

## Hydrologic Modelling of Salinity in the Water Resource Recovery Catchments

## VOLUME 5: TONE AND PERUP RIVER CATCHMENTS



WATER RESOURCE TECHNICAL SERIES

WATER AND RIVERS COMMISSION REPORT WRT 9 1999



WATER AND RIVERS COMMISSION Hyatt Centre 3 Plain Street East Perth Western Australia 6004 Telephone (08) 9278 0300 Facsimile (08) 9278 0301 WEBSITE: http://www.wrc.wa.gov.au

Cover Photograph: The Tone River at Tonebridge



## Hydrologic Modelling of Salinity in the Water Resource Recovery Catchments

## VOLUME 5: TONE AND PERUP RIVER CATCHMENTS

by

A. D. A. ROGERS<sup>1</sup> G. W. MAUGER<sup>2</sup> AND J. R. DAVIES<sup>1</sup>

<sup>1</sup>JDA CONSULTANT HYDROLOGISTS <sup>2</sup>WATER AND RIVERS COMMISSION

> FOUL CONVERTIBLES (MOV) E CONVERTIBLES (MOV) A CONVERTIBLES (MOV) M

### for

Water and Rivers Commission Resource Investigation Division Catchment and Salinity Investigations Section

> Water and Rivers Commission Water Resource Technical Series Report No WRT 9 1999

## **Reference** Details

The recommended reference for this publication is: Water and Rivers Commission 1999, *Hydrologic Modelling of Salinity in the Water Resource Recovery Catchments, Volume 5: Tone and Perup River Catchments,* Water and Rivers Commission, Water Resource Technical Series, No WRT 9.

ISBN 0-7309-7441-3 ISSN 1327-8436

Text printed on recycled stock July, 1999

# Contents

| Summary1                            |
|-------------------------------------|
| 1. Introduction2                    |
| 2. Description of catchment         |
| 3. Model of catchment4              |
| 4. Modelling parameters6            |
| 5. Seepage reduction objectives8    |
| 6. Tree planting to reduce seepage9 |
| 7. Field work 10                    |
| 8. Conclusion 11                    |
| 9. References 12                    |
|                                     |

## Figures

| 1. | Subcatchments of the Tone and Perup rivers       |
|----|--------------------------------------------------|
|    | showing catchment numbers and gauging stations12 |
| 2. | Sample of map from *Map Appendix 5A 15           |
| 3. | Sample of map from *Map Appendix 5B 10           |
|    |                                                  |

### Tables

| 1. | Calculation of salinity reduction targets l | .7 | l |
|----|---------------------------------------------|----|---|
|----|---------------------------------------------|----|---|

### \* Map Appendix 5 is a set of A3-sized, unpublished maps similar to figures 2 and 3 that cover all the catchment areas. If required, copies of maps may be obtained from the Water and Rivers Commission.

### Plates

### Taken 28/11/96 and 17/9/97 in Warren Catchment

| 1. | Tone River catchment looking south from Tone River Rd                                                                 |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 2. | Dry bed of Tone River downstream<br>of Hillier Rd                                                                     |
| 3. | Tone River upstream from<br>Mullidup Rd crossing 19                                                                   |
| 4. | Small lake (approx 5500 mg/L TDS)<br>by Mullidup Rd (near Mobrup Rd)19                                                |
| 5. | Tone River at Tonebridge                                                                                              |
| 6. | 117.1.1.1.0.1.1                                                                                                       |
|    | seepage expected off Tone Rd (near<br>Forrester Rd) in Tone River catchment20                                         |
| 7. | waterlogging hear break of slope where<br>seepage expected off Tone Rd (near<br>Forrester Rd) in Tone River catchment |

## Spreadsheets

| 1. | Locations and sizes of Rascal projects for |    |
|----|--------------------------------------------|----|
|    | subcatchments                              | 22 |
| 2. | Areas for subcatchments                    | 28 |
| 3. | Average flows for clearing as in 1996      | 35 |
| 4. | Model minimum tree planting                | 43 |

## Appendices

| Appendix A - | Details | of computing | , processes |  |
|--------------|---------|--------------|-------------|--|
|--------------|---------|--------------|-------------|--|



iv

## Summary

The Warren Catchment, situated 250 km south of Perth, Western Australia, is one of the five Water Resource Recovery Catchments identified in Western Australia's Salinity Action Plan (State Salinity Council, 1998). Clearing for agriculture in the upper parts of the catchment, the catchments of the Tone and Perup tributaries, has contributed to an elevation of the streamflow salinity to greater-than-desirable levels at downstream locations. An objective of the Salinity Action Plan is to prepare integrated catchment plans in partnership with catchment groups, with the target of achieving potable water supply levels by 2030.

The Water and Rivers Commission has developed a computing system 'Microstation And Geographic Information Computation' (M.A.G.I.C.) to model the hydrology of the catchments. The hydrologic analysis assists in developing plans for the catchment by improving understanding of water use and movement in the catchment, and allowing proposed actions to be tested for their likely impact on water balance. The main output of the model is an estimate of distribution and rates of steady state deep groundwater discharge associated with the type and distribution of vegetation throughout the catchment.

This report presents the models of the Tone and Perup Sub-Catchments within the Warren Catchment. It also identifies sites for tree planting (on pasture existing in 1996) to meet an estimate of a required reduction in deep groundwater discharge, with the aim of minimising the area planted, and assuming that trees can effectively use deep groundwater discharge. Results are summarised in spreadsheets and portrayed as mapsheets in Map Appendix 5 (which is unpublished and not included as part of this report). This report contains samples only of maps from Map Appendix 5. The Water and Rivers Commission should be contacted if these or any other maps are required.

1

# 1. Introduction

The Warren River Catchment is situated 250 km south of Perth, Western Australia with a catchment area of 4023 km<sup>2</sup>. This report concentrates on the two uppermost tributaries – the Tone River and the Perup River. The Tone River has a catchment area of 1660 km<sup>2</sup> and the Perup River has a catchment area of 658 km<sup>2</sup>.

In the South West of Western Australia, increased salinisation of streams and land has followed the clearing of deep-rooted natural vegetation from the land and its replacement with shallow-rooted agricultural crops and pastures. The forests drew most of the water from the soil, allowing very little to recharge deep aquifers, but accumulating within the soil some of the salt carried in the rainfall. Removal of forests increases recharge to deep groundwater, leading to rising groundwater tables and eventual discharge of deep groundwater containing high salt concentrations (Peck and Williamson, 1987).

The Western Australian Government extended the Country Areas Water Supply Act in 1978, introducing clearing controls legislation for the Warren River Catchment Area (among other south west catchments) to prevent additional clearing of native forest that would lead to increases in salinity. In 1978 the government also introduced legislation preventing further alienation of Crown land (Warren River Water Reserve Alienation Control 1978). In the Salinity Action Plan initiated in 1996, the Warren Catchment has been designated a Water Resource Recovery Catchment 'with the target of achieving potable water supply levels by 2030'. This is to be achieved by preparing and implementing integrated catchment plans 'in partnership with catchment groups according to management principles established by recovery teams' (State Salinity Council 1998).

Salinity of streamflows and areas of salt affected land in the Warren catchment have increased since 1978 due to earlier clearing. Stream salt load has increased over that period (Davies and Bari, 1995), with the Tone and Perup Catchments contributing a significant proportion. The Warren River is classified as a long term water resource for the future (Stokes *et al.*, 1995), and is one of the largest potable resources of the south west river basins (Schofield *et al.*, 1988). Currently, it is the relatively fresh runoff from the other tributaries of the Warren that are diluting the salt load from the Tone and Perup. Reducing the saline seepage from the Tone and Perup catchments will require revision of agricultural systems to maintain or increase productivity as well as conserve the water resource.

The Water and Rivers Commission has developed a computing system 'MicroStation And Geographic Information Computation' (M.A.G.I.C.) to model the hydrology of the catchments. The hydrologic analysis assists in developing plans for the catchment by improving understanding of water use and movement in the catchment, and allowing proposed actions to be tested for their likely impact on water balance. The main output of the model is an estimate of distribution and rates of steady state deep groundwater discharge associated with the type and distribution of vegetation throughout the catchment

The objective of this study was to use M.A.G.I.C. to develop hydrological models of the Tone and Perup catchments. Initially, the modelling makes an assessment of the catchments in January 1996, with tree densities and distribution interpreted from Landsat TM data recorded at that date. It then identifies sites for tree planting (on pasture existing in 1996) to meet an estimate of a required reduction in deep groundwater discharge, with the aim of minimising the area planted, and assuming that trees can effectively use deep groundwater discharge. The methods of analysis and results of the model are outlined in this report. This process was previously applied to the Upper Denmark (Mauger, 1994), Wellington (Arumugasamy and Mauger, 1994), Kent (Mauger, 1996a) and the Helena (Dixon, 1996) catchments. Maps have been produced for the Tone and Perup catchments that show the distribution and estimated rates of deep groundwater discharge, and the identified sites for planting trees. These maps can be used as a guide when planning tree layouts in farm plans.

# 2. Description of catchment

The Warren River basin forms part of the southern extremity of the Darling Plateau. The geomorphology of the catchment can be described as undulating plateau with moderately incised valleys, with bauxitic laterite soils over Archaean granitic and metamorphic rocks, and some areas of swampy flats (PWD, 1984). The annual average rainfall of the catchment varies from 520 mm in the east of the Tone catchment to 810 mm in the west of the Perup catchment to 940 mm in the south of the Tone catchment.

A laterite plateau landform exists over approximately two thirds of the Tone and Perup catchments. These laterite uplands are chiefly massive, with overlying pisolitic gravels and minor lateritized sands over mottled clays. A third of the Tone catchment occurs as dissected laterites and colluvium. Rolling country with mainly yellow mottled soils and gravely ridges, including valleyfill deposits, variably lateritized and podzolized (GSWA, 1985). In the Perup catchment, 15% of the area exists as incised valleys, with moderate to steep slopes with yellow podzolic soils and red earths. The remaining area exists as swampy flats. Here there are shallow drainage lines, with leached alluvial sands and podzolic soils (JDA, 1995). In scattered areas over the upper catchment, granite and adamellite can also be found in the surface layers.

A high percentage of the Tone catchment above the Bullilup gauging station near Tonebridge has been cleared for agricultural use. By 1965, 45% of the catchment had been cleared (PWD, 1984). This figure had increased to 70% in 1980. Since the clearing control

legislation was put in place in 1978 and reforestation introduced, overall catchment forest cover has increased. In 1993, 64% was still cleared (Davies and Bari, 1995). From 1996 satellite data, it was estimated that only 56% of the catchment was still in a cleared state.

Below the gauging station a large percentage remains uncleared. It is only in the eastern part of the catchment towards the Unicup Lakes that clearing has occurred. From the 1996 satellite data clearing in this section of the catchment is about 20%.

In contrast to the Tone catchment, only a small percentage of the Perup catchment has been cleared. It was estimated that 18% of the catchment had been cleared by 1980. By 1993 this figure had been reduced to 16%, and from the 1996 satellite data, clearing is now estimated at 13%.

Of the remaining native vegetation, approximately two thirds of the area is jarrah-marri forest, with some wandoo. These forest areas generally lie along minor valleys. A further 20% of the vegetation is marriwandoo woodlands, existing on the dissected laterites. The remaining area is classed as low woodlands, with paperbark woods on the swampy flats.

The Perup is dominated by jarrah-marri forest, accounting for 90% of the vegetated area, with the remaining area being low woodlands. In the upper Tone the jarrah-marri forest covers only half the vegetated area, with marri-wandoo woodlands covering a further third, and low woodlands the remainder.

# 3. Model of catchment

The personal-computer based M.A.G.I.C. modelling system was used to model the Tone and Perup subcatchments of the Warren River. Mauger (1996b) outlines the principles used in the hydrologic assessment of vegetation in catchments affected by dryland salinity in South Western Australia. A Geographic Information System approach was used in the development of the model. The resulting process can provide information at a scale of tens of metres, useful for planning on farms, while effects can be integrated for the whole catchment with areas up to hundreds of square kilometres. To help data management while computing, and to allow summary results to be distributed throughout the catchments, the catchments were divided into subcatchments, each with an average area of about 20 km<sup>2</sup>.

Each subcatchment is modelled by a two-layer groundwater simulation, with inputs of rainfall and evapotranspiration, which is executed using the raster processing system, RASCAL. The soil profile was represented as two layers of equal slope to the surface slope. Soil depths and permeabilities have been assumed constant in the absence of maps that could indicate how values should vary (Mauger 1996b). The model was run in monthly time steps for a three year period. The first year ran the shallow groundwater simulation as a preliminary analysis to get an estimate of the initial water storage in each cell. The lower groundwater level was a "steady state" analysis, ie. the average over a long period of time assuming vegetation cover remained the same throughout. The shallow groundwater simulation was run for the next two years using the storage loss from the previous year. Ideally, after the third year the final water storage in each cell should have equalled the initial water storage.

Quantities needed as input into the model of the catchment were computed using RASCAL. Gridded elevation cells were generated from contour linework in MicroStation PC (geographical information drawing software package) format. Slope and drainage distribution information was generated from the elevation map in each RASCAL project. Average Annual Pan Evaporation Isopleths and Average Annual Rainfall Isohyets (1926-81) polygons in MicroStation PC format were converted into Rascal maps in each project.

Native vegetation cover across the catchments is derived from Landsat Thematic Mapping data, captured in January 1996. In rural land, most of the pixels (the area of land that is recorded as a single data point in a Landsat scene) contain a mixture of four components that can be identified using Bands 3, 4 and 5 of the Landsat TM data: green leaves, dead vegetation, sandy soil and shaded areas. An index referred to as the 'greenness', a percentage of pure green component, was computed by the method outlined in Appendix A of Mauger (1988). This was used to give an indication of the tree density in the catchment. Pixels comprising mostly open water or bare clay are also distinguished using a classification process.

The natural 'greenness' of the vegetation was assumed to be 0.0087\*Rainfall + 0.0051\*Evaporation +35.85. The coefficients for the natural 'greenness' formula were obtained from Mauger (1994). The transpiration rate from trees in any cell was computed as:

(actual greenness) x ('natural' transpiration rate) ('natural' greenness)

where ('natural' transpiration rate) is proportional to annual rainfall. (Mauger, 1996b)

If the natural greenness was overestimated, the transpiration rate from the trees would be underestimated leading to an over-estimation of streamflow.

Pasture transpiration was the product of the leaf area, pan evaporation and a pan to leaf evaporation coefficient. Pasture LAI was varied according to the month of the year.

The details of the computing processes used for the Tone and Perup catchments are documented in Appendix A. The computing processes used in these catchments are similar to those used for the other modelled catchments, documented in the Volume of Appendices in Mauger (1996a).



For the modelling of the Tone River, the catchment was separated into two smaller areas. The catchment above the Bullilup gauging station (s607007) at Tonebridge was one area, with the catchment below the gauging station the second. The Tone above Tonebridge was subdivided into forty nine sub-catchments of areas from nine to thirty three square kilometres. The Tone below Tonebridge was subdivided into thirty three subcatchments of areas from eight to sixty five square kilometres. The Perup catchment above the Quabicup Hill gauging station (s607004) was subdivided into thirty seven sub-catchments of areas from nine to twenty seven square kilometres. Each sub-catchment was placed into a Rascal project consisting of separate maps comprised of 25 x 25 m cells.

A.

The catchment boundaries, identifying numbers of each sub-catchment and directions of outflow are illustrated in Figure 1. Gauging stations recording streamflow and salinity at the outlet of the Perup and Tonebridge catchments are also shown on this figure. Spreadsheet 1 details the AMG coordinates of outlet locations in the sub-catchments (ie. points at which totals are reported). The results of the model for each sub-catchment are relayed in Spreadsheets 2-4. Each spreadsheet has the sums for isolated individual catchments and aggregates for sub-catchments including all the upstream catchments.

Spreadsheet 2 contains all of the area statistics, such as catchment area (km<sup>2</sup>), average rainfall (mm), cleared areas (km<sup>2</sup> & % of catchment), forest without upstream clearing (km<sup>2</sup> & % of catchment). The average flows to be expected with clearing as in 1996 are in Spreadsheet 3. This includes streamflow (m<sup>3</sup> & mm [m<sup>3</sup>/ m<sup>2</sup> of catchment]) and deep groundwater discharge ('seepage') (m<sup>3</sup> & mm).

In Spreadsheet 4, the model minimum tree planting for a 45% reduction in seepage at gauging station S607007 is reported for each sub-catchment. This includes the predicted and review seepages and streamflows that would occur if the trees were planted.

# 4. Modelling parameters

The Tone above Tonebridge was used as the calibration catchment. The model was calibrated by aggregating streamflow and deep groundwater discharge for the catchment and comparing them with historical data at the Bullilup gauging station at the catchment outlet (S607007). The annual average streamflow at the gauging station is  $30.20 \times 10^6$  m<sup>3</sup>. The groundwater seepage arriving at the outlet was estimated to be  $10.66 \times 10^6$  m<sup>3</sup>. The calibrated model parameters would then be applied to the Tone below Tonebridge and Perup catchments.

The bottom soil layer permeability is usually set by calibrating modelled deep groundwater discharge outside of the forest to the value estimated by dividing gauged salt flux by typical deep groundwater salinity (Mauger 1996b). Seepage from forested areas is not counted in contributing to salt output. In order to separate seepage originating from pasture areas from seepage generated within forested areas, a map was generated in which cells were marked as 'outside forest' if more than 2% of the catchment area upstream from them was pasture. Only seepage from 'outside forest' cells was assumed to carry salt.

An initial run was performed using the 1926-81 average annual rainfall isohyets and the following pasture and aquifer properties:

- Cleared areas were used for annual pasture with a peak Leaf Area Index (LAI) of 2.1.
- The topsoil layer throughout the catchment was taken to be 1.5 metres deep with a permeability of 30 m/ month/unit hydraulic gradient and a porosity of 0.2.
- The bottom soil layer was 20 metres deep with a permeability of 3 m/year/unit hydraulic gradient.

The initial run did not take into account lake evaporation. Streamflow and seepage was found to be a third higher than the gauged average record. Streamflow output from the model was reduced then by subtracting annual evaporation from lakes at the end of each year in the modelling process. The amount of evaporation removed from the lakes was 0.7 times the pan evaporation. The factor 0.7 is the assumed lake to pan correction factor (AWRC 1970).

Additionally, the rainfall data used in the model was changed to a set which had the average annual rainfall patterns for the period 1980 - 1995 (BOM, 1996). This data was considered more relevant than the long-term data set because the streamflow from the Tone catchment has only been recorded between 1978 and 1993. Over this period, average annual rainfall has been lower than earlier this century, and so will be expected to yield lower streamflow volume. The monthly coefficients for rainfall and pan evaporation were those used in the Kent, Denmark and Wellington catchments.

The model was re-run with the changed data, and the resulting streamflow and salt load was found to compare well with the recorded data. The modelled annual average streamflow was  $27.26 \times 10^6 \text{ m}^3$  and the deep discharge outside the forested areas was  $9.55 \times 10^6 \text{ m}^3$ .

The above model parameters were then used to model the Perup and Tone below Tonebridge catchments. Of these two catchments, only the Perup is gauged. The computed annual average streamflow for the Perup was  $22.34 \times 10^6 \text{ m}^3$  and the average annual deep discharge outside the forested areas was 2.01 x 106 m3. This compares with  $13.90 \times 10^6 \text{ m}^3$  and  $3.16 \times 10^6 \text{ m}^3$ respectively from the historical data. A sensitivity test on a fully forested subcatchment showed that streamflow varied almost proportionally to the topsoil layer permeability. Further calibration was not attempted because the volume difference was small in the overall water balance and accurate simulation of forest performance was not critical in predicting tree planting. The lower Tone catchment had a computed annual average streamflow of 24.04 x 10<sup>6</sup> m<sup>3</sup> and the deep discharge outside the forested areas was 1.97 x 10<sup>6</sup> m<sup>3</sup>.

Saltfall decreases with the distance from the coast and is estimated to range between 24 mg/L over the lower Warren catchment and 20 mg/L over the Tone and Perup catchments in the upper Warren catchment. The salt concentration in the rain used in Table 1 was assumed to be proportional to the aggregate average rainfall for the sub-catchment and all upstream sub-catchments as shown in Spreadsheet 1.

In Table 1, a typical deep groundwater salinity of 9000 mg/L was used. Not many deep groundwater salinities have been measured throughout the catchment.

It was assumed that 25% of the salt from rainfall infiltrates into the bottom soil layer, thus not entering streamflow in the immediate future. This assumption is supported by a salt balance calculation on large sections of gauged catchments that are practically completely forested i.e. Kent River between Rocky Glen and Styx Junction guages, Bingham River, and Warren River at Wheatley Farm gauge less upstream gauges (as shown in Table 1). The flow weighted mean salt concentration was assessed from streamflow records. The total amount of salt resulting from the seepage of cleared land in the catchment was estimated by subtracting from the stream's salt load an estimate of the salt contributed directly by rainfall.

Maps showing the location of predicted deep groundwater discharge (seepage), classed by rate of discharge are in Map Appendix 5A. Also shown on the maps is native forest and scattered trees as interpreted from the Landsat MSS data for January 1996; streamlines, property information and contours taken from planimetric maps. A sample of the map is shown in Figure 2.

## 5. Seepage reduction objectives

The salt load from seepage can be calculated using streamflow salt records. Salt leaving the catchment can have two sources - groundwater seepage and rainfall. It is assumed that 75% of salt in rainfall leaves the catchment, with the remainder becoming part of the recharge to deep groundwater. Subtracting rainfall derived salt load from the streamflow salt load leaves salt contained in seepage which occurs as a result of clearing.

An analysis can be done to calculate the required reduction in seepage to reduce salt so that the annual flow weighted salinity is within potable limits. In the case of the Tone and Perup catchments, a gauging station downstream on the Warren River (Barker Rd Crossing) was used for the target salt concentration. The percentage reduction in current seepage salt load gives the target for the percentage reduction in the volume of seepage from cleared land. In this calculation, it was assumed that tree planting to reduce seepage would also reduce streamflow by 10%.

Table 1 shows the calculations required. Five gauging stations are referred to. The Tone River (Bullilup - S607007), Perup River (Quabicup Hill - S607004) and Wilgarup River (Quintarrup - S607144) each drain into the Warren River, upstream of the Wheatley Farm gauging station (S607003). The Barker Rd Crossing gauging station (S607220) is located further downstream towards the ocean outlet. Catchment streamflows, salt load and rainfall were averaged over a standard period (1979-1993). A target of 500 mg/L for the flow weighted average salinity at the Barker Rd station resulted in a target reduction of seepage of 45% from cleared land.

# 6. Tree planting to reduce seepage

In order to identify sites and areas to be indicated for tree planting, the following criteria were used:

- minimise the areas to be planted in order to reduce seepage to the required degree
- · plant in areas currently not native forest

The computer analyse process selected the areas of highest seepage rate first, and then progressively lower seepage rates until the total reduction in seepage target was met. Cells with deep groundwater discharge rates in the bottom soil layer that exceeded 32 mm/year were selected to be planted. The results of the analysis are presented as 'denoted sites for trees' as shown in the mapsheets titled 'Recommended sites for tree planting' in Map Appendix 5B. A sample of one of these maps is shown in Figure 3. The principles outlined in Appendix A result in a pattern of tree planting in belts of trees being situated in zones where deep groundwater discharge is to be utilised.

The numerical results of the analysis are tabled in Spreadsheets 4. Firstly, an estimate was made of the effect the tree planting would have on the seepage. The results are under the heading 'PREDICTED SEEPAGE'. The density of planting to achieve the predicted seepage is also estimated. The review process then puts the planted trees in the model, and the steady state modelling of the streamflow and seepage is reanalysed. The results are labelled 'REVIEW STREAMFLOW' and 'REVIEW SEEPAGE'. The review streamflow was used as an estimate of the effect of planting on the mean streamflow in Table 1.

The reviewed seepage was used to confirm the predicted seepage estimate. The average Review / Predicted seepage was 103% for the upper Tone, 102% for the lower Tone and 97% for the Perup catchment. The reviewed streamflow was 53% of the 1996 streamflow for the upper Tone, 85% for the lower Tone and 74% for the Perup catchment. Over the cleared areas, predicted seepage was reduced to 48% of the 1996 seepage for the upper Tone, 64% for the lower Tone and 34% for the Perup catchment. The corresponding areas to be planted were 15% of the cleared area in the upper Tone, 10% in the lower Tone and 23% in the Perup catchment. Practical plans for planting trees to achieve the same seepage reduction would require greater area because seepage location and rate is not precisely known. The predicted seepage should be used as the guide when estimating the reduction in seepage that would result from the tree planting, since the reviewed estimate may not be that precise.

# 7. Field work

On the 17<sup>th</sup> of September 1997, the Tone and Perup catchments were visited, to compare the results of the mapsheets of Map Appendix 5B with the field situation.

It was found that generally the modelling predicted the location of groundwater seepages very well. However, occasionally the model predicted high rates of discharge where in reality there was little or no discharge, and, to a lesser degree, the model predicted little or no discharge where there was high discharge in reality. It must be remembered that the model has been calibrated to the catchment scale using constant aquifer parameters and so may not be fully accurate in sections of the catchment. When dealing with smaller scale areas within the catchment, such as farm plans, more detailed knowledge of the geology of the site is required, so that more accurate plans can be derived.

# 8. Conclusion

The hydrological modelling of the Tone and Perup Catchments (total area 2318 km<sup>2</sup>) identified the saline seepage resulting from pasture existing in 1996. The results from this process are portrayed as mapsheets in Map Appendix 5A.

It was estimated that the saline seepage from the 1996 pasture needs to be reduced by 45% on average to meet the target flow weighted average salinity of 500 mg/L at Barker Rd gauging station. The model was re-run with the suggested trees planted, and the resulting seepage volume was compared to the target reduction in seepage volume. This comparison suggested that the initial criteria chosen for tree planting was appropriate. Trees need to be planted where the seepage exceeds 32 mm/year (based on a bottom soil layer permeability of 3 m/year/unit hydraulic gradient and a peak pasture LAI of 2.1) to meet the target. The area covered by planted trees amounts to 15% of the cleared pasture areas in the upper Tone, 10% in the lower Tone and 23% in the Perup catchment. The results of the predicted sites of tree planting are portrayed as map sheets in Map Appendix 5B. If all of the suggested trees were planted, it was estimated that a decrease in streamflow at the gauging station of 30% would result.

The map sheets in Map Appendix 5B can be used as a guide when planning tree layouts in farm plans. Actual plans should also incorporate farm objectives and operational constraints. If farm plans are prepared, then their effectiveness in reducing salinity should be reviewed by modelling them.

Future inclusion of catchment spatial variations in hydrogeological parameters such as layer thicknesses and soil permeabilities will also improve accuracy in smaller scale areas such as the case of farm plans, or for larger scale areas such as future revisions of the full catchment.

This report contains only samples of the maps from Map Appendix 5, as Figures 2 and 3. If a full set, or a map of any particular area, is required, please contact the Water and Rivers Commission to obtain a copy.

# 9. References

- Arumugasamy, V., Mauger, G. W. 1994, Trees on farms to reduce salinity in the clearing control catchments volume 2: Wellington catchment, Report No. WS 148, Water Authority of Western Australia.
- AWRC 1970, Evaporation from water storages, Australian Water Resources Council Hydrological Series No. 4.
- Bureau of Meteorology 1996, 1980-1995 Climatology data.
- Davies J. R. and Bari, M. A. 1995, Streamflow and salinity review of the Warren River basin, Western Australia, Water Authority of Western Australia, Report No. WS 150.
- Dixon, R. N. M. 1996, Trees on farms to reduce salinity in the clearing control catchments volume 2: Helena catchment, Water Resources Technical Series Report No WRT 8, Perth.
- JDA 1995, Warren River Water Quality Review, Report No. J201R.
- Geological Survey of Western Australia 1985, Pemberton Sheet SI 50 - 10, Australia 1:250,000 Geological Series, GSWA, Perth.
- Mauger, G. W. 1988, Landsat evaluation of the impact of logging, burning and dieback in the jarrah forest of south western Australia, Transactions of Multi-Disciplinary Engineering, Vol. GE12, No1, April 1988, p24-29.
- Mauger, G. W. 1994, Trees on farms to reduce salinity in the clearing control catchments volume 1: Upper

*Denmark*, Report No. WS 148, Water Authority of Western Australia.

- Mauger, G. W. 1996a, Trees on farms to reduce salinity in the clearing control catchments volume 3: Kent catchment, Water Resources Technical Series Report No. WRT 20.
- Mauger G. W. 1996b, Modelling dryland salinity with the M.A.G.I.C. system, Water and Rivers Commission, Water Resources Technical Series Report No. WRT 7.
- Peck, A. J. and Williamson, D. R., 1987, Effects of Forest Clearing on Groundwater, Journal of Hydrology, Vol 94, 47-65.
- Public Works Department, 1984, Streamflow Records of Western Australia to 1982, Volume 1, Basins 601-612, Public Works Department, Western Australia.
- Schofield, N. J., Ruprecht, J. K. and Loh, I. C., 1988, The Impact of Agricultural Development on the Salinity of Surface Water Resources of South-West Western Australia, Water Authority of Western Australia, Report No. WS 27, pp 18-20.
- State Salinity Council 1998, Western Australian salinity action plan, draft update, 1998, Government of Western Australia.
- Stokes, R. A., Beckwith, J. A., Pound, I. R., Stone, R.
  R., Coghlan, P. C. and Ng, R., 1995, *Perth's Water Future A Water Strategy for Perth and Mandurah*, Water Authority of Western Australia, Report No.
  WP 214.







Figure 2. Sample of map from Map Appendix 5A.

15



Figure 3. Sample of map from Map Appendix 5B.

16

### Table 1. Calculation of salinity reduction targets

|                           |             |                      | RAIN |      |        |  |
|---------------------------|-------------|----------------------|------|------|--------|--|
| CATCHMENT                 | Area Volume |                      |      | Salt |        |  |
|                           | sq.km       | m³ x 10 <sup>6</sup> | mm   | mg/i | tonnes |  |
| Tone (Bullilup)           | 987         | 623                  | 631  | 20   | 12456  |  |
| Perup (Quabicup Hill)     | 658         | 503                  | 765  | 20   | 10067  |  |
| Wilgarup (Quintarrup)     | 461         | 422                  | 915  | 24   | 10124  |  |
| Warren (Wheatley Farm)    | 2991        | 2198                 | 735  | 20   | 43968  |  |
| Warren less (Tone, Perup, |             |                      |      |      |        |  |
| Wilgarup)                 | 885         | 650                  | 735  | 20   | 11321  |  |
| Lower Tone (Bullilup to   |             |                      |      |      |        |  |
| Perup confluence)         | 658         | 503                  | 764  | 20   | 10054  |  |
| Warren (Barker Rd)        | 4022        | 3089                 | 768  | 24   | 72589  |  |
| Barker Rd-Wheatley Farm   | 1031        | 891                  | 864  | 30   | 26715  |  |

|                                                     |                                           | Befo                                           | re treat          | tment      |                 |                               | After treatment                              |           |                   |                 |  |  |
|-----------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------|------------|-----------------|-------------------------------|----------------------------------------------|-----------|-------------------|-----------------|--|--|
|                                                     | Volume                                    |                                                |                   | S          | alt             | Vol                           | Volume                                       |           |                   | alt             |  |  |
|                                                     | Model<br>m <sup>3</sup> x 10 <sup>6</sup> | <b>Rec</b><br>m <sup>3</sup> x 10 <sup>6</sup> | o <b>rd</b><br>mm | mg/l       | tonnes          | Model<br>m³ x 10 <sup>6</sup> | Estimate<br>m <sup>3</sup> x 10 <sup>6</sup> | mm        | mg/l              | tonnes          |  |  |
| Tone (Bullilup)                                     | 27.26                                     | 30.20                                          | 31                | 3487       | 105309          | 14.39                         | 15.10                                        | 15        | 3256              | 49165           |  |  |
| Perup (Quabicup Hill)                               | 22.34                                     | 13.90                                          | 21                | 2591       | 36008           | 16.51                         | 12.51                                        | 19        | 1548              | 19360           |  |  |
| Wilgarup (Quintarrup)                               |                                           | 28.00                                          | 61                | 969        | 27144           |                               | 25.20                                        | 55        | 623               | 15706           |  |  |
| Warren (Wheatley Farm)<br>Warren less (Tone, Perup, |                                           | 87.10                                          | 29                | 1997       | 173953          |                               | 67.81                                        | 23        | 1349              | 91477           |  |  |
| Wilgarup)<br>Lower Tone (Bullilup to                |                                           | 15.00                                          | 17                | 366        | 5492            |                               | 15.00                                        | 17        | 483               | 7246            |  |  |
| Perup confluence)                                   | 23.74                                     |                                                |                   |            |                 | 20.20                         |                                              |           |                   |                 |  |  |
| Warren (Barker Rd)<br>Barker Rd-Wheatley Farm       |                                           | 262.90<br>175.80                               | 65<br>171         | 825<br>244 | 216775<br>42822 |                               | 243.61<br>175.80                             | 61<br>204 | <b>500</b><br>173 | 121805<br>30328 |  |  |

### SEEPAGE (SALT LOAD = SALT IN STREAM - 75% SALT IN RAIN)

STREAM

|                                                     |                                           | Before treatment                    |           |      |        |               |                               | After treatment                              |    |      |        |  |  |
|-----------------------------------------------------|-------------------------------------------|-------------------------------------|-----------|------|--------|---------------|-------------------------------|----------------------------------------------|----|------|--------|--|--|
|                                                     | Volume                                    |                                     |           | Salt |        | Paduaa        | Vol                           | ume                                          |    | Sa   | alt    |  |  |
|                                                     | Model<br>m <sup>3</sup> x 10 <sup>6</sup> | <b>Reco</b><br>m³ x 10 <sup>5</sup> | ord<br>mm | mg/l | tonnes | seepage<br>to | Model<br>m³ x 10 <sup>6</sup> | Estimate<br>m <sup>3</sup> x 10 <sup>6</sup> | mm | mg/l | tonnes |  |  |
| Tone (Bullilup)                                     | 9.55                                      | 10.66                               | 11        | 9000 | 95967  |               | 4.58                          | 4.42                                         | 4  | 9000 | 39823  |  |  |
| Perup (Quabicup Hill)                               | 2.01                                      | 3.16                                | 5         | 9000 | 28457  |               | 0.68                          | 1.31                                         | 2  | 9000 | 11809  |  |  |
| Wilgarup (Quintarrup)                               |                                           | 2.17                                | 5         | 9000 | 19551  |               |                               | 0.90                                         | 2  | 9000 | 8113   |  |  |
| Warren (Wheatley Farm)<br>Warren less (Tone, Perup, |                                           | 15.66                               | 5         | 9000 | 140977 |               |                               | 6.50                                         | 2  | 9000 | 58501  |  |  |
| Wilgarup)<br>Lower Tone (Bullilup to                |                                           | -0.33                               | 0         | 9000 | -2999  |               |                               | -0.14                                        | 0  | 9000 | -1244  |  |  |
| Perup confluence)                                   | 1.93                                      |                                     |           |      |        |               | 1.23                          |                                              |    |      |        |  |  |
| Warren (Barker Rd)                                  |                                           | 18.04                               | 4         | 9000 | 162333 | 41%           |                               | 7.48                                         | 2  | 9000 | 67363  |  |  |
| Barker Rd-Wheatley Farm                             |                                           | 2.53                                | 2         | 9000 | 22786  |               |                               | 0.22                                         | 0  | 9000 | 1993   |  |  |

Note: Estimate 50% streamflow reduction at Bullip after treatment, 10% at other sites.

'Treatment' includes any actions taken in the catchment to reduce the discharge of deep groundwater discharge and the salt it contains.

# Plates

## Taken 28/11/96 in Warren Catchment



1. Tone River catchment looking south from Tone River Rd (Water accumulating areas sustain green pasture longer into summer)



2. Dry bed of Tone River downstream of Hillier Rd



3. Tone River upstream from Mullidup Rd crossing



4. Small lake (approx 5500 mg/L TDS) by Mullidup Rd (near Mobrup Rd)





5. Tone River at Tonebridge



6. Waterlogging near break of slope where seepage expected off Tone Rd (near Forrester Rd) in Tone River catchment



7. Drain west of Pindicup Lake in lower Tone catchment (approx 1300 mg/L TDS)



8. Tree planting in the Perup River catchment near Badon Scott Rd

# Spreadsheet 1

### Locations and Sizes of Rascal Projects for Sub-Catchments

| Project | SW C    | orner    | NE C    | Corner    | Rows | Columns | Cell   | Catchment | Gaugir  | ng Point |
|---------|---------|----------|---------|-----------|------|---------|--------|-----------|---------|----------|
|         | Easting | Northing | Easting | Northing  |      |         | Length | Number    | Easting | Northing |
| TONE01  | 506500  | 6240000  | 514800  | 6246000   | 240  | 332     | 25     | 1         | 508352  | 6242912  |
| TONE02  | 506500  | 6236800  | 513500  | 6245300   | 340  | 280     | 25     | 2         | 507762  | 6241662  |
| TONE03  | 503700  | 6236500  | 510500  | 6246500   | 400  | 272     | 25     | 3         | 504612  | 6241562  |
| TONE04  | 499700  | 6237000  | 505100  | 6243200   | 248  | 216     | 25     | - 4       | 502462  | 6242287  |
| TONE05  | 496100  | 6242200  | 506500  | 6248400   | 248  | 416     | 25     | 5         | 502562  | 6243287  |
| TONE06  | 495500  | 6239500  | 504200  | 6246100   | 264  | 348     | 25     | 6         | 498162  | 6241537  |
| TONE07  | 492400  | 6237900  | 500800  | 6245000   | 284  | 336     | 25     | 7         | 492987  | 6240662  |
| TONE08  | 489000  | 6242000  | 498000  | 6248500   | 260  | 360     | 25     | 8         | 492012  | 6242712  |
| TONE09  | 487200  | 6240000  | 493500  | 6246500   | 260  | 252     | 25     | 9         | 492412  | 6240887  |
| TONE10  | 492500  | 6235500  | 502400  | 6240000   | 180  | 396     | 25     | 10        | 492987  | 6238187  |
| TONE11  | 492000  | 6234000  | 500000  | 6237500   | 140  | 320     | 25     | 11        | 492487  | 6236437  |
| TONE12  | 489500  | 6234500  | 494800  | 6241800   | 292  | 212     | 25     | 12        | 490687  | 6237012  |
| TONE13  | 484100  | 6240500  | 489700  | 6246300   | 232  | 224     | 25     | 13        | 486662  | 6241137  |
| TONE14  | 480700  | 6237700  | 488400  | 6244000   | 252  | 308     | 25     | 14        | 486487  | 6239662  |
| TONE15  | 484700  | 6235700  | 491300  | 6242700   | 280  | 264     | 25     | 15        | 488987  | 6236987  |
| TONE16  | 492000  | 6230100  | 499200  | 6235700   | 224  | 288     | 25     | 16        | 493362  | 6233212  |
| TONE17  | 486900  | 6230500  | 494500  | 6238100   | 304  | 304     | 25     | 17        | 491037  | 6232262  |
| TONE18  | 482900  | 6232500  | 489900  | 6239300   | 272  | 280     | 25     | 18        | 488212  | 6233262  |
| TONE19  | 489200  | 6227900  | 496500  | 6232100   | 168  | 292     | 25     | 19        | 490237  | 6230862  |
| TONE20  | 485900  | 6226100  | 493000  | 6234600   | 340  | 284     | 25     | 20        | 487237  | 6230462  |
| TONE21  | 477900  | 6237200  | 484600  | 6243400   | 248  | 268     | 25     | 21        | 482087  | 6238087  |
| TONE22  | 477000  | 6234200  | 484700  | 6240000   | 232  | 308     | 25     | 22        | 482387  | 6234862  |
| TONE23  | 477000  | 6230200  | 485800  | 6235900   | 228  | 352     | 25     | 23        | 483412  | 6231837  |
| TONE24  | 480200  | 6226700  | 489500  | 6234300   | 304  | 372     | 25     | 24        | 484187  | 6229487  |
| TONE25  | 480700  | 6223900  | 489400  | 6230600   | 268  | 348     | 25     | 25        | 483662  | 6226412  |
| TONE26  | 479600  | 6221600  | 489300  | 6230000   | 336  | 388     | 25     | 26        | 481162  | 6224287  |
| TONE27  | 488100  | 6222200  | 496300  | 6229500   | 292  | 328     | 25     | 27        | 490862  | 6223962  |
| TONE28  | 485400  | 6219500  | 494600  | 6225600   | 244  | 368     | 25     | 28        | 486962  | 6221537  |
| TONE29  | 482800  | 6213000  | 490900  | 6218700   | 228  | 324     | 25     | 29        | 488187  | 6218187  |
| TONE30  | 482700  | 6214400  | 494000  | 6221700   | 292  | 452     | 25     | 30        | 485812  | 6219712  |
| TONE31  | 480600  | 6217300  | 488700  | 6224000   | 268  | 324     | 25     | 31        | 481362  | 6222612  |
| TONE32  | 475000  | 6220500  | 482400  | 6231000   | 420  | 296     | 25     | 32        | 477837  | 6222637  |
| TONE33  | 471600  | 6231400  | 478800  | 6238600   | 288  | 288     | 25     | 33        | 473862  | 6233037  |
| TONE34  | 467800  | 6226900  | 473600  | 6233100   | 248  | 232     | 25     | 34        | 473012  | 6229787  |
| TONE35  | 470200  | 6228500  | 477300  | 6233700   | 208. | 284     | 25     | 35        | 473937  | 6229312  |
| TONE36  | 475500  | 6227500  | 481700  | . 6234000 | 260  | 248     | 25     | 36        | 478162  | 6229137  |
| TONE37  | 470500  | 6221700  | 478100  | 6230800   | 364  | 304     | 25     | 37        | 476787  | 6222637  |
| TONE38  | 477800  | 6215000  | 484700  | 6221800   | 272  | 276     | 25     | 38        | 478462  | 6219362  |
| TONE39  | 472200  | 6215200  | 480500  | 6223800   | 344  | 332     | 25     | 39        | 476487  | 6218187  |
| TONE40  | 466400  | 6221900  | 472400  | 6229300   | 296  | 240     | 25     | 40        | 470587  | 6222887  |
| TONE41  | 464000  | 6217000  | 470000  | 6226000   | 360  | 240     | 25     | 41        | 469262  | 6221187  |
| TONE42  | 466500  | 6216500  | 474700  | 6225000   | 340  | 328     | 25     | 42        | 472812  | 6219887  |
| TONE43  | 468900  | 6215100  | 475400  | 6221100   | 240  | 260     | 25     | 43        | 474287  | 6217637  |
| TONE44  | 476600  | 6212800  | 485300  | 6217100   | 172  | 548     | 25     | 44        | 47/362  | 6214712  |
| TONE45  | 471500  | 6212900  | 478300  | 6220300   | 296  | 272     | 25     | 45        | 475487  | 6214887  |
| TONE46  | 464300  | 6211800  | 472400  | 6218600   | 272  | 524     | 25     | 46        | 471562  | 6212837  |
| TONE47  | 476400  | 6209900  | 484900  | 6214400   | 180  | 340     | 25     | 47        | 47/112  | 6212862  |
| TONE48  | 468700  | 6208700  | 479900  | 6216400   | 308  | 448     | 25     | 48        | 4/1037  | 6211362  |
| TONE49  | 466500  | 6208600  | 473400  | 6213500   | 196  | 276     | 25     | 49        | 470237  | 6209887  |

### TONE ABOVE TONEBRIDGE CATCHMENT

Notes:

1.Bullilup Gauging Station (S607007) corresponds to the outlet point of TONE49

2.TONE49 discharges into TONEL03 of 'Tone below Tonebridge' group



### TONE ABOVE TONEBRIDGE CATCHMENT MAP



23

| Project | SW C    | orner    | NE C    | orner    | Rows | Columns | Cell   | Catchment | Gaugir  | ng Point |
|---------|---------|----------|---------|----------|------|---------|--------|-----------|---------|----------|
|         | Easting | Northing | Easting | Northing |      |         | Length | Number    | Easting | Northing |
| TONEL01 | 478100  | 6207000  | 485600  | 6211600  | 184  | 300     | 25     | 1         | 478712  | 6209012  |
| TONEL02 | 471800  | 6206600  | 482000  | 6211400  | 192  | 408     | 25     | 2         | 472312  | 6208687  |
| TONEL03 | 466600  | 6205700  | 472800  | 6210700  | 200  | 248     | 25     | 3         | 471137  | 6207612  |
| TONEL04 | 481200  | 6204000  | 486200  | 6208600  | 184  | 200     | 25     | 4         | 482537  | 6204537  |
| TONEL05 | 476600  | 6199500  | 482600  | 6205000  | 220  | 240     | 25     | 5         | 477312  | 6203412  |
| TONEL06 | 470500  | 6199800  | 483000  | 6208200  | 336  | 500     | 25     | 6         | 471662  | 6205962  |
| TONEL07 | 468500  | 6201000  | 474500  | 6209000  | 320  | 240     | 25     | 7         | 469987  | 6204737  |
| TONEL08 | 463300  | 6205700  | 468300  | 6213500  | 312  | 200     | 25     | 8         | 467062  | 6206887  |
| TONEL09 | 464400  | 6200600  | 471400  | 6208400  | 312  | 280     | 25     | 9         | 465787  | 6203237  |
| TONEL10 | 461700  | 6201000  | 466700  | 6208500  | 300  | 200     | 25     | 10        | 462437  | 6203887  |
| TONEL11 | 460000  | 6209500  | 467600  | 6214500  | 200  | 304     | 25     | 11        | 461162  | 6210862  |
| TONEL12 | 457700  | 6206500  | 464900  | 6213000  | 260  | 288     | 25     | 12        | 460112  | 6207112  |
| TONEL13 | 457700  | 6203200  | 463500  | 6208200  | 200  | 232     | 25     | 13        | 461512  | 6204087  |
| TONEL14 | 454800  | 6200500  | 465300  | 6205300  | 192  | 420     | 25     | 14        | 460812  | 6201312  |
| TONEL15 | 454600  | 6197200  | 465800  | 6202200  | 200  | 448     | 25     | 15        | 463487  | 6197837  |
| TONEL16 | 456200  | 6194800  | 463000  | 6199600  | 192  | 272     | 25     | 16        | 461912  | 6196387  |
| TONEL17 | 480200  | 6191800  | 487700  | 6196800  | 200  | 300     | 25     | 17        | 480787  | 6194337  |
| TONEL18 | 475000  | 6190200  | 483000  | 6196800  | 264  | 320     | 25     | 18        | 475562  | 6194337  |
| TONEL19 | 480500  | 6196000  | 488500  | 6206200  | 408  | 320     | 25     | 19        | 481562  | 6199987  |
| TONEL20 | 473400  | 6194800  | 484400  | 6202800  | 320  | 440     | 25     | 20        | 474012  | 6199962  |
| TONEL21 | 469000  | 6197400  | 475500  | 6203200  | 232  | 260     | 25     | 21        | 469787  | 6200312  |
| TONEL22 | 464000  | 6196000  | 470500  | 6203000  | 280  | 260     | 25     | 22        | 468162  | 6197187  |
| TONEL23 | 469500  | 6192900  | 477700  | 6199500  | 264  | 328     | 25     | 23        | 469937  | 6195037  |
| TONEL24 | 464000  | 6191300  | 471800  | 6198800  | 300  | 312     | 25     | 24        | 465312  | 6194737  |
| TONEL25 | 461000  | 6193800  | 467000  | 6200300  | 260  | 240     | 25     | 25        | 461987  | 6195362  |
| TONEL26 | 461200  | 6185100  | 467200  | 6192600  | 300  | 240     | 25     | 26        | 462762  | 6191262  |
| TONEL27 | 458700  | 6187200  | 465500  | 6196200  | 360  | 272     | 25     | 27        | 460537  | 6191187  |
| TONEL28 | 455000  | 6186100  | 463000  | 6191500  | 216  | 320     | 25     | 28        | 457687  | 6190962  |
| TONEL29 | 455000  | 6189500  | 461000  | 6196100  | 264  | 240     | 25     | 29        | 455587  | 6191687  |
| TONEL30 | 450200  | 6188700  | 458200  | 6196200  | 300  | 320     | 25     | 30        | 450887  | 6192437  |
| TONEL31 | 444100  | 6184100  | 453100  | 6188700  | 184  | 360     | 25     | 31        | 452112  | 6187987  |
| TONEL32 | 450700  | 6184600  | 457200  | 6190600  | 240  | 260     | 25     | 32        | 452087  | 6189287  |
| TONEL33 | 445300  | 6186600  | 453300  | 6194800  | 328  | 320     | 25     | 33        | 447212  | 6193237  |
| TONEL61 |         |          |         |          |      | [       |        | 61        | 472412  | 6207337  |

### TONE BELOW TONEBRIDGE CATCHMENT

Notes:

1. TONEL61 located within the TONEL06 project

TONEL03 receives outflow from TONE49 of 'Tone above Tonebridge' group

### TONE BELOW TONEBRIDGE CATCHMENT MAP



Note: Enclosed groups correspond to printing pages in Spreadsheets 2-4.

| Project | SW C    | orner    | NE C    | Corner   | Rows    | Columns | Cell   | Catchment | Gaugi   | ng Point |
|---------|---------|----------|---------|----------|---------|---------|--------|-----------|---------|----------|
|         | Easting | Northing | Easting | Northing |         |         | Length | Number    | Easting | Northing |
| PERUP01 | 463000  | 6228000  | 469500  | 6233600  | 224     | 260     | 25     | 1         | 465512  | 6229287  |
| PERUP02 | 463200  | 6221000  | 467700  | 6227600  | 264     | 180     | 25     | 2         | 464362  | 6225212  |
| PERUP03 | 462100  | 6224000  | 467900  | 6230000  | 240     | 232     | 25     | 3         | 463412  | 6225462  |
| PERUP04 | 458500  | 6222500  | 464500  | 6230200  | 308     | 240     | 25     | 4         | 460887  | 6224837  |
| PERUP05 | 457500  | 6220500  | 465000  | 6227000  | 260     | 300     | 25     | 5         | 459287  | 6223287  |
| PERUP06 | 452200  | 6222000  | 459700  | 6228300  | 252     | 300     | 25     | 6         | 456762  | 6222537  |
| PERUP07 | 450000  | 6218200  | 455500  | 6226000  | 312     | 220     | 25     | 7         | 454712  | 6220512  |
| PERUP08 | 453000  | 6218800  | 463000  | 6225200  | 256     | 400     | 25     | 8         | 454987  | 6220187  |
| PERUP09 | 460000  | 6212000  | 466600  | 6222200  | 408     | 264     | 25     | 9         | 461187  | 6216562  |
| PERUP10 | 457500  | 6213000  | 464500  | 6222200  | 368     | 280     | 25     | 10        | 458087  | 6217037  |
| PERUP11 | 452800  | 6214200  | 459600  | 6220700  | 260     | 272     | 25     | 11        | 454912  | 6216387  |
| PERUP12 | 453000  | 6211500  | 462500  | 6217700  | 248     | 380     | 25     | 12        | 453812  | 6215487  |
| PERUP13 | 448700  | 6215600  | 454700  | 6223100  | 300     | 240     | 25     | 13        | 452437  | 6216237  |
| PERUP14 | 449400  | 6211000  | 455400  | 6217500  | 260     | 240     | 25     | 14        | 453537  | 6211687  |
| PERUP15 | 453000  | 6206600  | 459800  | 6213800  | 288     | 272     | 25     | 15        | 454062  | 6211337  |
| PERUP16 | 449500  | 6208200  | 454500  | 6213600  | 216     | 200     | 25     | 16        | 450262  | 6209887  |
| PERUP17 | 446700  | 6224500  | 453200  | 6231500  | 280     | 260     | 25     | 17        | 447237  | 6229087  |
| PERUP18 | 441500  | 6228000  | 448500  | 6233200  | 208     | 280     | 25     | 18        | 446362  | 6228412  |
| PERUP19 | 440000  | 6224500  | 448600  | 6230200  | 228     | 344     | 25     | 19        | 445862  | 6225987  |
| PERUP20 | 443400  | 6222000  | 452400  | 6227800  | 232     | 360     | 25     | 20        | 445812  | 6223862  |
| PERUP21 | 444000  | 6219000  | 451500  | 6224800  | 232     | 300     | 25     | 21        | 444462  | 6222462  |
| PERUP22 | 436000  | 6222000  | 441800  | 6229500  | 300     | 232     | 25     | 22        | 441212  | 6223262  |
| PERUP23 | 438000  | 6219200  | 445500  | 6227700  | 340     | 300     | 25     | 23        | 442512  | 6220287  |
| PERUP24 | 435000  | 6218200  | 442500  | 6223700  | 220     | 300     | 25     | 24 .      | 441612  | 6220162  |
| PERUP25 | 434000  | 6214000  | 439500  | 6221500  | 300     | 220     | 25     | 25        | 438812  | 6216062  |
| PERUP26 | 437200  | 6214200  | 443200  | 6219700  | 220     | 240     | 25     | 26        | 442562  | 6216387  |
| PERUP27 | 438800  | 6215600  | 449800  | 6221100  | 220     | 440     | 25     | 27        | 443412  | 6216512  |
| PERUP28 | 436600  | 6212400  | 443400  | 6216600  | 168     | 272     | 25     | 28        | 442862  | 6215887  |
| PERUP29 | 438200  | 6210000  | 446000  | 6214200  | 168     | 312     | 25     | 29        | 444837  | 6213712  |
| PERUP30 | 441500  | 6208000  | 448000  | 6213200  | 208     | 260     | 25     | 30        | 446212  | 6212612  |
| PERUP31 | 441200  | 6212000  | 448400  | 6219500  | 300     | 288     | 25     | 31        | 446787  | 6213112  |
| PERUP32 | 447000  | 6212600  | 451000  | 6219400  | 272     | 160     | 25     | 32        | 448187  | 6213362  |
| PERUP33 | 445800  | 6208000  | 451300  | 6215000  | 280     | 220     | 25     | 33        | 449437  | 6210387  |
| PERUP34 | 446000  | 6206000  | 455000  | 6211000  | 200     | 360     | 25     | 34        | 450987  | 6206662  |
| PERUP35 | 452400  | 6201200  | 459600  | 6208600  | 296     | 288     | 25     | 35        | 452962  | 6205537  |
| PERUP36 | 445800  | 6202500  | 453400  | 6207500  | 200     | 304     | 25     | 36        | 451287  | 6203412  |
| PERUP37 | 445700  | 6198500  | 455700  | 6204300  | 232 *** | 400     | 25     | 37        | 450062  | 6200837  |

### PERUP CATCHMENT

Note: Quabicup Gauging Station (S607004) corresponds to the outlet point of PERUP37.

### PERUP CATCHMENT MAP



Note: Enclosed groups correspond to printing pages in Spreadsheets 2-4.

27

# Spreadsheet 2

### Areas for Subcatchments

| 1. Areas for Subcatch           | ments of | the To  | ne abo | ve Ton | ebridg | je Catc | hments | 5     |        |       |       |        |        |
|---------------------------------|----------|---------|--------|--------|--------|---------|--------|-------|--------|-------|-------|--------|--------|
| Subcatchment                    | 1        | 2       | 3      | 4      | 5      | 6       | 7      | 8     | 9      | 10    | 11    | 12     |        |
| Drains to                       | 3        | 3       | 4      | 6      | 6      | 7       | 12     | 9     | 12     | 12    | 12    | 17     |        |
| SUMS FOR ISOLATED S             | UBCATCH  | MENTS   |        |        |        |         |        |       |        |       |       |        |        |
| Areas (km²)                     | 20.66    | 16.86   | 24.66  | 15.58  | 25.24  | 21.12   | 23.12  | 25.81 | 12.83  | 20.32 | 9.66  | 13.27  |        |
| Rainfall (mm)                   | 528      | 520     | 521    | 533    | 530    | 529     | 534    | 536   | 540    | 548   | 557   | 543    |        |
| AS AT 1996                      |          |         |        |        |        |         |        |       |        |       |       |        |        |
| Cleared area (km <sup>2</sup> ) | 15.45    | 12.94   | 21.10  | 12.08  | 22.30  | 17.84   | 16.08  | 19.94 | 9.91   | 14.86 | 7.66  | 8.58   |        |
| Clearing (%)                    | 75%      | 77%     | 86%    | 77%    | 88%    | 84%     | 70%    | 77%   | 77%    | 73%   | 79%   | 65%    |        |
| Forest w/o u/s Clearing         | 2.22     | 1.33    | 0.87   | 1.96   | 1.45   | 1.74    | 3.15   | 1.62  | 0.97   | 2.64  | 0.54  | 2.75   |        |
| AGGREGATES FOR SUB              | CATCHM   | ENTS AI | ND ALL | UPSTR  | EAM SU | JBCATO  | HMENT  | s     |        |       |       |        |        |
| Areas (km <sup>2</sup> )        | 20.66    | 16.86   | 62.18  | 77.76  | 25.24  | 124.12  | 147.24 | 25.81 | 38.64  | 20.32 | 9.66  | 229.14 |        |
| Rainfall (mm)                   | 528      | 520     | 523    | 525    | 530    | 527     | 528    | 536   | 537    | 548   | 557   | 533    |        |
| AS AT 1996                      |          |         |        |        |        |         |        |       |        |       |       |        |        |
| Cleared area (km <sup>2</sup> ) | 15.45    | 12.94   | 49.49  | 61.57  | 22.30  | 101.71  | 117.80 | 19.94 | 29.85  | 14.86 | 7.66  | 178.74 |        |
| Clearing (%)                    | 75%      | 77%     | 80%    | 79%    | 88%    | 82%     | 80%    | 77%   | 77%    | 73%   | 79%   | 78%    |        |
| Forest w/o u/s Clearing         | 2.22     | 1.33    | 4.42   | 6.38   | 1.45   | 9.57    | 12.72  | 1.62  | 2.60   | 2.64  | 0.54  | 21.25  |        |
| 2 Areas for Subcatch            | ments of | the To  | ne aho | ve Ton | ebrido | ie Cato | hmente |       |        |       |       |        |        |
| Subcatchment                    | 12       | 13      | 14     | 15     | 16     | 17      | 18     | - 19  | 20     | 21    | 22    | 23     |        |
| Drains to                       | 17       | 14      | 15     | 17     | 17     | 20      | 20     | 20    | 24     | 22    | 23    | 24     | 25     |
| SUMS FOR ISOLATED S             | UBCATCH  | MENTS   |        |        |        |         |        |       |        |       |       |        |        |
| Areas (km <sup>2</sup> )        | 13.27    | 13.29   | 17.05  | 18.25  | 19.71  | 19.48   | 16.46  | 13.51 | 21.11  | 16.51 | 21.91 | 22.85  | 22 21  |
| Rainfall (mm)                   | 543      | 550     | 565    | 550    | 561    | 557     | 564    | 584   | 575    | 596   | 600   | 595    | 583    |
| AS AT 1996                      |          |         |        |        |        |         |        |       |        |       |       |        |        |
| Cleared area (km <sup>2</sup> ) | 8.58     | 10.89   | 9.76   | 13.07  | 13.09  | 10.70   | 9.28   | 8.42  | 12.46  | 8.88  | 14.54 | 15.36  | 15.41  |
| Clearing (%)                    | 65%      | 82%     | 57%    | 72%    | 66%    | 55%     | 56%    | 62%   | 59%    | 54%   | 66%   | 67%    | 69%    |
| Forest w/o u/s Clearing         | 2.75     | 0.64    | 4.26   | 2.42   | 3.56   | 5.73    | 4.42   | 3.01  | 4.62   | 4.55  | 3.69  | 3.57   | 3.06   |
| AGGREGATES FOR SUB              | CATCHM   | ENTS AI |        | UPSTR  | EAM SI | JBCATO  | HMENT  | s     |        |       |       |        |        |
| Areas (km <sup>2</sup> )        | 229 14   | 13 29   | 30 35  | 48.59  | 19.71  | 316.92  | 16.46  | 13.51 | 367.99 | 16.51 | 38.42 | 61.27  | 451.47 |

| Areas (km²)                     | 229.14 | 13.29 | 30.35 | 48.59 | 19.71 | 316.92 | 16.46 | 13.51 | 367.99 | 10.51 | 38.42 | 61.27 | 451.47 |
|---------------------------------|--------|-------|-------|-------|-------|--------|-------|-------|--------|-------|-------|-------|--------|
| Rainfall (mm)                   | 533    | 550   | 559   | 556   | 561   | 540    | 564   | 584   | 545    | 596   | 598   | 597   | 554    |
| AS AT 1996                      |        |       |       |       |       |        |       |       |        |       |       |       |        |
| Cleared area (km <sup>2</sup> ) | 178.74 | 10.89 | 20.65 | 33.72 | 13.09 | 236.25 | 9.28  | 8.42  | 266.42 | 8.88  | 23.42 | 38.78 | 320.61 |
| Clearing (%)                    | 78%    | 82%   | 68%   | 69%   | 66%   | 75%    | 56%   | 62%   | 72%    | 54%   | 61%   | 63%   | 71%    |
| Forest w/o u/s Clearing         | 21.25  | 0.64  | 4.90  | 7.32  | 3.56  | 37.86  | 4.42  | 3.01  | 49.91  | 4.55  | 8.24  | 11.81 | 64.78  |

Abbreviations:

w/o = without

u/s = upstream

### Spreadsheet 2. Areas for Subcatchments (cont.)

| 3. Areas for Subcatch           | nments of | f the To | one abc | ve Tor | ebridg | e Catcl | nments | 5      |       |        |
|---------------------------------|-----------|----------|---------|--------|--------|---------|--------|--------|-------|--------|
| Subcatchment                    | 24        | 25       | 26      | 27     | 28     | 29      | 30     | 31     | 36    | 32     |
| Drains to                       | 25        | 26       | 32      | 28     | 31     | 30      | 31     | 32     | 32    | 39     |
| SUMS FOR ISOLATED               | SUBCATCH  | IMENTS   | 6       |        |        |         |        |        |       |        |
| Areas (km <sup>2</sup> )        | 22.21     | 15.87    | 28.37   | 29.41  | 27.37  | 15.80   | 23.45  | 19.91  | 13.04 | 33.19  |
| Rainfall (mm)                   | 583       | 592      | 604     | 596    | 603    | 633     | 629    | 637    | 610   | 624    |
| AS AT 1996                      |           |          |         |        |        |         |        |        |       |        |
| Cleared area (km <sup>2</sup> ) | 15.41     | 10.40    | 13.24   | 21.87  | 17.97  | 9.86    | 15.91  | 6.93   | 8.22  | 18.67  |
| Clearing (%)                    | 69%       | 66%      | 47%     | 74%    | 66%    | 62%     | 68%    | 35%    | 63%   | 56%    |
| Forest w/o u/s Clearing         | 3.06      | 2.97     | 10.56   | 3.78   | 4.62   | 3.25    | 3.86   | 9.74   | 3.27  | 9,99   |
| AGGREGATES FOR SU               | всатснм   | ENTS A   | ND ALL  | UPSTR  | EAM SL | BCATC   | HMENT  | S      |       |        |
| Areas (km <sup>2</sup> )        | 451.47    | 467.33   | 495.70  | 29.41  | 56.78  | 15.80   | 39.25  | 115.94 | 13.04 | 657.87 |
| Rainfall (mm)                   | 554       | 555      | 558     | 596    | 599    | 633     | 631    | 616    | 610   | 572    |
| AS AT 1996                      |           |          |         |        |        |         |        |        |       |        |
| Cleared area (km <sup>2</sup> ) | 320.61    | 331.01   | 344.24  | 21.87  | 39.84  | 9.86    | 25.77  | 72.54  | 8.22  | 443.67 |
| Clearing (%)                    | 71%       | 71%      | 69%     | 74%    | 70%    | 62%     | 66%    | 63%    | 63%   | 67%    |
| Forest w/o u/s Clearing         | 64.78     | 67.75    | 78.31   | 3.78   | 8.40   | 3.25    | 7.11   | 25.26  | 3.27  | 116.83 |

### 4. Areas for Subcatchments of the Tone above Tonebridge Catchments

| 20     | 22                                                                                                               | 24                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32     | 33                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 39     | 35                                                                                                               | 35                                                                                                                                                                                                                                                                                                                                                                           | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| зсатсн | MENTS                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 33.19  | 23.28                                                                                                            | 17.11                                                                                                                                                                                                                                                                                                                                                                        | 14.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 624    | 621                                                                                                              | 650                                                                                                                                                                                                                                                                                                                                                                          | 632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18.67  | 10.55                                                                                                            | 3.53                                                                                                                                                                                                                                                                                                                                                                         | 5.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 56%    | 45%                                                                                                              | 21%                                                                                                                                                                                                                                                                                                                                                                          | 42%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9.99   | 9.01                                                                                                             | 12.38                                                                                                                                                                                                                                                                                                                                                                        | 6.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| АТСНМЕ | ENTS AN                                                                                                          | ND ALL                                                                                                                                                                                                                                                                                                                                                                       | UPSTRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EAM SU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BCATC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 657.87 | 23.28                                                                                                            | 17.11                                                                                                                                                                                                                                                                                                                                                                        | 54.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 787.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 572    | 621                                                                                                              | 650                                                                                                                                                                                                                                                                                                                                                                          | 633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 443.67 | 10.55                                                                                                            | 3.53                                                                                                                                                                                                                                                                                                                                                                         | 20.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 496.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 67%    | 45%                                                                                                              | 21%                                                                                                                                                                                                                                                                                                                                                                          | 37%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 116.83 | 9.01                                                                                                             | 12.38                                                                                                                                                                                                                                                                                                                                                                        | 27.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 176.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 32<br>39<br>3CATCH<br>33.19<br>624<br>18.67<br>56%<br>9.99<br>ATCHME<br>657.87<br>572<br>443.67<br>67%<br>116.83 | 32         33           39         35           3CATCHMENTS         33.19         23.28           624         621           18.67         10.55           56%         45%           9.99         9.01           ATCHMENTS AN           657.87         23.28           572         621           443.67         10.55           67%         45%           116.83         9.01 | 32         33         34           39         35         35           SCATCHMENTS           33.19         23.28         17.11           624         621         650           18.67         10.55         3.53           56%         45%         21%           9.99         9.01         12.38           ATCHMENTS AND ALLL           657.87         23.28         17.11           572         621         650           443.67         10.55         3.53           67%         45%         21%           116.83         9.01         12.38 | 32         33         34         35           39         35         35         37           SCATCHMENTS           33.19         23.28         17.11         14.06           624         621         650         632           18.67         10.55         3.53         5.95           56%         45%         21%         42%           9.99         9.01         12.38         6.32           ATCHMENTS AND ALL UPSTRI           657.87         23.28         17.11         54.45           572         621         650         633           443.67         10.55         3.53         20.03           67%         45%         21%         37%           116.83         9.01         12.38         27.70 | 32         33         34         35         37           39         35         35         37         39           3CATCHMENTS         33.19         23.28         17.11         14.06         30.98           624         621         650         632         650           18.67         10.55         3.53         5.95         15.84           56%         45%         21%         42%         51%           9.99         9.01         12.38         6.32         10.12           ATCHMENTS AND ALL UPSTREAM SU         657.87         23.28         17.11         54.45         85.44           572         621         650         633         639           443.67         10.55         3.53         20.03         35.88           67%         45%         21%         37%         42%           116.83         9.01         12.38         27.70         37.82 | 32         33         34         35         37         38         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         39         30         35         37         39         39         39         30         35         36         36         36         36         36         36         37         38         36         37         38         36         37         38         36         37         37         38         36         37         36         36         36         36< |

#### Abbreviations:

w/o = without u/s = upstream

## Spreadsheet 2. Areas for Subcatchments (cont.)

### 5. Areas for Subcatchments of the Tone above Tonebridge Catchments

| Subcatchment                    | 39      | 40      | 41    | 42    | 43     | 44    | 45     | 46    | 47    | 48     | 49     |
|---------------------------------|---------|---------|-------|-------|--------|-------|--------|-------|-------|--------|--------|
| Drains to                       | 45      | 42      | 42    | 43    | 45     | 45    | 48     | 48    | 48    | 49     |        |
| SUMS FOR ISOLATED S             | UBCATCH | MENTS   |       |       |        |       |        |       |       |        |        |
| Areas (km²)                     | 24.79   | 19.53   | 22.13 | 21.09 | 13.55  | 14.71 | 17.59  | 28.43 | 15.36 | 32.69  | 11.96  |
| Rainfall (mm)                   | 642     | 671     | 697   | 683   | 676    | 665   | 658    | 712   | 669   | 674    | 701    |
| AS AT 1996                      |         |         |       |       |        |       |        |       |       |        |        |
| Cleared area (km <sup>2</sup> ) | 10.08   | 7.68    | 1.54  | 2.98  | 2.46   | 7.04  | 9.06   | 7.06  | 7.30  | 13.54  | 1.27   |
| Clearing (%)                    | 41%     | 39%     | 7%    | 14%   | 18%    | 48%   | 52%    | 25%   | 48%   | 41%    | 11%    |
| Forest w/o u/s Clearing         | 11.33   | 9.69    | 20.29 | 17.49 | 10.49  | 5.16  | 5.52   | 20.60 | 6.24  | 15.62  | 10.24  |
| AGGREGATES FOR SUE              | BCATCHM | ENTS AN |       | UPSTR | EAM SL | BCATC | HMENT  | S     |       |        |        |
| Areas (km <sup>2</sup> )        | 787.04  | 19.53   | 22.13 | 62.75 | 76.30  | 14.71 | 895.64 | 28.43 | 15.36 | 972.11 | 984.07 |
| Rainfall (mm)                   | 584     | 671     | 697   | 684   | 683    | 665   | 595    | 712   | 669   | 602    | 603    |
| AS AT 1996                      |         |         |       |       |        |       |        |       |       |        |        |
| Cleared area (km <sup>2</sup> ) | 496.02  | 7.68    | 1.54  | 12.20 | 14.66  | 7.04  | 526.78 | 7.06  | 7.30  | 554.69 | 555.96 |
| Clearing (%)                    | 63%     | 39%     | 7%    | 19%   | 19%    | 48%   | 59%    | 25%   | 48%   | 57%    | 56%    |
| Forest w/o u/s Clearing         | 176.90  | 9.69    | 20.29 | 47.47 | 57.96  | 5.16  | 245.54 | 20.60 | 6.24  | 288.00 | 298.23 |
|                                 |         |         |       |       |        |       |        |       |       |        |        |

| 6. Areas for Subcatchr          | ments of | the To  | ne belo | ow Ton | ebridg | e Catcl | nments | 5      |        |
|---------------------------------|----------|---------|---------|--------|--------|---------|--------|--------|--------|
| Subcatchment                    | 1        | 2       | 3       | 5      | 6      | 7       | 8      | 9      | 10     |
| Drains to                       | 2        | 3       | 7       | 6      | 7      | 9       | 9      | 10     | 14     |
| SUMS FOR ISOLATED SU            | ЈВСАТСН  | MENTS   |         |        |        |         |        |        |        |
| Areas (km²)                     | 15.30    | 14.01   | 11.55   | 16.72  | 46.72  | 19.42   | 16.80  | 23.36  | 15.87  |
| Rainfall (mm)                   | 679      | 687     | 705     | 713    | 701    | 714     | 725    | 729    | 737    |
| AS AT 1996                      |          |         |         |        |        |         |        |        |        |
| Cleared area (km <sup>2</sup> ) | 8.01     | 5.72    | 2.48    | 9.02   | 13.05  | 5.10    | 0.00   | 6.81   | 1.53   |
| Clearing (%)                    | 52%      | 41%     | 21%     | 54%    | 28%    | 26%     | 0%     | 29%    | 10%    |
| Forest w/o u/s Clearing         | 5.32     | 6.94    | 8.17    | 4.14   | 27.37  | 12.05   | 16.80  | 14.66  | 13.77  |
| AGGREGATES FOR SUB              | САТСНМЕ  | ENTS AN | ID ALL  | UPSTR  | EAM SI | JBCATC  | нмелт  | s      |        |
| Areas (km²)                     | 15.30    | 29.31   | 40.86   | 16.72  | 63.44  | 123.72  | 16.80  | 163.88 | 179.75 |
| Rainfall (mm)                   | 679      | 682     | 689     | 713    | 704    | 700     | 725    | 707    | 710    |
| AS AT 1996                      |          |         |         |        |        |         |        |        |        |
| Cleared area (km <sup>2</sup> ) | 8.01     | 13.73   | 16.21   | 9.02   | 22.08  | 43.39   | 0.00   | 50.19  | 51.73  |
| Clearing (%)                    | 52%      | 47%     | 40%     | 54%    | 35%    | 35%     | 0%     | 31%    | 29%    |
| Forest w/o u/s Clearing         | 5.32     | 12.26   | 20.43   | 4.14   | 31.51  | 63.99   | 16.80  | 95.45  | 109.22 |

#### Abbreviations:

w/o = without

u/s = upstream
### 7. Areas for Subcatchments of the Tone below Tonebridge Catchments

| Subcatchment                    | 10     | 24      | 11     | 12    | 13     | 14     | 15     | 16    | 25     |
|---------------------------------|--------|---------|--------|-------|--------|--------|--------|-------|--------|
| Drains to                       | 14     | 25      | 12     | 13    | 14     | 15     | 25     | 25    | 27     |
| SUMS FOR ISOLATED SU            | BCATCH | IMENTS  |        |       |        |        |        |       |        |
| Areas (km <sup>2</sup> )        | 15.87  | 22.31   | 10.45  | 19.31 | 14.53  | 17.24  | 28.70  | 16.51 | 12.36  |
| Rainfall (mm)                   | 737    | 788     | 721    | 734   | 746    | 760    | 775    | 788   | 787    |
| AS AT 1996                      |        |         |        |       |        |        |        |       |        |
| Cleared area (km <sup>2</sup> ) | 1.53   | 4.14    | 0.37   | 0.88  | 0.36   | 2.31   | 0.01   | 0.02  | 0.00   |
| Clearing (%)                    | 10%    | 19%     | 4%     | 5%    | 2%     | 13%    | 0%     | 0%    | 0%     |
| Forest w/o u/s Clearing         | 13.77  | 15.78   | 9.87   | 18.15 | 13.86  | 14.03  | 28.66  | 16.33 | 12.34  |
| AGGREGATES FOR SUB              | САТСНМ | ENTS AN | ID ALL | UPSTR | EAM SI | JBCATO | HMENT  | S     |        |
| Areas (km <sup>2</sup> )        | 179.75 | 207.50  | 10.45  | 29.75 | 44.29  | 241.28 | 269.97 | 16.51 | 506.34 |
| Rainfall (mm)                   | 710    | 739     | 721    | 730   | 735    | 718    | 724    | 788   | 734    |
| AS AT 1996                      |        |         |        |       |        |        |        |       |        |
| Cleared area (km <sup>2</sup> ) | 51.73  | 77.00   | 0.37   | 1.25  | 1.61   | 55.65  | 55.66  | 0.02  | 132.68 |
| Clearing (%)                    | 29%    | 37%     | 4%     | 4%    | 4%     | 23%    | 21%    | 0%    | 26%    |
| Forest w/o u/s Clearing         | 109.22 | 100.63  | 9.87   | 28.02 | 41.88  | 165.13 | 193.79 | 16.33 | 323.08 |

### 8. Areas for Subcatchments of the Tone below Tonebridge Catchments

| Subcatchment                    | 4                         | 17      | 18    | 19    | 20     | 21     | 22          | 23    | 24     |
|---------------------------------|---------------------------|---------|-------|-------|--------|--------|-------------|-------|--------|
| Drains to                       | 19                        | 18      | 23    | 20    | 21     | 22     | 24          | 24    | 25     |
|                                 | <b>0</b> • <b>T</b> 0 • 1 |         |       |       |        |        |             |       |        |
| SUMS FOR ISOLATED SUB           | CATCH                     | MENIS   |       |       |        |        |             |       |        |
| Areas (km <sup>2</sup> )        | 8.44                      | 12.84   | 21.77 | 42.53 | 37.78  | 15.49  | 18.48       | 27.85 | 22.31  |
| Rainfall (mm)                   | 686                       | 748     | 764   | 696   | 732    | 739    | 760         | 752   | 788    |
| AC AT 1000                      |                           |         |       |       |        |        |             |       |        |
| AJ AT 1330                      |                           |         |       | 47 74 |        |        | <b>0</b> 40 |       |        |
| Cleared area (km <sup>2</sup> ) | 5.02                      | 7.65    | 11.15 | 17.76 | 11.13  | 4.89   | 6.40        | 8.88  | 4.14   |
| Clearing (%)                    | 59%                       | 60%     | 51%   | 42%   | 29%    | 32%    | 35%         | 32%   | 19%    |
| Forest w/o u/s Clearing         | 2.28                      | 3.51    | 6.23  | 18.40 | 21.12  | 8.53   | 9.94        | 14.83 | 15.78  |
| AGGREGATES FOR SUBCA            | ТСНМЕ                     | ENTS AN |       | UPSTR | EAM SL | JBCATC | HMENT       | s     |        |
| Areas (km <sup>2</sup> )        | 8.44                      | 12.84   | 34.61 | 50.97 | 88.75  | 104.24 | 122.73      | 62.46 | 207.50 |
| Rainfall (mm)                   | 686                       | 748     | 758   | 695   | 710    | 715    | 722         | 755   | 739    |
| AS AT 1996                      |                           |         |       |       |        |        |             |       |        |
| Cleared area (km <sup>2</sup> ) | 5.02                      | 7 65    | 18 80 | 22 78 | 33.90  | 38 79  | 45 18       | 27 68 | 77 00  |
|                                 | 500/                      | 60%     | 540/  | 45%   | 380/   | 370/   | 37%         | AA0/  | 370/   |
|                                 | 09%                       | 00%     | 04%   | 40%   | 30%    | 5170   | 37.70       | ~+470 | 37.70  |
| Forest w/o u/s Clearing         | 2.28                      | 3.51    | 9.74  | 20.68 | 41.81  | 50.33  | 60.28       | 24.57 | 100.63 |

~

.

| 9. Areas for Subcatchr          | nents of | the To | ne bel | ow Tor | nebridg | e Catc | hments | 3     |        |
|---------------------------------|----------|--------|--------|--------|---------|--------|--------|-------|--------|
| Subcatchment                    | 25       | 26     | 27     | 28     | 29      | 30     | 31     | 32    | 33     |
| Drains to                       | 27       | 27     | 29     | 29     | 30      | 33     | 32     | 33    |        |
| SUMS FOR ISOLATED SU            | JBCATCH  | MENTS  | 5      |        |         |        |        |       |        |
| Areas (km²)                     | 12.36    | 18.21  | 25.31  | 12.75  | 8.61    | 26.29  | 18.27  | 13.17 | 28.70  |
| Rainfall (mm)                   | 787      | 848    | 822    | 854    | 830     | 838    | 938    | 893   | 894    |
| AS AT 1996                      |          |        |        |        |         |        |        |       |        |
| Cleared area (km <sup>2</sup> ) | 0.00     | 0.01   | 0.01   | 0.00   | 0.01    | 0.01   | 0.01   | 0.00  | 0.14   |
| Clearing (%)                    | 0%       | 0%     | 0%     | 0%     | 0%      | 0%     | 0%     | 0%    | 0%     |
| Forest w/o u/s Clearing         | 12.34    | 18.19  | 25.19  | 12.73  | 8.56    | 26.23  | 18.16  | 13.16 | 28.36  |
| AGGREGATES FOR SUB              | САТСНМЕ  | ENTS A | NDALL  | UPSTR  | EAM SU  | JBCATC | HMENT  | S     |        |
| Areas (km <sup>2</sup> )        | 506.34   | 18.21  | 549.86 | 12.75  | 571.23  | 597.52 | 18.27  | 31.44 | 657.66 |
| Rainfall (mm)                   | 734      | 848    | 742    | 854    | 745     | 750    | 938    | 919   | 764    |
| AS AT 1996                      |          |        |        |        |         |        |        |       |        |
| Cleared area (km <sup>2</sup> ) | 132.68   | 0.01   | 132.70 | 0.00   | 132.71  | 132.72 | 0.01   | 0.02  | 132.87 |
| Clearing (%)                    | 26%      | 0%     | 24%    | 0%     | 23%     | 22%    | 0%     | 0%    | 20%    |
| Forest w/o u/s Clearing         | 323.08   | 18.19  | 366.46 | 12.73  | 387.76  | 413.99 | 18.16  | 31.32 | 473.66 |

### 10. Areas for Subcatchments of the Perup Catchments

| Subcatchment                    | 1        | 2      | 3     | 4     | 5      | 6      | 7     | 8      |
|---------------------------------|----------|--------|-------|-------|--------|--------|-------|--------|
| Drains to                       | 3        | 3      | 4     | 5     | 8      | 8      | 8     | 11     |
| SUMS FOR ISOLATED S             | UBCATCHI | MENTS  |       |       |        |        |       |        |
| Areas (km <sup>2</sup> )        | 18.71    | 9.81   | 13.12 | 17.55 | 15.77  | 21.86  | 16.42 | 20.62  |
| Rainfall (mm)                   | 658      | 686    | 672   | 674   | 686    | 680    | 698   | 691    |
| AS AT 1996                      |          |        |       |       |        |        |       |        |
| Cleared area (km <sup>2</sup> ) | 4.88     | 0.43   | 0.19  | 0.03  | 3.66   | 4.64   | 2.93  | 4.87   |
| Clearing (%)                    | 26%      | 4%     | 1%    | 0%    | 23%    | 21%    | 18%   | 24%    |
| Forest w/o u/s Clearing         | 12.41    | 9.23   | 12.76 | 17.48 | 11.36  | 15.57  | 13.05 | 14.55  |
| AGGREGATES FOR SUE              | всатснме | NTS AI |       | UPSTR | EAM SL | IBCATC | HMENT | s      |
| Areas (km <sup>2</sup> )        | 18.71    | 9.81   | 41.64 | 59.19 | 74.96  | 21.86  | 16.42 | 133.86 |
| Rainfall (mm)                   | 658      | 686    | 669   | 670   | 674    | 680    | 698   | 680    |
| AS AT 1996                      |          |        |       |       |        |        |       |        |
| Cleared area (km <sup>2</sup> ) | 4.88     | 0.43   | 5.50  | 5.53  | 9.19   | 4.64   | 2.93  | 21.63  |
| Clearing (%)                    | 26%      | 4%     | 13%   | 9%    | 12%    | 21%    | 18%   | 16%    |
| Forest w/o u/s Clearing         | 12.41    | 9.23   | 34.40 | 51.88 | 63.24  | 15.57  | 13.05 | 106.41 |
|                                 |          |        |       |       | _      |        |       |        |

### Abbreviations:

w/o = without

u/s = upstream

| Subcatchment                    | 8        | 9       | 10    | 11     | 12     | 13    | 14     | 15    | 16     |
|---------------------------------|----------|---------|-------|--------|--------|-------|--------|-------|--------|
| Drains to                       | 11       | 10      | 11    | 14     | 14     | 14    | 16     | 16    | 34     |
| SUMS FOR ISOLATED S             | ивсатсн  | MENTS   |       |        |        |       |        |       |        |
| Areas (km <sup>2</sup> )        | 20.62    | 26.86   | 24.61 | 18.90  | 19.22  | 14.44 | 16.54  | 24.37 | 11.58  |
| Rainfall (mm)                   | 691      | 710     | 703   | 702    | 717    | 723   | 729    | 736   | 738    |
| AS AT 1996                      |          |         |       |        |        |       |        |       |        |
| Cleared area (km <sup>2</sup> ) | 4.87     | 0.84    | 0.04  | 4.45   | 1.41   | 2.17  | 6.92   | 0.76  | 5.49   |
| Clearing (%)                    | 0.24     | 3%      | 0%    | 24%    | -7%    | 15%   | 42%    | 3%    | 47%    |
| Forest w/o u/s Clearing         | 14.55    | 25.43   | 24.41 | 13.54  | 17.44  | 11.44 | 7.36   | 23.16 | 4.65   |
| AGGREGATES FOR SUE              | BCATCHME | ENTS AN |       | UPSTR  | EAM SU | BCATC | HMENT  | S     |        |
| Areas (km <sup>2</sup> )        | 133.86   | 26.86   | 51.47 | 204.23 | 19.22  | 14.44 | 254.43 | 24.37 | 290.38 |
| Rainfall (mm)                   | 680      | 710     | 707   | 689    | 717    | 723   | 696    | 736   | 701    |
| AS AT 1996                      |          |         |       |        |        |       |        |       |        |
| Cleared area (km <sup>2</sup> ) | 21.63    | 0.84    | 0.88  | 26.96  | 1.41   | 2.17  | 37.47  | 0.76  | 43.72  |
| Clearing (%)                    | 0.16     | 3%      | 2%    | 13%    | 7%     | 15%   | 15%    | 3%    | 15%    |
| Forest w/o u/s Clearing         | 106.41   | 25.43   | 49.84 | 169.78 | 17.44  | 11.44 | 206.02 | 23.16 | 233.83 |

| 12. Areas for Subcatch          | nments o | f the P | erup C | atchm | ents   |       |        |
|---------------------------------|----------|---------|--------|-------|--------|-------|--------|
| Subcatchment                    | 17       | 18      | 19     | 20    | 21     | 22    | 23     |
| Drains to                       | 18       | 19      | 20     | 21    | 23     | 23    | 27     |
| SUMS FOR ISOLATED SU            | ЈВСАТСН  | MENTS   |        |       |        |       |        |
| Areas (km <sup>2</sup> )        | 17.16    | 14.04   | 19.80  | 20.27 | 19.25  | 22.53 | 22.80  |
| Rainfall (mm)                   | 694      | 692     | 716    | 708   | 718    | 782   | 743    |
| AS AT 1996                      |          |         |        |       |        |       |        |
| Cleared area (km <sup>2</sup> ) | 3.32     | 0.61    | 0.97   | 4.17  | 3.45   | 0.08  | 3.56   |
| Clearing (%)                    | 19%      | 4%      | 5%     | 21%   | 18%    | 0%    | 16%    |
| Forest w/o u/s Clearing         | 12.66    | 13.19   | 18.52  | 15.28 | 14.64  | 22.24 | 18.25  |
| AGGREGATES FOR SUB              | САТСНМЕ  | ENTS AN |        | UPSTR | EAM SU | BCATC | HMENTS |
| Areas (km <sup>2</sup> )        | 17.16    | 31.19   | 50.99  | 71.26 | 90.51  | 22.53 | 135.84 |
| Rainfall (mm)                   | 694      | 694     | 702    | 704   | 707    | 782   | 726    |
| AS AT 1996                      |          |         |        |       |        |       |        |
| Cleared area (km <sup>2</sup> ) | 3.32     | 3.93    | 4.89   | 9.06  | 12.51  | 0.08  | 16.15  |
| Clearing (%)                    | 19%      | 13%     | 10%    | 13%   | 14%    | 0%    | 12%    |
| Forest w/o u/s Clearing         | 12.66    | 25.85   | 44.37  | 59.65 | 74.28  | 22.24 | 114.78 |

S

### Abbreviations:

w/o = without u/s = upstream U/S = upstream

| 13. Areas for Subcatc           | hments o | f the P | erup C | atchm | ents   |       |       |       |        |       |        |  |
|---------------------------------|----------|---------|--------|-------|--------|-------|-------|-------|--------|-------|--------|--|
| Subcatchment                    | 23       | 24      | 25     | 26    | 27     | 28    | 29    | 30    | 31     | 32    | 33     |  |
| Drains to                       | 27       | 27      | 26     | 27    | 31     | 31    | 31    | 31    | 33     | 33    | 34     |  |
| SUMS FOR ISOLATED S             | UBCATCH  | MENTS   |        |       |        |       |       |       |        |       |        |  |
| Areas (km²)                     | 22.80    | 15.12   | 18.58  | 9.94  | 17.61  | 9.45  | 17.21 | 10.79 | 27.65  | 11.38 | 14.01  |  |
| Rainfall (mm)                   | 743      | 802     | 836    | 802   | 750    | 805   | 795   | 780   | 747    | 735   | 758    |  |
| AS AT 1996                      |          |         |        |       |        |       |       |       |        |       |        |  |
| Cleared area (km <sup>2</sup> ) | 3.56     | 0.15    | 1.04   | 0.00  | 0.00   | 0.01  | 1.81  | 0.41  | 4.84   | 2.72  | 1.56   |  |
| Clearing (%)                    | 0.16     | 1%      | 6%     | 0%    | 0%     | 0%    | 11%   | 4%    | 18%    | 24%   | 11%    |  |
| Forest w/o u/s Clearing         | 18.25    | 14.78   | 17.23  | 9.94  | 17.61  | 9.39  | 14.26 | 9.84  | 21.00  | 7.73  | 11.48  |  |
| AGGREGATES FOR SUE              | всатсние | ENTS AN |        | UPSTR | EAMSU  | BCATC | HMENT | s     |        |       |        |  |
| Areas (km <sup>2</sup> )        | 135.84   | 15.12   | 18.58  | 28.52 | 197.09 | 9.45  | 17.21 | 10.79 | 262.19 | 11.38 | 287.59 |  |
| Rainfall (mm)                   | 726      | 802     | 836    | 824   | 748    | 805   | 795   | 780   | 754    | 735   | 754    |  |
| AS AT 1996                      |          |         |        |       |        |       |       |       |        |       |        |  |
| Cleared area (km <sup>2</sup> ) | 16.15    | 0.15    | 1.04   | 1.04  | 17.34  | 0.01  | 1.81  | 0.41  | 24.41  | 2.72  | 28.69  |  |
| Clearing (%)                    | 0.12     | 1%      | 6%     | 4%    | 9%     | 0%    | 11%   | 4%    | 9%     | 24%   | 10%    |  |
| Forest w/o u/s Clearing         | 114.78   | 14.78   | 17.23  | 27.17 | 174.33 | 9.39  | 14.26 | 9.84  | 228.83 | 7.73  | 248.03 |  |

### 14. Areas for Subcatchments of the Perup Catchments

|                                 | 40      |        | 24     | 25    | 20     |        |
|---------------------------------|---------|--------|--------|-------|--------|--------|
| Subcatchment                    | 16      | 33     | 34     | 35    | 36     | 37     |
| Drains to                       | 34      | 34     | 36     | 36    | 37     |        |
| SUMS FOR ISOLATED S             | UBCATCH | MENTS  | 5      |       |        |        |
| Areas (km²)                     | 11.58   | 14.01  | 16.78  | 26.99 | 19.21  | 20.87  |
| Rainfall (mm)                   | 738     | 758    | 774    | 765   | 777    | 798    |
| AS AT 1996                      |         |        |        |       |        |        |
| Cleared area (km <sup>2</sup> ) | 5.49    | 1.56   | 1.53   | 0.67  | 6.43   | 3.82   |
| Clearing (%)                    | 0.47    | 0.11   | 9%     | 2%    | 33%    | 18%    |
| Forest w/o u/s Clearing         | 4.65    | 11.48  | 14.72  | 25.95 | 10.31  | 15.18  |
| AGGREGATES FOR SUI              | BCATCHM | ENTS A | ND ALL | UPSTR | EAM SU | JBCATC |
| Areas (km²)                     | 290.38  | 287.59 | 594.75 | 26.99 | 640.95 | 661.83 |
| Rainfall (mm)                   | 701     | 754    | 728    | 765   | 731    | 734    |
| AS AT 1996                      |         |        |        |       |        |        |
| Cleared area (km <sup>2</sup> ) | 43.72   | 28.69  | 73.94  | 0.67  | 81.04  | 84.86  |
| Clearing (%)                    | 0.15    | 0.10   | 12%    | 2%    | 13%    | 13%    |
| Forest w/o u/s Clearing         | 233.83  | 248.03 | 496.58 | 25.95 | 532.84 | 548.01 |

Abbreviations:

w/o = without

u/s = upstream

# Spreadsheet 3

### Average flows for clearing as in 1996

### 1. Flows for 1996 clearing for Subcatchments of the Tone above Tonebridge Catchments

| Subcatchment                             | 1       | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     |
|------------------------------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Drains to                                | 3       | 3      | 4      | 6      | 6      | 7      | 12     | 9      | 12     | 12     | 12     | 17     |
| SUMS FOR ISOLATED SUBC                   | ATCHMEN | rs     |        |        |        |        |        |        |        |        |        |        |
| Stream flow (m <sup>3</sup> )            | 256202  | 243773 | 265993 | 227824 | 531740 | 434822 | 462586 | 648505 | 314054 | 492989 | 214887 | 281501 |
| Stream flow (mm)                         | 12.40   | 14.46  | 10.79  | 14.62  | 21.07  | 20.59  | 20.01  | 25,13  | 24.48  | 24.26  | 22.24  | 21.21  |
| Seepage (m <sup>3</sup> )                | 260886  | 229556 | 288172 | 191591 | 367724 | 308576 | 339995 | 399131 | 206228 | 308790 | 136387 | 185984 |
| Seepage (mm)                             | 12.63   | 13.62  | 11.69  | 12.29  | 14.57  | 14.61  | 14.71  | 15.47  | 16.07  | 15.19  | 14.12  | 14.01  |
| Seepage/stream flow (%)                  | 102%    | 94%    | 108%   | 84%    | 69%    | 71%    | 73%    | 62%    | 66%    | 63%    | 63%    | 66%    |
| Seepage inside forest (m <sup>3</sup> )  | 13338   | 8414   | 4193   | 8221   | 4267   | 6795   | 37018  | 7681   | 8400   | 26046  | 3276   | 28054  |
| Seepage inside forest (mm)               | 6.01    | 6.32   | 4.82   | 4.20   | 2.94   | 3.90   | 11.75  | 4.74   | 8.62   | 9.87   | 6.11   | 10.19  |
| Seepage outside forest (m <sup>3</sup> ) | 247548  | 221142 | 283979 | 183369 | 363457 | 301781 | 302977 | 391451 | 197828 | 282744 | 133111 | 157930 |
| Seepage outside forest (mm)              | 13.42   | 14.25  | 11.94  | 13.46  | 15.28  | 15.57  | 15.17  | 16.18  | 16.69  | 15.99  | 14.59  | 15.01  |
| Seepage loss (m <sup>3</sup> )           | -58552  | -43917 | -59599 | -33730 | -40278 | -20223 | -81119 | -40570 | -24767 | -73657 | -28719 | -67033 |

#### AGGREGATES FOR SUBCATCHMENTS AND ALL UPSTREAM SUBCATCHMENTS

| Stream flow (m <sup>3</sup> )            | 256202 | 243773 | 765968  | 993792  | 531740 | 1960354 | 2422940 | 648505 | 962559 | 492989 | 214887 | 4374877 |
|------------------------------------------|--------|--------|---------|---------|--------|---------|---------|--------|--------|--------|--------|---------|
| Stream flow (mm)                         | 12.40  | 14.46  | 12.32   | 12.78   | 21.07  | 15.79   | 16.46   | 25.13  | 24.91  | 24.26  | 22.24  | 19.09   |
| Seepage (m <sup>3</sup> )                | 260886 | 229556 | 778614  | 970205  | 367724 | 1646505 | 1986500 | 399131 | 605359 | 308790 | 136387 | 3223020 |
| Seepage (mm)                             | 12.63  | 13.62  | 12.52   | 12.48   | 14.57  | 13.27   | 13.49   | 15.47  | 15.67  | 15.19  | 14.12  | 14.07   |
| Seepage/stream flow (%)                  | 102%   | 94%    | 102%    | 98%     | 69%    | 84%     | 82%     | 62%    | 63%    | 63%    | 63%    | 74%     |
| Seepage inside forest (m <sup>3</sup> )  | 13338  | 8414   | 25946   | 34167   | 4267   | 45229   | 82246   | 7681   | 16081  | 26046  | 3276   | 155703  |
| Seepage inside forest (mm)               | 6.01   | 6.32   | 5.87    | 5.36    | 2.94   | 4.73    | 6.47    | 4.74   | 6.19   | 9.87   | 6.11   | 7.33    |
| Seepage outside forest (m <sup>3</sup> ) | 247548 | 221142 | 752668  | 936038  | 363457 | 1601276 | 1904254 | 391451 | 589279 | 282744 | 133111 | 3067317 |
| Seepage outside forest (mm)              | 13.42  | 14.25  | 13.03   | 13.11   | 15.28  | 13.98   | 14.16   | 16,18  | 16.35  | 15.99  | 14.59  | 14.75   |
| Seepage loss (m <sup>3</sup> )           | -58552 | -43917 | -162068 | -195798 | -40278 | -256300 | -337419 | -40570 | -65337 | -73657 | -28719 | -572164 |

#### Assumptions:

### 2. Flows for 1996 clearing for Subcatchments of the Tone above Tonebridge Catchments

| Subcatchment                             | 12         | 13       | 14       | 15       | 16         | 17            | 7 1            | 18      | 19          | 20             | 21        | 22 2          | 3 24                     |
|------------------------------------------|------------|----------|----------|----------|------------|---------------|----------------|---------|-------------|----------------|-----------|---------------|--------------------------|
| Drains to                                | 17         | 14       | 15       | 17       | 17         | 20            | ) 2            | 20      | 20          | 24             | 22 2      | 23 24         | 4 25                     |
| SUMS FOR ISOLATED SUB                    | CATCHMEN   | ITS      |          |          |            |               |                |         |             |                |           |               |                          |
| Stream flow (m <sup>3</sup> )            | 281501     | 405164   | 454210   | 454778   | 566300     | 484697        | 7 34166        | 8 368   | 056 53097   | 2 5980         | 92 8086   | 53 76932      | 9 631681                 |
| Stream flow (mm)                         | 21.21      | 30.48    | 26.63    | 24.92    | 28 73      | 24.85         | 3 207          | 76 27   | 25 25       | 5 36           | 22 36.9   | 91 33.6       | 3 28.44                  |
| Seenage (m <sup>3</sup> )                | 185984     | 220898   | 231776   | 280238   | 296059     | 267298        | 20863          | 88 177: | 349 2683    | 7 2383         | 80 31666  | 58 29511      | 1 298444                 |
| Seenage (mm)                             | 14 01      | 16.62    | 13 59    | 15.36    | 15.02      | 13.72         | 20000<br>20000 | 58 13   | 13 12 7     | 7 <u>1</u> 000 | 44 144    | 15 12 Q       | 230444<br>2 13 <i>44</i> |
| Seepage/stream flow (%)                  | 66%        | 55%      | 51%      | 62%      | 52%        | 55%           | 61             | % 4     | 8% 51       | % 40           | 0% 39     | % <u>38</u> % | 47%                      |
| Seepage inside forest (m <sup>3</sup> )  | 28054      | 1737     | 18325    | 14201    | 38189      | 59346         | 5 3931         | 7 26    | 85 4636     | 5 321          | 37 174    | 50 1540       | 4 22543                  |
| Seepageinside forest (mm)                | 10.19      | 2.71     | 4.30     | 5.87     | 10.72      | 10.35         | 5 8.8          | 39 8    | .87 10.0    | )4 7           | 06 4      | 73 4.3        | 7.38                     |
| Seepage outside forest (m <sup>3</sup> ) | 157930     | 219161   | 213452   | 266037   | 257870     | 207953        | 3 16932        | 21 150  | 64 22195    | 2 2062         | 43 2992   | 18 27970      | 7 275901                 |
| Seepage outside forest (mm)              | 15.01      | 17.32    | 16.68    | 16.81    | 15.97      | 15.13         | 3 14.0         | 07 14   | .35 13.4    | 6 17           | 24 16.4   | 13 14.5       | 1 14.40                  |
| Storage loss (m <sup>3</sup> )           | 67033      | -20352   | -23825   | -38915   | -61215     | -104101       | -6777          | 7 -53   | 914 -9439   | 9 -362         | 18 -2258  | 30 -3922      | 3 -53248                 |
| AGGREGATES FOR SUBCA                     | TCHMENTS   | AND ALL  | UPSTRE   |          | АТСНМЕ     | NTS           |                |         |             |                |           |               |                          |
| Stream flow (m <sup>3</sup> )            | 4374877    | 405164   | 859374   | 1314152  | 566300     | 6740025       | 5 34166        | 8 368   | 56 798072   | 1 5980         | 92 140674 | 15 217607     | 5 10788476               |
| Stream flow (mm)                         | 19.09      | 30.48    | 28.32    | 27.04    | 28.73      | 21.27         | 20,7           | 6 27    | .25 21.6    | 9 36.          | 22 36.6   | 35.5          | 2 23.90                  |
| Seepage (m <sup>3</sup> )                | 3223020    | 220898   | 452674   | 732912   | 296059     | 4519289       | 20863          | 8 177:  | 849 517359  | 3 2383         | 80 55504  | 8 850160      | 6322197                  |
| Seepage (mm)                             | 14.07      | 16.62    | 14.92    | 15.08    | 15.02      | 14.26         | 5 12.6         | 8 13    | .13 14.0    | 6 14.          | 44 14.4   | 15 13.8       | 3 14.00                  |
| Seepage/stream flow (%)                  | 74%        | 55%      | 53%      | 56%      | 52%        | 67%           | 619            | % 4     | 8% 65       | % 40           | 0% 39     | % 39%         | 59%                      |
| Seepage inside forest (m <sup>3</sup> )  | 155703     | 1737     | 20061    | 34263    | 38189      | 287500        | ) 3931         | 7 26    | 85 39986    | 7 -321         | 37 4958   | 64992         | 2 487402                 |
| Seepageinside forest (mm)                | 7.33       | 2.71     | 4.10     | 4.68     | 10.72      | 7.59          | 8.8            | 89 8    | .87 8.0     | 01 7.          | 06 6.0    | 5.50          | 7.52                     |
| Seepage outside forest (m <sup>3</sup> ) | 3067317    | 219161   | 432613   | 698650   | 257870     | 4231789       | 16932          | 1 150   | 64 477372   | 6 2062         | 43 50546  | 51 785168     | 3 5834795                |
| Seepage outside forest (mm)              | 14.75      | 17.32    | 17.00    | 16.93    | 15.97      | 15.16         | 6 14.0         | 07 14   | .35 15.0    | 1 17.          | 24 16.7   | 75 15.88      | 3 15.09                  |
| Storage loss (m <sup>3</sup> )           | -572164    | -20352   | -44177   | -83092   | -61215     | -820572       | -6777          | 7 -539  | 914 -103666 | 2 -362         | 18 -5879  | 98 -9802      | -1187931                 |
| 3. Flows for 1996 clea                   | rina for S | Subcatc  | hments   | of the 1 | Fone al    | oove Te       | onebri         | dae Ca  | tchmen      | S              |           |               |                          |
| Subcatchment                             | 24         | 25       | 26       | 2        | 7          | 28            | 29             | 30      | 31          | 36             |           |               |                          |
| Drains to                                | 25         | 26       | 32       | - 2      | 8          | 31            | 30             | 31      | 32          | 32             | 39        |               |                          |
|                                          |            |          |          |          |            |               |                |         |             |                |           |               |                          |
| SUMS FOR ISOLATED SUB                    | CATCHMEN   | TS       |          |          |            |               |                |         |             |                |           |               |                          |
| Stream flow (m <sup>3</sup> )            | 631681     | 626401   | 632711   | 61149    | 9 5974     | 41 65         | 6281           | 559524  | 564388      | 459518         | 727022    |               |                          |
| Stream flow (mm)                         | 28.44      | 39.48    | 22.30    | 20.8     | 0 21       | .83 4         | \$1.55         | 23.86   | 28.34       | 35.24          | 21.91     |               |                          |
| Seepage (m <sup>3</sup> )                | 298444     | 243036   | 280791   | 31631    | 1 2725     | 588 17        | 0096           | 210664  | 133338      | 172017         | 245604    |               |                          |
| Seepage (mm)                             | 13.44      | 15.32    | 9.90     | 10.7     | 69         | .96 1         | 0.77           | 8.98    | 6.70        | 13.19          | 7.40      |               |                          |
| Seepage/stream flow (%)                  | 47%        | 39%      | 44%      | 52%      | 6 4        | 6%            | 26%            | 38%     | 24%         | 37%            | 34%       |               |                          |
| Seepage inside forest (m <sup>3</sup> )  | 22543      | 20929    | 67803    | 2343     | 9 279      | 84 1          | 1489           | 15939   | 52983       | 9296           | 56161     |               |                          |
| Seepageinside forest (mm)                | 7.38       | 7.04     | 6.42     | 6.1      | 96         | .06           | 3.53           | 4.13    | 5.44        | 2.84           | 5.62      |               |                          |
| Seepage outside forest (m <sup>3</sup> ) | 275901     | 222107   | 212988   | 29287    | 2 2446     | 604 15        | 8607           | 194725  | 80355       | 162721         | 189444    |               |                          |
| Seepage outside forest (mm)              | 14.40      | 17.23    | 11.96    | 11.4     | 3 10       | .75 1         | 2.64           | 9.94    | 7.90        | 16.66          | 8.17      |               |                          |
| Storage loss (m <sup>3</sup> )           | -53248     | -53876   | -207394  | -8821    | 9 -1081    | 02 -6         | 9873           | -74573  | -95499      | -11572         | -129042   |               |                          |
| AGGREGATES FOR SUBCA                     | TCHMENTS   | AND ALL  | UPSTREA  | M SUBC   | АТСНМЕ     | NTS           |                |         |             |                |           |               |                          |
| Stream flow (m <sup>3</sup> )            | 10788476   | 11414877 | 12047588 | 61149    | 9 12089    | 940 65        | 6281 1         | 215805  | 2989133     | 459518         | 16223261  |               |                          |
| Stream flow (mm)                         | 23.90      | 24.43    | 24.30    | 20.8     | 0 21       | .29 4         | 1.55           | 30.98   | 25.78       | 35.24          | 24.66     |               |                          |
| Seepage (m³)                             | 6322197    | 6565233  | 6846024  | 31631    | 1 5888     | 899 17        | 0096           | 380760  | 1102997     | 172017         | 8366642   |               |                          |
| Seepage (mm)                             | 14.00      | 14.05    | 13.81    | 10.7     | 6 10       | .37 1         | 10.77          | 9.70    | 9.51        | 13.19          | 12.72     |               |                          |
| Seepage/stream flow (%)                  | 59%        | 58%      | 57%      | 52%      | <b>6</b> 4 | 9%            | 26%            | 31%     | 37%         | 37%            | 52%       |               |                          |
| Seepage inside forest (m <sup>3</sup> )  | 487402     | 508331   | 576134   | 2343     | 9 514      | 124 1         | 1489           | 27428   | 131834      | 9296           | 773425    |               |                          |
| Seepageinside forest (mm)                | 7.52       | 7.50     | 7.36     | 6.1      | 96         | .12           | 3.53           | 3.86    | 5.22        | 2.84           | 6.62      |               |                          |
| Seepage outside forest (m <sup>3</sup> ) | 5834795    | 6056902  | 6269890  | 29287    | 2 5374     | 76 15         | 8607           | 353332  | 971163      | 162721         | 7593217   |               |                          |
| Seepage outside forest (mm)              | 15.09      | 15.16    | 15.02    | 11.4     | 3 11       | . <b>11</b> 1 | 12.64          | 11.00   | 10.71       | 16.66          | 14.03     |               |                          |
| Storage loss (m <sup>3</sup> )           | -1187931   | -1241808 | -1449202 | -8821    | 9 -1963    | 321 -6        | 9873 -         | 144446  | -436266     | -11572         | -2026082  |               |                          |
|                                          |            |          |          |          |            |               |                |         |             |                |           |               |                          |

#### Assumptions:

| Subcatchment                             | 32         | 33       | 34     | 35      | 37       | 38       | 39       |          |          |          |          |
|------------------------------------------|------------|----------|--------|---------|----------|----------|----------|----------|----------|----------|----------|
| Drains to                                | 39         | 35       | 35     | 37      | 39       | 39       | 45       |          |          |          |          |
| SUMS FOR ISOLATED SUBC                   | ATCHMEN    | rs       |        |         |          |          |          |          |          |          |          |
| Stream flow (m <sup>3</sup> )            | 727022     | 607465   | 493871 | 484064  | 1216143  | 652938   | 989243   |          |          |          |          |
| Stream flow (mm)                         | 21.91      | 26,09    | 28.87  | 34.42   | 39.25    | 34.46    | 39.90    |          |          |          |          |
| Seepage (m <sup>3</sup> )                | 245604     | 210287   | 119577 | 141998  | 318715   | 160629   | 257782   |          |          |          |          |
| Seepage (mm)                             | 7.40       | 9.03     | 6.99   | 10.10   | 10.29    | 8.48     | 10.40    |          |          |          |          |
| Seepage/stream flow (%)                  | 34%        | 35%      | 24%    | 29%     | 26%      | 25%      | 26%      |          |          |          |          |
| Seepage inside forest (m <sup>3</sup> )  | 56161      | 21152    | 46565  | 18088   | 35353    | 40546    | 60491    |          |          |          |          |
| Seepage inside forest (mm)               | 5.62       | 2.35     | 3.76   | 2,86    | 3.49     | 3.71     | ·5.34    |          |          |          |          |
| Seepage outside forest (m3)              | 189444     | 189136   | 73011  | 123910  | ~ 283362 | 120083   | 197291   |          |          |          |          |
| Seepage outside forest (mm)              | 8.17       | 13.25    | 15.43  | 16,00   | 13.58    | 14.95    | 14.66    |          |          |          |          |
| Storage loss (m <sup>3</sup> )           | -129042    | -20738   | -12418 | -11815  | -46491   | -28283   | -111800  |          |          |          |          |
| AGGREGATES FOR SUBCA                     | CHMENTS    | AND ALL  | UPSTRE | AM SUBC | ATCHMEN  | ITS      |          |          |          |          |          |
| Stream flow (m <sup>3</sup> )            | 16223261   | 607465   | 493871 | 1585399 | 2801543  | 652938   | 20666984 |          |          |          |          |
| Stream flow (mm)                         | 24.66      | 26.09    | 28.87  | 29.11   | 32.79    | 34.46    | 26.26    |          |          |          |          |
| Seepage (m <sup>3</sup> )                | 8366642    | 210287   | 119577 | 471862  | 790577   | 160629   | 9575630  |          |          |          |          |
| Seepage (mm)                             | 12.72      | 9.03     | 6.99   | 8.67    | 9.25     | 8.48     | 12.17    |          |          |          |          |
| Seepage/stream flow (%)                  | 52%        | 35%      | 24%    | 30%     | 28%      | 25%      | 46%      |          |          |          |          |
| Seepage inside forest (m <sup>3</sup> )  | 773425     | 21152    | 46565  | 85805   | 121158   | 40546    | 995620   |          |          |          |          |
| Seepage inside forest (mm)               | 6.62       | 2.35     | 3.76   | 3.10    | 3.20     | 3,71     | 5.63     |          |          |          |          |
| Seepage outside forest (m <sup>3</sup> ) | 7593217    | 189136   | 73011  | 386057  | 669419   | 120083   | 8580010  |          |          |          |          |
| Seepage outside forest (mm)              | 14.03      | 13.25    | 15.43  | 14.43   | 14.06    | 14.95    | 14.06    |          |          |          |          |
| Storage loss (m <sup>3</sup> )           | -2026082   | -20738   | -12418 | -44971  | -91462   | -28283   | -2257627 |          |          |          |          |
| 5 Flows for 1996 clea                    | ring for S | Subcato  | hments | of the  | Tone ab  |          | nebrida  | - Catchr | nents    |          |          |
| Cubastalament                            |            |          |        |         | 42       |          | 45       |          |          |          |          |
| Drains to                                | 39<br>45   | 40<br>42 | 41     | 42      | 43<br>45 | 44<br>45 | 45<br>48 | 46       | 47<br>48 | 48<br>49 | 49       |
|                                          |            |          |        |         |          |          |          |          |          |          |          |
| SUMS FOR ISOLATED SUBC                   | ATCHMEN    | rs       |        |         |          |          |          |          |          |          |          |
| Stream flow (m <sup>3</sup> )            | 989243     | 818228   | 490807 | 521819  | 336599   | 556342   | 661232   | 1064348  | 592651   | 1437273  | 119398   |
| Stream flow (mm)                         | 39.90      | 41.90    | 22.18  | 24.74   | 24.85    | 37.81    | 37.60    | 37.44    | 38.59    | 43.97    | 9.98     |
| Seepage (m <sup>3</sup> )                | 257782     | 207407   | 99028  | 156974  | 84470    | 150654   | 154656   | 153202   | 119702   | 256551   | 60890    |
| Seepage (mm)                             | 10.40      | 10.62    | 4.47   | 7.44    | 6.24     | 10.24    | 8.79     | 5.39     | 7.79     | 7.85     | 5.09     |
| Seepage/stream flow (%)                  | 26%        | 25%      | 20%    | 30%     | 25%      | 27%      | 23%      | 14%      | 20%      | 18%      | 51%      |
| Seepage inside forest (m <sup>3</sup> )  | 60491      | 52791    | 69362  | 105729  | 49243    | 16981    | 24582    | 40912    | 10034    | 63182    | 37046    |
| Seepage inside forest (mm)               | 5.34       | 5.45     | 3.42   | 6.05    | 4.69     | 3.29     | 4.45     | 1.99     | 1.61     | 4.05     | 3.62     |
| Seepage outside forest (m <sup>3</sup> ) | 197291     | 154616   | 29666  | 51245   | 35227    | 133673   | 130075   | 112290   | 109668   | 193369   | 23844    |
| Seepage outside forest (mm)              | 14.66      | 15.71    | 16.13  | 14.22   | 11.53    | 13,99    | 10.78    | 14.35    | 12.03    | 11.33    | 13.80    |
| Storage loss (m <sup>3</sup> )           | -111800    | -40802   | -6783  | -44543  | -24043   | -18293   | -56252   | -10533   | -9587    | -151229  | -7775    |
| AGGREGATES FOR SUBCA                     | TCHMENTS   | AND ALL  | UPSTRE | AM SUBC |          | NTS      |          |          |          |          |          |
| Stream flow (m <sup>3</sup> )            | 20666984   | 818228   | 490807 | 1830854 | 2167454  | 556342   | 24052011 | 1064348  | 592651   | 27146283 | 27265682 |
| Stream flow (mm)                         | 26.26      | 41.90    | 22,18  | 29,18   | 28.41    | 37.81    | 26.85    | 37.44    | 38.59    | 27.93    | 27.71    |
| Seepage (m <sup>3</sup> )                | 9575630    | 207407   | 99028  | 463409  | 547879   | 150654   | 10428818 | 153202   | 119702   | 10958274 | 11019164 |
|                                          |            |          |        |         |          |          |          |          |          |          |          |

#### 7.18 10.24 11.64 5.39 Seepage (mm) 12.17 10.62 4.47 7.38 7.79 11.27 Seepage/stream flow (%) 46% 25% 20% 25% 25% 27% 43% 14% 20% 40% Seepage inside forest (m<sup>3</sup>) 995620 52791 69362 227882 277125 16981 1314307 40912 10034 1428435 1465481 Seepage inside forest (mm) 5.63 5.45 3.42 4.80 4,78 3.29 5.35 1.99 1.61 4.96 Seepage outside forest (m<sup>3</sup>) 8580010 154616 29666 235527 270754 133673 9114511 112290 109668 9529838 9553683 Seepage outside forest (mm) 14.06 15.71 16.13 15.41 14,76 13,99 14.02 14.35 12.03 13.93

-6783 -92128 -116171 -18293 -2448343

-10533

#### Assumptions:

Storage loss (m3)

Lower soil layer 20m deep with permeability 3m/yr/unit hydraulic gradient Peak leaf area index for pasture = 2.1

-2257627

-40802

40%

4.91

13.93

-9587 -2619692 -2627467

#### 6. Flows for 1996 clearing for Subcatchments of the Tone below Tonebridge Catchments 2 3 5 6 9 1 7 8 10 Subcatchment 2 3 7 6 7 9 9 10 14 Drains to SUMS FOR ISOLATED SUBCATCHMENTS Stream flow (m3) 726782 462790 428440 835776 1584180 268667 496347 1141287 680929 Stream flow (mm) 47.50 33.02 37.10 50.00 33.91 13.84 29.54 48.86 42.90 Seepage (m<sup>3</sup>) 160278 94186 84618 111602 289955 79179 48852 153385 51135 Seepage (mm) 10.48 6,72 7.33 6.68 6.21 4.08 2.91 6.57 3.22 Seepage/stream flow (%) 22% 20% 20% 13% 18% 29% 10% 13% 8% 29974 12700 111676 48852 Seepage inside forest (m<sup>3</sup>) 7226 22484 33043 58275 29531 3.24 3.07 4.08 2.74 2.91 3,98 2.15 Seepage inside forest (mm) 1.36 3.67 71701 54644 98902 178279 95110 21604 153052 46136 0 Seepage outside forest (m<sup>3</sup>) 15.33 10.14 16.18 7.86 6.26 10.93 10.26 Seepage outside forest (mm) 9.21 0.00 -35416 -21680 -4333 Storage loss (m<sup>3</sup>) -10876 -5081 -54200 -150952 -13882 867 AGGREGATES FOR SUBCATCHMENTS AND ALL UPSTREAM SUBCATCHMENTS Stream flow (m3) 726782 1189572 1618012 835776 2419956 4306636 496347 5944270 6625200 Stream flow (mm) 47.50 40.58 39.60 50.00 38.15 34.81 29.54 36.27 36.86 Seepage (m<sup>3</sup>) 160278 254464 339082 111602 401557 819819 48852 1022056 1073191 6.24 Seepage (mm) 10.48 8.68 8.30 6.68 6.33 6.63 2.91 5.97 21% 21% Seepage/stream flow (%) 22% 13% 17% 19% 10% 17% 16% 48852 324230 353762 Seepage inside forest (m<sup>3</sup>) 7226 29710 59684 12700 124377 217103 1.36 3.40 Seepage inside forest (mm) 2.42 2.92 3.07 3.95 3.39 2.91 3.24 153052 98902 697825 224754 279398 277181 602715 0 719429 Seepage outside forest (m<sup>3</sup>) Seepage outside forest (mm) 15.33 13.18 13.68 7.86 8.68 10.09 0.00 10.20 10.20 -10876 -46292 -51373 -54200 -205152 -270407 -291220 -295553 Storage loss (m<sup>3</sup>) 867 7. Flows for 1996 clearing for Subcatchments of the Tone below Tonebridge Catchments

### Spreadsheet 3. Average flows for clearing as in 1996 (cont.)

# 11

12

13

14

15

16

25

| Drains to                                | 14      | 25      | 12     | 13     | 14     | 15                  | 25     | 25     | 27     |
|------------------------------------------|---------|---------|--------|--------|--------|---------------------|--------|--------|--------|
| SUMS FOR ISOLATED SUBC                   | ATCHMEN | TS      |        |        |        |                     |        |        |        |
| Stream flow (m <sup>3</sup> )            | 680929  | 1015128 | 207022 | 432372 | 365803 | 683654              | 808847 | 254910 | 377869 |
| Stream flow (mm)                         | 42.90   | 45      | 19.82  | 22.39  | 25.17  | 39.66               | 28.19  | 15.44  | 30.58  |
| Seepage (m <sup>3</sup> )                | 51135   | 115247  | 49051  | 71871  | 29564  | 57520               | 6133   | 39897  | 25846  |
| Seepage (mm)                             | 3.22    | 5       | 4.70   | 3.72   | 2.03   | 3.34                | 0.21   | 2.42   | 2.09   |
| Seepage/stream flow (%)                  | 8%      | 11%     | 24%    | 17%    | 8%     | 8%                  | 1%     | 16%    | 7%     |
| Seepage inside forest (m <sup>3</sup> )  | 29531   | 49245   | 39510  | 64669  | 23135  | 19491               | 6116   | 38718  | 25769  |
| Seepage inside forest (mm)               | 2.15    | 3       | 4.00   | 3,56   | 1.67   | 1.39                | 0.21   | 2.37   | 2.09   |
| Seepage outside forest (m <sup>3</sup> ) | 21604   | 66002   | 9542   | 7202   | 6428   | 38030               | 18     | 1179   | 77     |
| Seepage outside forest (mm)              | 10.26   | 10      | 16.61  | 6.22   | 9.54   | <sup>~~</sup> 11.84 | 0.55   | 6.31   | 5.84   |
| Storage loss (m <sup>3</sup> )           | -4333   | -40772  | -3858  | -10813 | -5853  | -7056               | -3275  | -6361  | -5447  |

#### AGGREGATES FOR SUBCATCHMENTS AND ALL UPSTREAM SUBCATCHMENTS

10

24

| Stream flow (m <sup>3</sup> )            | 6625200 | 9152158 | 207022 | 639395 | 1005197 | 8314051 | 9122898 | 254910 | 18907835 |
|------------------------------------------|---------|---------|--------|--------|---------|---------|---------|--------|----------|
| Stream flow (mm)                         | 36.86   | 44      | 19.82  | 21.49  | 22.70   | 34.46   | 33.79   | 15.44  | 37.34    |
| Seepage (m³)                             | 1073191 | 1474675 | 49051  | 120922 | 150486  | 1281198 | 1287331 | 39897  | 2827749  |
| Seepage (mm)                             | 5.97    | 7       | 4.70   | 4.06   | 3.40    | 5.31    | 4.77    | 2.42   | 5.58     |
| Seepage/stream flow (%)                  | 16%     | 16%     | 24%    | 19%    | 15%     | 15%     | 14%     | 16%    | 15%      |
| Seepage inside forest (m <sup>3</sup> )  | 353762  | 335540  | 39510  | 104179 | 127315  | 500567  | 506683  | 38718  | 906711   |
| Seepage inside forest (mm)               | 3.24    | 3       | 4.00   | 3.72   | 3.04    | 3.03    | 2.61    | 2.37   | 2.81     |
| Seepage outside forest (m <sup>3</sup> ) | 719429  | 1139135 | 9542   | 16743  | 23172   | 780631  | 780648  | 1179   | 1921038  |
| Seepage outside forest (mm)              | 10.20   | 11      | 16,61  | 9.66   | 9.63    | 10.25   | 10.25   | 6.31   | 10.48    |
| Storage loss (m <sup>3</sup> )           | -295553 | -444861 | -3858  | -14671 | -20524  | -323133 | -326408 | -6361  | -783077  |

#### Assumptions:

Subcatchment

| 8. Flows for 1996 clea                                                                                                                                                             | ring for a                          | subcate                      | nments                              |                              | one beic                            | w ionec                     | oriage C            | atchmer              | 105                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------|-------------------------------------|------------------------------|-------------------------------------|-----------------------------|---------------------|----------------------|-----------------------------|
| Subcatchment                                                                                                                                                                       | 4                                   | 17                           | 18                                  | 19                           | 20                                  | 21                          | 22                  | 23                   | 24                          |
| Drains to                                                                                                                                                                          | 19                                  | 18                           | 23                                  | 20                           | 21                                  | 22                          | 24                  | 24                   | 25                          |
| SHIME FOR ISOLATED SHIP                                                                                                                                                            |                                     | re                           |                                     |                              |                                     |                             |                     |                      |                             |
| SUNS FUR ISULATED SUBU                                                                                                                                                             |                                     | 904626                       | 1500620                             | 1701720                      | 507046                              | 2464                        | 094501              | 1000005              | 1015100                     |
| Stream flow (mm)                                                                                                                                                                   | 404901                              | 69 68                        | 73.06                               | 1/01/30                      | 15 80                               | -3404                       | 53.26               | 67 76                | 45.50                       |
| Seenage (m <sup>3</sup> )                                                                                                                                                          | 90.01                               | 11/600                       | 203564                              | 209717                       | 272353                              | 102766                      | 02520               | 196764               | 45.50                       |
| Seepage (mm)                                                                                                                                                                       | 10 44                               | 803                          | 200004                              | 290717                       | 7 21                                | 663                         | 5 01                | 6 71                 | 5 17                        |
| Seepage (mm)                                                                                                                                                                       | 22%                                 | 13%                          | 13%                                 | 17%                          | 46%                                 | -2067%                      | 9%                  | 10%                  | 11%                         |
| Seenage inside forest (m <sup>3</sup> )                                                                                                                                            | 2270                                | 3235                         | 17154                               | 61312                        | 89101                               | 33949                       | 26693               | 52038                | 49245                       |
| Seenage inside forest (mm)                                                                                                                                                         | 1 23                                | 0.92                         | 2 75                                | 3 33                         | 4 22                                | 3 98                        | 2 68                | 3 51                 | 3 12                        |
| Seepage outside forest (m <sup>3</sup> )                                                                                                                                           | 85231                               | 111454                       | 186410                              | 237406                       | 183253                              | 68816                       | 65836               | 134726               | 66002                       |
| Seepage outside forest (mm)                                                                                                                                                        | 13 84                               | 11 94                        | 11.99                               | 9.84                         | 11 00                               | 9.88                        | 7 71                | 10 35                | 10 11                       |
| Storage loss (m <sup>3</sup> )                                                                                                                                                     | -7859                               | -11367                       | -31784                              | -140606                      | -94473                              | -34070                      | -30059              | -53871               | -40772                      |
|                                                                                                                                                                                    |                                     |                              |                                     |                              |                                     |                             |                     |                      |                             |
| AGGREGATES FOR SUBCAT                                                                                                                                                              | TCHMENTS                            | AND ALL                      | UPSTREA                             | M SUBCAT                     | CHMENT                              | s                           |                     |                      |                             |
| Stream flow (m <sup>3</sup> )                                                                                                                                                      | 404981                              | 894636                       | 2485265                             | 2186718                      | 2783764                             | 2780300                     | 3764801             | 4372230              | 9152158                     |
| Stream flow (mm)                                                                                                                                                                   | 48.01                               | 69,68                        | 71.80                               | 42.90                        | 31.37                               | 26.67                       | 30.68               | 70.00                | 44.11                       |
| Seepage (m <sup>3</sup> )                                                                                                                                                          | 88045                               | 114690                       | 318253                              | 386763                       | 659116                              | 761882                      | 854410              | 505017               | 1474675                     |
| Seepage (mm)                                                                                                                                                                       | 10.44                               | 8,93                         | 9.19                                | 7.59                         | 7.43                                | 7.31                        | 6.96                | 8.09                 | 7.11                        |
| Seepage/stream flow (%)                                                                                                                                                            | 22%                                 | 13%                          | 13%                                 | 18%                          | 24%                                 | 27%                         | 23%                 | 12%                  | 16%                         |
| Seepage inside forest (m <sup>3</sup> )                                                                                                                                            | 2814                                | 3235                         | 20389                               | 64126                        | 153227                              | 187176                      | 213869              | 72427                | 335540                      |
| Seepage inside forest (mm)                                                                                                                                                         | 1.23                                | 0.92                         | 2.09                                | 3.10                         | 3.67                                | 3.72                        | 3.55                | 2.95                 | 3.33                        |
| Seepage outside forest (m <sup>3</sup> )                                                                                                                                           | 85231                               | 111454                       | 297864                              | 322637                       | 505889                              | 574706                      | 640542              | 432590               | 1139135                     |
| Seepage outside forest (mm)                                                                                                                                                        | 13.84                               | 11.94                        | 11.97                               | 10.65                        | 10.78                               | 10.66                       | 10.26               | 11.42                | 10.66                       |
| Storage loss (m <sup>3</sup> )                                                                                                                                                     | -7859                               | -11367                       | -43151                              | -148465                      | -242938                             | -277008                     | -307067             | -97022               | -444861                     |
| 9. Flows for 1996 clea                                                                                                                                                             | ring for S                          | ubcatc                       | hments                              | of the To                    | one belo                            | w Toneb                     | ridge C             | atchmer              | nts                         |
| Subcatchment                                                                                                                                                                       | 25                                  | 26                           | 27                                  | 28                           | 29                                  | 30                          | 31                  | 32                   | 33                          |
| Drains to                                                                                                                                                                          | 27                                  | 27                           | 29                                  | 29                           | 30                                  | · 33                        | 32                  | 33                   |                             |
|                                                                                                                                                                                    |                                     |                              |                                     |                              |                                     |                             |                     |                      |                             |
| SUMS FOR ISOLATED SUBC                                                                                                                                                             | ATCHMEN                             | rs                           |                                     |                              |                                     |                             |                     |                      |                             |
| Stream flow (m <sup>3</sup> )                                                                                                                                                      | 377869                              | 329510                       | 651873                              | 367252                       | 344576                              | 896360                      | 553467              | 453386               | 1238902                     |
| Stream flow (mm)                                                                                                                                                                   | 30.58                               | 18,10                        | 25.75                               | 28.80                        | 40.00                               | 34.09                       | 30.30               | 34.42                | 43.17                       |
| Seepage (m <sup>3</sup> )                                                                                                                                                          | 25846                               | 37734                        | 73799                               | 21490                        | 18557                               | 43732                       | 10304               | 29561                | 37541                       |
| Seepage (mm)                                                                                                                                                                       | 2.09                                | 2.07                         | 2.92                                | 1.69                         | 2.15                                | 1.66                        | 0.56                | 2.24                 | 1.31                        |
| Seepage/stream flow (%)                                                                                                                                                            | 7%                                  | 11%                          | 11%                                 | 6%                           | 5%                                  | 5%                          | 2%                  | 7%                   | 3%                          |
| Seepage inside forest (m <sup>3</sup> )                                                                                                                                            | 25769                               | 37573                        | 73300                               | 21360                        | 18155                               | 43535                       | 10052               | 29514                | 33822                       |
| Seepage inside forest (mm)                                                                                                                                                         | 2.09                                | 2.07                         | 2.91                                | 1,68                         | 2.12                                | 1.66                        | 0.55                | 2.24                 | 1.19                        |
| Seepage outside forest (m <sup>3</sup> )                                                                                                                                           | 77                                  | 161                          | 499                                 | 130                          | 401                                 | 197                         | 252                 | 48                   | 3719                        |
| Seepage outside forest (mm)                                                                                                                                                        | 5.84                                | 8.57                         | 4.03                                | 7.43                         | 7.83                                | 3.09                        | 2.37                | 3.17                 | 10.80                       |
| Storage loss (m <sup>3</sup> )                                                                                                                                                     | -5447                               | -6036                        | -12151                              | -4621                        | -2945                               | -/3//                       | -/19                | -1642                | -8042                       |
| AGGREGATES FOR SUBCAT                                                                                                                                                              | TCHMENTS                            | AND ALL                      | UPSTREA                             | VI SUBCAT                    | CHMENT                              | S                           |                     |                      |                             |
| Stream flow (m <sup>3</sup> )                                                                                                                                                      | 18907835                            | 329510                       | 19889217                            | 367252                       | 20601045                            | 21497405                    | 553467              | 1006853              | 23743160                    |
| Stream flow (mm)                                                                                                                                                                   | 37.34                               | 18.10                        | 36.17                               | 28.80                        | 36.06                               | 35.98                       | 30,30               | 32.03                | 36.10                       |
| Seepage (m <sup>3</sup> )                                                                                                                                                          | 2827749                             | 37734                        | 2939282                             | 21490                        | 2979329                             | 3023061                     | 10304               | 39865                | 3100467                     |
| Seepage (mm)                                                                                                                                                                       | 5.58                                | 2.07                         | 5.35                                | 1.69                         | 5.22                                | 5.06                        | 0.56                | 1.27                 | 4.71                        |
| Seepage/stream flow (%)                                                                                                                                                            | 15%                                 | 11%                          | 15%                                 | 6%                           | 14%                                 | 14%                         | 2%                  | 4%                   | 13%                         |
|                                                                                                                                                                                    | 906711                              | 37573                        | 1017584                             | 21360                        | 1057100                             | 1100635                     | 10052               | 39565                | 1174022                     |
| Seepage inside forest (m <sup>3</sup> )                                                                                                                                            |                                     |                              |                                     | 4 00                         | 0.70                                | 2 66                        | 0.55                | 1 26                 | 2.48                        |
| Seepage inside forest (m <sup>3</sup> )<br>Seepage inside forest (mm)                                                                                                              | 2.81                                | 2.07                         | 2.78                                | 1.68                         | 2.73                                | 2.00                        | 0.00                |                      |                             |
| Seepage inside forest (m <sup>3</sup> )<br>Seepage inside forest (mm)<br>Seepage outside forest (m <sup>3</sup> )                                                                  | 2.81<br>1921038                     | 2.07<br>161                  | 2.78<br>1921698                     | 1.68                         | 1922229                             | 1922426                     | 252                 | 300                  | 1926445                     |
| Seepage inside forest (m <sup>3</sup> )<br>Seepage inside forest (mm)<br>Seepage outside forest (m <sup>3</sup> )<br>Seepage outside forest (mm)                                   | 2.81<br>1921038<br>10.48            | 2.07<br>161<br>8.57          | 2.78<br>1921698<br>10.48            | 1.68<br>130<br>7.43          | 2.73<br>1922229<br>10.48            | 1922426<br>10.47            | 252<br>2.37         | 300<br>2.47          | 1926445<br>10.47            |
| Seepage inside forest (m <sup>3</sup> )<br>Seepage inside forest (mm)<br>Seepage outside forest (m <sup>3</sup> )<br>Seepage outside forest (mm)<br>Storage loss (m <sup>3</sup> ) | 2.81<br>1921038<br>10.48<br>-783077 | 2.07<br>161<br>8.57<br>-6036 | 2.78<br>1921698<br>10.48<br>-801265 | 1.68<br>130<br>7.43<br>-4621 | 2.73<br>1922229<br>10.48<br>-808830 | 1922426<br>10.47<br>-816207 | 252<br>2.37<br>-719 | 300<br>2.47<br>-2361 | 1926445<br>10.47<br>-826610 |

#### Subseteb to of the T te e la . ام اه ما Catab ----

ssumptions:



| Subcatchment                             | 1       | 2       | 3      | 4       | 5       | 6      | 7      | 8       |
|------------------------------------------|---------|---------|--------|---------|---------|--------|--------|---------|
| Drains to                                | 3       | 3       | 4      | 5       | 8       | 8      | 8      | 11      |
|                                          |         |         |        |         |         |        |        |         |
| SUMS FOR ISOLATED SUBC                   | TCHMEN  | rs      |        |         |         |        |        |         |
| Stream flow (m <sup>3</sup> )            | 448536  | 134464  | 253128 | 247628  | 509061  | 662009 | 610227 | 797489  |
| Stream flow (mm)                         | 23.98   | 13.71   | 19.29  | 14.11   | 32.28   | 30.28  | 37.17  | 38.67   |
| Seepage (m <sup>3</sup> )                | 130574  | 49014   | 54382  | 35673   | 113406  | 129225 | 78429  | 144903  |
| Seepage (mm)                             | 6.98    | 5.00    | 4.14   | 2.03    | 7.19    | 5.91   | 4.78   | 7.03    |
| Seepage/stream flow (%)                  | 29%     | 36%     | 21%    | 14%     | 22%     | 20%    | 13%    | 18%     |
| Seepage inside forest (m <sup>3</sup> )  | 34209   | 43155   | 49648  | 35359   | 21394   | 14426  | 9285   | 23377   |
| Seepage inside forest (mm)               | 2.76    | 4.68    | 3.89   | 2.02    | 1.88    | 0.93   | 0.71   | 1.61    |
| Seepage outside forest (m <sup>3</sup> ) | 96365   | 5858    | 4735   | 314     | 92012   | 114799 | 69144  | 121526  |
| Seepage outside forest (mm)              | 15.31   | 10.11   | 12.91  | 4.29    | 20.87   | 18.23  | 20.54  | 20.02   |
| Storage loss (m <sup>3</sup> )           | -5326   | -6240   | -2304  | -1689   | 1246    | 3192   | -2787  | -4688   |
|                                          |         |         |        |         |         |        |        |         |
| AGGREGATES FOR SUBCATO                   | CHMENTS | AND ALL | UPSTRE | AM SUBC | ATCHME  | NTS    |        |         |
| Stream flow (m <sup>3</sup> )            | 448536  | 134464  | 836128 | 1083756 | 1592817 | 662009 | 610227 | 3662542 |
| Stream flow (mm)                         | 23.98   | 13.71   | 20.08  | 18.31   | 21.25   | 30.28  | 37.17  | 27.36   |
| Seepage (m <sup>3</sup> )                | 130574  | 49014   | 233970 | 269643  | 383048  | 129225 | 78429  | 735605  |
| Seepage (mm)                             | 6.98    | 5.00    | 5.62   | 4.56    | 5.11    | 5.91   | 4.78   | 5.50    |
| Seepage/stream flow (%)                  | 29%     | 36%     | 28%    | 25%     | 24%     | 20%    | 13%    | 20%     |
| Seepage inside forest (m <sup>3</sup> )  | 34209   | 43155   | 127012 | 162371  | 183765  | 14426  | 9285   | 230853  |
| Seepage inside forest (mm)               | 2.76    | 4.68    | 3.69   | 3.13    | 2.91    | 0.93   | 0.71   | 2.17    |
| Seepage outside forest (m <sup>3</sup> ) | 96365   | 5858    | 106958 | 107271  | 199284  | 114799 | 69144  | 504752  |
| Seepage outside forest (mm)              | 15.31   | 10.11   | 14.78  | 14.67   | 17.00   | 18.23  | 20.54  | 18.38   |
| Storage loss (m <sup>3</sup> )           | -5326   | -6240   | -13870 | -15558  | -14312  | 3192   | -2787  | -18595  |
|                                          |         |         |        |         |         |        | ·····  |         |

### 10. Flows for 1996 clearing for Subcatchments of the Perup Catchments

### 11. Flows for 1996 clearing for Subcatchments of the Perup Catchments

| <b>13</b><br>14<br>96157<br>34.35 | <b>14</b><br>16<br>1120331                                               | <b>15</b><br>16                                                                                                                                                                                                                                                 | <b>16</b><br>34                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14<br>96157<br>34.35              | 16                                                                       | 16                                                                                                                                                                                                                                                              | 34                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 96157<br>34.35                    | 1120331                                                                  | 590865                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 96157<br>34.35                    | 1120331                                                                  | 590865                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 34.35                             |                                                                          | 000000                                                                                                                                                                                                                                                          | 874423                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 04500                             | 67,75                                                                    | 24.24                                                                                                                                                                                                                                                           | 75.52                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 61599                             | 195748                                                                   | 69575                                                                                                                                                                                                                                                           | 145715                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.26                              | 11.84                                                                    | 2.85                                                                                                                                                                                                                                                            | 12.58                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12%                               | 17%                                                                      | 12%                                                                                                                                                                                                                                                             | 17%                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8658                              | 10920                                                                    | 56863                                                                                                                                                                                                                                                           | 6908                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.76                              | 1.48                                                                     | 2.46                                                                                                                                                                                                                                                            | 1.48                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 52941                             | 184828                                                                   | 12712                                                                                                                                                                                                                                                           | 138807                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 17.63                             | 20,14                                                                    | 10.45                                                                                                                                                                                                                                                           | 20.04                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -6383                             | -11851                                                                   | -29862                                                                                                                                                                                                                                                          | -14568                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| S                                 |                                                                          | •                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 96157                             | 7272215                                                                  | 590865                                                                                                                                                                                                                                                          | 8737503                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 34.35                             | 28.58                                                                    | 24.24                                                                                                                                                                                                                                                           | 30.09                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 61599                             | 1452253                                                                  | 69575                                                                                                                                                                                                                                                           | 1667543                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4.26                              | 5.71                                                                     | 2.85                                                                                                                                                                                                                                                            | 5.74                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 12%                               | 20%                                                                      | 12%                                                                                                                                                                                                                                                             | 19%                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8658                              | 541274                                                                   | 56863                                                                                                                                                                                                                                                           | 605045                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.76                              | 2.63                                                                     | 2.46                                                                                                                                                                                                                                                            | 2.59                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 52941                             | 910980                                                                   | 12712                                                                                                                                                                                                                                                           | 1062498                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 17.63                             | 18.82                                                                    | 10.45                                                                                                                                                                                                                                                           | 18.79                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                   | -93867                                                                   | -29862                                                                                                                                                                                                                                                          | -138296                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                   | 34.35<br>51599<br>4.26<br>12%<br>8658<br>0.76<br>52941<br>17.63<br>-6383 | 34.35         28.58           31599         1452253           4.26         5.71           12%         20%           8658         541274           0.76         2.63           52941         910980           17.63         18.82           -6383         -93867 | 34.35         28.58         24.24           51599         1452253         69575           4.26         5.71         2.85           12%         20%         12%           8658         541274         56863           0.76         2.63         2.46           52941         910980         12712           17.63         18.82         10.45           -6383         -93867         -29862 | 34.35         28.58         24.24         30.09           51599         1452253         69575         1667543           4.26         5.71         2.85         5.74           12%         20%         12%         19%           8658         541274         56863         605045           0.76         2.63         2.46         2.59           52941         910980         12712         1062498           17.63         18.82         10.45         18.79           -6383         -93867         -29862         -138296 |

### Assumptions:

#### 12. Flows for 1996 clearing for Subcatchments of the Perup Catchments 17 18 22 Subcatchment 19 20 21 23 18 19 20 21 Drains to 23 23 27 SUMS FOR ISOLATED SUBCATCHMENTS 286663 153840 402029 Stream flow (m<sup>3</sup>) 693580 575270 615121 1182837 16.71 10.96 20.31 34.21 29.89 27.30 Stream flow (mm) 51.89 71288 35020 37309 107861 117815 9402 107928 Seepage (m3) Seepage (mm) 4.15 2.49 1.88 5 32 6.12 0.42 4.73 25% 23% 9% 16% Seepage/stream flow (%) 20% 2% 9% Seepage inside forest (m<sup>3</sup>) 23402 23791 20774 13546 32997 8477 9150 Seepage inside forest (mm) 1.85 1.80 1.12 0.89 2.25 0.38 0.50 47886 Seepage outside forest (m<sup>3</sup>) 11228 16535 94315 84817 925 98777 10.65 Seepage outside forest (mm) 13.30 12.97 18.87 18.38 3.20 21.75 -6977 -3534 Storage loss (m<sup>3</sup>) -3212 -1704 -28803 -2195 446 AGGREGATES FOR SUBCATCHMENTS AND ALL UPSTREAM SUBCATCHMENTS Stream flow (m3) 286663 440502 842531 1536111 2111380 615121 3909339 Stream flow (mm) 16.71 14.12 16.52 21.56 23.33 27 30 28.78 71288 106308 143617 251478 369293 9402 Seepage (m<sup>3</sup>) 486622 4.15 3.41 2.82 3.53 4.08 0.42 3.58 Seepage (mm) Seepage/stream flow (%) 25% 24% 17% 16% 17% 2% 12% Seepage inside forest (m<sup>3</sup>) 23402 47194 67968 81514 114511 8477 132138 Seepage inside forest (mm) 1.85 1.83 1.53 1.37 1 54 0.38 1 15 47886 59114 75649 169964 254782 925 354484 Seepage outside forest (m3) 10.65 11 06 11 43 14 63 3 20 Seepage outside forest (mm) 15 70 16.83 -15428 -44230 -6977 -10512 -13724 -2195 -45979 Storage loss (m3) 13. Flows for 1996 clearing for Subcatchments of the Perup Catchments 23 24 25 26 27 28 29 Subcatchment 30 31 32 33 27 26 27 31 31 31 31 Drains to 27 33 33 34 SUMS FOR ISOLATED SUBCATCHMENTS Stream flow (m3) 1182837 680489 729468 385536 791237 175327 458124 -1133 1226152 679535 591578 Stream flow (mm) 51.89 44.99 39.25 38.79 44.93 18.54 26.63 -0.10 44.35 59.70 42.22 Seepage (m<sup>3</sup>) 107928 5407 31508 4865 23791 21500 75704 30806 153936 82701 63596 Seepage (mm) 4.73 0.36 1.70 0.49 1.35 2.27 4.40 2.85 5.57 7.27 4.54 Seepage/stream flow (%) 9% 1% 4% 1% 3% 12% 17% -2719% 13% 12% 11% Seepage inside forest (m<sup>3</sup>) 9150 2472 4544 4856 23729 20608 41333 21331 49755 9174 26704 2.90 Seepage inside forest (mm) 0.50 0 17 0.26 0.49 1.35 2 20 2 17 2 37 1.19 2.33 98777 34371 9475 104180 Seepage outside forest (m3) 2935 26963 9 62 892 73527 36892

#### AGGREGATES FOR SUBCATCHMENTS AND ALL UPSTREAM SUBCATCHMENTS

8.55

-2119

19.93

-806

21.75

446

| Stream flow (m3)                         | 3909339 | 680489 | 729468 | 1115004 | 6496069 | 175327 | 458124 | -1133  | 8354539 | 679535 | 9625652 |
|------------------------------------------|---------|--------|--------|---------|---------|--------|--------|--------|---------|--------|---------|
| Stream flow (mm)                         | 28.78   | 44.99  | 39.25  | 39.09   | 32.96   | 18.54  | 26.63  | -0.10  | 31.86   | 59.70  | 33.47   |
| Seepage (m <sup>3</sup> )                | 486622  | 5407   | 31508  | 36373   | 552193  | 21500  | 75704  | 30806  | 834138  | 82701  | 980436  |
| Seepage (mm)                             | 3.58    | 0.36   | 1.70   | 1.28    | 2.80    | 2.27   | 4.40   | 2.85   | 3.18    | 7.27   | 3.41    |
| Seepage/stream flow (%)                  | 12%     | 1%     | 4%     | 3%      | 9%      | 12%    | 17%    | -2719% | 10%     | 12%    | 10%     |
| Seepage inside forest (m <sup>3</sup> )  | 132138  | 2472   | 4544   | 9401    | 167740  | 20608  | 41333  | 21331  | 300768  | 9174   | 336647  |
| Seepage inside forest (mm)               | 1.15    | 0.17   | 0.26   | 0.35    | 0.96    | 2.20   | 2.90   | 2.17   | 1.31    | 1.19   | 1.36    |
| Seepage outside forest (m <sup>3</sup> ) | 354484  | 2935   | 26963  | 26972   | 384453  | 892    | 34371  | 9475   | 533370  | 73527  | 643789  |
| Seepage outside forest (mm)              | 15.83   | 8.55   | 19.93  | 19.92   | 16.89   | 13.46  | 11.69  | 9,99   | 15.99   | 20.12  | 16.28   |
| Storage loss (m <sup>3</sup> )           | -45979  | -2119  | -806   | -2126   | -54067  | -1293  | -15470 | -7585  | -98904  | -2501  | -105090 |

13.87

-1320

24.61

-3842

13.46

-1293

11.69

-15470

#### Assumptions:

Seepage outside forest (mm)

Storage loss (m3)

Lower soil layer 20m deep with permeability 3m/yr/unit hydraulic gradient Peak leaf area index for pasture = 2.1



15.66

-20489

20.12

-2501

14.56

-3685

9.99

-7585

|                                          |         |         |          |         |          |          | - |
|------------------------------------------|---------|---------|----------|---------|----------|----------|---|
| Subcatchment                             | 16      | 33      | 34       | 35      | 36       | 37       |   |
| Drains to                                | 34      | 34      | 36       | 36      | 37       |          |   |
| SUMS FOR ISOLATED SUBC                   | ATCHMEN | TS      |          |         |          |          |   |
| Stream flow (m3)                         | 874423  | 591578  | 698671   | 369268  | 1322242  | 1588167  |   |
| Stream flow (mm)                         | 75.52   | 42.22   | 41.63    | 13.68   | 68.82    | 76.08    |   |
| Seepage (m <sup>3</sup> )                | 145715  | 63596   | 52616    | 93858   | 168754   | 98318    |   |
| Seepage (mm)                             | 12.58   | 4.54    | 3.14     | 3.48    | 8.78     | 4.71     |   |
| Seepage/stream flow (%)                  | 17%     | 11%     | 8%       | 25%     | 13%      | 6%       |   |
| Seepage inside forest (m <sup>3</sup> )  | 6908    | 26704   | 11963    | 81029   | 7935     | 6095     |   |
| Seepage inside forest (mm)               | 1.48    | 2.33    | 0.81     | 3.12    | 0.77     | 0.40     |   |
| Seepage outside forest (m <sup>3</sup> ) | 138807  | 36892   | 40653    | 12829   | 160819   | 92223    |   |
| Seepage outside forest (mm)              | 20.04   | 14.56   | 19.69    | 12.37   | 18.06    | 16.18    |   |
| Storage loss (m <sup>3</sup> )           | -14568  | -3685   | -1146    | -24517  | -7932    | -595     |   |
| AGGREGATES FOR SUBCAT                    | CHMENTS | AND ALL | UPSTREA  | N SUBCA | TCHMENT  | s        |   |
| Stream flow (m <sup>3</sup> )            | 8737503 | 9625652 | 19061826 | 369268  | 20753336 | 22341502 |   |
| Stream flow (mm)                         | 30.09   | 33.47   | . 32.05  | 13.68   | 32.38    | 33.76    |   |
| Seepage (m <sup>3</sup> )                | 1667543 | 980436  | 2700594  | 93858   | 2963206  | 3061524  |   |

14. Flows for 1996 clearing for Subcatchments of the Perup Catchments

| . ,                                     |         |         |         |        |         |         |
|-----------------------------------------|---------|---------|---------|--------|---------|---------|
| Stream flow (mm)                        | 30.09   | 33.47   | . 32.05 | 13.68  | 32.38   | 33.76   |
| Seepage (m³)                            | 1667543 | 980436  | 2700594 | 93858  | 2963206 | 3061524 |
| Seepage (mm)                            | 5.74    | 3.41    | 4.54    | 3.48   | 4.62    | 4.63    |
| Seepage/stream flow (%)                 | 19%     | 10%     | 14%     | 25%    | 14%     | 14%     |
| Seepage inside forest (m <sup>3</sup> ) | 605045  | 336647  | 953655  | 81029  | 1042619 | 1048714 |
| Seepage inside forest (mm)              | 2.59    | 1.36    | 1.92    | 3.12   | 1.96    | 1.91    |
| Seepage outside forest (m³)             | 1062498 | 643789  | 1746939 | 12829  | 1920587 | 2012811 |
| Seepage outside forest (mm)             | 18.79   | 16.28   | 17.79   | 12.37  | 17.76   | 17.69   |
| Storage loss (m <sup>3</sup> )          | -138296 | -105090 | -244532 | -24517 | -276981 | -277576 |

### Assumptions:

Lower soil layer 20m deep with permeability 3m/yr/unit hydraulic gradient

Peak leaf area index for pasture = 2.1

# Spreadsheet 4

### Model minimum tree planting

#### Target: 50% reduction in seepage Criteria: Plant on pasture land where seepage > 20mm/yr Allow draw to 30% depth of bottom soil layer

### 1. Model minimum tree planting for Subcatchments of the Tone above Tonebridge Catchments

| Subcatchment                    | 1       | 2       | 3      | 4       | 5      | 6      | 7      | 8      | 9      | 10     | 11    | 12      |  |
|---------------------------------|---------|---------|--------|---------|--------|--------|--------|--------|--------|--------|-------|---------|--|
| Drains to                       | 3       | 3       | 4      | 6       | 6      | 7      | 12     | 9      | 12     | 12     | 12    | 17      |  |
| SUMS FOR ISOLATED SUBC          | ATCHMEN | TS      |        |         |        |        |        |        |        |        |       |         |  |
| Area planted (km <sup>2</sup> ) | 2.06    | 2.09    | 2.24   | 1.54    | 3.53   | 2.79   | 2.69   | 3.67   | 1.90   | 2.71   | 1.31  | 1.30    |  |
| Planted/cleared area (%)        | 13%     | 16%     | 11%    | 13%     | 16%    | 16%    | 17%    | 18%    | 19%    | 18%    | 17%   | 15%     |  |
| Predicted seepage (cu.m)        | 144145  | 107800  | 161006 | 99724   | 151779 | 134572 | 177174 | 157720 | 84946  | 142233 | 58121 | 101615  |  |
| " out. for. seepage (cu.m.)     | 133176  | 101383  | 159099 | 94542   | 149543 | 130787 | 144912 | 154559 | 79136  | 120059 | 55801 | 76550   |  |
| % of 1996 seepage               | 55%     | 47%     | 56%    | 52%     | 41%    | 44%    | 52%    | 40%    | 41%    | 46%    | 43%   | 55%     |  |
| % of 1996 out. for. seepage     | 54%     | 46%     | 56%    | 52%     | 41%    | 43%    | 48%    | 39%    | 40%    | 42%    | 42%   | 48%     |  |
| Review seepage                  | 139767  | 105381  | 157088 | 97521   | 145496 | 127819 | 168849 | 145969 | 81755  | 137111 | 56411 | 100420  |  |
| Review streamflow               | 71547   | 59892   | 73470  | 70902   | 120537 | 101820 | 183161 | 156025 | 70498  | 157780 | 49806 | 117835  |  |
| AGGREGATES FOR SUBCAT           | CHMENTS | AND ALL | UPSTRE | AM SUBC | ATCHME | NTS    |        |        |        |        |       |         |  |
| Area planted (km <sup>2</sup> ) | 2.06    | 2.09    | 6.39   | 7.93    | 3.53   | 14.26  | 16.94  | 3.67   | 5.56   | 2.71   | 1.31  | 27.84   |  |
| Planted/cleared area (%)        | 13%     | 16%     | 13%    | 13%     | 16%    | 14%    | 14%    | 18%    | 19%    | 18%    | 17%   | 16%     |  |
| Predicted seepage (cu.m)        | 144145  | 107800  | 412951 | 512676  | 151779 | 799027 | 976201 | 157720 | 242666 | 142233 | 58121 | 1520836 |  |
| " out. for. seepage (cu.m.)     | 133176  | 101383  | 393657 | 488199  | 149543 | 768528 | 913440 | 154559 | 233695 | 120059 | 55801 | 1399545 |  |
| % of 1996 seepage               | 55%     | 47%     | 53%    | 53%     | 41%    | 49%    | 49%    | 40%    | 40%    | 46%    | 43%   | 47%     |  |
| % of 1996 out. for. seepage     | 54%     | 46%     | 52%    | 52%     | 41%    | 48%    | 48%    | 39%    | 40%    | 42%    | 42%   | 46%     |  |
| Review seepage                  | 139767  | 105381  | 402236 | 499757  | 145496 | 773072 | 941920 | 145969 | 227724 | 137111 | 56411 | 1463586 |  |
| Review streamflow               | 71547   | 59892   | 204908 | 275811  | 120537 | 498168 | 681329 | 156025 | 226523 | 157780 | 49806 | 1233272 |  |

### 2. Model minimum tree planting for Subcatchments of the Tone above Tonebridge Catchments

| Subcatchment                | 12       | 13      | 14     | 15      | 16     | 17     | 18     | 19     | 20     | 21     | 22     | 23     | 24     |
|-----------------------------|----------|---------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Drains to                   | 17       | 14      | 15     | 17      | 17     | 20     | 20     | 20     | 24     | 22     | 23     | 24     | 25     |
| SUMS FOR ISOLATED SUBC      | ATCHMENT | rs      |        |         |        |        |        |        |        |        |        |        |        |
| Area planted (km²)          | 1.30     | 2.30    | 2.08   | 2.62    | 2.32   | 1.81   | 1.51   | 1.36   | 1.80   | 1.93   | 2.95   | 2.61   | 2.49   |
| Planted/cleared area (%)    | 15%      | 21%     | 21%    | 20%     | 18%    | 17%    | 16%    | 16%    | 14%    | 22%    | 20%    | 17%    | 16%    |
| Predicted seepage (cu.m)    | 101615   | 69197   | 97065  | 117621  | 150347 | 157838 | 115928 | 95164  | 158087 | 107506 | 127925 | 133368 | 139346 |
| " out. for. seepage (cu.m.) | 76550    | 68020   | 81936  | 106424  | 116595 | 103572 | 79569  | 71206  | 115057 | 79681  | 114866 | 121156 | 118618 |
| % of 1996 seepage           | 55%      | 31%     | 42%    | 42%     | 51%    | 59%    | 56%    | 54%    | 59%    | 45%    | 40%    | 45%    | 47%    |
| % of 1996 out, for, seepage | 48%      | 31%     | 38%    | 40%     | 45%    | 50%    | 47%    | 47%    | 52%    | 39%    | 38%    | 43%    | 43%    |
| Review seepage              | 100420   | 67028   | 92981  | 112674  | 145651 | 154396 | 114013 | 93128  | 157001 | 102226 | 119824 | 128516 | 136153 |
| Review streamflow           | 117835   | 58247   | 150012 | 109362  | 223050 | 246234 | 120583 | 158832 | 253877 | 247207 | 273711 | 284297 | 193173 |
|                             |          |         |        |         |        |        |        |        |        |        |        |        |        |
| AGGREGATES FOR SUBCAT       | CHMENTS  | AND ALL | UPSTRE | AM SUBC | ATCHME | NTS    |        |        |        |        |        |        |        |

| planted (km <sup>2</sup> )                  | 27.84   | 2.30  | 4.37   | 6.99   | 2.32   | 38.95   | 1.51   | 1.36   | 43.63   | 1.93   | 4.88   | 7.50   | 53.62   |
|---------------------------------------------|---------|-------|--------|--------|--------|---------|--------|--------|---------|--------|--------|--------|---------|
| Planted/cleared area (%)                    | 16%     | 21%   | 21%    | 21%    | 18%    | 16%     | 16%    | 16%    | 16%     | 22%    | 21%    | 19%    | 17%     |
| Predicted seepage (cu.m)                    | 1520836 | 69197 | 166262 | 283883 | 150347 | 2112905 | 115928 | 95164  | 2482084 | 107506 | 235431 | 368799 | 2990229 |
| <ul><li>out. for. seepage (cu.m.)</li></ul> | 1399545 | 68020 | 149955 | 256379 | 116595 | 1876091 | 79569  | 71206  | 2141923 | 79681  | 194547 | 315703 | 2576244 |
| % of 1996 seepage                           | 47%     | 31%   | 37%    | 39%    | 51%    | 47%     | 56%    | 54%    | 48%     | 45%    | 42%    | 43%    | 47%     |
| % of 1996 out. for. seepage                 | 46%     | 31%   | 35%    | 37%    | 45%    | 44%     | 47%    | 47%    | 45%     | 39%    | 38%    | 40%    | 44%     |
| Review seepage                              | 1463586 | 67028 | 160009 | 272682 | 145651 | 2036316 | 114013 | 93128  | 2400457 | 102226 | 222050 | 350565 | 2887176 |
| Review streamflow                           | 1233272 | 58247 | 208260 | 317622 | 223050 | 2020179 | 120583 | 158832 | 2553471 | 247207 | 520918 | 805215 | 3551859 |

Abbreviations:

#### Target: 50% reduction in seepage Criteria: Plant on pasture land where seepage > 20mm/yr Allow draw to 30% depth of bottom soil layer

| 3. Model minimu | m tree planting | for Subcatchme | nts of the Tone | e above Tonebrid | ae Catchments |
|-----------------|-----------------|----------------|-----------------|------------------|---------------|
|-----------------|-----------------|----------------|-----------------|------------------|---------------|

| Subcatchment                    | 24      | 25      | 26      | 27      | 28     | 29     | 30     | 31      | 36     | 32      |  |
|---------------------------------|---------|---------|---------|---------|--------|--------|--------|---------|--------|---------|--|
| Drains to                       | 25      | 26      | 32      | 28      | 31     | 30     | 31     | 32      | 32     | 39      |  |
|                                 |         |         |         |         |        |        |        |         |        |         |  |
| SUMS FOR ISOLATED SUBC          | ATCHMEN | TS      |         |         |        |        |        |         |        |         |  |
| Area planted (km²)              | 2.49    | 2.20    | 1.61    | 2.09    | 1.50   | 1.41   | 1.47   | 0.45    | 1.64   | 0.90    |  |
| Planted/cleared area (%)        | 16%     | 21%     | 12%     | 10%     | 8%     | 14%    | 9%     | 6%      | 20%    | 5%      |  |
| Predicted seepage (cu.m)        | 139346  | 105943  | 185879  | 194455  | 185692 | 82750  | 121908 | 106809  | 69595  | 193909  |  |
| " out. for. seepage (cu.m.)     | 118618  | 89120   | 125029  | 174880  | 161184 | 74776  | 108220 | 57678   | 61823  | 142083  |  |
| % of 1996 seepage               | 47%     | 44%     | 66%     | 61%     | 68%    | 49%    | 58%    | 80%     | 40%    | 79%     |  |
| % of 1996 out. for. seepage     | 43%     | 40%     | 59%     | 60%     | 66%    | 47%    | 56%    | 72%     | 38%    | 75%     |  |
| Review seepage                  | 136153  | 103362  | 183871  | 188841  | 183201 | 80209  | 210664 | 106031  | 66865  | 245604  |  |
| Review streamflow               | 193173  | 213653  | 350399  | 279243  | 304886 | 330167 | 559524 | 458115  | 115602 | 727022  |  |
| AGGREGATES FOR SUBCAT           | CHMENTS | AND ALL | UPSTRE  | AM SUBC | ATCHME | NTS    |        |         |        |         |  |
| Area planted (km <sup>2</sup> ) | 53.62   | 55.82   | 57.42   | 2.09    | 3.59   | 1.41   | 2.88   | 6.92    | 1.64   | 66.88   |  |
| Planted/cleared area (%)        | 17%     | 17%     | 17%     | 10%     | 9%     | 14%    | 11%    | 10%     | 20%    | 15%     |  |
| Predicted seepage (cu.m)        | 2990229 | 3096172 | 3282051 | 194455  | 380147 | 82750  | 204658 | 691613  | 69595  | 4237168 |  |
| " out. for. seepage (cu.m.)     | 2576244 | 2665364 | 2790393 | 174880  | 336065 | 74776  | 182996 | 576739  | 61823  | 3571037 |  |
| % of 1996 seepage               | 47%     | 47%     | 48%     | 61%     | 65%    | 49%    | 54%    | 63%     | 40%    | 51%     |  |
| % of 1996 out. for. seepage     | 44%     | 44%     | 45%     | 60%     | 63%    | 47%    | 52%    | 59%     | 38%    | 47%     |  |
| Review seepage                  | 2887176 | 2990538 | 3174409 | 188841  | 372041 | 80209  | 290873 | 768946  | 66865  | 4255824 |  |
| Review streamflow               | 3551859 | 3765512 | 4115911 | 279243  | 584129 | 330167 | 889692 | 1931936 | 115602 | 6890470 |  |

### 4. Model minimum tree planting for Subcatchments of the Tone above Tonebridge Catchments

| Subcatchment                    | 32      | 33      | 34     | 35      | 37      | 38     | 39      |  |
|---------------------------------|---------|---------|--------|---------|---------|--------|---------|--|
| Drains to                       | 39      | 35      | 35     | 37      | 39      | 39     | 45      |  |
| SUMS FOR ISOLATED SUBC          | ATCHMEN | rs      |        |         |         |        |         |  |
| Area planted (km <sup>2</sup> ) | 0.90    | 1.57    | 0.72   | 1.26    | 2.56    | 1.08   | 1.75    |  |
| Planted/cleared area (%)        | 5%      | 15%     | 20%    | 21%     | 16%     | 17%    | 17%     |  |
| Predicted seepage (cu.m)        | 193909  | 112792  | 75434  | 60835   | 158487  | 96406  | 148954  |  |
| * out. for. seepage (cu.m.)     | 142083  | 95133   | 30086  | 46064   | 128954  | 59140  | 95517   |  |
| % of 1996 seepage               | 79%     | 54%     | 63%    | 43%     | 50%     | 60%    | 58%     |  |
| % of 1996 out. for. seepage     | 75%     | 50%     | 41%    | 37%     | 46%     | 49%    | 48%     |  |
| Review seepage                  | 245604  | 106792  | 73988  | 57811   | 318715  | 95639  | 147479  |  |
| Review streamflow               | 727022  | 294274  | 329196 | 200409  | 1216143 | 376351 | 554146  |  |
| AGGREGATES FOR SUBCAT           | CHMENTS | AND ALL | UPSTRE | AM SUBC | ATCHME  | NTS    |         |  |
| Area planted (km²)              | 66.88   | 1.57    | 0.72   | 3.55    | 6.10    | 1.08   | 75.81   |  |
| Planted/cleared area (%)        | 15%     | 15%     | 20%    | 18%     | 17%     | 17%    | 15%     |  |
| Predicted seepage (cu.m)        | 4237168 | 112792  | 75434  | 249061  | 407548  | 96406  | 4890076 |  |
| " out. for. seepage (cu.m.)     | 3571037 | 95133   | 30086  | 171283  | 300237  | 59140  | 4025931 |  |
| % of 1996 seepage               | 51%     | 54%     | 63%    | 53%     | 52%     | 60%    | 51%     |  |
| % of 1996 out. for. seepage     | 47%     | 50%     | 41%    | 44%     | 45%     | 49%    | 47%     |  |
| Review seepage                  | 4255824 | 106792  | 73988  | 238590  | 557305  | 95639  | 5056247 |  |
| Review streamflow               | 6890470 | 294274  | 329196 | 823879  | 2040023 | 376351 | 9860990 |  |

#### Abbreviations:

Target: 50% reduction in seepage Criteria: Plant on pasture land where seepage > 20mm/yr Allow draw to 30% depth of bottom soil layer

| 5. Model minimum tree           | e planting | g for Sul | bcatchm | nents of            | the Tone | e above         | Tonebrio | dge Cato | hments | 3        |          |  |
|---------------------------------|------------|-----------|---------|---------------------|----------|-----------------|----------|----------|--------|----------|----------|--|
| Subcatchment                    | 39         | 40        | 41      | 42                  | 43       | 44              | 45       | 46       | 47     | 48       | 49       |  |
| Drains to                       | 45         | 42        | 42      | 43                  | 45       | <sup>-</sup> 45 | 48       | 48       | 48     | 49       |          |  |
| SUMS FOR ISOLATED SUBC          | ATCHMEN    | rs        |         |                     |          |                 |          |          |        |          |          |  |
| Area planted (km <sup>2</sup> ) | 1.75       | 1.29      | 0.25    | 0.48                | 0.22     | 1.01            | 0.90     | 1.01     | 0.76   | 1.26     | 0.12     |  |
| Planted/cleared area (%)        | 17%        | 17%       | 16%     | 16%                 | 9%       | 14%             | 10%      | 14%      | 10%    | 9%       | 9%       |  |
| Predicted seepage (cu.m)        | 148954     | 126012    | 83999   | 127796              | 71956    | 90124           | 98308    | 87538    | 73029  | 183410   | 53029    |  |
| " out. for. seepage (cu.m.)     | 95517      | 75743     | 16047   | 23325               | 24384    | 76250           | 77798    | 48545    | 65248  | 126852   | 16696    |  |
| % of 1996 seepage               | 58%        | 61%       | 85%     | 81%                 | 85%      | 60%             | 64%      | 57%      | 61%    | 71%      | 87%      |  |
| % of 1996 out. for. seepage     | 48%        | 49%       | 54%     | 46%                 | 69%      | 57%             | 60%      | 43%      | 59%    | 66%      | 70%      |  |
| Review seepage                  | 147479     | 122233    | 83643   | <sup>•</sup> 127402 | 72116    | 87423           | 97036    | 86492    | 71043  | 180747   | 51684    |  |
| Review streamflow               | 554146     | 486312    | 426164  | 393192              | 275503   | 283415          | 407153   | 708866   | 377229 | 1081124  | 86624    |  |
| AGGREGATES FOR SUBCAT           | CHMENTS    | AND ALL U | JPSTREA | N SUBCAT            | CHMENTS  |                 |          |          |        |          |          |  |
| Area planted (km <sup>2</sup> ) | 75.81      | 1.29      | 0.25    | 2.02                | 2.24     | 1.01            | 79.96    | 1.01     | 0.76   | 83.00    | 83.11    |  |
| Planted/cleared area (%)        | 15%        | 17%       | 16%     | 17%                 | 15%      | 14%             | 15%      | 14%      | 10%    | 15%      | 15%      |  |
| Predicted seepage (cu.m)        | 4890076    | 126012    | 83999   | 337807              | 409763   | 90124           | 5488270  | 87538    | 73029  | 5832248  | 5885276  |  |
| " out. for. seepage (cu.m.)     | 4025931    | 75743     | 16047   | 115114              | 139498   | 76250           | 4319477  | 48545    | 65248  | 4560122  | 4576818  |  |
| % of 1996 seepage               | 51%        | 61%       | 85%     | 73%                 | 75%      | 60%             | 53%      | 57%      | 61%    | 53%      | 53%      |  |
| % of 1996 out. for. seepage     | 47%        | 49%       | 54%     | 49%                 | 52%      | 57%             | 47%      | 43%      | 59%    | 48%      | 48%      |  |
| Review seepage                  | 5056247    | 122233    | 83643   | 333278              | 405394   | 87423           | 5646101  | 86492    | 71043  | 5984383  | 6036066  |  |
| Review streamflow               | 9860990    | 486312    | 426164  | 1305668             | 1581171  | 283415          | 12132729 | 708866   | 377229 | 14299947 | 14386571 |  |

### 6. Model minimum tree planting for Subcatchments of the Tone below Tonebridge Catchments

| Subcatchment                    | 1        | 2         | 3        | 5      | 6       | 7      | 8      | 9      | 10     |
|---------------------------------|----------|-----------|----------|--------|---------|--------|--------|--------|--------|
| Drains to                       | 2        | 3         | 7        | 6      | 7       | 9      | 9      | 10     | 14     |
| SUMS FOR ISOLATED SUBC          | ATCHMENT | s         |          |        |         |        |        |        |        |
| Area planted (km <sup>2</sup> ) | 1.40     | 0.44      | 0.43     | 0.44   | 0.92    | 0.27   | 0.00   | 0.58   | 0.11   |
| Planted/cleared area (%)        | 17%      | 8%        | 17%      | 5%     | 7%      | 5%     | 0%     | 9%     | 7%     |
| Predicted seepage (cu.m)        | 71883    | 67940     | 55722    | 86807  | 234629  | 61770  | 48634  | 115975 | 43575  |
| " out. for. seepage (cu.m.)     | 67334    | 47731     | 27936    | 78190  | 137444  | 32278  | 0      | 62247  | 16337  |
| % of 1996 seepage               | 45%      | 72%       | 66%      | 78%    | 81%     | 78%    | 100%   | 76%    | 85%    |
| % of 1996 out. for. seepage     | 44%      | 67%       | 51%      | 79%    | 77%     | 70%    | 0%     | 65%    | 76%    |
| Review seepage                  | 129833   | 88068     | 53828    | 85874  | 232501  | 58721  | 48852  | 112227 | 40267  |
| Review streamflow               | 483748   | 382230    | 317613   | 733463 | 1349139 | 191840 | 496347 | 977838 | 646843 |
| AGGREGATES FOR SUBCAT           | CHMENTS  | AND ALL I | JPSTREAM |        | CHMENTS |        |        |        |        |

| Area planted (km <sup>2</sup> ) | 1.40   | 1.83   | 2.26    | 0.44   | 1.36    | 3.89    | 0.00   | 4.47    | 4.57    |
|---------------------------------|--------|--------|---------|--------|---------|---------|--------|---------|---------|
| Planted/cleared area (%)        | 17%    | 13%    | 14%     | 5%     | 6%      | 9%      | 0%     | 9%      | 9%      |
| Predicted seepage (cu.m)        | 71883  | 139823 | 195544  | 86807  | 321436  | 578751  | 48634  | 743360  | 786935  |
| " out. for. seepage (cu.m.)     | 67334  | 115065 | 143001  | 78190  | 215634  | 390913  | 0      | 453161  | 469497  |
| % of 1996 seepage               | 45%    | 55%    | 58%     | 78%    | 80%     | 71%     | 100%   | 73%     | 73%     |
| % of 1996 out, for, seepage     | 44%    | 51%    | 51%     | 79%    | 78%     | 65%     | 0%     | 65%     | 65%     |
| Review seepage                  | 129833 | 217902 | 271729  | 85874  | 318375  | 648825  | 48852  | 809905  | 850171  |
| Review streamflow               | 483748 | 865979 | 1183592 | 733463 | 2082602 | 3458034 | 496347 | 4932219 | 5579062 |

Abbreviations:

.

#### Target: 50% reduction in seepage

Criteria: Plant on pasture land where seepage > 20mm/yr

Allow draw to 30% depth of bottom soil layer

| 7. Model minimum tree planting for Subcatchment | ts of the Tone below Tonebridge Catchments |
|-------------------------------------------------|--------------------------------------------|
|-------------------------------------------------|--------------------------------------------|

| Subcatchment                    | 10      | 24      | 11     | 12      | 13     | 14      | 15      | 16     | 25       |
|---------------------------------|---------|---------|--------|---------|--------|---------|---------|--------|----------|
| Drains to                       | 14      | 25      | 12     | 13      | 14     | 15      | 25      | 25     | 27       |
|                                 |         |         |        |         |        |         |         |        |          |
| SUMS FOR ISOLATED SUBC          | ATCHMEN | TS      |        |         |        |         |         |        |          |
| Area planted (km <sup>2</sup> ) | 0.11    | 0.41    | 0.03   | 0.00    | 0.02   | 0.31    | 0.00    | 0.00   | 0.00     |
| Planted/cleared area (%)        | 7%      | 10%     | 7%     | 0%      | 4%     | 14%     | 0%      | 0%     | 0%       |
| Predicted seepage (cu.m)        | 43575   | 91228   | 47211  | 71556   | 28652  | 36164   | 6106    | 39860  | 25836    |
| " out. for. seepage (cu.m.)     | 16337   | 46303   | 10979  | 7415    | 6864   | 18497   | 16      | 1586   | 97       |
| % of 1996 seepage               | 85%     | 79%     | 96%    | 100%    | 97%    | 63%     | 100%    | 100%   | 100%     |
| % of 1996 out. for, seepage     | 76%     | 70%     | 115%   | 103%    | 107%   | 49%     | 89%     | 135%   | 126%     |
| Review seepage                  | 40267   | 90347   | 47314  | 71708   | 28737  | 34628   | 6133    | 39895  | 25841    |
| Review streamflow               | 646843  | 886527  | 199779 | 431399  | 362465 | 578111  | 808847  | 254879 | 377857   |
|                                 |         |         |        |         |        |         |         |        |          |
| AGGREGATES FOR SUBCAT           | CHMENTS | AND ALL | UPSTRE | AM SUBC | ATCHME | NTS     |         |        |          |
| Area planted (km <sup>2</sup> ) | 4.57    | 7.86    | 0.03   | 0.03    | 0.05   | 4.93    | 4.93    | 0.00   | 12.79    |
| Planted/cleared area (%)        | 9%      | 10%     | 7%     | 2%      | 3%     | 9%      | 9%      | 0%     | 10%      |
| Predicted seepage (cu.m)        | 786935  | 995505  | 47211  | 118767  | 147419 | 970518  | 976624  | 39860  | 2037825  |
| " out. for. seepage (cu.m.)     | 469497  | 711913  | 10979  | 18394   | 25259  | 513253  | 513268  | 1586   | 1226865  |
| % of 1996 seepage               | 73%     | 68%     | 96%    | 98%     | 98%    | 76%     | 76%     | 100%   | 72%      |
| % of 1996 out. for. seepage     | 65%     | 62%     | 115%   | 110%    | 109%   | 66%     | 66%     | 135%   | 64%      |
| Review seepage                  | 850171  | 969771  | 47314  | 119022  | 147759 | 1032558 | 1038692 | 39895  | 2074198  |
| Review streamflow               | 5579062 | 6781061 | 199779 | 631178  | 993642 | 7150815 | 7959662 | 254879 | 15373460 |
|                                 |         |         |        |         |        |         |         |        |          |

### 8. Model minimum tree planting for Subcatchments of the Tone below Tonebridge Catchments

| Subcatchment                    | 4       | 17      | 18      | 19      | 20      | 21      | 22      | 23      | 24      |
|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Drains to                       | 19      | 18      | 23      | 20      | 21      | 22      | 24      | 24      | 25      |
| SUMS FOR ISOLATED SUBC          | ATCHMEN | тs      |         |         |         |         |         |         |         |
| Area planted (km <sup>2</sup> ) | 0.69    | 0.87    | 1.49    | 1.45    | 1.30    | 0.52    | 0.27    | 0.87    | 0.41    |
| Planted/cleared area (%)        | 14%     | 11%     | 13%     | 8%      | 12%     | 11%     | 4%      | 10%     | 10%     |
| Predicted seepage (cu.m)        | 45918   | 65122   | 112354  | 208757  | 192878  | 70628   | 76355   | 132265  | 91228   |
| " out. for. seepage (cu.m.)     | 44550   | 63644   | 101763  | 159541  | 116063  | 40682   | 51941   | 87426   | 46303   |
| % of 1996 seepage               | 52%     | 57%     | 55%     | 70%     | 71%     | 69%     | 83%     | 71%     | 79%     |
| % of 1996 out. for. seepage     | 52%     | 57%     | 55%     | 67%     | 63%     | 59%     | 79%     | 65%     | 70%     |
| Review seepage                  | 43406   | 61874   | 107722  | 203812  | 187969  | ~ 70301 | 75437   | 128902  | 90347   |
| Review streamflow               | 214173  | 609408  | 1121877 | 1400730 | 234205  | -167629 | 896393  | 1585376 | 886527  |
| AGGREGATES FOR SUBCAT           | CHMENTS | AND ALL | UPSTRE  | AM SUBC | атснме  | NTS     |         |         |         |
| Area planted (km <sup>2</sup> ) | 0.69    | 0.87    | 2.35    | 2.14    | 3.44    | 3.95    | 4.23    | 3.23    | 7.86    |
| Planted/cleared area (%)        | 0.10    | 11%     | 13%     | 9%      | 10%     | 10%     | 9%      | 12%     | 10%     |
| Predicted seepage (cu.m)        | 45918   | 65122   | 177476  | 254675  | 447553  | 518181  | 594536  | 309742  | 995505  |
| " out. for. seepage (cu.m.)     | 44550   | 63644   | 165407  | 204091  | 320154  | 360836  | 412776  | 252833  | 711913  |
| % of 1996 seepage               | 72%     | 57%     | 56%     | 66%     | 68%     | 68%     | 70%     | 61%     | 68%     |
| % of 1996 out. for. seepage     | 64%     | 57%     | 56%     | 63%     | 63%     | 63%     | 64%     | 58%     | 62%     |
| Review seepage                  | 43406   | 61874   | 169596  | 247218  | 435187  | 505488  | 580925  | 298498  | 969771  |
| Review streamflow               | 214173  | 609408  | 1731285 | 1614902 | 1849108 | 1681479 | 2577872 | 3316661 | 6781061 |
|                                 |         |         |         |         |         |         |         |         |         |

Abbreviations:

Target: 50% reduction in seepage Criteria: Plant on pasture land where seepage > 20mm/yr Allow draw to 30% depth of bottom soil layer

### 9. Model minimum tree planting for Subcatchments of the Tone below Tonebridge Catchments

| Subcatchment                    | 25       | 26      | 27       | 28       | 29       | 30       | 31     | 32      | 33       |
|---------------------------------|----------|---------|----------|----------|----------|----------|--------|---------|----------|
| Drains to                       | 27       | 27      | 29       | 29       | 30       | 33       | 32     | 33      |          |
| SUMS FOR ISOLATED SUB           | CATCHMEN | rs      |          |          |          |          |        |         |          |
| Area planted (km <sup>2</sup> ) | 0.00     | 0.00    | 0.00     | 0.00     | 0.00     | 0.00     | 0.00   | 0.00    | 0.03     |
| Planted/cleared area (%)        | 0%       | 12%     | 5%       | 0%       | 5%       | 0%       | 0%     | 0%      | 19%      |
| Predicted seepage (cu.m)        | 25836    | 37563   | 73603    | 21477    | 18430    | 43610    | 10268  | 29397   | 35495    |
| " out. for, seepage (cu.m.)     | 97       | 108     | 456      | 173      | 489      | 191      | 208    | 0       | 1989     |
| % of 1996 seepage               | 100%     | 100%    | 100%     | 100%     | 99%      | 100%     | 100%   | 99%     | 95%      |
| % of 1996 out. for. seepage     | 126%     | 67%     | 91%      | 133%     | 122%     | 97%      | 83%    | 0%      | 53%      |
| Review seepage                  | 25841    | 37581   | 73730    | 21466    | 18480    | 43729    | 10294  | 29537   | 35223    |
| Review streamflow               | 377857   | 328693  | 651828   | 367096   | 344326   | 896334   | 553015 | 452901  | 1231690  |
| AGGREGATES FOR SUBCA            | TCHMENTS | AND ALL | UPSTREAM | VI SUBCA | TCHMENT  | S        |        |         |          |
| Area planted (km <sup>2</sup> ) | 12.79    | 0.00    | 12.79    | 0.00     | 12.79    | 12.79    | 0.00   | 0.00    | 12.82    |
| Planted/cleared area (%)        | 10%      | 12%     | 10%      | 0%       | 10%      | 10%      | 0%     | 0%      | 10%      |
| Predicted seepage (cu.m)        | 2037825  | 37563   | 2148992  | 21477    | 2188899  | 2232510  | 10268  | 39665   | 2307670  |
| * out: for, seepage (cu.m.)     | 1226865  | 108     | 1227429  | 173      | 1228091  | 1228282  | 208    | 208     | 1230479  |
| % of 1996 seepage               | 72%      | 100%    | 73%      | 100%     | 73%      | 74%      | 100%   | 99%     | 74%      |
| % of 1996 out. for. seepage     | 64%      | 67%     | 64%      | 133%     | 64%      | 64%      | 83%    | 70%     | 64%      |
| Review seepage                  | 2074198  | 37581   | 2185510  | 21466    | 2225457  | 2269186  | 10294  | 39831   | 2344239  |
| Review streamflow               | 15373460 | 328693  | 16353981 | 367096   | 17065403 | 17961737 | 553015 | 1005915 | 20199342 |

### 10. Model minimum tree planting for Subcatchments of the Perup Catchments

| Subcatchment                    | 1       | 2       | 3      | 4       | 5      | 6      | 7      | 8      |
|---------------------------------|---------|---------|--------|---------|--------|--------|--------|--------|
| Drains to                       | 3       | 3       | 4      | 5       | 8      | 8      | 8      | 11     |
| SUMS FOR ISOLATED SUBC          | ATCHMEN | rs      |        |         |        |        |        |        |
| Area planted (km <sup>2</sup> ) | 0.88    | 0.01    | 0.01   | 0.00    | 1.09   | 1.31   | 0.73   | 1.35   |
| Planted/cleared area (%)        | 18%     | 3%      | 6%     | 0%      | 30%    | 28%    | 25%    | 28%    |
| Predicted seepage (cu.m)        | 75934   | 48306   | 53697  | 35519   | 40223  | 46041  | 27541  | 54890  |
| " out. for. seepage (cu.m.)     | 44289   | 6332    | 5058   | 259     | 20935  | 34043  | 18905  | 34788  |
| % of 1996 seepage               | 58%     | 99%     | 99%    | 100%    | 35%    | 36%    | 35%    | 38%    |
| % of 1996 out, for, seepage     | 46%     | 108%    | 107%   | 83%     | 23%    | 30%    | 27%    | 29%    |
| Review seepage                  | 72323   | 48321   | 53968  | 35673   | 39447  | 43576  | 26565  | 50798  |
| Review streamflow               | 248593  | 131138  | 251947 | 247628  | 232196 | 350497 | 392391 | 451465 |
| AGGREGATES FOR SUBCAT           | CHMENTS | AND ALL | UPSTRE | AM SUBC | ATCHME | NTS    |        |        |
| Area planted (km <sup>2</sup> ) | 0.88    | 0.01    | 0.91   | 0.91    | 1.99   | 1.31   | 0.73   | 5.38   |
| Planted/cleared area (%)        | 18%     | 3%      | 17%    | 16%     | 22%    | 28%    | 25%    | 25%    |
| Predicted seepage (cu.m)        | 75934   | 48306   | 177937 | 213457  | 253680 | 46041  | 27541  | 382153 |

| Planted/cleared area (%)                    | 18%    | 3%     | 17%    | 16%    | 22%     | 28%    | 25%    | 25%     |
|---------------------------------------------|--------|--------|--------|--------|---------|--------|--------|---------|
| Predicted seepage (cu.m)                    | 75934  | 48306  | 177937 | 213457 | 253680  | 46041  | 27541  | 382153  |
| <ul><li>out. for. seepage (cu.m.)</li></ul> | 44289  | 6332   | 55679  | 55938  | 76873   | 34043  | 18905  | 164609  |
| % of 1996 seepage                           | 58%    | 99%    | 76%    | 79%    | 66%     | 36%    | 35%    | 52%     |
| % of 1996 out. for. seepage                 | 46%    | 108%   | 52%    | 52%    | 39%     | 30%    | 27%    | 33%     |
| Review seepage                              | 72323  | 48321  | 174611 | 210284 | 249731  | 43576  | 26565  | 370670  |
| Review streamflow                           | 248593 | 131138 | 631678 | 879306 | 1111502 | 350497 | 392391 | 2305855 |

#### Abbreviations:

Target: 50% reduction in seepage Criteria: Plant on pasture land where seepage > 20mm/yr Allow draw to 30% depth of bottom soil layer

### 11. Model minimum tree planting for Subcatchments of the Perup Catchments

| Subcatchment                    | 8       | 9       | 10     | 11      | 12     | 13     | 14      | 15     | 16      |
|---------------------------------|---------|---------|--------|---------|--------|--------|---------|--------|---------|
| Drains to                       | 11      | 10      | 11     | 14      | 14     | 14     | 16      | 16     | 34      |
| SUMS FOR ISOLATED SUBC          | ATCHMEN | rs      |        |         |        |        |         |        |         |
| Area planted (km <sup>2</sup> ) | 1.35    | 0.05    | 0.00   | 1.31    | 0.40   | 0.53   | 1.92    | 0.08   | 1.29    |
| Planted/cleared area (%)        | 0.28    | 6%      | 6%     | 29%     | 28%    | 24%    | 28%     | 11%    | 24%     |
| Predicted seepage (cu.m)        | 54890   | 114631  | 90076  | 60236   | 68873  | 22792  | 54218   | 64413  | 48435   |
| out. for. seepage (cu.m.)       | 34788   | 15221   | 1507   | 25011   | 8002   | 15991  | 45988   | 9541   | 43944   |
| % of 1996 seepage               | 38%     | 97%     | 100%   | 39%     | 72%    | 37%    | 28%     | 93%    | 33%     |
| % of 1996 out, for, seepage     | 29%     | 102%    | 92%    | 21%     | 23%    | 30%    | 25%     | 75%    | 32%     |
| Review seepage                  | 50798   | 114550  | 90158  | 58437   | 68716  | 22070  | 50609   | 64580  | 43156   |
| Review streamflow               | 451465  | 374760  | 399395 | 453563  | 237138 | 339860 | 545076  | 569086 | 472396  |
| AGGREGATES FOR SUBCAT           | CHMENTS | AND ALL | UPSTRE | AM SUBC | ATCHME | NTS    |         |        |         |
| Area planted (km <sup>2</sup> ) | 5.38    | 0.05    | 0.05   | 6.74    | 0.40   | 0.53   | 9.59    | 0.08   | 10,97   |
| Planted/cleared area (%)        | 0.25    | 6%      | 6%     | 25%     | 28%    | 24%    | 26%     | 11%    | 25%     |
| Predicted seepage (cu.m)        | 382153  | 114631  | 204707 | 647096  | 68873  | 22792  | 792978  | 64413  | 905825  |
| " out. for. seepage (cu.m.)     | 164609  | 15221   | 16728  | 206347  | 8002   | 15991  | 276329  | 9541   | 329813  |
| % of 1996 seepage               | 52%     | 97%     | 98%    | 59%     | 72%    | 37%    | 55%     | 93%    | 54%     |
| % of 1996 out. for. seepage     | 33%     | 102%    | 101%   | 32%     | 23%    | 30%    | 30%     | 75%    | 31%     |
| Review seepage                  | 370670  | 114550  | 204708 | 633815  | 68716  | 22070  | 775209  | 64580  | 882946  |
| Review streamflow               | 2305855 | 374760  | 774155 | 3533572 | 237138 | 339860 | 4655646 | 569086 | 5697128 |

### 12. Model minimum tree planting for Subcatchments of the Perup Catchments

| 17     | 18                                                                                                                                                                 | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18     | 19                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TCHMEN | rs                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.38   | 0.07                                                                                                                                                               | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12%    | 12%                                                                                                                                                                | 13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 48810  | 31132                                                                                                                                                              | 28776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 26491  | 8567                                                                                                                                                               | 8395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 68%    | 89%                                                                                                                                                                | 77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 55%    | 76%                                                                                                                                                                | 51%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 32%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 48579  | 31114                                                                                                                                                              | 28599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 189158 | 137199                                                                                                                                                             | 366080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 425200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 354217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 615121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 836188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HMENTS | AND ALL                                                                                                                                                            | UPSTRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AM SUBC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATCHME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.38   | 0.45                                                                                                                                                               | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.25   | 12%                                                                                                                                                                | 12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 48810  | 79942                                                                                                                                                              | 108718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 149689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 210632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 246999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 26491  | 35058                                                                                                                                                              | 43453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 73820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 104184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 54%    | 75%                                                                                                                                                                | 76%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 31%    | 59%                                                                                                                                                                | 57%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 125%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 48579  | 79693                                                                                                                                                              | 108293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 147648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 204869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 238152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 189158 | 326357                                                                                                                                                             | 692437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1117637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1471854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 615121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2923164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | 17<br>18<br>TCHMEN'<br>0.38<br>12%<br>48810<br>26491<br>68%<br>55%<br>48579<br>189158<br>HMENTS<br>0.38<br>0.25<br>48810<br>26491<br>54%<br>31%<br>48579<br>189158 | 17         18           18         19           TCHMENTS         12%           12%         12%           48810         31132           26491         8567           68%         89%           55%         76%           48579         31114           189158         137199           HMENTS AND ALLL         0.38           0.38         0.45           0.25         12%           48810         79942           26491         35058           54%         75%           31%         59%           48579         79693           189158         326357 | 17         18         19           18         19         20           TCHMENTS         12%         13%           12%         12%         13%           48810         31132         28776           26491         8567         8395           68%         89%         77%           55%         76%         51%           48579         31114         28599           189158         137199         366080           HMENTS AND ALL         VPSTRE           0.38         0.45         0.58           0.25         12%         12%           48810         79942         108718           26491         35058         43453           54%         75%         76%           31%         59%         57%           48579         79693         108293           189158         326357         692437 | 17         18         19         20           18         19         20         21           TCHMENTS           0.38         0.07         0.13         1.05           12%         12%         13%         25%           48810         31132         28776         40971           26491         8567         8395         30367           68%         89%         77%         38%           55%         76%         51%         32%           48579         31114         28599         39355           189158         137199         366080         425200           HMENTS AND ALL UPSTREAM SUBCO         0.38         0.45         0.58         1.63           0.25         12%         12%         18%         448810         79942         108718         149689           26491         35058         43453         73820         54%         75%         76%         60%           31%         59%         57%         43%         48579         79693         108293         147648           189158         326357         692437         1117637         147648 | 17         18         19         20         21           18         19         20         21         23           TCHMENTS         100         0.13         1.05         0.81           12%         12%         13%         25%         24%           48810         31132         28776         40971         60943           26491         8567         8395         30367         30364           68%         89%         77%         38%         52%           55%         76%         51%         32%         3664           68%         89%         77%         38%         52%           55%         76%         51%         32%         3644           68%         89%         77%         38%         52%           55%         76%         51%         32%         3644           48579         31114         28599         39355         57221           189158         137199         366080         425200         354217           HMENTS AND ALL         PSTEREANSUEL         20%         48810         2046           0.38         0.45         0.58         1.63         2.44 <td>17         18         19         20         21         22           18         19         20         21         23         23           TCHMENTS         100         20         21         23         23           12%         12%         13%         25%         24%         0%           12%         12%         13%         25%         24%         0%           48810         31132         28776         40971         60943         9343           26491         8567         8395         30367         30364         1155           68%         89%         77%         38%         52%         99%           55%         76%         51%         32%         36%         125%           48579         31114         28599         39355         5721         9402           189158         137199         366080         425200         354217         615121           HMENTS AND ALL UPSTREAM SUBCATCHMENTS         148         40.00         0.45         0.58         1.63         2.44         0.00           0.25         12%         12%         18%         20%         0%         448810         79942</td> | 17         18         19         20         21         22           18         19         20         21         23         23           TCHMENTS         100         20         21         23         23           12%         12%         13%         25%         24%         0%           12%         12%         13%         25%         24%         0%           48810         31132         28776         40971         60943         9343           26491         8567         8395         30367         30364         1155           68%         89%         77%         38%         52%         99%           55%         76%         51%         32%         36%         125%           48579         31114         28599         39355         5721         9402           189158         137199         366080         425200         354217         615121           HMENTS AND ALL UPSTREAM SUBCATCHMENTS         148         40.00         0.45         0.58         1.63         2.44         0.00           0.25         12%         12%         18%         20%         0%         448810         79942 |

#### Abbreviations:

#### Target: 50% reduction in seepage Criteria: Plant on pasture land where seepage > 20mm/yr Allow draw to 30% depth of bottom soil layer

### 13. Model minimum tree planting for Subcatchments of the Perup Catchments

| Subcatchment                    | 23      | 24      | 25     | 26      | 27      | 28     | 29     | 30    | 31      | 32     | 33      |  |
|---------------------------------|---------|---------|--------|---------|---------|--------|--------|-------|---------|--------|---------|--|
| Drains to                       | 27      | 27      | 26     | 27      | 31      | 31     | 31     | 31    | 33      | 33     | 34      |  |
| SUMS FOR ISOLATED SUBC          | ATCHMEN | тѕ      |        |         |         |        |        |       |         |        |         |  |
| Area planted (km <sup>2</sup> ) | 1.03    | 0.01    | 0.33   | 0.00    | 0.00    | 0.00   | 0.24   | 0.04  | 0.90    | 0.77   | 0.32    |  |
| Planted/cleared area (%)        | 0.29    | 9%      | 31%    | 0%      | 41%     | 10%    | 13%    | 9%    | 18%     | 28%    | 20%     |  |
| Predicted seepage (cu.m)        | 27024   | 4659    | 10239  | 4864    | 23768   | 21309  | 60573  | 28677 | 94997   | 27111  | 40394   |  |
| " out. for. seepage (cu.m.)     | 20093   | 2233    | 7101   | 10      | 42      | 931    | 22054  | 9409  | 50311   | 19827  | 15929   |  |
| % of 1996 seepage               | 25%     | 86%     | 32%    | 100%    | 100%    | 99%    | 80%    | 93%   | 62%     | 33%    | 64%     |  |
| % of 1996 out. for. seepage     | 20%     | 76%     | 26%    | 110%    | 69%     | 104%   | 64%    | 99%   | 48%     | 27%    | 43%     |  |
| Review seepage                  | 23881   | 4479    | 9295   | 4865    | 23781   | 21288  | 59219  | 28609 | 92263   | 25415  | 38713   |  |
| Review streamflow               | 836188  | 677308  | 615764 | 385536  | 791209  | 174275 | 394486 | -7440 | 964467  | 433552 | 490236  |  |
| AGGREGATES FOR SUBCAT           | CHMENTS | AND ALL | UPSTRE | AM SUBC |         | NTS    |        |       |         |        |         |  |
| Area planted (km <sup>2</sup> ) | 3.48    | 0.01    | 0.33   | 0.33    | 3.82    | 0.00   | 0.24   | 0.04  | 4.98    | 0.77   | 6.07    |  |
| Planted/cleared area (%)        | 0.22    | 9%      | 31%    | 31%     | 22%     | 10%    | 13%    | 9%    | 20%     | 28%    | 21%     |  |
| Predicted seepage (cu.m)        | 246999  | 4659    | 10239  | 15103   | 290529  | 21309  | 60573  | 28677 | 496084  | 27111  | 563590  |  |
| " out. for. seepage (cu.m.)     | 125432  | 2233    | 7101   | 7111    | 134817  | 931    | 22054  | 9409  | 217522  | 19827  | 253277  |  |
| % of 1996 seepage               | 51%     | 86%     | 32%    | 42%     | 53%     | 99%    | 80%    | 93%   | 59%     | 33%    | 57%     |  |
| % of 1996 out. for. seepage     | 35%     | 76%     | 26%    | 26%     | 35%     | 104%   | 64%    | 99%   | 41%     | 27%    | 39%     |  |
| Review seepage                  | 238152  | 4479    | 9295   | 14159   | 280572  | 21288  | 59219  | 28609 | 481951  | 25415  | 546079  |  |
| Review streamflow               | 2923164 | 677308  | 615764 | 1001300 | 5392980 | 174275 | 394486 | -7440 | 6918768 | 433552 | 7842556 |  |

### 14. Model minimum tree planting for Subcatchments of the Perup Catchments

| Subcatchment                    | 16      | 33     | 34     | 35     | 36     | 37      |
|---------------------------------|---------|--------|--------|--------|--------|---------|
| Drains to                       | 34      | 34     | 36     | 36     | 37     |         |
| SUMS FOR ISOLATED SUBCA         | TCHMENT | 'S     |        |        |        |         |
| Area planted (km <sup>2</sup> ) | 1.29    | 0.32   | 0.39   | 0.11   | 1.49   | 0.89    |
| Planted/cleared area (%)        | 0.24    | 0.20   | 26%    | 16%    | 23%    | 23%     |
| Predicted seepage (cu.m)        | 48435   | 40394  | 23642  | 86882  | 59330  | 22031   |
| " out. for. seepage (cu.m.)     | 43944   | 15929  | 12869  | 7696   | 53196  | 18268   |
| % of 1996 seepage               | 33%     | 64%    | 45%    | 93%    | 35%    | 22%     |
| % of 1996 out. for. seepage     | 32%     | 43%    | 32%    | 60%    | 33%    | 20%     |
| Review seepage                  | 43156   | 38713  | 21521  | 86470  | 52331  | 20050   |
| Review streamflow               | 472396  | 490236 | 574755 | 337116 | 838798 | 1221350 |

#### AGGREGATES FOR SUBCATCHMENTS AND ALL UPSTREAM SUBCATCHMENTS

| 10.97   | 6.07                                                                 | 17.43                                                                                                                                                                                                                                | 0.11                                                                                                                                                                                                                                                                                                                                                   | 19.03                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.25    | 0.21                                                                 | 24%                                                                                                                                                                                                                                  | 16%                                                                                                                                                                                                                                                                                                                                                    | 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 905825  | 563590                                                               | 1493057                                                                                                                                                                                                                              | 86882                                                                                                                                                                                                                                                                                                                                                  | 1639269                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1661300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 329813  | 253277                                                               | 595960                                                                                                                                                                                                                               | 7696                                                                                                                                                                                                                                                                                                                                                   | 656852                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 675120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 54%     | 57%                                                                  | 55%                                                                                                                                                                                                                                  | 93%                                                                                                                                                                                                                                                                                                                                                    | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 31%     | 39%                                                                  | 34%                                                                                                                                                                                                                                  | 60%                                                                                                                                                                                                                                                                                                                                                    | 34%                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 882946  | 546079                                                               | 1450546                                                                                                                                                                                                                              | 86470                                                                                                                                                                                                                                                                                                                                                  | 1589346                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1609396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5697128 | 7842556                                                              | 14114439                                                                                                                                                                                                                             | 337116                                                                                                                                                                                                                                                                                                                                                 | 15290353                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16511703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 10.97<br>0.25<br>905825<br>329813<br>54%<br>31%<br>882946<br>5697128 | 10.97         6.07           0.25         0.21           905825         563590           329813         253277           54%         57%           31%         39%           882946         546079           5697128         7842556 | 10.97         6.07         17.43           0.25         0.21         24%           905825         563590         1493057           329813         253277         595960           54%         57%         55%           31%         39%         34%           882946         546079         1450546           5697128         7842556         14114439 | 10.97         6.07         17.43         0.11           0.25         0.21         24%         16%           905825         563590         1493057         86882           329813         253277         595960         7696           54%         57%         55%         93%           31%         39%         34%         60%           882946         546079         1450546         86470           5697128         7842556         14114439         337116 | 10.97         6.07         17.43         0.11         19.03           0.25         0.21         24%         16%         23%           905825         563590         1493057         86882         1639269           329813         253277         595960         7696         656852           54%         57%         55%         93%         55%           31%         39%         34%         60%         34%           882946         546079         1450546         86470         1589346           5697128         7842556         14114439         337116         15290353 |

#### Abbreviations:

# Appendix A Details of Computing Processes

### 1. Introduction

The basic process to analyse a catchment was reported in Mauger (1994). That paper showed the major stages of the process and listed the RASCAL maps, which were the principal products of each stage. Since then, there have been changes to the process to incorporate more hydrologic functions, and to improve the computing procedure. The rationale for the changes is included in the report on the Kent River Catchment (Volume 3 in the series of reports on the Clearing Control Catchments). However, due to the extent of the changes, a complete revision of this appendix has been necessary, compared to that published with Volumes 1 and 2 for the Upper Denmark and Wellington Catchments respectively. Reprocessing those catchments with the revised procedure has negligible impact on their results.

This appendix gives details of each stage in the process in a top-down hierarchical style, based on the computing commands and input data files needed to execute the processes using the M.A.G.I.C. system.

Most of the files used in the modelling process are the same for both Tone catchments as well as the Perup catchment. Therefore, just one of these, the Tone above Tonebridge catchment, was used as an example throughout the appendix. Where the Tone below Tonebridge and Perup catchments differ from this one, the different files are included.

### 2. Conventions

The following typographical conventions are used within this appendix:

- User inputs of a definite form in **BOLD** + **CAPITALS** or lowercase.
- User inputs of a variable form in *CAPITALS* + *ITALICS*.
- Output from computer in Courier font.

User inputs that are program, command and file names are in capitals. File names are identified by having an extension (eg EXAMPLE.TXT).

Files with extensions ".IN" are used as a substitute for console input when programs are run from batch files or when otherwise convenient.

Section numbers in [] show where more instructions or contents of data files are to be found within this appendix. In sections giving contents of files, '[]' references and comments in normal type on the same lines as computer inputs are not included in the actual file contents.

In the M.A.G.I.C. system, the command HOW *TOPIC* writes text to the computer screen which gives background information and details of how to use *TOPIC*. To follow up references made in this appendix, the user will need access to a copy of the MAGIC system.

A map numbering convention has been established to give some structure to the storage of maps in the RASCAL projects, and to enable command files to work on any project without the need to modify map numbers. Table A1 shows the categories of maps, and Table A2 shows a normal assignment of maps to map numbers.

### Table A1: Map categories

| Map number<br>ränge | Map category        | Notes                                                          |
|---------------------|---------------------|----------------------------------------------------------------|
| 1-100               | Raw data            | Stored in project from<br>external source                      |
| 101-200             | Derived data        | Basic data computed<br>from raw data or<br>derived data        |
| 201-300             | Catchment<br>model  | Result maps of<br>shallow and deep<br>groundwater<br>modelling |
| 301-400             | Planting prediction | Result maps of<br>predicting tree<br>planting                  |
| 401-510             | Scratch maps        | Maps only needed<br>temporarily while<br>modelling             |

| 70.1.1. | 1 3. | <b>N</b> / |        |         |      |
|---------|------|------------|--------|---------|------|
| ladie   | A2:  | Map        | number | assignm | ents |

| Raw Data              | Derived data             | Catchment Model               | Planting Prediction | Scratch Maps            |
|-----------------------|--------------------------|-------------------------------|---------------------|-------------------------|
| I TM BAND I           | 101                      | 201 CUMULATIVE RUN-OFF        | 301                 | 401                     |
| 2 TM BAND 2           | 102 ASPECT               | 202 TOTAL PASTURE ET          | 302                 | :                       |
| 3 TM BAND 3           | 103 PLAN CURVATURE       | 203 STREAMFLOW                | 303 TREE GREENNESS  | 409                     |
| 4 TM BAND 4           | 104 SLOPE CURVATURE      | 204 MINIMUM SHALLOW+DEEP      | FOR CURRENT MODEL   | 410 POSSIBLE PASTURE    |
| 5 TM BAND 5           | 105 DRAIN REDUCED SLOPE  | STORE                         | 304 ANNUAL PASTURE  | OVERDRAW                |
| 6 TM BAND 6           | 106                      | 205 STORAGE LOSS              | FOR CURRENT MODEL   | 411                     |
| 7 TM BAND 7           | 107 SLOPE                | 206 FINAL SHALLOW STORAGE     | 305                 | 412 CURRENT SHALLOW     |
| 8                     | 108                      | 207 FINAL DEEP STORE          | :                   | STORE                   |
| 9                     | :                        | 208                           | 330                 | 413 RUN-OFF             |
| 10                    | 115 LAKE=0, OTHER=1      | :                             | 331 DEEP G/W DRAWN  | 414 INFILTRATION        |
| 11 RAINFALL           | 116 DRAINAGE DIRECTIONS  | 210                           | BY PLANTED TREES    | 415                     |
| 12 PAN EVAPORATION    | 117 DISPERSED DRAINAGE   | 211 NET RECHARGE              | 332 PLANTED         |                         |
| 13                    | 118                      | 212 FINAL DEEP DRAINAGE       | DISCHARGE           | 419                     |
| :                     | 119 NOS OF CELLS         | 213 THROUGHFLOW               | 333 PLANTED TREE    | 420 CURRENT DEEP STORE  |
| 20                    | 120 GREENNESS            | 214 SURPLUS RECHARGE          | GREENNESS           | 421 CURRENT PASTURE ET, |
| 21 ELEVATION          | 121                      | 215 SMOOTHED SEEPAGE          | 334                 | OR ASEARCH CELL COUNT   |
| 22 LAKE=10            | 122                      | VOLUME                        | 335 % PLANTING OVER | 422 SURPLUS DEEP STORE  |
| 23 SOIL TYPE          | 123 GREENNESS > 0        | 216 SMOOTHED DEEP             | NATIVE DENSITY      | 423 NET RECHARGE TO     |
| 24                    | 124 FULL PASTURE LAI=2.7 | DISCHARGE                     | 336                 | DEEP STORE              |
| 25                    | 125 NEGLIGIBLE PASTURE   | 217 SMOOTHED THROUGHFLOW      | ;                   | 424 REQUIRED DEEP       |
| 26 FARM PROPERTIES    | UPSTREAM = 1             | 218 SMOOTHED SURPLUS          | 400                 | DRAINAGE                |
| 27                    | 126                      | RECHARGE                      |                     | 425                     |
| 28                    | :                        | 219 SEEPAGE AREA              |                     |                         |
| 29                    | 129                      | MAPS 201-219 ARE SAVED        |                     | 435                     |
| 30 DIGITISED CLEARING | 130 SMOOTHED INFIL RATE  | RESULTS FROM INITIAL ANALYSIS |                     | 436 ANNUAL TREE         |
| 31                    | 131                      | 220                           |                     | TRANSPIRATION (MM)      |
| 32 ,33 PLANNED        | :                        |                               |                     | 437                     |
| PERENNIAL PASTURE     | 149                      | 240                           |                     | 438 PERENNIAL PASTURE   |
| 34                    | 150 CATCHMENTS           | 241 CUMULATIVE RUN-OFF        |                     | TRANSPIRATION (MM)      |
| :                     | 151                      | 242 TOTAL PASTURE ET          |                     | 439 PASTURE MAX.        |
| 49                    |                          | 243 STREAMFLOW                |                     | TRANSPIRATION (MM)      |
| 50 GAUGING LOCATIONS  | 200                      | 244 MINIMUM SHALLOW+DEEP      |                     | 440 INITIAL STORAGE     |
| 51                    |                          | STORE                         |                     | LOSS                    |
| : .                   |                          | 245 STORAGE LOSS              |                     | 441 CURRENT DEEP STORE, |
| 54                    |                          | 246 FINAL SHALLOW STORAGE     |                     | NET RECHARGE TO DEEP    |
| 55 PLANNED PLANTING   |                          | 247 FINAL DEEP STORE          |                     | G/W                     |
| 56                    |                          | 248                           |                     | 442 POTENTIAL RECHARGE  |
|                       |                          |                               |                     | & DISCHARGE             |
| 100                   |                          | 250                           |                     | 443                     |
|                       |                          | 251 NET RECHARGE              |                     | :                       |
|                       |                          | 252 FINAL DEEP DRAINAGE       |                     | 446                     |
|                       |                          | 253 THROUGHFLOW               |                     | 447 FINAL + VE DEEP     |
|                       |                          | 254 SURPLUS RECHARGE          |                     | DRAINAGE                |
|                       |                          | 255 SMOOTHED SEEPAGE          |                     | 448                     |
|                       |                          | VOLUME                        |                     | 449 INTEGRATED STORAGE  |
|                       |                          | 256 SMOOTHED DEEP             |                     | LOSS                    |
|                       |                          | DISCHARGE                     |                     | 450 -                   |
|                       |                          | 257 SMOOTHED THROUGHFLOW      |                     |                         |
|                       |                          | 258 SMOOTHED SURPLUS          |                     | 510                     |
|                       |                          | RECHARGE                      |                     |                         |
|                       |                          | 259 SEEPAGE AREA              |                     |                         |
|                       |                          | IMAPS 241-259 ARE RESULTS     |                     |                         |
|                       |                          | FROM LAST ANALYSIS            |                     |                         |
|                       |                          | 260                           |                     | · ·                     |
| ·                     |                          |                               |                     |                         |
|                       |                          | 300                           |                     |                         |
|                       |                          | 500                           |                     |                         |

### 3. Major stages of analysis

### 3.1 CONVERT RAW DATA TO EQUIVALENT MAPS IN A RASCAL PROJECT

### A.PREPARE RASCAL PROJECTS TO RECEIVE DATA

RASCAL < RASCAL.IN

[5.1] Create a series of 4 RASCAL projects to hold basic maps of TM data and ground elevation. Also create a low resolution project (cell side length = 200m) that covers the whole catchment to hold maps of annual rainfall and pan evaporation.

#### B.GENERATE DATA BY INTERPOLATION BETWEEN LINES OF EQUAL VALUE

Used to create elevation from contours, annual rainfall from isohyets, and pan evaporation from annual isopleths. Using elevation as the example:

| USTATION           | [5.2] | Identify contours in design file and export contours to text file |
|--------------------|-------|-------------------------------------------------------------------|
| GRIDSF < GRIDSF.IN | [5.3] | Generate elevations in grid cells                                 |
| RASCAL < STORE.IN  | [5.4] | Import elevations to RASCAL project                               |

### C. GENERATE GRIDDED THEMATIC MAPS FROM DIGITISED POLYGONS

Used to define areas planned for treatment in farm plans, lakes, and mapping of soil types (soil type data has not been used in the project to date).

| USTATION             | [5.2] | Prepare data in polygon form and export polygons to text file            |
|----------------------|-------|--------------------------------------------------------------------------|
| LISTIN < LISTIN.IN   | [5.5] | Import polygons to POLYANA file format                                   |
| LNKEND < LNKEND.IN   | [5.6] | Join lines into polygons if a polygon is represented by more than 1 line |
| POL2RAS < POL2RAS.IN | [5.7] | Generate gridded thematic maps in RASCAL project                         |

#### D. LOAD LANDSAT THEMATIC MAPPER DATA FROM BULK SOURCE

| LSDEX < LSDEX.IN    | [5.8] | Extract TM bands from bulk TM data |
|---------------------|-------|------------------------------------|
| RASCAL < STORETM.IN | [5.9] | Import TM data into RASCAL project |

### 3.2 COMPUTE MAPS REQUIRED AS INPUT TO THE HYDROLOGIC MODEL

[6.1]

### A. PREPARE BASE MAPS

PREMODEL TONEALLI

Determine vegetation from TM data in base projects Repeat for each of 4 base projects.

**B. PREPARE SUB-CATCHMENT PROJECTS** 

### **B. PREPARE SUB-CATCHMENT PROJECTS**

Generation of drainage data is best done on relatively small areas due to the search for drainage outlets when sinks are identified. The small areas are complete subcatchments that will be used to report results of modelling, generally having areas of about 30 sq. km. Before the drainage is analysed, boundaries of subcatchments will only be known approximately by inspecting contour data. The recommended process described here is to create an over-sized RASCAL project for each subcatchment so that the boundary will not fall outside the project limits. After the boundary has been defined by analysis, a smaller project that fully contains the subcatchment can be specified. The smaller project is created and all the maps from the larger project copied to it so that surplus computing in the modelling process will be minimised. If the subcatchment mapped in the larger project lies within 2 cells of the project boundary at any point, the subcatchment could actually extend beyond the project. In such cases, the process should be repeated using a new project with more clearance on that side.

| RASCAL < RASCAL.IN | [5.1] | Create a RASCAL project for each subcatchment that has generous margins around the actual subcatchment boundary                         |
|--------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|
| LOADSC             | [6.2] | Load base maps from projects with basic maps into subcatchment projects                                                                 |
| INIT TONEI         | [6.3] | Batch run to prepare initial maps for each subcatchment project                                                                         |
| SEERAS TONEI       | [6.4] | Manually edit blank map to define outlets of subcatchments                                                                              |
| RASCAL < CATCH.IN  | [6.5] | Generate subcatchment map from drainage data and outlet position                                                                        |
| RASCAL < TRIM.IN   | [6.6] | Mark cells outside catchment to limit drainage integration                                                                              |
| SEERAS TONEI       | [6.4] | View the generated catchment (map 150) and note the limits of a project that has a narrow margin (1 or 2 cells) around the subcatchment |
| RASCAL < RASCAL.IN | [5.1] | Create a RASCAL project for each subcatchment using the limits noted in the previous step                                               |

At this stage, each subcatchment project contains the following maps:

3 TM BAND 3 4 TM BAND 4 5 TM BAND 5 **11 RAINFALL 12 PAN EVAPORATION 21 ELEVATION** 22 LAKE=10 **50 GAUGING LOCATIONS 102 ASPECT 103 PLAN CURVATURE 104 SLOPE CURVATURE** 105 DRAIN REDUCED SLOPE 107 SLOPE 115 LAKE=0, OTHER=1 **116 DRAINAGE DIRECTIONS** 117 DISPERSED DRAINAGE 119 NOS OF CELLS 120 11,90,40,12,13,7,40,43,127,131,130,220 123 GREENNESS > 0 124 FULL PASTURE LAI=2.1 125 NEGLIGIBLE PASTURE UPSTREAM = 1 130 SMOOTHED INFIL RATE **150 CATCHMENTS** 

[Map 120 is GREENNESS based on values of TM bands 3,4.5 shown in title for pure components of greenness(11,90,40), shade(12,13,7), dead pasture(40,43,127) and bare soil(131,130,220)]

### 3.3 PERFORM HYDROLOGIC MODELLING ON EACH SUBCATCHMENT

To automate the processing of all subcatchments, the batch file RUNRUN.BAT combines the functions of initial modelling, planting and reviewing [7.2, 7.3, 7.4]. It includes labelling output files with the subcatchment id number, and compressing the RASCAL projects to remove scratch maps and archive the final files. RUNRUN processes one subcatchment whose id no. is the parameter. A higher level batch file, RUNALL.BAT, runs RUNRUN for all subcatchments.

RUNALL [7.1] Execute RUNRUN

### 3.4 PREPARE DATA FOR PRESENTATION OF OUTPUT

### A. CLASSIFY RASTER MAPS

| RASCAL < CLASS.IN      | [8.1]        | <ul> <li>Generate maps of:</li> <li>3 rates of seepage (10, 20 &amp; 50 cu.m/yr)</li> <li>Native forest and scattered trees</li> <li>Proposed sites for planted trees</li> <li>Major streams</li> </ul> |
|------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. CONVERT RASTER MA   | APS TO POLYO | GONS FOR PRESENTATION IN MICROSTATION                                                                                                                                                                   |
| RASCAL < MAP.IN        | [8.2]        | Generate output files of polygon coordinates                                                                                                                                                            |
| USTATION               | [8.3]        | Import polygons to design file as linework, generate polygons, pattern the polygons, and plot maps of results.                                                                                          |
| C. OUTPUT DATA FOR TAE | BLES [8.4]   |                                                                                                                                                                                                         |
| TABLALL                | [8.4.1]      | Collect data from output files from hydrological modelling and summarize into text files.                                                                                                               |
| DATĄIN                 | [8.4.2]      | Read summarized text files into EXCEL spreadsheets.                                                                                                                                                     |
| PRINTALL               | [8.4.3]      | Print EXCEL spreadsheets.                                                                                                                                                                               |

## 4. Flow of map generation in Rascal Projects

The following table summarises the maps required as input and the maps produced as output for the processes involving RASCAL projects:

| Input Maps                                                                   | Process                   | Ref                                                | Output Maps                              |
|------------------------------------------------------------------------------|---------------------------|----------------------------------------------------|------------------------------------------|
|                                                                              | Interpolate from isolines | [5.2]<br>[5.3]<br>[5.4]<br>[5.2]<br>[5.5]<br>[5.6] |                                          |
|                                                                              | USTATION                  | [5.2]                                              | 11 Rainfall                              |
|                                                                              | GRIDSF                    | [5.3]                                              | 12 Pan Evaporation                       |
|                                                                              | STORE                     | [5.4]                                              | 21 Elevation                             |
|                                                                              | Grid polygon themes       |                                                    |                                          |
|                                                                              | USTATION                  | [5.2]                                              | 22 Lakes                                 |
|                                                                              | LISTIN                    | [5.5]                                              |                                          |
|                                                                              | LNKEND                    | [5.6]                                              |                                          |
|                                                                              | POL2RAS                   | [5.7]                                              |                                          |
|                                                                              | Load Landsat TM data      | , , , <b>, , , , , , , , , , , , , , , , </b>      |                                          |
|                                                                              | LSDEX                     | [5.8]                                              | 3 TM Band 3                              |
|                                                                              | STORE                     | [5.9]                                              | 4 TM Band 4                              |
|                                                                              |                           | [••••]                                             | 5 TM Band 5                              |
|                                                                              | Prepare base maps         |                                                    |                                          |
|                                                                              | PREMODEL                  | [6.1]                                              |                                          |
| 3 TM Band 3                                                                  | GREEN96                   | [6.1.1]                                            | 120 Greenness labelled by coords of      |
| 4 TM Band 4                                                                  |                           | . ,                                                | pure components, i.e. 11 90 40, 12 13 7, |
| 5 TM Band 5                                                                  |                           |                                                    | 40 43 127, 131 130 220                   |
| 4 TM Band 4                                                                  | GRNWAR96                  | [6.1.2]                                            | 303 Green > 0                            |
| 5 TM Band 5                                                                  |                           |                                                    | 304 Full Pasture LAI = 2.1               |
| 11 Rainfall                                                                  |                           |                                                    |                                          |
| 12 Pan Evaporation                                                           |                           |                                                    |                                          |
| 120 Greenness                                                                |                           |                                                    |                                          |
|                                                                              | Prepare subcatchments     |                                                    | · · · ·                                  |
|                                                                              | INIT                      | [6.3]                                              |                                          |
| 21 Elevation                                                                 | TERRAIN                   | [6.3.1]                                            | 102 Aspect                               |
|                                                                              | *                         |                                                    | 103 Plan Curvature                       |
|                                                                              |                           |                                                    | 105 Slope                                |
| 21 Elevation                                                                 | DRAIN                     | [6.3.2]                                            | 116 Drainage Directions                  |
| 102 Aspect                                                                   |                           |                                                    |                                          |
| 102 Aspect                                                                   | DISPER                    | [6.3.3]                                            | 117 Dispersed Drainage                   |
| 103 Plan Curvature                                                           |                           |                                                    |                                          |
| 116 Drainage Directions                                                      |                           |                                                    |                                          |
| 105 Slope                                                                    | INFRATE                   | [6.3.4]                                            | 130 Smoothed Infiltration Rate           |
| 116 Drainage Directions                                                      |                           |                                                    | 107 Actual Slope                         |
| 117 Dispersed Drainage                                                       |                           |                                                    | 105 Drain Reduced Slope                  |
| 116 Drainage Directions                                                      | INTDRA                    | [6.3.5]                                            | 119 Drain Integral of Nos of Cells       |
| <ul><li>116 Drainage Directions</li><li>304 Full Pasture LAI = 2.1</li></ul> | RELG                      | [6.3.6]                                            | 125 Negligible Pasture Upstream = 1      |



| Input Maps                                                                                                                                                                                                                                        | Process                         | Ref     | Output Maps                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                   | BLANK                           | [6.3.7] | 50 Blank Map for Gauging<br>Locations                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                   | SEERAS                          | [6.4]   | 50 Gauging Locations                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul><li>116 Drainage Directions</li><li>50 Gauging Locations</li></ul>                                                                                                                                                                            | САТСН                           | [6.5]   | 150 Catchments                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul><li>116 Drainage Directions</li><li>117 Dispersed Drainage</li><li>150 Catchments</li></ul>                                                                                                                                                   | TRIM                            | [6.6]   | 116 Drainage Directions<br>117 Dispersed Drainage                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                   | Hydrologic modelling<br>GWMODEL | [7.1]   |                                                                                                                                                                                                                                                                                                                                                                                                           |
| As Above                                                                                                                                                                                                                                          | GRNWAR96                        | [6.1.2] | As Above                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>11 Rainfall</li> <li>12 Pan Evaporation</li> <li>105 Drain Reduced Slope</li> <li>116 Drainage Directions</li> <li>117 Dispersed Drainage</li> <li>150 Catchments</li> <li>303 Green &gt; 0</li> <li>304 Full Pasture LAI=2.1</li> </ul> | GWMLYS                          | [7.2.1] | <ul> <li>253 Deep Throughflow</li> <li>254 Surplus Recharge to deep</li> <li>411 Rain Minus ET</li> <li>412 Final Shallow Storage</li> <li>413 Run-off</li> <li>414 Infiltration to Deep in Month</li> <li>421 Pasture ET in Month</li> <li>436 Annual Tree Transpiration</li> <li>439 Pasture Max. Transpiration</li> <li>441 Net Recharge to Deep</li> <li>442 Potential Recharge, Discharge</li> </ul> |
| As for GWMLYS Plus:<br>412 Final Shallow Storage<br>436 Annual Tree Transp.<br>439 Pasture Max. Transp.<br>442 Deep Recharge,                                                                                                                     | GWMLY2                          | [7.2.2] | As for GWMLYS Plus:<br>241 Run-off adjusted for Lakes<br>242 Total Pasture ET<br>243 Streamflow<br>244 Minimum Storage<br>245 Storage Loss<br>251 Total Net Recharge to Deep<br>252 Final Deep Drainage<br>420 Current Deep Store<br>422 Surplus Deep Store<br>423 Net Recharge in Month<br>440 Initial Storage Loss<br>447 Final +ve Deep Drainage<br>449 Integrated Storage Loss                        |
| As for GWMLY2                                                                                                                                                                                                                                     | GWMLY3                          | [7.2.3] | As for GWMLYS Plus:<br>246 Final Shallow Store<br>247 Final Deep Store                                                                                                                                                                                                                                                                                                                                    |
| <ul><li>252 Final Deep Drainage</li><li>253 Deep Throughflow</li><li>254 Surplus Recharge to deep</li></ul>                                                                                                                                       | SMDISCH                         | [7.2.4] | <ul><li>255 Smoothed Seepage Volume</li><li>256 Smoothed Deep Discharge</li><li>257 Smoothed Throughflow</li><li>258 Smoothed Surplus Recharge</li><li>259 Seepage area</li></ul>                                                                                                                                                                                                                         |



| Input Maps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Process                                | Ref                                      | Output Maps                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>241 Run-off adj. for Lakes</li> <li>242 Total Pasture ET</li> <li>243 Streamflow</li> <li>244 Minimum Storage</li> <li>245 Storage Loss</li> <li>251 Total Net Rech. to Deep</li> <li>252 Final Deep Drainage</li> <li>253 Deep Throughflow</li> <li>254 Surplus Recharge to deep</li> <li>255 Smoothed Seepage Vol.</li> <li>256 Smoothed Deep Disch.</li> <li>257 Smoothed Throughflow</li> <li>258 Smoothed Surplus Rech.e</li> <li>303 Green &gt; 0</li> <li>304 Full Pasture LAI=2.1</li> </ul> | SAVORIG                                | [7.2.5]                                  | 201 Run-off adj. for Lakes<br>202 Total Pasture ET<br>203 Streamflow<br>204 Minimum Storage<br>205 Storage Loss<br>211 Total Net Rech. to Deep<br>212 Final Deep Drainage<br>213 Deep Throughflow<br>214 Surplus Recharge to deep<br>215 Smoothed Seepage Vol.<br>216 Smoothed Deep Disch.<br>217 Smoothed Throughflow<br>218 Smoothed Surplus Rech.e<br>123 Green > 0<br>124 Full Pasture LAI=2.1 |
| <ul> <li>11 Rainfall</li> <li>12 Pan Evaporation</li> <li>105 Drain Reduced Slope</li> <li>117 Dispersed Drainage</li> <li>123 Green &gt; 0</li> <li>124 Full Pasture LAI=2.1</li> <li>125 Neg. Past. U/s = 1</li> <li>201 Run-off adj. for Lakes</li> <li>202 Total Pasture ET</li> <li>212 Final Deep Drainage</li> <li>213 Deep Throughflow</li> <li>214 Surplus Recharge to deep</li> <li>216 Smoothed Deep Disch.</li> </ul>                                                                             | PLANT .                                | [7.3]                                    | <ul> <li>331 Deep G/W Drawn by Planted<br/>Trees</li> <li>332 Smoothed Planted Discharge</li> <li>333 Planted Tree Greenness</li> <li>421 Planted Tree Criterion</li> </ul>                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | REVIEW                                 | [7.4]                                    |                                                                                                                                                                                                                                                                                                                                                                                                    |
| 123 Green > 0<br>124 Full Pasture LAI=2.1<br>333 Planted Tree Greenness                                                                                                                                                                                                                                                                                                                                                                                                                                       | NEWPAST                                | [7.4.1]                                  | 303 Green > 0<br>304 Full Pasture LAI=2.1                                                                                                                                                                                                                                                                                                                                                          |
| As Above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GWMLYS<br>GWMLY2<br>GWMLY3<br>SMDISCH  | [7.2.1]<br>[7.2.2]<br>[7.2.3]<br>[7.2.4] | As Above                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul><li>119 Drain Int. of Nos of Cells</li><li>123 Green &gt; 0</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                     | Make maps for plotting<br>CLASS<br>MAP | [8.1]                                    | 425 Classed Seepage Rates                                                                                                                                                                                                                                                                                                                                                                          |
| <ul><li>227 Smoothed Deep Disch.</li><li>333 Planted Tree Greenness</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                 | USTATION                               | [8.2]<br>[8.3]                           | 426 Original Tree Cover<br>427 Proposed Sites for Planting<br>428 Streams with Catch. > 100ha                                                                                                                                                                                                                                                                                                      |

### 5. Convert raw data to equivalent maps in a Rascal Project

### 5.1 RASCAL.IN --- INPUT FILE TO CREATE RASCAL PROJECT

TONEALLI Y 462500 6207975 830 1050 25 N

Defines the location and size of the project named 'TONEALL1'. [ref HOW RASCAL]. Vary name and data for other projects.

### 5.2 USTATION - EXPORT DIGITISED LINES REQUIRED FOR GRIDDING

Open the MicroStation design file containing the data which is to be gridded. Discern at which level the lines are currently residing by using the 'ANALYSE' function. When the gridding is to be interpolation between lines such as contours, then it may be more efficient to export the required region to a new design file first, if the region to be gridded is only a small subset of the contours. It should be noted that an edge strip should be allowed beyond the immediate gridding region such that at least two contours are cut when crossing the strip at any location.

Special functions have been developed by the Computer Services Section of the Water Resources Directorate for use within MicroStation. The functions are referred to as MDL's because they are written in the MicroStation Development Language.

Use the Polygon Utility MDL DGN2ASC to export the lines into the text format which can be read by M.A.G.I.C. programs. The text format is described in HOW LISTIN. Before executing DGN2ASC, make sure contours are either in a 3D design file or have been 'tagged' with the ground level using the MDL TAGGING. Polygons must be 'tagged' with a value which represents the theme that is mapped by the polygon.

### 5.3 GRIDSF.IN

| GRID.DAT    | [5.3.1] |                                             |
|-------------|---------|---------------------------------------------|
| OUT.PRN     |         | File for messages generated by program      |
| EXAMPLE.TXT |         | File exported from MicroStation design file |
| EXAMPLE.GRD |         | Output file for input to RASCAL project     |
| Y           |         |                                             |

For further details of running program refer to manual [ref HOW GRIDSF]

### 5.3.1 CONTENTS OF GRID.DAT

| METHOD,ICONTR,RADIUS,QUAD,EDGE        |                                                   |
|---------------------------------------|---------------------------------------------------|
| 2 0 .FT. 1300                         | Consider data within 1300m of gridding area       |
| NWX,NWY,WCS,NPTGL,NPTGQ               |                                                   |
| 0 0 7000 6 10                         | Set basic 'window' over gridding point to 7000m   |
| FMT, SING,SURF,WIND                   |                                                   |
| (2F10.0,F10.4)' .FF. 0<br>200 800     | Set output format and options for program reports |
| 463512.5 6227987.5 468487.5 6227987.5 |                                                   |
| 468487.5 6208012.5 463512.5 6208012.5 |                                                   |
|                                       |                                                   |

The last 3 lines define centers of cells for gridding positions in GRIDL1. See "Quad Option" in HOW GRIDSF. Two numbers on 3rd last line are number of columns and rows respectively. Sequence of corner coordinates must be NW, NE, SE, SW to generate rows scanning West to East from North to South. Computed values of -99 indicate failure to calculate elevation, possibly due to lack of data in the vicinity. More data may be made available by increasing the EDGE value (1300 in above example). Increasing the window size (WCS) may solve the problem in some situations. Refer [HOW GRIDSF] for further information.

### 5.4 CONTENTS OF STORE.IN

| TONEALLI    |         | RASCAL project to receive data         |
|-------------|---------|----------------------------------------|
| STORE.DAT   | [5.4.1] |                                        |
| OUT.PRN     |         | File for messages generated by program |
| Y           |         | Extra data file to be nominated        |
| EXAMPLE.GRD | [5.3]   | Name of extra data file                |
| Y           |         | Update default filenames               |
|             |         |                                        |

Imports the list of gridded values into the RASCAL project 'TONETM1'.

#### 5.4.1 CONTENTS OF STORE.DAT

| 21STORER4   | 1 | ELEVATION |
|-------------|---|-----------|
| (20X,F10.0) |   |           |
| END         |   |           |

Specifies that the gridded data is to be stored in map 21 as 4-byte Real values. The input data has '20x,F10.0' format and is located in a separate file. Refer [HOW STORE] for further information.

### 5.5 CONTENTS OF LISTIN.IN

WARLAKE.ASCText format file created by DGN2ASCWARLAKE.PANPOLYANA file of same dataOUT.PRNFile for messages generated by programYUpdate default filenames

Refer HOW LISTIN.

### 5.6 CONTENTS OF LNKEND.IN

WARLAKE.PAN WARLAKEL.PAN N 5000 Y Input POLYANA file Output POLYANA file All records processed Consider joining if distance between ends<5000m Update default filenames

Example taking output of [5.5] and generating new, linked file WARLAKEL.PAN. Refer HOW LNKEND.

### 5.7 CONTENTS OF POL2RAS.IN

P WARLAKEL.PAN *TONEALL1* OUT.PRN 22 LAKE = 10 12 99 ERROR MAP 12 N N N Y

Gridding polygons Input POLYANA file Receiving RASCAL project File for messages Map no. for output Title of output map Data type of output map Map no. for recording irregular results н Title of map 11 Data type of map " ... 11 All polygons to be gridded No more selection criteria Update default filenames

Refer HOW POL2RAS for more information.

### 5.8 CONTENTS OF LSDEX.IN

EXAMPLE.TM EXAMPLE 4000 25 4096 24.91 6200000 450000 7 3 3 4 5 6162000 6183000 492000 512000 25 25 Y TM data source file Name for output data files Size of source data Location of NW corner, # of bands of source # of bands to output, list of band nos to output Bounds of area to output Cell dimensions in output Update default filenames

The above is an example of LSDEX.IN contents. The actual file contents depends on the source of TM data. Program LSDEX may need to be run on different computers which can use the hardware which stores the TM data, e.g. magnetic tapes or cartridges. Program modifications may be needed to do this. Output files would then be transferred to the PC running RASCAL.

Output data is a separate file for each band at the specified spatial extent and resolution. The names of the files have extensions .LSn where 'n' is the band numbers. The above example would generate 3 output files: EXAMPLE.LS3, EXAMPLE.LS4 and EXAMPLE.LS5. Refer to [HOW LSDEX] for further information.

### 5.9 STORETM.IN

| EXAMPLE           |         | RASCAL project name         |
|-------------------|---------|-----------------------------|
| STORETM.DAT       | [5.9.1] |                             |
| OUT.PRN           |         | File for messages           |
| Y                 |         | Extra data file to be given |
| EXAMPLE.LS3       | [5.8]   | File generated by LSDEX     |
| Y                 |         | Update default filenames    |
| 5.9.1 STORETM.DAT |         |                             |
| 3STORE            | 2       | TM BAND 3                   |
| END               |         |                             |

Imports the Thematic mapping data from the file 'EXAMPLE.LS3' into the project 'EXAMPLE'. Refer [HOW STORE] for further information.

### 6. Compute maps required as input to the hydrologic model

### 6.1 CONTENTS OF PREMODEL.BAT

CALL PMIN GREEN96.DAT DUMMY %1[6.1.1] Make greenness from Warren TM dataRASCAL < PMIN.DAT</td>[6.1.3]CALL PMIN GRNWAR96.DAT DUMMY %1[6.1.2] Interpret tree greenness and pasture LAIRASCAL < PMIN.DAT</td>

'CALL PMIN' will execute the batch file PMIN.BAT [6.1.3] which contains the commands used to generate a file called 'PMIN.DAT' [6.1.3.1] containing appropriate keyboard responses to run RASCAL. The file 'PMIN.DAT' is used as input to RASCAL on the subsequent line ('RASCAL < PMIN.DAT'). Parameter DUMMY has no effect in these RASCAL runs.

#### 6.1.1 CONTENTS OF GREEN96.DAT

*120*EXPR R4 11 90 40,12 13 7,40 43 127,131 130 220 100/(((13-43)\*(7-220)-(7-127)\*(13-130))\*(11-12) : +((7-127)\*(12-131)-(12-40)\*(7-220))\*(90-13) : GREEN PT TO PLANE +((12-40)\*(13-130)-(13-43)\*(12-131))\*(40-7)) : \*(((13-43)\*(7-220)-(7-127)\*(13-130))\*(M3-12) : +((7-127)\*(12-131)-(12-40)\*(7-220))\*(M4-13) : DATA PT TO PLANE +((12-40)\*(13-130)-(13-43)\*(12-131))\*(M5-7)) END

Generates the greenness map. Map title records values of TM data in Bands 3, 4 and 5 corresponding to pure green leaf, shade, dead vegetation and bare soil respectively. Formula computes % of green leaf in cell assumed to contain a mixture of these components. Refer (Mauger 1994).

Refer [HOW EXPR] for details about writing an expression.

#### 6.1.2 CONTENTS OF GRNWAR96 .DAT

303EXPR R4 GREEN > 0 IF(M4<35\*.6+8.4 | M120<6.5 | M5>140,0, : WATER, PASTURE OR CLAY M120 : NATIVE VEGETATION ) 304*EXPR R4* FULL PASTURE LAI = 2.1 IF(M4<35\*.6+8.4 | M5<115\*.71+3 | M120<-10,0, : WATER OR CLAY : PASTURE LAI=2.1 WITH NO TREES 2.1\*(1 - M303 / (.0087\*M11-.0051\*M12+35.85)): COMBINATION OF PASTURE AND TREES ) 304*EXPR R4* FULL PASTURE LAI = 2.1 IF(M304<0,0,M304) END

Generates the greenness > 0 of native vegetation, and the peak leaf area index of pasture.

#### 6.1.3 CONTENTS OF PMIN.BAT

ECHO %3 > PMIN.DAT ECHO %1 >> PMIN.DAT ECHO OUT.PRN >> PMIN.DAT ECHO Y >> PMIN.DAT ECHO %2 >> PMIN.DAT ECHO Y >> PMIN.DAT

Parameter %1 is the name of the RASCAL input command file. %2 is the name of the extra data file for RASCAL. If none of the commands in the command file use an extra data file, the name used is immaterial. %3 is the name of the RASCAL project (i.e. name of file without extension .RAS).



### 6.2 CONTENTS OF LOADSC.BAT

#### CALL COPYBASE TONE1

Load maps into subcatchment project TONE1

Repeat this line in file LOADSC.BAT, changing the number in the subcatchment project name each time, so that the command is performed on every subcatchment.

#### 6.2.1 CONTENTS OF COPYBASE.BAT

CALL COPYIN %I TONEALL1 COPYRAS < COPYRAS.IN CALL COPYIN %I TONEALL2 COPYRAS < COPYRAS.IN CALL COPYIN %I TONEALL3 COPYRAS < COPYRAS.IN CALL COPYIN %I TONEALL4 COPYRAS < COPYRAS.IN

#### Prepare input file for COPYRAS, to copy from the first 'base project'. Then execute COPYRAS. Repeat for each base project, including low resolution project

#### 6.2.1.1 CONTENTS OF COPYIN.BAT

ECHO %2 > COPYRAS.IN ECHO %1 >> COPYRAS.IN ECHO OUT.PRN >> COPYRAS.IN ECHO N >> COPYRAS.IN ECHO ALL >> COPYRAS.IN ECHO 1 200 >> COPYRAS.IN ECHO 1 >> COPYRAS.IN ECHO 2 1 >> COPYRAS.IN ECHO Y >> COPYRAS.IN Donor project name Project receiving maps Output file for messages Take value of 'nearest neighbour' cell Copy to whole area of receiving maps Copy maps numbered 1 through to 200 Map numbers of copies to start at 1 No more ranges of map numbers to copy Update default file names from this run

Refer [HOW COPYRAS] for details of running program COPYRAS.

#### 6.3 CONTENTS OF INIT.BAT

CALL PMIN TERRAIN.DAT DUMMY %1 [6.3.1] Make slope etc from elevation RASCAL < PMIN.DAT CALL PMIN DRAIN.DAT DUMMY %1 [6.3.2] Make simple, sink-free drainage directions RASCAL < PMIN.DAT CALL PMIN DISPER.DAT DUMMY %1 [6.3.3] Make dispersed drainage codes RASCAL < PMIN.DAT CALL PMIN INFRATE.DAT DUMMY %1 [6.3.4] Infiltration rate to bottom soil layer RASCAL < PMIN.DAT CALL PMIN INTDRA.DAT DUMMY %1 [6.3.5] # cells in catchment from simple drainage RASCAL < PMIN.DAT CALL PMIN RELGDAT DUMMY %1 [6.3.6] Cells with negligible upstream clearing RASCAL < PMIN.DAT CALL PMIN BLANK.DAT DUMMY %1 [6.3.7] Make blank map for catchment outlets RASCAL < PMIN.DAT

'CALL PMIN' will execute the batch file PMIN.BAT [6.1.3]

### 6.3.1 CONTENTS OF TERRAIN.DAT

2/TERRAR4105102103 END

Generates slopes, aspect and plan curvature. Refer [HOW TERRA] for further information.

### 6.3.2 CONTENTS OF DRAIN.DAT

117DRAINI2116 21 102 END

Generates drainage (116) and trace (117) maps. Refer [HOW DRAIN] for further information.

62

#### 6.3.3 CONTENTS OF DISPER.DAT

#### 117DISPEI2102103116 END

Generates dispersed drainage map (117). Overwrites trace map from DRAIN which is not needed. Refer [HOW DISPER] for more explanation.

#### 6.3.4 CONTENTS OF INFRATE.DAT

Start by putting the original slope map in map 107 so that modified map can be stored in map 105 105SWAP 107 : Add 'water' in excess of saturation 130EXPR INITIAL CELL STATE 1000 : Allow flow as per shallow groundwater : (hence answer depends on soil values of permeability, depth, porosity) : Aspect map 102 in INTDR command invokes slope modification, storing results in map 105 130INTDRR4130117107 11102105 30.2 0 0 0 0 : subtract original vol. (+= convergence, -=divergence) **130EXPR R4** FLOW CONVERGENCE M130-1000 : apply regression found from net recharge under native forest INFIL RATE EX CONVERGENCE **130EXPR R4** 18-.63\*M130 : average result over adjacent cells 130ASEARR4130 421 SUMMED INFIL RATE EX CONVERG 130EXPR R4 SMOOTHED INFIL RATE EX CONVERG M130/M421 : set any negative values to zero SMOOTHED INFIL RATE EX CONVERG **130EXPR R4** IF(M130<0.0,M130) END

Generates a map containing cell infiltration rates calculated using balanced infiltration rates and convergence.

#### 6.3.5 CONTENTS OF INTDRA.DAT

119INTDRI4 116 END

Generates map (119) of nos. of cells integrated along drainage paths. Each cell thus contains a number equal to the catchment area draining to that cell, in units of nos. of cells. Refer [HOW INTDRA] for more explanation.

#### 6.3.6 CONTENTS OF RELG.DAT

125INTDRI4304116clearing in path125EXPRNEGLIGIBLE PASTURE UPSTREAM = 1: cleared area = M125/LAI. If clearing <~2% of total area, mark as neg. u/s pasture</td>IF( M125<M119\*.05, 1,0)</td>END

#### 6.3.7 CONTENTS OF BLANK.DAT

50EXPR 0

END

GAUGING LOCATIONS

Sets all cell values in map 50 to zero.

### 6.4 USE OF SEERAS FOR MANUAL MAP EDITING AND VIEWING

SEERAS is the program which displays maps from a RASCAL project on the computer screen. For its operation, refer [HOW SEERAS].

To generate maps of catchment areas, one cell at the outlet of each catchment needs to be given a value which identifies the catchment. If the outlet is a gauging station, its coordinates may be known, and when the map is displayed, the cursor could be placed at those coordinates. However it is essential that the cell chosen is one through which all drainage paths from within the catchment will pass. Such cells are easiest identified by displaying the map of integrated numbers of cells (map 119) [6.3.5] which looks like a drainage network. Consequently, to set the outlet cell values, display map 119 and the blank map 50 [6.3.8] together. Locate the cell closest to the desired coordinates which is also on the main drainage path. Then change the value of that cell in map 50. Saving the changes in map 50 creates the map required as input to catchment area generation [6.5].

To define a smaller rectangular area to be used as the border of a new project, first ensure the display of the map showing features to guide the area is zoomed 'in' (i.e. press 'I'). Then move the cursor to the row or column that will form the new border. Note that the coordinate shown in the detail panel is the cell centre. When creating the new project with RASCAL, the outside edge of the southwest cell must be given, i.e. half a cell width to the south and west. RASCAL also asks for the number of rows and columns in the project. These numbers must be calculated from the coordinates of the northen and eastern extremities.

### 6.5 CONTENTS OF CATCH.IN

CALL PMIN CATCH.DAT *DUMM*Y %1 [6.5.1] Catchment map generation RASCAL < PMIN.DAT

'CALL PMIN' will execute the batch file PMIN.BAT [6.1.3]

#### 6.5.1 CONTENTS OF CATCH.DAT

50CATCH 116 50 END CATCHMENTS

Generates catchment map. Refer [HOW CATCH] for further information.

### 6.6 CONTENTS OF TRIM.IN

CALL PMIN TRIM.DAT *DUMMY* %1 RASCAL < PMIN.DAT [6.6.1] Mark cells outside catchment to limit drainage integration

#### 6.6.1 CONTENTS OF TRIM.DAT

116EXPR IF(M150>0,M116,-99) 117EXPR IF(M150>0,M117,-99) END DRAINAGE DIRN TRIMMED

#### DISP DRAINAGE TRIMMED

### 7. Hydrologic modelling

### 7.1 CONTENTS OF RUNALL.BAT

CALL RUNRUN 01

[7.1.1] Repeat this line in RUNALL.BAT, changing the subcatchment id no. for all subcatchments to be run.

#### 7.1.1 CONTENTS OF RUNRUN.BAT

CALL GWML TONE %1 COPY \*.Y? RESULTS COPY \*.SM RESULTS COPY \*.OVR RESULTS DEL \*.Y? DEL \*.SM DEL \*.OVR DEL TONE%1.MAP DEL TONE%1.RAS PKZIP TONEI%1.TONE1%1.\* PKZIP2EXE TONEI%1 DEL TONEI%1.MAP DEL TONEI%1.RAS DEL TONEI%1.ZIP [7.2] Perform modelling, renaming and COMPRAS Archive output files.

Delete redundant files

### 7.2 CONTENTS OF GWML.BAT

CALL PMIN GRNWAR96.DAT DUMMY %1 [6.1.2] Native forest and pasture density RASCAL < PMIN.DAT (needed if changing pasture LAI) CALL PMIN GWMLYS.DAT DUMMY %1 [7.2.1] Start all cells saturated, simulate 1 RASCAL < PMIN, DAT year to get initial cell soil moisture & estimate net recharge to deep CALL PMIN GWMLY2.DAT DUMMY %1 [7.2.2] Simulate 1 year with deep g/w RASCAL < PMIN.DAT flow to improve initial moistureand net recharge estimates CALL PMIN GWMLY3.DAT DUMMY %1 [7.2.3] Simulate final year to estimate RASCAL < PMIN.DAT deep g/w discharge & streamflow CALL PMIN SMDISCH.DAT DUMMY %1 [7.2.4] 'Smooth' deep g/w output maps RASCAL < PMIN.DAT CALL PMIN SAVORIG.DAT DUMMY %1 [7.2.5] Save output maps from simulations RASCAL < PMIN.DAT CALL PMIN PLANT.DAT Y2.OUT %1%2 Nominate tree planting to meet [7.3] deep groundwater use criteria RASCAL < PMIN.DAT Rename OVROUT output files to COPY ??.Y? ??BS%2.Y? COPY ??.SM ??BS%2.SM include subcatchment id no. COPY ??.OVR ??BS%2.OVR CALL REVIEW %1%2 [7.4] Batch run to review modelling after nominated tree planting COPY ??.Y? ??TR%2.Y? COPY ??.SM ??TR%2.SM CALL COMPRIN %1 %2 [7.5] Eliminate scratch maps COMPRAS < COMPRIN.DAT (map no.>400)

Refer to section [6.1.3] for explanation of 'CALL PMIN'. Parameter %1 is name of project for a subcatchment.

### 7.2.1 CONTENTS OF GWMLYS.DAT

:RUN SHALLOW GROUNDWATER SIMULATION FOR 12 MONTHS AS A PRELIMINARY :ANALYSIS TO GET ESTIMATE OF INITIAL WATER STORAGE FOR PROJECTS :WHICH CONTAIN LAKES. SET CELLSIZE 25 SET FACTOR CELLSIZE^2/625 SET DRY 20\*FACTOR SET DEPTH 1.5 SET K 30 SET POROSITY .2 SET WATERST POROSITY\*DEPTH\*CELLSIZE^2 :304COPY 124 :303COPY 123 :Convert pan evap and LAI to transpiration. PAN/LEAF = .352 PASTURE MAX. TRANSPIRATION(MM) **439EXPR R4** .352\*M12\*M304 ANNUAL TREE TRANSPIRATION (MM) 436EXPR R4 : NET RAIN / NATURAL GREENNESS \* ACTUAL GREENNESS 1.33 \*.85\*M11 / (.0087\*M11-.0051\*M12+35.85) \* M303 412EXPR R4 INITIAL WET STORAGE WATERST INITIAL DEEP STORAGE 441EXPR R4 0 PROC MONTH RAIN EVAP GROWTH 412EXPR R4 ADD RAIN M412 + M11\*RAIN\*FACTOR 421EXPR R4 PASTURE ET : PASTURE ET CANNOT CAUSE STORE TO BECOME LESS THAN -DRY MAX(0, MIN(M412+ DRY, EVAP\*FACTOR\*GROWTH\*M439)) SHALLOW STORE - PASTURE - TREES **412EXPR R4** M412 - M421 - EVAP\*FACTOR\*1.0\*M436 412INTDRR4412117105 11 1.5 30 .2 0 0 0 0 **INFILTRATION** 414EXPR R4 MAX(0,MIN(M412,M130)) 441EXPR R4 DEEP STORE : OLD STORE + INFILTRATION + .6 OF EXCESS ET ON SHALLOW STORE M441 + M414 + .6 \* MIN(0, M412 + DRY)STORAGE AFTER INFILT & ET 412EXPR R4 MAX(-DRY, M412 - M414) **RUN-OFF** 413EXPR R4 IF(M412>WATERST,M412-WATERST,0) 412EXPR R4 FINAL STORAGE M412 - M413 **ENDPROC** PROC MARCHAPRIL RAIN EVAP NAME ADD RAIN 412EXPR R4 M412 + M11\*RAIN\*FACTOR SHALLOW STORE - TREES 412EXPR R4 M412 - EVAP\*FACTOR\*1.0\*M436 412INTDRR4412117105 11 1.5 30 .2 0 0 0 0 INFILTRATION 414EXPR R4 MAX(0,MIN(M412,M130)) DEEP STORE **441EXPR R4** : OLD STORE + INFILTRATION + .6 OF EXCESS ET ON SHALLOW STORE M441 + M414 + .6 \* MIN(0, M412 + DRY)STORAGE AFTER INFILT & ET 412EXPR R4 MAX(-DRY, M412 - M414) **RUN-OFF 413EXPR R4** IF(M412>WATERST,M412-WATERST,0) FINAL STORAGE 412EXPR R4 M412 - M413 ENDPROC .049;.036; 1; SEPTEMBER MONTH MONTH .033;.054; 1; OCTOBER MONTH .013 ; .066 ; .93 ; NOVEMBER MONTH .008;.086;.74; DECEMBER MONTH .005; .091; .37; JANUARY .007;.079;.07; FEBRUARY MONTH .012;.070; MARCHAPRIL MARCH .028;.041; MARCHAPRIL APRIL .075;.029;.07; MAY MONTH MONTH .112;.022;.37; JUNE MONTH .106;.023;.74; JULY MONTH .083;.027;.93; AUGUST
442INTDRR444111710512INITIAL DEEP DRAINAGE20. 3 0 0 0 0253 254: COMPUTE CAPACITY OF SITE TO ACCEPT INFILTRATION IF NOT DISCHARGE442EXPR R4POTENTIAL RECHARGE & DISCHARGE: DISCH<=0, SURP RECH - NET RECH + (-VE) DISCH, ELSE +VE DISCH</td>IF(M442<=0,M254 - M441 + M442 , M442)</td>1500VROUT 442DD.Y11500VROUT 441NR.Y1FND

#### 7.2.2 CONTENTS OF GWMLY2.DAT

SET CELLSIZE 25 SET FACTOR CELLSIZE^2/625 SET DRY 20\*FACTOR SET DEPTH 1.5 SET K 30 SET POROSITY .2 SET WATERST POROSITY\*DEPTH\*CELLSIZE^2 440EXPR 12 INITIAL STORAGE LOSS WATERST - M412 420EXPR R4 INITIAL DEEP STORE 0 251COPY 420 CUM. NET RECHARGE 241COPY 420 INITIAL CUMULATIVE RUN-OFF 242COPY 420 INITIAL PASTURE ET TOTAL MONTHLY DISCHARGE 442EXPR R4 M442/12 PROC MONTH RAIN EVAP GROWTH 420EXPR R4 ADD DISCHARGE TO DEEP STORE MIN(0,M420) + M442**422EXPR R4** SURPLUS DEEP STORE MAX(0,M420) ADD RAIN & +VE DISCHARGE 412EXPR R4 M412+ M422 + M11\*RAIN\*FACTOR 421EXPR R4 PASTURE ET : PASTURE ET CANNOT CAUSE STORE TO BECOME LESS THAN -DRY MAX(0, MIN(M412+DRY, EVAP\*FACTOR\*GROWTH\*M439)) 242EXPR R4 TOTAL PASTURE ET M242 + M421 412EXPR R4 SHALLOW STORE - TREES M412 - M421 - EVAP\*FACTOR\*M436 412INTDRR4412117105 11 1.5 30 .2 0 0 0 0 414EXPR R4 INFILTRATION MAX(0,MIN(M412,M130)) 423EXPR R4 NET RECHARGE : INFILTRATION + .6 OF EXCESS ET ON SHALLOW STORE M414 + .6 \* (MIN(0,M412+DRY)) DEEP STORE 420EXPR R4 M420 + M423 - M422 251EXPR R4 CUM. NET RECHARGE M251 + M423 412EXPR R4 STORAGE AFTER INFILT & ET MAX(-DRY, M412 - M414 + MAX(0,M420)) 413EXPR R4 **RUN-OFF** IF(M412>WATERST,M412-WATERST,0) CUMULATIVE RUN-OFF LESS EVAP 241EXPR R4 M241 + MAX(M413-M115\*MAX(.7\*EVAP\*FACTOR\*M12-M421,0),0) **412EXPR R4** FINAL STORAGE M412 - M413 ENDPROC PROC MARCHAPRIL RAIN EVAP NAME

420EXPR R4 ADD DISCHARGE TO DEEP STORE MIN(0,M420) + M442SURPLUS DEEP STORE 422EXPR R4 MAX(0,M420) 412EXPR R4 ADD RAIN MARCH M412+ M422 + M11\*RAIN\*FACTOR SHALLOW STORE - TREES MARCH 412EXPR R4 M412 - EVAP\*FACTOR\*M436 412INTDRR4412117105 11 1.5 30 .2 0 0 0 0 **INFILTRATION** 414EXPR R4 MAX(0,MIN(M412,M130)) NET RECHARGE 423EXPR R4 : INFILTRATION + .6 OF EXCESS ET ON SHALLOW STORE M414 + .6 \* (MIN(0, M412+DRY))DEEP STORE **420EXPR R4** M420 + M423 - M422 251EXPR R4 CUM. NET RECHARGE M251 + M423 STORAGE AFTER INFILT & ET 412EXPR R4 MAX(-DRY, M412 - M414 + MAX(0, M420))**RUN-OFF** 413EXPR R4 IF(M412>WATERST,M412-WATERST,0) CUMULATIVE RUN-OFF LESS EVAP 241EXPR R4 M241 + MAX(M413-M115\*MAX(.7\*EVAP\*FACTOR\*M12-M421,0),0) 412EXPR R4 FINAL STORAGE M412 - M413 ENDPROC .049;.036;1; SEPTEMBER MONTH .033;.054; 1; OCTOBER MONTH MONTH .013 ; .066 ; .93 ; NOVEMBER .008;.086;.74; DECEMBER MONTH MONTH .005;.091;.37; JANUARY .007;.079;.07; FEBRUARY MONTH MARCHAPRIL .012;.070; MARCH .028;.041; APRIL. MARCHAPRIL 245COPY 412 END OF APRIL SHALLOW STORAGE MONTH .075 ; .029 ; .07 ; MAY MONTH .112;.022;.37; JUNE .106; .023; .74; JULY MONTH .083;.027;.93; AUGUST MONTH RUN-OFF ADJUSTED FOR LAKES 241EXPR R4 :For cells in lakes, & major streams remove annual evaporation M241-CELLSIZE/1000\*.7\*M12\*M23 :sum run-off over catchment and print to file SF.Y2 1500VROUT 241 SF.Y2 STORAGE LOSS 244EXPR R4 WATERST - M440 - M412 1500VROUT 244 SL.Y2 FINAL DEEP DRAINAGE 252INTDRR4251117105 12 20.30000 253 254 FINAL +VE DEEP DRAINAGE 447EXPR R4 IF(M252>0,M252,0) 1500VROUT 251 NR Y2 1500VROUT 447 DD.Y2 END

#### 7.2.3 CONTENTS OF GWMLY3.DAT

Because the storage loss in the year 2 simulation is usually significant, a third year is simulated with soil moisture starting at the final values for year 2. The storage loss in the year 3 simulation is usually acceptably small, as reported in file SL.Y3. The third year simulation of deep groundwater discharge is practically the same as for the second year, but streamflow is markedly different. If further convergence to the steady state was required, GWMLY3.DAT should be run again.



SET CELLSIZE 25 SET FACTOR CELLSIZE^2/625 SET DRY 20\*FACTOR SET DEPTH 1.5 SET K 30 SET POROSITY .2 SET WATERST POROSITY\*DEPTH\*CELLSIZE^2 : COMPUTE CAPACITY OF SITE TO ACCEPT INFILTRATION IF NOT DISCHARGE POTENTIAL RECHARGE & DISCHARGE 442EXPR R4 : DISCH<=0, SURP RECH - NET RECH + (-VE) DISCH, ELSE +VE DISCH  $IF(M252 \le 0, M254 - M251 + M252, M252)$ 440EXPR 12 INITIAL STORAGE LOSS WATERST-M412 420EXPR R4 INITIAL DEEP STORAGE 0 251COPY 420 CUM. NET RECHARGE 241COPY 420 INITIAL CUMULATIVE RUN-OFF 242COPY 420 INITIAL PASTURE ET TOTAL 442EXPR R4 MONTHLY DISCHARGE M442/12 PROC MONTH RAIN EVAP GROWTH ADD DISCHARGE TO DEEP STORE 420EXPR R4 MIN(0,M420) + M442 422EXPR R4 SURPLUS DEEP STORE MAX(0,M420) ADD RAIN & +VE DISCHARGE **412EXPR R4** M412+ M422 + M11\*RAIN\*FACTOR 421EXPR R4 PASTURE ET : PASTURE ET CANNOT CAUSE STORE TO BECOME LESS THAN -DRY MAX(0, MIN(M412+DRY, EVAP\*FACTOR\*GROWTH\*M439)) 242EXPR R4 TOTAL PASTURE ET M242 + M421412EXPR R4 SHALLOW STORE - TREES M412 - M421 - EVAP\*FACTOR\*M436 412INTDRR4412117105 11 1.5 30 .2 0 0 0 0 414EXPR R4 **INFILTRATION** MAX(0,MIN(M412,M130)) 423EXPR R4 NET RECHARGE : INFILTRATION + .6 OF EXCESS ET ON SHALLOW STORE M414 + .6 \* (MIN(0, M412+DRY))**420EXPR R4** DEEP STORE M420 + M423 - M422 **251EXPR R4** CUM. NET RECHARGE M251 + M423STORAGE AFTER INFILT & ET 412EXPR R4 MAX(-DRY, M412 - M414 + MAX(0,M420)) 413EXPR R4 **RUN-OFF** IF(M412>WATERST,M412-WATERST,0) CUMULATIVE RUN-OFF LESS EVAP 241EXPR R4 M241 + MAX(M413-M115\*MAX(.7\*EVAP\*FACTOR\*M12-M421,0),0) **412EXPR R4** FINAL STORAGE M412 - M413 ENDPROC PROC MARCHAPRIL RAIN EVAP NAME **420EXPR R4** ADD DISCHARGE TO DEEP STORE MIN(0,M420) + M442422EXPR R4 SURPLUS DEEP STORE MAX(0,M420) ADD RAIN MARCH **412EXPR R4** M412+ M422 + M11\*RAIN\*FACTOR 412EXPR R4 SHALLOW STORE - TREES MARCH M412 - EVAP\*FACTOR\*M436 412INTDRR4412117105 11

1.5 30 .2 0 0 0 0 INFILTRATION 414EXPR R4 MAX(0,MIN(M412,M130)) 423EXPR R4 NET RECHARGE : INFILTRATION + .6 OF EXCESS ET ON SHALLOW STORE M414 + .6 \* (MIN(0, M412+DRY))DEEP STORE **420EXPR R4** M420 + M423 - M422 CUM. NET RECHARGE 251EXPR R4 M251 + M423 STORAGE AFTER INFILT & ET **412EXPR R4** MAX(-DRY, M412 - M414 + MAX(0, M420))**413EXPR R4 RUN-OFF** IF(M412>WATERST,M412-WATERST,0) CUMULATIVE RUN-OFF LESS EVAP **241EXPR R4** M241 + MAX(M413-M115\*MAX(.7\*EVAP\*FACTOR\*M12-M421,0),0) 412EXPR R4 FINAL STORAGE M412 - M413 ENDPROC MONTH .049;.036;1; SEPTEMBER MONTH .033 ; .054 ; 1 ; OCTOBER MONTH .013 ; .066 ; .93 ; NOVEMBER MONTH .008 ; .086 ; .74 ; DECEMBER MONTH .005; .091; .37; JANUARY .007;.079;.07; FEBRUARY MONTH .012;.070; MARCHAPRIL MARCH MARCHAPRIL .028;.041; APRIL 245COPY 412 END OF APRIL SHALLOW STORAGE .075 : .029 : .07 : MAY MONTH MONTH .112;.022;.37; JUNE MONTH .106; .023; .74; JULY .083;.027;.93; AUGUST MONTH : SAVE FINAL SHALLOW STORE 246SWAP 412 RUN-OFF ADJUSTED FOR LAKES 241EXPR R4 :For cells in lakes & major streams, remove annual evaporation M241-CELLSIZE/1000\*.7\*M12\*M23 1500VROUT 241 SF.Y3 243INTDRI4241117 0 10 STREAMFLOW 243INTDRI4243118 STREAMFLOW 0 0 244EXPR R4 STORAGE LOSS WATERST - M440 - M246 1500VROUT 244 SL.Y3 252INTDRR4251117105 12 FINAL DEEP DRAINAGE  $20.\ 3\ 0\ 0\ 0\ 0$ 253 254 447EXPR R4 FINAL +VE DEEP DRAINAGE IF(M252>0,M252,0) 1500VROUT 251 NR.Y3 1500VROUT 447 DD.Y3 END

#### 7.2.4 CONTENTS OF SMDISCH.DAT

This command file 'smooths' maps by assigning to each cell the average of itself plus any adjacent cells that contain valid data. ASEAR (refer HOW ASEARCH) puts sum of valid cells in map 422, and no. of those cells in map 421. Next EXPR calculates positive averages. OVROUT then calculates sum within catchments and writes the sum to a text file.

422ASEARR4447 421 256EXPR R4 IF(M422>0,M422/M421,0) 1500VROUT 256 422ASEARR4253 421 257EXPR R4 SUMMED ADJACENT SMOOTHED DEEP DISCHARGE

DS.SM SUMMED ADJACENT SMOOTHED THROUGHFLOW

IF(M422>0,M422/M421,0) 1500VROUT 257 422ASEARR4254 421 258EXPR R4 IF(M422>0,M422/M421,0) 255INTDRR4256116 0 1500VROUT 125 1256 259EXPR I2 IF(M256>=7.5 & M125=0,1,0) 1500VROUT 128 1259 259INTDRI4259116 END

TF.SM SUMMED ADJACENT SMOOTHED SURPLUS RECHARGE

SMOOTHED SEEPAGE VOLUME PS.SM SEEP AREA

SA.SM SEEP AREA INTEGRATED

#### 7.2.5 CONTENTS OF SAVORIG.DAT

This command file is used to copy maps that will be changed in 'PLANT.DAT' [7.3] and 'REVIEW.BAT' [7.4], enabling comparisons to be made before and after reforestation.

303SWAP 123 :TREES GREEN>0 304SWAP 124 :PASTURE LAI=2.7 241SWAP 201 :CUMULATIVE RUN-OFF LESS EVAP 242SWAP 202 :TOTAL PASTURE ET 243SWAP 203 :STREAMFLOW 244SWAP 204 :MINIMUM SHALLOW+DEEP 245SWAP 205 :STORAGE LOSS 246SWAP 206 :FINAL SHALLOW STORE 247SWAP 207 :FINAL DEEP STORE 251SWAP 211 :NET RECHARGE 252SWAP 212 :FINAL DEEP DRAINAGE 253SWAP 213 :THROUGHFLOW 254SWAP 214 :SURPLUS RECHARGE 255SWAP 215 :SMOOTHED SEEPAGE VOLUME 256SWAP 216 :SMOOTHED DEEP DRAINAGE 257SWAP 217 :SMOOTHED THROUGHFLOW 258SWAP 218 SMOOTHED SURPLUS RECHARGE END

### 7.3 CONTENTS OF PLANT.DAT

Commands used to estimate the amount of reforestation required to minimise discharge and predict their location in the catchment.

#### :USE MAPS FROM 'SAVE ORIGINAL' POSITIONS

: To get good correspondence between predicted discharge and reviewed discharge, calculated :greenness must be based on unsmoothed deep groundwater maps.

: To avoid over-fragmenting recommended sites for planting, constrain planting to areas where :<u>smoothed</u> discharge exceeds a specified value, then use unsmoothed maps to plant trees wherever :unsmoothed discharge is greater than zero in the constrained areas.



: PLANT CELLS THAT ARE PASTURE AND WHERE SMOOTHED DISCHARGE > 12.5 PLANTED TREE CRITERION 421EXPR 12 IF(M124=0 OR M216<20,0,1) : tree planting criteria are 'cells where map 421>0, unsmoothed discharge > 0, rooting depth .3 of :bottom soil layer thickness' 332INTDRR4212117105 13 PLANTED DISCHARGE 20.3 0.3 0000 213 214 421 331 333EXPR R4 PLANTED TREE GREENNESS :Tree must use required g/w + total pasture ET + run-off IF(M331>0,(M331+M202+M201) : :compare to use by nat. veg i.e. total rain less interception less summer stress /(.5\*M11) : : greenness relative to natural veg LESS tree greenness already on cell \*(.0087\*M11-.0051\*M12+35.85) - M123,0) : Report predicted discharge in and out of native forest 1500VROUT 125 PD.OVR 1332 1500VROUT 333 PG.OVR 1500VROUT 421 PA.OVR END

## 7.4 CONTENTS OF REVIEW.BAT

CALL PMIN NEWPAST.DAT DUMMY %1 [7.4.1] Add planted trees to existing trees and RASCAL < PMIN.DAT adjust pasture accordingly CALL PMIN GWMLYS, DAT DUMMY %1 [7.2.1]RASCAL < PMIN.DAT CALL PMIN GWMLY2.DAT DUMMY %1 [7.2.2] RASCAL < PMIN.DAT CALL PMIN GWMLY3.DAT DUMMY %1 [7.2.3] RASCAL < PMIN.DAT CALL PMIN SMDISCH.DAT Y2.OUT %1 [7.2.4] RASCAL < PMIN.DAT

Refer to section [6.1] for explanation of 'CALL PMIN'.

### 7.4.1 CONTENTS OF NEWPAST.DAT

303EXPR R4<br/>M333 + M123GREEN WITH PLANTED TREES304EXPR R4<br/>IF(M333>0,0,<br/>M124PASTURE LEFT AFTER PLANTING<br/>: ZERO WHERE NEW TREES PLANTED<br/>: AS BEFORE ELSE WHERE<br/>)<br/>END

## 7.5 CONTENTS OF COMPRIN.BAT

This batch file creates COMPRIN.DAT to copy maps (disregarding scratch maps) into TONE11 from TONE1.

ECHO %1%2 > COMPRIN.DAT ECHO %11%2 >> COMPRIN.DAT ECHO OUT.PRN >> COMPRIN.DAT ECHO 1,333 >> COMPRIN.DAT ECHO 1 >> COMPRIN.DAT ECHO 2,1 >> COMPRIN.DAT ECHO Y >> COMPRIN.DAT

# 8. Convert raster maps to polygons for presentation in microstation

## 8.1 CONTENTS OF CLASS.IN

TONEII CLASS.DAT OUT.PRN

N Y [8.1.1] Subcatchment project being processed [8.1.1] For use with subcatchment projects (Seepage & Sites for Planting) File for messages Extra file is not needed Update default file names from this run

### 8.1.1 CONTENTS OF CLASS.DAT

425EXPR IF(M216>10 & M216<=20,1, :SEEP, IF(M216>20 & M216<=50,2, :SEEP, IF(M216>50,3, :SEEP, -99))) 426EXPR IF(M303>0 & M304=0,1, :NATT IF(M303>0 & M304>0,2, :SCAT -99)) 427EXPR IF(M333>0,1,-99) END

CLASSED SEEPAGE :SEEPAGE 10-20 CU.M/YR :SEEPAGE 20-50 CU.M/YR :SEEPAGE >50 CU.M/YR

ORIGINAL TREE COVER :NATIVE FOREST :SCATTERED PADDOCK TREES

PROPOSED SITES FOR PLANTING

## 8.2 CONTENTS OF MAP.IN

|         | Subcatchment project being processed    |
|---------|-----------------------------------------|
| [8.2.1] | Generate polygons                       |
| . ,     | File for messages                       |
|         | Extra file is needed for polygon output |
|         | Name of extra file                      |
|         | Update default file names from this run |
|         | [8.2.1]                                 |

When using command MAP, the file *MAP*.LAB is generated containing the polygon labels, as well as *MAP.ASC*. Polygons can only be generated from one map in one run of RASCAL due to the need to name the extra file for output.

### 8.2.1 CONTENTS OF MAP.DAT

To output polygons and labels:

| 425MAP | - 1 | [HOW MAP] |
|--------|-----|-----------|
| END    |     |           |

To output drainage lines:

| 428INTD | 428 | -1 | [HOW INTDRA] |
|---------|-----|----|--------------|
| END     |     |    |              |

## 8.3 USTATION

Use the Polygon Utility ASC2DGN MDL to load polygons into a Microstation design file. First set the 'active level' to the level where the lines are to be stored. Then use the ASC2DGN option 'import to active level' (not the alternative 'read levels from file'). Even though the data represents complete polygons, it should be read as linestrings, not polygons, so that Polygon Utility's polygon shading process can be used. It is advisable to use a new design file for each subcatchment if patterning is to be generated. After creation, the pattern files may be amalgamated into one file.

If the polygons are to be patterned, load the polygon labels. First make 'active' the level where the labels are to be stored. Next set appropriate text attributes such as size and colour. Then type on the command line:

@MAP.LAB

To pattern the polygons, the POLYGON UTILITY MDL is used. The first step is to run 'Line Break'. Then omit 'Line Check' and proceed with 'Polygon Create' and 'Load Poly Id'. At this point check that the pattern definition file is correct for the polygons to be patterned. The name of the pattern definition file may have to be altered from the default to achieve this.

#### 8.3.1 CONTENTS OF MICROSTATION MACRO TO PLOT MAPS OF RESULTS

Two macros are used to create the maps of results in MicroStation. These are ALLDRAW1.BAS (Tone above Tonebridge catchment) and ALLDRAW2.BAS (Tone below Tonebridge and Perup catchments). These macros are run in the design file 'W3BASE.DGN' to create a series of plots for Maps Appendix 5A and 5B. All the correct reference files levels and displays must be turned on in View 5 before running. It is important to close all tool boxes before running this macro, otherwise it may not run properly.

#### ALLDRAW1.BAS

Dim startPoint As MbePoint

- ' Initialise fence lock and DOS subdirectory for plot files
- MbeSendCommand "LOCK FENCE VOID OUTSIDE "
- MbeSendKevin "%c:"
- MbeSendKeyin "%cd\ustn55\out\plot"

Coordinates are in master units

startPoint.x = 482000.000000# startPoint.y = 6245000.000000# startPoint.z = 0.000000# plotpair "h1", "2", startPoint startPoint.x = 489000.000000# startPoint.y = 6245000.000000# startPoint.z = 0.000000# plotpair "i1", "1", startPoint startPoint.x = 496000.000000# startPoint.y = 6245000.000000# startPoint.z = 0.000000# plotpair "j1", "2", startPoint startPoint.x = 503000.000000# startPoint.y = 6245000.000000# startPoint.z = 0.000000# plotpair "k1", "1", startPoint startPoint.x = 475000.000000# startPoint.y = 6241000.000000# startPoint.z = 0.000000# plotpair "g2", "3", startPoint startPoint.x = 482000.000000# startPoint.y = 6241000.000000# startPoint.z = 0.000000# plotpair "h2", "4", startPoint startPoint.x = 489000.000000# startPoint.y = 6241000.000000# startPoint.z = 0.000000# plotpair "i2", "3", startPoint startPoint.x = 496000.0000000# startPoint.y = 6241000.000000# startPoint.z = 0.000000# plotpair "j2", "4", startPoint startPoint.x = 503000.000000# startPoint.y = 6241000.000000# startPoint.z = 0.000000# plotpair "k2", "3", startPoint startPoint.x = 510000.000000# startPoint.y = 6241000.000000# startPoint.z = 0.000000# plotpair "12", "4", startPoint startPoint.x = 475000.000000# startPoint.y = 6237000.000000# startPoint.z = 0.000000# plotpair "g3", "1", startPoint startPoint.x = 482000.000000# startPoint.y = 6237000.000000# startPoint.z = 0.000000# plotpair "h3", "2", startPoint startPoint.x = 489000.000000# startPoint.y = 6237000.000000#

 $startPoint_z = 0.000000#$ plotpair "i3", "1", startPoint startPoint.x = 496000.000000# startPoint.y = 6237000.000000# startPoint.z = 0.000000# plotpair "j3", "2", startPoint startPoint.x = 503000.000000# startPoint.y = 6237000.000000# startPoint.z = 0.000000# plotpair "k3", "1", startPoint startPoint.x = 510000.000000# startPoint.y = 6237000.000000# startPoint.z = 0.000000#plotpair "13", "2", startPoint startPoint.x = 468000.000000# startPoint.y = 6233000.000000# startPoint.z = 0.000000# plotpair "f4", "4", startPoint startPoint.x = 475000.000000# startPoint.y = 6233000.000000# startPoint.z = 0.000000# plotpair "g4", "3", startPoint startPoint.x = 482000.000000# startPoint.y = 6233000.000000# startPoint.z = 0.000000# plotpair "h4", "4", startPoint startPoint.x = 489000.000000# startPoint.y = 6233000.000000# startPoint.z = 0.000000# plotpair "i4", "3", startPoint startPoint.x = 496000.000000# startPoint.y = 6233000.000000# startPoint.z = 0.000000# plotpair "j4", "4", startPoint startPoint,x = 468000.000000# startPoint.y = 6229000.000000# startPoint.z = 0.000000# plotpair "f5", "2", startPoint startPoint.x = 475000.000000# startPoint.y = 6229000.000000# startPoint.z = 0.000000# plotpair "g5", "1", startPoint startPoint.x = 482000.000000# startPoint.y = 6229000.000000# startPoint.z = 0.000000# plotpair "h5", "2", startPoint startPoint.x = 489000.000000# startPoint.y = 6229000.000000# startPoint.z = 0.000000#plotpair "i5", "1", startPoint startPoint.x = 496000.000000# startPoint.y = 6229000.000000# startPoint.z = 0.000000# plotpair "j5", "2", startPoint startPoint.x = 461000.000000#

startPoint.y = 6225000.000000# startPoint.z = 0.000000# plotpair "e6", "3", startPoint startPoint.x = 468000.000000# startPoint.y = 6225000.000000# startPoint.z = 0.000000# plotpair "f6", "4", startPoint startPoint.x = 475000.000000# startPoint.y = 6225000.000000# startPoint.z = 0.000000# plotpair "g6", "3", startPoint startPoint.x = 482000.000000# startPoint.y = 6225000.000000# startPoint.z = 0.000000# plotpair "h6", "4", startPoint startPoint.x = 489000.000000# startPoint.y = 6225000.000000# startPoint.z = 0.000000# plotpair "i6", "3", startPoint startPoint.x = 461000.000000# startPoint.y = 6221000.000000# startPoint.z = 0.000000# plotpair "e7", "1", startPoint startPoint.x = 468000.000000# startPoint.y = 6221000.000000# startPoint.z = 0.000000# plotpair "f7", "2", startPoint startPoint.x = 475000.000000# startPoint.y = 6221000.000000# startPoint.z = 0.000000# plotpair "g7", "1", startPoint startPoint.x = 482000.000000# startPoint.y = 6221000.000000# startPoint.z = 0.000000# plotpair "h7", "2", startPoint startPoint.x = 489000.000000# startPoint.y = 6221000.000000# startPoint.z = 0.000000# plotpair "i7", "1", startPoint startPoint.x = 461000.000000# startPoint.y = 6217000.000000# startPoint.z = 0.000000# plotpair "e8", "3", startPoint startPoint.x = 468000.000000# startPoint.y = 6217000.000000# startPoint.z = 0.000000# plotpair "f8", "4", startPoint startPoint.x = 475000.000000# startPoint.y = 6217000.000000# startPoint.z = 0.000000# plotpair "g8", "3", startPoint startPoint.x = 482000.000000# startPoint.y = 6217000.000000# startPoint.z = 0.000000# plotpair "h8", "4", startPoint startPoint.x = 489000.000000# startPoint.y = 6217000.000000# startPoint.z = 0.000000# plotpair "i8", "3", startPoint startPoint.x = 461000.000000# startPoint.y = 6213000.000000# startPoint.z = 0.000000# plotpair "e9", "1", startPoint startPoint.x = 468000.000000# startPoint.y = 6213000.000000# startPoint.z = 0.000000# plotpair "f9", "2", startPoint startPoint.x = 475000.000000# startPoint.y = 6213000.000000# startPoint.z = 0.000000# plotpair "g9", "1", startPoint startPoint.x = 482000.000000#

startPoint.y = 6213000.000000# startPoint.z = 0.000000# plotpair "h9", "2", startPoint startPoint.x = 489000.000000# startPoint.y = 6213000.000000# startPoint.z = 0.000000# plotpair "i9", "1", startPoint startPoint.x = 461000.000000# startPoint.y = 6209000.000000# startPoint.z = 0.000000# plotpair "e10", "3", startPoint startPoint.x = 468000.000000# startPoint.y = 6209000.000000# startPoint.z = 0.000000# plotpair "f10", "4", startPoint startPoint.x = 475000.000000# startPoint.y = 6209000.000000# startPoint.z = 0.000000# plotpair "g10", "3", startPoint startPoint.x = 482000.000000# startPoint.y = 6209000.000000# startPoint.z = 0.000000# plotpair "h10", "4", startPoint

End Sub

sub plotpair(sheet as string, layer as string, startPoint As MbePoint) Dim point As MbePoint

' Turn on levels in wfram2.dgn for series 1 MbeSendKeyin "reference levels off" MbeSendKeyin "frames"

MbeSendKeyin "1-63"

- Send a data point to the current command point.x = startPoint.x point.y = startPoint.y point.z = startPoint.z MbeSendDataPoint point, 1%
- Turn on levels in wfram2.dgn for series 1 MbcSendKeyin "reference levels on" MbcSendKeyin "frames" MbeSendKeyin layer + "0," + layer + "3," + layer + "4"
- Send a data point to the current command point.x = startPoint.x point.y = startPoint.y point.z = startPoint.z MbeSendDataPoint point, 1%
- Clip boundaries for sheet, then set fence for plot setclip startPoint
- MbeSendKeyin "reference display off plant"
  Turn on levels in wfram2.dgn for series 1 MbeSendKeyin "reference levels on" MbeSendKeyin "frames"
  - MbeSendKeyin layer + "1"
- Send a data point to the current command point.x = startPoint.x point.y = startPoint.y point.z = startPoint.z MbeSendDataPoint point, 1%

MbeSendKeyin "uc=c:\warren\dgn\ucm\autoplot" FileCopy "c:\plots\w3base.000", "s:\rid\csi\warren\dgn\" + sheet + "d.000"

Turn on levels in wfram2.dgn for series 1 MbeSendKeyin "reference levels off" MbeSendKeyin "frames"

MbeSendKeyin layer + "1" Send a data point to the current command point.x = startPoint.x point.y = startPoint.y point.z = startPoint.z MbeSendDataPoint point, 1% Turn on levels in wfram2.dgn for series 1 MbeSendKeyin "reference levels on" MbeSendKeyin "frames" MbeSendKeyin layer + "2" Send a data point to the current command point.x = startPoint.x point.y = startPoint.ypoint.z = startPoint.z MbeSendDataPoint point, 1% MbeSendKeyin "reference display on plant" MbeSendKeyin "uc=c:\warren\dgn\ucm\autoplot" FileCopy "c:\plots\w3base.000", "s:\rid\csi\warren\dgn\" + sheet + "p.000" end sub sub setclip(startPoint As MbePoint) Dim point As MbePoint, point2 As MbePoint MbeSendCommand "PLACE FENCE" point.x = startPoint.x - 437.000000# point.y = startPoint.y - 427.000000# point.z = startPoint.z MbeSendDataPoint point, 1% point.x = startPoint.x + 7437.000000#point.y = startPoint.y + 4427.000000# point,z = startPoint.z MbeSendDataPoint point, 1% MbeSendKeyin "REFERENCE CLIP BOUNDARY forest" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22291se" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22291sw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22291nw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22293ne" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22294ne" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22294se" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22294sw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22294nw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22291ne" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22302sec" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22302sep" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22302swc" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22302swp" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22303sec" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22303sep" MbeSendKeyin "REFERENCE CLIP BOUNDARY 23294 c" MbeSendKeyin "REFERENCE CLIP BOUNDARY 23303\_c" MbeSendKeyin "REFERENCE CLIP BOUNDARY 23303\_p" MbeSendKeyin "REFERENCE CLIP BOUNDARY wbndy MbeSendKeyin "REFERENCE CLIP BOUNDARY disch" MbeSendKeyin "REFERENCE CLIP BOUNDARY plant" MbeSendCommand "PLACE FENCE" point.x = startPoint.x - 840.000000# point.y = startPoint.y - 1370.000000# point.z = startPoint.z MbeSendDataPoint point, 1% point.x = startPoint.x + 7560.000000# point.y = startPoint.y + 4570.000000# point.z = startPoint.z MbeSendDataPoint point, 1%

End Sub

#### ALLDRAW2.BAS

' choose levels to show drawing, create plot file, ' step through all drawing positions Sub main

Dim startPoint As MbePoint

'Initialise fence lock and DOS subdirectory for plot files MbeSendCommand "LOCK FENCE VOID OUTSIDE"

' MbeSendKeyin "%c:"

" MbeSendKeyin "%cd\ustn55\out\plot"

\* Coordinates are in master units

startPoint.x = 433000.000000# startPoint.y = 6221000.000000# startPoint.z = 0.000000# plotpair "a7", "1", startPoint startPoint.x = 433000.000000# startPoint.y = 6213500.000000# startPoint.z = 0.000000# plotpair "a9", "1", startPoint startPoint.x = 433000.000000# startPoint.y = 6209500.000000# startPoint.z = 0.000000# plotpair "al0", "3", startPoint startPoint x = 440000.000000# startPoint.y = 6229000.000000# startPoint.z = 0.000000# plotpair "b5", "2", startPoint startPoint.x = 440000.000000# startPoint.y = 6225000.000000# startPoint.z = 0.000000# plotpair "b6", "4", startPoint startPoint.x = 441000.000000# startPoint.y = 6221000.000000# startPoint.z = 0.000000# plotpair "b7", "2", startPoint startPoint.x = 440000.000000# startPoint.y = 6217000.000000# startPoint.z = 0.000000# plotpair "b8", "4", startPoint startPoint.x = 440000.000000# startPoint.y = 6213000.000000# startPoint.z = 0.000000# plotpair "b9", "2", startPoint startPoint.x = 440000.000000# startPoint.y = 6209000.000000# startPoint.z = 0.000000# plotpair "b10", "4", startPoint startPoint.x = 447000.000000# startPoint.y = 6225000.000000# startPoint.z = 0.000000# plotpair "c6", "3", startPoint startPoint.x = 447000.000000# startPoint.y = 6217000.000000# startPoint.z = 0.000000# plotpair "c8", "3", startPoint startPoint.x = 447000.000000# startPoint.y = 6213000.000000# startPoint.z = 0.000000# plotpair "c9", "1", startPoint startPoint.x = 447000.000000# startPoint.y = 6209000.000000# startPoint.z = 0.000000# plotpair "c10", "3", startPoint startPoint.x = 447000.000000# startPoint.y = 6205000.000000# startPoint.z = 0.000000# plotpair "cl1", "1", startPoint

startPoint.x = 447000.000000# startPoint.y = 6201000.000000# startPoint.z = 0.000000# plotpair "cl2", "3", startPoint startPoint.x = 447000.000000# startPoint.y = 6197000.000000# startPoint.z = 0.000000# plotpair "c13", "1", startPoint startPoint.x = 447000.000000# startPoint.y = 6193000.000000# startPoint.z = 0.000000# plotpair "c14", "3", startPoint startPoint.x = 454000.000000# startPoint.y = 6225000.000000# startPoint.z = 0.000000# plotpair "d6", "4", startPoint startPoint.x = 454300.000000# startPoint.y = 6221000.000000# startPoint.z = 0.000000#plotpair "d7", "2", startPoint startPoint.x = 454000.000000# startPoint.y = 6217000.000000# startPoint.z = 0.000000# plotpair "d8", "4", startPoint startPoint.x = 454000.000000# startPoint.y = 6213000.000000# startPoint.z = 0.000000# plotpair "d9", "2", startPoint startPoint.x = 454000.000000# startPoint.y = 6205600.000000# startPoint.z = 0.000000# plotpair "d11", "2", startPoint startPoint.x = 461000.000000# startPoint.y = 6229000.000000# startPoint.z = 0.000000# plotpair "e5", "1", startPoint startPoint.x = 461000.000000# startPoint.y = 6225000.000000# startPoint.z = 0.000000#plotpair "e6", "3", startPoint startPoint.x = 461000.000000# startPoint.y = 6213000.000000# startPoint.z = 0.000000# plotpair "e9", "1", startPoint startPoint.x = 461000.000000# startPoint.y = 6201000.000000# startPoint.z = 0.000000#plotpair "e12", "3", startPoint startPoint.x = 461000.000000# startPoint.y = 6197000.000000# startPoint.z = 0.000000# plotpair "e13", "1", startPoint startPoint.x = 468000.000000# startPoint.y = 6209000.000000# startPoint.z = 0.000000# plotpair "f10", "4", startPoint startPoint.x = 468000.000000# startPoint.y = 6205000.000000# startPoint.z = 0.000000# plotpair "f11", "2", startPoint startPoint.x = 468000.000000# startPoint.y = 6201000.000000# startPoint.z = 0.000000# plotpair "fl2", "4", startPoint startPoint.x = 468000.000000# startPoint.y = 6197000.000000# startPoint.z = 0.000000# plotpair "f13", "2", startPoint startPoint.x = 468000.000000# startPoint.y = 6192700.000000# startPoint.z = 0.000000# plotpair "f14", "4", startPoint

startPoint.x = 475000.000000# startPoint.y = 6209000.000000# startPoint.z = 0.000000# plotpair "g10", "3", startPoint startPoint.x = 475000.000000# startPoint.y = 6205000.000000# startPoint.z = 0.000000# plotpair "g11", "1", startPoint startPoint.x = 475000.000000# startPoint.y = 6201000.000000# startPoint.z = 0.000000# plotpair "g12", "3", startPoint startPoint.x = 475000.000000# startPoint.y = 6197000.000000# startPoint.z = 0.000000# plotpair "g13", "1", startPoint startPoint.x = 475000.000000# startPoint.y = 6193000.000000# startPoint.z = 0.000000# plotpair "g14", "3", startPoint startPoint.x = 475000.000000# startPoint.y = 6189000.000000# startPoint.z = 0.000000# plotpair "g15", "1", startPoint startPoint.x = 482000.000000# startPoint.y = 6209000.000000# startPoint.z = 0.000000# plotpair "h10", "4", startPoint startPoint.x = 482000.000000# startPoint.y = 6205000.000000# startPoint.z = 0.000000#plotpair "h11", "2", startPoint startPoint.x = 482000.000000# startPoint.y = 6201000.000000# startPoint.z = 0.000000# plotpair "h12", "4", startPoint startPoint.x = 482000.000000# startPoint.y = 6197000.000000# startPoint.z = 0.000000#plotpair "h13", "2", startPoint startPoint.x = 482000.000000# startPoint.y = 6193000.000000# startPoint.z = 0.000000# plotpair "h14", "4", startPoint

#### end sub

sub plotpair(sheet as string, layer as string, startPoint As MbePoint) Dim point As MbePoint

\* Turn on levels in wfram2.dgn for series 1 MbeSendKeyin "reference levels off" MbeSendKeyin "frames"

MbeSendKeyin "1-63"

- Send a data point to the current command point.x = startPoint.x point.y = startPoint.y point.z = startPoint.z
- MbeSendDataPoint point, 1%
- \* Turn on levels in wfram2.dgn for series 1 MbeSendKeyin "reference levels on" MbeSendKeyin "frames"

MbeSendKeyin layer + "0," + layer + "3," + layer + "4"

Send a data point to the current command point.x = startPoint.x point.y = startPoint.y point.z = startPoint.z MbeSendDataPoint point, 1% Clip boundaries for sheet, then set fence for plot

77

#### setclip startPoint

MbeSendKeyin "reference display off plant" Turn on levels in wfram2.dgn for series 1 MbeSendKeyin "reference levels on" MbeSendKeyin "frames"

MbeSendKeyin layer + "1"

Send a data point to the current command point.x = startPoint.x point.y = startPoint.y point.z = startPoint.z MbeSendDataPoint point, 1%

MbeSendKeyin "uc=c:\warren\tonel\dgn\autoplot" FileCopy "c:\plots\w3base.000", "c:\plots\" + sheet + "d.000"

' Turn on levels in wfram2.dgn for series 1 MbeSendKeyin "reference levels off" MbeSendKeyin "frames"

MbeSendKeyin layer + "1"

- Send a data point to the current command point.x = startPoint.x point.y = startPoint.y point.z = startPoint.z MbeSendDataPoint point, 1%
  Turn on levels in wfram2.dgn for series 1
- MbeSendKeyin "frames"

MbeSendKeyin layer + "2"

Send a data point to the current command point.x = startPoint.x point.y = startPoint.y point.z = startPoint.z MbeSendDataPoint point, 1%

MbeSendKeyin "reference display on plant" MbeSendKeyin "uc=c:\wrc\ucm\autoplot" FileCopy "c:\plots\w3base.000", "c:\plots\" + sheet + "p.000" end sub sub setclip(startPoint As MbePoint) MbeSendCommand "PLACE FENCE" point.x = startPoint.x - 437.000000# point.y = startPoint.y - 427.000000#point.z = startPoint.z MbeSendDataPoint point, 1% point.x = startPoint.x + 7437.000000# point.y = startPoint.y + 4427.000000# point.z = startPoint.z MbeSendDataPoint point, 1% MbeSendKeyin "REFERENCE CLIP BOUNDARY forest" MbeSendKeyin "REFERENCE CLIP BOUNDARY 21291ne" MbeSendKeyin "REFERENCE CLIP BOUNDARY 21291nw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 21291se" MbeSendKeyin "REFERENCE CLIP BOUNDARY 21291sw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 21292ne" MbeSendKeyin "REFERENCE CLIP BOUNDARY 21292nw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 21292se" MbeSendKeyin "REFERENCE CLIP BOUNDARY 21292sw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22291sw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22292nw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22292sw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22293ne" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22293nw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22293se" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22293sw" MbeSendKevin "REFERENCE CLIP BOUNDARY 22294ne" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22294nw" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22294se" MbeSendKeyin "REFERENCE CLIP BOUNDARY 22294sw" MbeSendKeyin "REFERENCE CLIP BOUNDARY bndy" MbeSendKeyin "REFERENCE CLIP BOUNDARY disch" MbeSendKeyin "REFERENCE CLIP BOUNDARY plant"

Dim point As MbePoint, point2 As MbePoint

MbeSendCommand "PLACE FENCE" point.x = startPoint.x - 840.000000# point.y = startPoint.y - 1370.000000# point.z = startPoint.z MbeSendDataPoint point, 1%

point.x = startPoint.x + 7560.000000# point.y = startPoint.y + 4570.000000# point.z = startPoint.z MbeSendDataPoint point, 1%

End Sub

## 8.4 OUTPUT OF DATA FOR TABLES BASED ON CATCHMENT AREAS

Basic data to prepare tables of quantities within catchment areas are obtained by overlaying the catchment map (map 150) on a map of data, using command OVROUT [ref HOW OVROUT]. All of the required OVROUT commands are performed in GWML.BAT [7.2] while the modelling is proceeding.

A file produced by OVROUT may be imported into a spreadsheet for reporting and computing other derived quantities. To reduce the manual operations involved in preparing the spreadsheet, program TABLIST [ref HOW TABLIST] is provided to reformat the output files from OVROUT. Batch file TABALL.BAT [8.4.1] automatically runs TABLIST for all the OVROUT files required after modelling. A macro [8.4.2] then automatically loads the data into the spreadsheet ready for printing.

Alternatively, if the basic data has been integrated along drainage lines, the aggregate for the catchment can be read by displaying the integrated map using program SEERAS [ref HOW SEERAS], and positioning the cursor on the cell which is the outlet of the catchment. The value would then be manually copied into the spreadsheet. This method is not recommended where data is required from many subcatchments.

## 8.4.1 CONTENTS OF TABLALL.BAT

| CALL TABIN CA OVR 1   | [8.4.1.1] | Cleared Area                                       |
|-----------------------|-----------|----------------------------------------------------|
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN FC OVR 1   | [8.4.1.1] | Forest Without Upstream Clearing (One way table)   |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN RAIN OVR 1 | [8.4.1.1] | Total Rainfall (One way table)                     |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN DSBS SM 1  | [8.4.1.1] | Smoothed Deep Discharge Base (One way table)       |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN PSBS SM 2  | [8.4.1.1] | Pasture / Forest Discharge Base (Two way table)    |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN SFBS Y3 1  | [8.4.1.1] | Streamflow Base (One way table)                    |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN DDBS Y3 1  | [8.4.1.1] | Deep Discharge Base (One way table)                |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN TFBS SM 1  | [8.4.1.1] | Throughflow Base (One way table)                   |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN SLBS Y3 1  | [8.4.1.1] | Storage Loss Base (One way table)                  |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN NRBS Y3 1  | [8.4.1.1] | Natural Recharge Base (One way table)              |
| TABLIST < TABIN, DAT  |           |                                                    |
| CALL TABIN PD20 OVR 2 | [8.4.1.1] | Estimated Planted Discharge (Two way table)        |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN PG20 OVR 1 | [8.4.1.1] | Planted Tree Greenness (One way table)             |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN PA20 OVR 1 | [8.4.1.1] | Planted Tree Area (One way table)                  |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN DSTR SM 1  | [8.4.1.1] | Smoothed Deep Discharge Treated (One way table)    |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN PSTR SM 2  | [8.4.1.1] | Pasture / Forest Discharge Treated (Two way table) |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN SFTR Y3 1  | [8.4.1.1] | Streamflow Treated (One way table)                 |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN DDTR Y3 1  | [8.4.1.1] | Deep Discharge Treated (One way table)             |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN TFTR SM 1  | [8.4.1.1] | Throughflow Treated (One way table)                |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN SLTR Y3 1  | [8.4.1.1] | Storage Loss Treated (One way table)               |
| TABLIST < TABIN.DAT   |           |                                                    |
| CALL TABIN NRTR Y3 1  | [8.4.1.1] | Natural Recharge Treated (One way table)           |
| TABLIST < TABIN DAT   |           |                                                    |

#### 8.4.1.1 CONTENTS OF TABIN.BAT

Prepares input data file and runs program TABLIST

ECHO %1#.%2 > TABIN.DAT ECHO WRNSC.DAT >> TABIN.DAT The template for OVROUT file names [8.4.1.2]

ECHO %1.TXT >> TABIN.DAT ECHO %3 >> TABIN.DAT ECHO Y >> TABIN.DAT TABLIST < TABIN.DAT Output filename to be read by Excel Select one-way or two-way table Update default file names

#### 8.4.1.2 CONTENTS OF WRNSC.DAT

This file lists subcatchment order for the Tone above Tonebridge catchment. In the actual file, each entry is on a new line. The number sequence is that used in the spreadsheet, that reflects the drainage structure of the catchment. XX provides a break between data for different sheets within the spreadsheet workbook.

1 2 3 4 5 6 7 8 9 10 11 12 XX 13 14 15 16 17 18 19 20 21 22 23 24 XX 25 26 27 28 29 30 31 36 32 XX 33 34 35 37 38 39 XX 40 41 42 43 44 45 46 47 48 49

#### 8.4.1.3 CONTENTS OF TONELSC.LST

Similar to WRNSC.DAT above, this file is used for the subcatchments of the Tone below Tonebridge catchment.

01 02 03 05 06 07 08 09 10 XX 11 12 13 14 15 16 25 XX 04 17 18 19 20 21 22 23 24 XX 26 27 28 29 30 31 32 33

#### 8.4.1.4 CONTENTS OF PRPSC.LST

Similar to WRNSC.DAT above, this file is used for the subcatchments of the Perup catchment.

01 02 03 04 05 06 07 08 XX 09 10 11 12 13 14 15 16 XX 17 18 19 20 21 22 23 XX 24 25 26 27 28 29 30 31 32 33 XX 34 35 36 37

### 8.4.2 CONTENTS OF EXCEL MACRO 'DATAIN'

' datain Macro

- ' Macro recorded 27/3/96 by Geoff Mauger
- ' Modified 17/7/96 by Renee Dixon
- ' Modified 17/4/97 by Alex Rogers
- ' load data from text file generated by program TABLIST (in RASCAL\EXE)

' Keyboard Shortcut: Ctrl+d

Sub all()

txtdir = "S:\RID\CSI\WARREN\MDL\RAS\APR9RSLT\" txtfile = "area.TXT" load2 txtdir & txtfile, 2 storeOne txtfile, "B", 138 txtfile = "ca.TXT"load2 txtdir & txtfile, 2 storeOne txtfile, "D", 139 txtfile = "fc.TXT" load2 txtdir & txtfile, 2 storeOne txtfile, "D", 140 txtfile = "sfbs.TXT" load2 txtdir & txtfile, 2 storeOne txtfile, "D", 141 txtfile = "psbs.TXT" load2 txtdir & txtfile, 3 storeOne txtfile, "D", 144 storeOne txtfile, "E", 143 txtfile = "slbs.TXT" load2 txtdir & txtfile, 2 storeOne txtfile, "D", 145 txtfile = "rain.TXT" load2 txtdir & txtfile, 2 storeOne txtfile, "D", 155 storeOne txtfile, "C", 138 txtfile = "pa20.TXT" load2 txtdir & txtfile, 2

storeOne txtfile, "D", 147 txtfile = "pd20.TXT" load2 txtdir & txtfile, 3 storeOne txtfile, "D", 149 storeOne txtfile, "E", 150 txtfile = "sftr.TXT" load2 txtdir & txtfile, 2 storeOne txtfile, "D", 154 txtfile = "pstr.TXT" load2 txtdir & txtfile, 3 storeOne txtfile, "D", 152 storeOne txtfile, "E", 153 End Sub Sub storeOne(ByVal txtfile As String, ByVal scol As String, orow) cutpaste txtfile, "1-12", scol, 1, 12, "B", orow cutpaste txtfile, "12-24", scol, 14, 25, "C", orow cutpaste txtfile, "24-32", scol, 27, 35, "C", orow cutpaste txtfile, "32-39", scol, 37, 42, "C", orow cutpaste txtfile, "39-49", scol, 44, 53, "C", orow End Sub Sub load2(ByVal strFileName As String, strw) Workbooks.OpenText Filename:=strFileName, Origin:= xlWindows, StartRow:=strw, DataType:=xlDelimited, TextQualifier :=xlNone, ConsecutiveDelimiter:=True, Tab:=False, Semicolon :=False, Comma:=False, Space:=True, Other:=False, FieldInfo \_ :=Array(Array(1, 1), Array(2, 1), Array(3, 1), Array(4, 1)) End Sub Sub cutpaste(ByVal txtfile As String, ByVal xlsheet As String, ByVal scol As String, srow1, srow1, ocol As String, orow) Windows(txtfile).Activate Range(Cells(srow1, scol), Cells(srow1, scol)).Select Selection.Copy Windows("WRNTABLE.XLS"). Activate Sheets(xlsheet).Select Range(ocol & orow).Select Selection.PasteSpecial Paste:=xIAll, Operation:=xINone, SkipBlanks :=False, Transpose:=True End Sub

#### 8.4.3 CONTENTS OF EXCEL MACRO 'PRINTALL'

' Macrol Macro ' Macro recorded 27/3/96 by Geoff Mauger ' Modified 24/9/96 by Renee Dixon ' Modified 17/4/96 by Alex Rogers Sub printall() printtabl ("al:n36") printtabl ("a39:m74") printtabl ("a77:m112") End Sub Sub Print2(ByVal cat As String, ByVal table As String) Sheets(cat).Select Range(table).Select Selection PrintOut Copies:=1 End Sub Sub printtabl(ByVal table As String) Print2 "1-12", table Print2 "12-24", table Print2 "24-32", table Print2 "32-39", table Print2 "39-49", table End Sub



. •