

Water and Salt Balance of a Partially Reforested Catchment in the South-West of Western Australia

WATER RESOURCES DIRECTORATE Surface Water Branch

Water and Salt Balance of a Partially Reforested Catchment in the South-West of Western Australia

M. A. Bari and D. W. Boyd

Water Authority of Western Australia 629 Newcastle Street LEEDERVILLE WA 6007 Telephone (09) 420 2420

Report No. WS 98

April 1992

SUMMARY

Stream and groundwater salinities have increased in the south-west of Western Australia due to the replacement of deep-rooted, native, perennial vegetation with shallow-rooted annual agricultural crops and pastures. The process involved a decrease in evapotranspiration leading to a rise in groundwater tables accompanied by the dissolution and transport of salts to the streams. Research began in 1970s to reverse the process by partial reforestation of the cleared land.

One important reforestation strategy is to plant trees on the lower slopes and discharge zones of the valley. Typically this covers about 20% of the cleared land. To date more than 6500 ha of farmland has been reforested in the eastern Wellington Dam catchment. This report assesses groundwater level, groundwater salinity, streamflow and stream salinity at Maringee Farm. This farm is located near the eastern boundary of the Wellington Dam catchment where rainfall is about 650 mm yr⁻¹. Groundwater and streamflow data has been analysed for the period 1983 to 1990.

During this study period, the minimum groundwater level beneath reforestation declined 3.6 m compared to the pasture control and 0.4 m compared to the ground surface. The reduction was fairly uniform which may be attributable to the continuous crown growth of the plantations. The maximum groundwater level dropped 2.2 m relative to pasture and 1.0 m relative to the ground surface. Groundwater salinity beneath reforestation reduced by 3% during the study period The reduction beneath pasture was 15%.

Streamflow consisted of three separate sources: surface runoff, shallow subsurface flow and deep groundwater flow. Surface runoff made up 30% of the streamflow over the study

period. This relatively high contribution was due to a large area of permanent saturation. Surface runoff supplied only 3.5% of total salt to the stream. The shallow subsurface flow system contributed 57% of streamflow and 8% of total salt. The deeper, more saline groundwater yielded 13% of streamflow and 88% of stream salt. While reforestation has slightly lowered groundwater level and groundwater salinity, there is no evidence that it has lowered streamflow and salt load. It appears reforestation has resulted in slightly lower stream salinity at the onset of streamflow (April/May) but the effect in terms of total stream salt load was negligible.

CONTENTS

		Page
	SUMMARY	ii
	LIST OF FIGURES	viii
	LIST OF TABLES	х
1.	INTRODUCTION	1
2.	EXPERIMENTAL OBJECTIVES	2
	2.1 Groundwater Level and Salinity	2
	2.2 Streamflow and Stream Salinity	2
з.	SITE DESCRIPTION	4
	3.1 Location	4
	3.2 Site history	4
	3.3 Climate	4
	3.4 Hydrology	4
	3.5 Topography	7
	3.6 Soil and Geology	7
	3.7 Vegetation	7
4.	HYDROLOGICAL DATA COLLECTION	10
	4.1 Rainfall	10
	4.2 Groundwater	10
	4.3 Streamflow	11
5.	GROUNDWATER AND REFORESTATION	12
	5.1 Groundwater Level	12
	5.1.1 Groundwater levels beneath pasture	12
	5.1.2 Groundwater levels beneath reforestation	12

		5.1.3 Groundwater level across the valley	
		transect	14
		5.1.4 Groundwater flow	14
	5.2	Groundwater Salinity	18
		5.2.1 Groundwater salinity beneath pasture	18
		5.2.2 Groundwater salinity beneath	
		reforestation	18
	5.3	Soil Salinity	23
6.	STR	EAMFLOW AND STREAM SALINITY	28
	6.1	Catchment Water and Salt Input	28
		6.1.1 Rainfall	28
		6.1.2 Saltfall	28
	6.2	Seasonal Variation in Streamflow and Salt Loads	28
		6.2.1 Streamflow	28
		6.2.2 Stream salinity and salt loads	28
	6.3	Annual Streamflow and Salt Loads	29
	6.4	Sources of Streamflow and Salt Discharge	29
		6.4.1 The model of source proportions	32
		6.4.2 Travel time of surface runoff	34
		6.4.3 Components of streamflow	34
		6.4.4 Components of stream salt	37
		6.4.5 Relationship between streamflow components	37
		6.4.6 Annual streamflow components and rainfall	41
		Catchment Salt Balance	45
		Streamflow and Reforestation	45
		Salt Discharge and Reforestation	45
	6.8	Reforestation and the Permanent Seep Area	47
7.	DISC	CUSSION	48
	7.1	Rainfall	48
	7.2	Groundwater Level	48
	7.3	Groundwater Salinity	48
	7.4	Streamflow and Stream Salinity	1 Q

	7.4 Use of Reforestation as Salinity Control	50
8.	CONCLUSIONS	52
	8.1 Groundwater Level 8.2 Groundwater Flow	52 52
	8.3 Groundwater Salinity	52
	8.4 Streamflow	53
	8.5 Stream Salinity	53
9.	RECOMMENDATIONS	54
10.	ACKNOWLEDGEMENTS	55
11.	REFERENCES	56
	APPENDIX A: Plantation details at Maringee Farm	60
	APPENDIX B: Groundwater observation bore details	63
	APPENDIX C: Relationship between salinity (TSS) and electrical conductivity	68
	APPENDIX D: Calculation of annual streamflow and salt load	71
	APPENDIX E: Groundwater level and salinity	73
	APPENDIX F: Annual minimum and maximum groundwater levels pasture and reforestation bore	94
	APPENDIX G: Soil salinity profiles between 1982 and 1989	97
	APPENDIX H: Streamflow hydrographs and chemographs between 1983 to 1990	110

APPENDIX	I:	Daily stream salinity versus accumulated	
		streamflow	121
3 DDDVD TV	_		
APPENDIX	J:	Accumulated stream salt load and	
		accumulated streamflow	127
APPENDIX	K:	Computer programme	1 2 2

LIST OF FIGURES

		Pa	age
Figure	1	Location of the study area	5
Figure	2	Reforestation layout and hydrometric network	8
Figure	3	Annual rainfall and minimum groundwater level	13
Figure	4	Annual rainfall and maximum groundwater level	15
Figure	5	Comparison between reduction of minimum and maximum groundwater levels	16
Figure	6	Groundwater levels across bore transect	17
Figure	7	Regional groundwater flow directions (a) May 1983 (b) May 1990	19 20
Figure	8	Groundwater salinity of bore groups beneath reforestation	24
Figure	9	Soil salinity profiles across the bore transect	25
Figure	10	Relationship between annual streamflow and salt load	30
Figure	11	Relationship between annual streamflow and stream salinity	31
Figure	12	Daily surface runoff and the base flow for 1988	35

Figure 13	Streamflow components for 1988	38
Figure 14	Relationship between annual streamflow and surface runoff	40
Figure 15	Relationship between annual streamflow and subsurface flow	42
Figure 16	Relationship between surface runoff and subsurface flow	43
Figure 17	Annual rainfall and streamflow components	44
Figure 18	Weekly flow-weighted stream salinity during 1982-90	46

LIST OF TABLES

		Pa	age
Table	1	Clearing history at Maringee Farm	6
Table	2	Average annual salinity pasture bores	21
Table	3	Salinity comparisons pasture bores	22
Table	4	Average annual salinity reforestation bores	26
Table	5	Salinity comparisons reforestation bores	27
Table	6	Annual rainfall and salt input	33
Table	7	Average groundwater salinity of shallow bores	33
Table	8	Annual surface runoff and streamflow	36
Table	9	Annual shallow subsurface flow and deep groundwater flow components	36
Table	10	Annual salt discharge for the three streamflow components	39

1. INTRODUCTION

Stream salinisation as a result of agricultural development is a major problem in the south-west of Western Australia (Schofield et al., 1988; Schofield and Ruprecht, 1989). Prior to agricultural development, all divertible surface water resources were believed to be fresh. It is generally accepted the replacement of native deep-rooted vegetation with shallow-rooted crops and pasture is the primary cause of increased stream salinity.

During the late 1970s and early 1980s, a number of experimental sites were established to investigate the effectiveness of various reforestation strategies in reducing stream salinity. Maringee Farm, in the Wellington Dam catchment, is one of these sites. At Maringee, the lower slopes and floor of the valley were reforested with eucalypts. About 20% of the cleared land was reforested at an initial tree density of 625 stems per hectare (sph). Trees were planted with the aim of lowering groundwater levels in the vicinity of the streamline, thereby reducing or eliminating groundwater solute discharge to the stream.

Hydrological data from Maringee Farm has previously been analysed by Bell $\underline{\text{et}}$ $\underline{\text{al.}}(1988)$; Schofield $\underline{\text{et}}$ $\underline{\text{al.}}(1989)$; and Hookey and Loh (1985). This report updates the earlier reports and provides the most comprehensive analysis of the groundwater and streamflow data from this site.

2. EXPERIMENTAL OBJECTIVES

The primary aim of the study was to reduce groundwater levels and hence salt discharge from the catchment in a relatively short period of time (~ 10 years). The specific objectives of the study were:

2.1 Groundwater Level and Salinity

- (i) describe the initial groundwater table conditions prior to reforestation;
- (ii) determine the groundwater table seasonal variations and longer term trends beneath pasture;
- (iii) quantify the effect of reforestation on groundwater levels;
- (iv) identify the groundwater flow direction and any change due to the reforestation;
- (v) determine the spatial and temporal variability in groundwater salinity and the effect of reforestation on groundwater salinity; and
- (vi) determine the changes in solute distribution through the soil profile in response to reforestation.

2.2 Streamflow and Stream Salinity

- (i) determine the magnitude and dynamics of the sources of streamflow and stream salinity;
- (ii) assess the spatial and temporal variations in the sources of streamflow and stream salinity;

(iii) determine the effects of reforestation on various sources of streamflow and stream salinity.

3. SITE DESCRIPTION

3.1 Location

The experimental site is located in the Darling Range, approximately 40 km east of Collie (Fig. 1). It lies close to the eastern boundary of the Wellington Dam catchment.

3.2 Site History

Progressive clearing of Maringee farm for pasture development commenced in 1925 (Table 1). By 1976, 55% of the site had been cleared. Most of clearing had been on the lower slopes. The State Government purchased the farm in 1976. It was purchased as part of a programme to reforest farmland within Wellington Dam catchment. The aim of the programme was to reduce salinity of flow into Wellington Reservoir (Loh, 1988).

3.3 Climate

The Wellington Dam catchment has a Mediterranean climate, i.e. cool, humid, wet winters and hot, dry summers. About 80% of the annual rainfall occurs in winter (June to August). The long term average rainfall of the experimental site is estimated to be 650 mm yr⁻¹ (Hayes and Garnaut, 1981; Bell et al., 1990). The annual average pan evaporation of the catchment is 1600 mm (Luke et al., 1988). Temperatures range from a maximum in excess of 40°C during summer, to a minimum of less than 0°C during winter.

3.4 Hydrology

Maringee Farm has a catchment area of 12.75 km² (Fig. 1).

Mairdebing Creek flows through the catchment. The hydrometric network was established in 1982. In 1983, the depth to minimum groundwater level across the cleared area varied from 0.0 m (i.e.

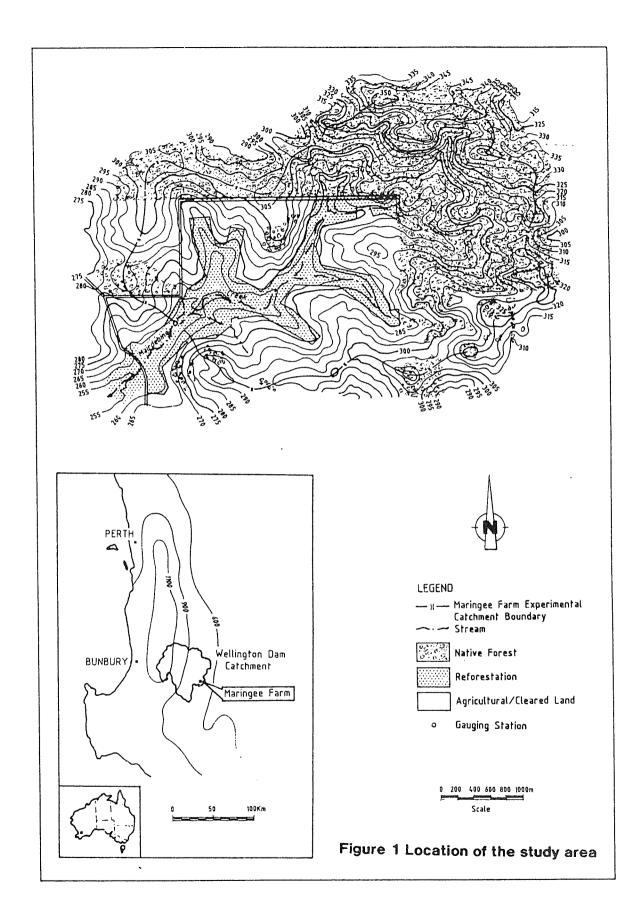


Table 1: Clearing history at Maringee Farm

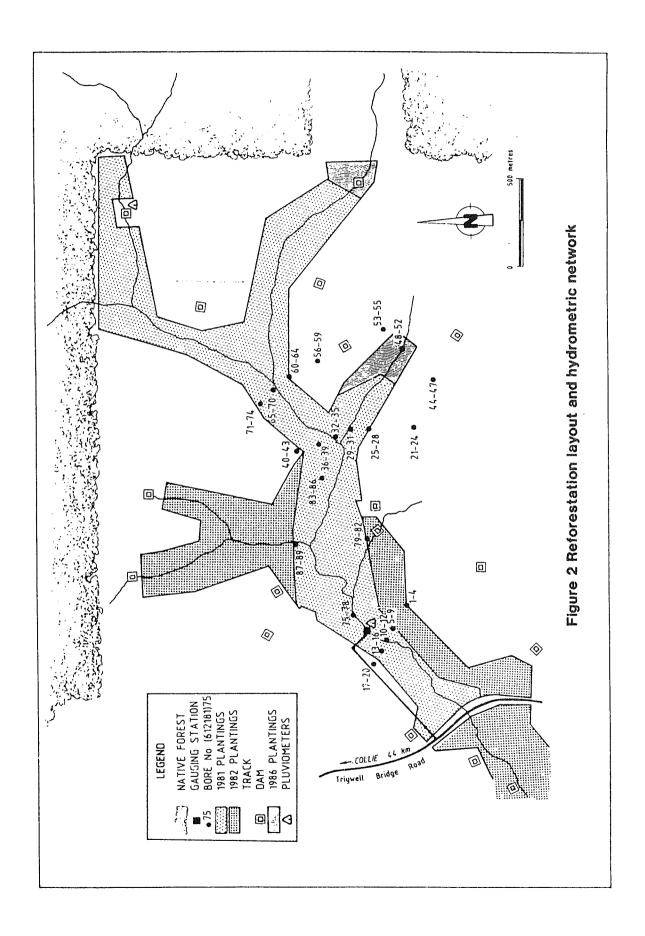
Year	cleared area (ha	% of total) area	reforested area (ha)	% of total area
1925	16.5	1.3	_	
1960	72.3	5.7	-	_
1966	181.8	14.3	_	•••
1971	582.0	46.7	-	
1976	696.3	54.6	-	_
1982		_	180.8	14.3
1986	-	-	153.2	12.0
1990	_		125.0	9.8
				9

catchment area = 1275 ha

at ground surface) to 5.0 m. The average groundwater salinity was 18000 mg L^{-1} Total Soluble Salts (TSS). The average stream salinity was 1600 mg L^{-1} TSS. Saline seeps were evident along the stream line.

3.5 <u>Topography</u>

Maringee Farm's elevation ranges from 260 to 350 m AHD. The upslope forested portion of the catchment is slightly steeper than the reforested zone. Most of the monitoring bores are located in the reforested portion which has an average slope of 4% (Fig. 2).


3.6 Soil and Geology

The soil at Maringee Farm consists of multicoloured clayey silty sand and silty sandy clay. The soil profile varies between a few metres to about 40 m thick. Laterite occurs on the ridges and flanks of hills, and grades to colluvial and alluvial deposits in the valleys. The lower portions of the drainage lines are filled by alluvial deposits. Details of the geology at Maringee Farm were reported by Martin (1984).

3.7 Vegetation

Between 1981 and 1982, 46 plots were established in the cleared area along the stream line. Each plot was planted with two eucalypt species at an initial stem density of 625 stems per hectare (sph). In 1986 two additional plots were planted at a density of 830 sph (Fig. 2). Tree survival was poor on the salt affected and waterlogged plots. In 1988 stem density varied from nil to 500 sph. The average was 270 sph (Appendix A). Trees were not thinned or pruned at the study site.

Prior to reforestation the cleared area of the Maringee Farm supported a vigorous germination of annual rye grasses (Lolium

spp), barley ($\underline{\text{Hordium marinum}}$) and other grasses. These grasses were used for intensive sheep grazing. The upslope native vegetation is dominated by jarrah ($\underline{\text{E. marginata}}$) with the principal sub-dominants being marri ($\underline{\text{E. calophylla}}$) and wandoo ($\underline{\text{E. wandoo}}$).

4. HYDROLOGICAL DATA COLLECTION

4.1 Rainfall

The long term average rainfall for Maringee Farm is about 650 mm yr ⁻¹ (Hayes and Garnaut, 1981; Bell et, al., 1990). Rainfall over the study period (1983-90) was 13% less than the long term average. During that period annual rainfall varied between 438 mm and 698 mm, with an average of 438 mm. The rainfall was higher than the long term average in only two years (1983 and 1988).

4.2 <u>Groundwater</u>

A network of 89 monitoring bores were installed at Maringee farm in 1982 (Fig. 2). This included a transect across the valley of the catchment, extending from an upslope area retained as pasture to a reforested area downslope. The bores within the pasture area provided control data for the study. A 'nest' of 3 to 5 bores were drilled at each monitoring point, to provide 'shallow' (<2 m depth), 'intermediate' (<10 m) and 'deep' (>10 m) groundwater information. The shallow and intermediate bores were completed with 1 m long screens. The screen length for the deep bores was 2 m (Appendix B).

Most of the bores were monitored for water level and salinity once a month during the study period (1983-90). Salinity was measured from the samples collected within the screen area of the bores. Pumped samples were taken from all bores in 1989. The groundwater salinity (Total Soluble Salts, TSS) was determined using the derived relationship between TSS (mg L^{-1}) and electrical conductivity (m Sm^{-1}) shown in Appendix C.

4.3 Streamflow

A calibrated, sharp-crested V notch weir was installed at the outlet of the catchment in May 1982. The water level over the weir (stage) was continuously recorded by a float operated graphical recorder and converted to discharge using a rating curve. Water samples were obtained using an automatic pumping sampler, and were also manually collected during visits to the site. Samples were routinely analysed for electrical conductivity, chloride concentration and temperature. A few selected samples were analysed for major ions from which a relationship between stream salinity (TSS) and electrical conductivity was derived (Appendix C). Electrical conductivity of stream water has been recorded continuously since the installation of the weir. A method used to calculate streamflow and salt load is given in Appendix D.

5. GROUNDWATER AND REFORESTATION

5.1 Groundwater Level

5.1.1 Groundwater levels beneath pasture

Between 1983 and 1990 the bores beneath pasture indicated an average rise in minimum groundwater level of 3.25 m (Fig. 3). The average rise in maximum groundwater level was 1.2 m (Fig. 4). Significant rises in groundwater levels observed in 1984 and 1987 have been attributed to high rainfall in the preceding year. The groundwater level hydrographs are shown in Appendix E and minimum and maximum groundwater levels are given in Appendix F.

5.1.2 Groundwater levels beneath reforestation

Trees planted on farm land decrease the vertical recharge to the groundwater table by increasing transpiration and interception loss (Eastham et al., 1988; Schofield, 1990a; Schofield, et al., 1991; Schofield and Bari, 1991; Bari, et al., 1990; Bari and Schofield, 1991). To determine the effects of reforestation on groundwater levels annual minima and maxima were analysed and compared with the groundwater levels of the control bores.

Minimum Groundwater Level

Minimum groundwater levels beneath the reforestation areas declined by an average of 0.4 m over the study period. The decline relative to pasture control bores was 3.6 m. The annual changes in minimum groundwater levels are plotted in Fig. 3. Rises in minimum groundwater levels, against the overall trend, were observed in 1984 and 1989 following years of above-average rainfall. Between 1985 and 1988 minimum groundwater levels under areas of reforestation were in steady decline in response to a period of below average rainfall (1984-87). In contrast, minimum groundwater levels beneath pasture during this period rose at a constant rate.

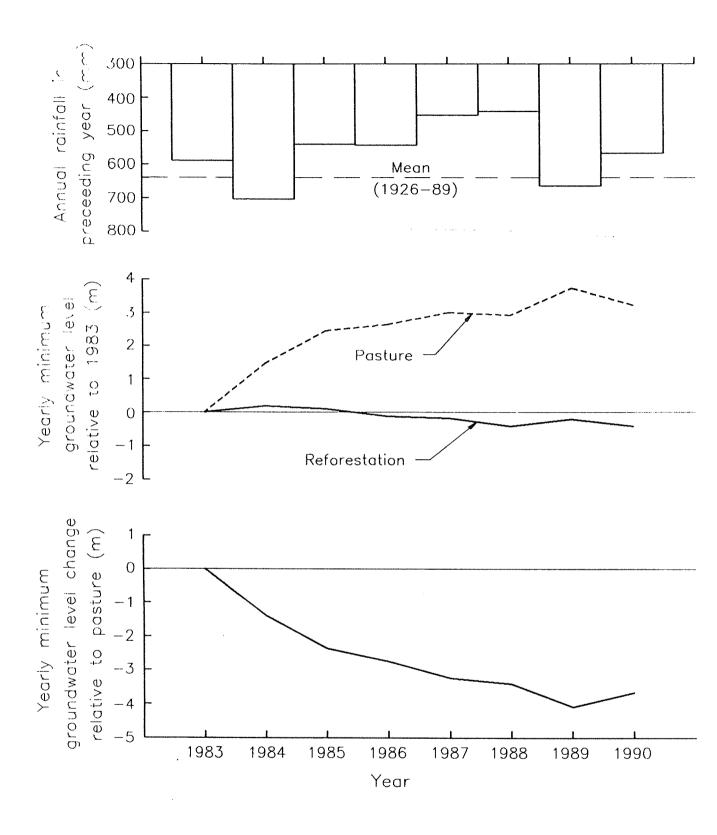


Figure 3 Annual rainfall and minimum groundwater level

Maximum Groundwater Level

Maximum groundwater level under reforestation declined 1.0 m (relative to ground surface) and 2.2 m (relative to the control) in the period 1983 to 1990 (Fig. 4). Between 1985 to 1987, in response to a series of years of below average rainfall, maximum groundwater levels declined slightly while levels beneath control were unchanged. Slight increases in maximum groundwater levels were observed under both reforestation and pasture in 1988 following a year of rainfall above the long term average.

Comparison of minimum and maximum groundwater level changes

The annual changes in minimum and maximum water levels relative to the pasture are shown in Fig. 5. In 1984 minimum and maximum groundwater levels reductions were similar. Since then, reduction in the minimum groundwater level has been greater than the maximum. Also minimum groundwater level trend was more consistent than the maximum.

5.1.3 Groundwater table across the valley transect

Fig. 6 shows the temporal variation in the groundwater table across the valley along bore transect 21-42. Three years (1983, 1986 and 1990) have been plotted as an example. There has been a slight reduction in groundwater levels beneath reforestation and a significant increase in groundwater levels under pasture. This result indicates that reforestation has been successful to some degree in lowering the groundwater levels in the vicinity of the stream.

5.1.4 Groundwater flow

The annual minimum groundwater level contours for each year have been analysed. Contour plans for the beginning (May 1983) and end (May 1990) of the study period are shown in Fig. 7. The

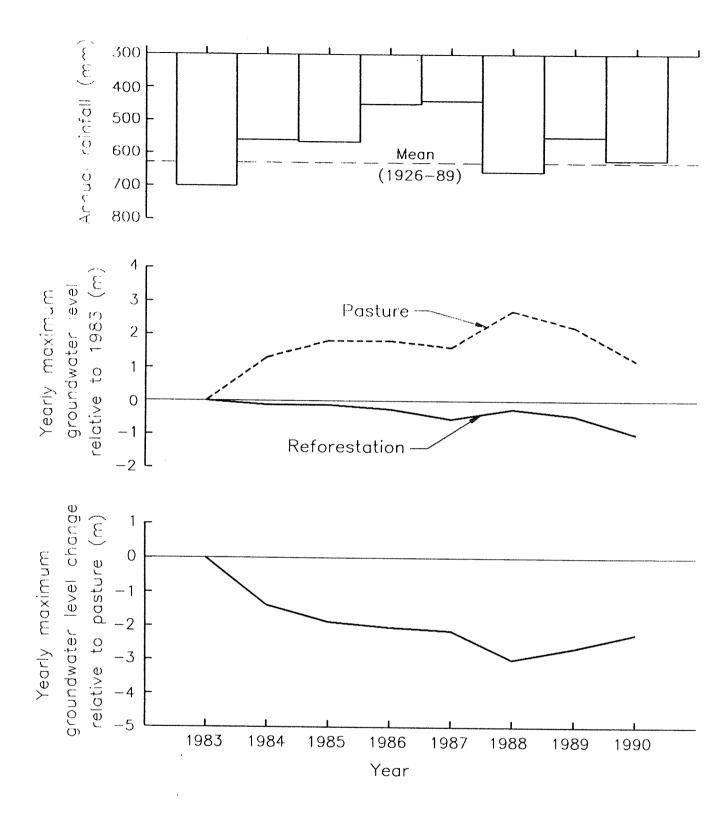


Figure 4 Annual rainfall and maximum groundwater level

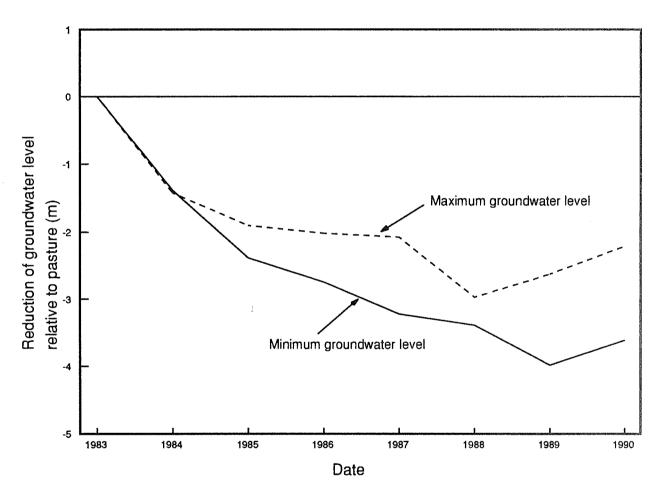


Figure 5 Comparison between reduction of minimum and maximum groundwater levels

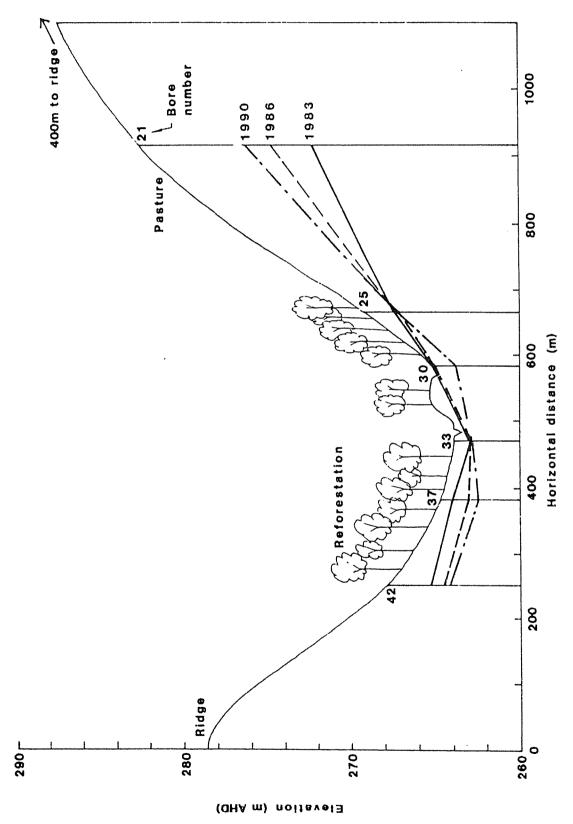


Figure 6 Groundwater levels across bore transect

following features of the groundwater system beneath the study site were identified:

- (i) The direction of groundwater flow is generally towards the stream line.
- (iii) Although reforestation lowered the minimum groundwater table the overall flow direction did not alter.

5.2 Groundwater Salinity

5.2.1 Groundwater salinity beneath pasture

The groundwater salinities of all pasture bores are shown in Appendix E. Spatial variation in salinity is considerable (Table 2). For example, in 1983 salinity ranged from 9031 mg L^{-1} TSS (bore 53) to 16926 mg L^{-1} TSS (bore 21) and in 1990, from 6885 mg L^{-1} TSS (bore 53) to 13267 mg L^{-1} TSS (bore 44). Salinity decreased in all bores during the study period. The decrease ranged from 6% (bore 44) to 30% (bore 51). The average decrease in groundwater salinity was 15%.

Table 3 compares the groundwater salinity of pumped samples collected in May 1983 and 1989. The analysis shows an average reduction in groundwater salinity of 15%. The reduction in salinity in individual bores ranged from 2% to 24%.

5.2.2 Groundwater salinity beneath reforestation

The groundwater salinities beneath reforestation are shown in Appendix E. Salinity data from the reforestation bores were analysed in three categories:

- (a) all bores;
- (b) bores screened at water table;
- (c) bores screened below water table.

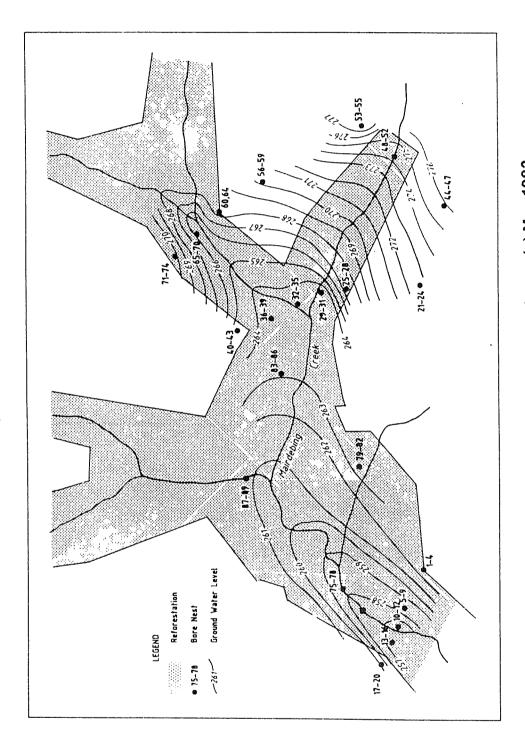


Figure 7 Regional groundwater flow directions - (a) May 1983

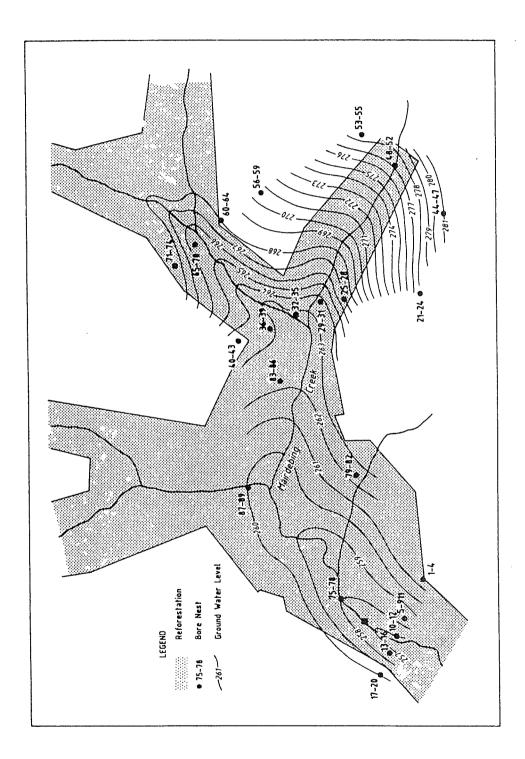


Figure 7 Reegional groundwater flow directions - (b) May 1990

Table 2: Average annual salinity (mgL $^{-1}$ --- pasture bores

Bore No.	1983	1984	1985	1986	1987	1988	1989	1990	Bore No. 1983 1984 1985 1986 1987 1988 1989 1990 % Change Mean	Mean
G61218121	16926.0	16926.0 14969.5 13304.0 14461.8 15380.5 13237.0 12736.5 13267.0	13304.0	14461.8	15380.5	13237.0	12736.5	13267.0	-24.8	14285.3
G61218144	14224.2	14224.2 12963.5 14111.0 13974.0 15332.7	14111.0	13974.0	15332.7	12808.0 13389.0 13871.0	13389.0	13871.0	-5.9	13834.2
G61218153	9031.4	9031.4 13791.0	8123.5	7808.5 7162.0 5772.0 6371.0	7162.0	5772.0	6371.0	6885.0	-29.5	8118.1
	1		 		; ; ; ;	• • • • •		1		
Mean	11810.2	13908.0	11846.2	12081.4	12625.1	10605.7	10832.2	11810.2 13908.0 11846.2 12081.4 12625.1 10605.7 10832.2 11341.0	-15.5	12079.2
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1	1		1			

6v

Table 3: Salinity comparisons ----- pasture bores

Bore No.	Salinity (mg L ⁻¹) on 19/5/83	Salinity (mg L ⁻¹) on 10/5/89	% change
G61218121 G61218144 G61218153	16539 13880 9064	12665 13612 7135	-23.7 -1.9 -21.3
Mean	13161	11137	-15.4

Plots of average annual salinity for each of these groups show similar downward trends (Fig. 8). Table 4 indicates the spatial variation in salinity beneath reforestation is low (coeff. of variation ranges from 0.1 to 0.2). In 1983, groundwater salinity ranged from 13433 mg L^{-1} (bore 33) to 21311 mg L^{-1} TSS (bore 7). In 1990 groundwater salinities ranged from 13952 mg L^{-1} TSS (bore 33) to 21168 mg L^{-1} TSS (bore 7). Over the period 1983 to 1990 groundwater salinity increased in 5 bores and declined in 6 (Table 4). The average reduction in groundwater salinity in all reforestation bores was 3%.

Comparing groundwater salinities from pumped samples taken in May 1983 and 1989, the average decrease was also 3% (Table 5). Salinity increased in two bores (0.5% in bore 85 and 23% in bore 33) and declined in the others by between 0.5% to 19%. The bore group screened at the water table had a 5% decline and the group screened below the water table had a 2% reduction.

5.3 Soil Salinity

Soil salinity profiles were measured in 1982 and 1989 (Appendix G). Soil salinity has changed in most bores during that time. Profiles measured across the bore transect 21-42 are shown in Fig. 9. Bore 21, located in upslope pasture, has shown a slight decline in salinity. Whereas, there has been a slight accumulation of salts between 0 to 5 m depth in bores 29 and 36. These two bores are located beneath reforestation, in the valley floor. Soil salinity in bore 40 remained the same during the study period.

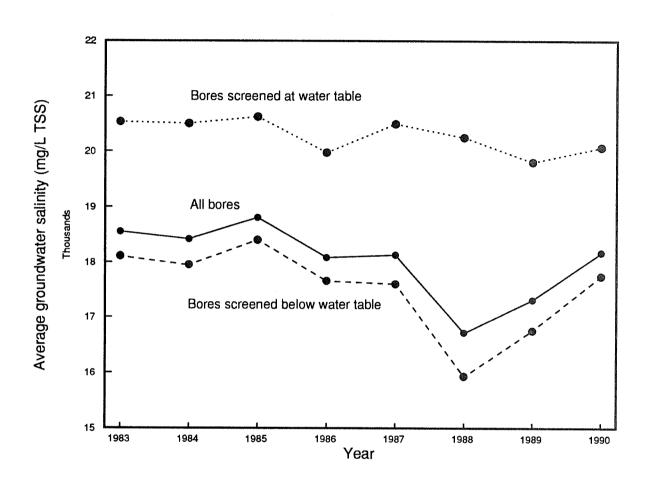


Figure 8 Groundwater salinity of bore groups beneath reforestation

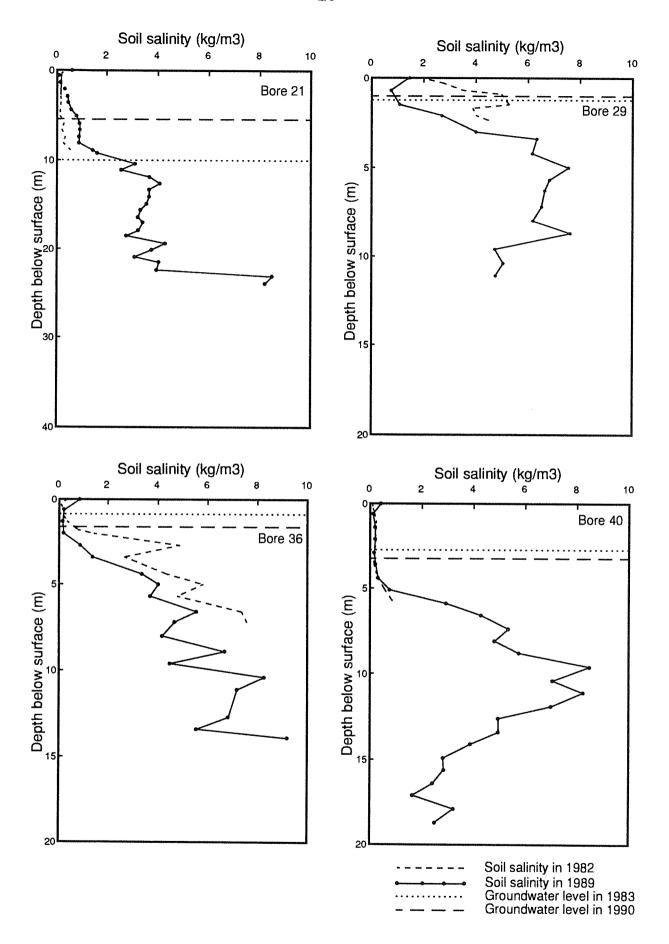


Figure 9 soil salinity profiles across bore transect

-1 Table 4: Average annual salinity (mgL) ---- reforestation bores

Bore No.	1983	1984	1985	1986	1987	1988	1989	1990	% change	je Mean
G61218107	21311.3	21224.3	21454.0	20704.0	21025.0	21240.0	20972.0	21168.0	0.7	21137.3
G61218112	19513.0	19514.0	19846.5	19310.5	19346.5	19453.0	19039.0	19668.0	0.8	19461.3
G61218115	15633.0	16746.5	17881.5	17274.0	17988.5	16309.0	17238.5	18739.0	2.0	17226.3
G61218125	19061.3	18703.3	18596.0	15719.0	11289.3	9150.0	12922.8	16174.0	-15.2	15202.0
G61218130	19834.5	19775.0	19775.0	19239.0	19939.3	19239.0	18631.8	18953.0	4.4	19423.2
G61218133	13433.3	13201.3	14059.0	14648.0	15845.7	16095.0	15612.8	13952.0	3.9	14605.9
G61218136	18580.6	18417.5	18917.5	18467.6	19082.7	18739.0	18363.8	18925.0	1.9	18686.8
G61218175	19131.1	18810.3	19167.5	18540.0	18796.3	12815.0	17631.5	18310.0	-4.3	17900.2
G61218181	18988.1	18346.0	18703.5	18059.3	18654.0	19596.0	18131.5	18167.0	-4.3	18580.7
G61218185	19465.3	19042.5	19367.5	18846.0	19644.0	14094.0	16091.5	17596.0	9.6-	18018.4
G61218187	19037.1	18738.8	19010.0	18035.7	17762.3	17095.0	15734.3	18145.0	-4.7	17944.8
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
Mean	18544.4	18410.9	18798.0	18076.6	18124.9	16711.4	17306.3	18163.4	-2.9	18017.0
CV	0.12	0.11	0.10	0.09	0.15	0.21	0.12	0.10		0.10
1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1			1		1	1]] ; ; ! !

CV = Coefficient of variation

Table 5: Salinity comparisons --- reforestation bores

Bore	Bore No. S	alinity (mg L^{-1})	Mean	Salinity (mg L ⁻¹)	Mea	n Ch	ange (%)
group		on 19/5/83		on 10/5/89		indí v idual	Mean
				~~~~===================================			
Screening	G61218107	21097		20740		-1.69	
at water	G61218130	19811	20454	18096	19418	-8.66	-5.1
table							
	G61218112	19596		19543		-0.27	
	G61218115	16381		16309		-0.44	
	G61218125	18167		16667		-8.26	
Screening	G61218133	12308	17651	15166	17288	23.22	-2.1
below	G61218136	18024		17881		-0.79	
water	G61218175	18739		15238		-18.68	
table	G61218181	18453		18024		-2.32	
	G61218185	18882		18953		0.37	
	G61218187	18310		17810		-2.73	
				~~~			
All			18161		17675		-2.7

6. STREAMFLOW AND STREAM SALINITY

6.1 <u>Catchment Water and Salt Input</u>

6.1.1 Rainfall

Daily rainfalls for the catchment were obtained by averaging record from the two pluviometers located in the catchment (Fig. 2). Rainfall details are provided in Table 6.

6.1.2 Saltfall

Catchment saltfall (Total Soluble Salts, mgL^{-1}) was calculated using a regional value of chloride in rainfall as derived by Hingston and Gailitis (1977). The salt concentration of rainfall was estimated to be 8.5 mgL^{-1} TSS. Table 6 shows the derived annual saltfall during the study period.

6.2 Seasonal Variation in Streamflow and Salt Loads

6.2.1 Streamflow

The daily streamflow hydrographs (mm) for eight years between 1983 and 1990 are shown in Appendix H. Streamflow was highest in 1983 and lowest in 1987.

Streamflow occurred an average of 204 days each year. The minimum being 193 days in 1987 and maximum, 218 days in 1985. In most cases streamflow commenced in April/May, following a significant rainfall event, and ceased in November or early December.

6.2.2 Stream salinity and salt loads

Stream salinity (Total Soluble Salts, TSS) shown in Appendix H varies considerably throughout the year. Flows which occur after the dry summer months can have salinities as high as $35000~\text{mgL}^{-1}$ TSS. Mid-winter flows are much lower in salinity at around 700 mg L⁻¹ TSS. Salinity is relatively stable for winter streamflow events (Appendix I). Flows in spring have higher salinity but not

as high as autumn. Stream salinities were lower in high rainfall years (1983, 88, 90) and highest in low rainfall years (1986, 87).

Stream salt discharge was highest during the mid-winter high flows and lowest during low flows in autumn and summer (Appendix J).

6.3 Annual Streamflow and Salt Loads

The annual salt load and streamflow data give a non-linear relationship from year to year (Fig. 10). A relationship between annual salt load ($L_{\rm t}$, kgha⁻¹ TSS) and annual stream flow ($Q_{\rm t}$, mm) established for the period 1983-90 was:

$$L_{t} = 360.1Q_{t}^{0.381}$$
 (1)
 $r^{2}=0.88, n=8, p^{0.001}$

A relationship between streamflow and annual flow-weighted salinity (TSS, mgL^{-1}) was also determined (Fig. 11):

TSS =
$$36.8 \times 10^{3} Q_{t}^{-0.618}$$
 (2)
 $r^{2}=0.95, n=8, p^{-}0.001$

6.4 Sources of Streamflow and Salt Discharge

The subsurface hydrology of the catchment is characterised by the presence of a shallow, seasonal, relatively fresh groundwater system and a deep, permanent more saline groundwater system. Both systems discharge salt and water into the stream. Surface runoff occurs principally during storm periods from the areas of saturation. This process of streamflow generation for a partially cleared catchments is typical in the south-west of Western Australia. The relative proportions of these stream flow components can be quantified by applying the model of source proportions (Stokes and Loh, 1982; Stokes, 1985; Sharma, et al., 1980).

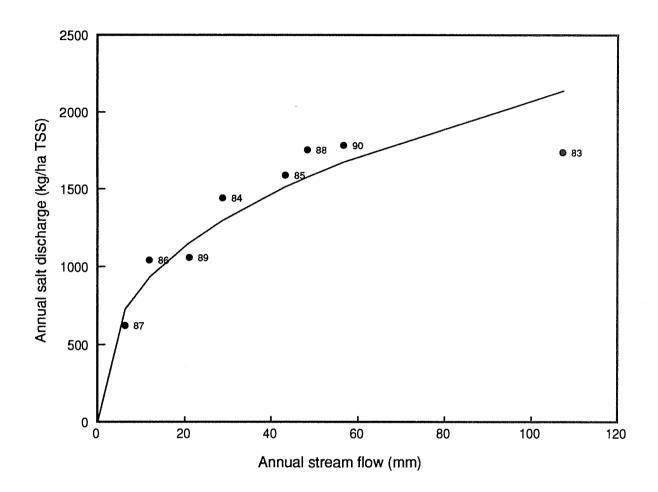


Figure 10 Relationship between annual streamflow and salt load

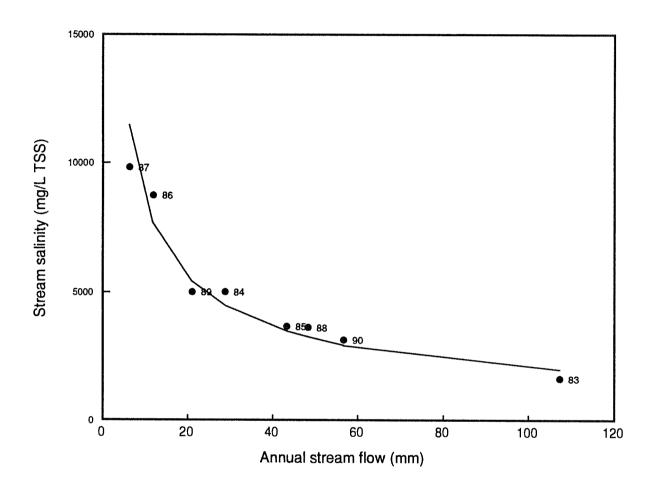


Figure 11 Relationship between annual streamflow and stream salinity

The model of source proportions

This model assumes streamflow and salt are generated from three sources:

- (i) surface runoff (Q_r) ,
- (ii) discharge from a shallow, seasonal groundwater system (Q_),
- (iii) discharge from a deeper, permanent groundwater system (Q₂).

Therefore stream discharge (Q_t) is composed of three separate sources:

$$Q_{t} = Q_{r} + Q_{u} + Q_{g} \tag{3}$$

And the corresponding salt load:

$$L_{t} = L_{r} + L_{u} + L_{g}$$

$$C_{t}Q_{t} = C_{r}Q_{r} + C_{u}Q_{u} + C_{g}Q_{g}$$
(4)

where C denotes the salinity of three different sources.

During storm events both surface runoff (Q $_{\rm r}$) and base flow (Q $_{\rm b}$) contribute to streamflow. Therefore the above equations become:

$$Q_{r} = Q_{t} - Q_{b}$$

$$Q_{u} = Q_{b} (C_{g} - C_{b}) / (C_{g} - C_{b})$$

$$Q_{g} = Q_{b} - Q_{u}$$
(6)
(7)
(8)

$$Q_{u} = Q_{h} (C_{g} - C_{h}) / (C_{g} - C_{h})$$
(7)

$$Q_{g} = Q_{b} - Q_{u} \tag{8}$$

And if there is no surface runoff then:

$$Q_{r}=0.0 \tag{9}$$

$$Q_{u} = Q_{t}(C_{g} - C_{t}) / (C_{g} - C_{u})$$
(10)

$$Q_g = Q_t - Q_u$$
 (11)

The salinity of the permanent groundwater system (C_a) was taken as being the average salinity of the 'deep' bores (18000 $\mathrm{mg\,L}^{\text{-1}}$

Table 6: Annual rainfall and salt input

Year	Rainfall	Rainfall	Average	Rainfall as	Derived
	M509407	M509409	rainfall	% of long term	Saltfall
	(mm)	(mm)	(mm)	average	(kg/ha)
1983 1984 1985 1986 1987 1988 1989	690.5 564.3 570.4 452.5 444.2 651.1 557.5	700.9 551.9 551.5 440.5 431.3 650.0 545.5 622.7	696.4 558.1 561.0 446.5 437.8 650.5 551.5	1.08 0.99 0.87 0.69 0.68 1.01 0.86 0.95	57.1 45.8 46.0 36.6 35.9 53.9 45.2 50.2
Mean	566.6	561.8	564.2	0.87	46.3
CV	0.15	0.17	0.16		0.16

CV = Coefficient of variation

Table 7: Average groundwater salinity of shallow bores

Bore	Depth (m)	Screen length (m)	Salinity (mg/L TSS)
126 141 161 172	1.2 1.2 2.0 1.5	1 1 1 1	438 445 708 445
Mean	1.5	1	509

a Chloride ion concentration in rainfall (4.5 mg $\rm L^{-1}$) was assumed to be 55% of Total Soluble Salts.

TSS). The shallow subsurface groundwater salinity (C_u) was taken as being the average salinity of the four shallow bores (Table 7).

6.4.2 Travel time of surface runoff

The time for the surface runoff to pass the gauging station, from the furtherest point in the catchment, is dependent upon catchment characteristics. According to the Institution of Engineers Australia (1987) the travel time $(t,\ hour)$ of a partially cleared catchment $(A,\ km^2)$ in the south-west of Western Australia is:

$$t = 2.31A^{0.54} \tag{11}$$

The above equation suggests the travel time for Maringee Farm catchment is 9 hrs.

6.4.3 Components of streamflow

All storm events during the study period were analysed and the surface runoff component was separated from the streamflow. Fig. 12 presents an example of the streamflow hydrograph and the surface runoff.

Surface runoff

The annual contribution of surface runoff (Q_r) as a percentage of streamflow (Q_t) and rainfall (R) are listed in Table 8. Surface runoff ranged from 0.7% of rainfall (1987) to 4.2% (1983) and averaged 2.0% (12.0 mm). As a proportion of total flow, surface runoff ranged from a minimum of 27% (1983) to a maximum of 50% (1987), with an average of 30%. The temporal variation in surface runoff is considerable (CV=0.74).

Shallow subsurface and deep groundwater flow

The annual shallow subsurface (Q $_{\!\!\!u}$) and deep groundwater flows (Q $_{\!\!\!g}$) are presented in Table 9. The quantity of Qu ranged from a

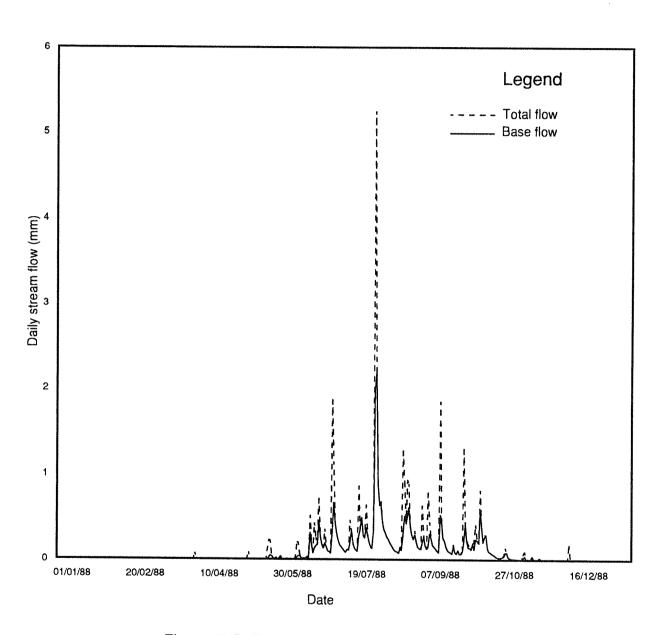


Figure 12 Daily surface runoff and the base flow for 1988

Table 8: Annual surface runoff and streamflow

Year	Rainfall (mm)	Q (mm)	Q (mm ^r)	Q /R (*)	Q /Q (%) t	Q_/R (%)
1983 1984 1985 1986 1987 1988 1989	696.4 558.1 561.0 446.5 437.8 650.5 551.5 612.6	107.3 28.8 43.3 11.9 6.3 48.3 21.1 56.7	29.13 7.41 11.88 3.53 3.17 15.26 6.81 18.90	15.41 5.16 7.71 2.67 14.45 7.43 3.83 9.25	27.16 25.72 27.47 29.60 50.07 31.58 32.21 33.33	4.18 1.33 2.12 0.79 0.72 2.34 1.23 3.08
Mean CV	564.2 0.16	40.5 0.80	12.01 0.74	7.17	29.68	2.13

CV = Coefficient of variation

Table 9: Annual shallow subsurface and deep groundwater flow components

Year	Q (mm)	Q (mm [*])	Q (mm)	Q (mm)	Q /Q ('%) ^t	o(%)
1983 1984 1985 1986 1987 1988 1989	107.3 28.8 43.3 11.9 6.3 48.3 21.1 56.7	29.13 7.41 11.88 3.53 3.17 15.26 6.81 18.90	72.57 15.55 25.00 4.19 1.10 26.34 10.34 30.51	5.56 5.86 6.37 4.21 2.06 6.72 4.00 7.29	67.66 54.00 57.81 35.13 17.35 54.51 48.91 53.81	4.18 20.30 14.72 35.28 32.58 13.91 18.88 12.86
Mean CV	40.5 0.80	12.01 0.74	23.20 0.97	5.26 0.32	57.34	13.00

CV = Coefficient of variation

minimum of 1.1 mm (1987) to a maximum of 72.7 mm (1983). The temporal variation in Q_u was the highest of the three components (CV=0.97). As a proportion of total flow, Q_u ranged from 17.5% to 68.0% with an average of 57.5% (23.5 mm) over the study period. The deep groundwater flow component, Q_g , was relatively stable compared to the other two components (CV=0.32). During 1983-90, Q_g ranged from 2.1 mm to 7.3 mm with an average of 5.3 mm. As a percentage of total flow, Q_g ranged from 4.2% to 35.3% and averaged 13.0% (Table 9).

Surface runoff, shallow subsurface flow and deep groundwater flow for 1988 are plotted in Fig. 13.

6.4.4 Components of stream salt

Annual stream salt load (Lt, kgha-1 TSS) and the three components ---- surface runoff (L_), shallow seasonal (L_) and deep groundwater (L_{α}), are presented in Table 10. The annual stream salt load ranged from a minimum of 621.4 kgha-1 TSS to a maximum of 1782.7 kgha⁻¹ TSS. Salt discharge from the shallow subsurface system was highly variable, ranging from 5.5 kgha⁻¹ TSS in 1987 to 358.4 kgha⁻¹ TSS in 1983. The average salt load (L₀) for the period 1983-90 was 115.2 kgha-1 TSS, which was 8.4% of the total salt load. There was more salt discharge form the deep groundwater system $(L_{_{\mbox{\scriptsize J}}})$ than from the other streamflow components (Table 10). During the study period, it ranged from 580 kgha-1 TSS to 1580 kgha-1 TSS and averaged 1216.4 kgha-1 TSS. Over time the salt discharge from deep groundwater system was less variable than the other two components (CV=0.28). As a proportion of total salt load, L ranged from 76.1% to 93.3% and averaged 88.3%.

6.4.5 Relationship between streamflow components

Streamflow and surface runoff

The annual streamflow (Q_t , mm) and surface runoff (Q_r , mm) are shown in Fig. 14. The linear relationship between the two components is:

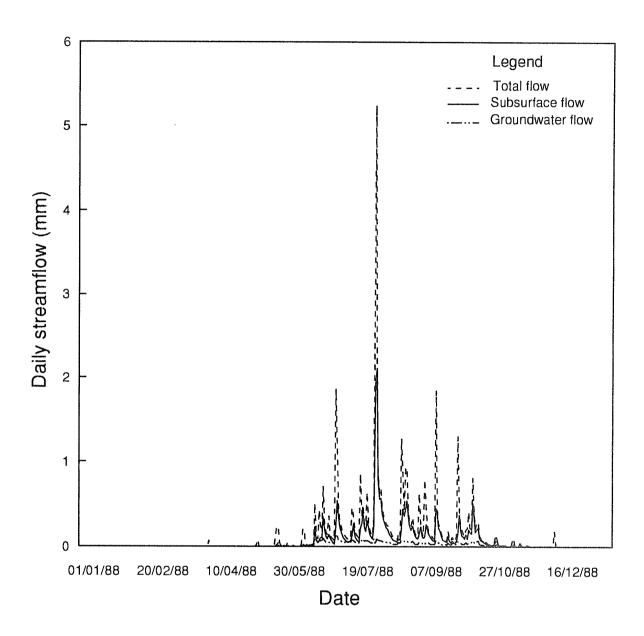


Figure 13 Stremaflow conponents for 1988

Table 10: Annual salt discharge for the three streamflow components

Year	L _{.t} (kg/ha)	L _r (kg/ha)	L _u (kg/ha)	L g (kg/ha)	L _r /L _t (%)	다/나 _. (왕)	L /L (%)
1983 1984 1985 1986 1987 1988 1989	1737.0 1441.9 1587.5 1042.9 621.4 1752.7 1058.8 1782.7	57.10 45.80 46.00 36.60 35.90 53.30 45.20 50.20	358.40 77.73 125.04 20.94 5.49 131.69 51.69 152.53	1321.43 1318.40 1416.28 985.35 580.02 1567.76 961.22 1579.94	3.29 3.18 2.90 3.51 5.78 3.04 4.27 2.82	20.63 5.39 7.88 2.01 0.88 7.51 4.88 8.56	76.08 91.44 89.21 94.48 93.34 89.45 90.85 88.63
Mean CV	1378.1	46.30 0.16	115.14	1216.39	3.34	8.38	88.27

CV = Coefficient of variation

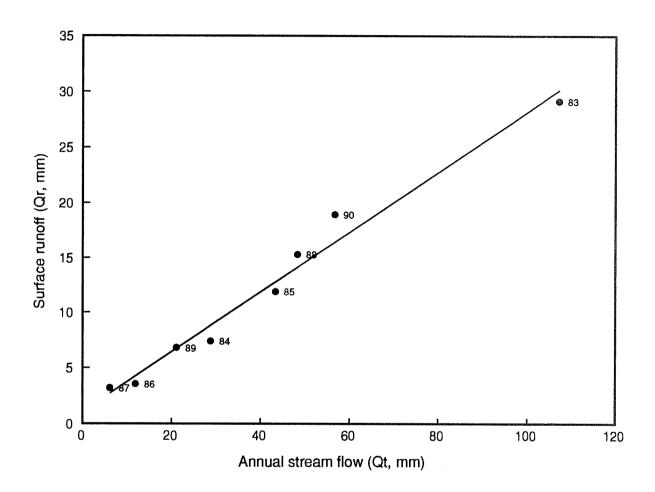


Figure 14 Relationship between annual streamflow and surface runoff

$$Q_r = 1.03 + 0.271Q_t$$
 (13)
 $r^2 = 0.98, n = 8, p^0.001$

This equation suggests surface runoff will contribute to streamflow even at very low flows

Streamflow and shallow subsurface flow

Fig. 15 shows the relationship between annual streamflow and shallow subsurface flow components. The linear regression equation is:

$$Q_{t} = -5.0 + 0.70Q_{t}$$
 (14)
 $r^{2} = 0.99, n=8, p^{0.001}$

Equation 14 implies very little subsurface flow occurs when the annual streamflow is less than 7.0 mm.

Surface runoff and shallow subsurface flow

The relationship between Q_r and Q_u is shown in Fig. 16. The linear regression is:

$$Q_u = -6.62 + 2.48Q_r$$
 (15)
 $r^2 = 0.95, n = 8, p^0.001$

The above equation suggests the shallow subsurface groundwater system will contribute to streamflow when the annual surface runoff exceeds 2.7 mm.

6.4.6 Annual streamflow components and rainfall

Fig. 17 compares the three components of streamflow with rainfall. Shallow subsurface flow (Q_u) is most sensitive to annual rainfall. Surface runoff (Q_r) is less variable and less sensitive to rainfall than shallow subsurface flow (Q_u). Flow from the deep groundwater system (Q_q) is practically

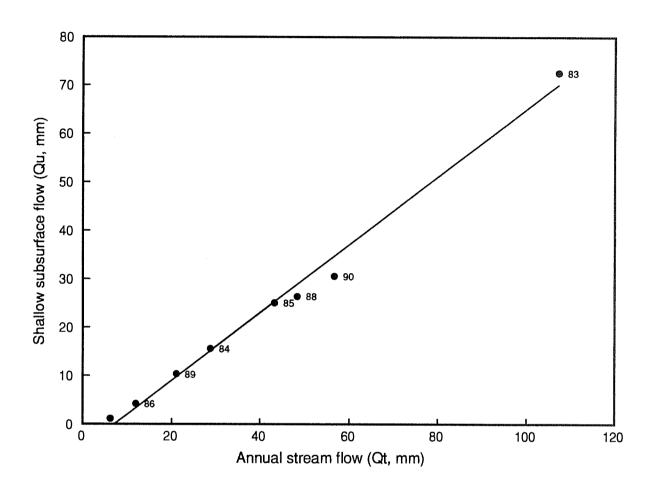


Figure 15 Relationship between annual streamflow and shallow subsurface flow

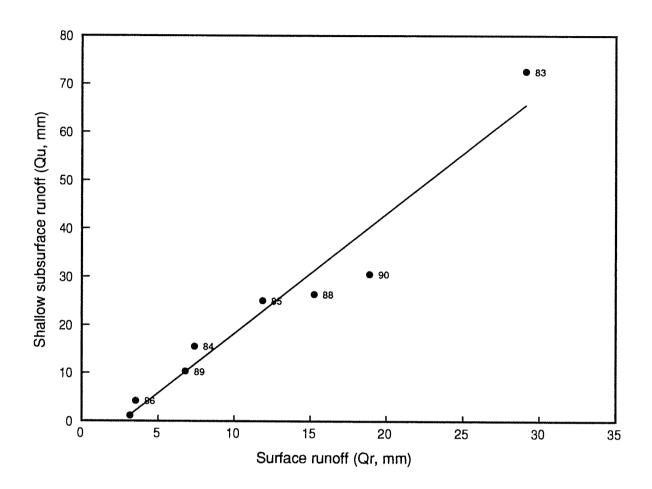


Figure 16 Relationship between surface runoff and shallow subsurface flow

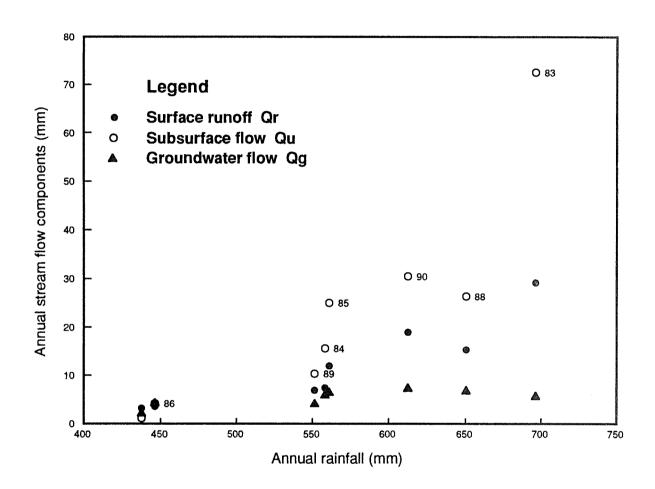


Figure 17 Annual rainfall and streamflow components

independent of rainfall and discharges at an almost steady rate to the stream.

6.5 Catchment Salt Balance

The salt balance equation for a catchment is:

$$L_{s} = L_{r} - L_{r} \tag{16}$$

where L_s =change in the salt storage in the catchment. Using values for average Lr and Lt for the period 1983-90 (Table 10), Ls becomes -1331.8 kgha⁻¹ TSS. That means, Maringee Farm catchment is exporting salt (TSS) at a rate of 1332 kgha⁻¹yr⁻¹. The quantity and distribution of salt across the catchment is presented in Appendix G. The average salt storage in the regolith was 80 kg m⁻² (n=22, CV=0.54) (Water Authority of W.A., unpublished data, 1982). Assuming a piston type salt discharge at this rate, total salt leaching from the catchment would require 600 years.

6.6 Streamflow and Reforestation

The groundwater table beneath reforestation declined slightly during the study period (Fig. 3). However there is no evidence that reforestation (in this instance covering 18% of the cleared land) has reduced streamflow.

6.7 Salt Discharge and Reforestation

Fig. 18 presents the weekly flow-weighted stream salinity for the study period. During the first few years after the reforestation, the stream salinity at the commencement of flow (April/May) was more than 30000 mgL⁻¹ TSS. In later years, however, stream salinity at the beginning of flow was stable at about 15000 mgL⁻¹ TSS. It appears reforestation has resulted in a slightly lower stream salinity at the onset of streamflow (April/May) but its effects in terms of total salt discharge was negligible.

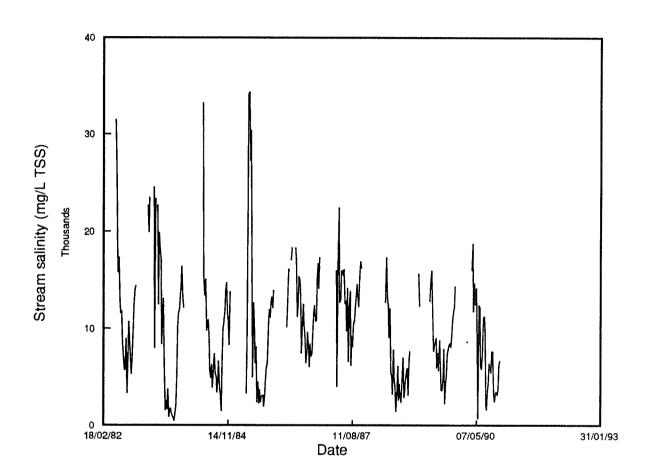


Figure 18 Weekly flow-weighted stream salinity during 1982-90

6.8 Reforestation and the Permanent Seep Area

The permanent seep area was measured from the aerial photographs taken in 1984 and 1989. The area in 1984 was 30.5 ha. In 1989 it had reduced to 25.5 ha. It appears reforestation may have reduced the permanent seep area.

7. DISCUSSION

7.1 Rainfall

The average annual rainfall during the study period (1983-90) was 13% lower than the long term average (1926-89). If long term average rainfall conditions had prevailed, it is likely groundwater levels would have risen further beneath the control i.e. pasture bores. On the other hand, should drier climate conditions prevail for south-west Western Australia (Pittock, 1988) due to the Greenhouse Effect, then the lower rainfall would assist in lowering groundwater levels.

7.2 Groundwater Level

There was no thinning or pruning of trees at this study site. The minimum groundwater level increased slightly between 1983 and 1985. The fact that groundwater levels did not fall may have been a consequence of the immaturity of the plantations. After 1985, the rate of decline of minimum groundwater level was slow but fairly uniform. Relative to pasture there has been a steady decline in groundwater level over the study period (Fig. 3). This decline is probably attributable to the continuous crown growth of the plantations.

7.3 <u>Groundwater Salinity</u>

Groundwater salinity beneath pasture has reduced 15% over eight years. If the present rate continues, the salinity would be below 1000 mg L⁻¹ TSS by the year 2040. Most analyses of solute leaching from a soil indicate an exponential decay of salt with time (Mulqueen and Kirkham, 1972). However, Peck (1973) notes a near-linear decay in solute concentration in experiments on the displacement of a saline groundwater with increased but uniformly distributed recharge in an inclined soil slab. If this is the case then serious attention should be given to further analysis of the rate of solute export and groundwater and stream salinity

decline in agricultural systems which are in hydrological equilibrium.

Groundwater salinity beneath reforestation has decreased 3% over the study period. The significance of this result is that salinities have not increased as a result of evaporative concentration as was assumed likely by a number of authors (Conacher, 1982; Morris and Thomson, 1983; Williamson, 1986). The slight decrease in groundwater salinity implies that solute leaching from the aquifer beneath the reforestation is occurring at a slightly faster rate than increasing concentration due to evapotranspiration of the groundwater. In the situation of a declining groundwater table other processes will also affect groundwater salinity, such as solution-dissolution rates and solute deposition in the unsaturated zone. It appears this type of reforestation has limited impact on reducing groundwater salinity.

7.4 Streamflow and Stream Salinity

Analysis of the streamflow and water quality data supports the concept that the hydrology of the catchment consists of a deeper, permanent groundwater system, a seasonal shallow groundwater system and overland flow system (Sharma, et al., 1980; Stokes, 1985; Stokes and Loh, 1982). The hydrology of the south-west of Western Australia is characterised by low surface runoff, high seasonal subsurface flow and little permanent groundwater flow. However the surface runoff was 30% of the total streamflow over the study period.

On Maringee Farm, surface runoff was generated from the seep area, close to the stream and gullys. During winter, a seasonal shallow groundwater system develops around the permanent seep area and results in greater surface runoff during storm events. The seasonal fresh groundwater system contributed significantly to streamflow with only small salt loads (57% of flow and 8% of salt). Similar results were found in the lower rainfall area of

Darling Range (Public Works Department of W.A., 1981; Stokes and Loh, 1982). Wood (1924) argued that the primary source of stream salts was deep groundwater. The results from this catchment (13% of flow and 88% of salt over the study period) tend to confirm this. As a consequence of clearing, the groundwater table rose, resulting in a permanent seep area along the stream line. The deep groundwater system discharges to this area throughout the year. However, streamflow does not occur during the dry months because evapotranspiration exceeds the discharge from the deep groundwater system. There is no surface runoff or shallow subsurface flow during the dry months.

Daily chemographs (Appendix H) show the observed stream salinity is sometimes higher than the groundwater salinity (18000 mg L^{-1} TSS), particularly at the onset of winter. This is attributed to the concentration of salt at or near the seep area, which occurs as a result of evapotranspiration of the groundwater discharge during the summer months. This process is typical of cleared catchments in the south-west of Western Australia.

Determining the proportions of salt and water in the three flow components is dependant upon the base flow separation procedure and on the salinity concentrations of the two subsurface flow components (C and C). In this study these two salinity concentrations (C and C) were considered constant but in reality they vary from year to year and also within a season (Stokes, 1985). The values of 500 mgL $^{-1}$ TSS and 18000 mgL $^{-1}$ TSS for C and C are considered reasonably accurate.

7.5 Use of the Reforestation as Salinity Control

The results demonstrate that reforestation is partially successful in lowering the saline groundwater table across the valley floor, but there is no evidence of reducing saline groundwater discharge to the stream. In the future there is a chance the replanted trees will transpire more water from the

groundwater and hence reduce salt discharge to the stream. In general, the effectiveness of reforestation can be improved by increasing the proportion of the farmland planted, retaining higher stem densities, and by using faster growing trees or trees which transpire at a greater rate. The reforestation design should consider the water balance of the site, particularly the annual rainfall (Schofield, 1990b). This would have direct relevance to the large scale reforestation programme in the Wellington Dam catchment (Loh, 1988).

8. CONCLUSIONS

Based on the analyses and interpretation of data, the following conclusions can be drawn:

8.1 Groundwater Level

- (i) Reforestation covering 18% of the farmland has lowered the minimum groundwater level by 0.4 m. The reduction relative to the pasture control was 3.6 m.
- (ii) Reforestation reduced the maximum groundwater level by 1.0 m and by 2.2 m relative to the pasture control.
- (iii) During the study period, rainfall was 13% lower than the long term average. Under long term average rainfall conditions, the rate of decline of minimum groundwater level beneath reforestation could have been less.

8.2 Groundwater Flow

- (i) Groundwater flow was towards the stream.
- (ii) Although reforestation reduced groundwater levels it did not alter the direction of flow.

8.3 <u>Groundwater Salinity</u>

- (i) The spatial variation of groundwater salinity beneath reforestation was low.
- (ii) During the study period the groundwater salinity beneath reforestation area decreased by about 3%. This decrease was contrary to early expectations.
- (iii) The groundwater salinity beneath pasture decreased by about 15% over the study period. This result merits

further investigation of solute leaching under agriculture in moderate to high rainfall zones.

(iv) The effectiveness of reforestation in reducing groundwater salinity appears to be limited, but further monitoring is required to determine longer term effects.

8.4 Streamflow

- (i) Over the study period surface runoff constituted 30% of total streamflow. This is relatively high. The large area of permanent saturation is likely to be the reason for this high contribution.
- (ii) A relatively shallow, seasonal groundwater system made up 57% of total streamflow.
- (iii) The deep, permanent groundwater system provided 13% of total streamflow.
- (iv) To date there is no evidence that reforestation has reduced any of the three streamflow components.

8.5 Stream Salinity

- (i) Stream salinity was highest during autumn and spring flows and lowest during winter high flows.
- (ii) About 8% of total stream salt load comes from shallow subsurface flow.
- (iii) About 88% of the stream salt is discharged from the deep groundwater system.

9. RECOMMENDATIONS

- Reforestation appears to be a viable landuse option for reducing groundwater level and its further study is recommended.
- To quantify the effects of further crown and tree growth, bore monitoring should be continued and the yearly minimum and maximum groundwater levels should be identified.
- Bore salinity sampling should continue in order to monitor future groundwater salinity behaviour, under both pasture and reforestation.
- To assist interpretation of the groundwater data, tree covers should be measured at approximately 5 year intervals.
- Measurement of streamflow and quality should be continued to determine the longer term effects of trees on groundwater, streamflow and salinity.

10. ACKNOWLEDGEMENTS

The authors are grateful to the Water Resources staff of the Water Authority of Western Australia for measuring and supplying groundwater and rainfall data. Thanks also go to Mr J. Ruprecht, Mr P. Marchesani and Mr P Goodman for comments on an earlier draft of this report.

We would also like to thank Mr M. Bozikovic and Mr I. Logan for preparing the figures.

11. REFERENCES

Bari, M.A., Schofield, N.J. and Boyd, D.W. (1990). Groundwater level and salinity response under agroforestry at Flynn's farm in the Darling Range of Western Australia. Water Authority of W.A., Surface Water Branch Rep. No. WS 72, 58 pp.

Bari, M.A. and Schofield, N.J. (1991). Effects of Agroforestry-pasture associations on groundwater level and salinity. Agroforestry Systems. 16, 13-31.

Bell, R.W., Anson, B. and Loh, I.C. (1988). Groundwater response to reforestation in the Darling Range of Western Australia. Water Authority of W.A., Surface Water Branch, Rep. No. WS 24, 89 pp.

Bell, R.W., Schofield, N.J., Loh, I.C. and Bari, M.A. (1990). Groundwater response to reforestation in the Darling Range of Western Australia. J. Hydrol. 119, 179-200.

Conacher, A. (1982). Dryland agriculture and secondary salinity. In: W. Hanby and M. Cooper (Editors), Man and the Australian Environment. McGraw-Hill, Sydney, 113-125.

Eastham, J., Rose, C.W. Cameron, D.M., Rance, S.J. and Talsma, T. (1988). The effect of tree spacing on evaporation from an agroforestry experiment. J. Agricul. and Forest Mat. $\underline{42}$, 355-368.

Hayes, R.J. and Garnaut, G. (1981). Annual rainfall characteristics of the Darling Plateau and the Swan Coastal Plain. Public Works Dept. of W. Australia, Water Resources Branch, Rep. No. WRB 3, 28 pp.

Hingston, F.J. and Gailitis, V. (1977). The geographic variations of salt precipitated over Western Australia. Aust. J. Soil Res. 14: 319-335.

Hookey, G.R. and Loh, I.C. (1985). Groundwater simulation of the effect of catchment clearing and partial reforestation at Maringee farm. Water Resource Branch, Public Works Dept. of W.A., Rep. No. WRB122, 28pp.

Loh, I.C. (1988). The history of catchment and reservoir management on Wellington Reservoir catchment, Western Australia. Surface Water Branch, Water Authority of W.A., Rep. No. WS 35, 39 pp.

Luke, G.J., Burke, K.L. and O'Brien, T.M. (1988). Evaporation data for Western Australia. W. Australian Dept. Agric. Div. Resour. Manag., Tech. Rep. No. 65, 29 pp.

Martin, M.W. (1984). Maringee farm salinity study --- hydrogeology. Geol. Survey of W.A., Hydrogeol. Rep. No. 2589.

Morris, J.D. and Thomson, L.A.J. (1983). The role of trees in dryland salinity control. Proc. R. Soc. Vic. 95(3), 123-131.

Mulqueen, J. and Kirkham, D. (1972). Leaching of a surface layer of sodium chloride into the drains in a sand tank model. Soil Sci. Soc. Amer. Proc. 36, 3-9.

Peck, A.J. (1973). Analysis of multi-dimensional leaching. Soil Sci. Soc. Amer. Proc. <u>37</u>, p 320.

Pittock, A.B. (1988). Actual and anticipated changes in Australia's climate. In: GREENHOUSE - Planning for Climate Change (Ed. G.I. Pearman), CSIRO Melb. Aust., pp 35-51.

Public Works Dept. of Western Australia (1981). Investigations into the effects of the Whittington interceptor system on stream salinity. Public Works Dept. of W.A., Rep. No. WRB4, 47pp.

Schofield, N.J., Ruprecht, J.K. and Loh, I.C. (1988). The impact of agricultural development on the salinity of surface water resources of south-west Western Australia, Water Authority of Western Australia, Surface Water Branch, Rep. No. WS 27, 69 pp.

Schofield, N.J., Loh, I.C., Scott, P.R., Bartle, J.R., Ritson, P., Bell, R.W., Borg, H., Anson, B. and Moore, R. (1989). Vegetation strategies to reduce stream salinities of water resource catchments in south-west Western Australia. Water Authority of W.A., Surface Water Branch, Rep. No. WS 33, 98 pp.

Schofield, N.J. and Ruprecht, J.K. (1989). Regional analysis of stream salinisation in south-west Western Australia. J. Hydrol. 112, 19-39.

Schofield, N.J. (1990a). Effects of trees on saline groundwater tables. In: Agroforestry - Integration of trees into the Agricultural Landscape (Ed. P.R. Scott). Western Australian Dept. of Agric., Div. of Resour. Manag. Tech. Rep. No. 102, 67 pp.

Schofield, N.J. (1990b). Determining reforestation area and distribution for salinity control. J. Hydrol. Sci., $\underline{35}$: 1-19.

Schofield. N.J. and Bari, M.A. (1991). Valley reforestation to lower saline groundwater tables :results from Stene's Farm Western Australia. Aust. J. Soil. Res., 29, 635-650.

Schofield, N.J., Bari, M.A., Bell, D.T., Bodington, W.J., George, R.J. and Pettit, N.E. (1991). The role of trees in land and stream salinity control in Western Australia. In: National Conference on The Role of Trees in Sustainable Agriculture. Albury, 21-43.

Sharma, M.L., Williamson, D.R. and Hingston, F.J. (1980). Water pollution as a consequence of land disturbance south-west of Western Australia. In: Trudinger P.A. and Walter, M.R. (Editors), Biogeochemistry of Ancient and Modern Environments. Springer Verlag, Berlin, 429-439.

Stokes, R.A. and Loh, I.C. (1982). Streamflow and solute characteristics of a forested and deforested catchment pair in south Western Australia. In: National Symp. on Forest Hydrology, Proc. The Institution of Engineers, Australia, Melbourne, 60-66.

Stokes, R.A. (1985). Stream water and chloride generation in a small forested catchment in south Western Australia. Water Authority of Western Australia, Surface Water Branch, Rep. No. WH 7, 176 pp.

The Institution of Engineers, Australia (1987). Australian Rainfall and Runoff: A guide to Flood Estimation, Vol. 1, 374 pp.

Williamson, D.R. (1986). The Hydrology of salt affected soils in Australia. Reclam. Reveg. Res. 5, 181-196.

Wood, W.E. (1924). Increase of salt in soil and streams following the destruction of native vegetation. J. Roy. Soc. West. Aust., 10:35-47.

APPENDIX A

PLANTATION DETAILS OF THE MARINGEE FARM

Maringee Farms Reforestation Details

Plot	Year Planted	Species	Stem Density (stem/ha)
		·	At Planting 1988 (%)
1	1981	E. accedens/ E. camaldulensis 5th row	625 350 50 90	
2	1981	E. accedens/ E. camaldulensis 5th row	625 300 4	0
3	1981	<pre>E. sargentii/ E. camaldulensis 5th row</pre>	625 250 3i	0
4	1981	E. accedeno/ E. camaldulensis 5th row	625 100 1 ₀	0
5	1981	E. radiata E. saligna 5th row	625 10 90	
6	1981	E. rudis/ E. saligna 5th row	625 500 90 50	0
7	1981	E. camaldulensis saligna 5th row	625 550 100 50	0
8	1981	E. calophylla/ E. camaldulensis 5th row	625 200 20 90	0
9	1981	E. radiata/ E. saligna	625 250 30 90	0
10	1981	E. calophylla/ E. saligna 5th row	625 250 30 90	0
11	1981	E. wandoo/ E. maculata 5th row	625 500 80 60	0
12 13	1981 1981	E. camaldulensis E. wandoo/	625 300 50 625 400 70	0
14	1982	E. leucoxylon 5th row E. wandoo/	625 250 50	
15	1981	E. melliodora 5th row E. rudis/	625 350 70	
16	1981	? E. wandoo/	625 400 80	
17	1981	E. maculata 5th rowE. wandoo/E. rudis/	20 625 400 80 70	0
		E. camaldulensis 5th row E. leucoxylon 5th row	90 20	0
18	1981	E. rudis/ E. camaldulensis 5th row	625 400 60 60	
19	1981	E. wandoo/ E. maculata 5th row	625 400 70 20	
20	1981	E. wandoo/ E. camaldulensis 5th row	625 400 60 90	
21	1981	E. accedens/ E. camaldulensis 5th row	625 500 80 90	
22	1981	E. rudis/ E. camaldulensis 5th row	625 450 70 70	0
23	1981	E. accedens/ E. camaldulensis 5th row	625 400 60 70	0
24	1981	E. megacarpa/ E. camaldulensis 5th row	625 150 10 90	0

Plot	Year Planted	Species	Stem Density	(stem/	- - na)
			At Planting	1988	(용)
25	1981	E. megacarpa/ E. kondininensis/	625	150	5 20
26	1981	E. camaldulensis 5th row E. accedens/ E. megacarpa/ E. maculata 5th row	625	150	80 10 10
27	1981	E. megacarpa/ E. camaldulensis 5th row	625	100	90
28	1982	E. camaldulensis/ E. globulus 5th row	625	350	80 60
29	1982	E. wandoo/ E. saligna 5th row	625	450	40 70 80
30	1982	E. wandoo/ E. resinifera/	625	10	0
31	1982	E. saligna 5th rowE. microcorys/E. gamphocephela/E. resinifera/	625	30	10 5
32	1982	E. foccunda/ E. torquata/ E. eremploca/ E. calophylla/ E. saligna 5th row E. brookerana/	625	10	0
33	1982	E. saligna 5th row E. E. mullerana/	625	50	5 10
34 35	1982 1982	E. saligna 5th rowE. resiniferaE. resinifera/E. saligna 5th row	625 625		50 20 5 5
36	1982	E. wandoo/ E. saligna 5th row	625		70 40
37	1982	E. wandoo/ E. saligna 5th row	625	300	60 60
38	1982	E. calophylla/ E. saligna 5th row	625	250	40 50
39	1982	<pre>E. wandoo/ E. robusta 5th row</pre>	625	200	40 10
40	1982	E. camaldulensis/ E. robusta 5th row	625	250	50 50
41	1982	E. rudis/ E. saligna 5th row		300	60 20
42	1982	E. wandoo/ E. saligna 5th row			30 20
43	1982	E. calophylla/ E. saligna 5th row			40 30
44 45	1982	E. wandoo/ E. saligna 5th row	625		
46		E. viminalis/ E. robida 5th row	830		
40		E. melliodora/ E. robida 5th row	830		

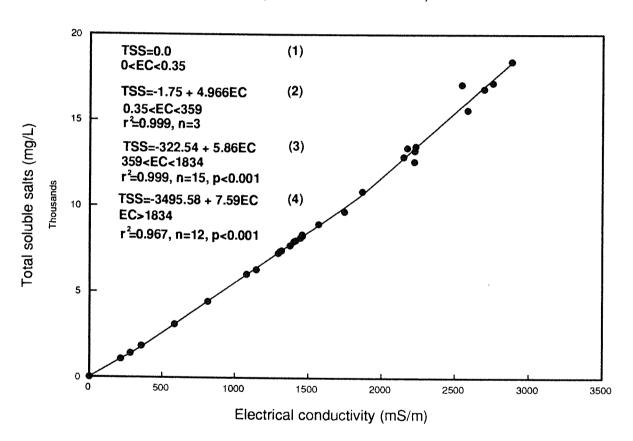
APPENDIX B

GROUNDWATER OBSERVATION BORE DETAILS

S.W.R.I.S. Bore Number	Drillers Bore Number	Commencement of Operation	Bore Classif- ication	Top of Inner Tube (AHD)	Natural Surface Level (AHD)	Bottom of Tube (AHD)	Length of Slotting (m)	Length of Inner Tube (m)	Height of T.O.I.T. Above N.S.L. (m)	Depth of B.O.T. Below N.S.L. (m)
61218101	MA.1	26/07/1982	Reforest	268.051	267.500	239.081	2.00	28.970	0.551	28.419
61218102	MAIA	26/07/1982	Reforest	268.112	267.530	266.412	1.00	1.700	0.582	1.118
61218103	MA1B	26/07/1982	Reforest	268.059	267.560	261.109	1.00	6.950	0.499	6.451
61218104	MA1c	26/07/1982	Reforest	268.115	267.600	255.615	1.00	12.500	0.515	11.985
61218105	MA2	26/07/1982	Reforest	259.083	258.450	242.283	2.00	16.800	0.633	16.167
61218106	MA2A	26/07/1982	Reforest	258.956	258.480	257.256	1.00	1.700	0.476	1.224
61218107	MA2B	26/07/1982	Reforest	258.959	258.480	254.209	1.00	4.750	0.479	4.271
61218108	MA2C	26/07/1982	Reforest	259.065	258.470	252.295	1.00	6.770	0.595	6.175
61218109	MA2D	26/07/1982	Reforest	259.001	258.450	247.471	1.00	11.530	0.551	10.979
61218110	MA3	26/07/1982	Reforest	258.236	257.757	250.636	2.00	7.600	0.479	7.121
61218111	MA3A	26/07/1982	Reforest	258.312	257.787	256.312	1.00	2.000	0.525	1.475
61218112	MA3B	26/07/1982	Reforest	258.197	257.747	253.697	1.00	4.500	0.450	4.050
61218113	MB4	26/07/1982	Reforest	258.706	258.147	242.106	2.00	16.600	0.559	16.041
61218114	MA4A	26/07/1982	Reforest	258.668	258.147	256.968	1.00	1.700	0.521	1.179
61218115	MA4B	26/07/1982	Reforest	258.616	258.147	252.118	1.00	6.500	0.471	6.029
61218116	MB4C	26/07/1982	Reforest	258.552	258.147	248.122	1.00	10.430	0.405	10.025
61218117	MA5	26/07/1982	Reforest	261.254	261.183	249.904	2.00	11.620	0.341	11.279
61218118	MASA	26/07/1982	Reforest	261.567	261.053	259.567	1.00	2.000	0.514	1.486
61218119	MA5B	26/07/1982	Reforest	261.503	261.003	255.303	1.00	4.200	0.500	3.700
61218120	MA5C	26/07/1982	Reforest	261.628	261.103	253.628	1.00	8.000	0.525	3.700
61218121	MB5	26/07/1982	Pasture	283.161	282.561	258.011	2.00	25.150	0.600	24.550
61218122	MB1A	26/07/1982	Pasture	283.098	282.598	272.098	1.00	11.000	0.500	10.500
61218123	MB1B	26/07/1982	Pasture	283.157	282.627	268.657	1.00	14.500	0.530	13.970
61218124	MB1C	26/07/1982	Pasture	283.023	282.543	265.523	1.00	17.500	0.480	17.020

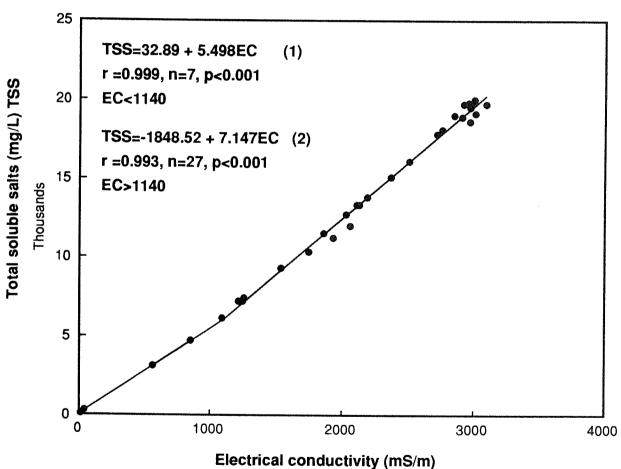
T.O.I.T. :Top of inner tube B.O.T. :Bottom of tube N.S.L. :Natural surface level

S.W.R.I.S. Bore	Drillers Bore	Commencement of	Bore Classif-	Top of Inner Tube	Natural Surface	Bottom of Tube	Length of Slotting	Length of Inner Tube	Height of T.O.I.T. Above	Depth of B.O.T. Below
Number	Number	Operation	ication	(AHD)	Level (AHD)	(AMD)	(n)	(m)	N.S.L. (m)	N.S.L. (m)
61218125	MB2	26/07/1982	Reforest	269.744	269.204	256.644	2.00	13.100	0.540	12.560
61218126	MB2A	26/07/1982	Reforest	269.741	269,254	268.401	1.00	1.700	0.490	1.210
61218127	MB2B	26/07/1982	Reforest	269.646	269.206	262.646	1.00	7.000	0.440	6.560
61218128	MB2C	26/07/1982	Reforest	269.576	269,136	259.476	1.00	10.100	0.440	9.660
61218129	MB3	26/07/1982	Reforest	265.466	264.956	253.166	2.00	12.300	0.510	11.790
61218130	MB3A	26/07/1982	Reforest	265.450	264.870	262.450	1.00	3.000	0.580	2.420
61218131	MB3B	26/07/1982	Reforest	265.499	265.059	257.449	1.00	8.050	0.440	7.610
61218132	MB4	26/07/1982	Reforest	264.131	263.621	251.581	2.00	12.550	0.510	12.040
61218133	MB4A	26/07/1982	Reforest	264.139	263.689	261.139	1.00	3.000	0.450	2.550
61218134	MB4B	26/07/1982	Reforest	264.138	263.638	257.118	1.00	7.020	0.500	6.520
61218135	MB4C	26/07/1982	Reforest	264.209	263.759	255.629	1.00	8.580	0.450	8.130
61218136	MB5	26/07/1982	Reforest	265.240	264.790	250.840	2.00	14.400	0.450	13.950
61218137	MB5A	26/07/1982	Reforest	265.389	264.789	261,889	1.00	3.500	0.600	2.900
61218138	MB5B	26/07/1982	Reforest	265.408	264.808	258.908	1.00	6.500	0.600	5.900
61218139	MB5c	26/07/1982	Reforest	265.207	264.807	254.277	1.00	10.930	0.400	10.530
61218140	MB6	26/07/1982	Reforest	268.915	267.695	248.995	2.00	19.200	0.500	18.700
61218141	MB6A	26/07/1982	Reforest	268.257	267.787	266.557	1.00	1.700	0.470	1.230
61218142	МВ6В	26/07/1982	Reforest	268.191	267.751	263.241	1.00	4.950	0.440	4.510
61218143	MB6c	26/07/1982	Reforest	268.176	267.756	255.676	1.00	12.500	0.420	12.080
61218144	MC1	26/07/1982	Pasture	284.995	284.385	266.545	2.00	18.450	0.610	17.840
61218145	MC1A	26/07/1982	Pasture	285.021	284.471	278.521	1.00	6.500	0.550	5.950
61218146	MC1B	26/07/1982	Pasture	284.856	284.426	274.856	1.00	10.000	0.430	9.570
61218147	MC1C	26/07/1982	Pasture	284.824	284.334	271.324	1.00	13.500	0.490	13.010
61218148	MC2	26/07/1982	Reforest	176 271	107 570	135 036	6	000		0


	Bore Number	of	Classif	Inner Tube	Surface	of Tube	01010	Tong Tubo		T.O.I.T. Above B.O.T. Below
49 50 51	Number		***	, , , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		STOLLING	Turner Toron	T.O.I. Abov	
		Operation	ication	(AHD)	Level (AHD)	(AHD)	(E)	(m)	N.S.L. (m)	N.S.L. (m)
. .	MC2A	26/07/1982	Reforest* 274.028	274.028	273.518	272.528	1.00	1.500	0.510	066.0
	MC2B	26/07/1982	Reforest*	273.944	273.494	270.944	1.00	3.000	0.450	2.550
	MC2C	26/07/1982	Reforest*	274.253	273.733	269.223	1.00	5.030	0.520	4.510
61218152	MC2D	26/07/1982	Reforest*	274.390	273.690	265.190	1.00	9.200	0.700	8.500
61218153	MC3	26/07/1982	Pasture	280.009	279.369	269.209	2.00	10.800	0.640	10,160
	MC3A	26/07/1982	Pasture	279.983	279.543	276.003	1.00	3.980	0.440	3.540
	MC3B	26/07/1982	Pasture	279.821	279.381	273.321	1.00	6.500	0.440	9.060
	MD1	26/07/1982	Pasture	279.614	279.114	257.214	2.00	22.400	0.500	21.900
	MDIA	26/07/1982	Pasture	279.574	279.074	268.574	1.00	11.000	0.500	10,500
	MD18	26/07/1982	Pasture	279.609	279.109	264.089	1.00	15.520	0.500	15.020
	MD1C	26/07/1982	Pasture	279.608	279.108	259.608	1.00	20.000	0.500	19,500
_	MD2	26/07/1982	Reforest	269.300	268.800	249.100	2.00	20.200	0.500	19.700
	MD2A	26/07/1982	Reforest	269.337	268.837	266.837	1.00	2.500	0.500	2.000
	MD2B	26/07/1982	Reforest	269.315	268.845	262.845	1.00	6.470	0.470	6,000
	MD2C	26/07/1982	Reforest	269.642	268.822	256.462	1.00	13.000	0.640	12.360
	MD2D	26/07/1982	Reforest	269.197	268.737	253.727	1.00	15.470	0.460	15.010
	MD3	26/07/1982	Reforest	266.509	265.909	239.989	2.00	26.520	0.600	25,920
	MD3A	26/07/1982	Reforest	266.744	266.244	265.004	1.00	1.740	0.500	1.240
	мрзв	26/07/1982	Reforest	266.588	266.134	262.548	1.00		0.450	3.590
	MD3C	26/07/1982	Reforest	266.555	266.115	259.555	1.00	7.000	0.440	6.560
61218169 P	МБЗБ	26/07/1982	Reforest	266.571	266.201	255.051	1.00	11.520	0.550	10.970
_	MD3E	26/07/1982	Reforest	266.487	265.987	247.987	1.00	18.500	0.500	18.000
	MD4	26/07/1982	Reforest	271.448	270.948	259.118	2.00	12.330	0.500	11,830
61218172 M	MD4A	26/07/1982	Reforest	271.333	270.783	269.333	1.00	2.000	0.550	1.450

S.W.R.I.S.	Drillers	Drillers Commencement	Bore	Top of	Natural	Bottom	Length of	Length of	Height of	Depth of
Bore	Bore	of	Classif-	Inner Tube	Surface	of Tube	Slotting	Inner Tube	T.O.I.T. Above B.O.T. Below	B.O.T. Below
Number	Number	Operation	ication	(AHD)	Level (AHD)	(AHD)	(a)	(B)	N.S.L. (m)	N.S.L. (m)
61218173	MD4B	26/07/1982	Reforest	271.324	270.784	266.324	1.00	5.000	0.540	4.460
61218174	MD4C	26/07/1982	Reforest	271.316	270.806	263.316	1.00	8.000	0.510	7.490
61218175	MF1	26/07/1982	Reforest	259.026	258.528	245.676	2.00	13.350	0.498	12.852
61218176	MF1A	26/07/1982	Reforest	258.932	258.518	257.382	1.00	1.550	0.414	1.136
61218177	MF1B	26/07/1982	Reforest	259.073	258.528	251.073	1.00	8.000	0.545	7.455
61218178	MF1C	26/07/1982	Reforest	259,009	258.558	248.558	1.00	10.451	0.451	10.000
61218179	MF 2	26/07/1982	Reforest	263.985	263.514	241.683	2.00	22.302	0.471	21.831
61218180	MF 2A	26/07/1982	Reforest	264.084	263.624	261.584	1.00	2.500	0.460	2.040
61218181	MF2B	26/07/1982	Reforest	264.046	263.554	257.546	1.00	6.500	0.492	6.008
61218182	MF2C	26/07/1982	Reforest	263.939	263.554	249.489	1.00	14,451	0.385	14.065
61218183	MF3	26/07/1982	Reforest	264.405	263.765	240.655	2.00	23.750	0.640	23.110
61218184	MF3A	26/07/1982	Reforest	264.362	263.862	261.862	1.00	2.500	0.500	2.000
61218185	MF3B	26/07/1982	Reforest	264.370	263.870	258.870	1.00	5.500	0.500	5.000
61218186	MF3C	26/07/1982	Reforest	264.399	263.899	252,899	1.00	11.500	0.500	11.000
61218187	MF4	26/07/1982	Reforest	262.031	261.446	250.681	2.00	11.350	0.585	10.765
61218188	MF4A	26/07/1982	Reforest	262.059	261.566	260.309	1.00	1.750	0.493	1.257
61218189	MF4B	26/07/1982	Reforest	262.002	261.514	256.002	1.00	9.000	0.488	5.512

APPENDIX C RELATIONSHIP BETWEEN SALINITY (TSS) AND ELECTRICAL CONDUCTIVITY


Relationship between TSS and EC

(S612026 Surface water)

Relationship between TSS and EC

(S612026 **Groundwater**)

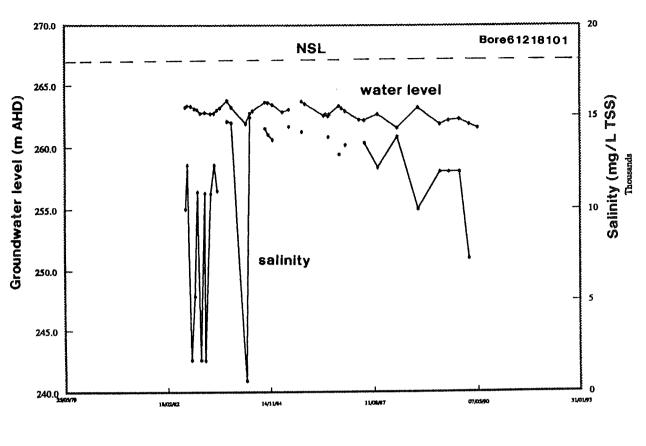
APPENDIX D

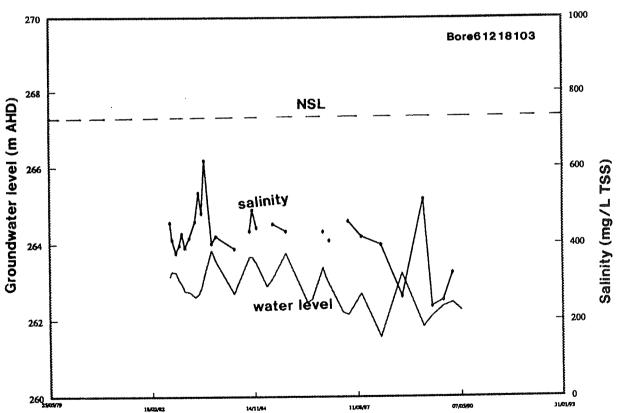
CALCULATION OF ANNUAL STREAMFLOW AND SALT LOAD

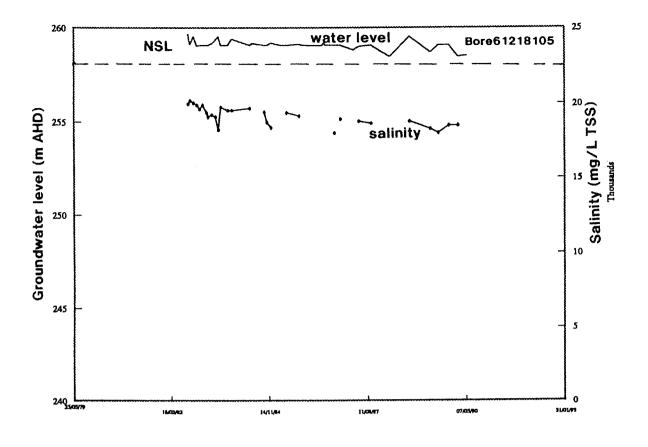
COMPUTATION OF SALT LOAD

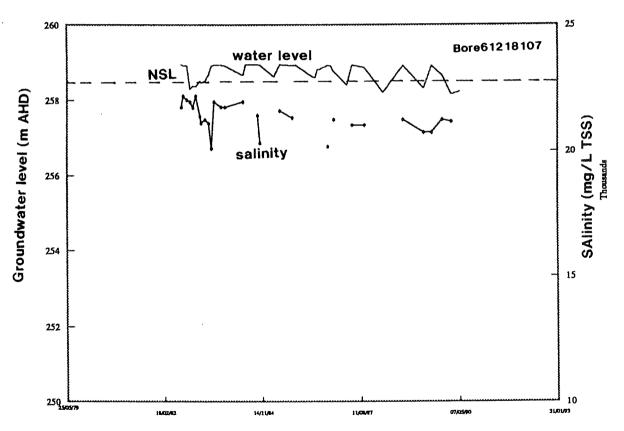
Electrical conductivity records (compensated at 25 degree centigrade) were transformed to salinity (Total Soluble Salts, TSS) by a rating curve described in Appendix C. SWRIS (State Water Resource Information System) streamflow and salinity data were extracted for every 20 minute interval. Daily streamflow (Q_d) and flow-weighted stram salinity (S_d) were calculated as:

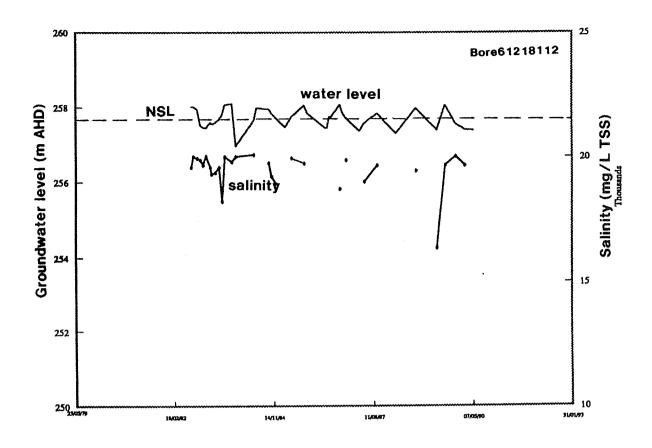
$$S_{d} = (\Sigma S_{i}^{*}Q_{i})/\Sigma Q_{i}$$

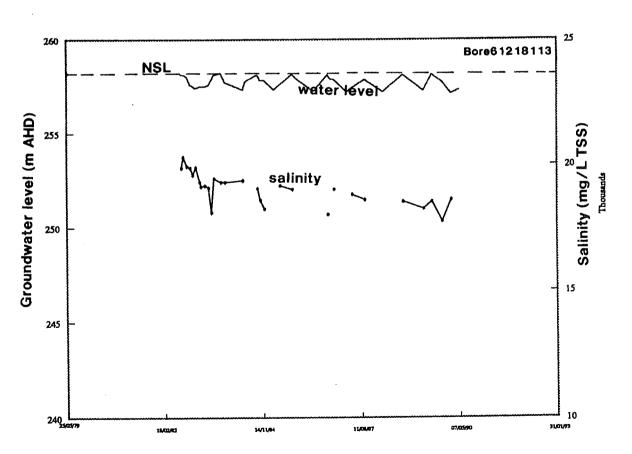

$$Q_{d} = \Sigma Q_{i}$$
(C1)

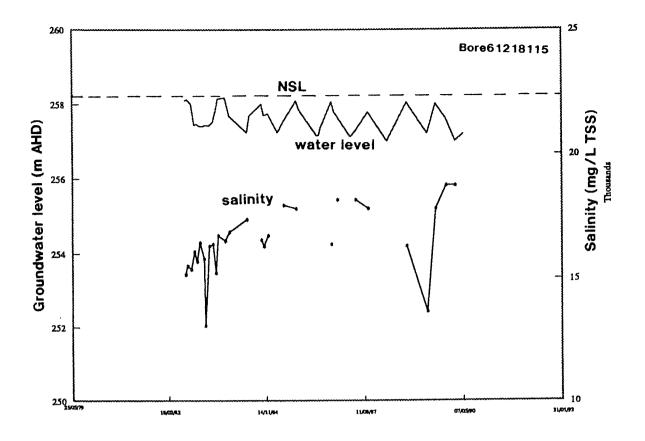

$$Q_{d} = \Sigma Q_{i} \tag{C2}$$

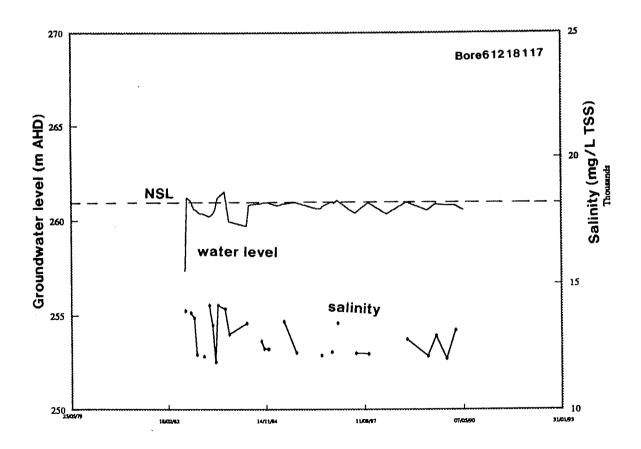

where S_i =instnateneous stream salinity, and Q_i =instanteneous streamflow. Non-continuous grab samples were used to fill the gaps between the continuous records. Using the above equations, flow, salt load and stream salinity were calculated for the required period (weekly, monthly and The 'flow-weighted average stream salinity' is be referred as average stream salinity.

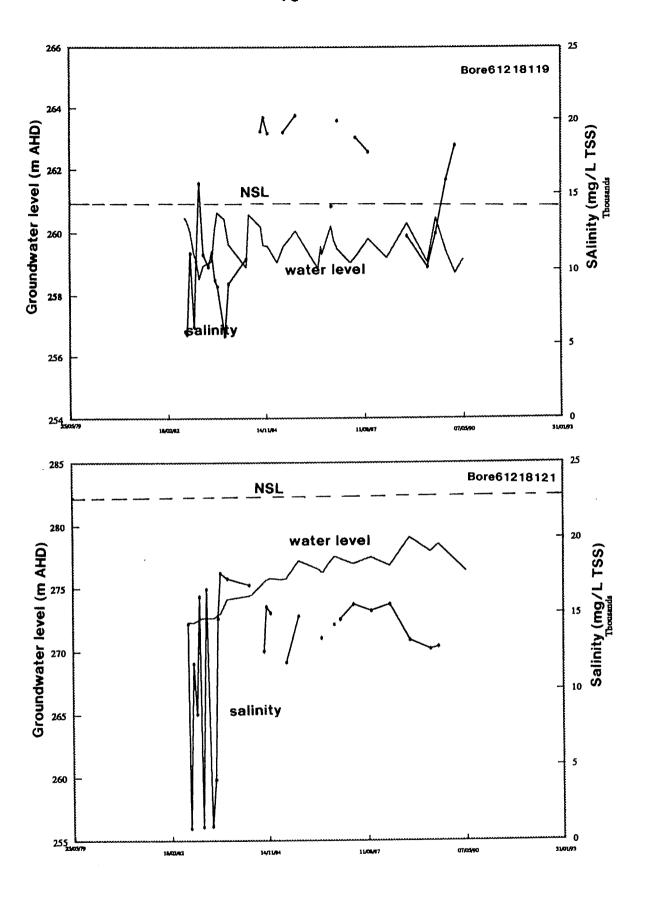

APPENDIX E

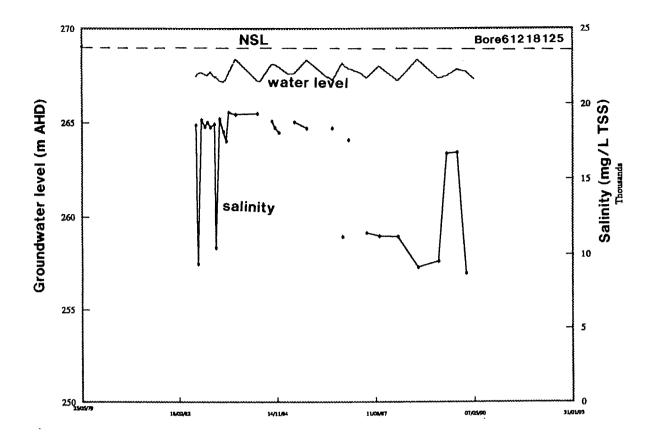

GROUNDWATER LEVEL AND SALINITY GRAPH

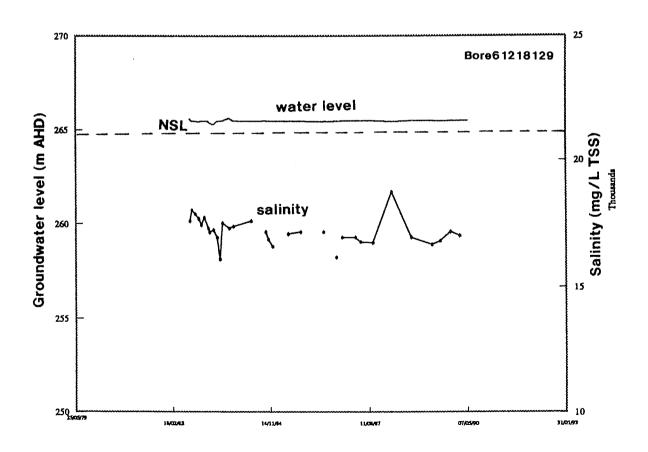


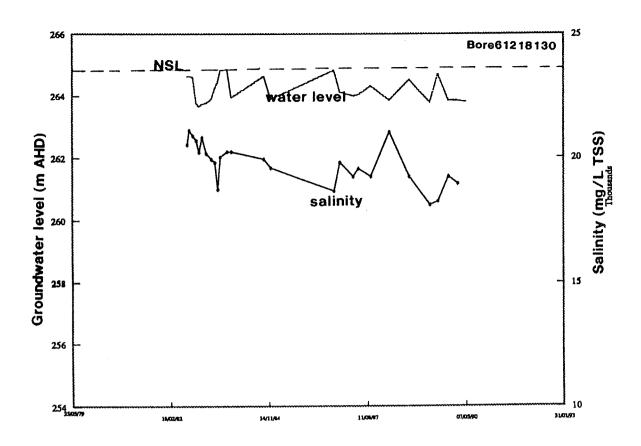


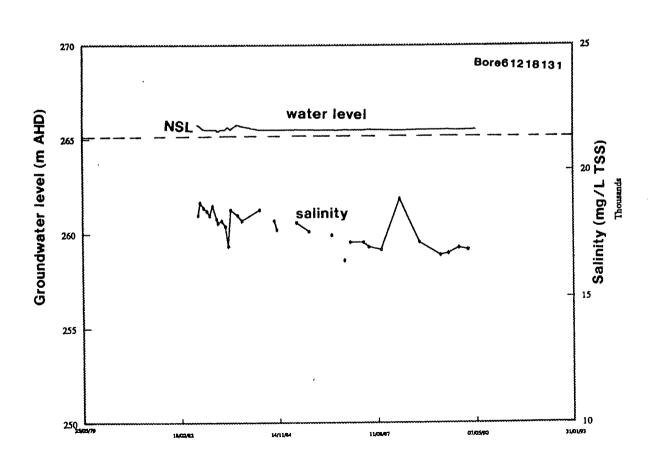


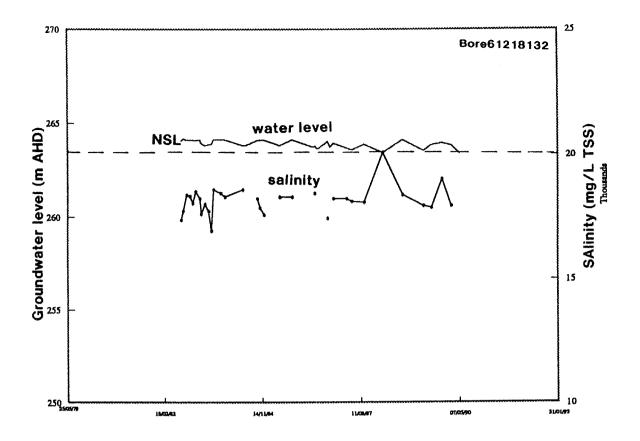


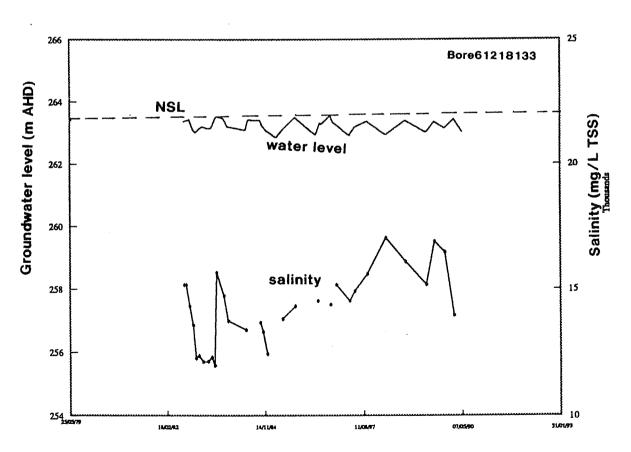


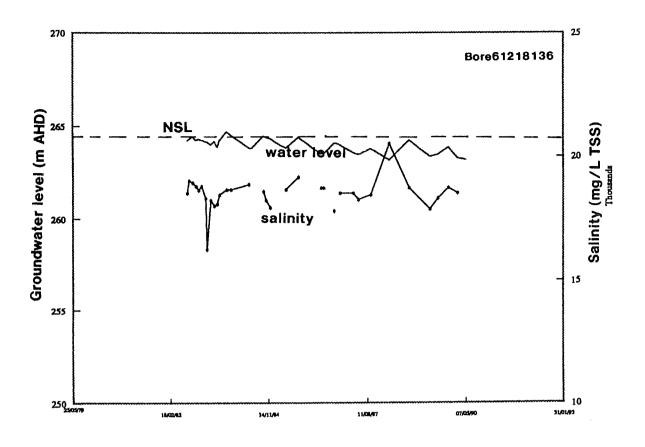


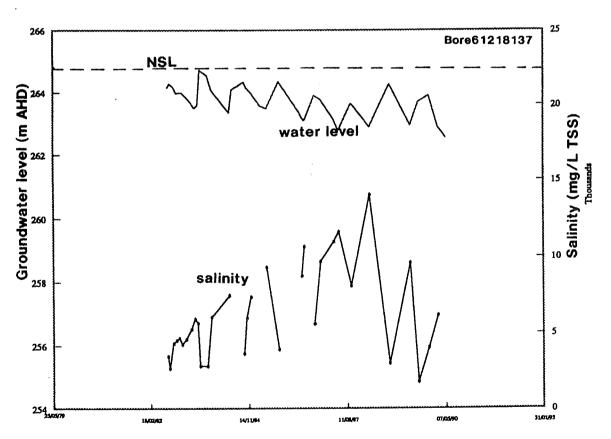


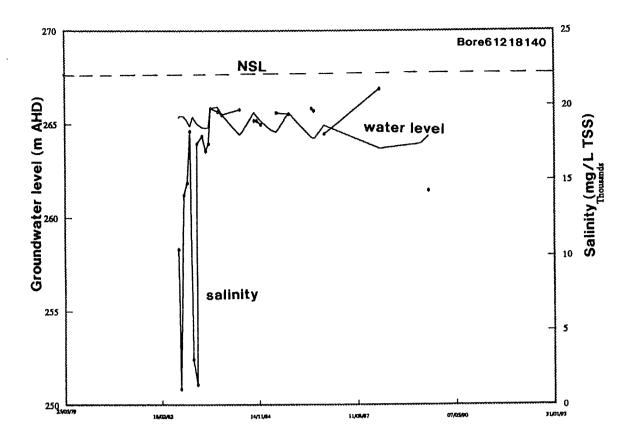


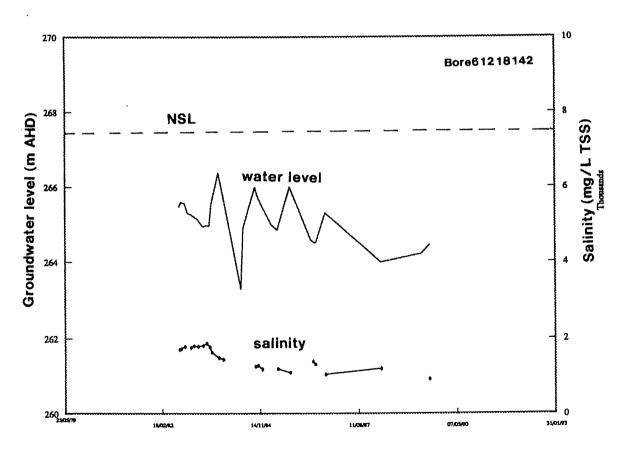


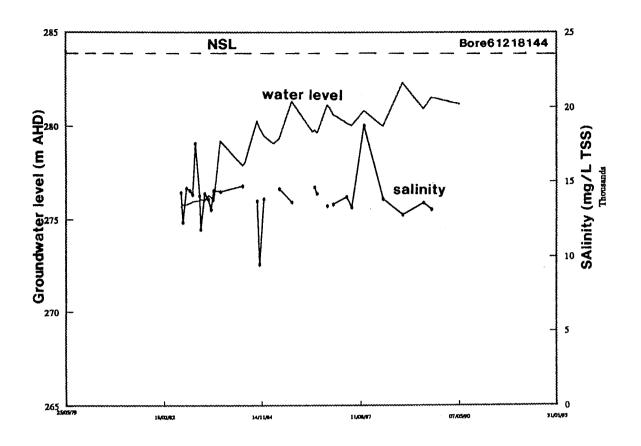


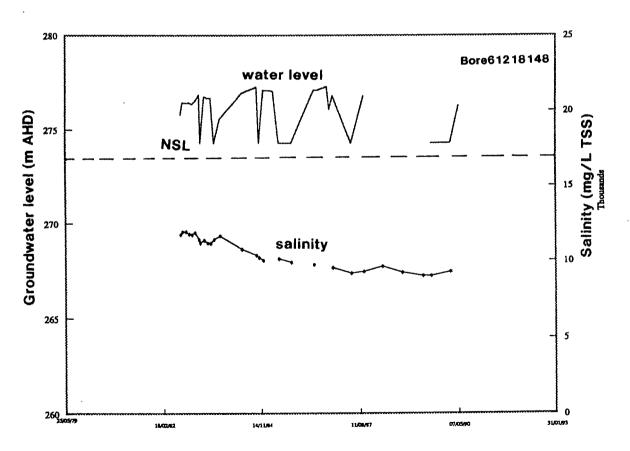


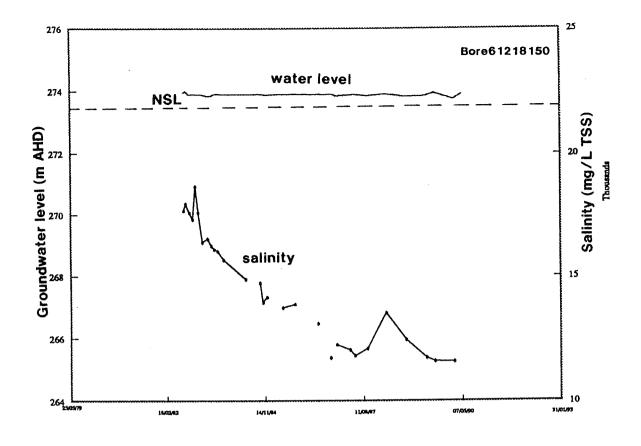


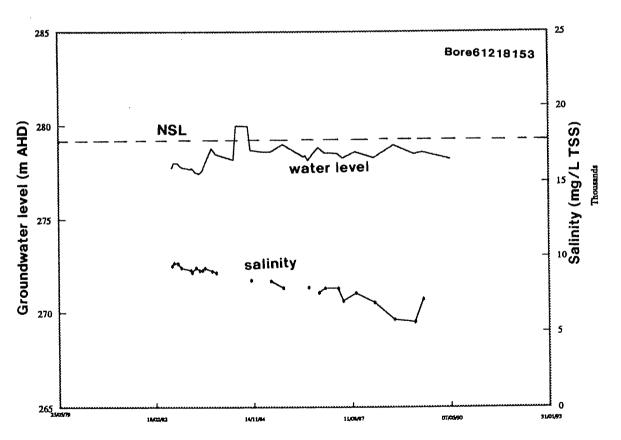


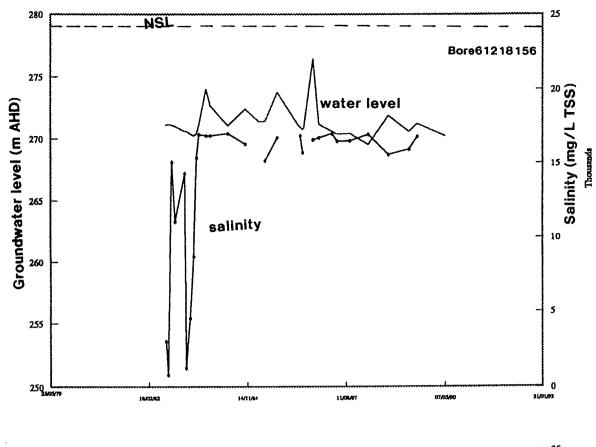


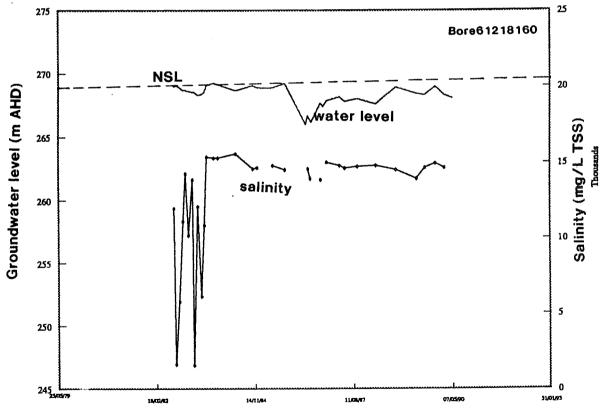


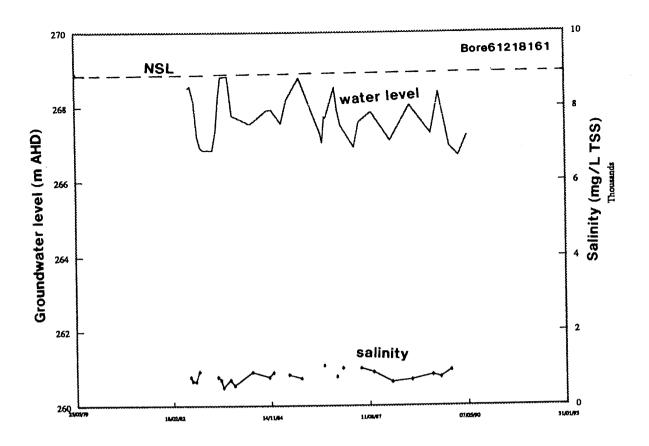


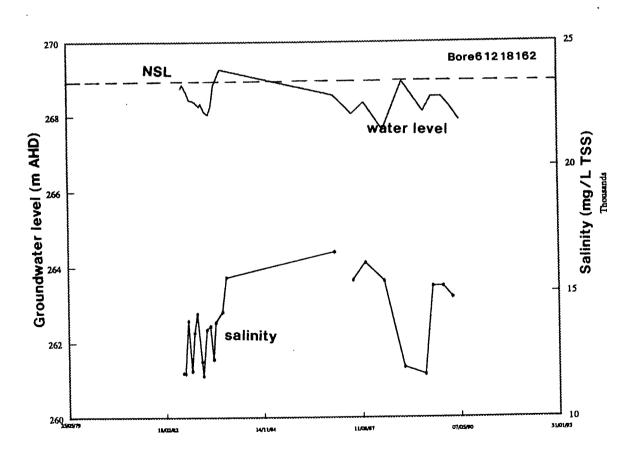


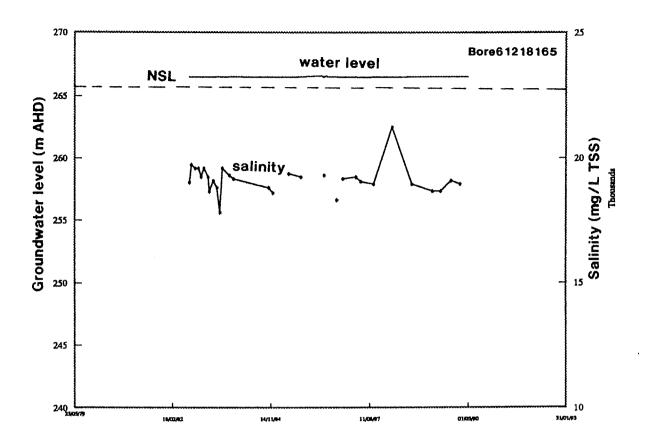


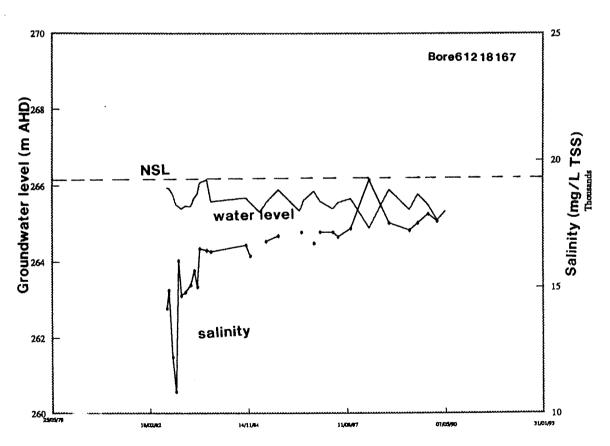


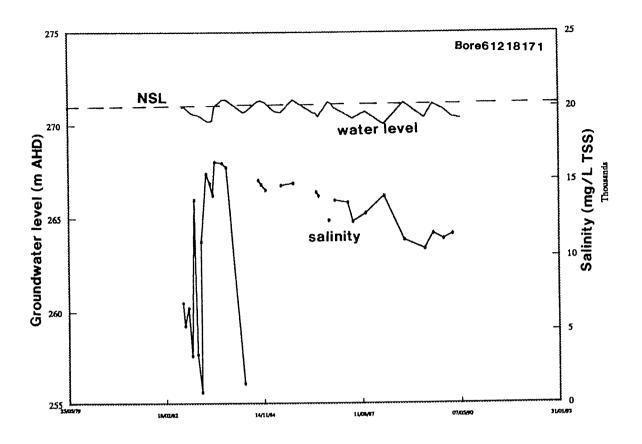


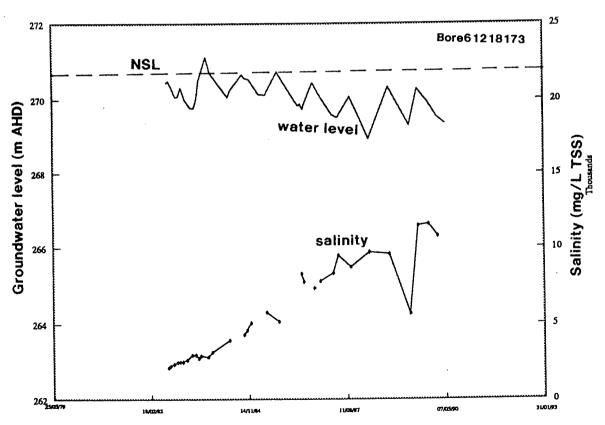


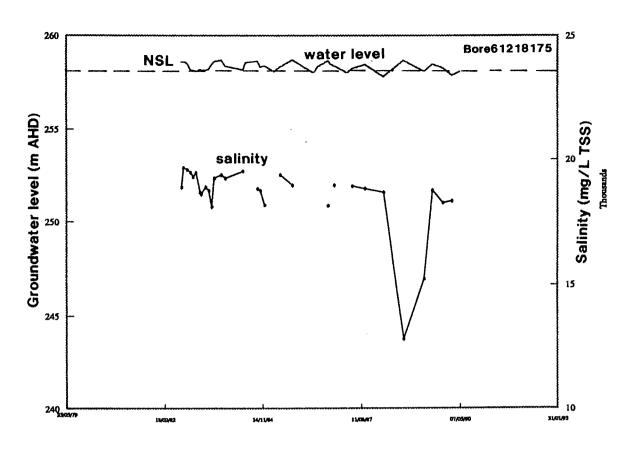


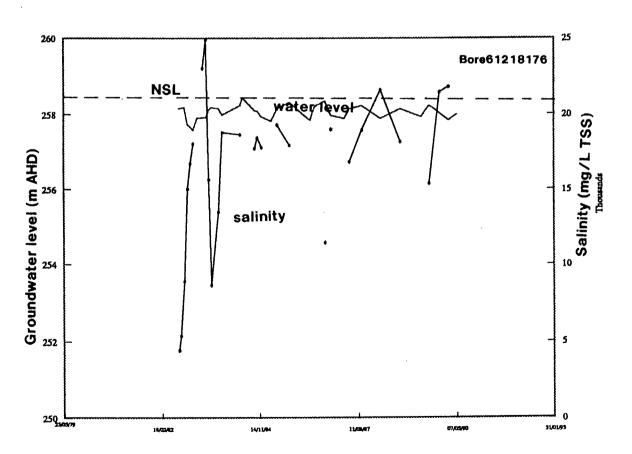


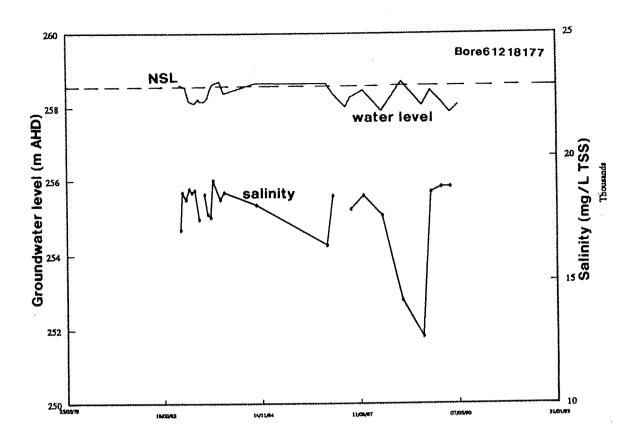


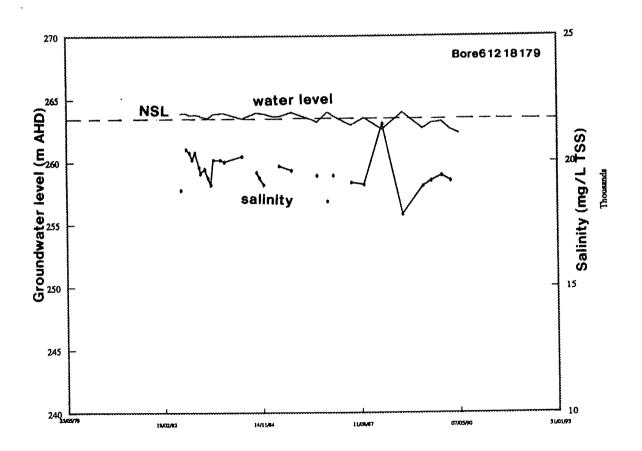


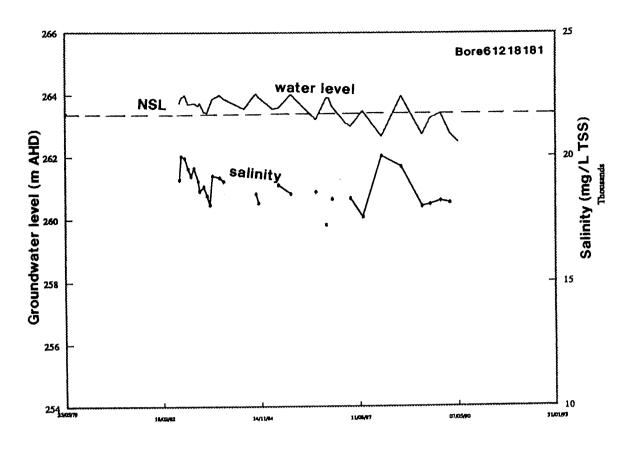


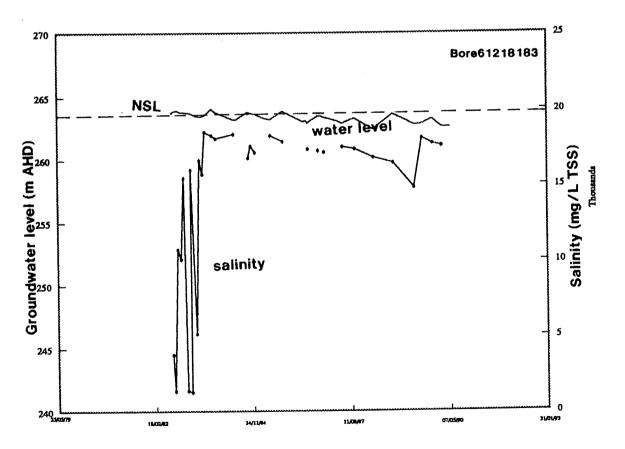


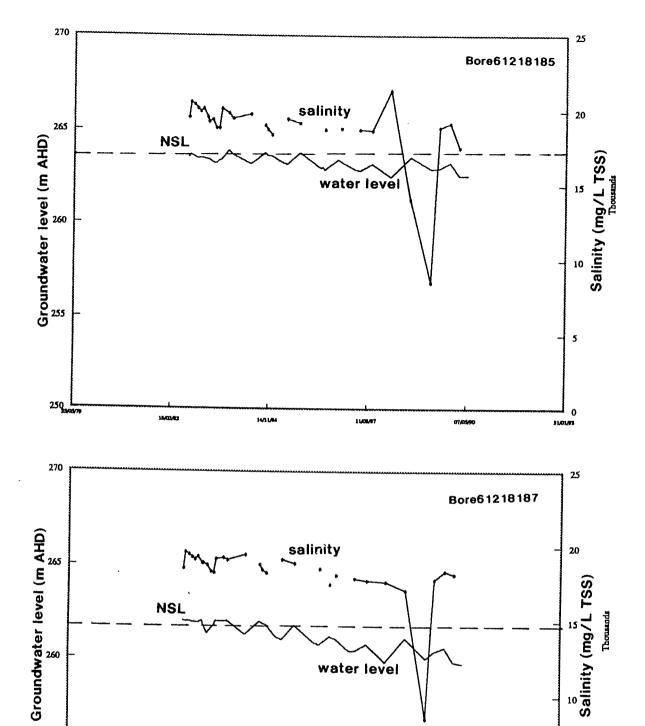












water level

11,01,417

5

دوروباد دوروباد

255

250

14/02/82

14/11/64

APPENDIX F

ANNUAL MINIMUM AND MAXIMUM GROUNDWATER LEVELS

PASTURE AND REFORESTED BORES

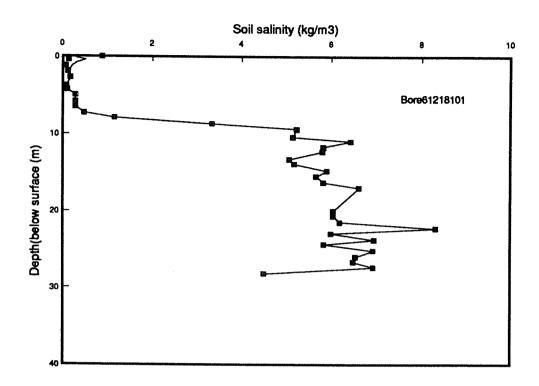
Annual minimum groundwater level (m AHD) of all pasture bores

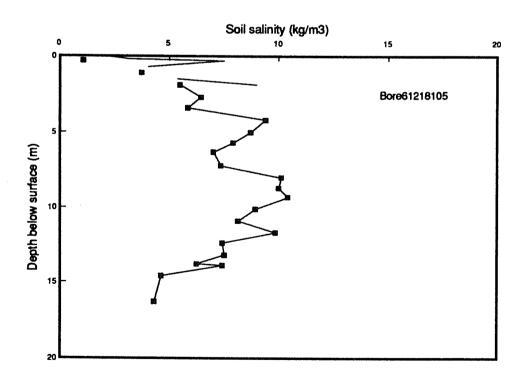
Bore No.	1983	1984	1985	1986	1987	1988	1989	1990
G61218121	272.601	274.401	275.681	276.261	276.911	276.761	277.901	276.341
G61218144	275.985	277.895	279.075	279.645	280.015	279.995	280.925	281.195
G61218153	277.449	278.189	278.619	278.159	278.279	278.309	278.499	278.229

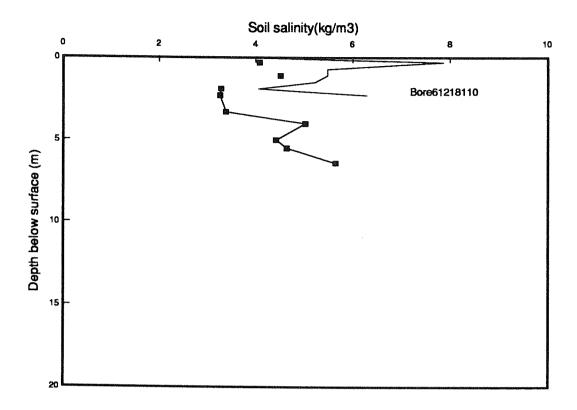
Annual minimum groundwater level (m AHD) of all reforested bores

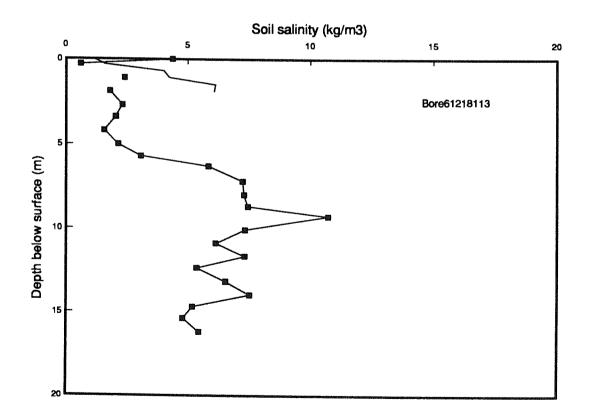
Bore No.	1983	1984	1985	1986	1987	1988	1989	1990
G61218107	258.359	258.659	258.619	258.609	258.409	258,209	258.319	258.159
G61218112	256.957	257.647	257.467	257.447	257.357	257.297	257.387	257.377
G61218115	257.418	257.248	257.248	257.168	257.128	257.018	257.218	257.018
G61218125	267.174	267.224	267.614	267.294	267.394	267.244	267.384	267.334
G61218130	263.740	263.890	263.890	264.130	264.000	263.850	263.790	263.800
G61218133	263.119	263,069	262.849	262.939	262.919	262.939	263.009	263.029
G61218136	263.860	263.790	263.815	263.490	263.440	263.140	263.330	263.160
G61218175	258.096	258.176	258.086	258.026	258.016	257.826	258.086	257.876
G61218181	263.421	263.556	263.556	263.196	262.976	262.646	262.706	262.466
G61218185	263.190	263.180	263.160	262.870	262.820	262,490	262.910	262.560
G61218187	261.331	261.281	261.031	260.731	260.411	259.831	260.031	259.741

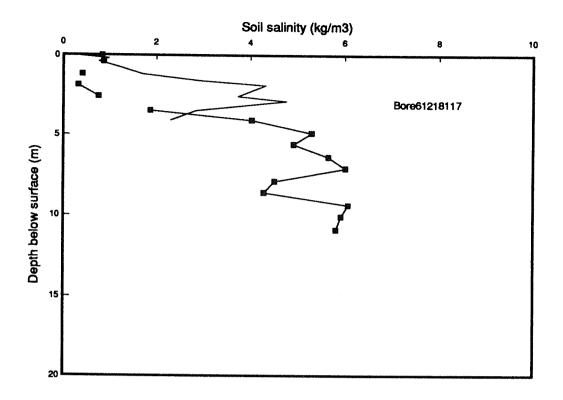
Annual maximum groundwater level (m AHD) of all pasture bores

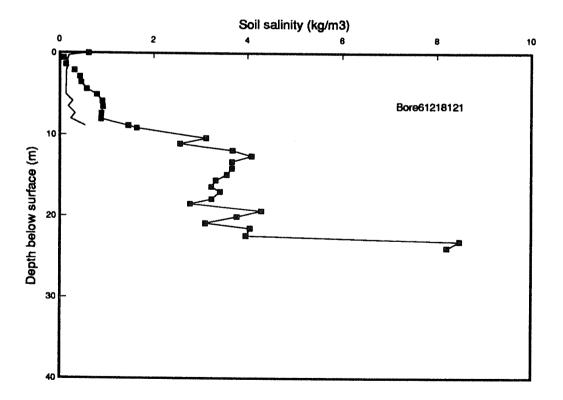

Bore No.	1983	1984	1985	1986	1987	1988	1989	1990
G61218121	274.111	275.781	277.161	277.506	277.441	279.061	278.511	276.341
G61218144	279.195	280.265	281.345	281.140	280.835	282.305	281.545	281.195
G61218153	278.799	279.989	279.029	278.854	278.619	278.969	278.609	278.229

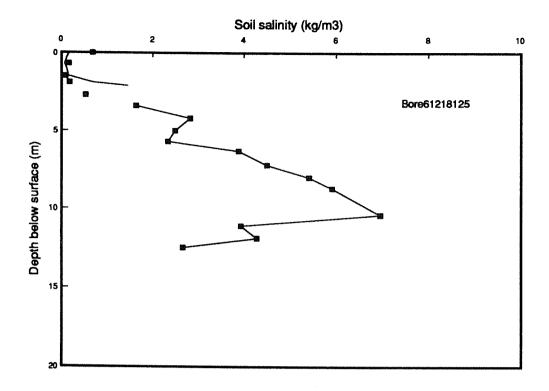

Annual maximum groundwater level (m AHD) of all reforested bores

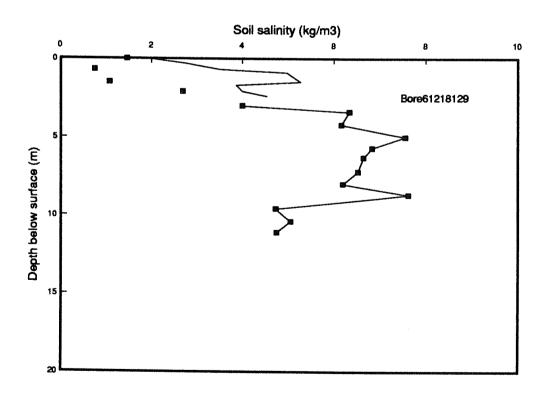

Bore No.	1983	1984	1985	1986	1987	1988	1989	1990
G61218107	258.929	258.939	258.937	258.919	258,925	258.909	258.909	258.229
G61218112	258.097	257.977	258.047	258.067	257.827	257.967	258.047	257.397
G61218115	258.177	258.008	258.098	258.068	257.798	258.048	258.018	257.208
G61218125	268.424	268.164	268.364	268.204	268.044	268.394	267.844	267,744
G61218130	264.850	264.630	264.630	264.830	264.320	264.520	264.700	263.850
G61218133	263.524	263.409	263.489	263.539	263.359	263.379	263.339	263.439
G61218136	264.690	264.460	264.395	264.040	263.770	264.210	263.840	263.240
G61218175	258.696	258.646	258.706	258.656	258.466	258.676	258.476	258,086
G61218181	263.997	264.046	264.016	263.896	263.476	263.956	263.396	262.746
G61218185	263.890	263.770	263.780	263.420	263.200	263.560	263.270	262,570
G61218187	262.011	261.991	261.781	261.211	260.791	261.121	260.631	259.831

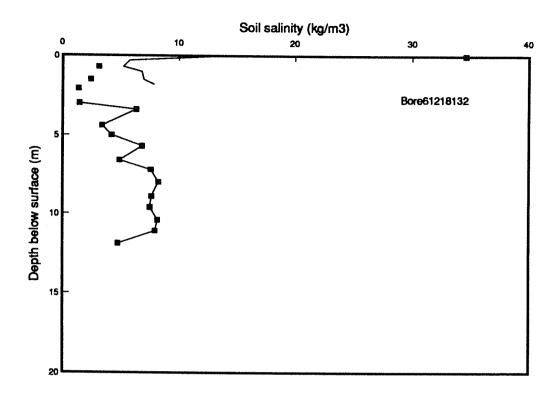

APPENDIX G

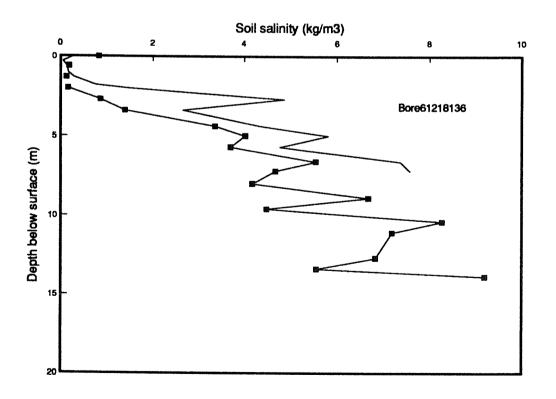

SOIL SALINITY PROFILES BETWEEN 1982 AND 1989

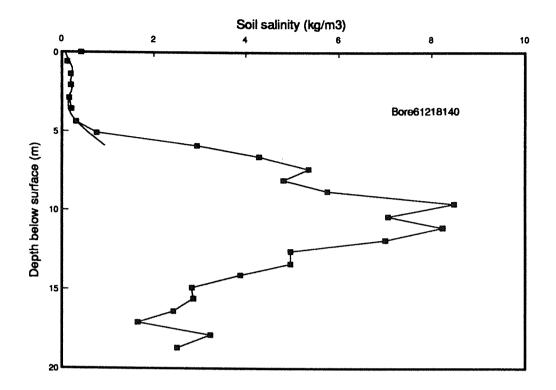


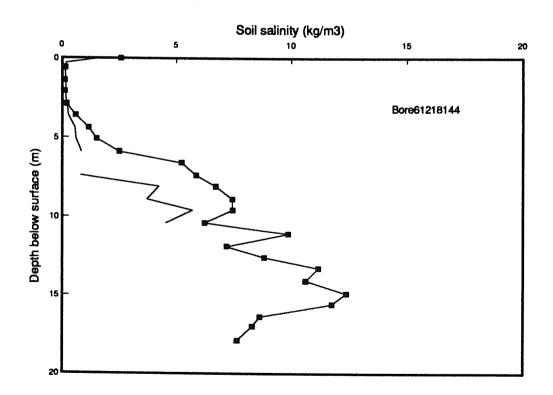


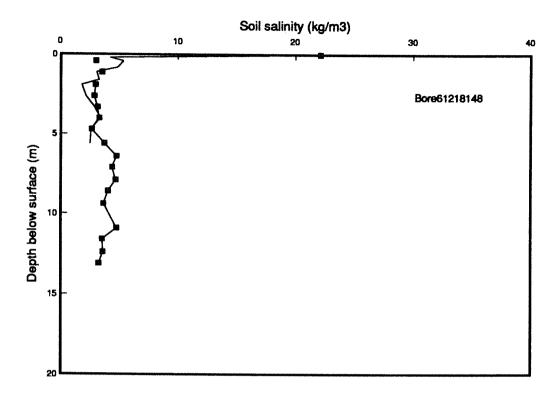


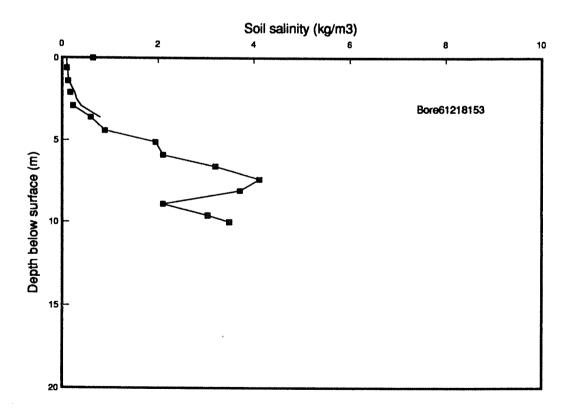


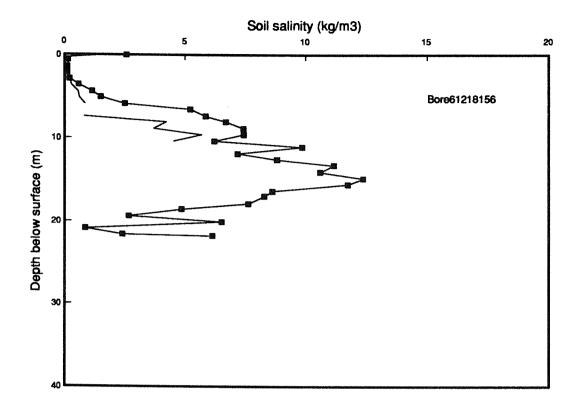


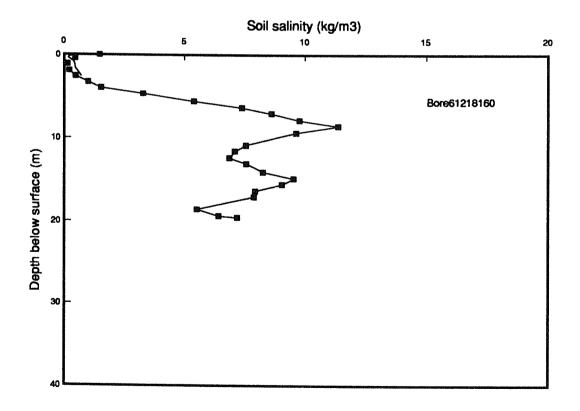


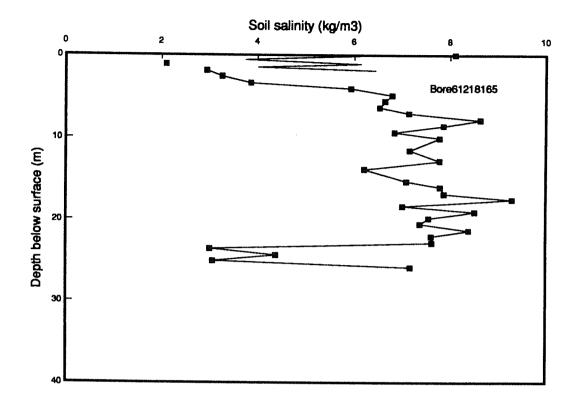


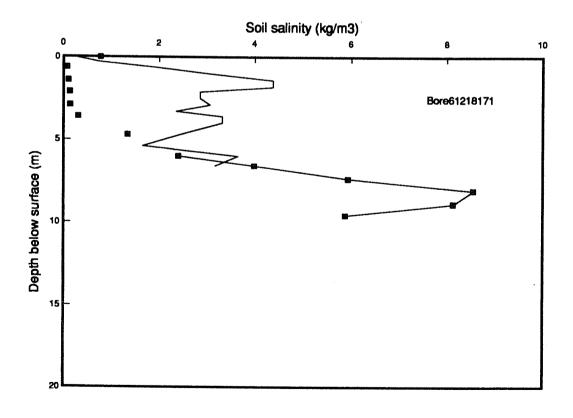


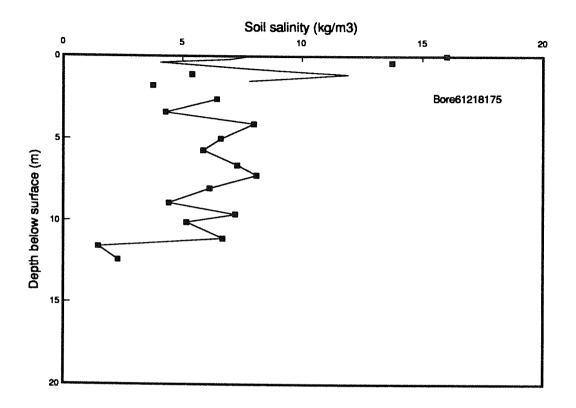


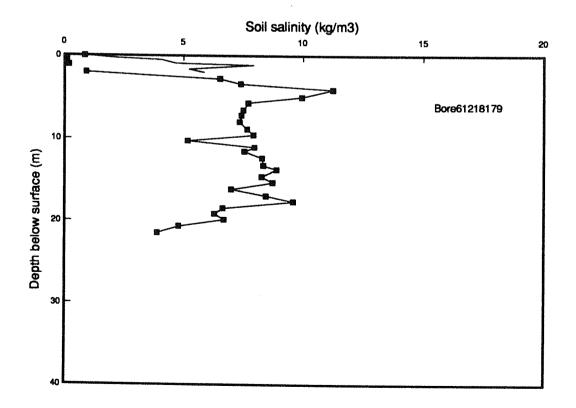


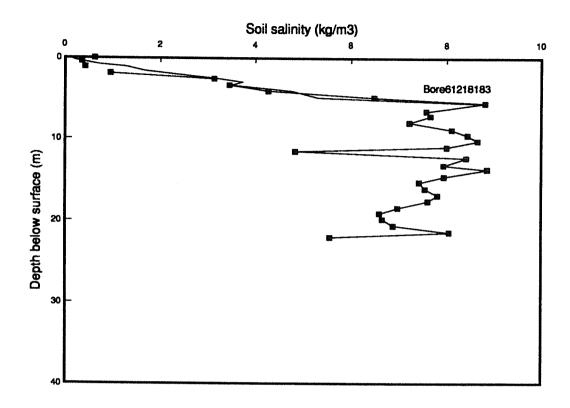


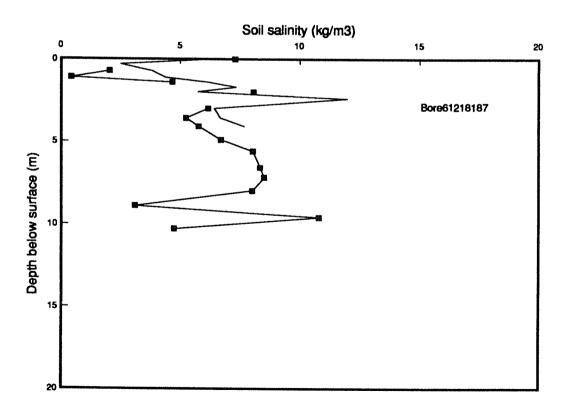


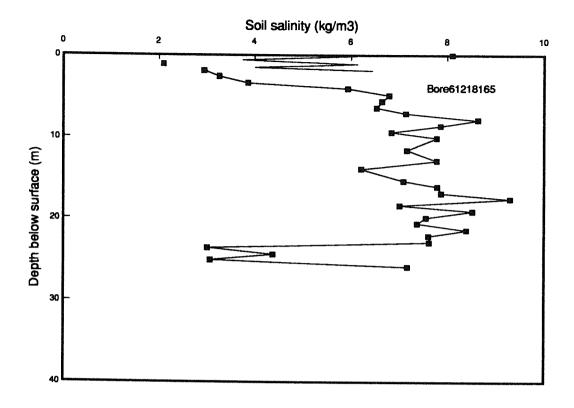


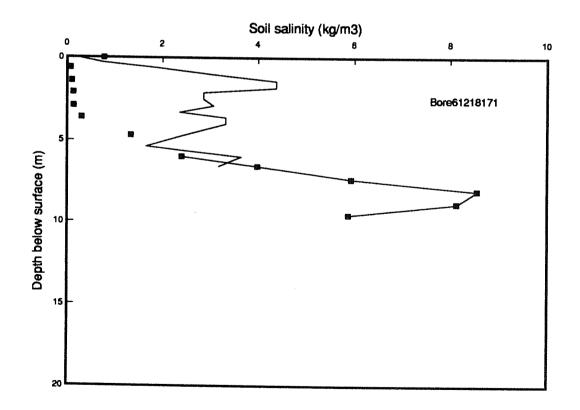


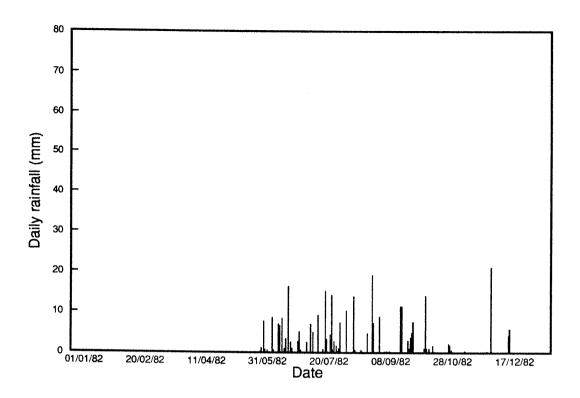


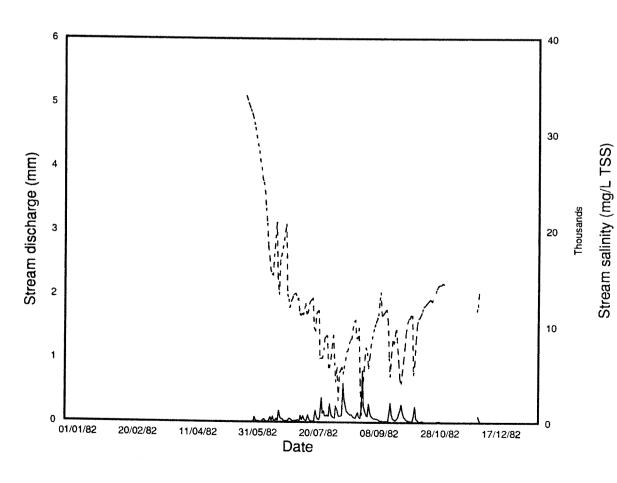


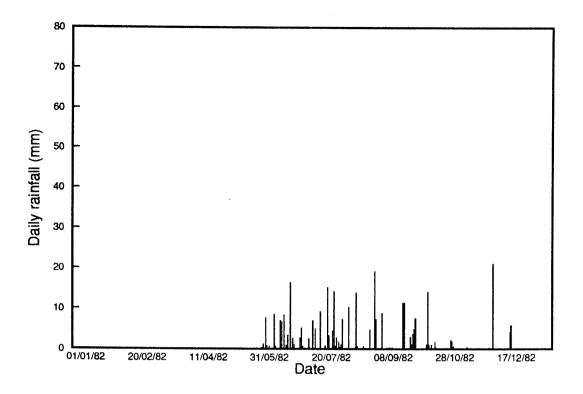


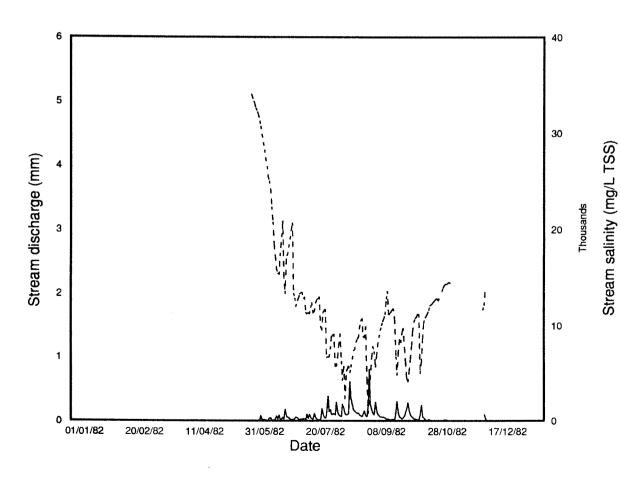


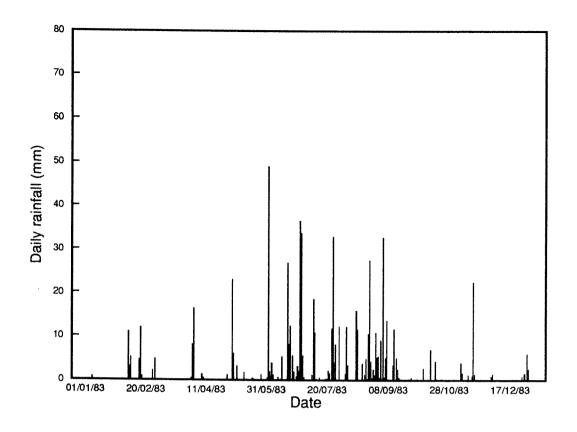


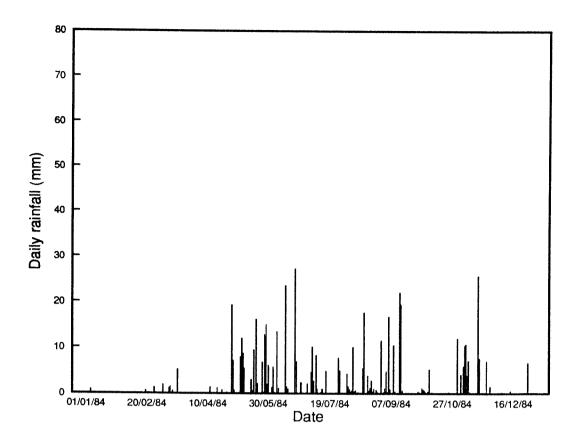


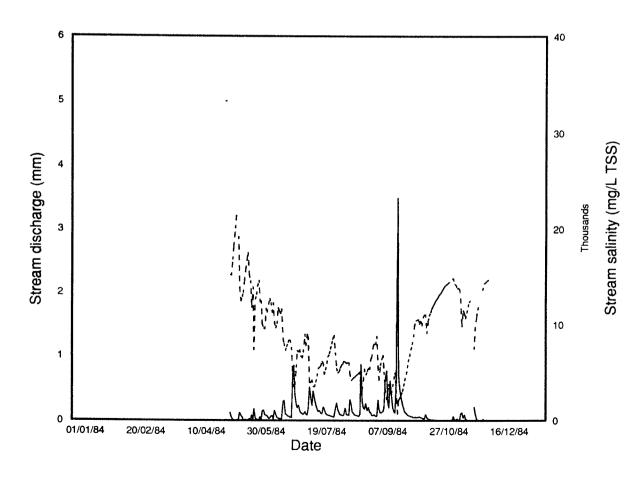


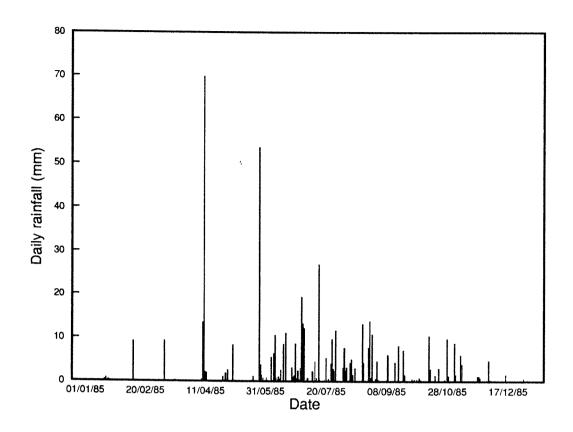

APPENDIX H

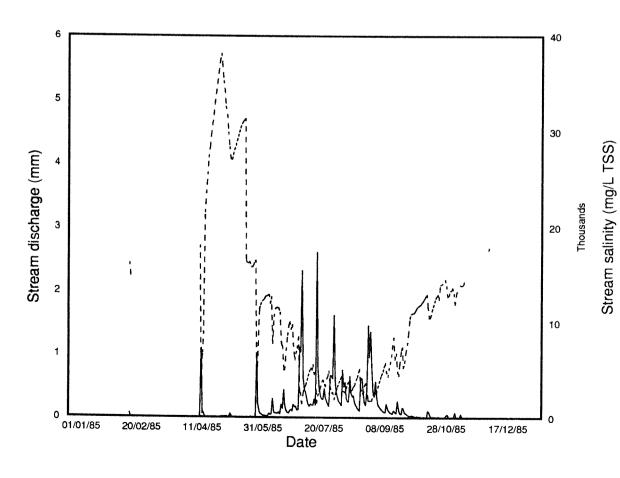

STREAMFLOW HYDROGRAPHS AND CHEMOGRAPHS

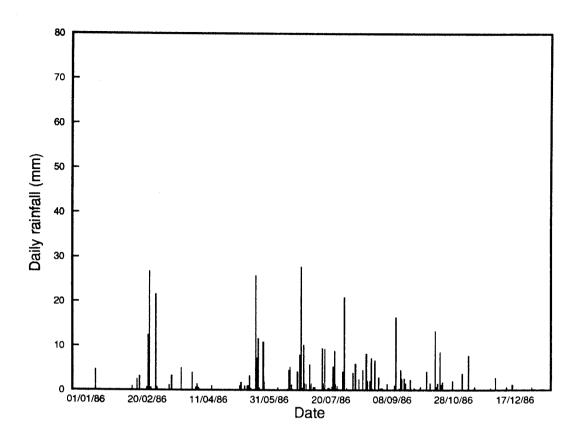

BETWEEN 1982 AND 1990

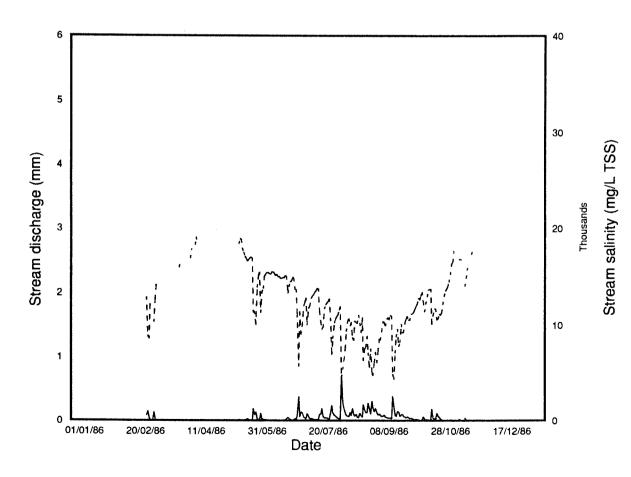


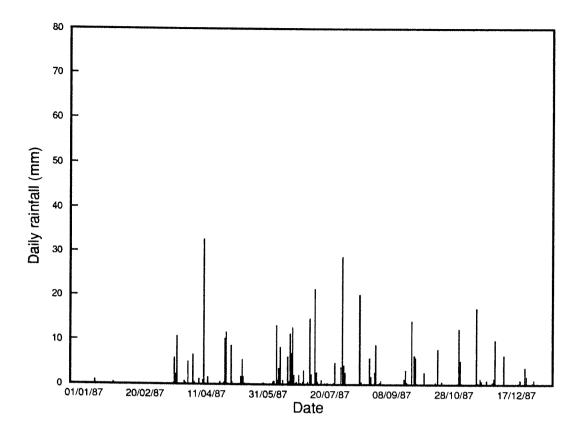


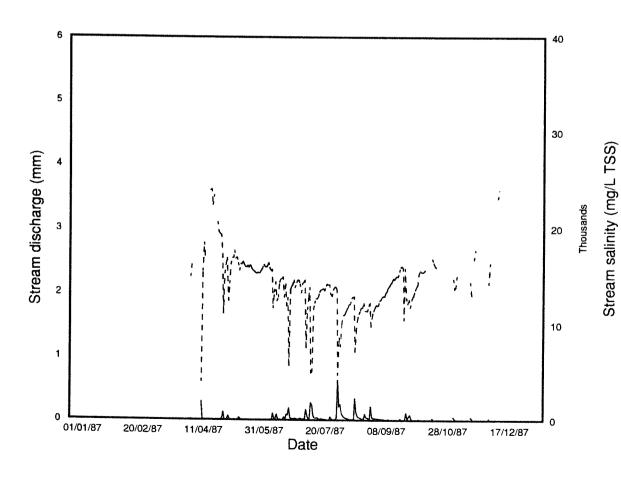


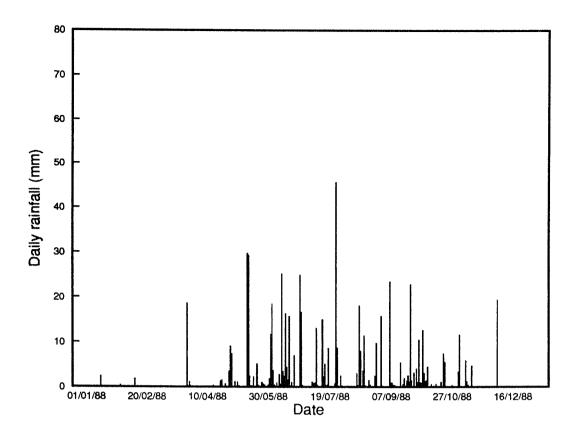


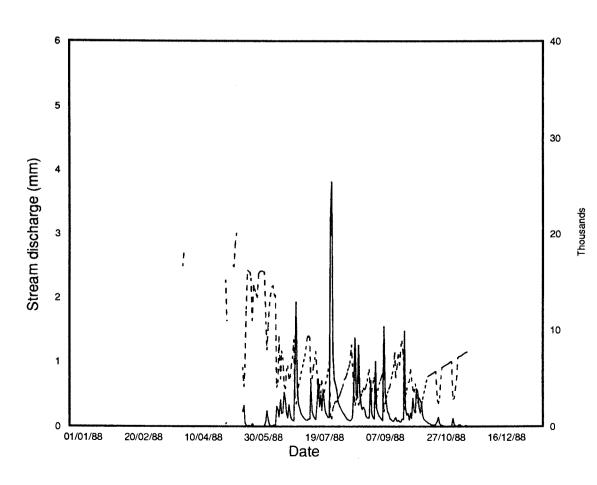


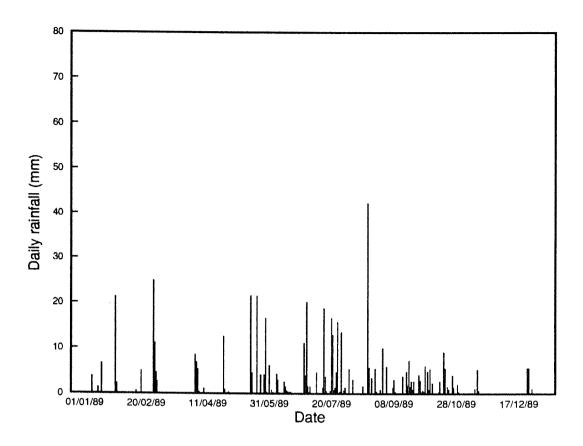


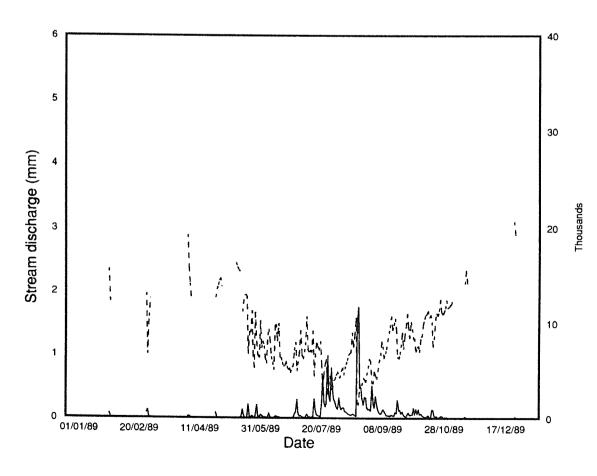


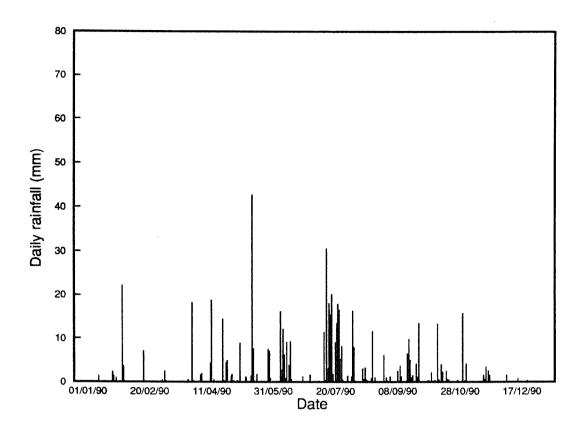


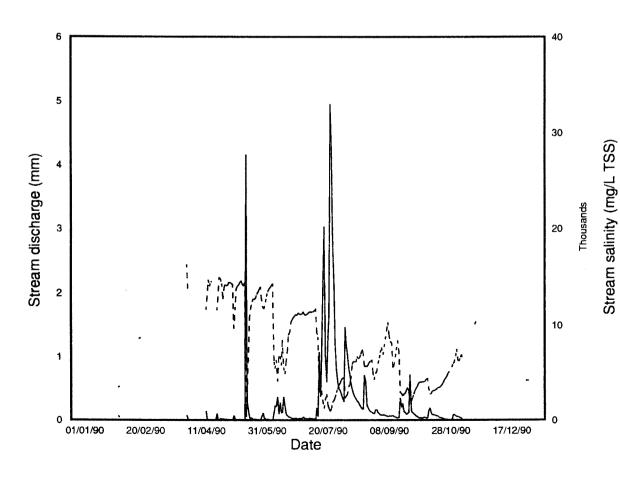




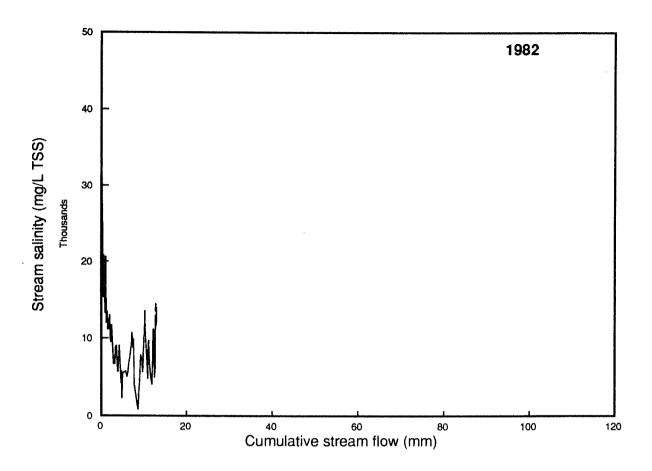


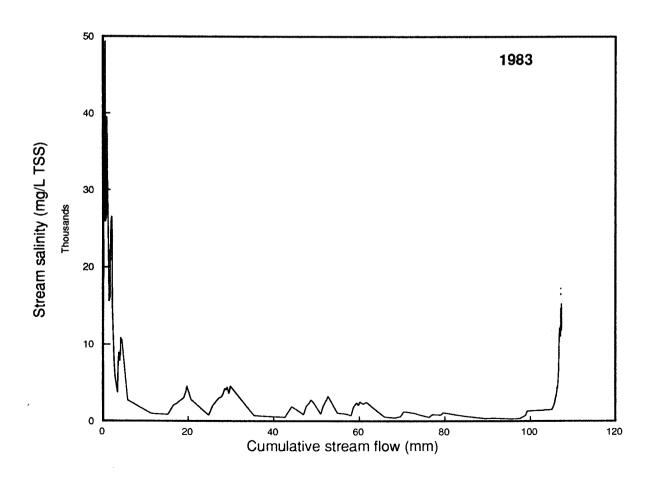


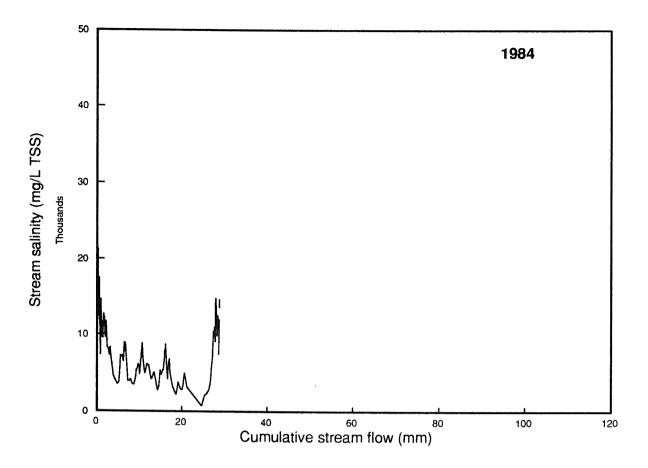


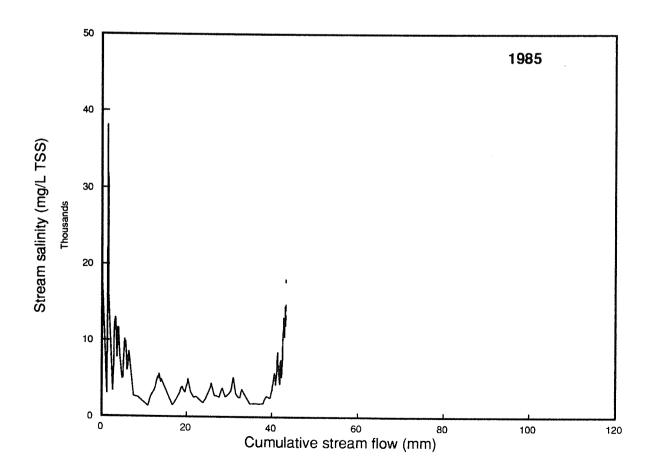

Stream salinity (mg/L TSS)

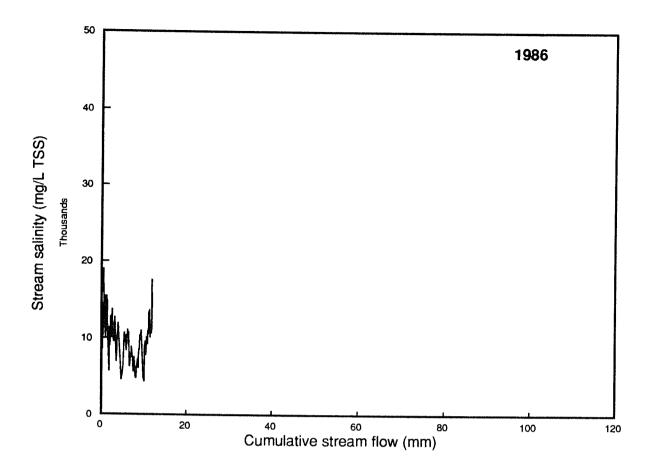
Stream salinity (mg/L TSS)

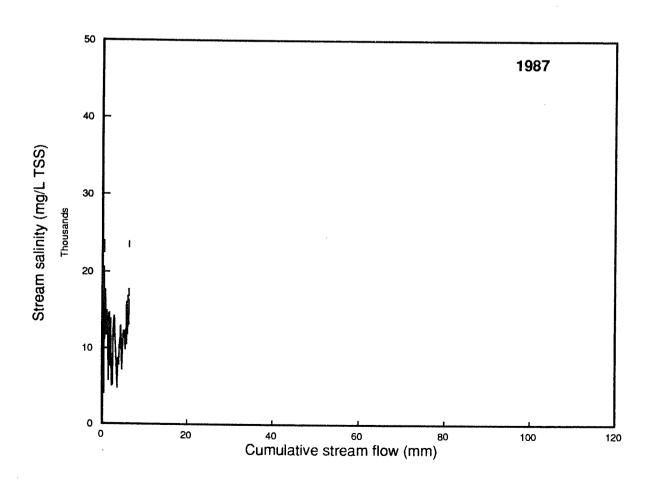


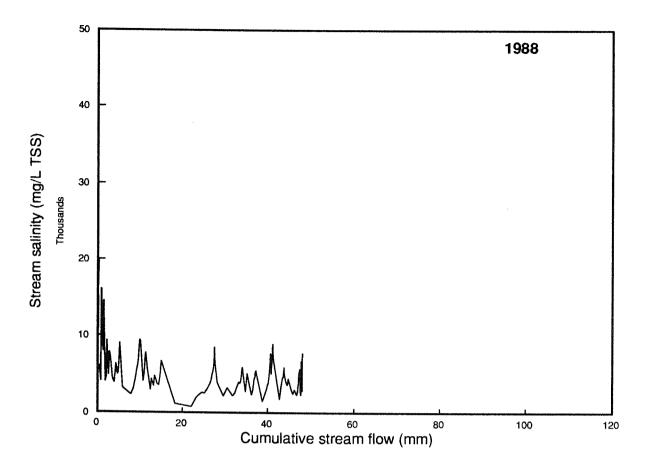


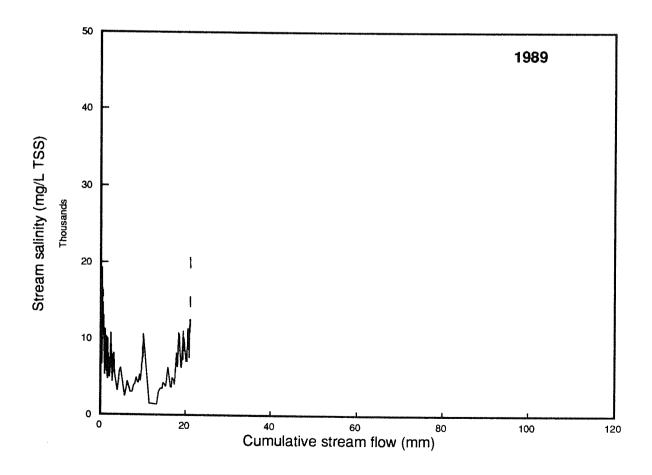

APPENDIX I

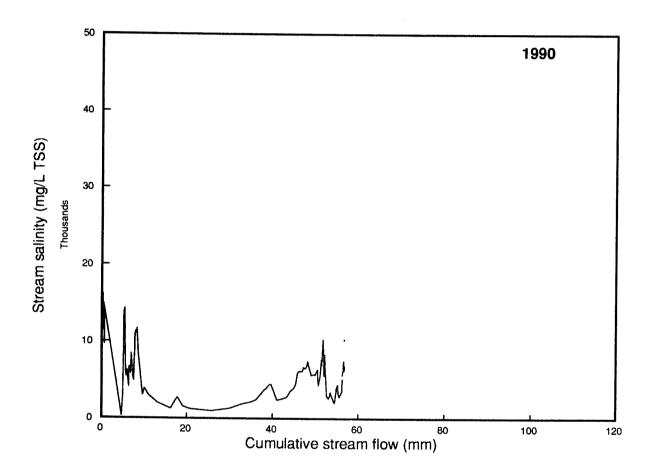

DAILY STREAM SALINITY VERSUS ACCUMULATED

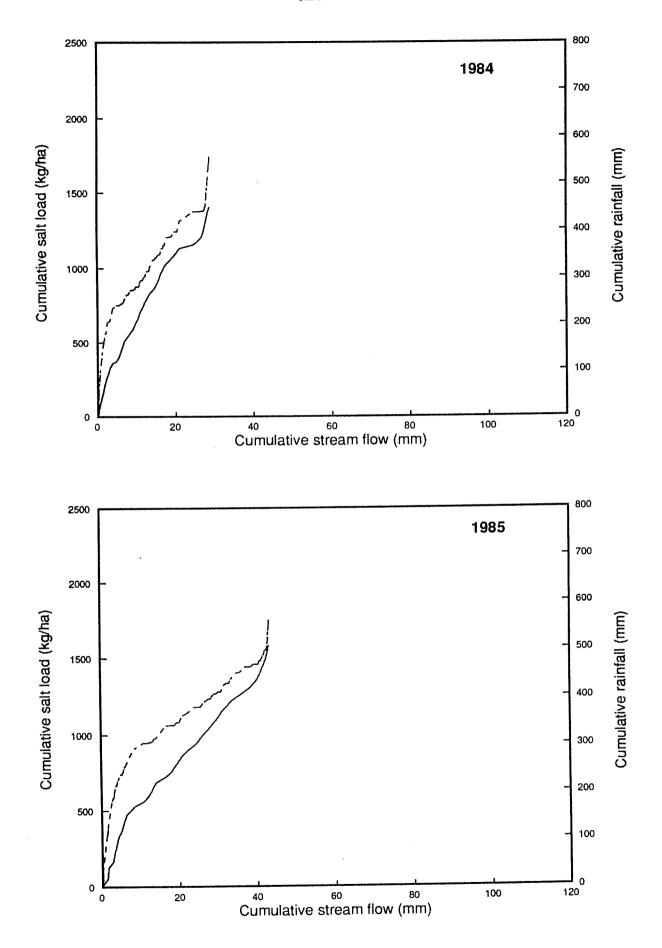

STREAMFLOW

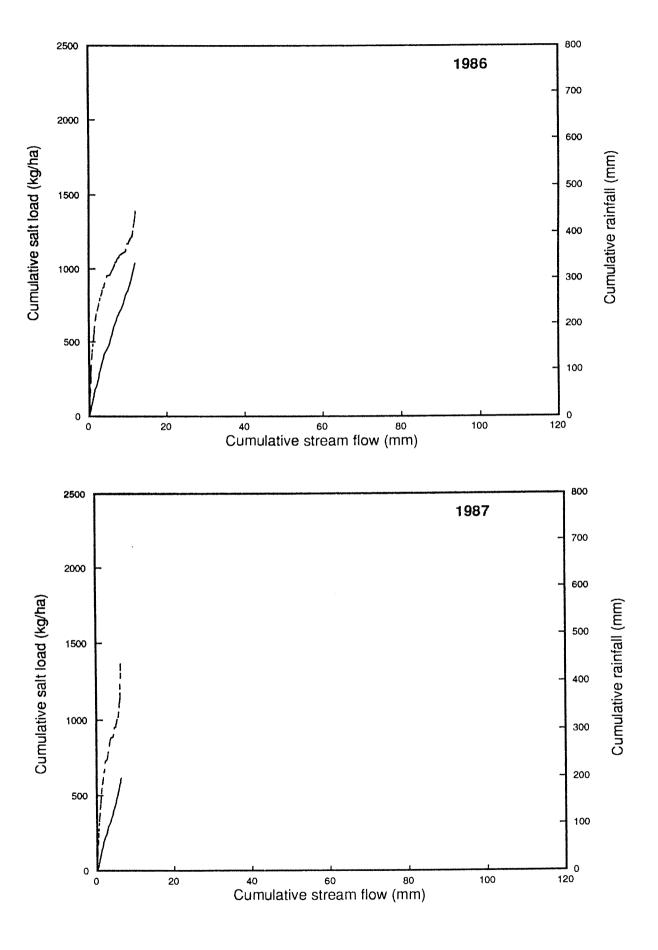


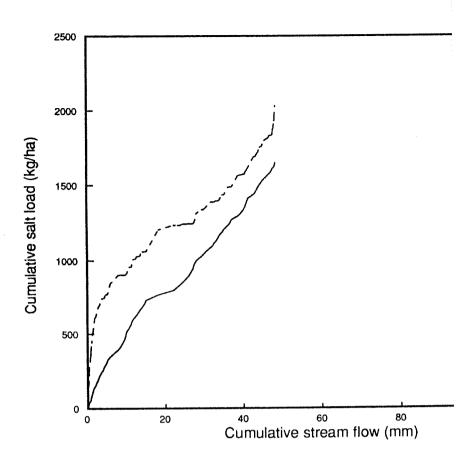


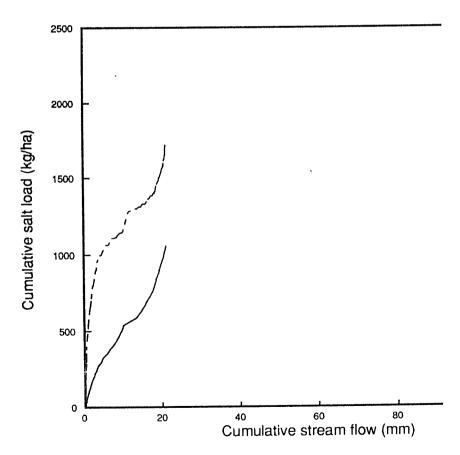









APPENDIX J


ACCUMULATED STREAM SALT LOAD AND ACCUMULATED


STREAMFLOW

APPENDIX K

COMPUTER PROGRAMME

```
C
       THIS PROGRAM IS WRITTEN TO DETERMINE STREAM SALINITY.
C
       STREAM SALT LOAD AND STREAM FLOW COMPONENTS
C
       DIMENSION SALTMU(12), SALTMG(12), FLOWMR(12),
     + FLOWMU(12), FLOWMG(12), FLOWMT(12), SALTMT(12),
     + TSSMC(12), RANM(12), RANM1(12), RAIN(5000),
     + TSST(5000), SALTT(5000), FLOWT(5000), FLOWB(5000),
     + FLOWR(5000), TSSCB(5000), IMNTH(5000), IYEAR(5000)
     + , SALTMR(12), FLOWDG(500), FLOWDU(500)
       DATA
              TSSCR, TSSCU, TSSCG /10.0,750.0, 18000.0/
       CHARACTER*80 DUMMY
       OPEN(UNIT=11, FILE='B:\MSALTD.DAT', STATUS='OLD')
       OPEN(UNIT=21, FILE='B:\MARSAL.OUT', STATUS='UNKNOWN')
       READ(11,31) DUMMY
       READ(11,31) DUMMY
       READ(11,31) DUMMY
       READ(11,31) DUMMY
       READ(11,31) DUMMY
       READ(11,31) DUMMY
       READ(11,31) DUMMY
31
       FORMAT(A80)
С
       KK=0
       DO 10 J=1, 500
       READ(11,41,END=99) IMNTH(J), IYEAR(J), SALTT(J),
     + FLOWT(J), TSST(J), RAIND, RAIND1
FORMAT(12X, I2, 1X, I2, 18X, F10.4, 12X, F10.4, 10X, F12.4,
41
     + 4X,F8.1, 4X,F8.1)
       KK = KK + 1
       RAIN(J) = RAIND1
10
       CONTINUE
99
       CONTINUE
С
С
       SEPERATION OF BASE FLOW AND DIRECT RUNOFF
C
       NN=1
       M = 0
C
       WRITE(*,*) KK
       DO 60 J=1, KK
       IF(FLOWT(J).EQ.O.O) GO TO 70
C
        FLDIF=FLOWT(J)-FLOWT(J+1)
       IF(RAIN(J).LT.1.0) GO TO 70
         IF(NN.GT.1) GO TO 90
         NN=1
         DEL=2.0
         M=1
         NM = 0
         DO 120 IJ=1,5
           IF(NM.EQ.1) GO TO 120
           IF(RAIN(J+IJ).GT.1.0) THEN
           M=M+1
            DEL= DEL+1.0
C
             WRITE(21,*) J, IJ, M, DEL
           ELSE
```

```
NM=1
C
             DEL=2.0
            FLOWDL=(FLOWT(J+M)-FLOWT(J-1))/DEL
            IF(FLOWDL.LT.O.O) FLOWDL=0.0
            TSSDL = (TSST(J+M)-TSST(J-1))/DEL
            IF(TSSDL.GT.0.0) TSSDL=0.0
             DO 80 L=1,M+1
              SDEL = SDEL + 1.0
              FLOWB(J+L-1) = FLOWT(J-1) + FLOWDL*SDEL
              IF(FLOWB(J+L-1).GE.FLOWT(J+L-1))
                      FLOWB(J+L-1) = FLOWT(J+L-1)
              FLOWR(J+L-1)=FLOWT(J+L-1)-FLOWB(J+L-1)
              IF(FLOWR(J+L-1).LT.0.0) FLOWR(J+L-1)=0.0
              TSSCB(J+L-1)=TSST(J-1)+TSSDL*SDEL
             IF(TSSCB(J+L-1).LE.0.0) TSSCB(J+L-1)=TSST(J+L-1)
C
             WRITE(21,111)J, L, M, FLOWT(J), FLOWR(J),
             FLOWB(J), RAIN(J)
C
             WRITE(21,111) J, FLOWT(J+L-1), FLOWR(J+L-1),
C
             FLOWB(J+L-1), RAIN(J+L-1), TSSCB(J+L-1),
C
             TSST(J+L-1)
 80
             CONTINUE
111
             FORMAT(15,8F10.2)
             SDEL=0.0
          NN=M+1
          M = 0
          ENDIF
120
         CONTINUE
         NM = 0
90
        CONTINUE
        NN=NN-1
C
        WRITE(21,111) J, IJ, NN, FLOWT(J), RAIN(J)
       GO TO 60
 70
       CONTINUE
       NN=1
       FLOWR(J)=0.0
       FLOWB(J)=FLOWT(J)
       TSSCB(J)=TSST(J)
С
        WRITE(21,111) J, FLOWT(J), FLOWR(J), FLOWB(J),
        RAIN(J), TSSCB(J), TSST(J)
 60
       CONTINUE
       DO 130 J=1,500
       WRITE(21,111) J, FLOWT(J), FLOWR(J), FLOWB(J),
     + RAIN(J), TSSCB(J), TSST(J), FLOWT(J)-FLOWR(J)-FLOWB(J)
130
       CONTINUE
С
С
       CALCULATE EACH COMPONENT
С
       DO 100 I = 2, KK
       IDIFY = IYEAR(I) - IYEAR(I-1)
       IDIFF = IMNTH(I) - IMNTH(I-1)
         IF(TSSCB(I).LT.TSSCG) GO TO 40
             FLOWDG(I) = FLOWB(I)
             FLOWDU(I) = 0.0
        GO TO 50
40
        CONTINUE
        IF(TSSCB(I).LT.TSSCU) THEN
         FLOWDU(I) = FLOWB(I)
         FLOWDG(I)=0.0
         ELSE
         FLOWDU(I) = FLOWB(I)*(TSSCG-TSSCB(I))/(TSSCG-TSSCU)
```

```
FLOWDG(I) = FLOWB(I)-FLOWDU(I)
        ENDIF
50
        CONTINUE
С
        SUM UP MONTHLY VALUES
С
        IF(IDIFF.EQ.O) THEN
        SUMSALTD=SUMSALTD+SALTT(I)
        SUMFLOWD=SUMFLOWD+FLOWT(I)
        SUMFLWDU= SUMFLWDU+ FLOWDU(I)
        SUMFLWDG= SUMFLWDG+ FLOWDG(I)
        SUMFLWDR= SUMFLWDR+ FLOWR(I)
        SUMRAIND=SUMRAIND+RAIN(I)
         IF(TSSCB(I).GE.TSSCG) THEN
              SUMSLTDG=SUMSLTDG+FLOWDG(I)*TSSCB(I)/1000.0
            ELSE
              SUMSLTDG=SUMSLTDG+FLOWDG(I)*TSSCG/1000.0
            ENDIF
       SUMSLTDU=SUMSLTDU+FLOWDU(I)*TSSCU/1000.0
       SUMFLTSS=SUMFLTSS + FLOWT(I)*TSST(I)/1000.0
        SALTMT(IMNTH1)=SUMSALTD
        FLOWMT(IMNTH1)=SUMFLOWD
        FLOWMR(IMNTH1) = SUMFLWDR
        FLOWMU(IMNTH1) = SUMFLWDU
        FLOWMG(IMNTH1) = SUMFLWDG
         SALTMU(IMNTH1) = SUMSLTDU
         SALTMG(IMNTH1) = SUMSLTDG
         SALTMR(IMNTH1) = FLOWMR(IMNTH1)*TSSCR/1000.0
С
         SALTMU(IMNTH1) = FLOWMU(IMNTH1)*TSSCU/1000.0
C
         SALTMG(IMNTH1) = FLOWMG(IMNTH1)*TSSCG/1000.0
         IF(SUMFLOWD.EQ.O.O) THEN
         TSSMC(IMNTH1) = 0.0
          ELSE
          TSSMC(IMNTH1) = (SUMFLTSS/SUMFLOWD)*1000.0
         ENDIF
        RANM(IMNTH1) =SUMRAIND
61
        FORMAT(10X,2I10, 10F10.4//)
        SUMSALTD=SALTT(I)
        SUMFLOWD=FLOWT(I)
        SUMFLWDR=FLOWR(I)
        SUMFLWDU=FLOWDU(I)
        SUMFLWDG=FLOWDG(I)
        SUMRAIND=RAIN(I)
        SUMSLTDU=FLOWDU(I)*TSSCU/1000.0
        SUMSLTDG=FLOWDG(I)*TSSCG/1000.0
        SUMFLTSS=FLOWT(I)*TSST(I)/1000.0
        IMNT
             = IMNTH1
        IYER
             = IYEAR1
        IMNTH1 = IMNTH(I)
        IYEAR1 = IYEAR(I)
       ENDIF
       IF(IDIFY.EQ.O) GO TO 100
C
       SUM UP ALL MONTHLY VALUES
       SFLOWMT=0.0
       SFLOWMR=0.0
       SFLOWMU=0.0
       SFLOWMG=0.0
```

```
SSALTMU=0.0
       SSALTMG=0.0
       SSALTMT=0.0
       SRANMT =0.0
       DO 30 II=1, 12
       SFLOWMT = SFLOWMT+ FLOWMT(II)
       SFLOWMR = SFLOWMR+ FLOWMR(II)
       SFLOWMU = SFLOWMU+ FLOWMU(II)
       SFLOWMG = SFLOWMG+ FLOWMG(II)
       SSALTMR = SSALTMR+ SALTMR(II)
       SSALTMU = SSALTMU+ SALTMU(II)
       SSALTMG = SSALTMG+ SALTMG(II)
       SSALTMT = SSALTMT+ SALTMT(II)
       SRANMT = SRANMT + RANM(II)
       WRITE(21,71) II, IYER, FLOWMR(II), FLOWMU(II),
     + FLOWMG(II), FLOWMT(II), SALTMR(II), SALTMU(II),
     + SALTMG(II), SALTMT(II), TSSMC(II), RANM(IÌ)
       FORMAT(10X, 2I10, 12F10.4) 30
71
                                         CONTINUE
        WRITE(21,71) IMNT, IYER, SFLOWMR, SFLOWMU, SFLOWMG,
     + SFLOWMT, SSALTMR, SSALTMU, SSALTMG, SSALTMT, SRANMT
       IMNTH1 = IMNTH(I)
       IYEAR1=IYEAR(I) 100
                              CONTINUE
       STOP
       END
```