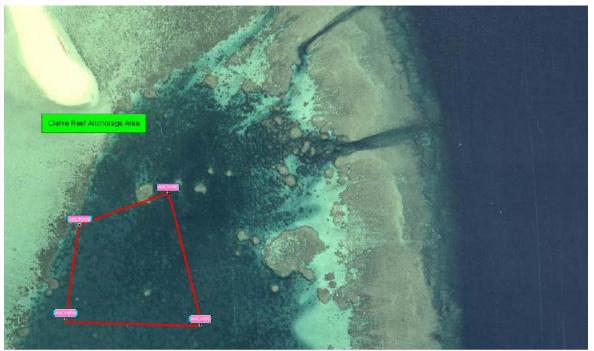



Figure Ap5a: The anchoring area at Clerke Reef is within a box described by the following coordinates: 17° 16.884'S 119° 21.722'E; 17° 16.810'S 119° 21.930'E; 17° 17.107'S 119° 22.011'E; 17° 17.098'S 119° 21.693'E. GPS coordinates in WGS84 datum.

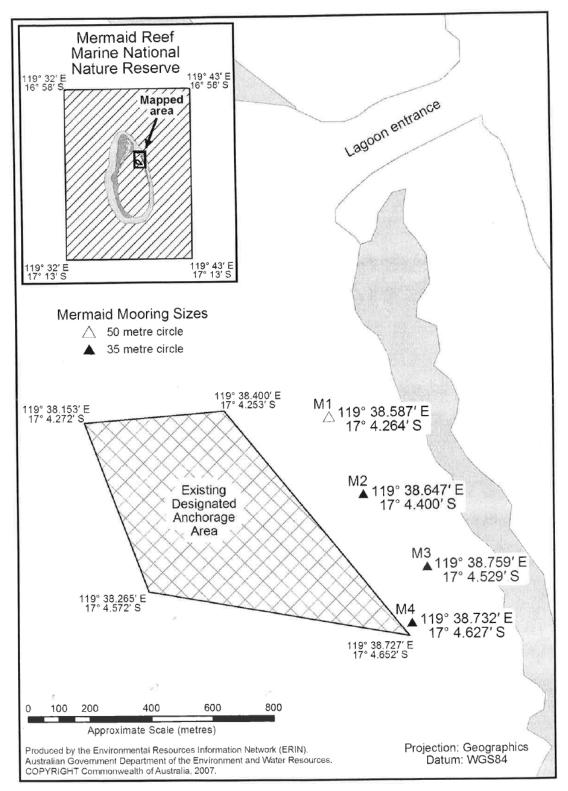



Figure Ap5b: Mermaid Reef anchoring zone. GPS coordinates in WGS84 datum.

## Appendix 6: Disturbance history of the Rowley Shoals

Interpretation of long-term datasets of coral community condition will require information about the disturbance history of the Rowley Shoals. The major disturbance events for this region are cyclones. The following series of historical cyclone track maps (Figure Ap7a-d) are from the Australian Bureau of Meteorology's cyclone tracking site (http://www.bom.gov.au/cgi-bin/silo/cyclones.cgi; most recent data available from 2004/05). Cyclones were selected on the basis of year and whether they tracked within 100 km of the approximate location of Clerke Reef (17.3 S, 119.3 E).

While cyclones obviously vary considerably in intensity, size and speed of travel, these maps do provide some indication of the cyclone-related disturbance history of the Rowley Shoals. These historical data indicate that there is ~80% chance of a cyclone impact somewhere in the Rowley Shoals in any given year (an average of ~4 cyclones per five-year period; Figure Ap7e). This high probability of disturbance may mean that coral communities at the Rowley Shoals – especially shallow slope communities - will be temporally and spatially dynamic relative to coral reefs elsewhere, rarely having the opportunity to reach a mature state. The summers of 1999/2000 and 2000/01 appear to have been notably disturbing ones for the Rowley Shoals, with three cyclones in the vicinity during each season (Table Ap6; Figure Ap7e). Since then (up to 2005/06) the frequency of disturbance has decreased, although the intensity may have increased (especially noteworthy here is the potential impact of category 5 Cyclone Glenda in March 2006; Table Ap6; Figures Ap7e-f).

Each of the three shoals is likely to be impacted differently by each cyclone, according to proximity and wind/wave direction. Several long-term monitoring sites visited in December 2007 showed clear signs of relatively recent cyclone-related disturbance (for example DEC-2001-M4 on the northwest slope of Mermaid Reef, at which coral communities had been reduced to rubble from the surface to well below 20 m depth), while others appeared relatively undisturbed.

Table Ap6: Details of cyclone activity in the vicinity of the Rowley Shoals 1999-2006 (compiled from the Bureau of Meteorology and www.australiasevereweather.com). Time = hours that the cyclone was within ~100 km of Clerke Reef; wind speed = average wind speed during this period; central pressure = average central pressure during this period; category = cyclone category during this period according to the international scale of severity, based on wind speed and central pressure. See Figure Ap6e for graphical representation of recent cyclone impacts at the Rowley Shoals.

| Date        | Cyclone Name | Time (h) | Wind speed<br>(knots) | Central<br>pressure<br>(hPa) | Category |
|-------------|--------------|----------|-----------------------|------------------------------|----------|
| 1999 Dec 13 | John         | 6        | 71                    | 963                          | 3        |
| 1999 Dec 16 | llsa         | 8        | 35                    | 994                          | 1        |
| 2000 Apr 19 | Rosita       | 18       | 68                    | 966                          | 3        |
| 2001 Jan 30 | Terri        | 12       | 56.8                  | 978                          | 2        |
| 2001 Feb 14 | Vincent      | 15       | 40.8                  | 990                          | 1        |
| 2001 Apr 19 | Alistair     | 6        | 54.4                  | 980                          | 2        |
| 2003 Feb 26 | Graham       | 24       | 32.1                  | 996                          | 1        |
| 2004 Mar 26 | Fay          | <24      | ?                     | ?                            | 3        |
| 2006 Jan 8  | Clare        | <24      | ?                     | ?                            | 3        |
| 2006 Mar 28 | Glenda       | <24      | ? (>108)              | ? (<920)                     | 5        |

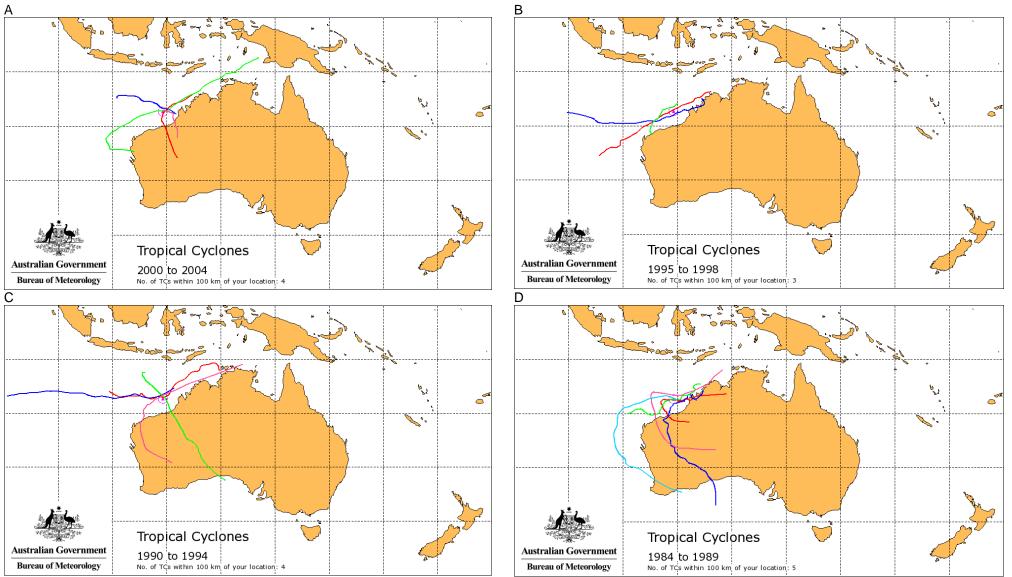



Figure Ap6a-d: Historical cyclone tracks within ~100 km radius of Clerke Reef, Rowley Shoals (red circle). (A) 2000 – 2005. (B) 1995 – 1999. (C) 1990 – 1994. (D) 1985 – 1989.

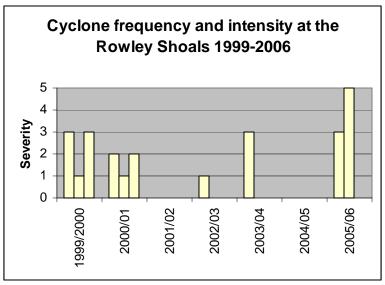



Figure Ap6e. Cyclone frequency and severity at the Rowley Shoals, 1999-2006. See Table Ap6 for details of each cyclone.



Figure Ap6f. Category 5 Cyclone Glenda in the vicinity of the Rowley Shoals, from the International Space Station, ~29 Mar 2006. Picture courtesy of the Earth Sciences and Image Analysis Laboratory, NASA Johnson Space Center (image ID ISS012-E-22054).

## Appendix 7: Draft media statement

DRAFT MEDIA STATEMENT MINISTER FOR THE ENVIRONMENT

#### TBA EMBARGOED 17 DECEMBER 2007

The Rowley Shoals: a marine wilderness worth saving

Data generated from a major collaborative marine biological survey conducted off the Kimberley coast will be used to help protect one of the world's most pristine coral reef environments, Environment and Climate Change Minister David Templeman said today.

"The team of scientists that returned to Broome today has identified the Rowley Shoals as a global benchmark for coral reef conservation," Mr Templeman said.

"The data collected during the 17-day survey will be vital to the successful future management of the Rowley Shoals Marine Park and the Commonwealth-managed Mermaid Reef National Marine Nature Reserve.

"The Rowley Shoals are among the most unspoiled coral reef ecosystems remaining on the planet, and the importance of their successful conservation cannot be overstated," said Mr Templeman.

"It is imperative that we protect these reefs for future generations."

The Rowley Shoals survey was the maiden scientific voyage of the RV Solander, the latest addition to the research fleet of the Australian Institute of Marine Science (AIMS). The 35 m high-tech vessel was built in Fremantle by WA company Tenix Defence Pty Ltd. The RV Solander will enable large multidisciplinary teams of scientists to conduct urgent marine research in WA.

Team members included cruise leader Jamie Colquhoun (AIMS), Dr Katharina Fabricius (AIMS), Eric Matson (AIMS), Kylie Cook (AIMS), Dr Iain Field (AIMS/Charles Darwin University), Warren White (Wildlife Resources), Dr Suzanne Long (DEC Marine Science Program), Dr John Huisman (DEC/WA Herbarium), Shannon Armstrong (DEC Marine Science Program), Steve Dutton (DEC), Huw Dilley (DEC) and Phil van Dyk (volunteer).

#### MAJOR FINDINGS OF THE SURVEY:

The research team, led by AIMS in collaboration with WA's Department of Environment and Conservation (DEC), found that the coral reef communities of the Rowley Shoals are generally in excellent condition.

Many key marine species – such as sharks, maori wrasse, and commercially important invertebrates such as trochus shell, trepang/bêche de mer) and giant clams and other clam species appear to be more abundant at the Rowley Shoals than most other coral reefs worldwide. Rowley Shoals populations of trochus, holothuria and tridacnid clams seem more abundant, are larger in size and inhabit a more diverse habitat range than populations to the north at Scott, Ashmore, and Cartier Reefs, which are heavily fished. More detailed analysis of the data collected at the Rowley Shoals will give us a clearer picture of the differences between the populations inhabiting these reefs.

Some coral communities that were seriously damaged on one of the reefs by a recent cyclone are showing good recovery, with high abundances of newly settled corals. Proximity to undamaged reefs within the Rowley Shoals is fundamental to recovery. This highlights the importance of replication within marine reserve networks, and underlines the need for effective conservation of all three Rowley Shoals.

De

Amidst growing concern for global reef shark populations, a project has commenced to determine movement and migration patterns for the main shark species at the Rowley Shoals. Although sharks are large charismatic marine predators relatively little is known about their ecology, especially their movement patterns. This is vital information for their conservation. This innovative pilot study aims to determine the sharks' reef attendance, movement and local migration patterns. To do this a small number of sharks will carry acoustic transmitters, known as pingers, which transmit an individual code to a series of listening stations placed at key locations around the three reefs. As the sharks swim past one of the listening stations their presence will be logged building up a picture of when and where the sharks spend their time. Each shark's pinger will transmit for approximately 12 months and the receivers will be recovered shortly after. The project is a collaboration between researchers at AIMS and Charles Darwin University and has been partially funded by the Commonwealth Dept of Environment and Water Resources.

The biodiversity of Western Australian soft corals was studied for the first time during this survey. Quite spectacular sea fan gardens comprised of both Pacific and Indian ocean species are found in the deeper waters of the Rowley Shoals. This survey was the first step towards understanding the importance of the ecological role played by soft corals on Western Australian reefs.

Crustose coralline algae, which consolidate reefs and are an important substratum for coral larvae to settle upon, form a major component of the flora of the Rowley Shoals. Several algal species were collected that have never been recorded from the Rowley Shoals before. Specimens collected during this survey will be the subject of future international research collaborations aimed at increasing our understanding of this ecologically important but little-known group.

ACTIVELY MANAGING WA'S MARINE ENVIRONMENT:

Climate change threatens coral reefs by increasing the likelihood of coral bleaching and disease, and making the seas more acidic. This means that passive conservation is not going to be sufficient to ensure that coral reefs such as the Rowley Shoals have a future.

Active management as well as ongoing research and monitoring programs will be necessary to preserve coral reefs despite the challenges posed by climate change. These problems are real and are happening now: a Bleaching Watch alert (calculated by US NOAA from sea surface temperatures) was issued on 13 December 2007 and is current for Scott Reef, to the north of the Rowley Shoals.

As a step towards addressing these urgent research needs, in January 2008 AIMS scientists will take the RV Solander to coral reefs in the Montebello and Barrow Islands Marine Protected Areas, as well as Ningaloo Marine Park. There they will commence a project investigating how WA's coral reefs responded to past changes in climate.

Mr Templeman said that DEC had allocated \$150,000 to scientific research at the Rowley Shoals over the next three years, while AIMS had contributed around \$300,000 to the December 2007 survey.

"There are twelve marine parks and reserves in WA, and the State Government is committed to further improving WA's world-class marine conservation reserve system," he said.

"In the next few months the State Government also plans to establish new marine parks and reserves for the Walpole and Nornalup inlets, the Dampier Archipelago/Regnard area, and around the southwest Capes."

#### LIST OF EXSISITNG MARINE SCIENCE PROGRAM REPORTS

#### **Data Report Series**

- MSPDR 1. Preliminary assessment of coral communities at selected sites in the proposed Dampier Archipelago Marine Park. Armstrong SJ (2008).
  MSPDR 2. Anoxic impacts at Bill's Bay, Ningaloo Marine Park associated with the 2008 coral spawning event. Armstrong SJ, Syme R (2009).
- MSPDR 3. Mapping the coral reef communities of the Shark Bay marine protected areas: Data collected during the February 2008 field survey. Bancroft KP (2009).
- MSPDR 4. Establishing long-term coral community monitoring sites in the Montebello/Barrow Islands marine protected areas: data collected in December 2006. Bancroft, K.P. (2009).
- MSPDR 5. Ningaloo Marine Park *Drupella* long-term monitoring program: Data collected during the 2008 survey. Armstrong SJ (2009).
- MSPDR 6. Assessing the effectiveness of sanctuary zones in the proposed Dampier Archipelago Marine Park: Data collected during the 2007 survey. SJ Armstrong (2009)

#### **Other Marine Science Program Reports**

- MSP 2006/01 Long-term monitoring program in the Montebello/Barrow Islands marine protected areas. Scoping field trip: 8-11 August 2006. Field Program Report. Bancroft KP, Simpson CJ, Long S (2006).
- MSP 2006/02 Establishment of additional long-term monitoring sites for *Drupella cornus* populations in the southern section of the Ningaloo Marine Park and the Muiron and Sunday Islands Marine Management Areas. Field Program Report. Armstrong SJ (2006).
- MSP 2006/03 Long-term monitoring program in the Montebello/Barrow Islands marine protected areas. Scoping field trip: 8-11 August 2006. Data Report. Bancroft KP (2006).
- MSP 2006/04 Disturbance and recovery of coral communities in Bill's Bay, Ningaloo Marine Park: 2006 survey. Field Program Report. Long S (2006).

- MSP 2006/05 Establishing baseline benthic community monitoring sites in the Montebello/Barrow Islands marine protected areas: 7-22 December 2006. Field Program Report. Bancroft KP, Armstrong SJ (2006).
- MSP 2007/01 Bibliography of marine scientific research relevant to the Rowley Shoals Marine Park and the Mermaid Reef Marine National Nature Reserve. Data Report. Edwards A, Bancroft KP (2007).
- MSP 2007/02 Current and proposed marine research projects relevant to the Rowley Shoals Marine Park and the Mermaid Reef Marine National Nature Reserve. Data Report. Edwards A, Bancroft KP (2007).
- MSP 2007/03 Ningaloo Marine Park Drupella Long-term Monitoring Program: Results of the 2006 survey. Technical Report. Armstrong SJ (2007).
- MSP 2007/04 Summary of the winter coral bleaching event at Ningaloo Marine Park, July 2006. Data Report. Armstrong S, Webster F, Kendrick A, Mau R, Onton K (2007).
- MSP 2007/05 Disturbance and recovery of coral communities in Bill's Bay, Ningaloo Marine Park: Field survey 16-23 October 2006. Technical and Data Report. Long S (2007).
- MSP 2007/06 Bibliography of marine scientific research relevant to Perth's metropolitan marine protected areas and adjacent waters. Data Report. Lierich D, Bancroft KP (2007).
- MSP 2007/07 Current and proposed marine research projects relevant to Perth's metropolitan marine protected areas and adjacent waters. Data Report. Lierich D, Bancroft KP (2007).
- MSP2007/08 Disturbance history of coral communities in Bill's Bay, Ningaloo Marine Park, 1975-2007. Data Report. van Schoubroeck P, Long S (2007).
- MSP 2008/01 Comparative marine biodiversity survey of the Rowley Shoals 1-17 December 2007. Metadata Report. Long S, Armstrong SJ, Fabricius K, Field I, Cook K, Colquhoun J, Huisman J (2008).