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ABSTRACT

A hydrological study of the Denmark River Basin in the south of
Western Australia was undertaken to predict stream water yields
and salinities as a consequence of agricultural clearing and to
.determine the implications for the development of a major
reservoir.

Aerial photographs and Landsat imagery were used to develop a
history of clearing between 1946 and 1984. Approximately 18%
of the Mt Lindesay Catchment (525 kmZ) was cleared prior to
1984, with 34% cleared in the upper reaches above the gauging
station at Kompup (234 km2). This headwater area currently
produces about 37% of the streamflow and 72% of the stream salt
load as measured at the Mt Lindesay gauging station.

An annual rainfall-runoff simulation produced mean and median
streamflows of 38 x 1095 m3 and 32 x 106 m3 respectively

over the 1940 to 1983 period. These and the predicted annual
salinity statistics compared favourably with the historical
record. Once the full hydrological effects of clearing have
developed by early next century it is predicted that the 10%,
50% and 90% probabilities of non-exceedance of streamflow will
be 12, 32, and 82 x 10% m3 respectively with associated
salinities of 1080, 730 and 460 mg L-1 TSS (Total Soluble
Salt). This will mean that about 62% of monthly salinities
wi%l be greater than 800 mg L-1 and 38% greater than 1000 mg
L-+.

A monthly simulation of reservoir water and salinity for a
storage size of between 100% and 300% of mean annual inflow
(MAI) and for demands between 60% and 90% MAI indicated
significant reductions in the probabilities of monthly draw
salinities. Monthly draw salinities above 800 mg L-1 were
reduced to less than 20% and to less than 2% above 1000 mg
L-1 for most storage sizes. 1In operation these would be
improved upon through scouring and the use of multi-level
offtakes.
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1. INTRODUCTION

1.1 Background

The town of Denmark on the south coast of Western Australia is
supplied with water from a pipehead dam of about 420 000m3
capacity on the Denmark River, approximately 6km north of the
town. The catchment area upstream of the dam is 567 km2 of
which approximately 25% is alienated and 95 km2 (17%) was
cleared for agriculture by 1984.

The salinity in the pipehead dam has been deteriorating in
recent years, particularly since 1978. Maximum salinities have
increased from less than 900 mg L-1 total soluble salts (TSS)
in 1980 to more than 1400 mg L-1 Tss in 1983. These

salinities prompted the development of an alternative source,
in 1984, on Scotsdale Brook for substitution or dilution during
periods of high run-of-river salinity in the Denmark River.

The potential yield of a major reservoir on the Denmark River
was thought to be approximately 30 x 106 m3 (PWD, 1979).

The salinity of the draw from such a development will depend
upon the amount and salinity of the streamflow from the
catchment and the size and operation of the reservoir.

1.2 Study Objectives

The aim of this report is to develop predictions of the effects
of agricultural clearing on the magnitude and timing of water
and salt yields from the Denmark catchment and to evaluate the
likely water supply salinities for a range of reservoir sizes
and demands. '

These were to be first estimates to determine catchment
management strategies and the need for more detailed hydrology
studies.



2. CATCHMENT DESCRIPTION

2.1 Location and Climate

The Denmark River Basin lies between latitudes 34° 30' and
350 00' South and between longitudes 1170 00' and 1179

30' East in the South of Western Australia (Figure 1). The
catchment area to the pipehead dam is 567 km2. Most of the
area is within the shires of Denmark and Plantagenet, and the
principal towns are Mt Barker and Denmark.

The south coast region experiences a "Mediterranean" type
climate (Kopper Classification Cab.) with warm, mostly dry
summers and cool, wet winters (Dick, 1975). Average annual
rainfall decreases from 1000 mm at the pipehead dam to 700 mm
at the northern boundary of the catchment (Public Works
Department 1980). Approximately 75% of this rainfall occurs
between May and October.

Pan evaporation averages 1270 mm yr -l across the catchment
with about 80% of this occuring between October and April. The
average annual temperature is approximately 159 C.

2.2 Landforms and Soils

The main drainage rises on the dissected lateritic plateau on
the southern edge of the Yilgarn block approximately 50 km from
the southern coast (Figure 2). The laterite plateau covers 55%
of the catchment (Table 1), with 20% consisting of dissected
plateau. Swampy flats with poor drainage covers 10% of the
catchment, primarily in the west and north-west. There is a
small area of higher relief around a granite massif in the
south east, the peak of which (Mt Lindesay) has an elevation in
excess of 450m. The remainder of the catchment varies in
elevation from 80m in the south to 240m in the north.

TABLE 1 LANDFORMS AND SOILS OF DENMARK RIVER BASIN

Swampy flats; shallow drainage lines with 10
leached sands and podzolic soils

Laterite Plateau; uplands with sands and 55
ironstone gravels over mottled clays

Dissected Plateau; hilly country with 20
vellow mottled soils and gravels

Incised Valleys; moderate to steep 15
slopes, yellow podzolic soils and red earths
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2.3 Vegetation and Landuse

The natural vegetation of the area is predominantly forest with
a wide range of forms and diversity of species. The dominant
species over most of the catchment are jarrah (E. marginata)
and marri (E. calophylla). On better drained soils such as the
incised valleys and dissected plateaus there is relatively good
quality jarrah/marri forest. 1In contrast the vegetation on the
swampy leached sands is a low forest of jarrah. 1In the lower,
wetter reaches of the Denmark River Basin there are isolated
stands of karri (E. diversicolor).

Approximately 17% of the catchment area to the pipehead dam has
been cleared for agriculture prior to 1984. Most of this (84%)
is in the drier upper reaches where the landuse is grazing and
some grain production. Below Mt Lindesay the dominant
agricultural practices are dairying and beef production. The
remainder of the area is designated State Forest.



3. HISTORICAL INFORMATION
3.1 Rainfall
3.1.1 Aim

The aims of this section are to describe the availability and
reliability of the rainfall data; the production of daily
catchment rainfall (for yearly totals):; and to describe
features of these catchment rainfalls particularly their
representativeness through time.

3:1.2 Availability of Data

Rainfall data has been recorded in the Denmark area since July
1897, however consistent daily data was not produced until
1910. 1Initially the rainfall data was recorded by the Bureau
of Meteorology but from the early 1970's the Public Works
Department began collecting rainfall data on gauged
catchments. This has resulted in a greatly improved rainfall
network (Figure 3). A detailed 1list of the rainfall stations
between 1897 and 1984 and are relevant to the Denmark River
Basin, (Table 2) shows that the rainfall station with the
longest record is that of the Denmark Post Office which has run
from 1897 to the present day.

Prior to 1937 there were only limited rainfall data available,
however from 1968 the number of stations producing daily data
had increased from 8 in 1968, to 19 stations in 1977 (Figure
4). The record produced from the pluviographs, introduced in
the 1970's, was initially poor but had improved considerably by
1980.

3.1.3 Individual Rainfall Stations

To test the validity of the individual rainfall stations, two
rainfall stations were identified for analysis because of this
long record of approximately 86 years. These were Denmark Post
Office (009 531), which is located south of the catchment in a
high rainfall region, and Pardellup Prison Farm (009 591) which
is located north east of the catchment in a low rainfall region
(Figure 3).

Figures 5 and 6 show the annual rainfall measured at each
station over the period 1910 to 1983 for 009 531 and 009 591
respectively. Both these figures highlight the high annual
rainfalls recorded from 1915 to 1930 and the low annual
rainfalls recorded from 1965 to 1983. By looking at the record
before and after 1955 the comparative high rainfall at the
beginning of the century compared to the latter is more
apparent. Prior to 1955 there had been 7 years when the
rainfall recorded was greater than the 90th percentile, while
since 1955 there have been no rainfall events greater than the
90% probability of non-exceedence value. Prior to 1955 there
had been no rainfall events with a 10% probability of
non-exceedence, while since 1955 there have been 5 rainfall
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TABLE 2
STATION PERIOD OF AVE RAINFALL
NUMBER NAME RECORD NO. YEARS FROM ISOHYET
009 523 ILLALAGI 1912- 73 1200
009 531 DENMARK P O 1897- 88 1100
009 558 IAWAKIA 1937-1983 47 795
009 563 KENT RIVER 1912-1952 41 1100
009 591 PARDELLUP PRISON

FARM 1899~ 86 730
009 595 PEERILLUP 1915- 70 715
009 637 DENMARK RESEARCH

STATION 1974- 11 1050
009 647 DENMARK (4) . 1956- 29 1140
009 752 DENBARKER 1966-1982 17 780
009 770 MT BARKER 1968-1973 6 760
009 782 BARLINA 1968- 17 800
009 784 KORDABUP DOWNS 1969- 16 1070
509 017 MT LINDESAY 1974-1977 4 890
509 018 BLUE CREEK 1970-1976 7 770
509 022 WOONANUP 1972- 13 780
509 024 HAREWOOD 1974~ 11 930
509 175 PERILLUP 1973-1974 2 740
509 183 LINDESAY GORGE 1973- 12 890
509 207 BLUE LAKE 1976~ 9 830
509 228 KOMPUP 1974- 11 800
509 229 BOUNDARY RD 1974~ 11 730
509 230 RIDDLESDEN 1974-1977 4 710
509 276 BILAMA 1976-1977 2 750

10

RAINFALL STATIONS IN THE DENMARK RIVER REGION

events which were less than the 10% probability for both
rainfall stations. To test the consistency of the rainfall
data a double mass curve of 009 531 versus 009 591 was produced
(Figure 7). This plot highlights two changes to the
relationship between these stations. The first change occurred
in the late 1930's and the second occurred in 1950. Possible
reasons for the changes in the relationship could be a physical
relocation of the rainfall station or an alteration to the
station habitat (eqg adjacent vegetation). The gradient of the
double mass curve (Fiqure 7) is approximately 1.4, and compares
favourably with interpolating between isohyets which gives a
value of 1.5. '

The statistics for the two rainfall stations, shown in Table 3,
were divided into three sections, these were the complete
period from 1910 - 83 and two sub-sections of 1910-39 and
1940-83. The means for the individual stations over the
complete historical record are 1110 mm and 783 mm for 009 531
and 009 591 respectively. By comparing the means of the two
sub-sections the long term reduction in rainfall is



RRINFRLL (MM)

008 591

FIGURE 7

RAINFALL (MM)

603 003

60000.

40000.

20000,

6000Q0.

40000.

20000.

11
1950
1938
T T I T T T T
20000. 40000. 60000. 80000. 1oo0000. 120000, 140000.
009 S31 RAINFALL (MM}

10000.

20000.

FIGURE 8
KOMPUP VS MOUNT LINDESAY

603

T 1 i T I
3ooco. yocoo. 50000. 60000, 70000.

136 RAINFALL (MM}

DOUBLE MASS CURVE -

60000.

4y0000.

20000.

DOUBLE MASS CURVE ©©9 591 VS 009 531

60000.

40000.

20000.



12

noticeable. The mean annual rainfalls for the period 1910-39
compared to 1940-83 have reduced 13.5% and 9.7% for 009 531 and
009 591 respectively.

3.1.4 Calculation of Daily Catchment Rainfalls

For the Denmark River catchment the three sub-catchments
studied were Kompup catchment associated with gauging station
603 003; Lindesay Gorge catchment associated with gauging
~station 603 002; and Mt Lindesay catchment associated with
gauging station 603 136 (Figure 3). For each sub-catchment a
catchment rainfall was produced using the Thiessen weight
method, with isohyetal correction factors.

3.1.5 Catchment Rainfalls

Using the Thiessen method catchment rainfalls were produced for
Kompup, Lindesay Gorge and Mt Lindesay sub-catchments. The
annual rainfalls for the three catchments are plotted with
respect to time in Fiqures 9, 10 and 11. These graphs include
the five year moving average to dampen the year to year
variability in the annual rainfalls. From these diagrams there
is an apparent trend of decreasing rainfall with time in the
Denmark region. To further emphasise this point, no annual
rainfall has exceeded the 90% probability of non-exceedance
since 1955 for all three catchments studied whilst in the
period 1955 to 1984 the 10% probability has been exceeded three
times for all three catchments. A very preliminary check on
the catchment rainfalls was to compare the values from the
Thiessen network method to those obtained from an isohyetal map
calculation (see Table 5).

The differences between the two means can be explained by the
different periods over which the means were calculated. For
the catchment rainfalls the period of record is from 1910 to
1983 (74 years) while for the isohyetal map calculation the
period of record is 1926 to 1980 (55 years). From the plots of
annual rainfall against time it can be seen that the period
1910 to 1926 (17 years) was above the mean annual rainfall for
12 out of the 17 years, therefore it would be expected that the
mean catchment rainfalls would be above the mean isohyetal map
rainfalls

To test the consistency of the rainfall data, a double mass
curve of the annual rainfalls, as derived by the Thiessen
method, for the Kompup catchment versus the Mt Lindesay
catchment (see Figure 11) was produced. This double mass curve
plot depicts a linear relationship over the complete record of
1910 to 1984. This compares to the individual rainfall station
double mass curve which highlighted a number of changes in the
observed relationship between stations. The double mass curve
of the catchment rainfalls confirms that any trend in
decreasing rainfall is over the entire catchment and not just
confined to the lower rainfall areas like the Kompup

catchment. Overall the double mass curves highlight the
spatial variability of individual raingauge stations and the
uniformity of the catchment rainfalls as a result of the

Thiessen method.
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3.1.6 Discussion and Summary

There is a good coverage of rainfall stations from about 1918
when there were five rainfall stations covering the catchment
area. However, the quality of this record is not consistent.
During the late 60's and 70's the rainfall coverage improved
due to the addition of Public Works Department pluviographs.

At present there are eight rainfall stations which cover the Mt
Lindesay catchment, with another six operating in the general
vicinity.

Catchment rainfalls were produced for Kompup. Lindesay Gorge
and Mt Lindesay by the Thiessen method which introduces an
areal factor or influence for each station. These catchment
rainfalls were compared using the double mass curve technique.

The rainfall analysis indicated a decrease of average annual
rainfall of between 9% and 12.5% over the 1910-1939 and
1940-1983 periods. This trend is similar to that reported by
Pittock (1983) which indicated a rainfall decrease of about 10%
over south western Australia between 1913-1945 and 1946-1978.
Pittock attributed this to a probable variation in climate
associated with a global warming trend. The decrease of
rainfall over the south west was considered to be consistent
with the changes in rainfall generation processes associated
with global warming. '

The evidence for and mechanisms of a continued lower rainfall
have not been conclusively established for the south west.
However there is enough evidence to warrant caution in using
the total rainfall record with the associated higher overall
average rainfall. Therefore it was decided to use the
statistics of the second half of the record as these might be
more likely, on present understanding, to represent future
rainfall statistics.



TABLE 3

MEAN
MAX IMUM
MINIMUM

STD. DEV.

10% P OF
50% P OF
90% P of

MEAN
MAXIMUM
MINIMUM

STD. DEV.

10% P of
50% P of
90% P of

Notes :

TABLE 4

PERIOD

MEAN
MAX
MIN

STD DEV
10%
MEDIAN
90%

Note

TABLE 5
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RAINFALL STATISTICS FOR 009 531 AND 009 591

NE
NE
NE

NE
NE
NE

(1)
(2)

RAINFALL STATISTICS FOR MT LINDESAY CATCHMENT

DENMARK POST OFFICE - 009 531

1910-1983

1110
1759
788
193
863
1102
1360

PARDELLUP PRISON FARM -

1910-1983

783
1341

449

156
572
756
984

Percentage reduction from period 1910-39

1910-1939

1200
1759
878
190
903
1227
1397

1910-1939

828
1341
625
146
663
797
1032

to period 1940-83

P of NE =

1910-83

887
1408
563
150
722
872
1097

See note for Table 3

1910-39

940
1408
733
144
752
906
1112

1940-1983

1050
1508
788
170
827
1043
1280

009 591

1940-1983

752
1318
449
155
548
734
972

Probability of non-exceedence

1940-83

851
1294
563
144
686
841
1040

% (1)

13.
14.
11.
10.
8.8

"N bwDn

8.6

% (1)

10%
8%
30%

9%
7%
7%

COMPARISON OF CATCHMENT RAINFALLS FROM THIESSEN METHOD
AND ISOHYETAL METHOD

MT LINDESAY
LINDESAY GORGE

KOMPUP

Note

SIMULATED CATCHMENT

MEAN ANNUAL RAINFALLS

See note for Table 3

887
858
802

ISOHYETAL MAP
MEAN RAINFALL

853
823

765

b w

% (1)
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3.2 Soil Salt Storage and Groundwater
3.2.1 Backgound

Extensive storages of soil salt (in excess of 1000 tonnes per
hectare for rainfall less than 600mm per annum) are known to
exist in the clay subsoils of the south west (Johnston et al,
1980). Soil salt storage has been shown to vary inversely with
rainfall (Figure 14). In higher rainfall areas relatively
little salt accumulates in the soil because there is an
approximate balance between the input through rainfall and
dryfall and the output in streamflow. However, in drier areas,
such as the upper Denmark, salt accumulates because there is
comparatively little streamflow as the landscape water balance
is dominated by evapotranspiration.

Stream water salt loads have been shown (Loh and Stokes, 1981
and Stokes and Loh, 1982) to be predominantly derived from the
high salt storage clay sub-soils after clearing. More than
80-90% of yearly salt loads may be from the deeper soils and
groundwater.

For the purposes of predicting stream water salinity it is
necessary to estimate soil salt storage and groundwater
salinities.

3.2.2 Soil Ssalt Storage

The Denmark River Basin lies to the east of the Manjimup
Woodchip Licence Area (MWLA) for which Johnston et al (1980)
presented the magnitude and variability of soil salt storage.
The rainfalls, evaporation, landscapes and vegetation of the
MWLA are similar to those of the Denmark Basin. Therefore the
results from the MWLA will be used for comparison with soil
salt storage results from the Denmark. '

In 1980 a small soil salt storage, groundwater level and
salinity investigation was carried out in and near the Denmark
River basin upstream of the gauging station at Kompup (see
Figure 12). A total of 19 cores were obtained at 5 sites and
soil salt and water storages determined. The site averages of
s0il solute storage are listed in Table 6 and the average total
soil salt storage (kg m-3) and concentration (mg 1-1) are

shown plotted against the rainfall for the site in Figures 13
and 14. The site averaged results from the MWLA are also shown
for comparison.

Considerable variations of salt storages were found between
cores at the same site over distances of a few hundred metres.
This is also a feature noted by Johnston et al (1980). Site
averages are a more useful measure of the variation of soil
salt across a region.
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Logarithmic regressions of soil salt content (T; kg m-3) and
concentration (C; mg 1-1) against average rainfall (R; mm)
fitted to the data with the results:-

1logT = 1.12 - 0.001R, r2 = 0.61
logC = 4.74 - .0012R, r2 =0.72

In general the data from the Denmark area is consistent with
that from the more extensive study in the MWLA. Therefore it
is possible to be more confident in selecting representative
soil salt storages for all rainfall zones across the Denmark
from the MWLA data augmented with the more limited Denmark
data. This is particularly the case for areas with rainfalls
above 800 mm for which there is no data in the Denmark region.

TABLE 6 SOLUTE STORAGE, AVERAGE SOLUTE AND AVERAGE SOLUTE
CONCENTRATIONS IN SOIL

NUMBER AVERAGE AVERAGE AVERGE AVERAGE

BOREHOLE OF PROFILE SOLUTE SOLUTE SOLUTE

RAINFALL NEST PROFILES DEPTH CONTENT STORAGE CONCENTRATION
(mm) (m) (kg/m3) (kgm-2) (mgl-l)
720 LSMITH 5 17.7 3.00 57.2 8670
720 MCRANE 3 14.2 2.57 39.2 7800
780 DRAGE 3 19.4 0.92 16.9 3966
780 WCRANEG6-9 4 16.0 3.30 54.8 8198
800 WCRANE1-4 4 20.1 2.10 42 .8 6864

NOTE. Profile averaged over borehold group

3.2.3 Stream Baseflow Salinities

Stream baseflow salinities, particularly from late spring into
summer, are likely to be good indications of groundwater
salinities. This is because the deeper, more saline
groundwater systems are the predominant component of streamflow
in the late part of the flow season when surface runoff and
flow from the shallow, fresher groundwaters have decreased or
ceased (Stokes and Loh, 1982).

To investigate magnitudes and trends in baseflow salinities as
a result of clearing, the record of flow and salinity at the
Clear Hills (603 173) and its replacement Kompup (603 003)
gauging stations were used. Plots of salinity and flow through
time and of salinity against flow were produced for each year
since 1962. From these plots approximate asymptotic salinities
towards the end of the flow season were estimated.
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The result of this analysis is shown in Figure 15 where the base
flow salinity is plotted through time. A logarithmic concentration
(S; mg L-1) versus linear time (t; years starting at 1) was
fitted: -

log S = 3.11 + 0.04t with r2 = 0.875

This relationship and the 90% confidence limits are shown in Figure
15. The rate of increase of baseflow salinity has accelerated
substantially at Kompup since the early 1960's when the yearly
increase was of the order 120 mg L-1. By the 1980's this had
increased to be in excess of 400 mg L-1. However, it is expected
that the baseflow salinity will eventually stabilize-at around the
soil salt storage concentration.

3.2.4 Groundwaters

The level of groundwaters in relation to valley inverts will partly
determine the delay time between clearing and the development of
soil salinisation and the discharge of groundwaters to streams.
Groundwater hydraulic gradients will also determine the rate at
which groundwater discharge will increase relative to recharge to
groundwater (the output to input ratio). It might be expected for
example that more incised streams, in steeper terrain would develop
groundwaters which respond in a shorter time span.

Loh and Stokes (1981) reported depths to groundwater of more than
10m for areas of less than 800 mm annual rainfall on the Collie
catchment. Rates of groundwater rise in this rainfall zone have
been found to be about 0.8 m yr—l (Peck 1983). Therefore the
delay between clearing and groundwater discharge would be (10/0.8)
12 years.

The topography of parts of the upper Denmark appear to be somewhat
more incised, steeper and the valleys less broad than for similar
rainfall zones on the Collie. Three hillslope sections from the
Denmark region depicting slopes and groundwater levels for an
incised, a less incised and an upland area are shown in Figqures 16,
17 and 18.

Although there has been very recent or partial clearing on all three
transects it is likely that the groundwater levels are
representative of forested areas in the Denmark region. Groundwater
levels in the valleys are expected to be less than 5m below the
invert and in some instances to be above the level of the invert
potentiometrically. Therefore in this region groundwaters probably
respond relatively quickly to clearing and contribute to streamflow
well within 15 years.
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3.3 Streamflow
3.3.1 Availability of Data

The Denmark River Basin has had 8 gauging stations in operation for
varying periods of time since 1940; a table of the gauging stations
is shown in Table 7 and a summary of the period of operation is
depicted in Figure 19, and the location of these stations is shown
in Figures 20a and b. Currently 4 gauging stations are operating in
the Denmark River Basin. These are Mt. Lindesay (603 136), Kompup
(603 003), Lindesay Gorge (603 002) and Yate Flat (603 190).

3.3.2 Water Yield

The annual streamflow volumes for Mt Lindesay, Lindesay Gorge,
Kompup and Yate Flat catchments are shown in Figqures 21 and 22.
These diagrams highlight the increasing variability of the
streamflow in the latter years of record, with the maximum and
minimum flows occuring in the last 7 years. Over the period 1973 to
1983 (11 years) the average percentage of the streamflow from the
Kompup catchment was 37%, while for the area between Lindesay Gorge
and Kompup the percentage was 34%. For the area between Mt Lindesay
and Lindesay Gorge the percentage was 29%. These percentages vary
considerably from year to year. The very high flows of 1978 were
mostly from the Lindesay Gorge to Kompup catchment, while the low
flows of 1982 and 1983 were substantially from the Mt Lindesay to
Lindesay Gorge catchment and the Kompup catchment respectively.
Overall the distribution of streamflow contributions from the
catchments detailed is not constant. This highlights the spatial
variability of rainfall over a relatively large catchment and the
varying responses of different catchment vegetation, landuse,
topography and soil zones.

The Kompup catchment and the Yate Flat sub-catchment streamflow
volumes are shown in Fiqure 22. Over the period when the two
sub-catchment gauging stations were operating the mean percentage
contributions were 17% and 9% respectively for the Perillup Brook
and Yate Flat sub-catchments. During the low flow years of 1969 and
1972 the Perillup Brook sub-catchment had negligible streamflow
whilst the Yate Flat Catchment contributed greater than 70% in both
years.

Figure 23 illustrates the contribution of each of the
sub-catchments, which have had streamflow volumes recorded, against
the corresponding streamflow for Kompup. This figqure highlights the
close correlation (r2 = .86) between the Kompup and Clear Hills
catchments.
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TABLE 7 DENMARK RIVER BASINS GAUGING STATIONS

NUMBER NAME AREA PERIOD OF MEDIAN PERCENT
RECORD RUNOFF  CLEARED
1984
(km2) (mm) (%)
603 014 DENMARK RIVER 567 1940-60 63.1 18.5
AT PIPEHEAD
DAMSITE
603 136 DENMARK RIVER 525 1960-84 47.8 18.1
. MOUNT LINDESAY
603 002 DENMARK RIVER 466 1973-84 38.6 18.0
LINDESAY GORGE
603 003 DENMARK RIVER 235 1972-84 43.8 34.2
KOMPUP
603 173 DENMARK RIVER 225 1962-78 45.3 34.2
CLEAR HILLS
603 172 AMURI CREEK 18.9 1962-77 86.2 NA
AMARILLUP SWAMP
603 177 PERILLUP BROOK 65.6 1962-73 45.3 13.6
603 190 YATE FLAT CREEK 56.7 1963-84 63.1 60.8

WOONANUP
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Figure 24 shows the relationship between rainfall and runoff for the
Mt Lindesay catchment. This diagram emphasises the scatter in the
relationship between annual streamflow and annual rainfall,
particularly in a catchment of area greater than 500 kmZ2. 1In
particular, the 1978 runoff is very high for the amount of rainfall
which fell during the year. .

Figure 25 depicts the ranking of the streamflows recorded from Mt
Lindesay over the period 1940-1983. The streamflow shows a typical
positive skewness which indicates an approximate log-normal
probability distribution. Another point of note is the five major
flows are substantially above the remaining flows and there is an
apparent discontinuity at this point between the streamflows.
However these is some uncertainty over the 1940-1960 figures as they
were transposed from the Denmark River pipehead dam to Mt Lindesay.
particularly with medium to high flows, and were based on a daily
stage reading.

3.3.3 Forested Catchment Runoff

In the low rainfall areas (less than 900 mm annual rainfall) under
forested conditions, 90-95% of the streamflow occurs in the wet
months of April to October. This streamflow is generated primarily
from the ephemeral aquifer which develops seasonally in the shallow
soils close to the streamline above the pallid clay zone. 1In these
low rainfall areas the evapotranspiration is high and nearly all
water which infiltrates into the subsoil is returned to the
atmosphere through transpiration by the deep-rooted native forests.
The deeper groundwaters are generally localised and occur more than
5m below the valley inverts and therefore do not discharge to the
stream system. The absence of groundwater inflow normally results
in streams of this area ceasing to flow 1-2 months prior to the
higher rainfall streams.

Generally the streamflows are small, this is confirmed in Table 8,
where the streamflow for Lindesay Gorge averages only 4.8% of the
annual rainfall. There is also generally large variability in the
streamflow, which is substantiated in Table 8 where the Lindesay
Gorge - Kompup Catchment has the largest coefficient of variation
for both runoff and the runoff to rainfall ratio.

The 900-1100 mm rainfall zone represents a transition between the
high and low rainfall regions. Streams within this zone have
variable hydrological characteristics which depend on whether the
groundwater system contributes to the surface hydrology (Department
of Conservation and Environment, 1980). Local topography,
hydrogeology and rainfall characteristics contribute to these
differences.
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TABLE 8 RUNOFF AND OUTPUT/INPUT PERCENTAGE STATISTICS FOR THE
PERIOD 1975-1983

YATE FLAT KOMPUP LINDESAY GORGE MT LINDESAY
- KOMPUP ~ LINDESAY GORGE

60% Cleared 30% Cleared 1.5% Cleared 19.7% Cleared

YEAR RUNOFF O/1 RUNOFF O©0/I RUNOFF O0/1 RUNOFF 0/1
mm 3 mm E 3 mm % mm 3

1975 75 11.3 31 3.2 28 3.1 117 10.7
1976 63 8.0 28 3.6 27 3.2 114 10.2
1977 123 18.4 59 8.8 56 5.8 220 17.0
1978 235 27.7 136 16.0 144 13.9 244 18.5
1797 91 12.7 49 6.8 37 4.6 242 21.8
1980 79 11.2 39 5.5 25 2.9 124 12.6
1981 115 17.1 66 9.8 56 6.4 202 17.5
1982 12 2.0 6 1.0 11 2.0 85 11.2
1983 54 8.2 28 4.3 10 1.4 64 7.3
MEAN 94 13.0 49 6.6 44 4.8 157 14.1
STD DEV 62 7.4 37 4.5 36 3.8 70 4.7
C of V .66 .57 .76 .68 .82 .79 .44 33

The Mt Lindesay - Lindesay Gorge catchment, which is within

the 900-1000 rainfall zone, has the largest mean runoff and

mean runoff to rainfall ratio and has the lowest coefficient
of variation of the catchments (Table 8).

Both the Lindesay Gorge - Kompup and Mt Lindesay - Lindesay
Gorge catchments have a significant amount of granite
outcrops, including the granite massif, Mt Lindesay. These
outcrops are considered to contribute relatively high runoff
compared to the forested areas adjacent. Therefore both
catchments are expected to have larger streamflow to rainfall
ratios than comparable forested catchments in the same
rainfall zone.

3.3.4 Cleared Catchment Runoff

The major reasons put forward for the increase in runoff after
a land use change from natural forest to cleared land for
agriculture is the reduction in evapotranspiration between a
mature forest and pasture. Experience from the Collie
catchment suggests that much of the increase in flow has been
generated from precipitation on, and drainage from, much
larger areas of saturated shallow soils extending upslope from
the streamline.

An indication of the change in catchment response from a land
use change can be seen by comparing the streamflow to rainfall
ratio from the Yate Flat catchment to that of the Perillup
catchment over the period 1963 to 1973 by a double mass curve
(Figure 26). This change in the gradient of the double mass
curve indicates that the contribution from the Yate Flat
catchment increased 100% relative to the Perillup Brook
catchment. Over this period the area cleared for the Perillup
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Brook catchment remained relatively constant while the Yate
Flat clearing increased from 50% to 57% cleared over the same
period, an increase of 4 km?. The location of this clearing
is primarily in two areas. The first area is located along
the main streamline adjacent to the gauging station, while the
second area is located adjacent to a secondary streamline.
Both these locations when cleared, would affect the streamflow
response considerably.

From Table 8 the mean runoff to rainfall ratio for the Yate
Flat catchment is higher than for every other catchment except
the Mt Lindesay - Lindesay Gorge catchment. This is
considered to be due to the high percentage of land cleared on
the Yate Flat catchment as compared to the other catchments.

Figure 23, mentioned previously in section 3.3.2, highlights
the differences between the contribution of Yate Flat (60%
cleared) and Perillup Brook (14% cleared).

3.3.5 Discussion and Summary

The streamflow records for the Denmark River Basin commenced
in 1940, but it is only since 1960 that good quality record
commenced with that of the Mt Lindesay gauging station. There
are now four gauging stations at; Mt Lindesay, Lindesay Gorge,
Kompup and Yate Flat.

The streamflow record of the gauging stations shown on figures
21 and 22, shows no apparent trend with time. This may be due
to the decreasing trend in rainfall counteracting any
increasing trend due to change in land use. If the record is
partitioned and the period 1960 to 1974 analysed, the five
year moving average shows a definite trend of reducing stream
flow, although the relatively high flows of 1977 to 1979
counteract this apparent trend.

The comparison of the catchments within the Kompup catchment
highlights the additional streamflow generated after the
change in land use from forest to agriculture. The Yate Flat
catchment (60% cleared) produces approximately 130% of the
streamflow volume of Perillup Brook (14% cleared) where both
catchments have approximately the same area.

The plot of runoff versus rainfall for the Mt Lindesay
catchment highlights the variability in annual data and the
position of the 1978 runoff as an extreme event for the
rainfall recorded. The ranking of the annual streamflows
emphasises the approximate log-normal distribution of the
runoff and the discontinuity between the extreme events and
the data below the 90% probability of non-exceedence.

The effect of land use change is shown in the double mass
curve of Perillup Brook versus Yate Flat catchment. Over the
period 1963 to 1973, as the percentage of land cleared in Yate
Flat increased, whilst that of Perillup remained relatively
constant there was a 100% increase in the ratio of Yate Flat
to Perillup streamflow volume.



38
Generally the data detailed in the previous sections on
streamflow has identified definite differences between
forested and predominantly cleared catchments.

3.4 Stream Salt Yield and Salinity

3.4.1 Aim

The aim of this section. is to determine the magnitude and
variability of stream salt loads across the catchment and to
develop water and salt load relationships for use in the
streamflow and salt load simulation described in section 4.

3.4.2 Availability of Data’

At each of the gauging stations which operated in the Denmark
River Basin water quality analysis were carried out. 1In
addition three sub-catchments had water quality samples
taken. These were Upper Denmark (603 1028), West Tributary
(603 1026), and East Tributary (603 1027). Prior to 1978
between 10 to 30 water quality samples were taken at each
gauging station per year. Since 1979 both Kompup and Mt
Lindesay catchments have increased to approximately daily
water quality samples. A summary of the water quality data
available in the Denmark River basin is shown in Appendix C.

3.4.3 Salt Load Calculation Method

As the water quality at any site varies with the magnitude of
the flow and the time in the season, the arithmetic mean of
the samples taken at reqular intervals during a year would not
necessarily represent the average salinity of the total flow
for that year. The two main methods to calculate the salt
load are the flow weighted salinity and the daily integration
method.

The flow weighted salinity concentration is defined as:

Spw = SiQi: i = 1,n 3.1
Qi
where

Sj is the concentration of an individual sample
Qi 1s the instantaneous flow rate at the time of sampling
n is the number of samples

This flow weighted salinity is then multiplied by the total
flow volume to arrive at the total salt load. This method
only gives an approximate salt load since the salinities are
not related to any time scale and all of the samples may have
been taken in high flows or at a particular time of the year,
thereby giving a biased result.
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For streams which have significant variations in salinity,
large numbers of samples are necessary to produce accurate
estimates of annual flow-weighted salinity (Barrett and Loh,
1982). When the sample frequency is high enough to define
water quality changes with changes in discharge it is possible
to calculate salt loads by integrating the mass flux of salt
through time (as is done with water discharge). This was done
for the 1979-1983 Kompup data and the 1978-1983 Mt Lindesay
data and compared with the flow-weighted method. The results
differed by only a few percent and so either method produced
adequate results when the sampling frequency is at least daily
for these two sites.

3.4.4 Results

The annual salinity and annual salt load results are shown for
the Kompup, Mt Lindesay catchments and the Mt Lindesay-Kompup
sub-catchment in Table 9. The results indicate that 72% of
the salt load recorded at Mt Lindesay is from the Kompup
catchment, even though the catchment area for Kompup is only
45% of the total catchment, and the flow from Kompup
contributes 37% of the total streamflow.

Figure 27 shows the relationship between the salt load (T.S.S.
tonnes) and the flow volumes for the three catchments. The
Kompup catchment has a higher salt load than the Mt Lindesay -
Kompup catchment for the same flow - volume. From the
gradient lines on the plot the Mt Lindesay - Kompup salinities
are within the 250 to 500 mg L-1 TSS range while the Kompup
salinities range from 900 to 4000 mg L-1 TSs.

From the diagram of salinity concentration versus streamflow
(Figure 28), the salinities for Mt Lindesay - Kompup show an
increase with decreasing streamflow although the variation is
not significant. For the Kompup catchment there is a large
increase of salinity with decreasing streamflow. The
relationship for concentration against streamflow could be
approximated by an inverse function or a negative exponential.

Two catchments which are approximately in a forested condition
are Perillup Brook and Kompup to Mt Lindesay. The annual
salinities for these two catchments were plotted against
runoff in Figure 29. Overlaid on this plot are the Collie
relationships between concentration and flow derived from Loh
and Stokes (1981). The Perillup data is consistently higher
than the 700-800 zone from the Collie data primarily due to
the Perillup catchment having approximately 14% cleared. The
Kompup to Mt Lindesay data is consistently within the 800-900
and 900-1000 rainfall zone relations.
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TABLE 9 WATER AND SALT YIELDS

KOMPUP MT LINDESAY MT LINDESAY - KOMPUP
WATER FLOW LOAD CONC. FLOW LOAD CONC. FLOW LOAD CONC.
YEAR (106m3) (t) (mg/L) (106m3) (t) (mg/L) (106m3) (t) (mg/L)
1978/79 79.9 24257 304 47.9
1979/80 11.4 12350 1081 34.1 19120 560 22.7 6770 298
1980/81 9.16 11186 1221 22.2 14921 674 13.0 3750 288
1981/82 15.9 14825 898 41.3 20189 489 25.4 5904 232
1982/83 1.31 5206 3970 8.37 8097 967 7.06 2891 409
1983/84 6.65 11448 1722 12.7 13570 1069 6.05 2122 351
1984/85 17.40 17197 988 44.4 23266 524 27.00 6069 225
| KOMPUP : 235 km?
MT LINDESAY : 525 km?

MT LINDESAY - KOMPUP : 290 km?

Figure 30 shows the annual salinities with respect to runoff
for three catchments with the Kompup catchment. These are
Perillup, Amuri Creek and Yate Flat. The Perillup figures are
consistently lower than either Amuri Creek or Yate Flat which
is expected due to the low percentage cleared. Amuri Creek is
a sub-catchment of the Yate Flat Catchment.

From the data in Figure 30, the Amuri Creek results are of a
higher runoff and salinity for individual years.

The diagrams discussed highlight the higher salinity
concentraton and higher salt loads produced from the lower
rainfall, cleared catchments. These results from the Denmark
River Catchment, confirm the results produced from catchments
in the Northern Darling Range and Manjimup Woodchip Licence

Area. (Conservation and Environment, 1980).
3.5 Land Use
3.5.1 Aim

To study the hydrological responses associated with a river
catchment it is essential to have a knowledge of the
environment and the changes that have been made to it by man.
The most significant impacts on the study area have been due to
timber milling operations and more importantly the clearing of
land for farming operations.
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3.5.2 History
3.5.2.1 Forestry

The commerical exploitation of the timber resources in the
region did not commence until the 1870's when timber mills were
established at Amerillup followed by Denmark (Glover, 1979:
Collins and Fowlie, 1981). The industry expanded over the next
four decades in response to an increased export trade and
demands from major works such as the telegraph line, Great
Southern Railway and expansions due to the gold rush.

Companies operating in the Scotsdale and Karridale areas were
required to clear karri trees from areas, under a government
timber concession lease to encourage settlement. The number of
timber mills operating in and around the catchment peaked at
seven in the 1950's (Jarvis, 1979).

The millable timber available in this area has been limited by
the fact that 45% of the Mt Lindesay catchment is classified as
non-forest (Table 10).

3.5.2.2 Agriculture

Although Albany was first settled in 1826 the exploration of
the study area did not take place until 1829 and commercial
agricultural development not until the 1860's. Up until the
1890's this development was confined to extensive pastoralism
based on sheep (Jarvis, 1979) and was limited to the Kompup
catchment area.

At this time small mixed farms were established on the karri
loams in the catchment between Mount Lindesay and Lindesay
Gorge in areas that had been clear-felled. The introduction of
the Government Group Settlement scheme in the early 1920's
resulted in a rapid expansion in the amount of cleared and
developed land in this area. The area regressed during the
1930's due to the depression and heavy livestock losses from a
wasting disease resulting from mineral deficiencies.
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Table 10 FOREST TYPES IN THE DENMARK RIVER BASIN

Forest % of Catchment
Type
603014 603003
(567 km2) (235 km2)

Non-forest
(Swamps, 45 39
scrub, rock)

Karri 0.2 0
Jarrah-Marri 8 7
Jarrah 30 25

Source : Department of Conservation and Land Management.
Forest Management and Inventory System (FMIS)

A major expansion of the industry occurred in the early 1950's
resulting from a worldwide increase in the demand for beef and
the introduction of war service projects in the Rocky
Gully-Perillup and Denbarker areas. The abolition of controls
on land prices in 1949 encouraged farmers to further develop
their properties (Gentilli, 1979).

After a recession in the mid 1960's beef prices again increased
until the early 1970's. This caused a wholesale change in the
district to beef farming and an expansion in the total area
cultivated. Prices peaked in 1972 and in 1973 began to fall
and because of this the prosperity of the area has declined.

The implementation of clearing control legislation (Public
Works Department, WA, 1979) has resulted in a stabilisation in
the area of land cleared.

3.5.3 Data Sources

The watershed catchment boundaries used in this report were
defined on 1:50 000 map sheets primarily from the
interpretation of contours from topographical maps in
conjunction with aerial photography and ground surveying.

The annual average rainfall isohyets (1926-1980) used for this
study were obtained from Public Works Department (1980).

A history of clearing was developed from either aerial
photography or landsat imagery as documented in Appendix D.
The conversion of the aerial photographic interpretation of
cleared land for the 1946 and 1979 data sets was done by hand
using cadastral boundaries and natural features as the controls.
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The information defining the broad cadastral classification of
private land was supplied in digital form by the Department of
Lands and Surveys.

3.5.4 Data Capture and Analysis

The Land Information System Support Centres (LISSC) Intergraph
VAX 11/780 was used to capture data, in a digital form, from
maps describing the catchment boundaries, rainfall isohyets,
cleared land and generalised cadastral boundaries. This is a
general purpose interactive graphics system which includes an
extensive suite of data manipulation and analysis programmes.
However it was basically only used as a data capture mechanism
because it was considered, from past experience (LISAC 1983),
that it would not adequately handle the generation of area
statements for the production of the required Boolean "AND®
type intersections from such a large set of data. This
involves the overlaying of the four sets of information, namely
catchment boundaries, rainfall isohyets, cadastral boundaries
and cleared land.

To carry out this analysis the data was converted from polygon
or vector data into grid cell data (or raster data) and
transferred by magnetic tape to the Department of Land and
Surveys, Remote Sensing Section's 12S Image Processor. A grid
cell size of 50 metres by 50 metres was adopted as the standard
because it enabled the Landsat imagery, which is inherently
raster formated data, to be resampled from its standard format
of 70 metre grid cells without significantly degrading its
integrity. This format also gave a good coverage of the study
area with a moderate amount of data as 1024 by 1024 grid cells.

The classification of the landsat data into a clearing theme

was carried out on the I2S image processor by simply making a
level slice on band 5 of the imagery. This was validated by

comparing the aerial photography for the same period, January
1984, with the resulting cleared classification.

To validate the area statements the data was transfered from
the Intergraph system to the Conservation and Land Management's
Forestry Management Inventory System (FMIS) for analysis. This
raster data base and manipulation system is based on a grid
cell size of 140.35 metres.

3.5.5 Clearing Patterns

The areas cleared to 1946, 1957, 1965, 1973, 1979 and 1984 are
shown in Figures 31 to 36 and the 'breakdown' by catchment and
by isohyetal zones are listed in Table 11. By 1984, 84% of the
area cleared, to the probable site of the reservoir at Mt
Lindesay gauging station, was upstream of the Kompup gauging
station. This represents 15% out of the total of 18% (95

km?2) of cleared land to Mt Lindesay. The majority of the
clearing is therefore in the lower rainfall part of the basin
where soil salt storages are higher.
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As described in the history, major episodes of clearing
occurred between 1946 and 1957 and between 1965 and 1973
coincident with improved prices for agricultural products,
particularly beef. Little additional clearing occurred in the
Woonanup subcatchment (603 190) of Kompup after 1957. By 1979
this area was 60% cleared. 1In contrast an additional 40 km?
was cleared elsewhere upstream of Kompup between 1957 and 1979;
most of this between 1965 and 1973 (Figures 32 to 36). Less
than 5 kmZ2 of the 82 km? increase in area cleared to Mt
Lindesay between 1946 and 1979 occurred in the area between
Kompup and Mt Lindesay.

A decrease of about 9 km2 in the area cleared at Mt Lindesay
was estimated to have occurred between 1979 and 1984 (Figures
35 and 36). Approximately 2/3 of this occurred as a result of
forest regrowth on private land upstream of Kompup. Most of
the remaining 1/3 is attributed to differences in
interpretation of forest/clearing between the machine processed
1984 Landsat imagery and the manually processed 1979 aerial
photographs. :
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FIGURE 3l CLEARING AT 1346
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CLEARING AT 1957

FIGURE 32
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FIGURE 33 CLEARING AT 13965
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FIGURE 34 CLEARING AT 1873
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CLEARING AT 1878

FIGURE 35
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FIGURE 36 CLEARING AT 1984



CATCHMENT CLEARING IN RAINFALL ZONES

1946

KOMPUP

KOMPUP TO LINDESAY GORGE
LINDESAY GORGE TO MT LINDESAY

MT LINDESAY

1957

KOMPUP

KOMPUP TO LINDESAY GORGE
LINDESAY GORGE TO MT LINDESAY

MT LINDESAY

1965

KOMPUP

KOMPUP TO LINDESAY GORGE
LINDESAY GORGE TO MT LINDESAY

MT LINDESAY

1973

KOMPUP

KOMPUP TO LINDESAY GORGE
LINDESAY GORGE TO MT LINDESAY

MT LINDESAY

1979

KOMPUP

KOMPUP TO LINDESAY GORGE
LINDESAY GORGE TO MT LINDESAY
MT LINDESAY

1984

KOMPUP

KOMPUP TO LINDESAY GORGE
LINDESAY GORGE TO MT LINDESAY
MT LINDESAY

Note : All values are km?
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4. STREAMFLOW AND SALINITY SIMULATION
4.1 Aim

The aim of this section is to determine the statistics of long
term river water yield and salinity due to the fully developed
effects of clearing for agriculture.

4.2 Model
4.2.1 Background

The regional prediction model used in the analysis of the
Denmark River catchment was originally developed for predicting
water yield and salinity variations with time in the south-west
of Western Australia (Loh & Stokes, 1981) and in particular the
Wellington Reservoir catchment. To produce predictions of the
long term salinity with any confidence requires a detailed
historical record of the rainfall, streamflow, groundwater
levels, forested areas cleared (location and quantity),
topography and vegetation (existing and historical). Because
this record is very difficult to achieve (and in practice
rare), there is an inherent level of uncertainty in the
analysis, which is difficult to define other than
gqualitatively.

4.2.2 Model Structure

The two equations, which are the basis of the model, for
streamflow and salt load, (Loh & Stokes, 198l) are:

Qp = QF{*AFj + QAj*AC{ -———------ 4.1
SLT = QFj*AF;{*CFi+QRAj*AC{*
CU;+GRj*F{*ACi*CGj—-~~-——- 4.2

where QOr is the total flow in 106 m3
QF; is the forested flow for zone i in mm
AF; is the area of zone i in km?2
QAj is the additional flow for zone i in mm
ACi is the area cleared in zone i in km?2

SLy is the Total Soluble Salt (TSS) load in 108 kg

CF; is the forested salinity for zone i in kgm-3

CUj is the salinity of shallow sub-surface groundwater
for zone in kg m—3

F; 1is the proportion of the groundwater recharge which
is currently being discharged for zone i

GRj is the groundwater recharge rate for zone i in mm

CGiy is the salinity of discharging groundwater in zone
in kgm-3

n is the number of zones
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These equations for streamflow and salt load are calculated for
separate rainfall zones and summed to provide total streamflow
and salinity.

Equation 4.1 expresses the total annual streamflow as a
combination of forested flow over the complete catchment and
additional flow over the area of the catchment cleared.

Equation 4.2 defines the total annual salt load from the
catchment by dividing this salt load into three sections.
These three sections are the salt load from the catchment
completely forested; additional salt loads due to surface and
sub-surface flow in the cleared regions; and additional salt
load due to groundwater discharge in the cleared area.

The major assumption made in this flow and salt load prediction
are that the location of the land cleared is independent of the
flow volume (in that land cleared from a valley, midslope or
upland gives the same additional flow).

4.2.2.1 ‘Salt Load from Forested Flow

The salt load from the forested catchment is calculated by the
forested flow volume multiplied by the forested flow salinity
where the forested flow salinity is defined from historical
records for catchments with little or no clearing.

4.,2.2.2 Salt load from Additional Flow

The additional salt load due to surface and sub-surface flow in
cleared areas is calculated from the additional streamflow from
the land use change multiplied by the shallow sub-surface
salinity.

4.2.2.3 Salt load from Groundwater Discharge

The additional salt load due to groundwater is a result of the
discharging groundwater multiplied by the groundwater

salinity. The groundwater recharge is related to the
additional groundwater discharge by a time function which
delays the discharge relative to recharge (the F factor). This
function is governed by the geometric and hydraulic properties
of the groundwater aquifer. The model is constructed so that
different zones have different time delays between recharge and
discharge and different salinities of discharging groundwaters
(Loh & Stokes, 1981).

The specific factors in the groundwater salt load are the
groundwater salinity, area of land cleared, the groundwater
recharge and the F factor. The groundwater salinity is
determined from the baseflow salinity and the soil salt storage
concentration (see section 3.2).
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Groundwater recharge is determined from an analysis of the
aquifer, the specific yield and rate of water level rise per
year for varying rainfall zones. This analysis calculates the
recharge on a regional basis for each rainfall zone and
averages any variations within a rainfall zone.

The groundwater salinity is calculated from solute
concentration analysis of drilling data and from salinities of
the streamflow during the late spring and summer during the
hydrograph decay. Stokes et al (1980) summarised the available
data on soil salt storage characteristics in the Northern
Darling Range. Results from this study have shown that the
ratio of soil solute concentration to groundwater salinity in
forested areas varies from 1.0 to 10.0, while the ratio for
cleared areas approaches 1.0. The soil solute concentrations
for the Denmark River Basin were based on the drilling work
(detailed in section 3.2) and the data from Johnston et al
(1980) on the soil salt storage in the Manjimup Woodchip
Licence Area.

The F-factor is a magnitude and response time measure of the
ratio of groundwater recharge to discharge. A change in land
use, in this case from forested to agriculture increases the
groundwater recharge and subsequently results in an increase in
groundwater discharge. This discharge will lag behind recharge
primarily due to the deeper groundwater rising to intersect the
valley floor and commencing discharge to streamflow, (see
Fiqure 37).

The discharge will be delayed depending on the physical
separation of recharge and discharge locations and hydraulic
characteristics of the aquifer. Depending on the depth of the
existing groundwaters the response time ([a) varies from zero
for shallow depths to initial groundwater level, to 5-10 years
and even more for deeper groundwaters.

4.3 Simulation Parameters

4.3.1 Streamflow

In this simulation the catchment was separated into three zones
based on annual rainfalls.

Kompup 700 - 800 mm Zone 1
Lindesay Gorge - Kompup 800 - 900 mm Zone 2
Mt Lindesay - Lindesay Gorge 900 -~ 1000 mm Zone 3

To produce the forested and additional streamflow components,
regression analyses were used directly on the catchment ‘
rainfalls. This was achieved by assuming the Perillup Brook
catchment as a forested catchment with negligible effects due
to the clearing and Yate Flat sub-catchment as a cleared
catchment, for the 700 to 800 mm rainfall zone.
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Some modifications for the Yate Flat sub-catchment relationship
between runoff and rainfall was required to obtain a measure of
additional runoff per unit clearing. The Yate Flat runoff was
subtracted from the Perillup Brook runoff and divided by the
percentage cleared from Yate Flat to produce a runoff-rainfall
relationship per unit clearing (see Figure 38). The difficulty
in this process is exemplified by comparing the data for 1968
and 1969. 1In 1968 the flow at Yate Flat was about 3.5 times as
large as that for Perillup Brook, however in 1969 this ratio
increased to 132.

The Lindesay Gorge - Kompup sub-catchment, with only 1.5%
cleared was assumed to be a fully forested catchment for the 800
to 900 mm rainfall zone. The cleared, runoff-rainfall
relationship in this rainfall zone was interpolated between the
700 to 800 mm zone and the 900 to 1000 mm zone. The runoff to
rainfall relationships developed for the 800 - 900 rainfall zone
are detailed in Figure 39.

The Mt Lindesay - Lindesay Gorge sub-catchment was the only
catchment within the 900 - 1000mm rainfall zone, and with 20% of
the sub-catchment cleared could not be assumed to be a forested
catchment. To produce a forested catchment runoff to rainfall
relationship the data from the 700 to 800 mm and 800 to 900 mm
zones was extrapolated for the forested condition. The unit
additional runoff was produced by subtracting Mt Lindesay -
Lindesay Gorge values from the simulated forested catchment for
the 900 - 1000 rainfall zone and dividing by the percentage
cleared. The results of this analysis are shown on Figure 40.

4.3.2 Salinity

The salt load equation is divided into three sections - forested
salt load; additional salt load from surface and shallow
groundwater flow due to clearing: and groundwater salt load.

4.3.2.1 Forested Salt Load

The forested salinity, for each of the zones under study, was
fitted to an exponential equation of the form:

Cc = aQb 4.3
where C is the salinity concentration in TSS (mg/L)
Q is the streamflow volume in mm

a, b are constants
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Table 12 shows representative values for equation 4.3 for each
of the rainfall zones and constrained minima and maxima.

These parameters were derived from the comparison between the
recorded data for the Perillup catchment and Mt Lindesay-Kompup
sub-catchment and the parameters for the Wellington Reservoir
catchment. The Perillup and Mt Lindesay-Kompup sub-catchments
were used due to the low percentage cleared and therefore show
a relatively stationary relationship between flow and salinity.

The data for the Perillup catchment is consistently above the
Wellington Reservoir data for the 700-800 mm zone, particularly
in the low-flow region. The curve defined for the Wellington
Reservoir in the 700-800mm zone was used in the simulation
since the Perillup catchment, with 14% cleared, was considered
to give higher salinities than a completely forested catchment
in low streamflows.

The data for the Mt Lindesay-Kompup sub-catchment which
encompasses the 800-1000 mm range of annual rainfall falls
between the 800-900 mm and 900-1000mm zones for the Wellington
Reservoir catchment and parameters for forested salinity from
this area were used in the Denmark simulation.

4.3.2.2 Surface and Shallow Groundwater

The salinity of the surface and shallow sub-surface flow for
each zone has been set at 150 mg/l TSS. This figure was
calculated from the mean minimum salinity over the period of
record for Perillup Brook, Lindesay Gorge and Mt Lindesay
Catchments (Public Works Department, 1984).

4.3.2.3 Deep Groundwater

The deep groundwater salinity was initially based on the
drilling data detailed in section 3.2 and the data from the
MWLA (Johnston et al, 1980). These values of groundwater
salinity are shown in Table 13 for each rainfall zone and the
values for the corresponding zones of the Collie catchment are
also listed for comparison (Loh & Stokes 1981).



TABLE 12

ZONE

700-800

800-900

900-1000

TABLE 13

RAINFALL
ZONE

700-800

800-900

900-1000
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EQUATION VALUES

FORESTED SALINITY
a b Cmin Cmax
138 -0.14 60 120
2354 ~0.60 90 350
1594 -0.35 200 450

GROUNDWATER SALINITIES FOR EACH RAINFALL ZONE (Cg)

COLLIE/ADOPTED MWLA/DENMARK
(mg L-1) (mg L-1)
6000 9000
3000 6000
1500 4000

4.3.3 Groundwater Recharge and Discharge

The groundwater recharge as a function of the annual rainfall
is shown in Figure 41 with the values from Loh & Stokes, 1981.
The groundwater discharge delay from recharge as a function of

the specific zones is shown in Figure 42.
empirically derived relationships (Loh & Stokes,

These results are
1981) with

modifications for the Denmark region conditions.

4.4

Results of Streamflow Simulation

The initial simulations using the Denmark/MWLA groundwater
salinities produced very high streamflow salinities in

comparison with recorded values.

Successively lower

groundwater salinities were used until an acceptable
correspondence between recorded and simulated streamflow

salinities was achieved.

The final set of groundwater -

salinities were close to those used by Loh and Stokes (1981)
for the Collie River (Table 13) and so these values were

adopted.

Using the parameters defined in the previous section the stream

flow,

salt loads and salinity were modelled from 1910 to 1984

and then predictions made on the equilibrium values using

specific flow-volumes.
1962-1983 for the Mt Lindesay data.

The period of calibration used was
The longer period of

streamflow record from 1940--1983 was not used due to the doubt
about the accuracy of the high and medium flow rating (Public

Works Department,

1984) prior to 1962.
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4.4.1 Streamflow

The statistical comparison between the recorded data and the
simulation are listed in Table 14. The simulation fits the
mean very well but the variation in the simulated streamflows
does not achieve the same variation as the recorded data, which
is emphasised by the greater than 20% difference in the
standard deviations. The correlation of the simulated to
recorded data gives a low coefficient of determination (r2)

of 0.66.

Figure 43 depicts the comparison between the actual and
simulated streamflow. This diagram highlights the inherent
difficulty in fitting annual runoff to annual rainfall due to
the variation of intensity and duration of rainfall events
within each year. The prediction for 1978 emphasises this lack
of fit, where two rainfall events produced approximately 40% of
the streamflow at Mt Lindesay.

4.4.2 Stream Salinity

The model simulation of annual salinity predicts the mean
annual salinity very accurately but the standard deviation,
maxima and minima are predicted less well (Table 15). This
failure to predict the extremes or the general variability in
annual salinity is a product of using annual rainfall to
predict annual streamflow. The correlation between the actual
and predicted salinity data gives a coefficient of
determination of 0.72.

The calculated mean flow weighted annual salinity and the
predicted flow weighted salinity with time are shown in Figure
44.

TABLE 14 COMPARISON OF STREAMFLOW -~ ACTUAL AND SIMULATED
1962 TO 1983

ANNUAL FLOW ANNUAL FLOW DIFFERENCE
ACT. (x 106m3) SIM (x 106m3) %

MEAN 30.14 30.36 -0.7

STD DEV 16.9 13.1 22.4

MAX 79.9 57.9 27.5

MIN 9.1 7.0 23.2

TABLE 15 COMPARISON OF SALINITY - ACTUAL AND SIMULATED
1962 to 1983

ANNUAL SALINITY ANNUAL SALINITY DIFFERENCE
ACT. (x 106m3) SIM (x 106m3) %
MEAN 493.8 494.3 0.2
STD DEV 189.5 128.7 32.0
MAX 987.0 809.0 18.0
MIN 230.0 284.0 -23.4
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The salinity was generally under predicted during the 1940-1960
time span, but due to the small number of water quality samples
taken the accuracy of the mean annual salinity has some
uncertainty. During the 1970's the simulation predicted the
actual salinity reasonably well.

4.4.3 Longer-Term Flow and Salinity

The rainfall levels corresponding to the probabilities of
non-exceedance of 10%, 50% and 90% for streamflow were
introduced into the model as rainfall from 1985 to 2010. These
simulations produced long term equilibrium conditions by the
year 2005 Figure 45. This analysis gave the median streamflow
and salinity, (at equilibrium) of 32 x 106m3 and 730 mg

L-1 TSs respectively while the 10% and 90% probability of
non-exceedance values for streamflow and salinity are 11.8 x
106, 82 x 106m3 and 1081, 458 mg L-1 TSS (Table 16).

Figure 46 depicts the long term salinity if the catchment had
remained completely forested compared to the predicted salinity
from 1910 to 2010. This scenario gives a median salinity of
218 mg L-1 TssS. Wwhile if the Kompup catchment (700-800 mm
rainfall zone) had all privately owned (freehold and leasehold)
land cleared the median long term salinity at Mt Lindesay would
be 800 mg L-1 TsS.

Figure 47 details the long term salinity versus streamflow
relationship. 1Included in this diagram are the historical
values from 1978 to 1984. These values follow the general
trend of the predicted salinities but at a reduced salinity
level. From the plot of equilibrium values, equation 4.4 was
fitted:-

where C = 3286Q—-14 4.4
C is the Annual salinity (mg L-1 TsS)
Q is the Annual streamflow (10%m3)

The exponent in equation 4.4 of -0.44 for a catchment with 18%
cleared compares favourably with the Wellington Reservoir
Catchment (Loh and Stokes, 1981) where a sub-catchment with 32%
land cleared has an exponent of -0.57.

The 1984/85 results of 44.4 x 10% m3 and 530 mgl'1 TSS,

which are approximately 80% of the long term flow and salinity
values, substantiate the continuing trend of increasing
salinities with time.
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TABLE 16 LONG TERM PREDICTIONS OF STREAMFLOW AND SALINITY

PROBABILITY OF APR-OCT RAINFALL STREAMFLOW SALINITY

NON-EXCEEDANCE PREDICTED PREDICTED
(mm) (x106m3) (mg L-1)
10% 538 11.8 1081
50% 674 32.0 726
90% 874 82.1 458

The plot of annual salt load versus annual streamflow is shown
in Figqure 48. 1Included in this diagram are the historical salt
load values from 1978 to 1984, and the simulation of original
conditions prior to the effects of clearing. The salt load
data for 1979 to 1984 shows reasonable correlation with the
equilibrium data. However the 1978 value is markedly lower
than that predicted for that annual flow. One possible reason
for the shortfall is because of the very large flows due to two
intense rainfall events, with relatively fresh surface runoff
and shallow sub-surface flow from the largely uncleared area
below Kompup. However as the model is based on annual rainfall
totals assumed to be representative on a catchment basis such
events would also be expected to generate runoff from the
partially cleared northern portion of the catchment. Hence,
the total predicted salt load would be significantly higher.

Table 17 lists the flow and salinity statistics for three
alternative simulations and the recorded streamflow from
1962-1983. The effect of clearing all private land in the
Kompup catchment increases the mean flow by 3.4% however the
increase in the mean salinity would be 10.5%.

TABLE 17 FLOW AND SALINITY STATISTICS

EFFECT OF EFFECT OF

STATISTIC CURRENT ALL PRIVATE LAND FULLY RECORDED
CLEARING CLEARED FROM FORESTED 1962-83
1984 KOMPUP CONDITION

FLOW

(x106m3)

Mean 37.7 39.0 27.6 30.1

St. Dev. 23.2 24.0 19.9 16.9

Max 107.4 110.4 86.6 79.9

Min 7.0 7.5 2.7 9.1

SALINITY

(mgL—ITSS)

Mean 716 791 224 497

St. Dev. 158 178 74 200

Max 1133 1291 412 987

Min. 436 477 106 261
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4.4.4 Generated Streamflow and Salt Loads

To enable a more detailed comparison of results between the
recorded and simulated, 500 Years of monthly streamflow and
salt load were produced. ‘

Annual mean, standard deviation and serial correlation were
produced from the 1940 to 1983 rainfall period with the full
effects of clearing. Mean monthly streamflows were produced
from the recorded data of 1962 to 1983 multiplied by a
weighting to take into account the full effects of clearing.
This weighting was calculated as the mean annual streamflow
from the simulated data from 1940 to 1983 divided by the mean
annual streamflow from the recorded data of 1962 to 1983. The
monthly standard deviation and serial correlations were
produced from the recorded data of 1962 to 1983.

These annual and monthly streamflow statistics were the basis
for the 500 years of streamflow record. To generate 500 years
of data a Matalas moment transformation algorithm was used to
preserve the moments and the lag one serial correlation. This
algorithm assumes that the flow is log-normally distributed
with two parameters for monthly and annual values. The
statistical summary of the synthetic 500 years of streamflow is
included as Appendix E.

To compare the generated streamflow with the historical record,
an annual streamflow probability curve was produced (Figure 49).

The generated streamflow distribution is higher than the
historical streamflow for the entire record. The reasons for
this are firstly, that the period of record, 1962 to 1983 is
within the land use change period, (the area of catchment
cleared increased from 10.7% in 1962 to 18% in 1983), thus
altering the catchment runoff characteristics. Secondly the-
period of record is considered to be one of relatively low
rainfall, whereas the generated streamflows were produced from
the higher, 1940 to 1983 rainfall sequence.

The monthly salt loads were generated by utilizing the
streamflow to salinity relationship produced from the
simulations. equation 4.4:-

C = 3286 Q—-44 4.4

This relationship was used to generate annual statistics for a
500 year simulation period, by applying it to the generated
annual streamflows. These annual salinities were distributed
into monthly salinities based on the mean monthly distributions
for the historical record 1979-1983. The generated monthly
salinities were then transformed into monthly salt loads with a
correcting factor so that the sum of the monthly salt loads
equalled the annual salt load. The statistics for the 500
Years of generated salt load are listed in Appendix D.
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From these streamflow and salinity simulations the monthly mean
salinities were compared to the historical monthly salinities
from 1979 to 1983, by means of a cummulative distribution
(Figure 50). This diagram shows that the probability of a
monthly salinity greater than 800 mg L-1 TSS is currently
estimated to be 46% and that this will increase to 63% at
equilibrium conditions and that the comparison for 1000 mg

L-1 TSS is 21% for the current data and 38% for equilibrium
conditions.

4.5 Discussion and Summary
4.5.1 Assumptions

The major limitation in the streamflow and salinity simulations
is the use of an annual time scale. Due to the inherent
variability of rainfall events within individual years, the
prediction of annual flows from annual rainfall does not
simulate the variation in the record (ie. standard deviation).
However coefficient of determinations over the period of
comparison of .67 and .72 for annual streamflow and annual
salinity are reasonable, within the limitations of the model.

In generating streamflow there was some difficulty in
separating the initial or pristine conditions of the catchment
from the additional flow due to a land use change. This was
due primarily to little streamflow record for the initial,
forested conditions especially for the 700-800 and 900-1000
zones.

The main assumption in the streamflow model itself is the
linear increase in runoff with an increase in catchment area
cleared. This does not take into account the location of the
clearing and the topography, soil profile and groundwater
depths.

The location of the clearing affects the streamflow response by
two main characteristics. Clearing in streamline zones
generally results in areas of saturation during rainfall
events, which give very high runoff. These saturated areas are
caused by the generally less permeable soils and the small
depth to groundwater levels in the valley invert. 1In upland
areas the soils are generally more permeable and usually more
vegetation is retained, therefore the increase in streamflow
after clearing is reduced in relation to other areas.

The major assumptions in the salt load model were:
(a) The area cleared is assumed to have a linear effect on

the catchment salt load. However this is considered
inaccurate because:
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(i) It does not take into account the spatial distribution of
clearing (ie. whether the clearing is within a stream
zone, midslope or upland). When the clearing is within a
stream zone the depth to groundwater is small and
therefore the response time for the input of high
salinity groundwaters is less than if the clearing was
undertaken in an upland area.

(ii) No account is taken of soil salt profile variability
within the catchment. Johnston et al (1980) related the
distribution of the profile form and salinity within a
small catchment area to topography. 1In the upper
landscape, monotonic salt profiles are common. The bulge
type is usually encountered in valleys and lower slopes,
but it also occurs in depressions and drainage lines of
the upper landscape.

(iii) No account is taken of deep groundwaters completely
saturating the pallid clay zone prior to 100% clearing.

(b) The groundwater salinity is assumed to remain constant
over the land use change. Because of the prevalence of
the bulge type soil salt profile the groundwater salinity
will vary as the groundwater level rises. The process of
salt diffusion is complicated and the equilibrium
groundwater salinity can be less than the average soil
solute concentration.

c) The area cleared is assumed to have a linear effect on
the salt load contribution from the shallow sub-surface.
This again does not take into account variations across
the catchment in topography., soil profile and groundwater
levels.

d) The recharge to groundwater assumes a linear relationship
with rainfall. This again is a simplification of a
complicated systenm.

e) Assumed delay function between groundwater recharge and
discharge is empirically derived.

As a check on the validity of the simulation results, the salt
load as an output to input ratio was compared between the
simulation, the historical record and the results from previous
analyses (Stokes and Loh, 1982). For the long term predictions
the output over input ratio for chloride varies from 2.3 to

4:1 for the three percentile flows (10, 50, 90) whilst the
historical data gives a ratio around 2:1. The data from 100%
clearing of Wights catchment (Stokes and Loh, 1982) gave ratios
of between 4.8 and 11.1:1. Therefore the data from the long
term prediction is not considered to be over producing salt
loads, but may be slightly conservative with respect to the
data from Wights catchment.
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4.5.2 Summary

Overall, the results from the simulation of streamflow and salt
load, should be considered with respect to the limitations and
assumptions made in the modelling. On a regional scale the
results provide valuable insight into the relative magnitude of
the effects of past and possible future land management on
stream salinity.

The estimates of long-term median annual streamflow and median
annual salinity are 32.0 x 106m3 and 730 mg L-1 TSS.

Analysis of a 500 year sequence of inflow salinity showed that
62% of monthly salinities would be greater than 800 mg L-1

TSS and 38% of monthly salinities would be greater than 1000 mg
L-1 TSS, assuming the full effects of clearing had developed.



76
5. RESERVOIR YIELD AND SALINITY SIMULATION
5.1 Aim

To determine the water yield and salinity statistics for a
ma jor storage development.

5.2 Reservoir Model

The simulation of likely reservoir water yield and salinity
responses to future inflows was made using a monthly water and
. salt balance model. The basic inputs into the model program
are reservoir characteristics, rainfall, evaporation, water and
salt inflow, demand, and initial conditions. The water balance
equation is:-

STOR2 = STOR1 + INFLOW + DIRECT FLOW

~ DRAW - SCOUR - EVAPORATION LOSS 5.1
STOR2 = Current months final storage
STOR1 = Previous months final storage

DIRECT FLOW = Direct increase in storage due to rainfall

INFLOW = Monthly streamflow into reservoir

DRAW = Current monthly draw demand

SCOUR = Reduction in storage due to scouring

EVAPORATION LOSS = Direct loss of storage from reservoir due to
evaporation from water surface.

The method used in the salt balance is:-

i) The salt load in storage at the start of the period is
determined.

ii) Salt inflows are added and total salt load is found.

iii) The average salinity for the period is determined using
the total salt load and the volume of storage losses.

iv) All outputs from the reservoir (draw, scour and overflow)
are taken at this salinity, which is the salinity at the
beginning of the next period.

v) Salt load in storage at the end of the month is
calculated.

The salt balance assumes complete mixing of the reservoir with
a constant salinity over the entire depth of water in the
reservoir. Approximations to the output salinities are
inherent due to the assumptions made in the water balance.

5.3 Simulation Parameters

5.3.1 Reservoir Characteristics

The most likely reservoir location is at the Mt Lindesay
gauging station (603136). The reservoir storage - elevation
and the reservoir surface area - elevation data are shown in
Figures 51(a) and (b).
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Some physical properties of the reservoir are:

Lowest drawable level = 48.0 m
Scour rate = 0.0
Catchment Area = 525.4 km2

The overflow rate is set at instantaneous and infinite while
the crest level varies with the storage size of the reservoir.

5.3.2 Rainfall

A 500 year synthetic sequence of monthly rainfall data was
produced from the generated streamflow data at Mt Lindesay (603
136). This was achieved by calculating the streamflow to
rainfall correlation between streamflow and annual rainfall for
Mt Lindesay (see Figure 52). This correlation was used to
obtain a corresponding rainfall history from the 500 years
generated flow, by using the program RAINGEN. Appendix D
details the statistics for the synthetic 500 years monthly
rainfall. This correlation is between the Mt Lindesay
catchment flow and the catchment rainfall. Therefore to obtain
the rainfall record for the Mt Lindesay reservoir the catchment
rainfall is factored by a rainfall coefficient.

The salinity of the rainfall has been calculated at 20 mg L-1
TSS from Hingston and Gailitis (1976).

5.3.3 Evaporation

The monthly evaporations for the reservoir simulation were
calculated from the Albany Airport Class A pan evaporation
data. The annual lake to pan coefficient used in this study
was 0.8 (Hoy & Stephens, 1979). A monthly distribution of lake
to pan coefficients was not used in this preliminary analysis
of a proposed reservoir as the accuracy implied was not
considered appropriate considering the confidence limits of the
other input data.

5.3.4 Water and Salt Inflow

Monthly streamflows and salinities into the reservoir were
generated in section 4. These were based on the long term
effects of the present level of clearing in the catchment as
simulated from the flow and salt model and the recorded
streamflow and salinity for the period 1962 to 1983.

5.3.5 Demand

The water supply demand for the reservoir simulations was
varied from between 18.9 x 106m3 to 34.0 x 106m3 (see
Table 18).
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TABLE 18 DEMAND DISTRIBUTION AND DEMAND FLOWS

DEMAND 50% MAF 60% MAF 70% MAF 80% MAF 90% MAF
MONTH DISTRIBUTION (103m3) (103m3) (103m3) (103m3) (103m3)
Jan 0.153 2892 3470 4044 4627 5205
Feb 0.127 2400 2880 3357 3840 4320
Mar 0.093 1758 2110 2458 2812 3164
Apr 0.070 1323 1590 1850 2117 2381
May 0.057 1077 1292 1507 1724 1939
Jun 0.056 1058 1270 1480 1693 1905
Jul’ 0.052 983 1180 1375 1572 1769
Aug 0.053 1002 1200 1401 1003 1803
Sep 0.061 1153 1383 1613 1845 2075
oct 0.073 1380 1656 1930 2208 2483
Nov 0.089 1682 2018 2353 2691 3028
Dec 0.115 2174 2609 3040 3478 3912
ANNUAL 1.000 18882 22658 26408 30210 33984
5.3.6 Initial Conditions

For all simulations the reservoir was assumed full for the
first month and the initial salinity of the reservoir was set
at the median annual salinity of inflow of 730 mg L-1 TSS.

The starting month of the simulation was January and the number
of years of simulation 500.

5.4 Reservoir Simulation Results

5.4.1 Water Yield

From the various simulations a summary of yield is shown in
Table 19. This data was also plotted as a set of reliability
curves in Figure 53. From the reliability diagram, for a
recurrence interval of failure of greater than approximately 30
years, there is a constant gain in annual draw which can be
attained from an increase in storage. Also of note is the
sensitivity of the annual draw to the recurrence interval of
failure for relatively large recurrence intervals. However it
is noted that in practice a reservoir would not be run dry, but
water restrictions would be implemented.
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TABLE 19 SUMMARY OF YIELD

STORAGE ANNUAL DRAW ANNUAL DRAW
2% PROB OF FAILURE 5% PROB OF FAILURE
x 106m3 3 MAF x 106m3 % MAF x 106m3 % MAF
37.7 100 21.5 57 23.8 63
56.6 150 23.4 62 25.6 68
75.4 200 26.4 70 29.0 77
113.1 300 29.0 77 30.8 81

5.4.2 Water Quality

The salinity of the monthly draw is calculated by a salt
balance which takes into account the salinity of the inflow,
salinity of the storage and the level of storage, while
assuming that complete mixing occurs at the beginning of each
month. The comparison of draw salinities for the extreme
simulation parameters is shown in Figure 54. For the extreme
parameters, the smallest storage and largest demand has been
considered as the maximum case, while the largest storage and
smallest demand as the minimum case. From Figure 54 the
minimum case has zero probability of draw salinities greater
than 1000 mg L-1 TSS while the maximum case has 4% of its

draw salinities above 1000 mg L-l1 TSS. The maximum case has

a greater proportion of salinities less than 600 mg L-1 than
the minimum case. This is shown more clearly in Figure 55,
which defines the difference between the maximum and minimum
case and the difference between the maximum case and the inflow
salinity. The benefit of a reservoir, even the maximum case,
(which is the smallest reservoir) is very clear from Figure 55,
especially the reduction in the probability of high salinities.

The probability of exceedance for a specific salinity value for
a constant reliability of reservoir size is shown in Figqure

56. The lines for specific salinities have been extrapolated
to the run of river values for a reservoir size of zero. For a
storage greater than 150% mean annual inflow (MAI) the
probability of exceeding 900 mgL-l or 1000 mgL-1l is

relatively constant at 2.5% and 0.5% respectively. However,
for 800 mgL-1 the probabilities range from 17.5% to 11%.

These increase substantially for smaller storage.

Figure 57 details the probability of exceeding 800 mgL-1

TSS and 1000 mgL-1 TSS respectively for the complete range

of storage and draw reservoir simulations. The plot of the
probability of exceeding 800 mgL-l TSS shows a greater

change in probability for a constant demand and varying storage
than the plot for exceeding 1000 mgL-1l TSsS.
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5.4.3 Restrictions

To simulate realistic conditions a simulation was included
which introduced restrictions on the demand if the storage
level was below a specified level. A minimum storage was set
which varied depending.on the month (a higher minimum was
stipulated after winter than just prior). The restriction
level was set at 70% of the monthly demand. The effect of this
restriction scenario on the 300% MAF storage and a demand of
80% MAF simulation was to alter the probability of exceeding
800 mg L-1 TssS and 1000 mg L-1 TSsS from 11.24% to 11.4% and
0.4% to 0.2% respectively. These differences are very small
but the main effect is to reduce the number of monthly
salinities exceeding 1100 mg L-1 TSS from 7 to O.

5.5 Discussion and Summary

A monthly water and salt balance reservoir program was utilised
to simulate 500 years of reservoir operation. This required
the streamflow and salt loads from the results of the yield and
salinity simulation, in section 4. From the streamflow record
a historical rainfall record was generated. The range of
reservoir capacities varied from 38 x 106m3 (100% MAI) to

113 x 106 (300% MAI), while the range of demand outflows
varied from 22.6 x 106m3 (60% MAI) to 33.9 x 106m3 (90%

MAI).

The yield and reliability curves define the reservoir
performance for these different reservoir sizes and demands are
presented in Table 19 and Figure 53. It was found that for a
recurrence interval of failure of greater than 30 years there
is a form of steady state condition. However, in these steady
conditions, for a specific size of reservoir, a small increase
in the demand brings a correspondingly large increase in the
probability of failure.

In terms of water quality, the simulations indicate that the
reservoir produces an overall reduction in the salinity of the
streamflow, particularly for salinities greater than 600

mgL-1 TSS, and an eradication of salinities above 1500

mgL-1 TSS.

For a constant reliability there is a relatively consistent
probability of exceeding 900 mgL"l TSS and 1000% TSS from
150% MAI to 300% MAI storage. However, the 800 mgL-1 Tss
probability of exceedance varies from 21% to 11% over the
storage range of 100% MAI to 300% MAI.

The probability of exceeding 800 mgL-l TSS is relatively

constant over the range of demands for a particular storage.
For the probability of exceeding 1000 mgL-l TSS there is as
much variation in varying storage as there is in varying demand.
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All simulations gave a probability of exceeding 800 mg/L in the
range 25 to 15%. However, most storages show an ability to
reduce the incidence of monthly outflows exceeding 1000

mgL-1 to less than 2%. These water qualities are derived
without taking into account a stratified reservoir, a scouring
policy, or restrictions during low storage. Therefore, a
corresponding decrease in the probability of achieving 800 and
1000 mgL-1 TSS respectively could be expected under actual
operating conditions.
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6. DISCUSSION AND SUMMARY

All available data on rainfall, soil salt storage, streamflow,
stream salt yield and clearing history was collated for the
Denmark River Basin for the simulation of streamflow and
salinity.

The results from the simulations indicate that the full effects
of clearing will be reached early next century, with a median
annual streamflow and median annual salinity at these
equilibrium conditions of 32 x 109m3 and 730 mgL-1

TSS. The 10% and 90% probabilities of non-exceedance of
streamflow are estimated to be 12 x 106m3 and 82 x

106m3 respectively., with associated salinities of 1080 and
460 mgL-1 TSS. This will mean that approximately 62% of
monthly salinities will be greater than 800 mgL~-+ TSS and

38% of mean monthly salinities will be greater than 1000
mgL-1 TSS. These salinities represent at least a further

20% deterioration in the quality of the resource.

A proposed reservoir located at the Mt Lindesay gauging station
was simulated using a monthly water and salt balance, with a
reservoir size range between 100% and 300% of mean annual
inflow (MAI) and for demands between 60% and 90% MAI. - The
results from this modelling indicated a significant reduction
in the probabilities of monthly draw salinities with the
probability of exceeding 800 mgL-1 TSS reduced to 20% and

that of exceeding 1000 mgL-1 TSS reduced to less than 2%

for most storage sizes. To achieve more accurate probabilities
of water quality a finer time scale and water management
policies need to be introduced into the reservoir modelling.

In general, the resource will be of marginal guality even with
a large scale reservoir development. Nonetheless it would
greatly assist in dampening the short term, seasonal and annual
effects of sequences of highly saline flows.
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APPENDIX B

STREAMFLOW STATISTICS
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APPENDIX C

WATER QUALITY SUMMARY



YEAR

1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959

DENMARK RIVER BASIN
WATER QUALITY SUMMARY

TABLE C1l

603014
NO
SAMPLES

27
40
32
23

30
41
25
25

13
22
23
19
46
45

FLOW

WE IGHTED
AVERAGE
TSS (mg/L)

582
345
218
310
416
249
429
230
452

213
292
413
488
560
221
338
393
248
292
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1978
1979
1983
1984

6031026
NO
SAMPLES

3

AVERAGE
TSS (mg/L)

439

TABLE C3

6031027
NO AVERAGE
SAMPLES TSS (mg/L)
12 266
12 383
1 771

6031028
NO AVERAGE
SAMPLES TSS (mg/L)
15 1969
16 3171
5 2711

1 4626



APPENDIX D

DEVELOPMENT OF TEMPORAL DATA SET
OF CLEARING



APPENDIX D

CLEARING DATA SOURCES

DATE : 16 to 24/3/1946
SOURCE : Aerial photography
DETAILS : Survey 84//150/11/471

Forest Hill - runs 1, 2, 3, 4, 5, 6A, 6
Denmark - runs 1, 2, 3, 4, 5, 6, 7
COMPILATION : interpreted onto 1:50,000 topographic maps

AVAILABILITY : aerial photography - Department of Land and
Surveys, Cathedral Ave, Perth

digital data - Water Authority of Western

Australia
DATE : 1957
SOURCE : Department of Conservation and Land

Management's Forest API type maps at 1:25,000
Maps 2 to 15 and 90 to 96

DETAILS : generated from the amalgamation of the
following classifications

"PT Cl" (part cleared)

"Cclv (cleared)
"Rb" (ringbarked)
"Orch" (orchard)
"Cul® (cultivated)
npe (pasture)
"g.T." (shade trees)
AVAILABILITY : maps - Department of Conservation and Land

Management, Hayman, Como

digital data - Water Authority of Western

Australia
DATE : 1965
SOURCE : topographic compilation maps at 1:50,000

maps 2328 I, II, III and IV



DETAILS

COMPILATION

AVAILABILITY

DATE

SOURCE

DETAILS

COMPILATION

AVAILABILITY

DATE

SOURCE

DETAILS

AVAILABILITY

captured directly off the compilation maps

carried out by the Department of Land and
Surveys from aerial phtography

Compilation maps - Department of Lands and
Surveys, Wembley

aerial photography - Department of Lands and
Surveys, Cathedral Ave, Perth

- Water Authority of
Western Australia

1979
aerial photography
Department of Lands and Surveys
job number 780100, Kent River and Denmark
ruin catchments, scale 1:20,000, runs 5 to 17
interpreted onto 1:50,000 topographic maps
aerial photography - Department of Lands and
Surveys, Cathedral Ave, Perth

- Water Authority of

Western Australia

digital data - Water Authority of Western
Australia.

13/3/84

Landsat remote sensed data
classification by Level 5 scale of
Department of Lands and Surveys, Remote

Sensing Sections 125 image processor.

digital data - Department of Lands and
Ssurveys, Remote Sensing Section.



APPENDIX E

GENERATED RAINFALL, STREAMFLOW AND SALT LOAD
STATISTICS
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