

United States Department of Agriculture

**Forest Service** 

Forest Products Laboratory

General Technical Report FPL–GTR–177



# Condition Assessment of Main Structural Members of Steam Schooner WAPAMA

Xiping Wang James P. Wacker Robert J. Ross Brian K. Brashaw



# Abstract

The historic American ship WAPAMA is the last surviving example of the wooden steam-powered schooners designed for the 19th- and 20th-century Pacific Coast lumber trade and coastal service. Since its launching in 1915, the WAPAMA has had a long and productive life in plying cargo and passengers along the stormy West Coast from Mexico to Alaska. As the sole survivor of the once numerous class, the WAPAMA was declared a National Historic Landmark in 1984.

The wood structure of the WAPAMA has significantly deteriorated over the years and currently resides on a barge with internal and external structural supports. Portions of the vessel are unsafe for public access. Assisting in an effort to stabilize and rehabilitate this historic vessel, we conducted a field investigation on the current physical condition of the wooden structural members in January 2006. A variety of nondestructive testing (NDT) methods were employed to locate problem areas and define the severity of deterioration on key structural members such as keelsons, keel, ceiling planking, hull frames, clamps, and main deck beams. This report presents the main findings from this field investigation and demonstrates the use of state-of-the-art NDT technologies in evaluating physical and biological conditions of historic wood structures.

Keywords: inspection, ship, nondestructive, schooner, wooden hull, steam powered, rehabilitation

| To convert from    | То | Multiply by |
|--------------------|----|-------------|
| inches (in.)       | mm | 25.40       |
| feet (ft)          | m  | 0.3048      |
| gross tonnage (GT) | m³ | 2.832       |

June 2008

Wang, Xiping; Wacker, James P.; Ross, Robert J.; Brashaw, Brian K. 2008. Condition assessment of main structural members of steam schooner WAPAMA. General Technical Report FPL-GTR-177. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 29 p.

A limited number of free copies of this publication are available to the public from the Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726–2398. This publication is also available online at www.fpl.fs.fed.us. Laboratory publications are sent to hundreds of libraries in the United States and elsewhere.

The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin.

The use of trade or firm names in this publication is for reader information and does not imply endorsement by the United States Department of Agriculture (USDA) of any product or service.

The USDA prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250–9410, or call (800) 795–3272 (voice) or (202) 720–6382 (TDD). USDA is an equal opportunity provider and employer.

# Acknowledgments

Partial funding for this project was provided by the National Park Service and the San Francisco Maritime National Historic Park. Additional guidance was provided by Architectural Resources Group (San Francisco, California) and Allen C. Rawl, Inc. (Bradshaw, Maryland).

We thank Crystal Pilon, former General Engineer, Forest Products Laboratory, for assistance with field work and data analysis. We greatly appreciate the effort of Steve Schmieding, Technical Photographer, Forest Products Laboratory, for documenting the condition of the WAPAMA and assisting in the inspection process during this on-site investigation.

# Contents

| Pag                                      | е |
|------------------------------------------|---|
| Introduction1                            |   |
| Scope of Work1                           |   |
| Inspection Methodology                   |   |
| Stress Wave Transmission Technique2      |   |
| Micro-Drilling Resistance Technique2     |   |
| Inspection Procedure                     |   |
| General Procedure                        |   |
| Stress Wave Scanning                     |   |
| Micro-Drilling Resistance Test           |   |
| Main Findings                            |   |
| Keelsons5                                |   |
| Keel5                                    |   |
| Main Deck Stringers6                     | 1 |
| Main Framing Timbers6                    |   |
| Main Deck Beams10                        | ļ |
| Vertical Supporting Columns10            | ļ |
| Pointers                                 |   |
| Summary of Findings                      | , |
| Condition of Structural Components       |   |
| Condition of the Vessel by Areas14       |   |
| Recommendations                          |   |
| References                               |   |
| Appendix A—Photographic Documentation15  |   |
| Appendix B—Stress Wave Data Summary21    |   |
| Appendix C—Moisture Content Data Summary | , |

# Condition Assessment of Main Structural Members of Steam Schooner WAPAMA

**Xiping Wang,** Senior Research Associate Natural Resources Research Institute, University of Minnesota Duluth

James P. Wacker, Research General Engineer Robert J. Ross, Supervisory Research General Engineer U.S. Forest Service, Forest Products Laboratory

**Brian K. Brashaw,** Program Director Natural Resources Research Institute, University of Minnesota Duluth

# Introduction

The vessel WAPAMA was built in 1915 and is the last surviving example afloat of some 225 steam schooners specifically designed for use in the 19th- and 20th-century Pacific Coast lumber trade and coastal service (Tri-Coastal Marine, Inc. 1986). These vessels formed the backbone of maritime trade and commerce on the west coast, ferrying lumber, general cargo, and passengers to and from urban centers and smaller coastal settlements. Those who built them took advantage of plentiful timber and built these ships out of wood long after builders in most of the western world had shifted to iron and steel construction. These wooden ships were a mainstay of the once numerous class, the WAPAMA was declared a National Historic Landmark in 1984 due to its international, national, and regional significance.

The WAPAMA is built almost entirely of old-growth Douglas-fir timber and is approximately 217 ft long and 50 ft from keel to house top, with a gross tonnage (or internal volume) of 945 GT. The construction is unique in its use of sister frames and lack of steel strapping. The hull is single decked and characterized by a plumb stem, full bows, straight keel, moderate deadrise, and an easy turn of bilge (Fig. 1).

In 1979, the vessel was removed from its berth at the California State Historical Maritime Park at Hyde Street Pier and moved to a submarine pen at Hunter Point Naval Shipyard. This move to quiet water was to minimize stress on the hull. Prior to building a breakwater in the mid-1980s, the Hyde Street Pier resembled an ocean pier more than a bay pier. Winter storms, in particular, were extremely stressful on the entire fleet.

In 1980, the vessel could no longer remain afloat due to severe deterioration and was hauled out of water and placed on Barge 214, berthed at Pacific Drydock Co., Alameda. Since that time, the WAPAMA has remained on the barge and received limited maintenance. Currently, the vessel resides on Barge 214 in a flooded graving dock at the Richmond Reserve Shipyard in Richmond, California, and is unsafe for public access (Fig. 2).



Frame 48 Frame 32 Frame 8

Figure 1. Starboard elevation of the WAPAMA.



Figure 2. A recent photo of the WAPAMA placed on Barge 214 at Richmond Reserve Shipyard in Richmond, California.

In an effort to stabilize and rehabilitate the vessel, the National Park Service tasked the Architectural Resources Group (ARG), an architectural firm based in San Francisco, California, to undertake a condition assessment of the vessel and provide preservation recommendations.

# Scope of Work

In response to a request from ARG, the Natural Resources Research Institute (NRRI) at University of Minnesota Duluth and the U.S. Forest Service, Forest Products Laboratory, signed a cooperative research agreement with ARG for conducting an on-site condition assessment of key wooden structural members of the vessel. This work was aimed at assisting a structural engineering analysis process to determine the possibility of stabilizing and rehabilitating the vessel.

In a recent condition survey of the vessel and barge, BMT Designers & Planners, Inc. (2005), provided visual assessment in terms of safety and stability of the vessel and conducted a preliminary structural analysis of the vessel's main features and support structures. The intent of our on-site investigation was to physically test key wooden structural elements that were deemed to be in critical or unknown condition and provide scientific evidence of WAPAMA's deterioration.

On January 10, 2006, the first day on WAPAMA, our inspection team met with several personnel involved in the preservation project: Gee Hechscher (Structural Engineer, Architectural Resources Group), Steve Hyman (Historic Preservation Specialist, San Francisco Maritime National Historic Park, National Park Service), Allen C. Rawl (President, Allen C. Rawl, Inc.), Trung-Son T. Nguyen (Architect, Pacific Great Basin Support Office, Facility Management Team, National Park Service), and Michael R. Bell (San Francisco Maritime National Historic Park, National Park Service).

This meeting resulted in focusing our NDE inspection on the key strength members. With the input from Steve Hyman and Allen Rawl, we identified the following features as priority targets for a four-day on-site inspection:

- Keelsons
- Assistant keelsons
- Keel
- Ceiling planks
- Hull frames
- Clamps
- Main deck beams
- Main deck stringers
- Waterways
- Hanging knees
- Pointers
- Main supporting columns

# **Inspection Methodology**

The general physical condition of the WAPAMA had been assessed and monitored at periodic intervals since the acquisition of the vessel by the State Maritime Historical Park in 1957. Inspections in previous surveys and studies were mostly by visual observation and wood borings. In-depth information on deterioration levels of structure elements was limited. The focus of our investigation was to nondestructively determine the internal physical condition of key structural elements of the vessel that are usually difficult to assess by visual inspection. Two state-of-the-art nondestructive evaluation methods were employed in our investigation: (1) stress wave transmission technique and (2) microdrilling resistance technique.

# Stress Wave Transmission Technique

Stress wave transmission technique has been successfully used in decay detection in a variety of wood structures (Forest Products Laboratory 2000). The concept is that stress wave propagation is sensitive to the presence of degradation in wood. In general terms, a stress wave travels faster through sound and high-quality wood than it does through deteriorated or low-quality wood. The time-of-flight (or transmission time) of the stress wave is typically used as a predictor of physical conditions inside the wood. By measuring time-of-flight of a stress wave through a wood member perpendicular to grain, the internal condition of the member can be determined. Detailed information on the principles of stress wave transmission technique and guidelines for use and interpretation are given in Stress wave timing nondestructive evaluation tools for inspecting historic *structures—A guide for use and interpretation* (Forest Products Laboratory 2000).

## **Micro-Drilling Resistance Technique**

The micro-drilling resistance technique is being used increasingly in the field to characterize wood properties and detect abnormal physical conditions in structural timbers. The micro-drilling resistance tool is a mechanical drill system that measures the relative resistance (drilling torque) of the material as a rotating drill bit is driven into the wood at a constant speed. It produces a chart showing the relative resistance profile for each drill path. Because it can reveal the relative density change along the drill path, it is typically used to diagnose the internal condition of structural timbers.

Drill resistance  $R_{\rm D}$  (in Nm s/rad) is defined as

 $R_{\rm D} = T/\omega$ 

where *T* is drilling torque (Nm) and  $\omega$  is angular speed (rad/s).

A micro-drilling resistance tool typically consists of a power drill unit, a small-diameter drill bit, a paper chart recorder, and an electronic device that can be connected to the serial interface input of any standard personal computer. The diameter of the drill bit is typically 2 to 5 mm, so any weakening effect of the drill hole on the wood cross section is negligible.

# Inspection Procedure General Procedure

On-site inspection of the WAPAMA was conducted by the inspection team between January 10 and 13, 2006, using the following general procedure:

- Identify critical areas and key structural elements (sampling)
- Examine moisture content (moisture meter)
- Perform stress wave scanning tests in key strength members (Fakopp Microsecond Timer, FAKOPP Enterprise, Agfalva, Hungary)
- Perform micro-drilling resistance tests on key strength members (Resistograph IML-RESI F400, IML, Inc., Kennesaw, Georgia)
- Document photographically the inspection process and ship conditions

Stress wave scanning and micro-drilling resistance were the two primary means used to determine the internal physical conditions of wood members.

## **Stress Wave Scanning**

Stress wave transmission testing requires access to two opposite sides of a timber for attaching sensor probes. Therefore, stress wave scanning in the WAPAMA was conducted only on structural members that have both sides exposed and are within reach of the inspectors. Such members included keelsons, keel, stringers, main deck beams, vertical supporting members, pointers, and hanging knees. Stress wave transmission tests were performed on these members using a Fakopp Microsecond Timer.

For longitudinal strength members such as keelsons, assistant keelsons, keel, and main deck stringers, stress wave transmission tests (perpendicular to grain) were conducted along one, two, or three lines on the side surface. Intervals between two scanning points in the longitudinal direction varied for different members: 2.5 ft for keelsons and 5 to 6 ft for keel and main deck stringers. Figure 3 shows a typical scanning diagram for inspecting and mapping longitudinal members with stress wave transmission times.

For vertical supporting members, pointers, main deck beams, and hanging knees, stress wave transmission tests were conducted as a spot check due to the limited available time on the ship.

## **Micro-Drilling Resistance Test**

Micro-drilling resistance tests were conducted to obtain relative resistance profiles for the key structure elements. The purpose of conducting micro-drilling tests was two-fold: (1) to confirm and determine the extent of decay in critical locations or areas that had been identified by stress wave scanning and (2) to determine internal conditions of key structure elements that cannot be scanned using stress wave transmission techniques.







# Figure 4. Schematic of drilling locations for the cross section at frame 8.

The drill was oriented so that its drilling path was perpendicular to the exposed face of the wood members. During each drill test, relative resistance was recorded on a wax paper graph and also stored in an electronic unit. Each resistance chart was properly coded to track its drilling location in a specific member. After testing, the electronic files were transmitted to a computer for further analysis. The maximum drilling depth of the tool we used is 15 in., so the internal condition of wood beyond this depth cannot be revealed.

Ceiling planks, assistant keelsons, hull frames, clamps, waterways, bulwark, and assistant stringers are the key strength members that cannot be evaluated with stress wave transmission techniques. To assess the physical conditions of these members, we selected three main sections along the length of the vessel for detailed inspection with the micro-drilling resistance tool (Fig. 1): (1) section at frame 8; (2) section at frame 32; and (3) section at frame 48. The drilling locations at these sections are illustrated in Figures 4 to 6.

To assist the on-site inspection efforts, we took a series of photographs and short videos to document the inspection process and the physical conditions of the key structure features. Example photographs are shown in Appendix A.

# **Main Findings**

A summary of key findings follows. Photographic documentation and comprehensive NDE data tables are in the Appendixes.



Figure 5. Schematic of drilling locations for the cross section at frame 32.



Figure 6. Schematic of drilling locations for the cross section at frame 48.

## Keelsons

Keelsons are key longitudinal strength members and form the main backbone of the vessel. The keelson members in the WAPAMA include rider keelson (20 by 17.5 in.), main keelson (20 by 37 in. in two tiers), and three assistant keelsons, port and starboard.

The rider keelson and part of the main keelson (upper portion) are exposed above the top surface of the assistant keelsons and therefore are readily available for stress wave scanning. The assistant keelsons, on the other hand, only have the top face exposed. Therefore, the internal condition of the assistant keelsons can be evaluated only through micro-drilling tests.

#### Rider Keelson and Main Keelson

The rider keelson and main keelson (above the top surface of the assistant keelsons) in the cargo hold were stress wave scanned along three lines (Fig. 3a). Lines A and B were on the rider keelson, and line C was on the main keelson. The portion of the keelsons tested is between frames 7 and 48. The keelsons beyond this portion were not tested due to lack of access or difficult access.

Figure 7 illustrates the distribution of stress wave transmission times (SWTTs) (in  $\mu$ s/ft) along the length and the mapping of physical conditions of the rider keelson and main keelson. The physical conditions of each test location were rated into four categories by comparing the measured SWTT with the reference SWTT and color-coded as follows:



The deterioration of the keelsons is concentrated between frames 25 and 42, and most severe decay occurred on the main keelson timber between frames 30 and 39. This is also confirmed by micro-drilling resistance tests. Rainwater likely entered this area through the hatch over the years due to failed weather protection and water remained trapped. Water damage in the untested portion of the main keelson between frames 30 and 39 and even beyond could also be significant. Deterioration could be further extended and advanced with the current outdated weather protection.

No significant deterioration was found between frames 7 and 25 according to stress wave scanning results. The tween deck, which extends from frame 11 to the forward end of the hatch at frame 26, has apparently protected the keelsons from direct exposure to rainwater dripping from above (through main decking). The micro-drilling resistance test revealed isolated internal rot (5.5–9.5 in.) at the location of frame 12. A similar condition at frame 11 was reported in a 1986 survey report (Tri-Coastal Marine, Inc. 1986).

#### Assistant Keelsons

Assistant keelsons are deteriorated variously in the hold area. Micro-drilling resistance testing on assistant keelsons at frames 8, 32, and 48 revealed both surface decay and internal decay as shown in Table 1. An area of severe deterioration is seen between frames below the hatch.

We also observed that many surface areas of the assistant keelsons are saturated with rainwater, presumably dripping from the main deck, tween deck, or the main hatch. Moisture readings collected at many locations are well above the fiber saturation point (30%), indicating the potential of further deterioration (moisture content data are shown in Appendix C).

## Keel

Stress wave scanning and mapping of the keel was done between frames 5 and 79. The scanning pattern is shown



Figure 7. Distribution of stress wave transmission time (SWTT) and mapping of physical conditions of the keelsons.



Table 1. Deterioration in assistant keelsons revealed by microdrilling resistance tests

#### Figure 8. Distribution of stress wave transmission time (SWTT) and mapping of physical conditions of the keel.

in Figure 3b. For the convenience of quickly establishing a scan pattern, we set frame 79 (where the iron tie plate ends) as the starting point and scanning was proceeded along two lines (A and B) from aft to fore. Stress wave transmission time data were collected between the keel blocks and at 6-ft intervals. Figure 8 shows the distribution of stress wave transmission time and the mapping of physical conditions of the keel.

Moderate deterioration was found at several areas of the keel, as indicated in the mapping. Although no severe decay is present in the keel, the hogging in the mid-section of the ship has caused significant mechanical damage (shear failure) to the keel as evidenced by cracks or splits along the grain. This is confirmed by a previous report that the keel was broken when the ship was placed on Barge 214 (Tri-Coastal Marine, Inc. 1986).

#### Main Deck Stringers

The main deck stringers have lost most integrity due to severe deterioration. Visual signs of rot, splits, and checks are present in most portions of these members. To quantify the levels of deterioration, stress wave scanning was carried out on two side stringers with a less extensive interval (5 ft) and along the centerline of the member.

Figure 9 shows the distribution of stress wave transmission time along the length and the mapping of physical conditions of the main deck stringers.

#### Main Framing Timbers

The main framing timbers of the WAPAMA were evaluated through micro-drilling tests at three main cross-sections of the main hull assembly: (1) section at frame 8; (2) section at frame 32; and (3) section at frame 48 (Fig. 1). Frame 8 is located in the fore section of the cargo hold area near the vessel's bow. Frame 32 is located mid-ship underneath the main cargo hatch. Frame 48 is located in the aft portion of the cargo hold area approximately 3 ft forward of the engine room.

Typical results from micro-drilling resistance tests showing sound wood, moderate deterioration, and severe deterioration are shown in Figure 10. Comprehensive results of all micro-drilling resistance tests are reported by NRRI (2006).



Figure 9. Stress wave transmission time (SWTT) and physical conditions of the main deck stringers.

#### Cross-Section at Hull Frame 8

A total of seven micro-drilling resistance measurements were collected from the hull assembly at frame 8 (Fig. 4). Safety concerns limited our access to the smaller area underneath the tween deck, therefore no data were collected from tween deck beams. From the interior of the vessel, five micro-drilling locations penetrated downward through ceiling planks and a portion of the hull frame. One additional micro-drilling location penetrated into the first assistant keelson (starboard). From the exterior of the vessel, one micro-drilling location on the starboard side penetrated upward through strake planks and a portion of the hull frame. The thickness of the interior ceiling and/or exterior strake planking varied and resulted in different penetration levels into the main frame members.

A schematic summary of micro-drilling resistance data collected at hull frame 8 is provided in Figure 11. Severe decay was detected at two of seven (29%) drilling locations at this section. Most of the ceiling planks and the first assistance keelson (starboard) are in good condition, with decay present only in the ceiling plank at drill location 2. Moderate decay was detected in the inside upper portions of the hull frame drill locations, with severe decay present at drill location 2. There were visual indicators of water seepage through overhead tween and main decks, which probably caused this deterioration since the WAPAMA was lifted onto Barge 214.

#### Cross-Section at Hull Frame 32

A total of 40 micro-drilling resistance measurements were collected from the hull assembly at frame 32 (Fig. 5): 18 from the interior portion of the hull assembly penetrated into clamps, ceiling planks, and assistant keelson members; 14 from topside of the main deck penetrated into bulwarks, waterways, decking, stringers, and assistance stringers; and 8 from the outer hull portions that were accessible from the barge deck.

A schematic summary of micro-drilling resistance data collected at hull frame 32 is provided in Figure 12. Severe decay was detected at 15 (38%) of the drilling locations, with most of these areas located in the members at the main deck level (stringers and main deck beams) or near the main deck level (clamps, hull frame). Deterioration of the lower hull members and keelsons was mostly moderate. Deterioration ranging from decay to severe decay was detected at nearly all drilling locations drilled downward from topside main deck. The outer waterways 19 and 30 and portside main deck planks (21 and 22) showed signs of moderate decay. Deterioration ranging from decay to severe decay was detected in clamps 1, 2, and 17, ceiling planks 5, 12, and 14, the 3rd assistant keelson portside (11), and the inside upper portion of the hull frame 1, 3, 5, 14, and 17. Drillings upward into the outer hull detected mostly sound wood with only moderate decay present in the outer lower hull frame B.



Figure 10. Typical results from micro-drilling resistance tests: (a) sound wood; (b) moderate deterioration; (c) severe deterioration.



Figure 11. Mapping of physical conditions of the cross section at frame 8 (micro-drilling resistance interpretation).

#### Cross-Section at Hull Frame 48

A total of 40 micro-drilling resistance measurements were collected from the hull assembly at frame 48 (Fig. 6): 18 from the interior portion of the hull assembly penetrated into clamps, ceiling planks, and assistant keelson members; 14 from topside of the main deck penetrated into bulwarks, waterways, decking, stringers, and assistance stringers; and 8 from the outer hull portions that were accessible from the barge deck.

A schematic summary of micro-drilling resistance data collected at hull frame 48 is provided in Figure 13. Severe decay was detected at 12 (30%) of the drilling locations, with most of these areas located in the members at the main deck level (waterways, stringers, main deck planks, and main deck beams) or near the main deck level (clamps). Deterioration of the lower hull members and keelsons was mostly moderate. Deterioration ranging from decay to severe decay was detected at nearly all drilling locations drilled downward from topside main deck, except main deck plank 22. Deterioration ranging from decay to severe decay was also detected in clamps 2, 16, 17, and 18, the 1st assistant keelson portside (10), ceiling planks 12 and 13, and the inside upper portion of the hull frame 18. Drillings upward into the outer hull detected mostly sound wood, with deterioration noted only in outer hull plank A and in outer hull plank/hull frame H.



Figure 12. Mapping of physical conditions of the cross-section at frame 32 (micro-drilling resistance interpretation).



Figure 13. Mapping of physical conditions of the cross-section at frame 48 (micro-drilling resistance interpretation).

## Main Deck Beams

Stress wave transmission data were collected from the main deck beams at two areas on the ship's portside (Fig. 14). Five test locations were in the main deck beams above the tween deck, including some at the hanging knees (Fig. 14a). An additional five test locations were in the rear cargo hold between the main hatch and the cabin deck (Fig. 14b). A summary of the condition of the main deck beams is provided in Table 2 and Figure 15.

#### Beams above Tween Deck

Stress wave transmission data confirmed that the main deck beams above the tween deck are in an advanced state of deterioration. Decay and severe decay were detected at all beams, as indicated by the stress wave transmission times in Table 2. Beams located at or near hull frames 13, 15, 20, 22, 24, and 26 have almost lost their entire strength and are considered having zero load capacity. In addition, severe deterioration was found in the hanging knees at frames 15 and 26, which raises serious concerns on the rest of the hanging knees that have not been tested.

## Beams at Rear Cargo Hold

The condition of the main deck beams at rear cargo hold varied. Decay to severe decay is present at the beam ends over the stanchion for most beams. The exception is the deck beam located near hull frame 44, which is sound. At the beam ends near the outer hull frame, only the beam at hull frame 40 shows decay, the beams near frames 38 and 46 shows moderate decay, and the beams near 42, 44, and 48 are generally sound. The condition of the main deck beams away from their supports is mostly sound, with moderate deterioration detected at some beams. The main deck beam in the best condition is at hull frame 44. Severe deterioration was present only at the end support (over the stanchion) at hull frame 42.

## **Vertical Supporting Columns**

The physical conditions of 6 pillars and 20 hold stanchions were evaluated with stress wave transmission technique. The pillars were located in the aft part of the ship, with their length spanning the hold to the boat deck. The hold stanchions are located in the hold of the ship and support the main deck beams. Member testing took place in two



Figure 14. Stress wave testing locations for portside main deck beams: (a) main deck beams and hanging knees above tween deck; (b) main deck beams at rear cargo hold.

directions—the fore-to-aft direction (in which the test faces were to the forward and aft of the ship) and the port-to-starboard direction (in which the test faces were to the port and starboard directions of the ship).

#### Pillars

The pillars were tested at three levels of the ship: engine/ boiler room (lower level), main deck (middle level), and cabin deck (upper level). The lower level of the ship allowed access to fore-to-aft and port-to-starboard faces on all six pillars (A–F, Fig. 16), whereas the main deck allowed access only to four pillars, those in the forward part of the cabin deck house (A–D), and in the fore-to-aft direction. The pillars accessible on the upper level (cabin deck house) were the two in the foremost part of the engine room (A and B), and they were accessible only in the port-to-starboard direction. Table 3 summarizes the physical conditions of the pillars evaluated by stress wave tests (the stress wave transmission data of the pillars are shown in Appendix B7). Deterioration is present in most pillars, but varies at different levels (lower, middle, and upper). Pillars A and B show moderate deterioration in the lower level, decay in the middle level, and are sound in the upper level. Pillars C and D have areas of moderate deterioration and decay in the lower and/or middle level, whereas pillars E and F are found in sound condition in the lower level. Because pillars E and F could be accessed and tested only at one level of the ship, results are not conclusive for the entire members.

#### Hold Stanchions

The hold stanchions were first visually assessed for deterioration, and then a subset of the members was spot-checked with stress wave transmission testing. The hold stanchions tested were numbers 1-3, 5, 7-10, 13-15, 17, and 20 (Fig. 16). Hold stanchions 1, 2, and 3 were found to have moderate decay, with stress wave transmission times ranging from 326 to 584 µs/ft. The remaining hold stanchions were found to be solid, with stress wave transmission times ranging from 179 to 200 µs/ft.

|                |        |                 | Relative deteri | oration level an | d SWTT (µs/ft)  |                 |
|----------------|--------|-----------------|-----------------|------------------|-----------------|-----------------|
| Portside       | Frame  | Main dec        | k beams         |                  | Hanging knees   |                 |
| location       | number | 1               | 2               | 3                | 4               | 5               |
| Above<br>tween | 26     | Severe<br>1,051 | Moderate 397    | Severe<br>4,948  | Severe<br>2,966 | Severe<br>3,050 |
| deck           | 24     | Decay<br>700    | Severe<br>828   | —                | —               | —               |
|                | 22     | Severe 3,087    | Severe 4,374    | —                | —               | —               |
|                | 20.5   | Severe<br>1,551 | Severe 3,126    | —                | —               | —               |
|                | 18.5   | Decay<br>759    | Moderate<br>568 | —                | —               | —               |
|                | 16.5   | Moderate<br>555 | Decay<br>742    | Decay<br>621     | Severe<br>933   | Severe<br>999   |
|                | 14.5   | Severe<br>4,783 | Severe<br>4,997 | —                | —               | —               |
|                | 12.5   | Severe<br>4,966 | Severe 5,379    | —                | —               | —               |
|                |        |                 | Ν               | Main deck beam   | IS              |                 |
|                | _      | 1               | 2               | 3                | 4               | 5               |
| Rear<br>cargo  | 38.5   | Decay<br>736    | Sound<br>221    | Sound<br>225     | Moderate 575    | Moderate 378    |
| hold           | 40     | Decay<br>678    | Moderate<br>442 | Sound<br>206     | Moderate<br>474 | Decay<br>698    |
|                | 42     | Severe<br>969   | Moderate 329    | Sound<br>187     | Sound<br>230    | Sound<br>190    |
|                | 44     | Sound<br>177    | Sound<br>207    | Moderate<br>427  | Sound<br>282    | Sound<br>209    |
|                | 45.5   | Decay<br>628    | Sound<br>254    | Sound<br>222     | Sound<br>249    | Moderate<br>486 |
|                | 47.5   | Moderate<br>429 | Moderate 529    | Sound<br>204     | Sound<br>296    | Sound<br>292    |

# Table 2. Stress wave transmission time (SWTT) and physical conditions of the portside main deck beams and hanging knees



Figure 15. Mapping of physical conditions of portside main deck beams (plan view).



Figure 16. Location of pillars and stanchions on the ship (plan view).

| <b>Table 3. Physical conditions</b> | of the pillars evaluated by |
|-------------------------------------|-----------------------------|
| stress wave tests <sup>a</sup>      |                             |

|        |          | Deck level |       |
|--------|----------|------------|-------|
| Pillar | Lower    | Middle     | Upper |
| А      | Moderate | Decay      | Solid |
| В      | Moderate | Decay      | Solid |
| С      | Decay    | Moderate   | NA    |
| D      | Moderate | Solid      | NA    |
| Е      | Solid    | NA         | NA    |
| F      | Solid    | NA         | NA    |

<sup>a</sup>NA, not accessible.

## Pointers

The pointers tested were the second pointers in the front of the ship accessible by the tween deck in the hold. There is one pointer on each side of the boat, and they were labeled as the port and starboard pointers. The pointers were spotchecked with stress waves at 4-ft intervals beginning at the foremost part of the member. Results show that the pointers are generally in a sound condition. The aftmost 4 ft on the portside pointer and the aftmost 8 ft on the starboard pointer each had a large crack that resulted in moderate levels of deterioration, but the remaining length of each member was solid. Stress wave transmission times ranged from 190 to 287  $\mu$ s/ft in solid areas and from 460 to 518  $\mu$ s/ft in moderately decayed areas.

# **Summary of Findings**

A general condition assessment of the historic steam schooner, WAPAMA, was conducted over a 4-day period in January 2006. Our investigation focused on the key structural components that provide the structural integrity of the vessel. Structural components tested that provide for longitudinal integrity are the keelsons (rider keelson, main keelson, assistant keelsons), main deck stringers, waterways, bulwarks, and keel. Structural components tested that provide for transverse integrity are the hull assembly (framing timbers, ceiling, clamps, strakes) at three cross-sections and the main deck beams. Due to limited inspection time, the investigation was not intensively focused on individual members, but instead was conducted with relatively large scan intervals or through spot-checking of suspected areas. Stress-wave timing and micro-drilling resistance were the primary methods used in this investigation, coupled with visual inspection and moisture content determination.

## **Condition of Structural Components**

#### Keelsons

The rider keelson and main keelson (top tier) were evaluated between frames 7 and 48 with stress wave scanning and micro-drilling resistance testing. Advanced deterioration of the keelsons was concentrated under the main hatch area. The rider keelson was deteriorated between frames 30 and 39, and the main keelson (top tier) was deteriorated between frames 25 and 42. No significant deterioration was detected in the keelsons under the tween deck between frames 7 and 25. Assistant keelsons were evaluated by microdrilling resistance (topside downward) at frames 8, 32, and 48. Resistance plots indicated only isolated pockets of moderate decay.

#### Main Deck Stringers

The main deck stringers were spot-checked with stress-wave timing and micro-drilling resistance testing. Severe deterioration was confirmed in both side stringers and assistant stringers. Overall, the main deck stringers have lost nearly all structural integrity.

#### Waterways and Bulwarks

Waterways and bulwarks were evaluated at several locations with micro-drilling resistance testing at the main deck. Most severe deterioration was present in the waterways, whereas many of the bulwarks had moderate to severe decay.

#### Keel

The keel was evaluated at 6-ft intervals (between the keel blocks) with stress-wave timing and spot-checked by microdrilling resistance. Moderate deterioration was present at several locations in the aft half of the keel. Visual signs of large splits and cracks may indicate that the keel was broken while the vessel was lifted onto Barge 214.

#### Hull Assembly

The hull assembly was evaluated at frames 8, 32, and 48 using micro-drilling resistance techniques. The condition of the hull assembly at frame 8 is generally good, with

moderate decay present in the ceiling and framing timbers. Severe deterioration was confirmed at one location near the assistant keelson with both inboard and outboard drilling data. The condition of the lower hull assemblies at frames 32 and 48 is good, with minor pockets of decay present at a few locations. All clamps and upper framing timbers at frames 32 and 48 have moderate to severe decay present.

## Main Deck Beams

The main deck beams at the portside of the vessel were spot-checked with stress wave timing. Severe deterioration was found in nearly all main deck beams above the tween deck. Test results indicate that these beams have lost entire structural integrity and have potential to collapse in the near future, which poses a significant safety hazard. The main deck beams at the rear cargo hold area are mostly sound, with moderate to severe decay found at the end support areas.

## **Condition of the Vessel by Areas**

#### Area under Cabin Decks

Findings for the aft portion of the vessel beneath the cabin decks were largely based on visual assessment. These areas appeared to be generally in good condition as they were similarly reported in the 1986 condition assessment (Tri-Coastal Marine, Inc. 1986).

#### Main Cargo Hold to Tween Deck

Findings for the midship portion of the vessel extending from the cabin deck to forward hatch side were largely based upon NDE techniques. Significant areas of decay were noted in the following longitudinal structural components: the portion of the rider and main keelson under the main hatch, main deck stringers, and waterways. Significant areas of decay were noted in the following transverse structural components: clamps and framing timbers near waterways, main deck beams, and main deck planking. The lower hull assembly at frames 32 and 48 showed isolated pockets of significant decay.

#### Tween Deck Forward

Findings for the forward portion of the vessel from the main hatch forward were largely based upon NDE techniques. Significant areas of decay were noted in main deck stringers, waterways, bulwarks, and main deck beams. The main deck beams located over the tween deck are in bad condition with severe internal decay. The lower hull assembly at frame 8 showed an isolated pocket of severe decay.

# Recommendations

The following recommendations are provided based upon our findings from this on-site investigation:

Repair or replacement of the temporary roof shelter over the main deck is recommended. The current weather protection over the main deck is clearly ineffective in preventing intrusion of rainwater, as evidenced by water seepage from the underside vents in the outer hull. Moisture is saturating several key structural components on the main deck and in the cargo hold. An effective roof will prevent further decay until restoration work is initiated.

Should the decision be made to disassemble the WAPAMA, more intensive NDE scanning and analysis of key structural components is recommended during the restoration process. This will provide more accurate assessment of the extent of internal deterioration and can help in making decisions to retain key components or to salvage portions of key components for non-structural members elsewhere in the restored vessel.

## References

BMT Designers & Planners, Inc. 2005. WAPAMA condition survey. D&P Report No. 2526-001. Prepared for Architectural Resources Group, Pier 9, The Embarcadero, San Francisco, CA.

Forest Products Laboratory. 2000. Stress wave timing nondestructive evaluation tools for inspecting historic structures—A guide for use and interpretation. Gen. Tech. Rep. FPL–GTR–119. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. 15 p.

NRRI. 2006. Condition assessment of wood-hull steam schooner WAPAMA. Natural Resources Research Institute. Final report for project no. 187-6530. Duluth, MN: University of Minnesota-Duluth. 117 p.

Tri-Coastal Marine, Inc. 1986. Steam schooner WAPA-MA—Historic structure report. Prepared for The National Maritime Museum at San Francisco, National Park Service, San Francisco, CA.

# Appendix A—Photographic Documentation



Starboard side view



Port side view



Aft view of starboard outer hull



Side view of starboard outer hull



Portside view of propeller/rudder assembly



Hull planks removed to vent cargo hold (note rainwater seepage)



Fore view of keel and hull bottomside



Aft view of main deck area showing main cargo hatch and overhead roof structure



Starboard view of deteriorated waterway and main decking



Aft view of main cargo hold showing ceilings, clamps, hanging knees, main deck beams



Stress wave timing measurements at main deck beam



Stress wave timing measurements at hanging knee



Resistance micro-drilling a clamp member

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |      |         |          |          | Rider    | keelson |         |         |      |          |      | -        | Main ke  | elson |          |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|---------|----------|----------|----------|---------|---------|---------|------|----------|------|----------|----------|-------|----------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |      |         | Line     | <b>V</b> |          |         |         | Line    | В    |          |      |          | Line     | С     |          |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Frame | Str  | ess wav | e time ( | (sn)     | Velocity | Stre    | SS Wave | time (J | (ST  | Velocity | Sti  | ress wav | e time ( | us)   | Velocity |                |
| 1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6   1-6 <th>no.</th> <th>-</th> <th>5</th> <th>3</th> <th>Avg.</th> <th>(hs/ft)</th> <th>-</th> <th>2</th> <th>3</th> <th>Avg.</th> <th>(ths/ft)</th> <th>-</th> <th>5</th> <th>ε</th> <th>Avg.</th> <th>(tt/tt)</th> <th>Note</th>                               | no.   | -    | 5       | 3        | Avg.     | (hs/ft)  | -       | 2       | 3       | Avg. | (ths/ft) | -    | 5        | ε        | Avg.  | (tt/tt)  | Note           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-6   |      |         |          |          |          |         |         |         |      |          |      |          |          |       |          | Not accessible |
| 8   205   205   109   204   544   544   543   215   215     10   303   312   310   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313                                                                                                                                                                                                                                                                  | 7     | 334  |         |          | 334      | 203      | 309     |         |         | 309  | 188      | 345  |          |          | 345   | 210      |                |
| 9   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321   321                                                                                                                                                                                                                                                             | 8     | 295  |         |          | 295      | 179      | 288     |         |         | 288  | 175      | 354  |          |          | 354   | 215      |                |
| 10   330   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337                                                                                                                                                                                                                                                            | 6     | 321  |         |          | 321      | 195      | 313     | 321     | 315     | 316  | 192      | 439  | 729      | 445      | 538   | 327      |                |
| 11   508   508   505   51   321   326   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375   375                                                                                                                                                                                                                                                             | 10    | 330  | 332     | 348      | 337      | 205      | 320     | 316     | 318     | 318  | 193      | 411  | 411      | 415      | 412   | 251      |                |
| 12   300   318   310   311   312   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313   313                                                                                                                                                                                                                                                            | 11    | 368  | 363     | 358      | 363      | 221      | 324     | 326     | 324     | 325  | 197      | 372  | 375      | 378      | 375   | 228      |                |
| 1   30   401   30   30   30   31   32   39   311   32   39   311   32   30   30   31   32   30   31   33   31   33   31   33   31   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   3                                                                                                                                                                                                                                                                                                                                  | 12    | 600  | 588     | 603      | 597      | 363      | 423     | 428     | 427     | 426  | 259      | 346  | 338      | 340      | 341   | 207      |                |
| 1   310   337   330   334   331   331   332   331   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333   333                                                                                                                                                                                                                                                             | 13    | 396  | 404     | 403      | 401      | 244      | 328     | 328     | 327     | 328  | 199      | 357  | 375      | 380      | 371   | 225      |                |
| 15   343   357   333   344   209   333   333   344   333   206     16   343   356   360   334   333   344   333   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336   336                                                                                                                                                                                                                                                                 | 14    | 316  | 332     | 330      | 326      | 198      | 330     | 334     | 331     | 332  | 202      | 342  | 322      | 351      | 338   | 206      |                |
| 1   331   332   334   330   336   306     1   386   386   385   385   387   331   332   338   332   336   306   307   306   307   306   307   306   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307   307                                                                                                                                                                                                                                                                   | 15    | 343  | 357     | 333      | 344      | 209      | 332     | 333     | 326     | 330  | 201      | 333  | 333      | 334      | 333   | 203      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16    | 352  | 340     | 351      | 348      | 211      | 333     | 320     | 324     | 326  | 198      | 331  | 342      | 342      | 338   | 206      |                |
| 18   385   386   387   344   344   341   351   346   232   323   333   335   335   335   335   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337   337                                                                                                                                                                                                                                                            | 17    | 41   | 423     | 421      | 428      | 260      | 334     | 332     | 328     | 331  | 201      | 336  | 332      | 339      | 336   | 204      |                |
| 19   356   367   364   221   444   417   410   414   231   339   334   343   349   349   340   207     21   336   326   326   326   326   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   326   313   306   316   191   197     26   446   456   457   366   347   327   324   457   457   457   457   457   457   457   457   457   457                                                                                                                                                                                                                                                                      | 18    | 385  | 386     | 385      | 385      | 234      | 344     | 344     | 351     | 346  | 210      | 325  | 325      | 325      | 325   | 197      |                |
| 20   331   321   322   325   97   344   342   345   337   343   237   343   208     21   315   316   315   315   316   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   315   316   316   316   191                                                                                                                                                                                                                                                                  | 19    | 356  | 368     | 367      | 364      | 221      | 414     | 417     | 410     | 414  | 251      | 339  | 334      | 348      | 340   | 207      |                |
| 21   336   326   327   327   327   327   327   196     23   315   316   316   317   316   317   317   317   317   317   317   316   317   316   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327   327                                                                                                                                                                                                                                                                 | 20    | 331  | 321     | 322      | 325      | 197      | 343     | 344     | 342     | 343  | 208      | 344  | 348      | 337      | 343   | 208      |                |
| 22   315   316   317   345   343   321   325   318   317   345   343   321   325   318   317   345   343   321   325   313   306   307   317     25   333   345   445   457   347   317   346   347   306   307   316   314   191     26   430   465   460   388   326   317   314   313   306   307   316   191     26   480   465   473   361   377   314   315   912   922   375   376   476   461   463     31   332   334   336   347   339   326   376   477   453   471   475   476   466   475   477   453   476   464     31   332   347   347   349   477   393   33                                                                                                                                                                                                                                                                                | 21    | 336  | 326     | 322      | 328      | 199      | 320     | 316     | 314     | 317  | 192      | 327  | 327      | 327      | 327   | 199      |                |
| 23   315   316   315   315   316   315   315   316   315   315   316   317   316   317   316   317   316   316   317   316   316   317   316   318   306   307   316   314   319   316   316   317   316   316   317   316   316   317   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316   316                                                                                                                                                                                                                                                            | 22    | 325  | 318     | 319      | 321      | 195      | 321     | 320     | 322     | 321  | 195      | 321  | 325      | 322      | 323   | 196      |                |
| 24   337   345   343   342   208   324   326   318   323   10   316   192     25   480   465   465   397   206   318   323   321   321   319   316   314   191     26   480   465   465   367   317   317   317   316   314   191     28   306   302   291   177   442   473   457   452   275     30   311   300   316   317   343   346   349   347   457   452   275     30   291   276   303   337   347   446   453   477   347   347   519   Decenty     31   331   331   335   214   566   575   568   347   3549   177   Decenty   Decenty     31   314   3214   314                                                                                                                                                                                                                                                                                  | 23    | 315  | 316     | 315      | 315      | 192      | 315     | 315     | 314     | 315  | 191      | 306  | 309      | 306      | 307   | 187      |                |
| 25   333   336   348   339   206   318   322   324   321   195   318   309   316   314   191     26   480   465   465   345   357   321   337   341   375   576   764   464     29   291   290   182   333   345   347   347   456   756   764   464     31   332   351   357   374   374   375   474   476     31   332   356   371   387   376   766   769   756   764   464     31   332   314   316   192   443   475   568   345   747   348   1620   854   517   189   1890   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090 <td>24</td> <td>337</td> <td>345</td> <td>343</td> <td>342</td> <td>208</td> <td>324</td> <td>326</td> <td>318</td> <td>323</td> <td>196</td> <td>327</td> <td>313</td> <td>309</td> <td>316</td> <td>192</td> <td></td>                                           | 24    | 337  | 345     | 343      | 342      | 208      | 324     | 326     | 318     | 323  | 196      | 327  | 313      | 309      | 316   | 192      |                |
| 26   480   463   465   460   285   367   343   351   357   217   942   953   962   579   279     28   300   291   295   291   177   446   459   449   273   766   767   757   452   579     30   291   296   291   177   442   446   459   449   273   766   769   756   764   464     31   332   333   335   214   567   566   773   766   769   756   764   464     31   314   316   192   443   403   403   393   3390   2060   Bagaver     33   314   316   192   453   411   425   258   393   3990   2060   Bagaver     33   314   316   192   453   411   443   443   453                                                                                                                                                                                                                                                                              | 25    | 333  | 336     | 348      | 339      | 206      | 318     | 322     | 324     | 321  | 195      | 318  | 309      | 316      | 314   | 191      |                |
| 27   298   291   295   179   312   324   324   324   324   324   324   327   325   327   324   327   325   327   326   327   326   326   326   326   326   326   326   326   326   326   326   337   430   405   506   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   756   757   747   349   216   756   757   749   766   756   757   737   734   739   757   747   746   756   756   756   756   756   756                                                                                                                                                                                                                                                            | 26    | 480  | 463     | 465      | 469      | 285      | 367     | 343     | 361     | 357  | 217      | 942  | 953      | 962      | 952   | 579      |                |
| 28   306   302   291   300   182   338   336   342   339   206   982   948   1172   1034   628     29   291   206   301   296   180   387   403   459   449   273   766   763   756   764   461     31   332   341   331   336   204   679   473   449   479   473   449   479   462   461   479   471   339   3398   3990   2167   160   766   763   756   771   172   199   147   453   417   453   417   453   3398   3398   3399   2157   148   776   169   764   466   109   147   453   357   374   374   359   2157   149   457   148   466   169   671   169   764   466   467   463   446<                                                                                                                                                                                                                                                           | 27    | 298  | 291     | 295      | 295      | 179      | 322     | 327     | 324     | 324  | 197      | 446  | 453      | 457      | 452   | 275      |                |
| 29   288   300   286   291   177   442   446   459   449   273   766   766   756   764   464     31   321   323   331   336   204   679   66   575   568   575   568   347   471   479   1620   854   519     31   321   331   353   214   566   575   568   345   447   453   417   264   519   1620   854   519   1630   1645   1630   1647   177   141   425   258   174   314   344   3549   2167   Engaver     37   417   420   417   425   1691   1630   1580   1368   1041   632   339   3393   2167   Engaver   467     37   416   426   428   518   177   772   1590   1580   1580   10160                                                                                                                                                                                                                                                           | 28    | 306  | 302     | 291      | 300      | 182      | 338     | 336     | 342     | 339  | 206      | 982  | 948      | 1172     | 1034  | 628      |                |
| 30   291   296   301   296   180   387   403   405   398   242   453   489   1620   854   519     31   332   341   316   314   315   514   575   568   544   519   Decay     31   332   341   316   114   575   568   544   519   Decay     34   417   420   417   239   3330   3398   3390   2060   Engraver     35   518   517   518   315   784   776   795   785   477   3393   3390   2060   Engraver     36   1261   1265   1286   1570   1580   1596   1589   965   2239   3390   2060   Engraver     37   446   462   467   284   580   589   589   589   589   599   1066   1087   1047   549 <td>29</td> <td>288</td> <td>300</td> <td>286</td> <td>291</td> <td>177</td> <td>442</td> <td>446</td> <td>459</td> <td>449</td> <td>273</td> <td>766</td> <td>769</td> <td>756</td> <td>764</td> <td>464</td> <td></td>                               | 29    | 288  | 300     | 286      | 291      | 177      | 442     | 446     | 459     | 449  | 273      | 766  | 769      | 756      | 764   | 464      |                |
| 31   332   342   333   356   204   679   684   687   417     32   356   351   351   353   353   354   357   3747   3144   359   Decay     33   314   316   192   453   412   411   425   568   375   3747   3144   3549   2157   Engraver     35   518   517   518   518   315   784   776   759   785   477   3393   3398   3390   2060   Engraver     36   1261   1265   1286   1271   772   1590   1580   1596   1589   965   2239   2343   338   3990   1209   Engraver     37   476   462   467   284   589   589   563   561   Engraver   Engraver     38   324   328   126   1580   1596   1588   1090                                                                                                                                                                                                                                                 | 30    | 291  | 296     | 301      | 296      | 180      | 387     | 403     | 405     | 398  | 242      | 453  | 489      | 1620     | 854   | 519      |                |
| 32   356   351   353   214   566   572   568   345   Engraver     33   314   321   314   316   135   131   316   134   3549   2157   Engraver     34   417   420   415   518   315   784   76   755   169   1048   1045   1041   632   3757   3747   3144   3549   2157   Engraver     35   126   1271   772   1590   1580   1580   1589   585   947   3143   138   1990   1209   Engraver     37   476   462   467   284   589   589   588   9199   1209   Engraver     37   314   318   317   192   344   349   346   210   1681   1686   1056   1689   671   Engraver   463     38   324   328   309   358                                                                                                                                                                                                                                                 | 31    | 332  | 342     | 333      | 336      | 204      | 679     | 869     | 684     | 687  | 417      |      |          |          |       |          | Decay          |
| 33   314   321   314   316   192   453   412   411   425   258   Engraver     34   417   420   415   417   234   147   340   314   3549   2157   Engraver     35   518   517   518   315   784   776   795   785   477   3393   3390   2060   Engraver     36   1265   1265   1570   1580   1580   1580   1580   1590   1209   Engraver     37   476   462   467   284   589   586   559   58   1111   1118   1086   1026   Engraver     38   324   328   327   328   349   346   210   1681   1686   1696   163   671   Engraver     38   324   328   330   327   328   349   206   Engraver     391   312                                                                                                                                                                                                                                                   | 32    | 356  | 351     | 351      | 353      | 214      | 567     | 566     | 572     | 568  | 345      |      |          |          |       |          | Decay          |
| 34 417 420 415 417 254 1029 1048 1045 1041 632 3757 3747 3144 3549 2157 Engraver   35 518 517 518 517 518 518 315 784 776 795 785 477 3393 3390 2060 Engraver, dec   36 1265 1286 1271 772 1590 1590 1590 1209 Engraver, dec   37 476 462 467 284 589 586 590 588 1990 1209 Engraver, dec   38 324 318 317 192 343 340 346 344 343 344 209 188 1050 Engraver, dec   39 314 318 317 192 3327 333 331 331 331 331 331 331 331 331 331 331 331 331 331 331 331 331 331 331 331 331                                                                                                                                                                                                                                                                                                                                                                               | 33    | 314  | 321     | 314      | 316      | 192      | 453     | 412     | 411     | 425  | 258      |      |          |          |       |          | Engraver       |
| 35 518 517 518 518 518 518 518 518 518 518 518 518 518 518 517 518 518 518 517 518 518 517 518 517 5190 1596 1589 965 2239 2343 1388 1900 1209 Engraver, dec.   37 476 462 462 467 284 589 590 589 358 1111 1118 105 671 Engraver, dec.   38 324 328 327 328 340 346 344 343 344 209 889 105 671 Engraver, dec.   39 314 318 317 192 327 328 330 327 339 866 828 930 1026 Engraver   40 327 326 327 329 331 331 331 201 806 806 671 Engraver   41 330 327 329 331 331                                                                                                                                                                                                                                                                                                                                                                                         | 34    | 417  | 420     | 415      | 417      | 254      | 1029    | 1048    | 1045    | 1041 | 632      | 3757 | 3747     | 3144     | 3549  | 2157     | Engraver       |
| 36   1261   1265   1286   1271   772   1590   1580   1580   1580   1580   1580   1590   1209   Engraver     37   476   462   467   284   589   580   589   358   1111   1118   1086   105   671   Engraver     38   324   328   317   192   348   349   346   240   589   589   567   Engraver     39   314   318   317   192   328   330   327   329   346   344   343   344   209   869   528   Surface decay     40   327   326   327   329   331   331   331   331   201   838   820   853   503   Surface decay     41   330   327   329   331   331   331   331   201   838   820   828   503   Surface ay                                                                                                                                                                                                                                              | 35    | 518  | 517     | 518      | 518      | 315      | 784     | 776     | 795     | 785  | 477      | 3393 | 3380     | 3398     | 3390  | 2060     | Engraver, dec  |
| 37   476   462   462   467   284   589   588   590   589   358   1111   1118   1086   1105   671   Engraver     38   324   328   325   197   342   349   346   210   1681   1686   105   671   Engraver     39   314   318   317   192   342   349   346   210   1681   1686   1056   573   Surface decay     40   327   329   330   327   329   331   331   231   231   231   331   331   231   231   244   209   806   825   807   813   494   C: decay     41   330   327   321   331   331   231   201   838   820   823   833   503   464   C: decay     43   310   312   312   321   321   323   324 </td <td>36</td> <td>1261</td> <td>1265</td> <td>1286</td> <td>1271</td> <td>772</td> <td>1590</td> <td>1580</td> <td>1596</td> <td>1589</td> <td>965</td> <td>2239</td> <td>2343</td> <td>1388</td> <td>1990</td> <td>1209</td> <td>Engraver</td> | 36    | 1261 | 1265    | 1286     | 1271     | 772      | 1590    | 1580    | 1596    | 1589 | 965      | 2239 | 2343     | 1388     | 1990  | 1209     | Engraver       |
| 38   324   328   325   197   342   348   349   346   210   1681   1688   1696   1688   1026     39   314   318   317   192   323   330   327   328   349   346   210   1681   1688   1696   1688   1026     40   327   327   328   330   327   328   330   327   31   311   209   868   828   930   869   528   Surface decay     41   330   327   329   331   331   231   201   888   820   823   503   203   494   C: decay     42   310   312   312   321   331   331   231   330   336   244   333   333   349   C: decay     43   310   312   312   321   323   333   343   343   343   343                                                                                                                                                                                                                                                              | 37    | 476  | 462     | 462      | 467      | 284      | 589     | 588     | 590     | 589  | 358      | 1111 | 1118     | 1086     | 1105  | 671      | Engraver       |
| 39 314 318 317 192 328 330 327 328 199 848 828 930 869 528 Surface decay   40 327 326 327 327 330 331 331 331 331 331 331 331 331 331 331 331 331 331 494 C: decay   42 324 319 321 321 195 333 333 333 345 344 C: decay   43 310 313 312 312 195 195 333 335 197 340 343 345 345 341 C: decay   43 310 312 312 195 197 334 325 197 343 345 343 343 343 343 343 343 343 343 343 343 343 343 343 343 343 343 343 343 343 343 343 343 343 343 343                                                                                                                                                                                                                                                                                                                                                                                                               | 38    | 324  | 328     | 322      | 325      | 197      | 342     | 348     | 349     | 346  | 210      | 1681 | 1688     | 1696     | 1688  | 1026     |                |
| 40 327 326 327 327 198 346 344 343 344 209 806 825 807 813 494 C: decay   41 330 337 329 200 332 331 331 331 331 331 331 331 331 331 331 331 331 331 333 353 820 828 503 503   42 310 313 312 312 1195 332 333 332 343 343 303 503 503 503 503 343 303 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 503 504 703 504 703 503 504 503 503 503 504 503 503 504 504 503 504 504 503 503 503 <t< td=""><td>39</td><td>314</td><td>318</td><td>318</td><td>317</td><td>192</td><td>328</td><td>330</td><td>327</td><td>328</td><td>199</td><td>848</td><td>828</td><td>930</td><td>869</td><td>528</td><td>Surface decay</td></t<>                                                                                                                                                                                   | 39    | 314  | 318     | 318      | 317      | 192      | 328     | 330     | 327     | 328  | 199      | 848  | 828      | 930      | 869   | 528      | Surface decay  |
| 41 330 327 329 200 332 331 331 331 201 838 820 825 828 503   42 324 319 321 321 331 331 331 331 331 503   42 324 319 321 321 339 338 205 399 400 396 241 C: surface for   43 318 312 312 112 189 325 324 325 197 340 343 345 343 208   44 318 312 312 191 327 327 328 199 339 333 336 204   45 325 327 327 321 320 311 189 337 324 327 308   46 309 307 303 327 341 343 347 326 337 336 198   46 309 307 303 311 189 336 337 <t< td=""><td>40</td><td>327</td><td>326</td><td>327</td><td>327</td><td>198</td><td>346</td><td>344</td><td>343</td><td>344</td><td>209</td><td>806</td><td>825</td><td>807</td><td>813</td><td>494</td><td>C: decay</td></t<>                                                                                                                                                                                                  | 40    | 327  | 326     | 327      | 327      | 198      | 346     | 344     | 343     | 344  | 209      | 806  | 825      | 807      | 813   | 494      | C: decay       |
| 42 324 319 321 195 338 337 339 338 205 399 400 390 396 241 C: surface rot   43 310 313 312 312 312 112 189 325 324 325 197 340 343 343 343 208 208   44 318 314 312 315 191 327 323 1399 338 333 333 208   45 325 326 327 327 330 327 461 280 327 326 198   46 309 307 303 306 186 301 313 320 311 189 337 326 198   46 309 307 303 306 186 301 313 320 311 189 337 326 305   47 318 320 324 343 343 343 343 343 343 325 326 328                                                                                                                                                                                                                                                                                                                                                                                                                              | 41    | 330  | 330     | 327      | 329      | 200      | 332     | 331     | 331     | 331  | 201      | 838  | 820      | 825      | 828   | 503      |                |
| 43 310 312 312 312 189 325 324 325 197 340 345 343 208   44 318 314 312 315 191 327 330 328 199 339 335 336 204   45 325 324 327 330 328 199 339 336 336 204   45 325 324 327 326 197 727 330 327 461 280 327 326 198   46 309 307 303 306 186 301 313 320 311 189 336 337 326 198   47 318 320 322 320 194 343 343 243 343 209 326 328 326 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42    | 324  | 319     | 321      | 321      | 195      | 338     | 337     | 339     | 338  | 205      | 399  | 400      | 390      | 396   | 241      | C: surface rot |
| 44 318 314 312 315 191 327 320 328 199 338 335 236 204   45 325 324 325 197 727 330 327 461 280 327 326 198   46 309 307 306 186 301 313 320 311 189 336 337 326 198   46 309 307 303 306 186 301 313 320 311 189 336 337 326 198   47 318 320 322 344 343 343 209 325 326 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43    | 310  | 313     | 312      | 312      | 189      | 325     | 325     | 324     | 325  | 197      | 340  | 343      | 345      | 343   | 208      |                |
| 45 325 324 325 197 727 330 327 461 280 327 324 325 198   46 309 307 303 306 186 301 313 320 311 189 336 337 338 337 205   47 318 320 324 343 343 343 343 343 209 326 326 326 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4     | 318  | 314     | 312      | 315      | 191      | 327     | 327     | 330     | 328  | 199      | 339  | 338      | 332      | 336   | 204      |                |
| 46   309   307   303   306   186   301   313   320   311   189   336   337   337   205     47   318   320   320   194   343   343   343   209   325   326   326   198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45    | 325  | 324     | 326      | 325      | 197      | 727     | 330     | 327     | 461  | 280      | 327  | 324      | 327      | 326   | 198      |                |
| 47   318   320   320   194   343   343   343   209   326   326   198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46    | 309  | 307     | 303      | 306      | 186      | 301     | 313     | 320     | 311  | 189      | 336  | 337      | 338      | 337   | 205      |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47    | 318  | 320     | 322      | 320      | 194      | 343     | 344     | 343     | 343  | 209      | 325  | 326      | 328      | 326   | 198      |                |

# Appendix B—Stress Wave Data Summary

| Dimension:            | 16 × 2 | 0 in.    | Test    | t Interva | al: 6 ft | Date: Jan | uary 12  | 2–13, 2   | 006   |          |           |
|-----------------------|--------|----------|---------|-----------|----------|-----------|----------|-----------|-------|----------|-----------|
|                       |        |          | Lir     | ne A      |          |           |          | Lin       | e B   |          |           |
| Location <sup>a</sup> | St     | ress way | ve time | (µs)      | Velocity | St        | ress way | ve time ( | μs)   | Velocity |           |
| (ft)                  | 1      | 2        | 3       | Avg.      | (µs/ft)  | 1         | 2        | 3         | Avg.  | (µs/ft)  | Note      |
| 12                    | 294    | 301      | 296     | 297       | 178      | 283       | 279      | 282       | 281.3 | 169      |           |
| 18                    | 280    | 274      | 266     | 273       | 164      | 301       | 295      | 292       | 296.0 | 178      |           |
| 24                    | 310    | 312      | 308     | 310       | 186      | 303       | 301      | 303       | 302.3 | 181      |           |
| 30                    | 428    | 428      | 424     | 427       | 256      | 400       | 384      | 379       | 387.7 | 233      |           |
| 36                    | 390    | 390      | 385     | 388       | 233      | 376       | 361      | 351       | 362.7 | 218      |           |
| 41                    | 686    | 670      | 668     | 675       | 405      | 618       | 606      | 615       | 613.0 | 368      |           |
| 47                    | 333    | 334      | 330     | 332       | 199      | 466       | 466      | 465       | 465.7 | 279      |           |
| 53                    | 381    | 382      | 385     | 383       | 230      | 387       | 387      | 388       | 387.3 | 232      |           |
| 59                    | 397    | 398      | 396     | 397       | 238      | 715       | 707      | 674       | 698.7 | 419      |           |
| 65                    | 658    | 636      | 627     | 640       | 384      | 435       | 433      | 433       | 433.7 | 260      |           |
| 71                    | 406    | 397      | 387     | 397       | 238      | 418       | 410      | 412       | 413.3 | 248      |           |
| 77                    | 429    | 423      | 417     | 423       | 254      | 667       | 661      | 679       | 669.0 | 401      |           |
| 84                    | 390    | 391      | 393     | 391       | 235      | 483       | 471      | 468       | 474.0 | 284      |           |
| 90                    | 399    | 397      | 397     | 398       | 239      | 482       | 476      | 474       | 477.3 | 286      |           |
| 96                    | 385    | 382      | 387     | 385       | 231      | 531       | 529      | 534       | 531.3 | 319      |           |
| 103                   | 373    | 372      | 369     | 371       | 223      | 396       | 388      | 390       | 391.3 | 235      |           |
| 109                   | 420    | 423      | 423     | 422       | 253      | 553       | 538      | 536       | 542.3 | 325      |           |
| 115                   | 746    | 735      | 740     | 740       | 444      | 718       | 715      | 697       | 710.0 | 426      | Big crack |
| 122                   | 337    | 342      | 336     | 338       | 203      | 362       | 362      | 356       | 360.0 | 216      | e         |
| 128                   | 324    | 319      | 316     | 320       | 192      | 352       | 348      | 345       | 348.3 | 209      |           |
| 134                   | 380    | 379      | 381     | 380       | 228      | 417       | 426      | 424       | 422.3 | 253      |           |
| 140                   | 325    | 331      | 326     | 327       | 196      | 355       | 355      | 356       | 355.3 | 213      |           |
| 146                   | 320    | 322      | 322     | 321       | 193      | 378       | 373      | 374       | 375.0 | 225      |           |
| 152                   | 327    | 334      | 336     | 332       | 199      | 345       | 345      | 342       | 344.0 | 206      |           |
| 158                   | 312    | 311      | 310     | 311       | 187      | 408       | 414      | 414       | 412.0 | 247      |           |
| 164                   | 320    | 322      | 318     | 320       | 192      | 352       | 350      | 349       | 350.3 | 210      |           |
| 171                   | 307    | 309      | 306     | 307       | 184      | 350       | 327      | 328       | 335.0 | 201      |           |
| 178                   | 276    | 277      | 277     | 277       | 166      | 319       | 321      | 320       | 320.0 | 192      |           |
| 184                   | 300    | 304      | 303     | 302       | 181      | 334       | 335      | 337       | 335.3 | 201      |           |
| 188                   | 312    | 310      | 312     | 311       | 187      | 308       | 308      | 303       | 306.3 | 184      |           |
| 194                   | 310    | 308      | 304     | 307       | 184      | 316       | 318      | 320       | 318.0 | 191      |           |

<sup>a</sup> Numbers represent distance from aft to fore of the ship.

B2—Keel

|            |              |          | Velocity    | (μs/ft) |      |      | 1659 |      |      |     |      | 202  |          |             |         |      |      |      |              |    |    |     |  |
|------------|--------------|----------|-------------|---------|------|------|------|------|------|-----|------|------|----------|-------------|---------|------|------|------|--------------|----|----|-----|--|
|            |              | 13       |             | Avg.    |      |      | 1624 |      |      |     |      | 198  |          |             |         |      |      |      |              |    |    |     |  |
|            |              | Locatior | e time (μs) | б       |      |      | 1418 |      |      |     |      | 196  |          |             |         |      |      |      |              |    |    |     |  |
|            |              |          | tress wave  | 7       |      |      | 1419 |      |      |     |      | 204  |          |             |         |      |      |      |              |    |    |     |  |
|            |              |          | 01          | 1       |      |      | 2035 |      |      |     |      | 194  |          |             |         |      |      |      |              |    |    |     |  |
|            |              |          | Velocity    | (μs/ft) | 186  | 200  | 1348 | 1766 | 320  | 229 | 1209 | 2516 |          | Velocity    | (μs/ft) |      |      | 1178 |              |    |    | 324 |  |
|            | 5006         | 12       |             | Avg.    | 225  | 246  | 1657 | 2170 | 393  | 276 | 1460 | 3460 | 15       |             | Avg.    |      |      | 1153 |              |    |    | 317 |  |
|            | uary 11, 2   | Location | e time (µs) | ω       | 222  | 244  | 1684 | 2245 | 384  | 272 | 1476 |      | Location | e time (µs) | 3       |      |      | 980  |              |    |    | 321 |  |
|            | ate: Janı    |          | Stress way  | 7       | 224  | 247  | 1632 | 2253 | 393  | 274 | 1410 |      |          | stress wav  | 2       |      |      | 1238 |              |    |    | 307 |  |
|            | ы<br>Б       |          | 01          | 1       | 228  | 247  | 1654 | 2013 | 403  | 283 | 1495 | 3460 |          |             | 1       |      |      | 1242 |              |    |    | 324 |  |
| (Portside) | al: Spot che |          | Velocity    | (μs/ft) | 201  | 209  | 1803 | 1331 | 645  | 324 | 1429 | 952  |          | Velocity    | (μs/ft) |      |      | 1072 |              |    |    | 342 |  |
| en Deck    | st Interv    | 11       |             | Avg.    | 243  | 257  | 2216 | 1636 | 793  | 392 | 1726 | 1308 | 1 4      |             | Avg.    |      |      | 1050 |              |    |    | 335 |  |
| ove Twe    | n.<br>Te     | Location | e time (μs  | ς       | 244  | 259  | 2196 | 1870 | 796  | 380 | 1722 | 1306 | Location | e time (µs) | 3       |      |      | 1041 |              |    |    | 302 |  |
| 3eams at   | 5 × 14.5 i   |          | stress way  | 7       | 244  | 256  | 2206 | 1562 | 792  | 399 | 1722 | 1303 |          | tress way   | 2       |      |      | 1046 |              |    |    | 392 |  |
| n Deck E   | ons: 14.(    |          |             | -       | 242  | 256  | 2246 | 1476 | 790  | 396 | 1735 | 1316 |          |             |         |      |      | 1063 |              |    |    | 310 |  |
| B3—Mai     | Dimensi      |          | Frame       | no.     | 12.5 | 14.5 | 16.5 | 18.5 | 20.5 | 22  | 24   | 26   |          | Frame       | no.     | 12.5 | 14.5 | 16.5 | 20.5<br>20.5 | 22 | 24 | 26  |  |

| Dimensid | :suc | 14.5 × 1 <sup>,</sup> | 4.25 in.    | Test Ir | nterval: Spot | check | Date:      | January    | 11, 2006 |          |     |           |            |      |          |
|----------|------|-----------------------|-------------|---------|---------------|-------|------------|------------|----------|----------|-----|-----------|------------|------|----------|
|          |      |                       | Location    | 11      |               |       |            | Location   | n 2      |          |     |           | Location   | n 3  |          |
| Frame    |      | Stress wav            | e time (µs) |         | Velocity      | S,    | tress wave | e time (µs |          | Velocity | S   | tress way | e time (µs | (    | Velocity |
| no.      | 1    | 2                     | б           | Avg.    | (μs/ft)       | 1     | 2          | б          | Avg.     | (μs/ft)  | 1   | 2         | б          | Avg. | (μs/ft)  |
| 38.5     | 849  | 1004                  | 860         | 904     | 736           | 270   | 266        | 278        | 271      | 221      | 277 | 273       | 279        | 276  | 225      |
| 40       | 754  | 928                   | LLL         | 820     | 678           | 532   | 531        | 541        | 535      | 442      | 247 | 249       | 249        | 248  | 206      |
| 42       | 1195 | 1191                  | 1186        | 1191    | 696           | 408   | 403        | 402        | 404      | 329      | 225 | 229       | 236        | 230  | 187      |
| 44       | 211  | 217                   | 214         | 214     | 177           | 247   | 253        | 249        | 250      | 207      | 512 | 518       | 518        | 516  | 427      |
| 45.5     | 762  | 757                   | 759         | 759     | 628           | 312   | 304        | 306        | 307      | 254      | 268 | 270       | 268        | 269  | 222      |
| 47.5     | 520  | 517                   | 519         | 519     | 429           | 634   | 640        | 645        | 640      | 529      | 244 | 250       | 244        | 246  | 204      |
|          |      |                       | Location    | 14      |               |       |            | Location   | n 5      |          |     |           |            |      |          |
| Frame    |      | Stress wav            | e time (µs) |         | Velocity      |       | tress wave | e time (µs |          | Velocity |     |           |            |      |          |
| no.      | 1    | 2                     | 3           | Avg.    | (μs/ft)       |       | 2          | 3          | Avg.     | (μs/ft)  |     |           |            |      |          |
| 38.5     | 715  | 692                   | 714         | 707     | 575           | 462   | 471        | 460        | 464      | 378      |     |           |            |      |          |
| 40       | 561  | 567                   | 592         | 573     | 474           | 876   | 831        | 824        | 844      | 698      |     |           |            |      |          |
| 42       | 283  | 284                   | 280         | 282     | 230           | 232   | 235        | 232        | 233      | 190      |     |           |            |      |          |
| 44       | 342  | 334                   | 346         | 341     | 282           | 253   | 254        | 252        | 253      | 209      |     |           |            |      |          |
| 45.5     | 298  | 301                   | 302         | 300     | 249           | 586   | 588        | 589        | 588      | 486      |     |           |            |      |          |
| 47.5     | 358  | 358                   | 356         | 357     | 296           | 350   | 354        | 355        | 353      | 292      |     |           |            |      |          |
|          |      |                       |             |         |               |       |            |            |          |          |     |           |            |      |          |

| ortside) |
|----------|
| Hold (P  |
| Cargo I  |
| it Rear  |
| Beams a  |
| Deck     |
| 84—Main  |

#### **B5—Main Deck Stringers**

Dimensions: 11.5 × 13.5 in.

Test Interval: 5 ft

Date: January 12, 2006

## Portside Side Stringer

|                       | S    | Stress wav | e time (µs | )    | Velocity |          |
|-----------------------|------|------------|------------|------|----------|----------|
| Location <sup>a</sup> | 1    | 2          | 3          | Avg. | (µs/ft)  | Note     |
| 1                     | 754  | 759        | 752        | 755  | 805      |          |
| 2                     | 226  | 222        | 219        | 222  | 237      |          |
| 3                     | 1036 | 1148       | 1036       | 1073 | 1145     |          |
| 4                     | 1810 | 1789       | 1814       | 1804 | 1925     |          |
| 5                     | 659  | 652        | 666        | 659  | 703      |          |
| 6                     | 861  | 866        | 867        | 865  | 922      | Repaired |
| 7                     |      |            |            |      |          | Repaired |
| 8                     |      |            |            |      |          | Repaired |
| 9                     |      |            |            |      |          | Repaired |
| 10                    |      |            |            |      |          | Repaired |
| 11                    | 266  | 260        | 265        | 264  | 281      |          |
| 12                    | 180  | 169        | 174        | 174  | 186      |          |
| 13                    | 4117 | 4069       | 4035       | 4074 | 4345     |          |
| 14                    | 932  | 916        | 906        | 918  | 979      |          |
| 15                    | 490  | 494        | 489        | 491  | 524      |          |
| 16                    | 867  | 859        | 886        | 871  | 929      |          |
| 17                    | 193  | 195        | 196        | 195  | 208      |          |

<sup>a</sup> Numbers represent 5-ft intervals from fore to aft of the ship.

## Starboard Side Stringer

|                       | S    | stress wav | e time (µs | ;)   | Velocity |                |
|-----------------------|------|------------|------------|------|----------|----------------|
| Location <sup>a</sup> | 1    | 2          | 3          | Avg. | (µs/ft)  | Note           |
| 1                     | 615  | 619        | 609        | 614  | 655      |                |
| 2                     | 318  | 314        | 314        | 315  | 336      |                |
| 3                     | 444  | 439        | 444        | 442  | 472      |                |
| 4                     | 644  | 646        | 642        | 644  | 687      |                |
| 5                     | 1381 | 1377       | 1394       | 1384 | 1476     |                |
| 6                     | 249  | 246        | 254        | 250  | 266      |                |
| 7                     | 2574 | 2548       | 2582       | 2568 | 2739     | Repaired       |
| 8                     | 1862 | 1575       | 1550       | 1662 | 1773     | Repaired       |
| 9                     | 1953 | 2158       | 2229       | 2113 | 2254     | Netting in way |
| 10                    |      |            |            |      |          | Netting in way |
| 11                    |      |            |            |      |          | Netting in way |
| 12                    | 1632 | 1620       | 1593       | 1615 | 1723     |                |
| 13                    | 8977 | 8972       | 8935       | 8961 | 9559     |                |
| 14                    | 540  | 544        | 540        | 541  | 577      |                |
| 15                    | 459  | 452        | 429        | 447  | 476      |                |
| 16                    | 222  | 210        | 207        | 213  | 227      |                |
| 17                    | 322  | 327        | 319        | 323  | 344      |                |

<sup>a</sup> Numbers represent 5-ft intervals from fore to aft of the ship.

## **B6**—Pointers

| Dimensions: 14 × 13 in. | Test Interval: 4 ft | Date: January 12, 2006 |
|-------------------------|---------------------|------------------------|
|                         |                     | •                      |

Starboard Pointer

|                       | S   | tress wav | e time (µs | Velocity |         |           |
|-----------------------|-----|-----------|------------|----------|---------|-----------|
| Location <sup>a</sup> | 1   | 2         | 3          | Avg.     | (µs/ft) | Note      |
| 1                     | 226 | 249       | 235        | 237      | 210     |           |
| 2                     | 244 | 246       | 246        | 245      | 218     |           |
| 3                     | 214 | 218       | 214        | 215      | 191     |           |
| 4                     | 224 | 225       | 224        | 224      | 199     |           |
| 5                     | 225 | 226       | 224        | 225      | 200     |           |
| 6                     | 276 | 260       | 261        | 266      | 236     | Big crack |
| 7                     | 547 | 544       | 528        | 540      | 480     | Big crack |
| 8                     | 585 | 582       | 582        | 583      | 518     | Big crack |

<sup>a</sup> Numbers represent 4-ft intervals from fore to aft of the ship.

## Portside Pointer

|                       | S   | stress wav | e time (µs | Velocity |         |           |
|-----------------------|-----|------------|------------|----------|---------|-----------|
| Location <sup>a</sup> | 1   | 2          | 3          | Avg.     | (µs/ft) | Note      |
| 9                     | 226 | 230        | 226        | 227      | 202     |           |
| 10                    | 244 | 252        | 241        | 246      | 218     |           |
| 11                    | 229 | 223        | 223        | 225      | 200     |           |
| 12                    | 226 | 224        | 229        | 226      | 201     |           |
| 13                    | 243 | 254        | 246        | 248      | 220     |           |
| 14                    | 204 | 218        | 218        | 213      | 190     |           |
| 15                    | 325 | 321        | 324        | 323      | 287     |           |
| 16                    | 524 | 511        | 516        | 517      | 460     | Big crack |

<sup>a</sup> Numbers represent 4-ft intervals from fore to aft of the ship.

| Dimensi | ons: 15 × 1 | 5.5 in. Test Int | erval: Spo | t check | Date: January 11, 2006 |            |      |          |
|---------|-------------|------------------|------------|---------|------------------------|------------|------|----------|
|         | Test        |                  | Floor      | S       | Stress wav             | e time (µs | 5)   | Velocity |
| Pillar  | location    | Test direction   | level      | 1       | 2                      | 3          | Avg. | (µs/ft)  |
| А       | 1           | Fore-aft         | Lower      | 344     | 342                    | 345        | 344  | 266      |
| Α       | 1           | Port-starboard   | Lower      | 462     | 451                    | 440        | 451  | 349      |
| Α       | 2           | Fore-aft         | Lower      | 495     | 494                    | 493        | 494  | 382      |
| А       | 2           | Port-starboard   | Lower      | 1011    | 1026                   | 1014       | 1017 | 787      |
| Α       | 1           | Fore-aft         | Middle     | 459     | 469                    | 468        | 465  | 360      |
| А       | 2           | Fore-aft         | Middle     | 822     | 825                    | 823        | 823  | 638      |
| Α       | 1           | Port-starboard   | Upper      | 214     | 213                    | 214        | 214  | 166      |
| В       | 1           | Fore-aft         | Lower      | 702     | 703                    | 708        | 704  | 545      |
| В       | 1           | Port-starboard   | Lower      | 540     | 540                    | 538        | 539  | 418      |
| В       | 2           | Fore-aft         | Lower      | 668     | 623                    | 627        | 639  | 495      |
| В       | 2           | Port-starboard   | Lower      | 314     | 312                    | 308        | 311  | 241      |
| В       | 1           | Fore-aft         | Middle     | 321     | 321                    | 327        | 323  | 250      |
| В       | 2           | Fore-aft         | Middle     | 1034    | 1030                   | 1002       | 1022 | 792      |
| В       | 1           | Port-starboard   | Upper      | 253     | 250                    | 247        | 250  | 193      |
| С       | 1           | Fore-aft         | Lower      | 608     | 609                    | 609        | 609  | 471      |
| С       | 1           | Port-starboard   | Lower      | 1012    | 919                    | 1011       | 981  | 759      |
| С       | 2           | Fore-aft         | Lower      | 483     | 472                    | 465        | 473  | 366      |
| С       | 2           | Port-starboard   | Lower      | 762     | 721                    | 756        | 746  | 578      |
| С       | 1           | Fore-aft         | Middle     | 300     | 315                    | 308        | 308  | 238      |
| С       | 2           | Fore-aft         | Middle     | 688     | 682                    | 682        | 684  | 530      |
| D       | 1           | Fore-aft         | Lower      | 331     | 343                    | 347        | 340  | 263      |
| D       | 1           | Port-starboard   | Lower      | 686     | 614                    | 685        | 662  | 512      |
| D       | 2           | Fore-aft         | Lower      | 482     | 484                    | 477        | 481  | 372      |
| D       | 2           | Port-starboard   | Lower      | 402     | 394                    | 402        | 399  | 309      |
| D       | 1           | Fore-aft         | Middle     | 416     | 404                    | 402        | 407  | 315      |
| D       | 2           | Fore-aft         | Middle     | 368     | 357                    | 346        | 357  | 276      |
| Е       | 1           | Port-starboard   | Lower      | 243     | 242                    | 237        | 241  | 186      |
| Е       | 2           | Port-starboard   | Lower      | 258     | 261                    | 255        | 258  | 200      |
| F       | 1           | Port-starboard   | Lower      | 291     | 297                    | 295        | 294  | 228      |
| F       | 2           | Port-starboard   | Lower      | 316     | 301                    | 304        | 307  | 238      |

B7—Pillars Dimensions: 15 × 15.5 in. Test Interval: Spot check Date: January 11, 2006

| B8—Ho<br>Dimens  | old Stan<br>sions: 7. | chions<br>.5 × 14.5 in. | Test Inte | erval: Sp         | ot check | Dat | e: Janua | ry 11, 2006 |
|------------------|-----------------------|-------------------------|-----------|-------------------|----------|-----|----------|-------------|
|                  | Test                  | Test                    | Floor     | Floor Stress wave |          |     | 5)       | Velocity    |
| No. <sup>a</sup> | line                  | direction               | level     | 1                 | 2        | 3   | Avg.     | (µs/ft)     |
| 0                | А                     | Fore-aft                | Lower     | 817               | 811      | 780 | 803      | 584         |
| 0                | В                     | Fore-aft                | Lower     | 496               | 510      | 441 | 482      | 351         |
| 1                | А                     | Fore-aft                | Lower     | 727               | 723      | 735 | 728      | 514         |
| 1                | В                     | Fore-aft                | Lower     | 668               | 660      | 663 | 664      | 468         |
| 2                | Α                     | Fore-aft                | Lower     | 386               | 393      | 403 | 394      | 326         |
| 4                | А                     | Fore-aft                | Lower     | 226               | 226      | 224 | 225      | 186         |
| 6                | А                     | Fore-aft                | Lower     | 234               | 229      | 229 | 231      | 191         |
| 8                | А                     | Fore-aft                | Lower     | 235               | 241      | 232 | 236      | 195         |
| 9                | А                     | Fore-aft                | Lower     | 246               | 243      | 237 | 242      | 200         |
| 12               | А                     | Fore-aft                | Lower     | 231               | 225      | 235 | 230      | 191         |
| 14               | А                     | Fore-aft                | Lower     | 236               | 240      | 236 | 237      | 196         |
| 16               | А                     | Fore-aft                | Lower     | 240               | 242      | 242 | 241      | 200         |
| 19               | А                     | Fore-aft                | Lower     | 180               | 177      | 180 | 179      | 179         |

# Appendix C—Moisture Content Data Summary

## Date: January 11-13, 2006

|                      |               | Moistu | ire conten | t (%) at |           |          | Moist                                                | ure conten                                                                                                                                                                                                                                                                                                                                                                    | t (%) at |
|----------------------|---------------|--------|------------|----------|-----------|----------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|                      |               | three  | pin penet  | ration   |           |          | three                                                | pin penet                                                                                                                                                                                                                                                                                                                                                                     | ration   |
|                      |               |        | depths"    |          | _         |          |                                                      | depths"                                                                                                                                                                                                                                                                                                                                                                       |          |
| Member               | Location      | 1 in.  | 2 in.      | 3 in.    | Member    | Location | 1 in.                                                | 2 in.                                                                                                                                                                                                                                                                                                                                                                         | 3 in.    |
| Keelson              | 37-A          | 33     | 38         | 40       | (Hull     | 32-2     | 27                                                   | 28                                                                                                                                                                                                                                                                                                                                                                            | 25       |
|                      | 37-В          | 37     | 40         | 38       | assembly- | 32-3     | 25                                                   | 27                                                                                                                                                                                                                                                                                                                                                                            | 26       |
|                      | 35-A          | 28     | 31         | 42       | cont.)    | 32-4     | 31                                                   | 28                                                                                                                                                                                                                                                                                                                                                                            | 29       |
|                      | 35-В          | 32     |            | 80       |           | 32-5     | 80                                                   | 80                                                                                                                                                                                                                                                                                                                                                                            | 80       |
|                      | 48-A          | 51     | 46         | 62       |           | 32-6     | 39                                                   | 37                                                                                                                                                                                                                                                                                                                                                                            | 33       |
|                      | 48 <b>-</b> B | 50     | 42         | 45       |           | 32-7     | 32                                                   | 33                                                                                                                                                                                                                                                                                                                                                                            | 35       |
|                      | 46-A          | 40     | 23         | 27       |           | 32-8     | 33                                                   | 41                                                                                                                                                                                                                                                                                                                                                                            | 36       |
|                      | 46-B          | 49     | 35         | 31       |           | 32-9     | 22                                                   | 24                                                                                                                                                                                                                                                                                                                                                                            | 22       |
|                      | 46-C          | 54     | 53         | 48       |           | 32-10    | 28                                                   | 28                                                                                                                                                                                                                                                                                                                                                                            | 28       |
|                      | 43-A          | 41     | 30         | 28       |           | 32-11    | 30                                                   | 29                                                                                                                                                                                                                                                                                                                                                                            | 25       |
|                      | 43-В          | 44     | 32         | 27       |           | 32-12    | 80                                                   | 80                                                                                                                                                                                                                                                                                                                                                                            | 80       |
|                      | 43-C          | 85     | 62         | 45       |           | 32-13    | 31                                                   | 32                                                                                                                                                                                                                                                                                                                                                                            | 33       |
|                      | 7-A           | 55     | 53         | 38       |           | 32-14    | 80                                                   | 80                                                                                                                                                                                                                                                                                                                                                                            | 80       |
|                      | 10-A          | 34     | 40         | 30       |           | 32-15    | 35                                                   | 35                                                                                                                                                                                                                                                                                                                                                                            | 33       |
| Keel                 | 12            | 27     | 26         | 33       |           | 32-16    | 37                                                   | 39                                                                                                                                                                                                                                                                                                                                                                            | 41       |
|                      | 109           | 38     | 40         | 50       |           | 32-17    | 29                                                   | 27                                                                                                                                                                                                                                                                                                                                                                            | 26       |
|                      | 194           | 44     | 53         | 57       |           | 32-18    | 35                                                   | 33                                                                                                                                                                                                                                                                                                                                                                            | 32       |
| Pointer              | 2             | 63     | 43         | 29       |           | 48-1     | 33                                                   | in.2 in. $2in.$ $27$ $28$ $25$ $27$ $31$ $28$ $30$ $80$ $80$ $39$ $37$ $32$ $33$ $33$ $41$ $22$ $24$ $28$ $28$ $30$ $29$ $30$ $80$ $31$ $32$ $30$ $80$ $31$ $32$ $30$ $80$ $35$ $35$ $37$ $39$ $29$ $27$ $35$ $33$ $33$ $29$ $36$ $32$ $31$ $30$ $37$ $37$ $32$ $30$ $30$ $29$ $41$ $39$ $30$ $57$ $53$ $80$ $30$ $45$ $30$ $53$ $48$ $39$ $42$ $45$ $47$ $55$ $48$ $35$ $34$ | 32       |
|                      | 4             | 47     | 38         | 24       |           | 48-2     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 31                                                                                                                                                                                                                                                                                                                                                                            |          |
|                      | 6             | 47     | 43         | 80       |           | 48-3     | 31                                                   | 30                                                                                                                                                                                                                                                                                                                                                                            | 28       |
|                      | 10            | 80     | 68         | 47       |           | 48-4     | 37                                                   | 37                                                                                                                                                                                                                                                                                                                                                                            | 80       |
|                      | 12            | 28     | 40         | 51       |           | 48-5     | 32                                                   | 30                                                                                                                                                                                                                                                                                                                                                                            | 31       |
|                      | 14            | 23     | 21         | 26       |           | 48-6     | 30                                                   | 29                                                                                                                                                                                                                                                                                                                                                                            | 28       |
| Pillar <sup>b</sup>  | AA-Lower      | 23     | 23         | 24       |           | 48-7     | 41                                                   | 39                                                                                                                                                                                                                                                                                                                                                                            | 33       |
|                      | BA-Lower      | 30     | 36         | 30       |           | 48-8     | 80                                                   | 57                                                                                                                                                                                                                                                                                                                                                                            | 53       |
|                      | CA-Lower      | 14     | 16         | 17       |           | 48-9     | 63                                                   | 80                                                                                                                                                                                                                                                                                                                                                                            | 80       |
|                      | DA-Lower      | 80     | 80         |          |           | 48-10    | 30                                                   | 45                                                                                                                                                                                                                                                                                                                                                                            | 43       |
|                      | EA-Lower      | 15.5   | 17.5       | 16       |           | 48-11    | 80                                                   | 53                                                                                                                                                                                                                                                                                                                                                                            | 53       |
|                      | FA-Lower      | 15.5   | 15         | 15       |           | 48-12    | 48                                                   |                                                                                                                                                                                                                                                                                                                                                                               | 80       |
|                      | AA-Main       | 18     | 23         | 23       |           | 48-13    | 39                                                   | 42                                                                                                                                                                                                                                                                                                                                                                            | 45       |
|                      | BA-Main       | 20     | 20         | 23       |           | 48-14    | 45                                                   | 47                                                                                                                                                                                                                                                                                                                                                                            | 43       |
| Main                 | 36-1          | 25     | 23         | 22       |           | 48-15    | 55                                                   | 48                                                                                                                                                                                                                                                                                                                                                                            | 42       |
| framing              | 36-2          | 31     | 25         | 28       |           | 48-16    | 35                                                   | 34                                                                                                                                                                                                                                                                                                                                                                            | 33       |
| timbers <sup>c</sup> | 36-3          | 30     | 25         | 23       |           | 48-17    | 30                                                   | 31                                                                                                                                                                                                                                                                                                                                                                            | 34       |
|                      | 32-1          | 29     | 32         | 31       |           | 48-18    | 32                                                   | 40                                                                                                                                                                                                                                                                                                                                                                            | 48       |

<sup>a</sup>MC data were collected using an electrical-resistance-type meter with 3-in.-long insulated probe pins; readings in excess of ~30% are less reliable.

<sup>b</sup>Locations are as noted in Figure 16. <sup>c</sup>Locations are as noted in Figures 12 and 13.