

0

U

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN 1996

> APPENDICES VOLUME II OF II

WATER RESOURCE ALLOCATION AND PLANNING SERIES

WATER & RIVERS COMMISSION REPORT WRAP 4 1996

WATER & RIVERS COMMISSION Hyatt Centre 3 Plain Street East Perth Western Australia 6004 Telephone (09) 278 0300 Facsimilie (09) 278 0301

line .

All of

10000 - -

the second

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN 1996 APPENDICES VOLUME II OF II

Richard Forrest & Jade Coleman

Water and Rivers Commission Policy and Planning

WATER AND RIVERS COMMISSION WATER RESOURCE ALLOCATION & PLANNING SERIES REPORT NO WRAP 4 1996

Acknowledgements

I wish to thank the following people:

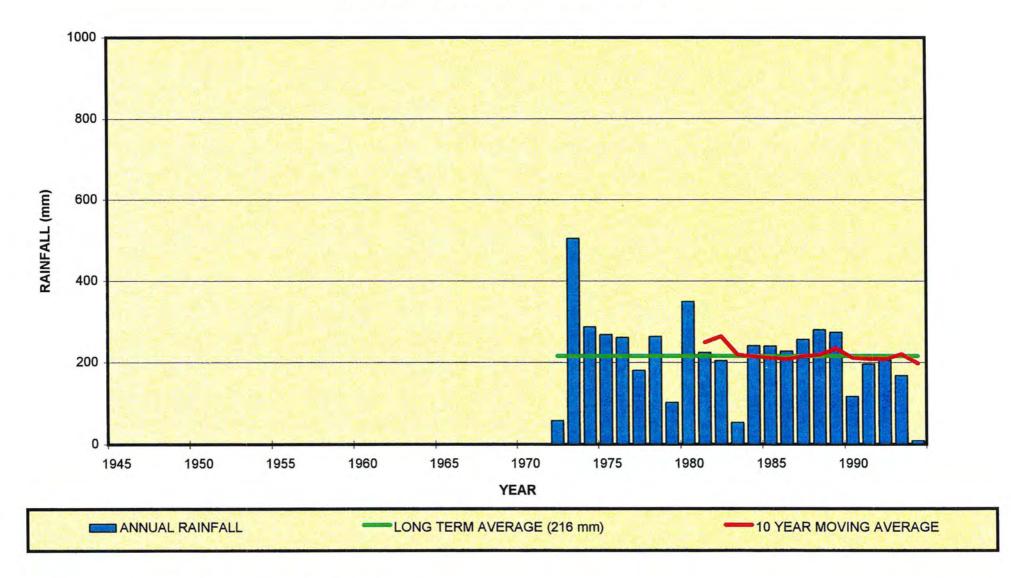
Peter Goodall, Jenny Hart, Gerry McCourt, Peter Van De Wyngaard and John Ruprecht of the Water and Rivers Commission, Robert Wark of Geo-Eng Australia and Vince Piper of AGC Woodward-Clyde.

Reference Details

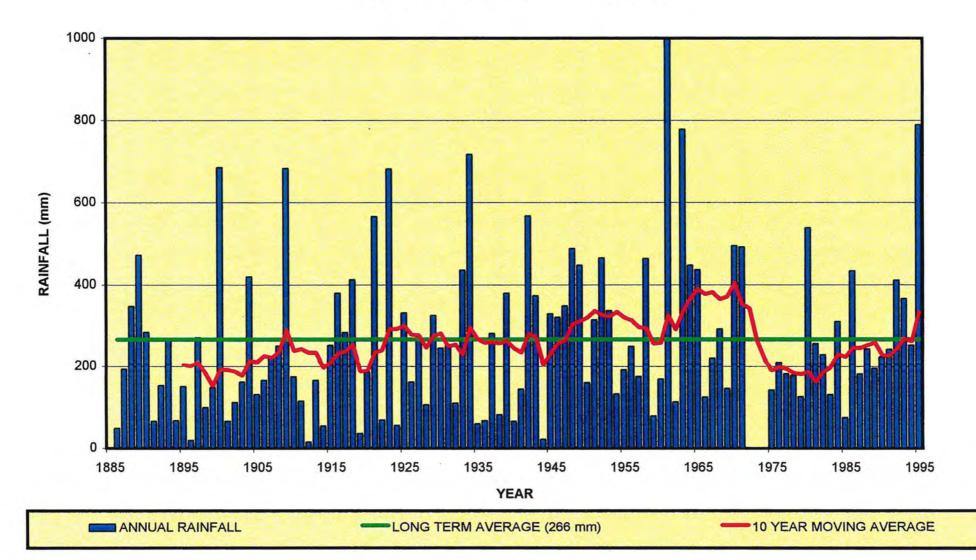
The recommended reference for this publication is: Water and Rivers Commission 1996, *Pilbara Region Water Resources Review and Development Plan Appendices Volume II of II*, Water and Rivers Commission, Water Resource Allocation & Planning Series No WRAP 4.

ISBN: 0-7309-7262-3

November, 1996


APPENDICES

Appendix 1:	Rainfall Information
Appendix 2:	Physiography and Geology
Appendix 3:	Surface Water Resources
Appendix 4:	Groundwater Resources
Appendix 5:	Environmental, Social, Cultural Values
Appendix 6:	Existing Town Water Supply Statistics
Appendix 7:	Water Entitlement Agreements
Appendix 8:	Department of Resources Development Potential Growth Scenarios
Appendix 9:	Existing Town Water Supply Schematics
Appendix 10:	Summary of the Region's Allocations and Demands


Appendix 1: Rainfall Information

- Figure A1. 1: Rainfall Histogram for Karratha
- Figure A1. 2: Rainfall Histogram for Onslow
- Figure A1. 3: Rainfall Histogram for Tom Price
- Figure A1. 4: Rainfall Histogram for Paraburdoo
- Figure A1. 5: Rainfall Histogram for Pannawonica
- Figure A1. 6: Rainfall Histogram for Port Hedland
- Figure A1. 7: Rainfall Histogram for Marble Bar
- Figure A1. 8: Rainfall Histogram for Nullagine
- Figure A1. 9: Rainfall Histogram for Wittenoom
- Figure A1. 10: Rainfall Histogram for Newman
- Figure A1. 11: Rainfall Histogram for Telfer

FIGURE A1.1: HISTOGRAM FOR KARRATHA

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

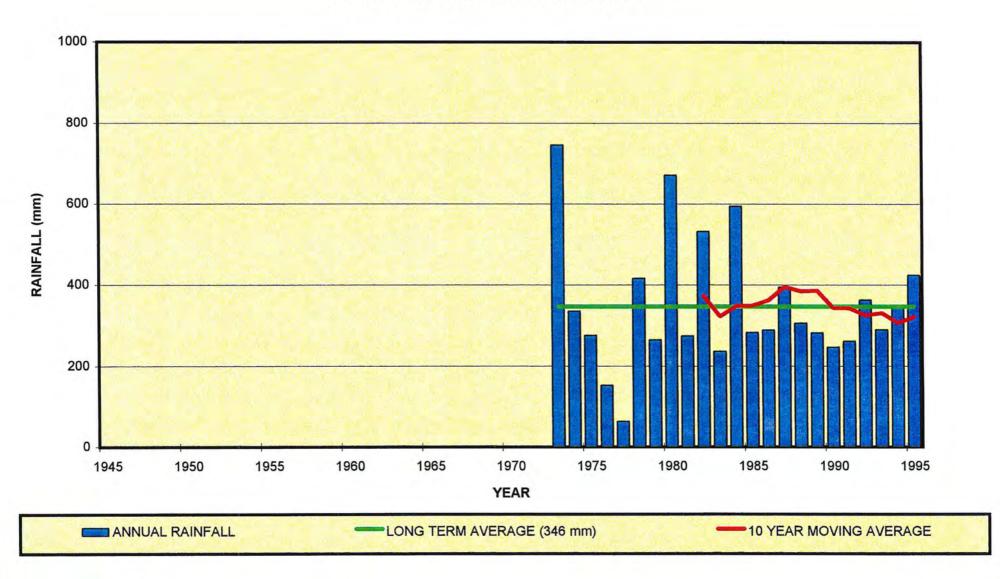


FIGURE A1.2: HISTOGRAM FOR ONSLOW

.


PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

FIGURE A1.3: HISTOGRAM FOR TOM PRICE

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

FIGURE A1.4: HISTOGRAM FOR PARABURDOO

APPENDIX 1

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

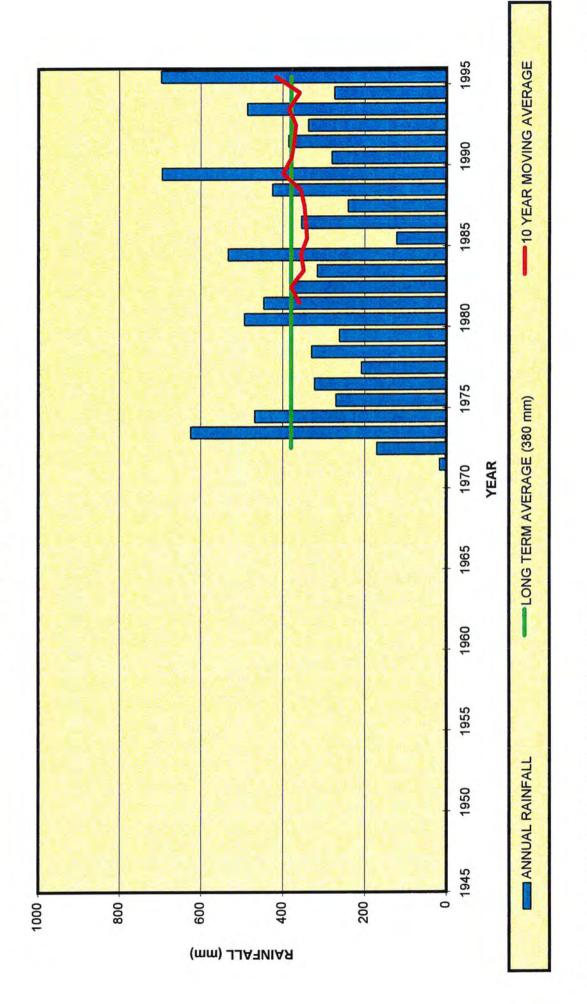
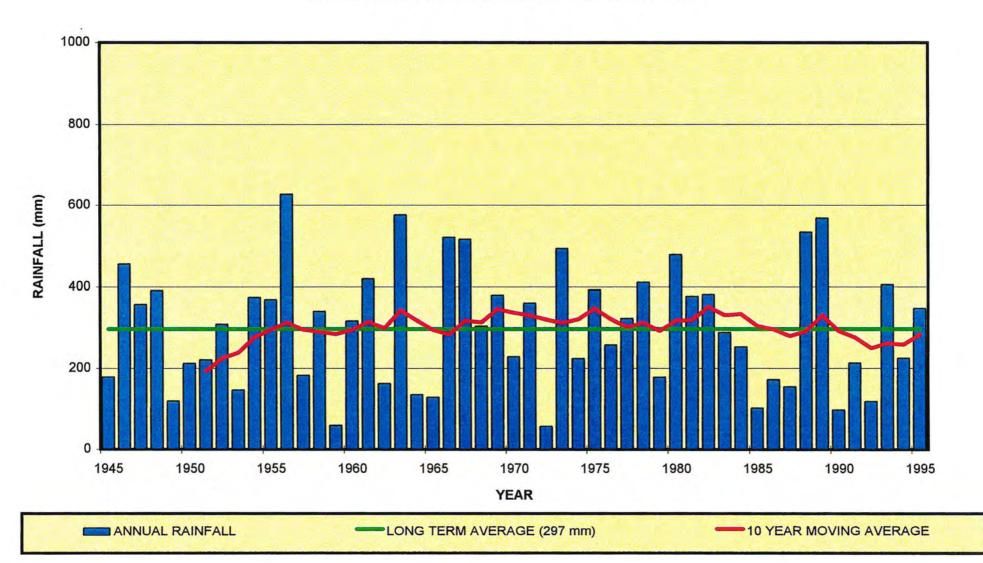
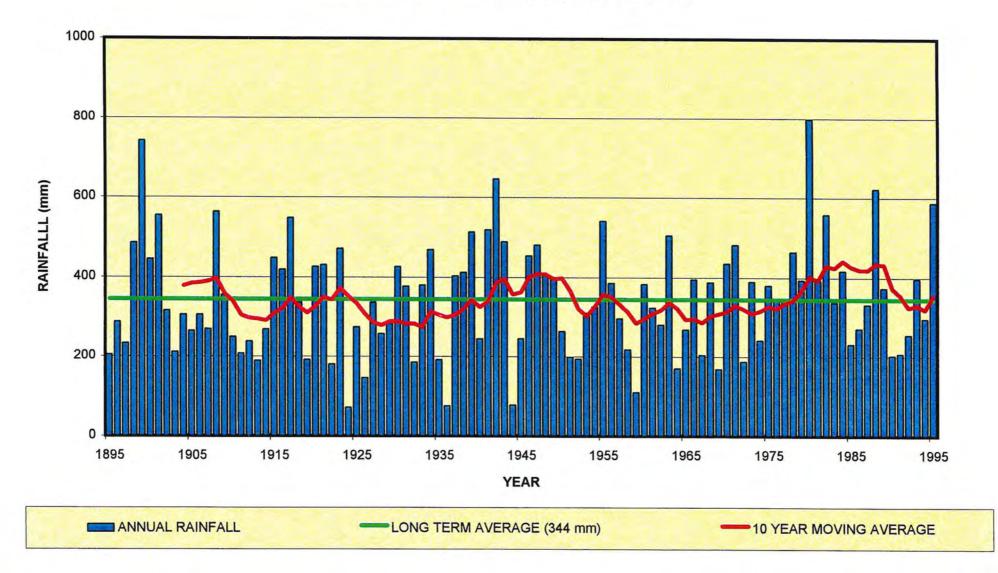




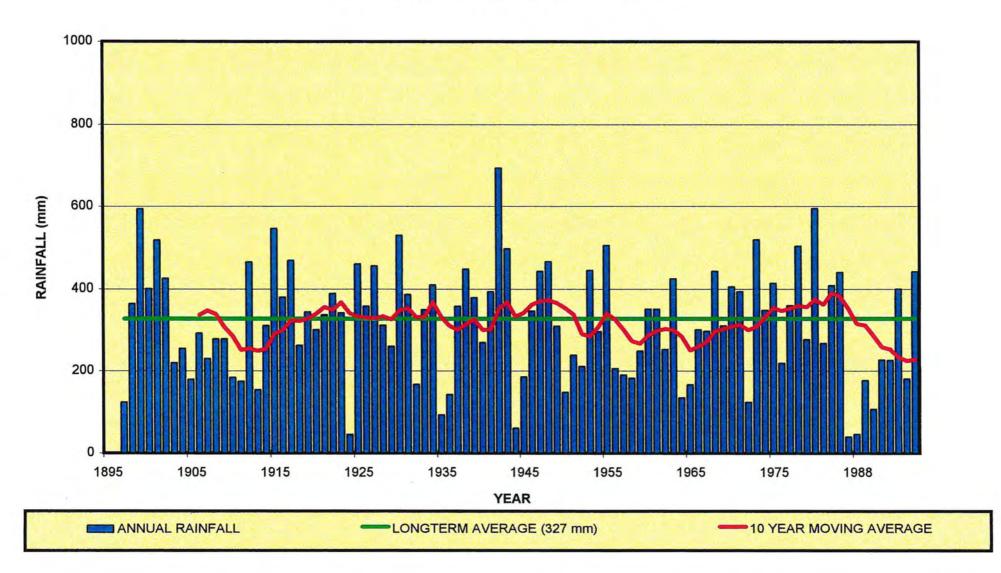
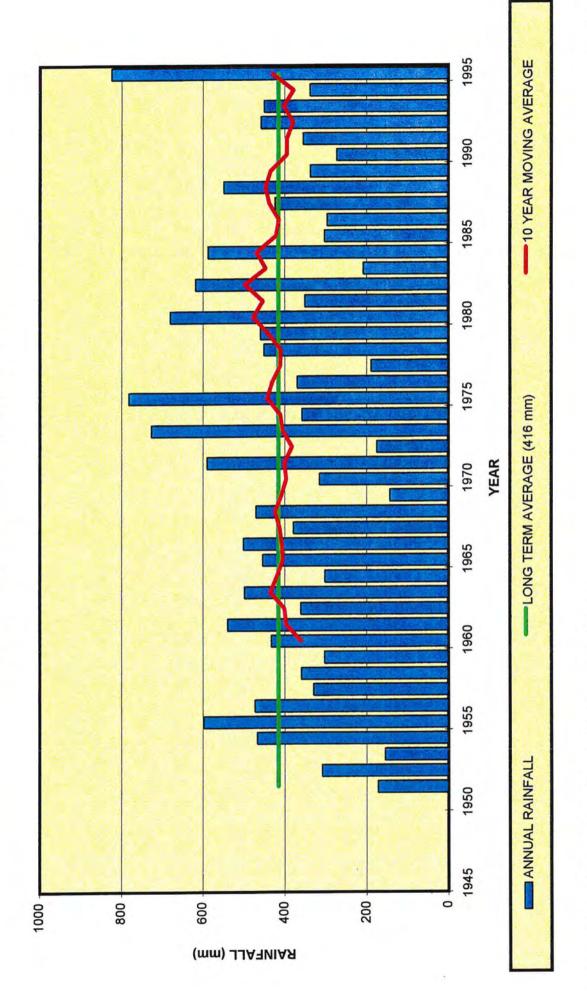
FIGURE A1.5: HISTOGRAM FOR PANNAWONICA

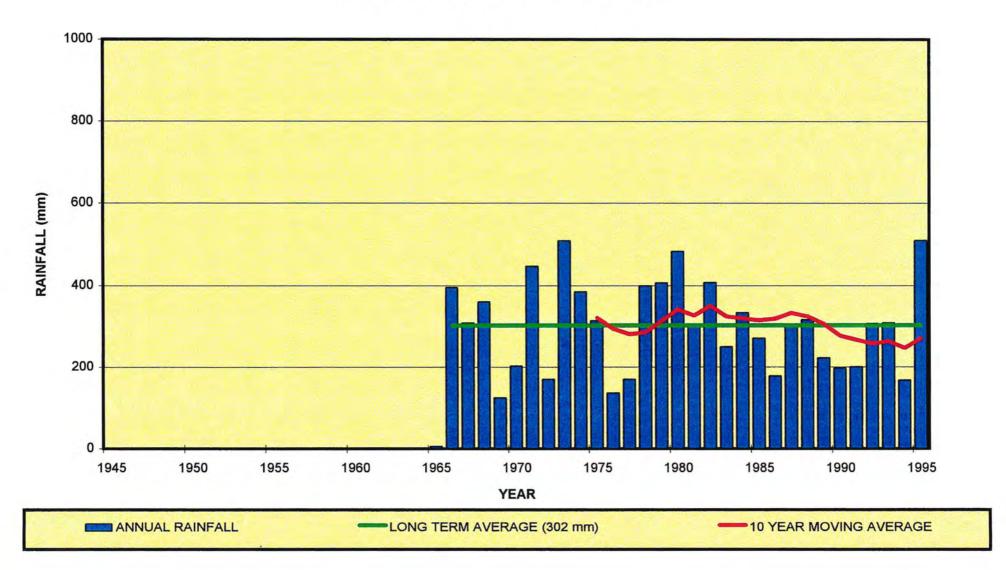
FIGURE A1. 6: HISTOGRAM FOR PORT HEDLAND

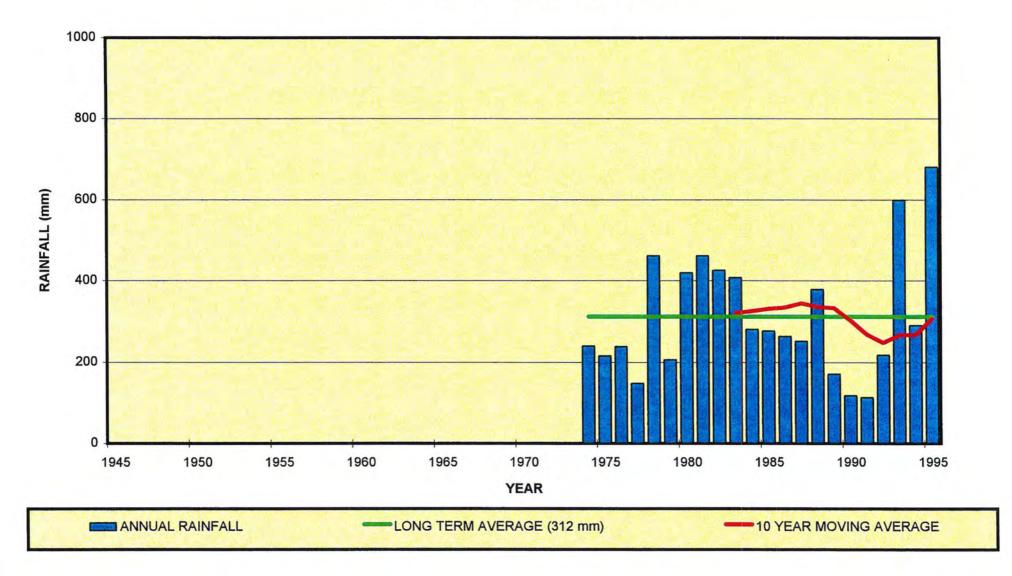
FIGURE A1.7: HISTOGRAM FOR MARBLE BAR

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

FIGURE A1.8: HISTOGRAM FOR NULLAGINE


FIGURE A1.9: HISTOGRAM FOR WITTENOOM


APPENDIX 1

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

FIGURE A1.10: HISTOGRAM FOR NEWMAN

FIGURE A1.11: HISTOGRAM FOR TELFER

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

Figure A2. 1: Physiographic Subdivisions of the Pilbara Region (modified after Beard, 1975)

Figure A2. 2: Major Geological Subdivisions of the Pilbara Region

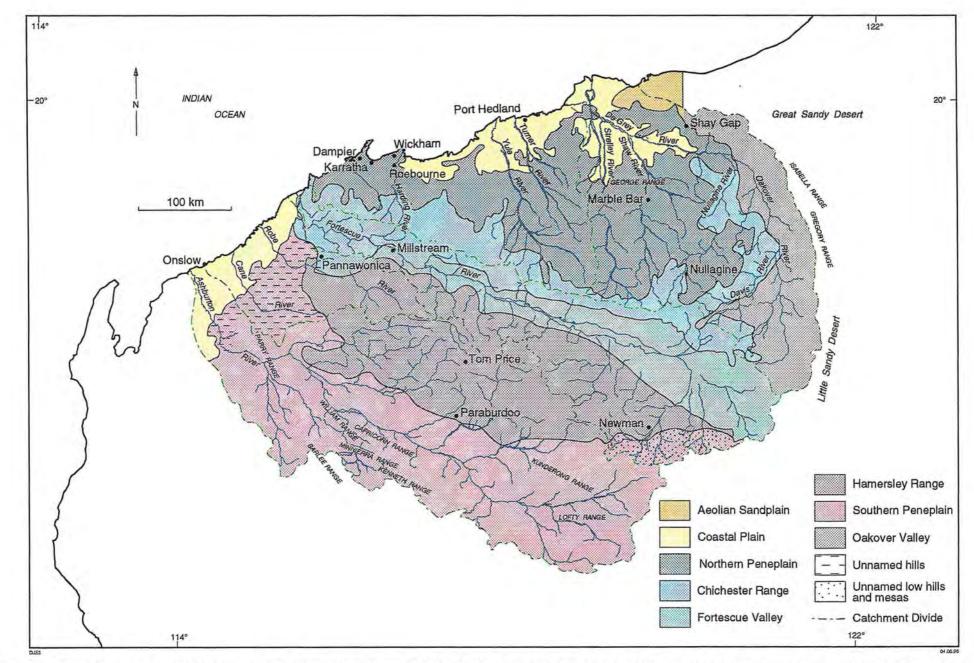


Figure A2.1:(source: Skidmore,1996) Physiographic Subdivisions at the Pilbara Region (modified after Beard, 1975).

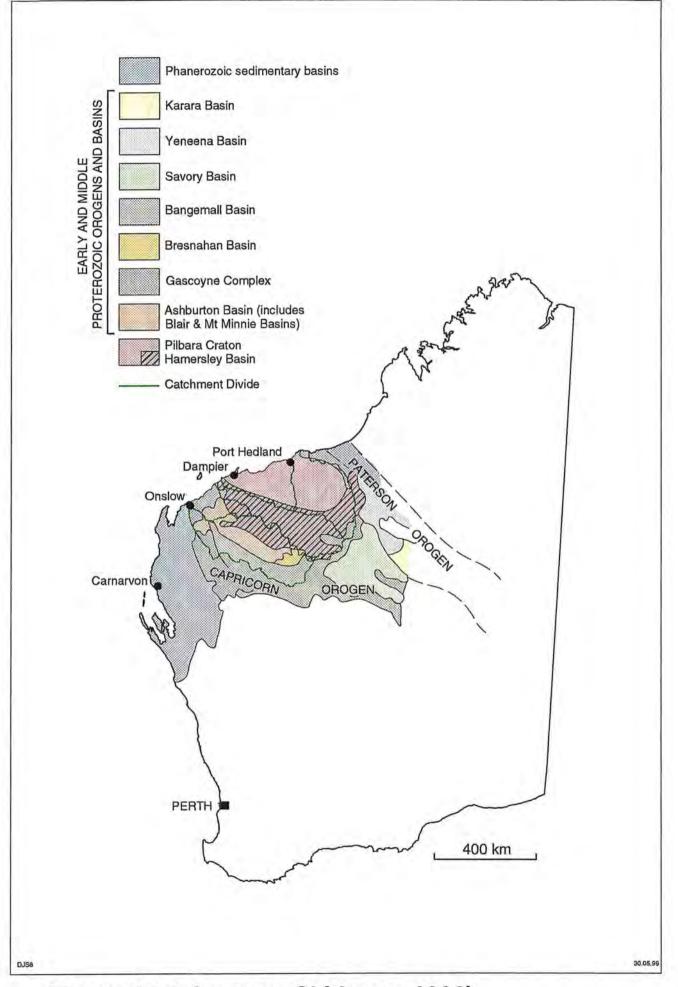


Figure A2.2:(source: Skidmore,1996) Major geological subdivisions of the Pilbara Region

Surface Water Source:

Ashburton River

River Basin: Ashburton

AWRC Basin No: 706

Location:	DS340 (Capricorn Range)	
	7 423 200 m N, 478 600 m E	

Catchment Details:

Area:	41400 km ²
Average rainfall:	375 mm/annum
Pan evaporation:	3400 - 3700 mm/annum
Alienated:	50%
Cleared:	No significant clearing.
Land use:	50% vacant Crown land and Reserves, 50% sheep and cattle grazing on pastoral leases.

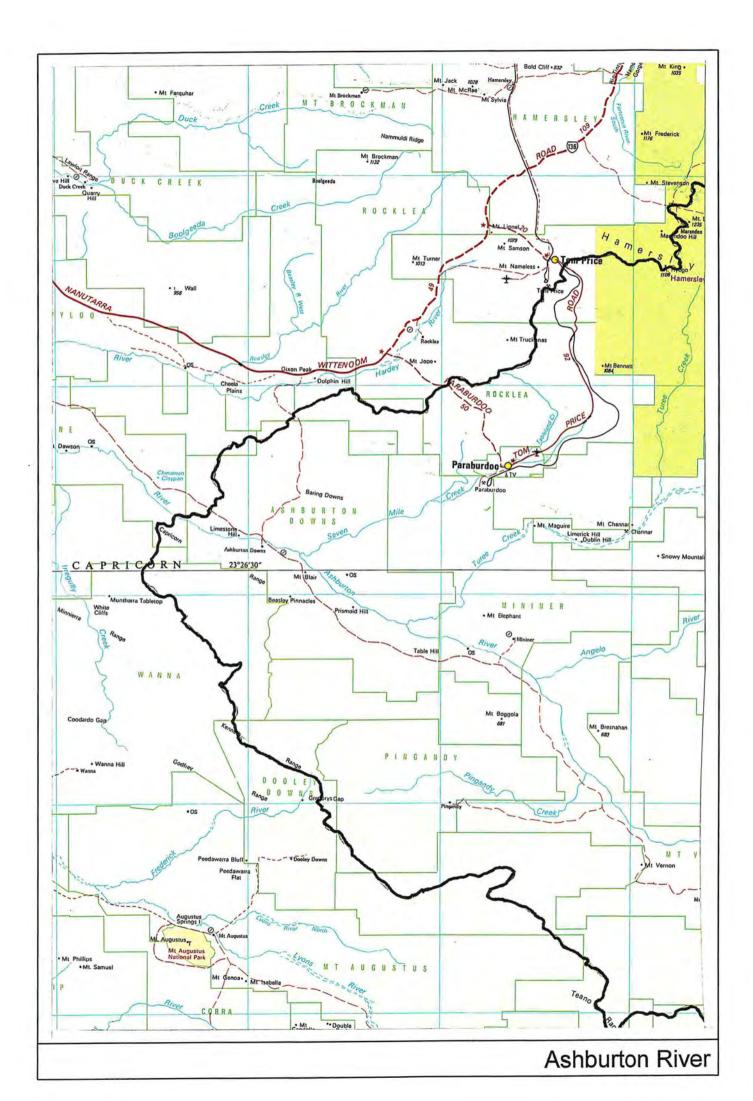
Mean Annual Flow (GL/year):	320
Estimated Divertible Yield (GL/year):	37

Water Quality:

Salinity:	Fresh.
Other significant parameters:	Turbidity high in high flow events.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.


Possible future uses:

Possible water supply for West Pilbara development. The potential yield is based on a single reservoir. Additional yield may be available if this site is used conjunctively with a groundwater source.

Factors (environmental, social and economic) which may affect future development:

Comments:

The reliability of estimated divertible flow is fair. Treatment for turbidity may be required.

Surface Water Source: Robe River

River Basin: Onslow Coast

AWRC Basin No: 707

Location: DS124 7 594 500 m N, 456 000 m E

Catchment Details:

Area:	3000 km ²
Average rainfall:	330 mm/annum
Pan evaporation:	3400 mm/annum
Alienated:	40%
Cleared:	No significant clearing, but some overgrazing along river frontage.
Land use:	60% vacant Crown land in ranges, 40% sheep and cattle on pastoral leases, some open cut ore mining.

Mean Annual Flow (GL/year):27Estimated Divertible Yield (GL/year):4

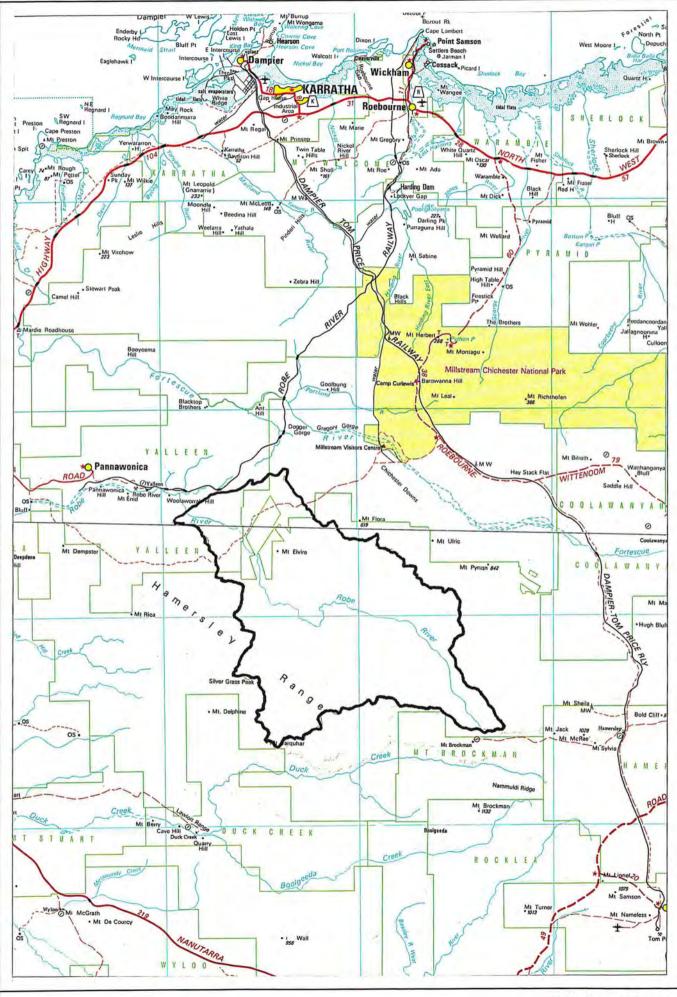
Water Quality:

Salinity:	Fresh.
Other significant parameters:	Turbidity high in high flow events.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.

Possible future uses:


Possible water supply for West Pilbara development.

Factors (environmental, social and economic) which may affect future development:

- 1. Aboriginals in the past have indicated they would not object to a dam being constructed.
- 2. Loss of extensive area of River Gum forest and woodland associated shrublands of the valley floor. Similar areas upstream and downstream of the reservoir would remain.
- 3. Loss of temporary pools in the reservoir area and reduction in flooding causing further reduction of temporary aquatic habitats downstream of the dam. However, these habitats, being temporary, do not have the biological value of pools on the Harding, Sherlock or Fortescue Rivers.

Comments:

The reliability of data for estimated divertible flows is poor. Treatment for turbidity may be required.

Robe River

Surface Water Source:

Robe River

River Basin: Onslow Coast

AWRC Basin No: 707

Location: DS154 7 577 000 m N, 474 300 m E

Catchment Details:

Area:	1970 km ²
Average rainfall:	330 mm/annum
Pan evaporation:	3400 mm/annum
Alienated:	60%
Cleared:	No significant clearing, but some overgrazing along river frontage.
Land use:	40% vacant Crown land in ranges, 60% sheep and cattle on pastoral leases.

Mean Annual Flow (GL/year):	
Estimated Divertible Yield (GL/year):	9

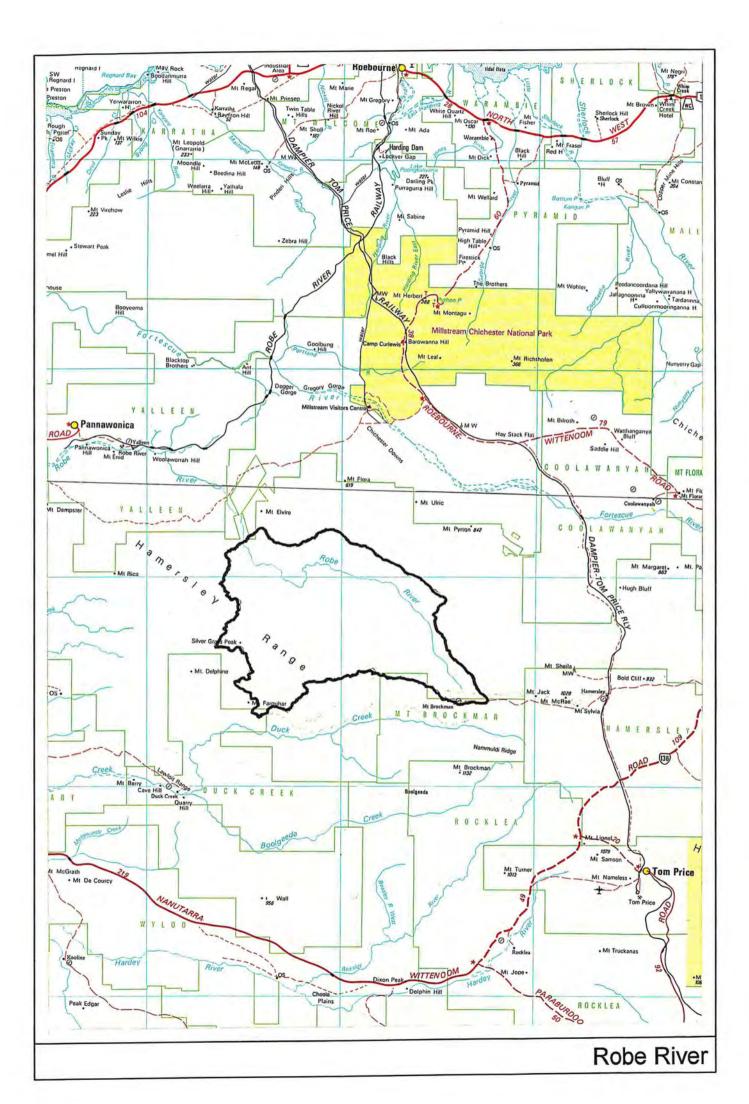
Water Quality:

Salinity: Other significant parameters:

Existing Developments:

WC:	
Other:	
Current	uses:

Possible future uses:


Possible water supply for West Pilbara development.

Factors (environmental, social and economic) which may affect future development:

The Robe River Catchment is the subject of extensive mining claims and these have a profound impact on the development of water resources.

Comments:

The reliability of data for the mean annual flow and estimated divertible flow is poor.

Surface Water Source: Kumina Creek

River Basin: Onslow Coast

AWRC Basin No: 707

Location: DS20 7 588 200 m N, 482 300 m E

Catchment Details:

Area:	506 km ²
Average rainfall:	330 mm/annum
Pan evaporation:	3400 mm/annum
Alienated:	60%
Cleared:	No significant clearing, but some overgrazing along river frontage.
Land use:	40% vacant Crown land in ranges, 60% sheep and cattle on pastoral leases.
Pan evaporation: Alienated: Cleared:	 3400 mm/annum 60% No significant clearing, but some overgrazing along river frontage. 40% vacant Crown land in ranges, 60% sheep and cattle on

Mean Annual Flow (GL/year):	2.5
Estimated Divertible Yield (GL/year):	0

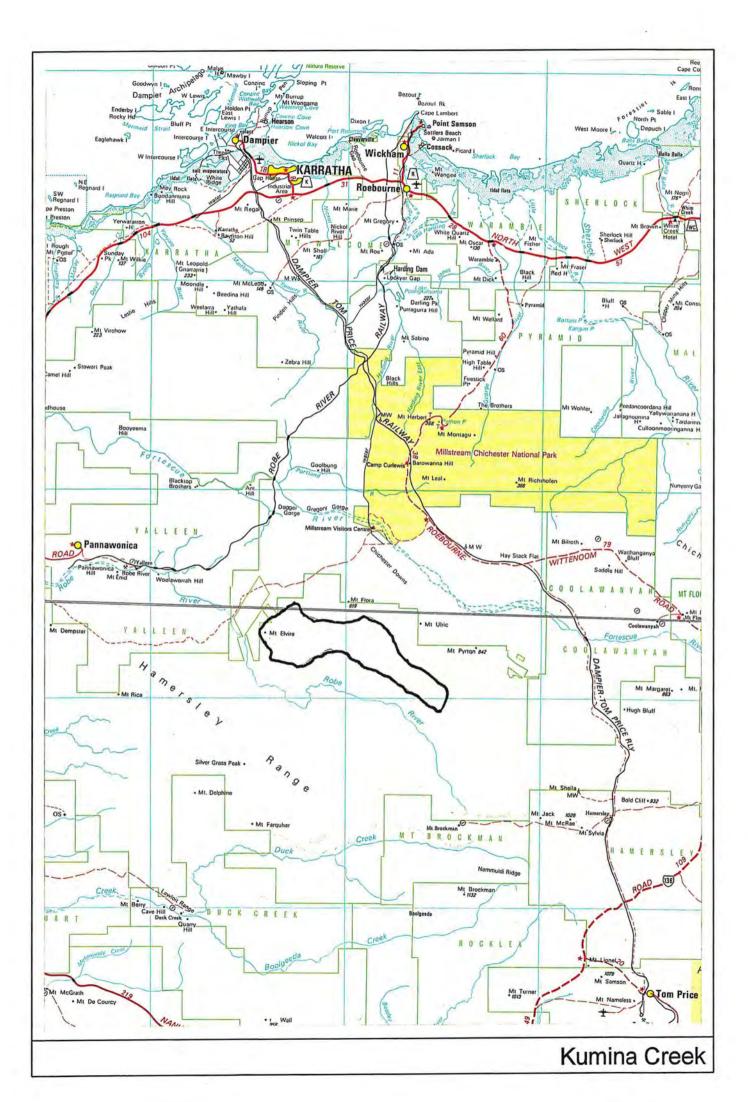
Water Quality:

Salinity: Other significant parameters:

Existing Developments:

WC:	
Other:	
Current	uses:

Possible future uses:


Possible water supply for West Pilbara development.

Factors (environmental, social and economic) which may affect future development:

The base of the Hamersley Ranges, between Kumina Creek and Robe River, is the subject of a State Agreement mining tenement associated with the Robe River Mining operation.

Comments:

The reliability of data for estimated divertible flows is poor.

Surface Water Source: Cane River

River Basin: Onslow Coast

AWRC Basin No: 707

Location: DS74 7 559 000 m N, 358 000 m E

Catchment Details:

Area:	2290 km ²
Average rainfall:	330 mm/annum
Pan evaporation:	3400 mm/annum
Alienated:	
Cleared:	
Land use:	

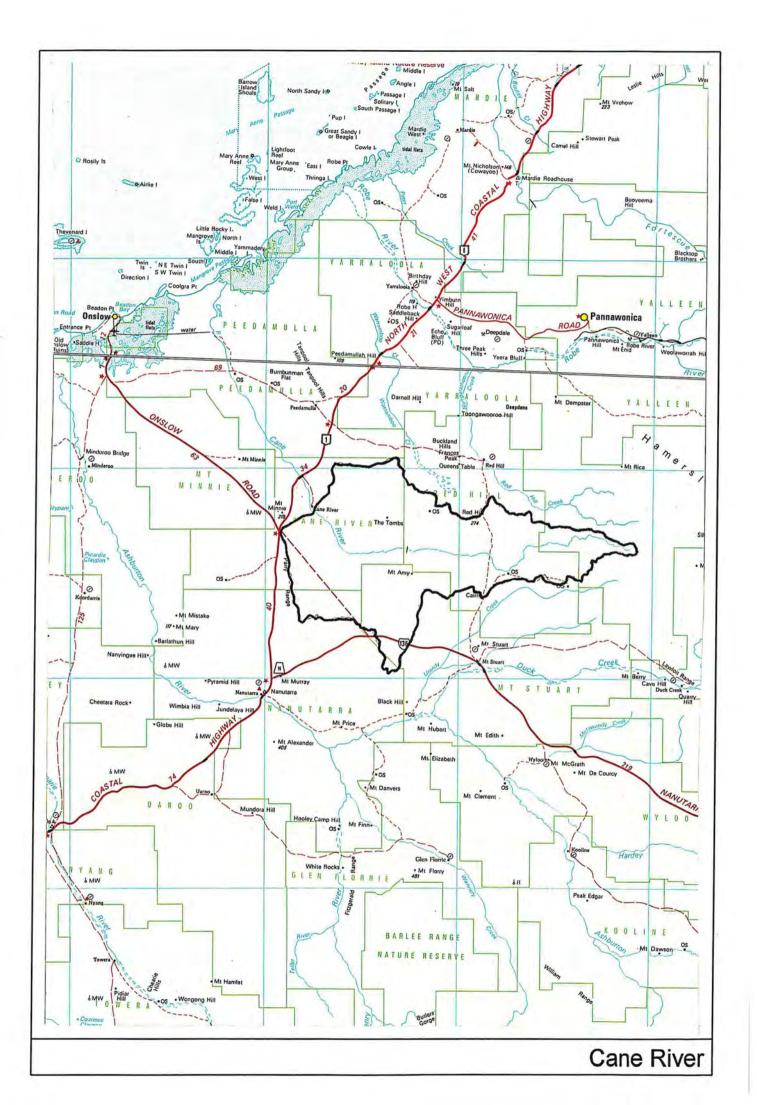
Mean Annual Flow (GL/year):	
Estimated Divertible Yield (GL/year):	6

Water Quality:

Salinity:	150 mg/L TSS.
Other significant parameters:	Turbidity high in high flow events.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.


Possible future uses:

Conjunctive use by artificial recharge with a groundwater resource may be a possibility, but no firm options have been identified, even though the coastal areas have been indicated as being prospective for groundwater developments.

Factors (environmental, social and economic) which may affect future development:

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is fair. Treatment for turbidity may be required. Surface source will need to be developed taking into account the impact on the groundwater source.

Surface Water Source: Cane River

River Basin: Onslow Coast

AWRC Basin No: 707

Location: DS114 7 546 000 m N, 389 000 m E

Catchment Details:

Area:	817 km ²
Average rainfall:	330 mm/annum
Pan evaporation:	3400 mm/annum
Alienated:	
Cleared:	
Land use:	

Mean Annual Flow (GL/year):	18
Estimated Divertible Yield (GL/year):	3

Water Quality:

Salinity:	150 mg/L TSS.
Other significant parameters:	Turbidity high in high flow events.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.


Possible future uses:

Conjunctive use by artificial recharge with a groundwater resource may be a possibility, but no firm options have been identified, even though the coastal areas have been indicated as being prospective for groundwater developments.

Factors (environmental, social and economic) which may affect future development:

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is fair. Treatment for turbidity may be required. Surface source will need to be developed taking into account the impact on the groundwater source.

Surface Water Source: Fortescue River

River Basin: Fortescue

AWRC Basin No: 708

Location: Opthalmia Dam

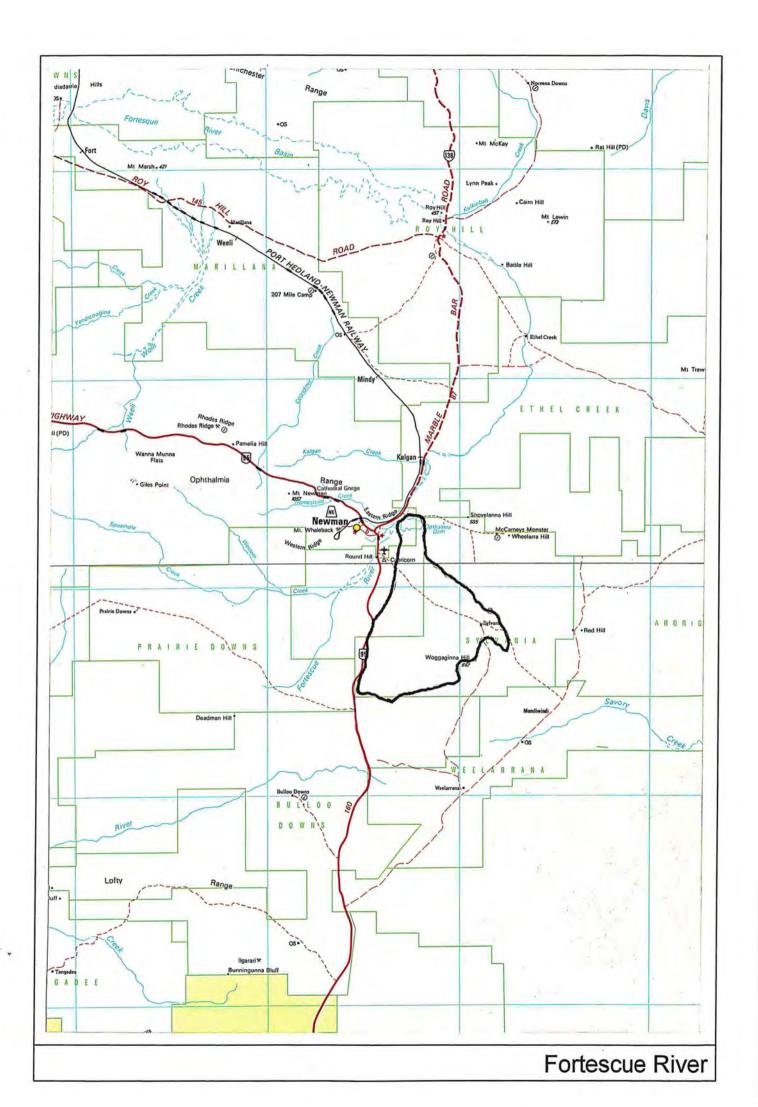
Catchment Details:

Area:	4200 km ²
Average rainfall:	300 mm/annum
Pan evaporation:	3600 mm/annum
Alienated:	50%
Cleared:	No significant clearing, some overgrazing along river
	frontages.
Land use:	About 50% vacant Crown Land, 50% cattle and sheep grazing
	on pastoral leases, some open cut ore mining.

Mean Annual Flow (GL/year):31Estimated Divertible Yield (GL/year):10

Water Quality:

Salinity: Other significant parameters:


Existing Developments:

WC: Other: Current uses: aquifer recharge.

Possible future uses:

Factors (environmental, social and economic) which may affect future development:

Comments:

Surface Water Source:

Fortescue River

River Basin: Fortescue

AWRC Basin No: 708

Location:	DS48 (Bullinnarwa)	
	7 635 200 m N, 414 500 m E	

Catchment Details:

Area:	18 500 km ² (for 1 in 100 year flood the area is 50 200 km ²)
Average rainfall:	250 - 350 mm/annum
Pan evaporation:	3400 - 3800 mm/annum
Alienated:	60%
Cleared:	No significant clearing, but some overgrazing of river frontages.
Land use:	40% vacant Crown land and Reserves, 60% cattle and sheep on pastoral leases.

Mean Annual Flow (GL/year):	200
Estimated Divertible Yield (GL/year):	54

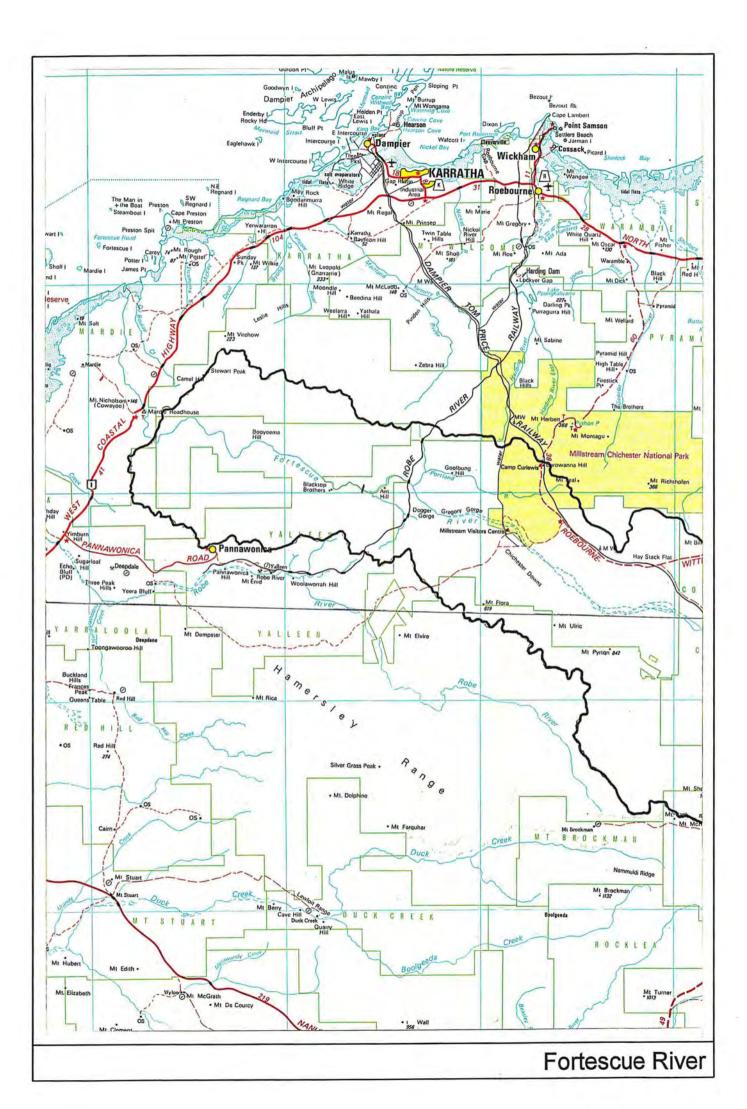
Water Quality:

Salinity:	Fresh.
Other significant parameters:	Turbidity high in high flow events.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.

Possible future uses:


Possible water supply for West Pilbara development.

Factors (environmental, social and economic) which may affect future development:

- 1. Possible Aboriginal sites.
- 2. Construction of a dam at Bullinnarwa would have an impact on the environment.

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is good. Treatment for turbidity may be required. A dam on the Fortescue River, at Bullinnarwa, could be used in isolation, without groundwater augmentation.

Surface Water Source: Fortescue River

River Basin: Fortescue

AWRC Basin No: 708

Location: DS123 (Booyeemala) 7 622 400 m N, 471 000 m E

Catchment Details:

16 200 km ²
250 - 350 mm/annum
3400 - 3800 mm/annum
60%
No significant clearing, but some overgrazing of river frontages.
40% vacant Crown land and Reserves, 60% cattle and sheep on pastoral leases.

Mean Annual Flow (GL/year):	147
Estimated Divertible Yield (GL/year):	42

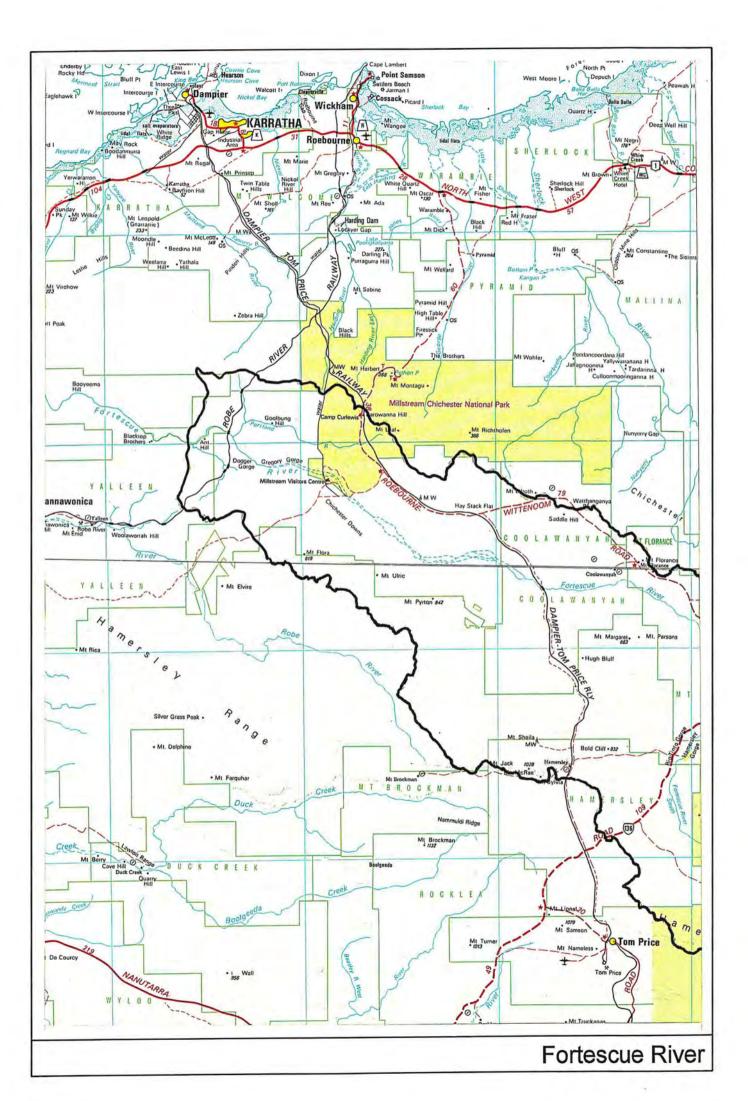
Water Quality:

Salinity:	Fresh.
Other significant parameters:	Turbidity high in high flow events.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.

Possible future uses:


Possible water supply for West Pilbara development.

Factors (environmental, social and economic) which may affect future development:

- 1. The biological impact (the loss of riverine vegetation and permanent pool ecosystems) would be small in relation to those of most other reservoirs.
- 2. There would be an adverse impact on aquatic ecosystems located downstream of the dam. However, the severity of this impact could be reduced, if necessary, by controlled release of water from the reservoir.
- 3. Loss of numerous Aboriginal engravings and development within the area of the "ancestral route" which is an important feature of the mythology of traditional Aborigines. However, the reservoir would not affect any known sacred sites.
- 4. The reservoir would constitute a new tourist attraction and potential recreational resource.

Comments:

The reliability of estimated divertible flow is good. Treatment for turbidity may be required. A dam at Booyeemala could be used as an independent water supply.

Surface Water Source: Yule River

River Basin: Port Hedland Coast

AWRC Basin No: 709

Location: DS95 (Kangan Pool) 7 664 000 m N, 651 000 m E

Catchment Details:

Area:	7830 km ²
Average rainfall:	300 mm/annum
Pan evaporation:	3500 - 3700 mm/annum
Alienated:	70%
Cleared:	No significant clearing, but some overgrazing of native vegetation along river frontages.
Land use:	30% vacant Crown land and Reserves, 70% cattle and sheep on pastoral leases.

Mean Annual Flow (GL/year):	184
Estimated Divertible Yield (GL/year):	8.0

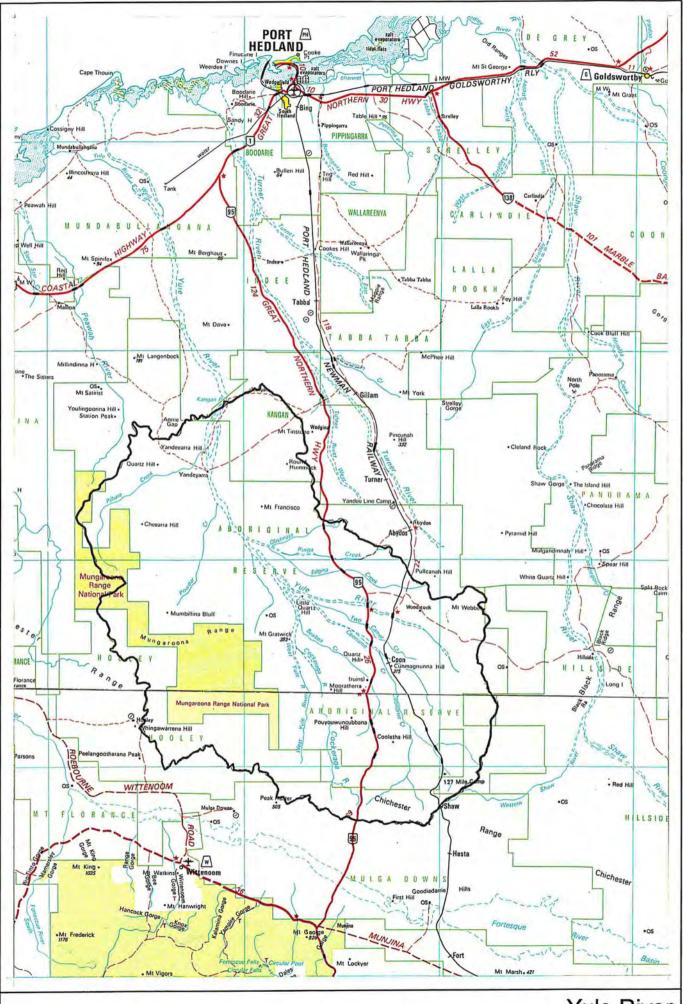
Water Quality:

Salinity:	Fresh.
Other significant parameters:	Turbidity high in high flow events.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.

Possible future uses:


- 1. The main value of the storage will be its ability to recharge the major groundwater aquifer downstream of the site.
- 2. Water could be pumped on for the recharge of the Turner River aquifers.

Factors (environmental, social and economic) which may affect future development:

- 1. The permanent pool at the site has always been a haven for bird and animal life and the pool itself is usually well stocked with fish.
- 2. A major alluvial gold mining operation has been operating in the area.
- 3. The catchment for the storage lies in the immediate locality of the Yandearra Aboriginal Community who have a strong interest in the area.

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is fair. Treatment for turbidity may be required. Additional divertible yield may be possible if this source is developed conjunctively with groundwater.

Yule River

Sherlock River

River Basin: Port Hedland Coast

AWRC Basin No: 709

Location:	DS48 (Kangan Pool)
	7 667 000 m N, 565 500 m E

Catchment Details:

Area:	4140 km ²
Average rainfall:	300 mm/annum
Pan evaporation:	3500 - 3600 mm/annum
Alienated:	
Cleared:	
Land use:	

Mean Annual Flow (GL/year):	172
Estimated Divertible Yield (GL/year):	8.3

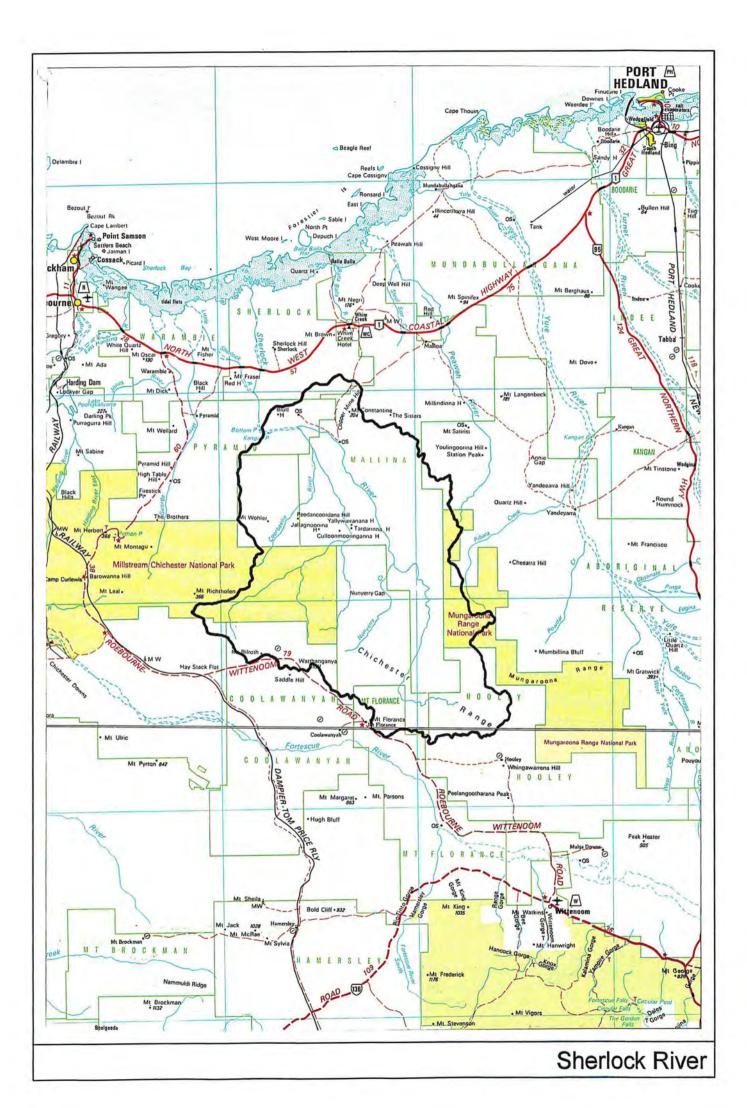
Water Quality:

Salinity:	Fresh.
Other significant parameters:	Highly variable, improves dramatically at high
	flows.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.

Possible future uses:


This site, in conjunction with the Nunyerry storage, is very promising as a conjunctive use option for supply to the West Pilbara independently of the Harding/Millstream system.

Factors (environmental, social and economic) which may affect future development:

- 1. Loss of extensive areas of River Gum forests and woodlands adjacent to the Sherlock River and its tributaries. However, this vegetation is well represented outside the reservoir limits.
- 2. Loss of temporary pools, one of which is an important habitat for water birds. The permanent pools would not be inundated.
- 3. There is a relatively high risk of eutrophic conditions developing in the Sherlock Reservoir.
- 4. The area of inundation would be 102 km² at FSL. During periods when the water level is low large areas of the reservoir bed will be exposed.
- 5. The reservoir will provide an unsuitable habitat for many of the existing aquatic species.
- 6. Inundation of several Aboriginal habitation sites and at least one ceremonial site.
- 7. Loss of approximately 9% of the grazing land of Pyramid Station.

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is fair. Treatment for turbidity may be required. Additional divertible flow of approximately 20 GL available if used in conjunction with another source. A dam on the Sherlock River at Kangan Pool could not be used as an independent source.

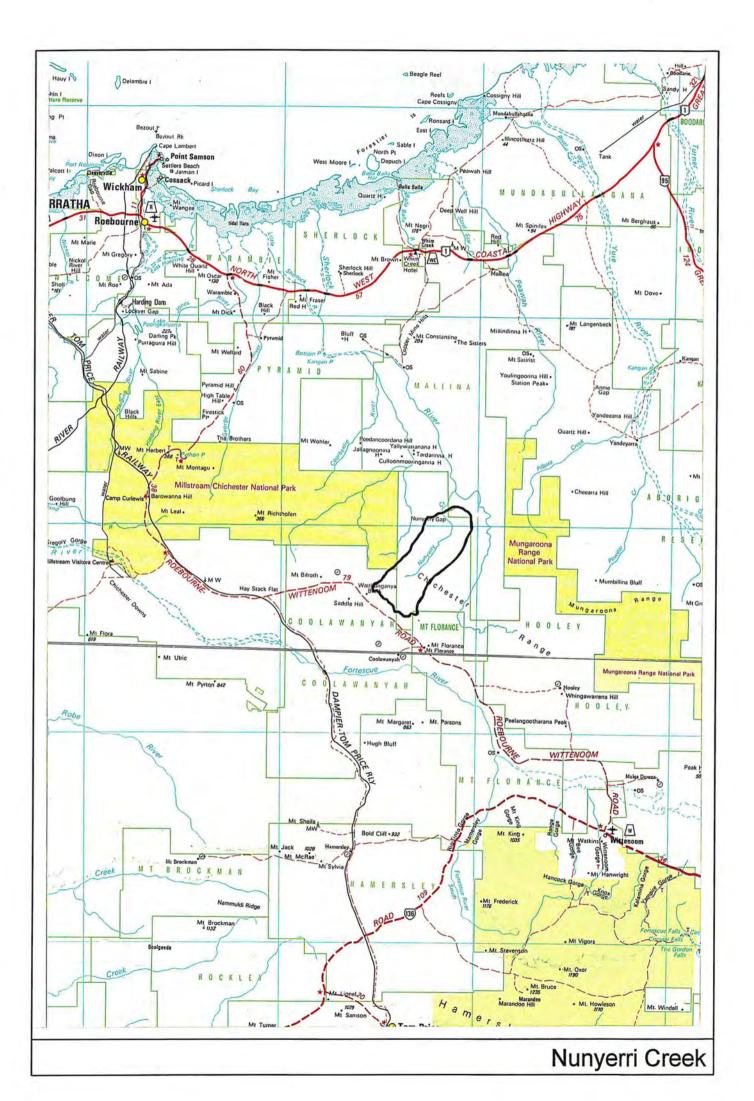
Nunyerry Creek

River Basin: Port Hedland Coast AWRC Basin No: 7		AWRC Basin No: 709	
Location:	DS9 7 624 500 m	N, 595 000 m E	
Catchment Details: Area: Average rainfall: Pan evaporation: Alienated: Cleared: Land use:			
Mean Annual Flow (0 Estimated Divertible `	• •	10): 5	
Water Quality: Salinity: Other significant p	arameters:	Fresh. Highly variable, impr flows.	oves dramatically at high
Existing Developme WC: Other:	ents: None. None.		

Possible future uses:

None.

Current uses:


This site, in conjunction with the Sherlock storage, is very promising as a conjunctive use option for supply to the West Pilbara independently of the Harding/Millstream system.

Factors (environmental, social and economic) which may affect future development:

- 1. Loss of vegetation including riverine River Gum woodlands and shrublands. Larger areas of the vegetation types would remain upstream and downstream of the reservoir and along other creeks in the region.
- 2. Loss of temporary pools and one permanent pool. However, such habitats are widespread in the region. There would also be some threat to the more biologically valuable pool at Ellawarrina Spring if the reservoir was to lead to tourist usage of that area.
- 3. Development of the reservoir would have beneficial impacts both as a tourist and recreational site and as a new aquatic habitat. In this latter respect, its stability compared to other reservoirs under consideration would make it more biologically valuable, especially for migratory birds.

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is fair. Treatment for turbidity may be required. The estimated divertible yield can be increased by 17 GL if used in conjunction with Sherlock River - Kangan Pool and another source.

Munni Munni Creek

River Basin: Port Hedland Coast

AWRC Basin No: 709

Location: DS15 7 664 400 m N, 483 500 m E

Catchment Details:

Area:	574 km ² (assumes the Maitland River is also dammed where the catchment boundary for Munni Munni Creek is close to Maitland Binar)
	Maitland River).
Average rainfall:	300 mm/annum
Pan evaporation:	3500 - 3600 mm/annum
Alienated:	
Cleared:	
Land use:	

Mean Annual Flow (GL/year):	20
Estimated Divertible Yield (GL/year):	1.5

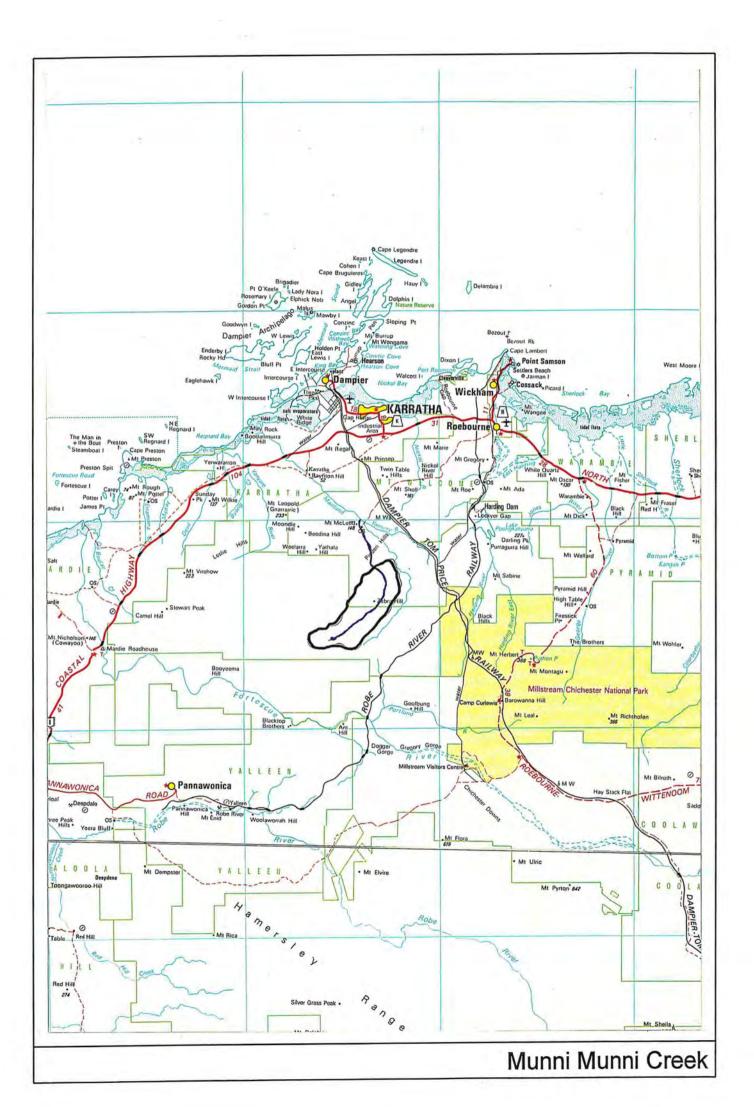
Water Quality:

Salinity: Other significant parameters:

Existing Developments:

WC: Other: Current uses:

Possible future uses:


Possible water supply for West Pilbara development.

Factors (environmental, social and economic) which may affect future development:

- 1. Possible Aboriginal sites in the area.
- 2. The construction of a dam on Munni Munni Creek and the low barrage structure across the Maitland River would have an environmental impact in the area.
- 3. The area has a large number of well developed petroglyphs.

Comments:

The reliability of data for mean annual flow and estimated divertible flow is poor. A water supply on Munni Munni Creek could not be used as an independent source because yield from the catchment is not reliable on an annual basis.

Harding River

River Basin: Port Hedland Coast

AWRC Basin No: 709

Location: Harding Dam

Catchment Details:

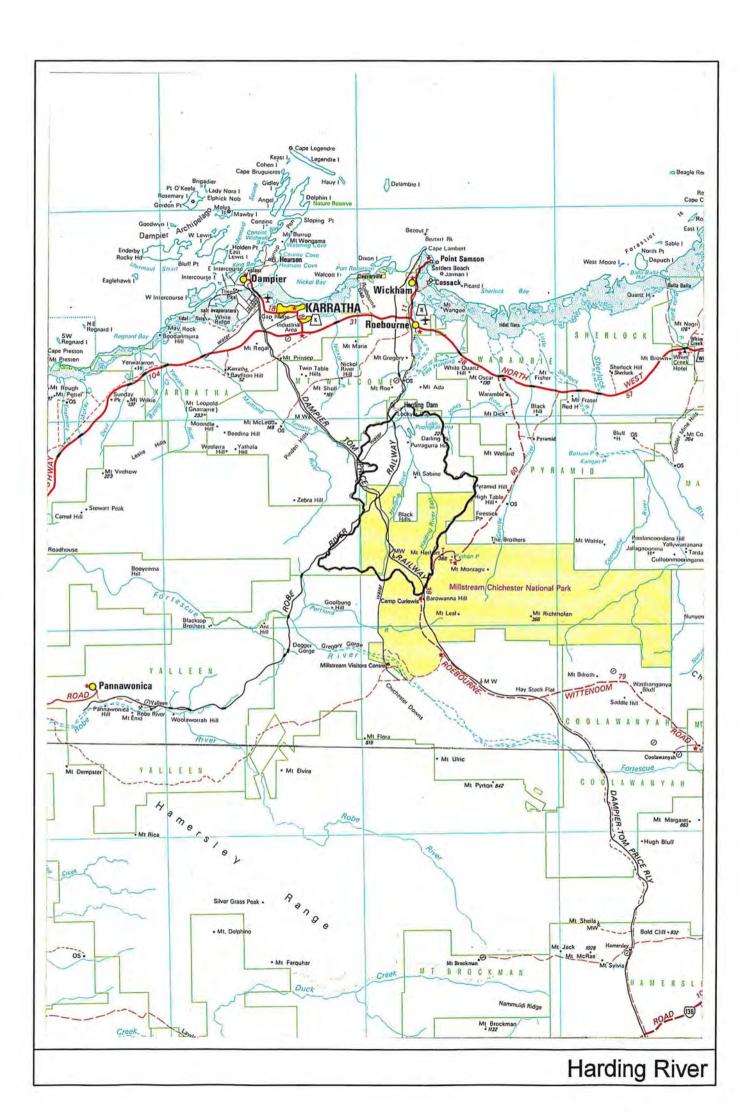
Area:	1020 km ²
Average rainfall:	330 mm/annum
Pan evaporation:	3400 mm/annum
Alienated:	50%
Cleared:	No significant clearing, but considerable over grazing on valley plains.
Land use:	About 50% in National Park, remainder sheep and cattle grazing on pastoral leases.

Mean Annual Flow (GL/year):	38
Estimated Divertible Yield (GL/year):	15

Water Quality:

Salinity: Other significant parameters:

Existing Developments:


WC: Other: Current uses: West Pilbara Water Supply Scheme.

Possible future uses:

Factors (environmental, social and economic) which may affect future development:

Comments:

The reliability of data for mean annual flow and estimated divertible flow is good.

Surface Water Source: Shaw River

River Basin: DeGrey

AWRC Basin No: 710

Location:	DS88 (North Pole)		
	7 665 600 m N, 740 500 m E		

Catchment Details:

6500 km ²
250 - 350 mm/annum
3600 mm/annum
65%
No significant clearing, but some overgrazing along valley plains.
35% vacant Crown land and Reserves, 65% cattle and sheep on pastoral leases.

Mean Annual Flow (GL/year):	180
Estimated Divertible Yield (GL/year):	80

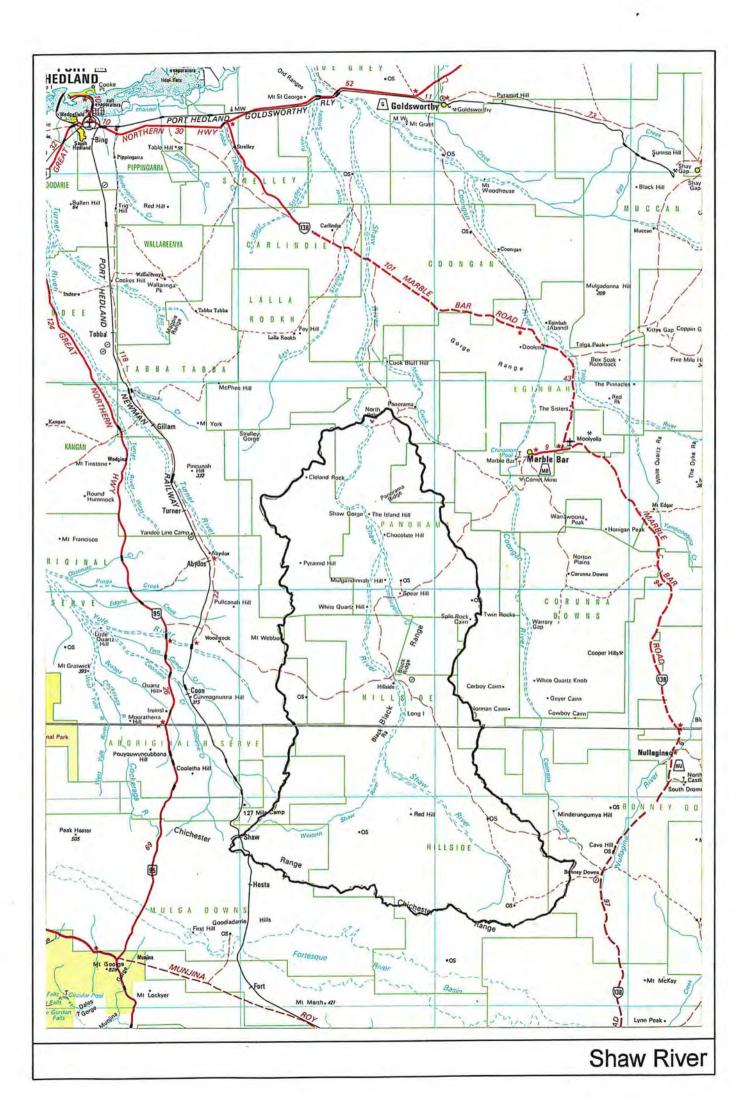
Water Quality:

Salinity:	Fresh.
Other significant parameters:	Highly variable, improves at high flows.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.

Possible future uses:


The North Pole dam must be one of the best potential sources of water in the Pilbara and must be considered as a prime source of water for developments in Port Hedland.

Factors (environmental, social and economic) which may affect future development:

Current mining claims overly the North Pole dam site.

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is fair. Treatment for turbidity may be required.

Surface Water Source: Coongan River

River Basin: DeGrey

AWRC Basin No: 710

Location:	DS54 (Doolena Gap)
	7 683 200 m N, 789 800 m E

Catchment Details:

4310 km ²
300 mm/annum
3600 mm/annum
60%
No significant clearing, but some overgrazing along valley plains.
Part vacant Crown land and Reserves, mostly cattle and sheep on pastoral leases (60%).

Mean Annual Flow (GL/year):	130
Estimated Divertible Yield (GL/year):	15

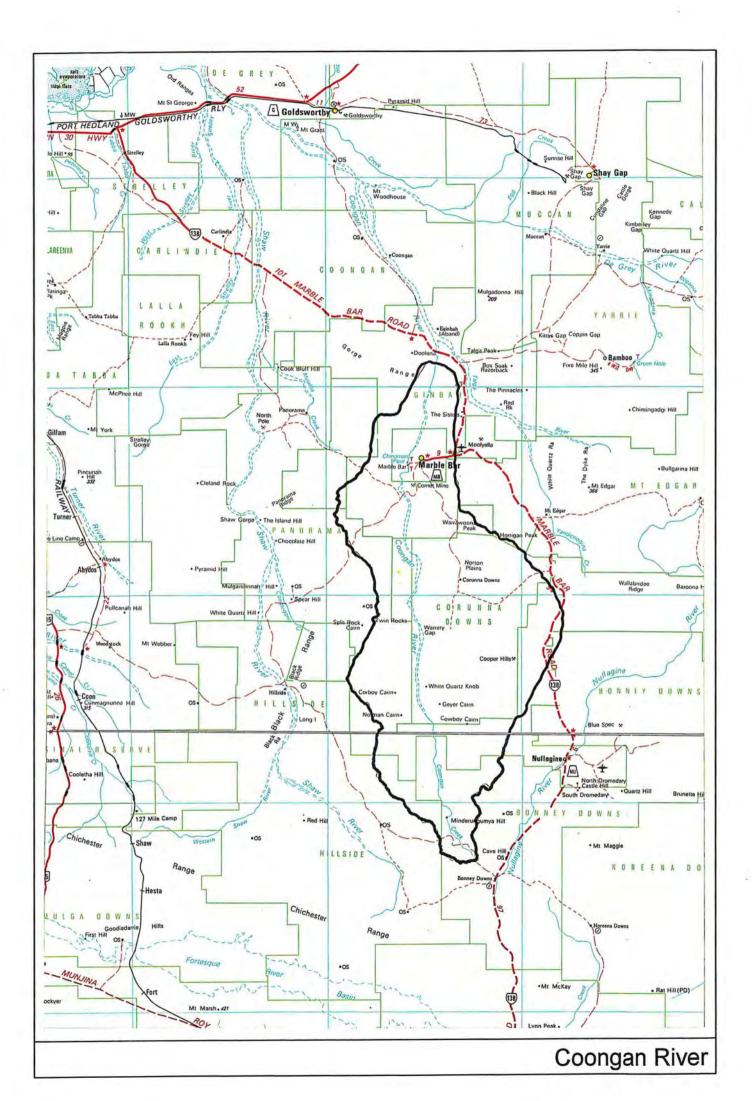
Water Quality:

Salinity: Other significant parameters:

Existing Developments:

WC:	
Other:	
Current	uses:

Possible future uses:


Possible water supply for the Port Hedland Scheme.

Factors (environmental, social and economic) which may affect future development:

- 1. The abandoned Talga Talga mining centre lies close to the dam site and there was a small lead mine to the west.
- 2. Sills of ultra basic rock of a type favourable for nickel deposits are known in the area.
- 3. The granting of mining tenements over some of these areas where they encroach on possible dam and reservoir sites has been a cause of concern in the past.

Comments:

The reliability of data for the mean annual flow and estimated divertible flow is poor.

Surface Water Source: Coongan River

River Basin: DeGrey

AWRC Basin No: 710

Location:	DS85 (Marble Bar)
	7 653 400 m N, 781 500 m E

Catchment Details:

Area:	3800 km ²
Average rainfall:	250 - 350 mm/annum
Pan evaporation:	3700 mm/annum
Alienated:	60%
Cleared:	No significant clearing, but some overgrazing along valley plains.
Land use:	Part vacant Crown land and Reserves, mostly cattle and sheep on pastoral leases (60%).

Mean Annual Flow (GL/year):	110
Estimated Divertible Yield (GL/year):	26

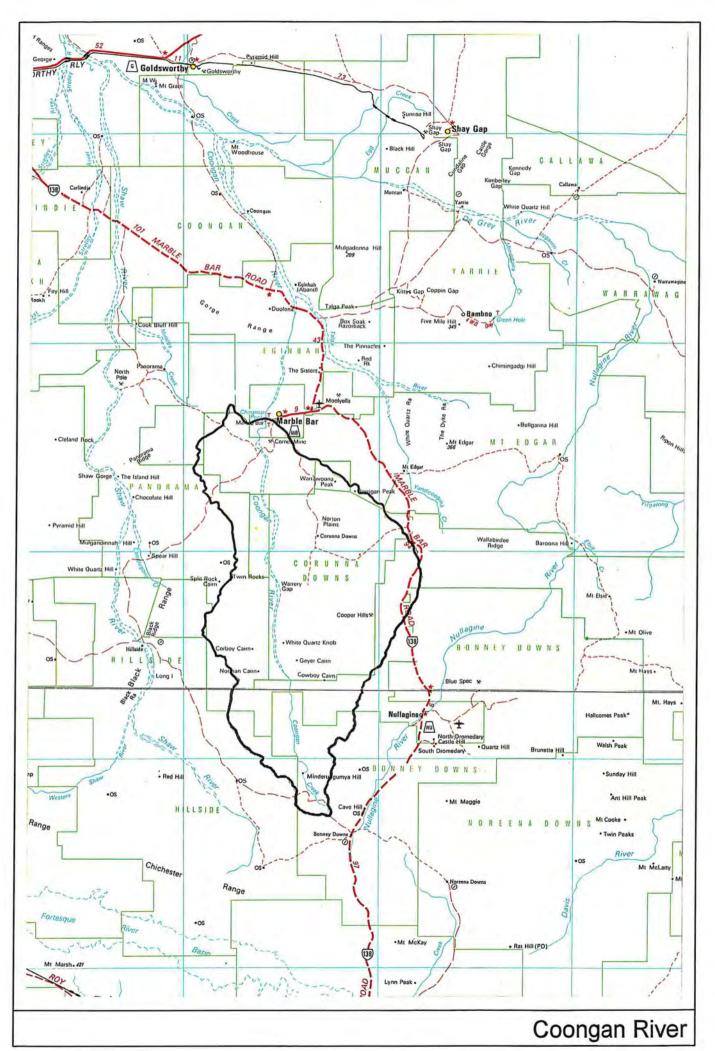
Water Quality:

Salinity:	Fresh.
Other significant parameters:	Highly variable, improves at high flows.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.

Possible future uses:


Possible water supply for the Port Hedland Scheme.

Factors (environmental, social and economic) which may affect future development:

- 1. A dam at Marble Bar would have some impact on mining in the area.
- 2. The jaspillite at the Marble Bar site is an important tourist attraction as well as being of scientific interest.

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is poor. Treatment for turbidity may be required.

Surface Water Source: DeGrey River

River Basin: DeGrey

AWRC Basin No: 710

Location: DS158 (Yarrie Station) 7 709 000 m N, 214 000 m E

Catchment Details:

Area:	32 000 km²
Average rainfall:	300 mm/annum
Pan evaporation:	3600 mm/annum
Alienated:	
Cleared:	
Land use:	

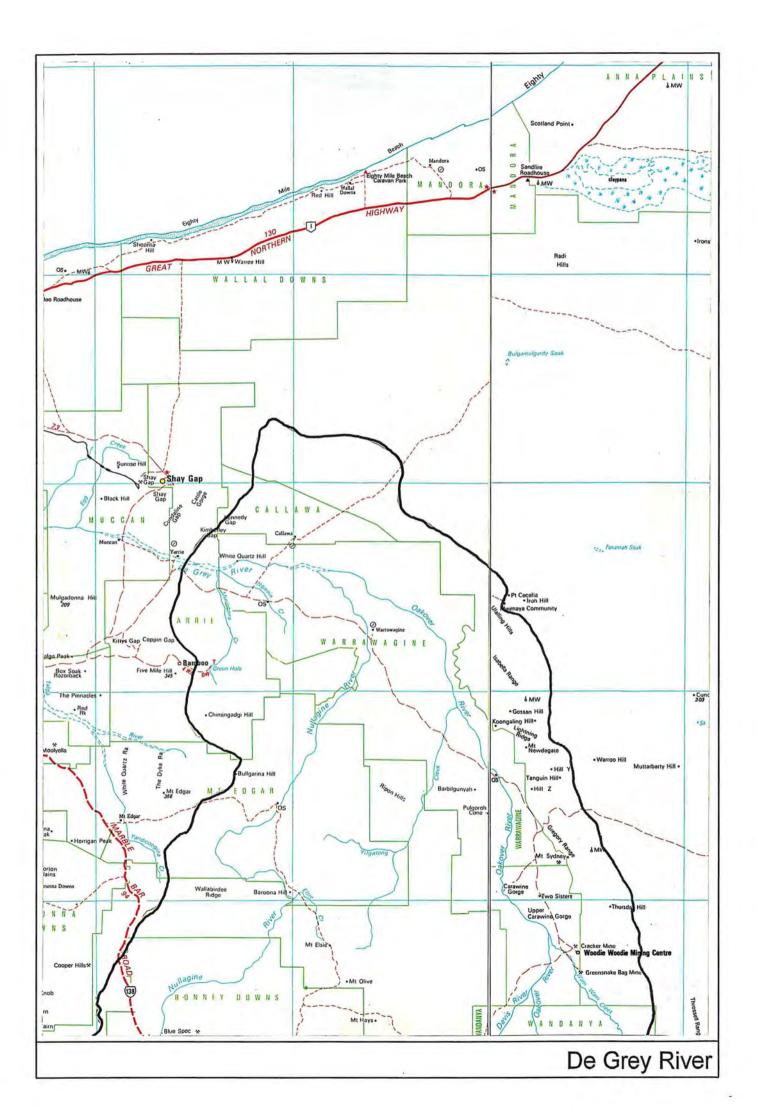
Mean Annual Flow (GL/year):	600
Estimated Divertible Yield (GL/year):	120 - 200

Water Quality:

Salinity: Other significant parameters:

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.


Possible future uses:

Possible water supply for the Port Hedland Scheme.

Factors (environmental, social and economic) which may affect future development:

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is poor. Treatment for turbidity may be required.

River Basin: DeGrey

AWRC Basin No: 710

Oakover River

Location: DS102 7 619 500 m N, 299 000 m E

Catchment Details:

Area:	15 430 km²
Average rainfall:	250 mm/annum
Pan evaporation:	3800 mm/annum
Alienated:	
Cleared:	
Land use:	

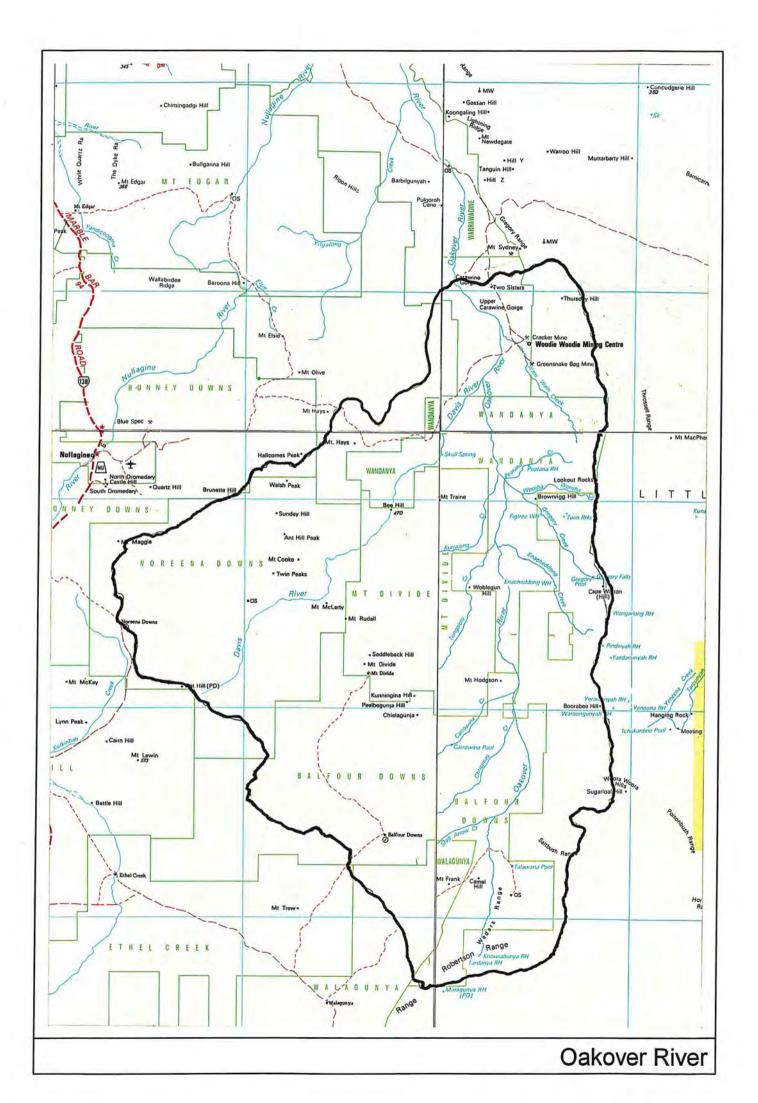
Mean Annual Flow (GL/year):	260
Estimated Divertible Yield (GL/year):	20 - 50

Water Quality:

Salinity:	Fresh.
Other significant parameters:	Turbidity high in high flow events.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.


Possible future uses:

Possible water supply for the Port Hedland Scheme.

Factors (environmental, social and economic) which may affect future development:

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is poor. Treatment for turbidity may be required.

Oakover River

River Basin: DeGrey

AWRC Basin No: 710

Location: DS145 7 586 300 m N, 305 300 m E

Catchment Details:

Area:	9280 km ²
Average rainfall:	250 mm/annum
Pan evaporation:	3800 mm/annum
Alienated:	
Cleared:	
Land use:	

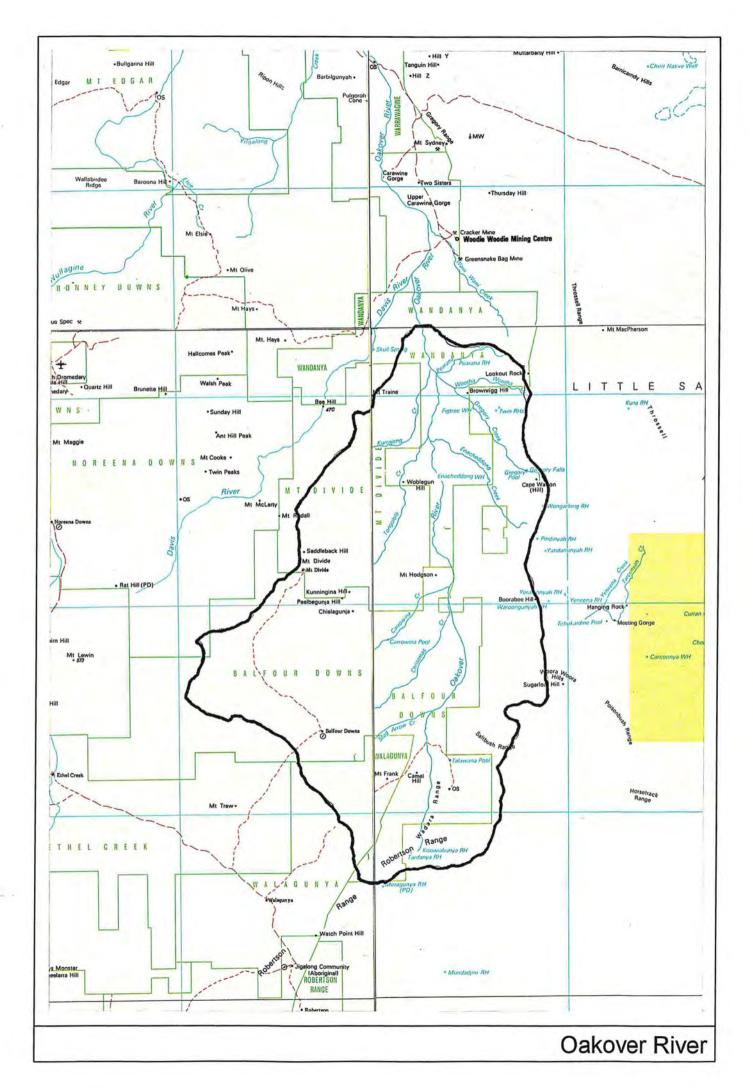
Mean Annual Flow (GL/year):	120
Estimated Divertible Yield (GL/year):	5 - 25

Water Quality:

Salinity:	Fresh.
Other significant parameters:	Turbidity high in high flow events.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.


Possible future uses:

Possible water supply for the Port Hedland Scheme.

Factors (environmental, social and economic) which may affect future development:

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is poor. Treatment for turbidity may be required.

÷

Surface Water Source: Nullagine River

River Basin: DeGrey

AWRC Basin No: 710

Location: DS40 7 678 200 m N, 256 100 m E

Catchment Details:

Area:	6425 km ²
Average rainfall:	250 - 300 mm/annum
Pan evaporation:	3600 - 3800 mm/annum
Alienated:	
Cleared:	
Land use:	

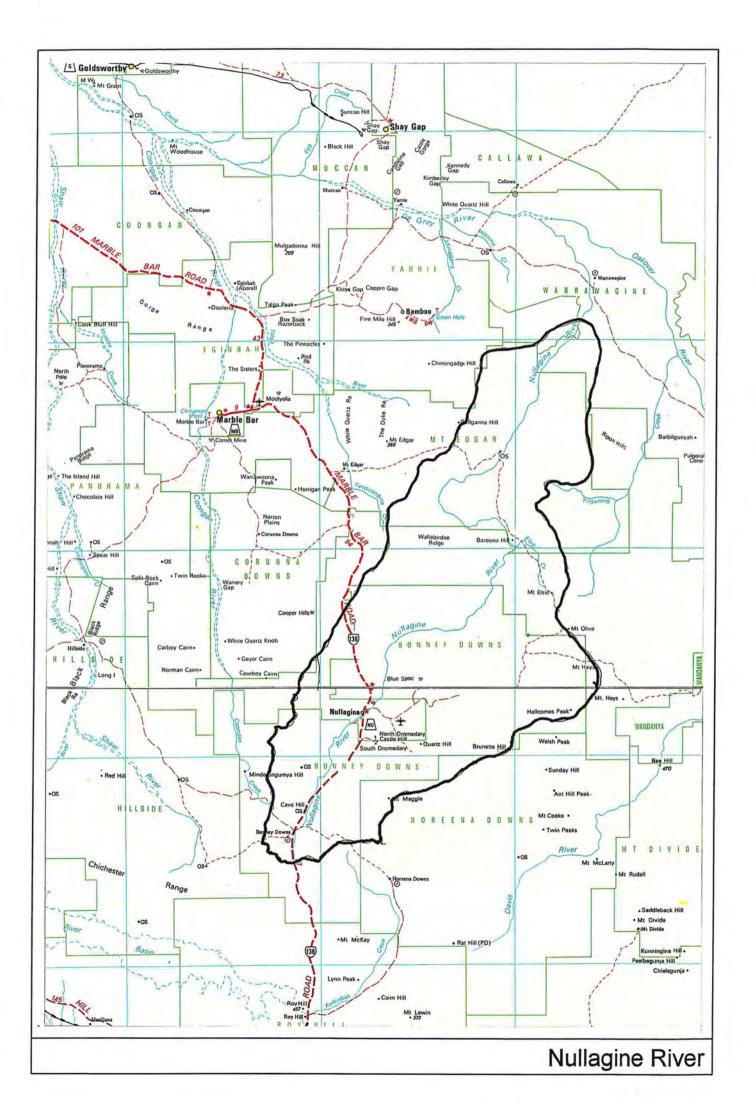
Mean Annual Flow (GL/year):	125
Estimated Divertible Yield (GL/year):	0 - 20

Water Quality:

Salinity:	Fresh.
Other significant parameters:	Highly variable, improves at high flows.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.


Possible future uses:

Possible water supply for the Port Hedland Scheme.

Factors (environmental, social and economic) which may affect future development:

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is poor. Treatment for turbidity may be required.

Nullagine River

River Basin: DeGrey

AWRC Basin No: 710

Location: DS56 7 666 000 m N, 246 000 m E

Catchment Details:

Area:	5895 km ²
Average rainfall:	250 - 300 mm/annum
Pan evaporation:	3600 - 3800 mm/annum
Alienated:	
Cleared:	
Land use:	

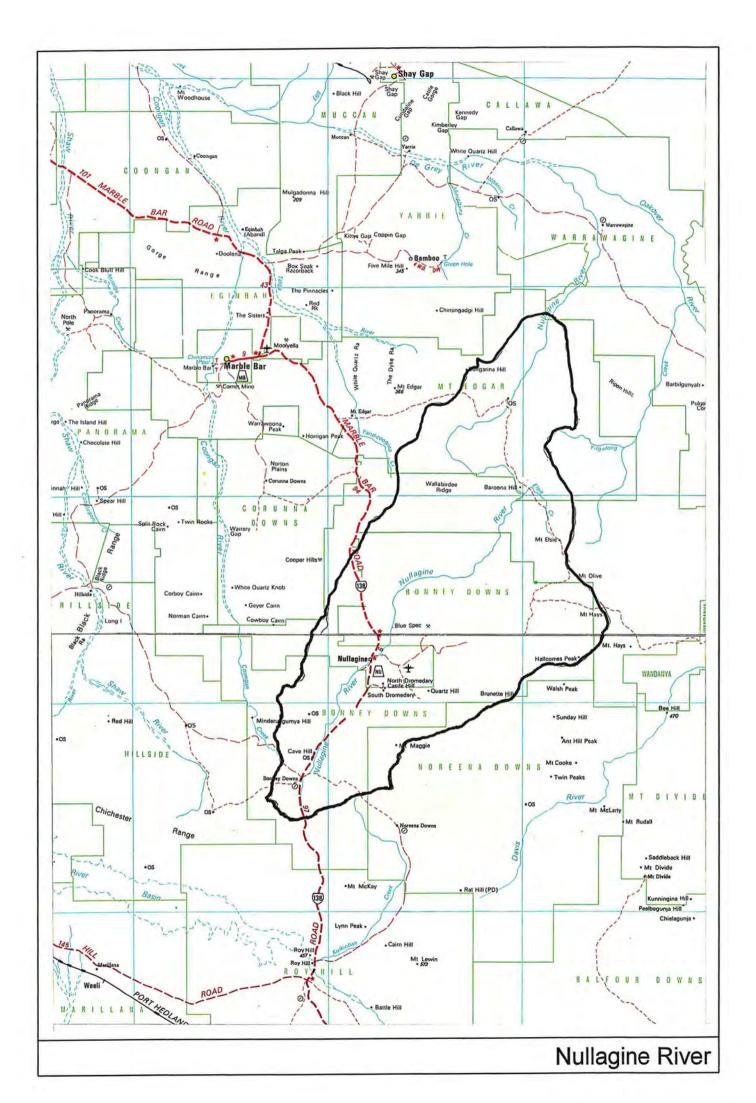
Mean Annual Flow (GL/year):	115
Estimated Divertible Yield (GL/year):	25 - 40

Water Quality:

Salinity:	Fresh.
Other significant parameters:	Highly variable, improves at high flows.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.


Possible future uses:

Possible water supply for the Port Hedland Scheme.

Factors (environmental, social and economic) which may affect future development:

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is poor. Treatment for turbidity may be required.

Nullagine River

River Basin: DeGrey

AWRC Basin No: 710

Location: DS108 7 625 900 m N, 228 900 m E

Catchment Details:

Area:	4525 km²
Average rainfall:	250 - 300 mm/annum
Pan evaporation:	3600 - 3800 mm/annum
Alienated:	
Cleared:	
Land use:	

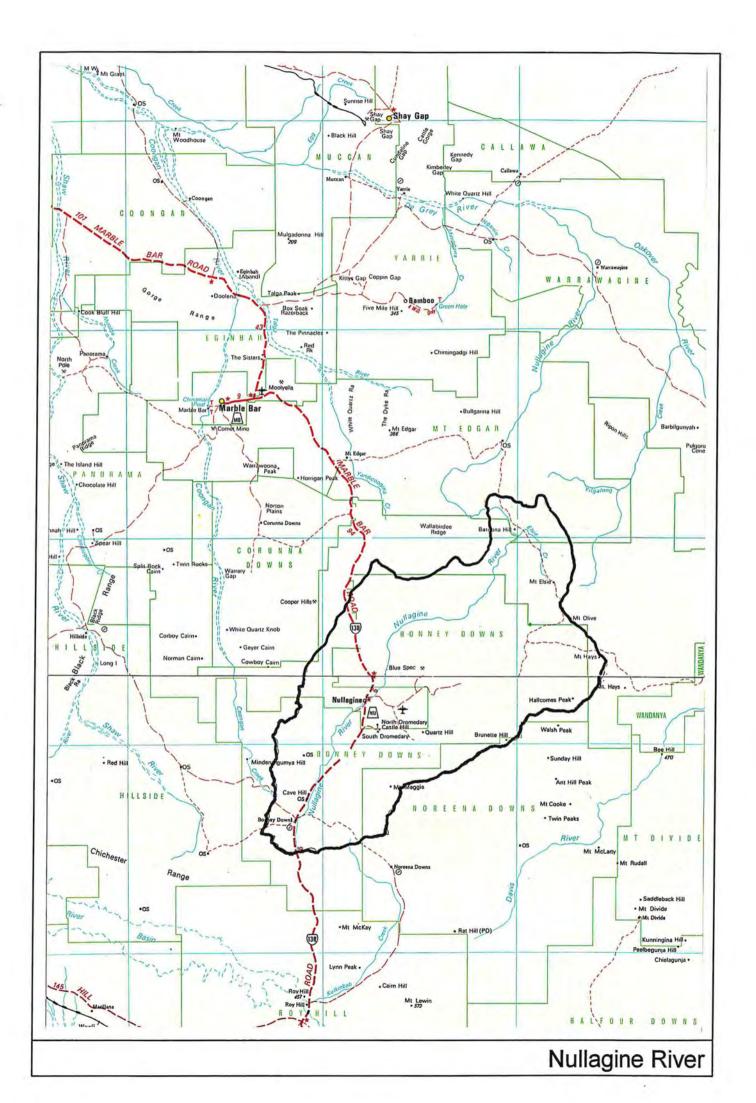
Mean Annual Flow (GL/year):	90
Estimated Divertible Yield (GL/year):	20 - 35

Water Quality:

Salinity:	Fresh.
Other significant parameters:	Highly variable, improves at high flows.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.


Possible future uses:

Factors (environmental, social and economic) which may affect future development:

Possible water supply for the Port Hedland Scheme.

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is poor. Treatment for turbidity may be required.

Nullagine River

River Basin: DeGrey

AWRC Basin No: 710

Location: DS142 7 617 500 m N, 238 000 m E

Catchment Details:

Area:	4150 km ²
Average rainfall:	250 - 300 mm/annum
Pan evaporation:	3600 - 3800 mm/annum
Alienated:	
Cleared:	
Land use:	

Mean Annual Flow (GL/year):	80
Estimated Divertible Yield (GL/year):	15 - 30

Water Quality:

Salinity:	Fresh.
Other significant parameters:	Highly variable, improves at high flows.

Existing Developments:

WC:	None.
Other:	None.
Current uses:	None.

Possible future uses:

Possible water supply for the Port Hedland Scheme.

Factors (environmental, social and economic) which may affect future development:

Comments:

The reliability of data on the mean annual flow and estimated divertible flow is poor. Treatment for turbidity may be required.

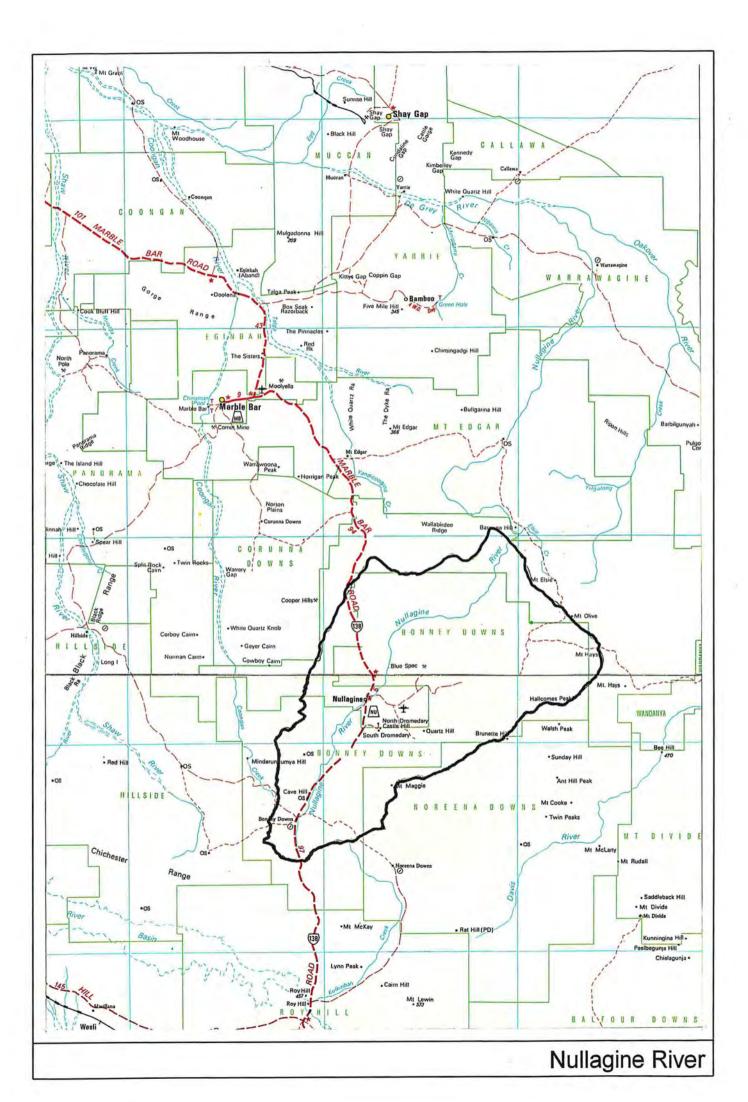


 Table A4. 1: Summary of the Groundwater Resources of the Ashburton

 River Basin - Upland Area

Table A4. 2: Summary of the Groundwater Resources of the OnslowCoast River Basin - Upland Area

Table A4. 3: Summary of the Groundwater Resources of the OnslowCoastal Plain

 Table A4. 4: Summary of the Groundwater Resources of the Fortescue

 River Basin - Upland Area

 Table A4. 5: Summary of the Groundwater Resources of the Port

 Hedland Coast River Basin - Upland Area

Table A4. 6: Summary of the Groundwater Resources of the PortHedland Coastal Plain

Table A4. 7: Summary of the Groundwater Resources of the DeGreyRiver Basin - Upland Area

Table A4. 8: Summary of the Groundwater Resources of the SandyDesert Basin

Groundwater Source:

Robe River

River Basin: Onslow Coast

AWRC Basin No: 707

Location: Lower Robe aquifer - near the mouth of the Robe River

Aquifer Details:

Extent:	
Rock unit:	alluvium
Estimated Recharge:	
Estimated Yield:	10 GL/year
No of production wells:	6

Water Quality:

Salinity:	Fresh - salinity ranges between 400 - 800 mg/L.
Other significant parameters:	Highly variable, improves at high flows.

Possible future uses:

Possible water supply for West Pilbara development. The groundwater source could be used as part of a conjunctive use scheme.

Factors (environmental, social and economic) which may affect future development:

- 1. Environmental and social impacts are minimal if water is drawn sustainably.
- 2. No known Aboriginal sites in the vicinity of the proposed wellfield.

Investigations / Comments:

Groundwater Source:

Kumina Creek

River Basin: Onslow Coast

AWRC Basin No: 707

Location:

Kumina Creek aquifer

Aquifer Details:

Extent: Rock unit:	
Estimated Recharge: Estimated Yield:	1 GL/year
No of production wells:	13 (3 of which would be on standby)

Water Quality:

Salinity: Fresh. Other significant parameters:

Possible future uses:

Possible water supply for West Pilbara development. The groundwater source could be used as part of a conjunctive use scheme.

Factors (environmental, social and economic) which may affect future development:

Located within mining leases. Low direct impact on the environment and on Aboriginal sacred sites.

Investigations / Comments:

For this quantity of water it is proposed that an engineering and economic assessment is not warranted.

Groundwater Source:

Fortescue River

River Basin: Fortescue River

AWRC Basin No: 708

Location: Lower Fortescue (Balmoral) aquifer

Aquifer Details:

Extent:	200 km ²
Rock unit:	alluvial gravel
Estimated Recharge:	11 GL/year
Estimated Yield:	16 GL/year
No of production wells:	10
Wells Yield:	up to 800 kL/d

Water Quality:

Salinity:	Fresh - salinity range between 400 - 800 mg/L.
Other significant parameters:	

Possible future uses:

Possible water supply for West Pilbara development. The groundwater source could be used as part of a conjunctive use scheme.

Factors (environmental, social and economic) which may affect future development:

- 1. There are no known Aboriginal sites in the vicinity of the proposed wellfield.
- 2. It is probable that populations and foliage of species such as the Ghost Gum, Water Wood and perhaps the Snakewood Mulga, would be thinned by a drop in the watertable by 2 m.
- 3. Even without causing significant changes in vegetation, development of the borefield could affect the population of the Flock Pigeon, a species which does not readily adapt to human activity.
- 4. Potential for severe adverse impacts on the aquatic ecosystem of the Lower Fortescue borefield.

Investigations / Comments:

This data was obtained from exploratory drilling and test pumping of the alluvium carried out between 1983 and 1985. Development of a dam at Bullinnarwa, and to a lesser extent, Booyeemala, would have a significant impact on the recharge of the aquifer. It is possible the yield could drop by 50%. This requires further investigation.

Groundwater Source:

Fortescue River

River Basin: Fortescue River

AWRC Basin No: 708

Location: Upper Fortescue aquifer

Aquifer Details:

Extent: Rock unit: Alluvial fans Estimated Recharge: Estimated Yield: 0 GL/year No of production wells:

Water Quality:

Salinity: Fresh. Other significant parameters:

Possible future uses:

Possible water supply for West Pilbara development. The groundwater source could be used as part of a conjunctive use scheme.

Factors (environmental, social and economic) which may affect future development:

- 1. Low direct impact on the environment and on Aboriginal sacred sites.
- 2. The only vegetation likely to be directly influenced by a lowered watertable would be the open woodland of River Gums on the shingle beds of the main tributary creeks.
- 3. The proposed wellfield is located within the same catchment area as Millstream. Hence abstracting water from the upper Fortescue aquifer could reduce the throughflow of water which ultimately naturally drains into the Millstream system.

Investigations / Comments:

From hydrogeological and environmental information, it would appear that the proposed Upper Fortescue wellfield is located within the same catchment area as Millstream. Abstracting water from the Upper Fortescue aquifer could reduce the throughflow of water which ultimately naturally drains into the Millstream system.

Groundwater Source:

Maitland River

River Basin: Port Hedland Coast

AWRC Basin No: 709

Location: Maitland River Aquifer - near Karratha Station

Aquifer Details:

Extent:	
Rock unit:	alluvium
Estimated Recharge:	
Estimated Yield:	3 - 5 GL/year
No of production wells:	6 (depending on investigative drilling)

Water Quality:

Salinity: Other significant parameters:

Possible future uses:

Possible water supply for West Pilbara development. The groundwater source could be used as part of a conjunctive use scheme.

Factors (environmental, social and economic) which may affect future development:

- 1. Proposed investigation area is located within an Aboriginal Native Title Claim.
- 2. Close to some significant permanent pools used for tourism and recreation.

Investigations / Comments:

Investigative drilling is proposed to be undertaken in the near future by the Water Corporation. If a subsequent hydrogeological report indicates that there is sufficient water available, the Water Corporation will seek EPA approval for a borefield on the Maitland River.

(

Groundwater Source: West Canning Basin

River Basin: Sandy Desert

AWRC Basin No: 025

Location: West of Shay Gap

Aquifer Details:

Extent: Rock unit: sedimentary basin Estimated Recharge: Estimated Yield: 15 - 50 GL/year No of production wells:

Water Quality:

Salinity: Fresh. Other significant parameters:

Possible future uses:

Possible water supply for West Pilbara development. The groundwater source could be used as part of a conjunctive use scheme.

Factors (environmental, social and economic) which may affect future development:

Investigations / Comments:

Table A4. 1: Summary of the Groundwater Resources of the AshburtonRiver Basin - Upland Area

				Gro	undwater Stora	ge			Rec	harge				······································
Aquifer -		Total Area	Area x 20%	Saturated		Storage	Rainfall						Bore Yields	Potential for
Geological Unit	Sheet Name	$(m^2 \times 10^6)$		Thickness (m)	Specific Vield	(m ³ x 10 ⁶)	(nim/a)	% Rainf	all a	m²/year x 104) (m²/da		Salinity	(m ³ /day) *	Supply
	Sheet (Walke	(11/210/	(x to)	Thickness (iii)	specific friend	(x 10)	((((())))))	/* [(4/11)		in fyent x to f (in far	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(11/04))	Juliu
Valley Fill -	Wyloo	190		30	0.1	570	Recharge by	lischarge of	fdraina	iges into aquifer		Fresh - Marginal	250 - 1000	Station
	Mt. Bruce	650	-	30	0.1	1950		along valley					(3270)	Томп
Alluvium and colluvium as well as Robe	Turee Creek	290	-	30	0.1	870		lent to 9000						Horticultura
Pisolite and calcrete that occurs in thick valley fill sequences.	Newman	404		• 30	0.1	1212	69 x 10 ⁶ m ³ /j	year over 77	70 km a	of valley length.				
	Total	1534				4602	•			69				
Calcrete -	Wyloo	80	-	15	0.15	180	2:	50	2	0.4	14	Fresh - Brackish	< 500	Station
	Edmund	430		15	0.15	968	2	50	2	2	14	Some Saline		
Undifferentiated deposits of calcrete.	Turee Creek	530	-	15	0.15	1193	2	50	2	3	14			
	Mt. Eggerton	270		15	0.15	608	2	50	2	1	14			
	Newman	215			0.15	484		50	2	1	14			
	Collier	960	•	. 15	0.15	2160	2	50	2	5	14			
	Total	2485				5591				12				
Pisolite -	Wyloo	I	0.1	2 34	0.1		3	25	3	0.002	5	Fresh - Marginal	< 500 - > 5000	Station
	Mit. Bruce	181	30	5 34	0,1	123	3	25	3	0.4	5			
Robe Pisolite	Turee Creek	5		1 34	0.1	3	3	25	3	0.01	5			
	Newman	6		1 34	0.1	4	3	25	3	0.01	5			
	Total	193				131				0.4				
Morrissey Metamorphic -	Yanrey	1720) 34-	4 20	0.01	69	• 3	00	1	1	2	Marginal -Saline	< 100	Station
	Winning Pool	100	2	0 20	0.01	4	3	00	1	0.1	2		(540)	1
Variety of metamorphic rocks -	Wyłoo	1343	26	9 20	10.0	54	3	00	1	I	2			
gueiss, schist, amphibolite, migmatite skam, marble and quartzite developed	Edmund	447	8	9 20	0.01	18	3	00	ł	0.3	2			
around Proterozoic granites.	Total	3610)			144				2				
	•			·····										-
Brockman -	Wyloo				0.02			25	I	I	2	Fresh - Marginal	< 100	
	Mt. Bruce				0.02			25	1	1	2		(2248)	•
Brockman Iron Formation	Turee Creek				0.02			25	1	0.4	2			
	Roy Hill			8 20	0.02			25	1	0.03	2			
	Newman	397	ר ו	9 20	0.02	32	3	25	ł	0.3	2			
	Tota	2870	5			230				2				

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

				G	oundwater Store	ge		F	lecharge				
Aquifer - Geological Unit	Sheet Name	Total Area (m² x 10 ⁶)	Ares x 20% (m ² x 10 ⁶)	Saturated Thickness (m)	Specific Yield	Storage (m ³ x 10 ⁶)	Rainfall (mm/a)	% Rainfall	(m²/year x 10') (m²/	day/km ¹)	Salinity	Bore Yields (m ³ /day) *	Potential for Supply
Dolomite-	Wyloo	296	59	25	0.1	148	350) 2	0.4	4	Fresh - Brackish	50 - 2000	Station
	Mt. Bruce	506	101	25	0.1	253	350) 2	: 1	4			Town
	Turce Creek	230	46	25	0.1	115	350) 2	0,3	4			Horticultural
Wittenoom Dolomite	Roy Hill	9	2	- 25	0.1	· 5	350) 2	0.01	4			
	Newman	305	61	. 25	^k 0.1	153	350) 2	. 0.4	4			
	Total	1346				673			2				
Nierra Mamba -	Wyloo	285	57			71	350		2 0.4	4	Mostly marginal	< 500	Station
	Mt. Bruce	878	176	25	0.05	220	350) 2	2 1	4	with some	(1702)	
Marta Mamba Iron Formation	Turce Creek	100	20	25		25	35) :	2 0.1	4	brackish.		
	Roy Hill	8	2			2	35			4			
	Newman	223	45	25	0.05	56	35) :	2 0.3	4			•
	Total	1494				374			2				
Hardy -	Wyloo	63	13	30	0.02	8	30	0	2 0.1	3	Fresh - marginal,	< 200 - 1000	Station
-	Mt. Bruce	824	165	30	0.02	99	30	D :	2 1	3	some brackish.	(1900)	Town
Hardy Sandstone	Turee Creek	396	79	30	0.02	48	30	0 :	2 0.5	3			Horticultural
	Total	1283			. <u>.</u>	154	<u></u>		2				
Mafic Volcanic Rocks-	Wyloo	1253				125	32			5	Fresh - marginal,	100 - 1000	
	Mount Bruce					348	32			5	some brackish.	(4087)	Town
Bunjinah, Pyradie, Boongal and Bellary	Turee Creek	1317				132	32			5			Horticultural
Formations as well as the Mount Roe and Cheela Springs Basalt, and Mount Jope	Newman	92	18	. 10	0.05	9	32	53.	0 0.2	5			
Volcanics.	Total	6145				615			12				

				Gr	oundwater Store	ige		R	lecharge				
Aquifer - Geological Unit	Sheet Name	Total Area (m² x 10 ⁶)		Saturated Thickness (m)	Specific Yield	Storage (m ³ x 10 ⁶)	Rainfall (mm/a)	% Rainfall	(m²/year x 10°) (m²/d	ay/km²)	Salinity	Bore Yields (m ³ /day) *	Potential f Supply
Undifferentiated Proterozoic Rocks-	Yanrey	312	62	20		25	250		0.2	ł	Fresh -Saline	300 - 500	Station
	Wyloo	7236	1447	20		579	250		4	1		(1658)	
Undifferentiated rocks of the Hamersley,	Edmund	10610	2122			849	250		5	1			
Ashburton, Blair, Mount Minnie, Bresnahan	Mount Bruce	2505	501	-		200	250		L. 1	1			
nd Bangemall Basins.	Turee Creek	13900	2780.		. –	1112	250		7	1			
	Mt Eggerton	5523	1105			442	250		3	1			
	Roy Hill	15	3	20		1	250	-	0.01	1			
	Newman Collier	6749 8436	1350 1687	20 20		540 675	250		3	1			
	comer			20	0.02	075	2.1	, I	. +	1			
	Total	55286				4423			28				
Feisic Volcanics	Wyloo	360	72	30	0.05	108	35(0 2.0) 0.5	4	Probably Fresh -	< 500	- Station
	Mt Bruce	283	57	30	0.05	85	350	0 2.0	0.4	4	Marginal.		
Woongarra Volcanics	Turee Creek	353	71	30	0.05	106	350	0 2.0	0.5	4	May be some		
	Newman	41	8	30	0.05	12	350	0 2,0	0 0.1	4	Brackish.		
	Total	1037		· · · · · · · · · · · · · · · · · · ·		311			1.5				
Granitic Rocks -	Yanrey	950		38	0.05	361	27	5 2.0	0 1	3	Fresh - Saline	<500	Station
	Winning Pool	110	22			42	27			3	Mostly Marginal -	(1632)	
Various rocks of Capricorn Orogen	Wyloo	1000	200	38		380	27			3	Brackish.	()	
and Pilbara Craton granitoid complex	Edmund	244	49			93	27			3			
inliers.	Newman	136	27			52	27			3			
	Total	2440	<u></u>			927		<u> </u>	3				
Greenstone Rocks -	Newman	15	3	30	0.04	4	22	5	2 0.01	2	Fresh - Brackish	50 - 500	Station
of constant avera -	Wyloo	24				6	30		2 0.03	3	. Tosh Druckish	50.500	- Gradion
Various rocks of Pilbara Craton	.,		-			-				-			
granite-greenstone inliers.	Total	39	·····			9			0.04				
											·····		
CATCUME	NT TOTAL	79768				18184			135				

• Known maximum yield in brackets.

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

Table A4. 2: Summary of the Groundwater Resources of the Onslow CoastRiver Basin - Upland Area

					Grou	indwater Sto	rage	·		Rech	arge			
										Volui	ne			
Aquifer - Geological Unit	Sheet Name		Total Area (m ² x 10 ⁶)	Area x 20% (m² x 10 ⁶)		Specific Yield	Storage (m ³ x 10 ⁴)	Rainfall (mm/a) - "	% Reinfell	(m³/) c#r [4	(m³/day km³	Salinity	Bore Yields (m ³ /day) *	Potential for Supply
Pisolite -	Yairaloola		253		- 10	0.1	253	300	3	2	25	Marginal	< 500 - > 5000 (1343)	Station Town
Robe Pisolite Poondano Formation		Total -	253	•	84,-11,- <u>-</u>	Å	253			2			(6941)	Horticultura
Varraloota -	Yarraloola		919		- 25		2298	100	1.0		8	Mostly saline but is	1000	Station
Yairaloola Congloinerate	Wyłoo Yanrey		28 17		- 25 - 25		70 43	300 300	1.0 1.0		8 8	fiesh to brackish close to the rivers.	(309)	
Nenularia Formation		Total	964				2410			3				•
Morissey Metamorphic -	Wyloo Yanrey		20	1	4 20 I 20		1	300 300	1	0.01	2	Mostly saline with some fresh to	<100 - 500 (540)	
Variety of metamorphic rocks - gneiss, schist, amphibolite, migmatite skam, marble and quartzite developed around Proterozoic granites.		Total	73		5	<u></u>	3			0.04		brackish water close to the water courses.		
Brockman -	Yarraloota		1267					325		2 2		Probably fresh to	< 100 - 500	Station
Brockman fron Formation	Wyloo Mi Bruce Pyramid		1172 577 804	' H	5 20	0.05	115	325 325 325		2 2 2 1 2 1	4	marginal.		
	-	Total	3820) 70	i4		76-1			5				
Dolomite -	Yarraloola		435	i (37 2	5 0.1	218	300	2.	5 0.7	4	Fresh to marginal.	< 50 - 2000	
Wittenoom Dolomite		Total	435	5 (37		218		<u></u>	0.7	·····	Rare brackish to saline.		Town Horticultur
Marra Mamba -	Yarraloola		483	2	96 2	5 0.05	121	300		I 0.3	2	Nostly fresh to	< 500	Station
Marra Mamba Iron Formation		Total		2	06		121			0,3		marginal.		

					Grou	ndwater Stor	rage	·		Rec	harge			
										Volu	me			
quifer -				Area x 20%	Saturated	Specific	Storage	Rainfall		(m ¹ /year	(m ¹ /day		Bore Vieids	Potential fo
Feological Unit	Sheet Name		(m ¹ x 10 ⁶)	(m ² x 10 ⁶)	Thickness (m)	Yleld	(m ³ x 10 ⁶)	(mm/a)	% Rainfail	104	km ¹	Salinity	(m³/day) *	Supply
lafic Volcanic Rocks -	Yarraloola		530	106	10	0.05	53	300	4.5	1.4	7	Fresh to marginal	200-500	Station
	Wyloo		76	15	10	0.05	8	300	4.5	0.21	7		(500)	Томя
laddina Volcanics		_												Horticultura
Theeta Springs Basalt		Total	606	. 121		٨.	61			2				
Indifferentiated Proterozoic Rocks -	Yarraloola		3227	- 645	5 20	0.02	258	325		2 4	4	Nostly brackish to	< 150	Station
	Wyloo		2567	513			205	32		2 3		saline. Some fresh to	(966)	0
Indifferentiated rocks from the Hamersley,	Mt Bruce		118				9	32		2 0.1		marginal supplies	(,	
Ashburton, Mount Minnie and Bangemall	Рутатіd		44				4	32		20.		close to the drainage		
Basins.	.,											lines.		
		Total	5956	119	l		476			1	1			•
Felsic Volcanic Rocks -	Yarraloola		184	3:	7 30	0.05	35	32	5 2.	0 0.1	! 4	Probably fresh to	< 500	Station
	Wyloo		106	2	1 30	0.05	32	32	5 2.	00.	4	marginal.		
Woongarra Volcanics	Mt Bruce		63	1:	3 30	0.05	19	32	5 2.	00.	4			
-	Pyramid		96		9 30	0.05	29	32	5 2.	0 0.	4			
		Total	419	9	0		135			0.	s			
Granitic Rocks -	Yaitaloola		5		1 38	0.05	2	30	0 2.	.0 0,0	1 3	Variable fresh to	< 50 - 2000	Station
	Yanicy		50	1	0 38	0.05	19	30	0 2.	.0 0.	13	saline but mostly		
Variety of rocks from Pilbara Craton	Wyloo		94	i I	9 38	0,05	36	30	0 2	,0 0.	1)	brackish to saline.		
and Gascoyne Complex granitoid complexes.														
-		Total	149) 3	0		57			0,	2			
							٠							
CATCIIME	NT TOTAL			239	14		4496			2	 ī			

* Known maximum yield in brackets.

Table A4. 3: Summary of the Groundwater Resources of the Onslow Coastal Plain

			Gr	oundwater Stor	age	-		Recharge/Safe	Yield		
Aquifer - Subcatchment / Geological Unit	Sheet Name	Salinity (mg/L)	Arca (m² x 10 ⁶)	Saturated Thickness (m)	Specific Yield	Storage (m ³ x 10 ⁶)	River Length (km)	Volume (m ¹ /year/km)	Total (m ³ /year x 10 ⁶)	Bore Yields (m ³ /day) *	Potential for Supply
Alluvial -	Yarratoola	< 500	92	, 12	0.15	166	27	590000	16	1000	Station
		500 - 1000	98	13	0.15	191				(1702)	Town
Fortescue River/		1000-1500	41	10	0.05	21					Horticultural
		1500-3000	53	5	0.05	13					
Alluvium		>3000	177	14	0.05	124					
Colluvium											
Eluvium	To	tal	461			514			16		
Alluvial -	Yarraloola	<500	48	6	0.05	14	100	49000	5	100	. Station
Antiviai -	1 un bioonu	500-1000	152		0.05	46		1,000	2		· Bratton
Peter Creek/		1000-1500	470			141					
		1 500-3000	722			217					
Alluvium		>3000	1147			344					
Colluvium											
Eluvium	Τα	ital	2539	,	<u></u>	762			5	-	
Alluvial -	Yarraloota	< 500	48	. 14	0.15	101	25	490000		1400	Station
Autorian -	Tarratotia	500 - 1000	-10								
D 1 D: /		1000-1500	100					274000		(1040)	Horticultural
Robe River/		1500-3000	10								nomennuna
		>3000	15								
Alluvium		23000	11) 12	0.05	77					
Colluvium Eluvium	T	otal	49.			442			15		
				• 						, 	
Alluvial -	Yarraloola &	<500	20					49000	1	< 50	Station
	Onslow	500-1000	1								
Warramboo Creek/		1000-1500	31								
		1500-3000	15								
Attuvium		>3000	54	5 5	0.05	137	1				
Colluvium										_	
Eluvium	т	otal	76	1		190)		1		

			-	Gr	oundwater Sto	rage	-		Recharge/Safe	Yield		
Aquifer – Subcatchment / Geological Unit	Sheet Name		Salinity (mg/L)	Area (m² x 10 ⁶)	Saturated Thickness (m)	Specific Yield	Storage (m ³ x 10 ⁶)	River Length (km)	Volume (m ³ /year/km)	Total (m ³ /year x 10 ⁶)	Bore Yleids (m ³ /day) *	Potential for Supply
Alluviat -	Yarraloola		<500	85			43	40	100000	4	< 50	
Cane River/	Onslow Yanrey Wyloo		500-1000 1000-1500 1500-3000	130 338 470	Ì 10	0.05 0.05 0.05	65 169 188					Town (a) Horticultural (a)
Alluvium			>3000	775			233					
Colluvium											_	
Eluvium		Total		1798			697			4	ł	
Alluviai -	Onslow		<500	38			68	31	490000	1		-
	Yanrey		500-1000	11:			203				(131	•
Ashburton River/			1000-1500 1500-3000	221 421			91 171					Horticultural
Alluvium			>3000	420			516					
Colluvium			2 3000	172	, .	0.05	510					
Eluvium		Total		252	1		1050	····		1:	5	
Trealla -	Yarraloola Onslow		Fresh to saline	374	3 1:	5 0.002	112	Re	charge via lenkage	from alluvium	10 (980	
Trealla Limestone	Yanrey Wyloo	Total		374	3		112	<u> </u>			_ (//	Horticultural (b)
Pisolite -	Yarraloola		Brackish to saline	16	3	5 0.1	82	Rechar	ge via leakage from	n overlying aquifers	50	0 Station
Robe Pisolite		Total		16	3		82					
Yarraloola -	Yarraloola Onslow	····	Fresh to saline	538	1 3	0 0.1	16143	Rechar	ge via leakage from	n overlying aquifers	100 (3273	
Yarraloola Congloinerate Birdrong Sandstone	Yanrey Wyloo	Total		538	1		16143					Horticultural

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

.

.

				Gi	oundwater Stor	age	-		Recharge/Safe	Yield		
Aquifer - Subcatchment / Geological Unit	Sheet Name		Salinity (mg/L)	Area (m² x 10 ⁶)	Saturated Thickness (m)	Specific Vield	Storage (m ³ x 10 ⁴)	River Length (km)	Volume (m ³ /year/km)	Total (m ¹ /year x 10 ⁶)	Bore Ylelds (m ³ /day) *	Potential for Supply
Lyons -	Yarraloola		Saline .	550	60	0.1	3300	Recharg	ge via leakage from	overlying aquifers	1000 (4546)	Poor
Undifierentiated Lyons Group sediments and Gnuedna and Nanyarra Formations.		Total	<u></u>	550		<u></u>	3300			*******		
Proterozoic Basement Rocks -	Yarraloola		Fresh to brackish	348	6	0.05	104	Recharg	ge via leakage from	overtying aquifers	500 (510)	Station
Fortescue Group rocks of the Hamersley Basin.		Total		348			104	<u>, , , , , , , , , , , , , , , , , , , </u>	5.1		. (510)	
BASI	N TOTAL			1876	5		23396			56	•	

٠

* Known maximum yield in brackets.

(a) In conjunction with the Trealla aquifer (b) In conjunction with the Alluvial aquifer

Table A4. 4: Summary of the Groundwater Resources of the FortescueRiver Basin - Upland Area

				Gro	undwater Storage			Rech				
									Volume			
Agulfer -		Area	Area x 20%	Saturated		Storage	Rainfail				Bore Yields	Potential for
Geological Unit	Sheet Name	(m ¹ x 10 ⁴)	(m² x 10 ⁶)	Thickness (m)	Specific Yleld	(m ³ x 10 ⁴)	(mm/a)	% Rainfell	(m ³ /)cur x 10 ⁴)	Salinity	(m ³ /day) *	Supply
siley Fill -	Fortescue Valley	• Millstream Ar	ca							Fresh - Brackish	100 - 6000 (> 5000)	Station Town
°olluvium, alluvium pisolitic limonite, Nillstream Dolomite and calcrete.	Рутатиd	1446		See Table 6.	A	4003			29		(2 3000)	Horticultural
	Fortescue Valley	- From Weelum	surra Creek to the	e Great Northern Hig	jhway		Recharge	e by discharge of along valley	drainages into aquifer margins.	Fresh - Saline	100 - 2000 (1440)	Station Town
	Pyraniid	750	l l	3	D 0.1	2250	Eg	uivalent to 27740			()	Horticultural
	Mt Bruce	1077		3		3231			0 km of valley margin.			
	Roy Hill	650		3		1950		,				
	Fortescue Valley	- Upstream of t	tie Great Norther	m Highway								•
	Roy Hill	4192	2	1	5 0.1	6288						
	Newman	375	5		5 0.1	563						
	Robertson	187			5 0.1	2813						
	Balfour Downs	212	5	I	5 0.1	3188						
	Hamersley Rang	c					Recharg	e by discharge of along valley	drainages into aquifer margins.	Fresh - marginal, some brackish.	500 - 1500 (4560)	
	MIt Bruce	78	D	t	0.1	2340	E	quivalent to 9000	10 m /year/kin or			Homicultura
	Roy Hill	33	D	3	0.1	990	77 x 10	⁶ m ¹ /year over 85	0 km of valley length.			
	Newman	51	0	:	0.1	1530		·				
	Robertson	7	U	:	i0 0. i	210						
	Tota	1 118	0			29355	•		190			
l'isolite -	Yaitalool	a	1		10 0.1	1		325	3 0,01	Fresh - Marginal	< 500 - > 5000	Station
	Pyraini				0 0,1				3 0.6		(5184)	Town
Robe Pisolite	Mt. Bruc				10 0,1				3 0.3			Honicultura
	Roy Hi		4		10 0.1				3 0.1			
	-Yandi Min	с 2	8	-	34 0.1	95		325	3 0.3			
	Tota	12	7	· <u>····································</u>		194			1			

				Gro	undwater Storage			Rech	arge				
			_						Vol	ume			
		Area	Ares x 20%	6 - t t - d		Storage	Rainfall					Bore Yields	Potential for
squifer -	Sheet Name	(m ² x 10 ⁴)	(m ² x 10 ⁴)	Saturated Thickness (m)	Specific Yield	(m ³ x 10 ⁶)	(mm/s)	% Rainfall	(m³/year x 10*)	(m²/diy/ km²)	Salinity	(m ¹ /day) *	Supply
icological Unit	Sheet Mame	(m x 10)	(m x 10)	Inickness (m)	apecific Tield	(m x tu)	(111111)	74 Kalaran	30)	клај	Junity	(in /uny)	Supply
Irockman -	Yarraloola	263	53	20	0.02	21	32	s 2	0,3	4	Fresh - Marginal	< 100	Station
	Рутаmid	567	113	. 20	0.02	45	32			4		(24)	
Irockman Iron Formation	Mt. Bruce	2159	432	. 20	0.02	173	32	52	3	4			
	Roy Hill	2678	\$36	. 20	0.02	214	32	52	3	4			
	Newman	558	112	20	0.02	45	32	5 2	. 1	4			
	Robertson	89	18	20	0.02	7	32	5 2	0.1	4			
	Total	6314				505				1			
lomite-	Yarraloola	113	23	2	5 0.1	57	30	0 2	. 0,1	1 3	Fresh - Marginal	50 - 2000	Station
	Pyramid	1212		2		606	30				v	(1637)	
	Mt Bruce	1778		2:		889	30	ю 2	. 1				Horticultur
Wittenoom Dolomite	Roy Hill	4979		2		2490	30			5 3			
	Newman	814		2		407	30						
	Robertson	1124		2		562	3(2	1 3			
	Balfour Downs	819		2		410	30		2	1 3			
	Total	10839				5420			1:	3			
Marra Mamba -	Yarraloola	177	35	2	5 0.05	44	3(0 2.:	5 0,:	3 4	Fresh - Marginal	< 500	Station
	Pyramid	1567	313	2	5 0.05	392	31	0 2.:	5 :	2 4		(924)	
Marra Mamba Iron Formation	Mt. Bruce	1226	245	2	5 0.05	307	30	2.	5	2 4		. ,	
	Roy Hill	2816		2	5 0,05	704	3	2.:		4 4			
	Newman	513			5 0.05			00 2.		1 4			
	Balfour Downs			-	5 0.05		-	00 2.		2 4			
	Robertson				5 0.05			00 2.					
	Tatel	7730				1933	<u></u>		1	2			
Mafic Volcanic Rocks-	Yarraloola	1445	289		0 0.05	145	3		5	4 7	Fresh - Marginal	< 500	Station
	Pyramid				0 0,05			DO 4.		97	Some brackish	(1091)	1
Mount Roe Basalt, Kyleena Basalt,	Mt Bruce		i 15	1	0 0,05	8	3	00 4.	5 0.	2 7			
Tumbiana Formation, Pillingini Tuff,	Roy Hill		73	I	0 0.05	37	3	00 4.	5	1 7			
Nymerina Basalt, Kuruna Silistone and	Newman			1	0 0.05			00 4.		1 7			
Maddina Volcanics	Robertson			1	0 0.05			00 4.					
	Balfour Downs				0 0.05			00 4.		2 7			
	Total	6451				645			1	7			

.

			_	Gro	undwater Storage			Recha					
								-	Volum	e			
quifer -	Sheet Name	Area (m ¹ x 10 ⁶)	Area x 20% (m ² x 10 ⁶)	Saturated Thickness (m)	Specific Vield	Storage (m³ x 10 ⁶)	Rainfail (mm/a)	% Rainfall	(m ² /scar x 10 ⁴	••	Salinity	Bore Yields (m ³ /day) *	Potential fo
icological Unit	Sneet Name	(m x 10)	(m 110)	THICKNESS (m)	Specific Viela	(m x tu)	(88.69/2)	76 Kamigh	In fycar i in	,	Saunity	(ni /day) -	Supply
Indifferentiated Proterozolc -	Yaitaloola	350	70	20	0.02	28	300) 2	0.4	3	Fresh -Saline	< 100	Station
	Pyramid	395	79	. 20	0.02	32	300) 2	0.5	3		(400)	
Indifferentiated rocks from the	Mt Bruce	663	133	. 20	\ 0.02	53	300) 2	I	3			
lamersley, Ashburton, Bresnahan.	Roy Hill	365	73	- 20	0.02	29	300) 2	0.4	3			
Bangeinall and Savory Basins.	Newman	3521	704	20	0.02	282	300) 2	4	3			
2	Robertson	2674	535	20	0.02	214	300	2	3	3			
	Baifour Downs	1361	272	20	0.02	109	300) 2	2	3			
	Totel	9329				746	<u></u>		[1				
Feisle Volcanic Rocks -	Yarraloola	34	7]	0.05		32	5 2.0	0.04		Fresh - Marginal	< 300	Station
	MI Bruce	18		31		5	32		0,02	4			•
Coongatta Volcanics	Roy Hill	16		3		5	32		0.02	4			
voongarra voicames	Newman	317		3		93	32		0,4	4			
	Robertson	78		3		23	32		0.1	4			
	Total			· · · ·		139			1				
Granitic Rocks -	Newman	2217	443		8 0.05	842	25	0 2.0	2	3	Fresh - Saline	50 - 2000	Station
Granitic Hocks -	Robertson	1486		3					1	3	i ican - Danne	(46)	
Various rocks of Pilbara Craton	Balfour Downs	80		3					0.1	3		(40)	
granitoid complex inliers.	Total	3789)			1440							
							•						
Greenstane Rocks -	Newman	75	5 15	3	0 0.04	18		25 2	0.1	2	Fresh - Brackish	50 - 500	Station
Various rocks of Pilbara Craton granite-greenstone inliers,	Total	7:	5			18			0,1				
CATCHME	NT TOTAL	5929	1			40394			257				

* Known maximum yield in brackets. (a) Highest yields in Cleaved Sandstone Unit of the Formation

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

1

			-		Ground	water Storage			Recharge	
quifer - cological Unit	Sheet Name	: Salinity (mg/L)		Ares (m ² x 10 ⁶)	Saturated Thickness (m)	Specific Yield	Storage (m ³ x 10 ⁶)	Bore Yields (m ³ /day) *	Volume (m ³ /year x 10 ⁶)	Potential for Supply
Calcrete -	Pyramid	< 500		196		0.15	323	100 - 10000(a)	Recharge from	Station
		500 - 1000	•	646		0.15	1163	(5500)	e	Town(b)
Millstream Dolomite		1000-1500		334		0.15	902		and flood water = 17	Horticultura
		1500-3000		14		0.15	38			
			Total	1190)		2426		Recharge from leakage of streams	
									discharging into valley	
Alluvial -	Pyramid	< 500		123			111	100 - 500		
		500 - 1000		123			185	(588)	= 12	•
Alluvium Kumina Conglomerate		1000-1500	Total	256		0.1	<u> </u>			
	<u></u>							· · · · · · · · · · · · · · · · · · ·		
Pisolite -	Pyramid	< 500		67		0.1	40	500 - 1500		
		500 - 1000		360			324	(1585)		
Robe Pisolite		1000-1500	<u></u>	25		0.1	102			
Poondano Formation			Total	68:	3		467			
Yarraloola -	Pyramid	Mostly fresh minor brackish areas.	il II de de la companya de la compa	170	6 46	0.1	810	100 - 1000 (1610)(c)		
Yarraloola Conglomerate			Total	17	6		810			
		AREA	TOTAL	230			4003		29	

Summary of Groundwater Resources of Valley Fill Aquifers at Millstream, Fortescue River Catchment

* Known maximum yield in brackets.

(a) Average from 12 water supply bores is 9600 m³/day (Masterson and Miotti, 1992).

(b) $12 \times 10^6 \text{ m}^3$ of groundwater required for environmental support leaves $17 \times 10^6 \text{ m}^3$ of recharge.

(c) Yield derived from bore in adjacent catchment but very close to Millstream.

Table A4. 5: Summary of the Groundwater Resources of the Port Hedland Coast River Basin - Upland Area

				Grou	ndwater Stor	age	<u> </u>	Recha		lume			
								-		iume			
Aquifer -		Total Area	Area x 20%	Saturated	Specific	Storage	Rainfall		(m ³ /year x		2	Bore Vields	Potential for
Geological Unit	Sheet Name	$(m^2 \times 10^6)$		Thickness (m)	Yield	(m ³ x 10 ⁶)	(mm/a)	% Rainfall	104)	(m³/d/km³)	Salinity	(m ³ /d) *	Supply
	Pyrainid	1890	378	30	0.01	113	310	2.5	2.0		Freed Marrie 1	-100 250	0
Cliff Springs -	Roebourne	64	13	30	0.01	4	310	2.5	2,9 0.1		Fresh - Marginal	<100 - 250	Station
												(3600)	
Cliff Springs Formation	Yarraloola	293	59	. 30	19.0	18	310	2.5	0.5	4			
	Total	2247	449			135			3	-			
Mafic Volcanic Rocks -	Yarraloola	1079	216	10	0.05	108	350	4,5	3.4	9	Fresh - Marginal	100 - 500	Station
	Pyramid	3653	731	10	0.05	365	350	4.5	11.5		B	(382)	
Mount Roe Basalt	Marble Bar	602	120	10	0.05	60	350	4.5	1.9			(502)	
Kyleena Basali	Roy Hill	211	42		0.05	21	350	4.5	0.7				
Pillingini Tuff	Roebourne	403	81	10	0.05	40	350	4.5	1,3				•
Cooya Pooya Dolerite	Dampier	125	25		0.05	13	350	4.5	0.4				
	Total	6073	1215			607		<u></u>	19	5			
Granitic Rocks -	Port Hedland	2504	501	38	0.05	952	325	2.0	3.5	4	Fresh - saline but mostly	< 50 - 2100	Station
	Roebourne	729	146		0.05	277		2.0	0.9		fresh - marginal.	(1150)	
Various rocks of Pilbara Craton	Dampier	527	105		0.05	200	325	2.0	0.			(,	
granitoid complexes.	Yamaloola	522	104		0.05	198		2.0	0,1		•		
Eranning compreses.	Pyramid	2418	484		0.05			2.0	3.				
	Roy Hill	34	7		0.05	13		2.0	0.0-				
	Marble Bar	5258	1052		0.05			2.0	6,8				
	Total	11992	2398			4557	v	<u></u>		5			
Greenstone Rocks -	Port Hedland	534 1196	107 239			128 287		2	0.1		Fresh - saline but mostly	50 - 500	
	Roebourne							2			fresh - brackish.	(2200)	
Roebourne Group	Dampier	620	124			149		2	0.				
	Yarraloola	186 1959	37 392			45		2	0.1				
	Pyramid							2	2.				
	Marble Bar	621	124	30	0.04	149	325	2	0.	8 4			
	Total	5116	1023			1228				7			
	MENT TOTAL	25428	5086			6527			4	2			

* Known maximum yield in brackets.

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

÷

Table A4. 6: Summary of the Groundwater Resources of the Port Hedland Coastal Plain

			Gra	undwater Sto	rage			Recharge/Safe	Yield		
Aquifer - Subcatchment / Geological Unit	Sheet Name	Salinity (mg/L)	Area (m² x 10 ⁶)	Saturated Thickness (m)	Specific Yield	Storage (m ³ x 10 ⁶)	River Length (km)	Volume (m³/year/km)	Total (m³/year x 10 ⁶)	Bore Yields (m ³ /d) *	Potential for Supply
Alluviai -	Pt Hedland	<500	315	, 30		945		80000	13	1000 - 2000	Station
	& Yarrie	500-1000	713	30		2139				(6545)	Town
DeGrey River Subcatchment/		1000-1500	253	20		253					Horticultural
		1500-3000	883	15		662					
Alluvium		>3000	1095	10	0.05	548					
Colluvium	To	tal	3259			4547			13		
Eluvium											
Alluvial -		<\$00	428	20	0.1	856	148	80000	12	500	Station
		500-1000	713	15		1070				(273)	
Shaw River Subcatchment/		1000-1500	470	10		235				(2.0)	Horticultural
		1500-3000	345	5		86					
Alluvium		>3000	192	5							
Colluvium	To	otal	2148			2295			12		
Eluvium											
Alluvial -	Pt Hedland	0-500	4		0.05	1	50	18000	1	<100	Station
Allothal -	1 C Heoluno	500-1000	75	-	0.05	-		10000	•		Distion
Tabba Tabba Creek Subcatchment/		1000-1500	117		0.05						
Tabba Tabba Creek Bubcatennienb		1500-3000	113		0.05						
Alluvium		>3000	150	-	0.05						
Colluvium	т	otal	459		0,05	92			1	•	
Eluvium		5141	437			72	•				
Alluviai -	Pt Hedland	<500	70		4 0.1	98	30	90000	3	1000	Station
Anuviat •	& Roebourne	500-1000	112					50000	3	(630)	
Turner River Subcatchment/	& Roebourne	1000-1500	46							(030)	Horticultural
Turner River Subcarchmenv		1500-3000	40								noncunufat
A 11		>3000	148	1.							
Alluvium Colluvium	т	23000	488		0.03	381			3		
Eluvium	1	Jiai	466			301			C		

			-	Gro	undwater S	torage		-		Recharge/Safe	leid			
Aquifer - Subcatchment / Geological Unit	Sheet Name		Salinity (mg/L)	Area (m ² x 10 ⁶)	Saturated Thickness (m)		ic Yield	Storage (m ³ x 10 ⁶)	River Length (km)	Volume (m³/year/km)	Total (m³/year x 10 ⁶	ⁱ)	Bore Yields (m ³ /d) *	Potential for Supply
Alluvial - Yule River Subcatchment/	Roebourne		<500 500-1000 ·	- 194 167 150	*	20 17 17	0.15 0.15 0.05	582 426 128	48	290000		14	1000-1500 (2793)	Station Town Horticultural
Alluvium		Total	1500-3000 >3000	251 167 929		9 4	0.05 0.05	113 33 1282				14		
Eluvium														
Alluvial -	Roebourne		1000-1500 1500-3000	209 110		4 4	0.08 0.08	67 35	150	45000		7	< 100 - 1000	Station Town
Pewah-Harding River Subcatchment/ Alluvium Colluvium Eluvium		Total	>3000	<u>401</u> 720		4	0.08	128 230			<u> </u>	7		Horticultura
Granitoid- Various rocks of Pilbara Craton granitoid complexes.	Pt Hediand & Roebourne		Fresh to saline.	8393		5	0.05	2098	Rec	harge via leakage f	rom alluvium		50-2000 (1637)	Station
Greenstone -	Pt Hedland &		Fresh to saline.	708		5	. 0.04	142	Rec	harge via leakage f	rom alluvium		50-1000	Station
Greenstone - Various rocks of Pilbara Supergroup	Roebourne												(632)	
COASTAL PLA	IN TOTAL			8003				11066				49		

* Known maximum yield in brackets.

Table A4. 7: Summary of the Groundwater Resources of the DeGrey River Basin - Upland Area

				Grou	undwater Sto	rage		R	echarge				
									Volum				
Aquifer - Geological Unit	Sheet Name	Total Area (m ¹ x 10 ⁴)	Area x 20% (m ² x 10 ⁶)	Saturated Thickness (m)	Specific Yield	Storage (m ³ x 10 ⁶)	Rainfail (mm/a)	% Rainfall	(m²/)cerx 18°) (m²/	lay/km²)	Salinity	Bore Vields (m³/day) ≜	Potential for Supply
Caferete -	Balfour Downs	615		25	0.15	2306		Recharge t	by river flow.		Fresh - Saline	100 - 5500	Station
	Nullagine	356	-	25	0.15	1335	Assume	d to be 140000	m ¹ /year/km over 12) kin		(218)	
Oakover Formation and	-												
undifferentiated calerete deposits.	Total	971	*	·	٨	3641			17				
Dolomite-	Balfour Downs	2920	584	25	0.1	1460	30	ю	3 5	5	Fresh - Brackish	50 - 4000	Station
	Nullagine	2586			0,1	1293	30		3 5	5		(3742)	Town
Carawine Dolomite Pinjan Chert Breccia	Varrie	165	33	25	0.1	83	30	0	3 0.3	5			Horticultural
	Total	5671				2836	,,,,,,,		10				
Narra Mamba -	Balfour Downs	353	71	25	0.05	88	2!	50	2 0.4	3	Fresh - Brackish	< 500	Station
Narra Namba Iron Formation	Total	353	<u></u>	********************		88		<u> </u>	0.4				
Ifardy -	Port Hedland	6	· · · · · ·	30	0.02	1	3(00 2	.0 0.01	3	Fresh - Marginal	100 - 200	Station
•	Marble Bar	351				42	30		.0 0.4	3		(200)	ı.
Hardy Sandstone	Yarrie	160				19			.0 0.2	3			
	Nullagine	545				65			1.0	3			
	Balfour Downs	18	1	1 30	0.02	2	3	00 2	0.02	3			
	Total	1080)			130		·····	1				
Mafic Volcanie Rocks -	Port Hedland	1079) 210	6 10	0.05	108	3	00 4	1.5 3	7	Fresh - marginal, some	100 - 500	Station
	Maible Bar	1060							1.5 3	7	brackish.	(218)	
Maddina Basali, Nymerina Basali, Tumbiana	Roy Hill	1600	32	0 10	0.05	160	3	00 4	1.5 4	7			
Formation, Kyleena Basalt, Mount Roe	Yarrie	661	8 13-	4 10	0.05	67	3	00 4	1.5 2	7			
Basalt and Pearana Basalt.	Nullagine	4301					-		1.5 12	7			
	Belfour Downs	318:							1.5 9	7			
	Robertson	:	3	1 10	0.05	0.3	3	00 4	4.5 0.01	7			
	Total	1190	0			1190			32				

				Grou	indwater Stor	age		R	echarge				
										'olume			
Aqulfer - Geological Unit	Sheet Name	Total Area (m ³ x 10 ⁶)	Area x 20% (m ² x 10 ⁶)	Saturated Thickness (m)	Specific Yield	Storage (m ³ x 10 ⁶)	Rainfall (mm/a)	% Rainfall	(m ¹ /years 10) (m²/day/km²)	Salinity	Bore Yields (m ³ /day) *	Potential for Supply
Undifferentiated Proterozolc Rocks -	Roy Hill	58	12	20	0.02	5	30	0	2 0.	I 3	Fresh -Saline	< 150	Station
	Robertson	538	108	20	0.02	43	30	0	2	1 3			
Undifferentiated rocks from the Hamersley,	Balfour Downs	3971	794	. 20	0.02	318	30	0	2	53			
Bangemail and Yeneena Basins.	Nullagine	233	47	20	0.02 _k	19	30	0	2 0.	3 3			
	Үалтіе	160	32	20	0.02	13	30	0	2 0.	2 3			
	Total	4960				397				6			
Feisle Volcanic Rocks -	Port Hediand	100	20) 30	0.05	30	30	0 2	0 0	.(3	Fresh - Brackish	100 - 600	Station
	Marble Bar	290				87	30			.3 3		(800)	
Felsic volcanic rocks of the Archaean	Yarrie	117				35	30			.1 3		(000)	
elsic volcanic rocks of the Archaean reenstone sequence and the Proterozolc Coongaling Volcanics.	Nullagine	707				212	30			.8 3			•
	Total	1214				364				1			
Granitic Rocks -	Port Hediand	2359	47	2 38	0.05	896	3(xo 2	2.0	3 3	Fresh - saline but mostly	< 500) Station
	Marble Bar	5090				1934	3(2.0	6 3	fresh - brackish.	(2100)	
Various rocks of Pilbara Craton	Roy Hill	833	16			317	30		2.0	1 3		(1100)	,
granitoid complexes.	Yarrie	1958	39	2 38	0.05	744	3		2.0	2 3			
	Nullagine	3052	61	0 38	0.05	1160	3	30 31	2.0	4 3			
	Balfour Downs	831	16	6 38	0.05	316	3	00 3	2.0	1 3			
	Robertson	2	20.	4 38	0.05	1	3	00 :	2.0 0.0	02 3			
	Total	14125	5			5368	•	<u> </u>		17			·
Mosquito Creek-	Nullagine	170				273			3.0	3 5		< 100 - 1000 (a	
Mosquito Creek Formation	Balfour Downs	131	8 2	8 20	0.04	22	3	00	3,0 (0.2 5	some saline.	(610)
	Tota	1840	6	,,,, 	·····	295				3			

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

APPENDIX 4

				Grou	indwater Sto	rage		Re	harge				
									Volume				
Aquifer - Geological Unit	Sheet Name	Total Area (m² x 10 ⁶)	Area x 20% (m ² x 10 ⁶)	Saturated Thickness (m)	Specific Yield	Storage (m ³ x 10 ⁴)	Rainfall (mm/a)	% Rainfall	(m³/years 10°) (m³/da	ŋ∕km¹)	Salinity	Bore Yields (m ³ /day) *	Potential fo Supply
Greensione -	Port Hedland	1065	213	30	0.04	256	30	0 3.5	2	6	Fresh - saline but mostly	<500	Station
	Marble Bar	3972	794	30	0.04	953	30	0 3.5	8	6	fresh - brackish.	(3000)	
Various rocks from the Pilbara Craton	Roy Hill	41	8	30	0.04	10	30	0 3.5	0.1	6			
greenstone sequence.	Yanie	628	126		0.04	151	30	0 3,5	1	6			
	Nullagine	940	188	30	0.04 K	226	30	0 3.5	2	6			
	Total	6646				1595			14				
CATCH	MENT TOTAL	48766				15904			103				

•

* Known maximum yield in brackets.

•

(a) Highest yields in Cleaved Sandstone Unit of the Formation

Table A4. 8: Summary of the Groundwater Resources of the Sandy Desert Basin

.

		-	G	roundv	valer Storage				Ree	charge/Safe	<u>Yield</u>			
Aquifer - Beological Unit	Sheet Name		Area (m² x 10 ⁶)		urated ness (m) Spec	tific Yield	Storage (m ³ x 10 ⁶)	Rainfall (mm/a)	% I	Rainfall	Volume (m³/year x 10 ⁶)	Salinity	Bore Yields (m³/day) *	Potential for Supply
Broome -	Port Hedland Yarrie Mandora		1575 1350 70	1	20 . 0 20	0.1 - 0.1	315	0 2	50 50 50	3 3 3	18 10	Fresh 10 saline	1000 (735)	Station Town Horticultural
roome Sandstone	Mandola	Total	2925	•			329				29			nomeunman
Wallal - Wallal Formation	Port Hedland, Yarrie & Mandora		2100)	94	0.1	5500	0 Rect	-	ccurs by leak overlying aqu	age through the lifers	Fresh to saline	2000 (2000)	Station Town Horticultura
		Total	210() (*)	· · · · · · · · · · · · · · · · · · ·		5500	0			21			•
Paterson Paterson Formation	Yarrie Nullagine Batfour Downs		155(1011 81	2	100 100 100	0.01 0.01 0.01	155 101 8	2	250 250 250	2 2 2	8 5 0.4	Fresh to saline	500 (528)	
		Total	256	2			250	2			13			
	BASIN TOTAL		548	i			608	52			63	************	94, , 1 45,	

.

Known maximum yield in brackets.

^(a) Underlies Broome Sandstone and Jarlemai Siltstone

Appendix 5: Environmental, Social, Cultural Values

Table A5. 1: Impacts of Forest Land Use on Surface Water Resources

 Table A5. 2: Impacts of Surface Water Schemes on Forest Land Use

Table A5. 3: Impacts of Rural and Urban Land Use on Surface WaterResources

Table A5. 4: Impacts of Surface Water Schemes on Rural and UrbanLand Use

 Table A5. 5: Impacts of Land Use on Shallow Groundwater Resources

 Table A5. 6: Impacts of Shallow Groundwater Schemes on Land Use

Table A5. 7: Acceptable, Restricted and Unacceptable Land Uses(DRAFT)

Water Quality Protection

Inter-relationships between land use and water supply schemes

The development and operation of water sources involves 'using' land and water. Land is 'consumed' by inundation behind a reservoir, for roads, pipelines, well sites, treatment plants and other structures and earthworks. Water is diverted from streams or by the lowering of groundwater levels in the vicinity of wells. The construction and operation of water infrastructure may have other impacts such as those of dust, odour, vibration and noise. These impacts occur on both the natural environment and the social environment.

The following tables indicate the types of impacts that developments of water resources for public supply have on land use and conversely the impacts that land use has on water sources. This broad assessment is made for surface water and shallow groundwater and for forested, rural and urban land uses. The tables describe:

Table D	leconintion
	Description
A5.1 li	mpacts of forest land use on surface water resources.
A5.2 li	mpacts of surface water schemes on forest land use.
	mpacts of rural and urban land use on surface water esources.
	mpacts of surface water schemes on rural and urban and use.
A5.5 li	mpacts of land use on shallow groundwater resources.
A5.6 li	mpacts of shallow groundwater schemes on land use.

Confined aquifer wells have very little impact on land uses in their vicinity because they occupy a very small area of land and are not affected by, nor do they affect, nearby surface uses of the land. However, an operating well creates a local area of low pressure in the confined groundwater. Any other confined well within this area of low pressure will experience reduced pumping efficiency.

Note that one of the key impacts described in the tables is that of land use on the quality of water resources.

Table A5. 1: Impacts of forest land use on surface water resources.

	CONSERVATION RESERVES	TIMBER PRODUCTION	MINOR FOREST PRODUCTS (Beekeeping, charcoal, firewood, gravel)	MINING	SERVICE CORRIDORS	RECREATION	CONSERVATION OF ECOSYSTEMS
FLOW Volume (yield)	High density forest has low yield.	Higher yield from forest with reduced density from logging.	As for timber production except less intense.	Some increase in yield during mining; possible reduction after rehabilitation if vegetation very dense.	Negligible effects.	Negligible effects.	Possible reduction of water for water supply due to ecosystem maintenance.
SALINITY	Streams in conservation reserves usually fresh.	If logging spreads dieback and/or forest density is reduced, stream salinity may increase in lower rainfall areas.	As for timber production except less intense.	No risk in high rainfall areas. Risk in lower rainfall areas is being determined.	May have indirect effects in low rainfall areas through spread of dieback.	As for service corridors.	May help prevent activities which risk salinity increases.
TURBIDITY	Minimal.	Careful management needed to avoid turbidity from logging areas.	As for timber production except less intense.	Management required to avoid turbid runoff from pits and haul roads.	A serious source of turbidity.	Recreation causes little turbidity.	Nil.
CHEMICAL POLLUTION	Nil.	Minimal (chemical spills).	As for timber production except less intense.	Minor risk of fuel spills. Leachate from tailings.	Risk of transport of hazardous chemicals in catchments.	Low (litter, nutrients).	Nil.
BIOLOGICAL POLLUTION	Minimal (illegal entry)	Minimal (operators)	As for timber production except less intense.	Minimal (operators)	High risk where roads encourage human access to streams.	High risk where camping is popular and close to water.	Nil

	PASTURE	CROPS	HORTICULTURE	RURAL INDUSTRY (e.g. abattoir, refineries)	INTENSIVE ANIMAL HUSBANDRY	SPECIAL RURAL (Hobby farms)	URBAN
FLOW VOLUME (yield)	Large yield increase compared to forested area. Irrigation may increase or reduce yield depending upon source of water.	As for pasture.	As for pasture.	Demand for industrial water supply may reduce flow.	Minor reduction in yield if water supply required.	As for intensive animal husbandry.	Increased runoff from road, and roofs, but not usually significant because urban areas are usually only a small fraction of catchment.
SALINITY FROM GROUNDWATER DISCHARGE	Clearing may cause brackish or saline streams after clearing in lower rainfall, higher soil-salt storage areas.	As for pasture.	Not usually in salinity - risk areas.	N/A	N/A	As for pasture.	N/a
TURBIDITY	High risk of turbidity if animals have direct access to stream.	High risk of turbid runoff from ploughed fields.	As for crops.	Poor management of site or process can cause severe turbidity.	Turbidity is only a risk in some cases of poor management.	Low risk of turbidity, except when there is a large number of different land owners.	Runoff from roads and verges can cause turbidity.
CHEMICAL POLLUTION	Risk of pollution from agricultural chemicals, pesticides and fertilisers.	As for pasture.	High risk of pollution from pesticides and fertilisers if their application is not controlled.	Harmful chemicals may be discharged to stream if pollution is not controlled.	Risk of pollution from high nutrient loads in effluent and runoff from site unless adequately managed.	As for pasture.	Risk of pollution from urban runoff which contains rubber, fuel and oil, spillage of poisons; drainage from rubbish disposal sites.
BIOLOGICAL POLLUTION	Risk from human and stock access to stream or reservoir.	Minimal.	Usually higher density of human habitation then crops or pasture hence higher risk.	Highly polluting effluent should be treated to acceptable standard before discharge to stream or preferably removed from catchment.	High risk if effluent not adequately treated or removed from catchment.	Relatively high density of housing using septic systems increases risk of pollution of streams. Generally higher level of human activity near streams produces significant pollution.	Disposal of sewage can present a risk of pollution. High concentration of people increases risk of people increases risk of pollution from human contact with stream water or impounded water.

 Table A5. 2: Impacts of surface water schemes on forest land use.

	CONSERVATION RESERVES	TIMBER PRODUCTION	MINOR FOREST PRODUCTS (Beekeeping, charcoal, firewood, gravel)	MINING	SERVICE CORRIDORS	RECREATION	CONSERVATION OF ECOSYSTEMS
Catchment areas	Priority for conservation does not prevent use as a catchment	Imposes costs of careful management	As for timber production	Imposes costs of careful management	Prefer routes away from streamlines	May constrain particular activities in particular areas	Recognition of catchment areas has limited the clearing of native forests for agriculture.
STORAGE DAMS a) Impacts of dam and reservoir basin	Storage dams cannot be located in conservation reserves	Some loss of timber growing land in the reservoir basin, which is likely to be above average quality, due to richer soils in valley floors.	As for timber production	Some mineral may be lost under water. Dam and reservoir may constrain routes of haul roads and conveyors.	May constrain routes.	Adds tourist attraction, but active water pastimes may be restricted. Reduces lengths of wild rivers by inundation.	The total area of Murray type landform is proportionately most reduced by reservoirs, compared to other landforms.
b) Downstream impacts	Flow quantity and variation is reduced.	Nil	Nil	Nil	Nil	Flow regulation may improve value of river downstream for recreation.	Flow quantity and variation is reduced.
PIPEHEAD DAMS	Although incompatible at site of works, small size makes a compromise easier if these is a conflict.	Negligible.	As for timber production.	No impact except for especially careful management in vicinity of pipehead.	Negligible	Access usually restricted. Little impact on recreational value of downstream flows.	Creates long-lasting pool in river where previously there was only occasional flooding.
PIPELINES	Similar to roads and powerlines.	Similar to roads and powerlines.	As for timber production.	Constrain routes for haul roads.	Slightly higher costs at intersections of pipes with other services.	May be visually intrusive in landscape. May improve walking access to forest.	Similar to roads and powerlines.

	PASTURE	CROPS	HORTICULTURE	RURAL INDUSTRY (e.g. abattoir, refineries)	INTENSIVE ANIMAL HUSBANDRY	SPECIAL RURAL (Hobby farms)	URBAN
Catchment areas	No impact on conservative farming practices. Potential for rezoning to more densely inhabited or industrial land use may be restricted.	As for pasture.	As for pasture.	Imposes cost of careful management. Industry producing toxic wastes should be excluded from catchment.	Imposes cost of careful management and possible relocation if near stream.	As for pasture and urban. Control on location of septic tanks.	Possibly extra costs for sewage and rubbish disposal. Need to keep urban development away from streams.
STORAGE DAMS a) Impacts of dam and reservoir basin	Private land would need to be resumed in reservoir basin and dam works area.	As for pasture.	As for pasture.	As for pasture.	As for pasture.	As for pasture.	As for pasture.
b) Downstream impacts	Flows greater than required for riparian rights are markedly reduced. Flooding is reduced.	As for pasture.	As for pasture.	As for pasture. If industries have used stream for water supply, special arrangements for continued use may be required.	As for pasture.	As for pasture.	As for pasture.
PIPEHEAD DAMS	As for storage dam except that required land area is very much smaller.	As for pasture.	As for pasture.	As for storage dam except that impact on downstream flows is less.	As for pasture.	As for pasture.	As for pasture.
PIPELINES	Easement required on pipeline route. Above ground pipe can give problems of access and slight loss of productive land. Below ground pipe has minimal impact.	As for pasture.	As for pasture.	Pipe route would probably avoid industrial site.	As for special rural.	As for pasture, except pipe route would probably avoid private land.	If pipeline must pass through urban land, there may be difficulty fitting in with other services.

Table A5. 4: Impacts of surface water schemed on rural and urban land use.

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

Table A5. 5:	Impacts of land	use on shallow	groundwater resources.

	NATURAL VEGETATION	WETLANDS	PINE FOREST	MARKET GARDEN HORTICULTURE SPECIAL RURAL	URBAN	RURAL INDUSTRY	INTENSIVE ANIMAL HUSBANDRY
VOLUME AVAILABLE YEARLY	May be limited by need to maintain native vegetation except where the depth to groundwater is sufficiently deep.	May be limited by need to maintain wetlands.	For about 10 years after clearing to plant pines, there is increased recharge. As trees grow older there is less recharge than with native vegetation.	Water available for public supply is reduced by most of the amount withdrawn for irrigation (remainder soaks back to the water table).	Increased runoff from roads and roofs increases recharge, but stormwater drainage may divert some flow away from recharging groundwater.	Water available for public supply reduced by amount drawn from groundwater by industry.	As for market gardens.
POLLUTION	No impact.	No impact unless wetlands receive drainage from urban, industrial or market garden areas.	No impact unless there is inappropriate use of chemicals.	Groundwater pollution by pesticides, fertilisers, effluent from septic tanks.	Groundwater pollution by pesticides, fertilisers, waste and leaked petroleum. Drainage from rubbish disposal sites, effluent from septic tanks.	Groundwater pollution specific to the industry may occur through waste disposal.	Groundwater pollution by effluent from treatment of wastes.

Table A5. 6: Impacts of shallow groundwater schemes on land use

	NATURAL VEGETATION	WETLANDS	PINE FOREST	MARKET GARDEN HORTICULTURE SPECIAL RURAL	URBAN	RURAL INDUSTRY	INTENSIVE ANIMAL HUSBANDRY
UNDERGROUND WATER POLLUTION CONTROL AREAS, GROUNDWATER AREAS, PUBLIC WATER SUPPLY AREAS	No impact.	Conservation value is maintained through management plans.	Plantation management may be modified to give priority to water production.	Licensing of private wells raises the awareness of the limited availability of the water resource and encourages efficient use. Management is required to prevent pollution of groundwater.	Private wells are licensed and care is taken by public authorities in siting of waste disposal and industry. Management is required to prevent pollution of groundwater.	Water Authority generally objects to industry with potential for groundwater pollution being sited in these areas. Other industries as for market gardens.	As for rural industry.
WELLS	Tree deaths may occur near wells in droughts. Yearly groundwater production plans are designed to limit this occurrence. 200 sq. m of land is required for works at well site.	Locations of wells chosen and wells operated to minimise effects on wetlands.	Viability of pines not affected by groundwater level. 200 sq. m of land is required for works at well site.	Lowers the water table in immediate vicinity. Where wells are situated close together, they may need to be deeper than if further apart. Allocation policy and management are required.	Sites for wells are usually found on public land where their impact is similar to other service installations.	Wells should not be sited in the vicinity of an industry with potential for pollution. Other industry as for market gardens.	As for rural industry.
COLLECTOR MAINS	Mains are generally buried but access is required along route. Existing roads used wherever possible.	Mains are not located in wetlands.	As for natural vegetation.	An easement is required if mains must be located on private land. Impact of main on land use is minimal.	Routes for collector mains must be found in road reserves as for other services.	Routes for mains would avoid conflict with requirements of industry.	As for rural industry.
GROUNDWATER TREATMENT PLANTS	Approx. 6 ha site required for treatment works and disposal of sludge.	N/A	As for natural vegetation.	N/A	Works would be visually obtrusive, and may be source of odour and noise for adjacent houses. Buffer zone required.	N/A	N/A

PILBARA REGION WATER RESOURCES REVIEW AND DEVELOPMENT PLAN

Overview of Water Source Protection Policies (DRAFT)

The Water and Rivers Commission is responsible for managing and protecting Western Australia's water resources. The Commission has developed policies for the protection of public drinking water source areas, including the draft policy: "Protection of Groundwater Resources Used for Drinking Water Supplies in Country Areas of Western Australia". This policy defines three levels of priority classification for the protection of groundwater resources.

Priority 1 (P1) source protection areas are defined to ensure that there is no degradation of the water source. P1 areas are declared over land where the provision of the highest quality public drinking water is the prime beneficial land use. P1 areas would typically include land under Crown ownership. Development is generally not permitted in P1 areas.

Priority 2 (P2) source protection areas are defined to ensure that there is no increased risk of pollution to the water source. P2 areas are declared over land where low intensity development (such as rural) already exists. Provision of public water supply is a high priority in these areas. Some development is allowed under specific guidelines.

Priority 3 (P3) source protection areas are defined to minimise the risk of pollution to the water source. P3 areas are declared over land where water supply needs co-exist with other land uses such as residential, commercial and light industrial developments. Protection of P3 areas is achieved through management guidelines rather than restrictions on land use. If the water source does become contaminated, then water may need to be treated or an alternative water source be found.

In addition to priority classification, **wellhead protection zones** are defined to protect the aquifer from contamination in the immediate vicinity of production wells. Wellhead protection zones are usually circular, with a radius of 500 metres in P1 areas and 300 metres in P2 and P3 areas. These zones do not extend outside water reserves. Restrictions apply to storage of fuels, solvents, oils and pesticides within these zones.

Table A5.7: Acceptable, Restricted and Unacceptable Land Uses (DRAFT)

This table is to be used as a guideline only. The Water and Rivers Commission should be consulted regarding any developments or changes of land use within Public Drinking Water Source Areas. Information relating to land use and developments which are not listed in the table can be obtained from the Water and Rivers Commission.

Definitions

Acceptable	The development/land use is compatible with the management objectives of the priority classification
Unacceptable	The development/land use is incompatible with the management
Restricted	objectives of the priority classification The development/land use may be compatible with the management
	objectives of the priority classification with appropriate site
	management practices Restricted activities should be referred to the Commission for
	assessment on a case specific basis

AGRICULTURE - ANIMALS

Development	Priority 1	Priority 2	Priority 3
Animal Husbandry (extensive)	Unacceptable	Restricted	Acceptable
Animal Husbandry (intensive)	Unacceptable	Unacceptable	Restricted
Apiary	Acceptable	Acceptable	Acceptable
Aquaculture	Unacceptable	Restricted	Restricted
Dairy Farming	Unacceptable	Restricted	Restricted
Feedlots	Unacceptable	Unacceptable	Restricted
Livestock grazing (extensive)	Restricted	Acceptable	Acceptable
Livestock grazing (intensive)	Unacceptable	Unacceptable	Acceptable
Piggery	Unacceptable	Unacceptable	Unacceptable
Poultry farming (housed)	Unacceptable	Restricted	Restricted
Stables	Unacceptable	Restricted	Acceptable
Stockholding and saleyards	Unacceptable	Unacceptable	Restricted

AGRICULTURE - PLANTS

Development	Priority 1	Priority 2	Priority 3
Broad acre cropping	Restricted	Acceptable	Acceptable
Floriculture (extensive)	Unacceptable	Restricted	Acceptable
Floriculture (intensive)	Unacceptable	Unacceptable	Restricted
Horticulture	Unacceptable	Unacceptable	Restricted
Hydroponic Horticulture	Unacceptable	Restricted	Restricted
Orcharding	Unacceptable	Restricted	Acceptable
Potted Nurseries	Unacceptable	Restricted	Acceptable
Silviculture	Restricted	Restricted	Acceptable
Turf Farms	Unacceptable	Unacceptable	Restricted
Viticulture	Unacceptable	Restricted	Acceptable

DEVELOPMENT - COMMERCIAL

Development	Priority 1	Priority 2	Priority 3
Aircraft Servicing	Unacceptable	Unacceptable	Restricted ⁶
Amusement Centre	Unacceptable	Unacceptable	Acceptable ⁶
Automotive business	Unacceptable	Unacceptable	Restricted ⁶
Boat Servicing	Unacceptable	Unacceptable	Restricted ⁶
Caravan and trailer hire	Unacceptable	Unacceptable	Restricted ⁶
Carpark	Unacceptable	Restricted	Acceptable
Consulting rooms	Unacceptable	Unacceptable	Acceptable ⁶

DEVELOPMENT - COMMERCIAL (continued)

Development	Priority 1	Priority 2	Priority 3
Cottage Industries	Restricted	Restricted	Acceptable
Drive in take-away food shop	Unacceptable	Unacceptable	Acceptable ⁶
Drive in theatre	Unacceptable	Unacceptable	Acceptable ⁶
Dry Cleaning Premises	Unacceptable	Unacceptable	Restricted ⁶
Farm supply centre	Unacceptable	Restricted	Restricted
Fuel depot	Unacceptable	Unacceptable	Restricted
Garden Centre	Unacceptable	Restricted	Acceptable
Local shop	Unacceptable	Restricted	Acceptable
Market	Unacceptable	Unacceptable	Acceptable ⁶
Milk depot	Unacceptable	Unacceptable	Restricted
Restaurant	Unacceptable	Unacceptable	Acceptable
Service Station	Unacceptable	Unacceptable	Restricted
Transport Depot	Unacceptable	Unacceptable	Restricted
Veterinary Clinic/hospital	Unacceptable	Restricted	Restricted
Wrecking vehicles and machinery	Unacceptable	Unacceptable	Restricted

DEVELOPMENT - INDUSTRIAL

Development	Priority 1	Priority 2	Priority 3
General Industry	Unacceptable	Unacceptable	Restricted ⁶
Heavy Industry	Unacceptable	Unacceptable	Unacceptable
Light Industry	Unacceptable	Unacceptable	Restricted ⁶
Power Stations	Unacceptable	Unacceptable	Unacceptable

DEVELOPMENT - URBAN

Development	Priority 1	Priority 2	Priority 3
Aged and dependent persons			
accommodation	Unacceptable	Unacceptable	Acceptable ⁶
Amenity building	Unacceptable	Restricted	Acceptable
Airports or landing grounds	Unacceptable	Unacceptable	Restricted ⁶
Cemetery	Unacceptable	Unacceptable	Restricted
Civic building	Unacceptable	Restricted	Acceptable ⁶
Club	Restricted	Restricted	Acceptable ⁶
Community hall	Restricted	Restricted	Acceptable
Family Day Care Centre	Unacceptable	Restricted	Acceptable ⁶
Funeral parlour	Unacceptable	Unacceptable	Acceptable ⁶
Health Centre	Unacceptable	Unacceptable	Acceptable ⁶
Hospital	Unacceptable	Unacceptable	Restricted ⁶
Medical centre	Unacceptable	Unacceptable	Acceptable ⁶

EDUCATION/RESEARCH

Development	Priority 1	Priority 2	Priority 3
Education Centres	Restricted	Restricted	Acceptable ⁶
Primary/Secondary Schools	Unacceptable	Unacceptable	Acceptable ⁶
Scientific Research	Restricted	Restricted	Acceptable
Universities	Unacceptable	Unacceptable	Restricted ⁶

MINING AND MINERAL PROCESSING

Development	Priority 1	Priority 2	Priority 3
Extractive Industries	Restricted ²	Restricted ²	Restricted ²
Mining/Mineral Exploration	Restricted ⁴	Restricted ⁴	Restricted ⁴
Tailings Dams	Unacceptable	Unacceptable	Restricted

PROCESSING OF ANIMALS/ANIMAL PRODUCTS

Development	Priority 1	Priority 2	Priority 3
Abattoirs	Unacceptable	Unacceptable	Restricted
Cheese/butter factory	Unacceptable	Restricted	Restricted
Composting (using sewage sludge and animal products)	Unacceptable	Unacceptable	Restricted
Fish Processing	Unacceptable	Unacceptable	Restricted
Tannery	Unacceptable	Unacceptable	Unacceptable
Woolscourer	Unacceptable	Unacceptable	Unacceptable

PROCESSING OF PLANTS\PLANT PRODUCTS

Development	Priority 1	Priority 2	Priority 3
Breweries	Unacceptable	Unacceptable	Restricted
Composting (not using sewage sludge or animal products)	Unacceptable	Restricted	Restricted
Vegetable/food processing	Unacceptable	Unacceptable	Restricted
Wineries	Unacceptable	Unacceptable	Restricted

SUBDIVISION

Subdivision of land to lots of any size is unacceptable within Priority 1 areas

Development	Priority 1	Priority 2	Priority 3
Kennel Subdivisions	Unacceptable	Restricted	Restricted
Rural with a minimum lot size of 4 ha (unsewered)	Unacceptable	Acceptable	Acceptable
Rural with a minimum lot size of 1 ha (unsewered)	Unacceptable	Unacceptable	Acceptable
Special rural with a minimum lot size of 2 ha (unsewered) ⁵	Unacceptable	Acceptable	Acceptable
Special rural with a minimum lot size of 1 ha (unsewered) ⁵	Unacceptable	Unacceptable	Acceptable
Urban Residential	Unacceptable	Unacceptable	Acceptable ⁶

SPORT AND RECREATION

Development	Priority 1	Priority 2	Priority 3
Equestrian Centre	Unacceptable	Restricted	Acceptable
Golf Courses	Unacceptable	Unacceptable	Restricted
Irrigated Recreational Parks	Unacceptable	Restricted	Restricted
Motor sports	Unacceptable	Unacceptable	Restricted
Public Swimming Pools	Unacceptable	Restricted	Restricted
Recreational activities (active)	Unacceptable	Restricted ³	Restricted ³
Recreational activities (passive) eg. horse riding, bush walking	Acceptable	Acceptable	Acceptable

STORAGE OF DESIGNATED SUBSTANCES

Development	Priority 1	Priority 2	Priority 3
Above ground storage of designated substances	Restricted	Restricted	Restricted
Bulk Chemical Storage	Unacceptable	Unacceptable	Unacceptable
Underground Storage Tanks	Unacceptable	Unacceptable	Restricted

TOURISM ACCOMMODATION

Development	Priority 1	Priority 2	Priority 3
Bed and Breakfast	Unacceptable	Restricted	Acceptable
Caravan Parks	Unacceptable	Unacceptable	Restricted ⁶
Holiday accommodation	Unacceptable	Restricted	Acceptable ⁶
Motel lodging house, hostels	Unacceptable	Unacceptable	Acceptable ⁶

WASTE TREATMENT AND MANAGEMENT

Development	Priority 1	Priority 2	Priority 3
Deep well injection of effluent	Unacceptable	Unacceptable	Unacceptable
Municipal Landfills	Unacceptable	Unacceptable	Restricted
Recycling depot	Unacceptable	Unacceptable	Restricted
Refuse transfer stations	Unacceptable	Unacceptable	Restricted
Sewers	Unacceptable	Restricted	Restricted
Tyre Storage	Unacceptable	Unacceptable	Unacceptable
Wastewater Treatment Plants	Unacceptable	Unacceptable	Restricted
Water Treatment Plants	Restricted	Restricted	Restricted

OTHER DEVELOPMENTS

Development	Priority 1	Priority 2	Priority 3
Caretakers house	Restricted	Restricted	Acceptable
Construction Projects	Restricted	Restricted	Restricted
Forestry	Restricted ¹	Acceptable	Acceptable
National Parks	Acceptable	Acceptable	Acceptable
Nature Reserves	Acceptable	Acceptable	Acceptable
Radio and TV installation	Restricted	Restricted	Restricted
Major Transport Routes	Unacceptable	Restricted	Acceptable

1: Restrictions apply to fertiliser application rates with strict controls on the application of pesticides and field operations

2: Restrictions apply to the storage of fuels and chemicals with strict guidelines for rehabilitation

3: Restrictions on the use of fuels or chemicals apply

4: Subject to conditions placed on lease

5: Note: Special rural development requires appropriate provisions in the town planning scheme text

6: Must be connected to deep sewerage

Appendix 6: Existing Town Water Supply Statistics

- Table A6. 1: West Pilbara Water Supply Statistics
- Table A6. 2: Onslow Water Supply Statistics
- Table A6. 3: Tom Price Water Supply Statistics
- Table A6. 4: Paraburdoo Water Supply Statistics
- Table A6. 5: Pannawonica Water Supply Statistics

Table A6. 6: Port Hedland Water Supply Statistics

 Table A6. 7: Marble Bar Water Supply Statistics

- Table A6. 8: Nullagine Water Supply Statistics
- Table A6. 9: Wittenoom Water Supply Statistics
- Table A6. 10: Newman Water Supply Statistics

Table A6. 11: Telfer Water Supply Statistics

Table A6.	1: West Pilbara Water	Supply Statistics	
		Karratha	
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)
81/82	2428	2846948	-
82/83	2580	3143402	-
83/84	2653	2734367	3246634
84/85	2771	2578832	3126874
85/86	3203	2844245	3521226
86/87	3491	3130497	-
87/88	3584	3594586	4145088
88/89	3588	3178896	-
89/90	3584	2663336	3387007
90/91	3587	2910045	3585484
91/92	3587	2771129	3548164
92/93	3634	2551870	3199304
93/94	3681	2582779	3424045
		Roebourne	
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)
81/82	326	167936	247912
82/83	338	373426	524516
83/84	333	328799	442148
84/85	354	283791	418102
85/86	359	349575	476351
86/87	359	332625	-
87/88	355	426846	487150
88/89	353	369199	-
89/90	357	389051	469469
90/91	355	387264	471732
91/92	351	363399	457326
92/93	351	251375	401797
93/94	352	368620	431236
	L	Wickham	
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)
81/82	677	1098507	-
82/83	692	1309199	-
83/84	719	1238401	1028386
84/85	747	1016319	1255945
85/86	766	1012836	1197975
86/87	763	843209	-
87/88	768	916074	1107560
88/89	770	775263	_
89/90	773	774790	950217
90/91	791	683457	765114
91/92	773	570970	629999
92/93	774	460030	567322
93/94	775	473056	580308

		Point Samson	
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)
81/82	61	47483	-
82/83	66	47383	-
83/84	63	43995	55466
84/85	75	43919	52906
85/86	70	43625	60524
86/87	70	43461	
87/88	73	71085	52980
88/89	73	54134	52500
89/90	72	52863	70852
90/91	72	56452	62181
90/91 91/92	70	58449	62258
91/92 92/93	72	46861	53687
92/93 93/94	80	49301	53404
93/94	00	Dampier	
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)
81/82	16	3467033	
82/83	47	3407033	-
	47 99	119530	-
83/84 84/85	99 103	242230	-
84/85 85/86			-
85/86	134	162696	-
86/87	170	186846	-
87/88	200	224341	224341
88/89	226	214387	4070075
89/90	307	213954	1373875
90/91	320	266785	4183390
91/92	338	269384	1252568
92/93	344	258063	4657216
93/94	344	295292	4695184
VEAD	Total no of Sonvisoo	Supply Main	Total Mater Delivered (kl. pa)
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)
90/91			4183390
91/92		0551700	2367855
92/93		3551736	4657216
93/94		3981545	4695184
L		TOTAL	
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)
81/82	3508	7627907	247912
82/83	3723	4876881	524516
83/84	3867	4465092	4772634
84/85	4050	4165091	10772606
85/86	4532	4412977	11355500
86/87	4854	4536638	10528516
87/88	4980	5232932	11037147
88/89	5010	4591879	10720000
89/90	5093	4093994	9520000
90/91	5123	4304003	8753684
91/92	5120	4033331	8381325
92/93	5175	7119935	8879326
93/94	5232	7750593	9184177

Italics: Delivery figures for Dampier include Supply Main delivery figures

TOTAL					
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa		
81/82	152	167936	247912		
82/83	159	162899	237318		
83/84	165	151694	197330		
84/85	186	146761	213765		
85/86	219	197393	254545		
86/87	245	222984	266047		
87/88	289	234733	271963		
88/89	256	236091	298972		
89/90	264	254299	306725		
90/91	270	275720	314217		
91/92	273	262371	302320		
92/93	280	223982	277112		
93/94	291	279381	357000		

			TOTAL			
YEAR	Total no of Services	Total Consumption (kL pa)	Southern Fortescue (kL pa)	Hardey River (kL pa)	Mt Lionel (kL pa)	Total Water Delivered (kL pa
82/83	151	38170		-		-
83/84	230	420233	-	-	-	-
84/85	320	326544	-	-	-	-
85/86	366	479983	-	-	-	-
86/87	477	441560	-	-	-	-
87/88	565	433776	3560000	1663000	840000	6063000
88/89	635	481294	3123000	2220000	591000	5934000
89/90	868	659929	3787000	2141000	803000	6731000
90/91	924	770817	4454000	2157000	961000	7572000
91/92	1012	764830	4680000	1660000	521000	6861000
92/93	1021	804875	5282000	1709000	630000	7621000
93/94	1029	732252	-	-	-	
icensed	Capacity		4693000	2251000	1103000	8047000

	TOTAL					
YEAR	Total no of Services	Total Consumption (kL pa)	Mine Wellfield (kL pa)	Town Wellfield (kL pa)	4 East NW Dewatering (kl pa)	Total Water Delivered (kL pa)
82/83	63	23686	-	_	-	-
83/84	112	153826	-	-	-	-
84/85	143	196946	-	-	-	-
85/86	181	260649	-	-	-	-
86/87	258	255621	-	-	-	-
87/88	329	343113	1169000	2131000	-	3300000
88/89	389	368239	968000	2273000	-	3241000
89/90	545	444739	1158000	2215000	-	3373000
90/91	569	532552	1360000	1881000	-	3241000
91/92	671	498070	1078000	1601000	-	2679000
92/93	679	521033	410000	1085000	1964000	3459000
93/94	678	586068	-	-	-	-
icensed C	Capacity					4300000

Fable A6.5: Pannawonica Water Supply Statistics				
		TOTAL		
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)	
89/90	_	-	606787	
90/91	-	-	647973	
91/92	-	-	574214	
92/93	-	-	-	
93/94	-	-	-	

Table A6.	6: Port Hedland Wat	er Supply Statistics			
		Port Hedland			
YEAR	Total no of Services		Total Water Delivered (kL pa)		
81/82	1116	2935088	-		
82/83	1115	2853607	-		
83/84	1096	2722342	-		
84/85	1137	1024975	2786217		
85/86	1140	2846439	-		
86/87	1218	2861413	3138610		
87/88	1227	2595021	2825483		
88/89	1219	2488508	2779376		
89/90	1228	2542457	2883510		
90/91	1232	2769502	3102305		
91/92	1229	2605346	1960388		
92/93	1248	2615514	1599705		
93/94	1280	2632579	1886438		
	L	South Hedland			
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)		
81/82	2062	1900313	-		
82/83	2117	1918817	-		
83/84	2176	2069495	-		
84/85	2276	2175516	-		
85/86	2386	2174358	-		
86/87	2468	2130691	2333343		
87/88	2489	2507006	2705145		
88/89	2518	2619724	2358760		
89/90	2530	2810834	2523281		
90/91	2523	2839548	2561841		
91/92	2485	2869151	2481222		
92/93	2508	2792496	2353388		
93/94	2520	2951751	2527087		
	BHP				
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)		
90/91			3102305		
91/92			1075296		
92/93			825872		
93/94			1011548		
Wedgefield					
YEAR	Total no of Services		Total Water Delivered (kL pa)		
81/82	199	176699	-		
82/83	-	140583	-		
83/84	200	146011	-		
84/85	212	166239	-		
85/86	211	177398	-		
86/87	216	186809	274047		
87/88	216	184746	218057		
88/89	222	168093	214930		
89/90	231	172657	209778		
90/91	233	197531	245514		
91/92	242	186795	300723		
92/93	249	188663	4911588		
93/94	254	213081	261419		

	Finucane Island				
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)		
90/91			814848		
91/92			1014848		
92/93			1008210		
93/94			840226		
		Supply Main			
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)		
90/91			33631		
91/92			25410		
92/93			20030		
93/94			24618		
		TOTAL			
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)		
81/82	3377	5012100	-		
82/83	3232	5056279	6071250		
83/84	3472	5027048	5808275		
84/85	3625	5150531	5756303		
85/86	3737	5422696	5995016		
86/87	3902	5494345	6069681		
87/88	3932	5286773	5748685		
88/89	3959	5276325	5353066		
89/90	3989	5525948	5616569		
90/91	3988	5806581	9860444		
91/92	3956	5661292	6857887		
92/93	4005	5596673	10718793		
93/94	4054	5797411	6551336		

Italics: Delivery figures for Port Hedland include BHP delivery figures

TOTAL				
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL p	
81/82	91	97771	107771	
82/83	91	130693	140693	
83/84	92	136954	160473	
84/85	98	123700	145180	
85/86	95	116270	151729	
86/87	103	107914	139808	
87/88	104	117100	148697	
88/89	126	106991	121043	
89/90	123	100574	131903	
90/91	123	131302	180313	
91/92	123	123851	162817	
92/93	123	129491	162234	
93/94	124	129396	142982	

TOTAL				
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa	
81/82	26	26763	26763	
82/83	26	27882	33871	
83/84	28	27882	33871	
84/85	29	30212	41565	
85/86	30	30370	39937	
86/87	29	24855	29947	
87/88	31	37823	46965	
88/89	34	38654	56703	
89/90	42	47804	65044	
90/91	42	35687	40476	
91/92	44	22908	32947	
92/93	44	34837	35191	
93/94	46	43371	49925	

•

TOTAL				
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa	
81/82	138	121855	194805	
82/83	136	89804	133541	
83/84	131	72178	109179	
84/85	128	66468	103105	
85/86	128	65610	104051	
86/87	118	49473	79724	
87/88	101	51937	75865	
88/89	92	55870	86220	
89/90	89	47718	91740	
90/91	81	40936	80504	
91/92	79	37370	69043	
92/93	78	32203	84563	
93/94	76	37042	92740	

		TOTAL	
YEAR	Total no of Services	Total Consumption (kL pa)	Total Water Delivered (kL pa)
90/91	1579	406147	-
91/92	1664	1293344	1801776
92/93	1677	1410475	-
93/94	1689	1433167	-

	тот	AL	
Borefield	1995 Delivery (kL pa)	Total Potable (kL pa)	Total Raw (kL pa)
Wilki/Glen	285439		
Gardens	8497		
Wilki South	7292	301228	
Passmore Fault	967976		
Campsandstone	877900		
West Dome	2758955		
Punta Punta	1177206		
Pit 13	-		
Staggers	1243233		7025270

Italics: Potable Water

Table A7. 1: West Pilbara Scheme - Water EntitlementsTable A7. 2: East Pilbara Scheme - Water Entitlements

Current Water Entitlement Agreements

During the late 1960's and 1970's several agreements with the large companies operating in the Pilbara were entered into with the State. These agreements entitled the companies to an agreed quantity of water, either on a daily or annual basis. The agreed quantity of water to be supplied to the companies, in all cases, was for domestic as well as industrial purposes. These agreements apply to both the West Pilbara Water Supply Scheme and the Port Hedland Scheme.

West Pilbara

Hamersley Iron Pty Ltd

This agreement was made on the 10/11/69. The agreement with Hamersley is for the Water Corporation to supply 13 640 kL/d to the Karratha and Dampier areas. In a letter dated 19 November 1969, Hamersley Iron agree that the quota is to supply industrial, domestic and domestic needs of a consequential growth up to 5%. Hamersley have an additional entitlement of 9090 kL/d from Millstream to the Yannery Tank. In a letter dated 11 December 1970, Hamersley Iron in paragraphs 3 & 4 refer to the possibility of developing alternative sources and restrictions respectively.

Robe River

This agreement was made on the 13/7/76. The agreement with Robe River is for the Water Corporation to supply 11 820 kL/d to the Cape Lambert and Wickham areas. Robe Rivers' entitlement can be increased to 18 185 kL/d subject to Robe meeting the deferred capital expenditure on works, provided in the agreement. Clause B of the agreement refers to water supplied for both industrial and domestic use and Clause H, paragraphs 12 & 13, refer to restrictions and alternative sources respectively.

Woodside Offshore Petroleum Pty Ltd

This agreement was made on the 16/8/79. The agreement with Woodside is for the Water Corporation to supply 4225 kL/d to the Karratha and Burrup Peninsula areas for domestic and industrial purposes (refer to clause 18 (1)). However in 1985 Woodside submitted a variation to the agreement which stated that their revised water requirement was 3172 kL/d. The Water Corporation have indicated that this is the figure that they are working on, although Financial Planning suggest that since it appears that Woodside has paid for an allocation of 4225 kL/d then that should be their entitlement.

East Pilbara

BHP - Mount Newman Mining Company

The most recent agreement with BHP - Mount Newman is for the Water Corporation to supply 24 909 kL/d to a maximum of 5 680 000 kL in any financial year. This agreement was made in October 1977. The letter sent by the Minister for Industrial Development on 24 September 1977 referred to industrial and domestic water requirements and restrictions in paragraphs (d) & (g) respectively.

BHP - Goldsworthy

The agreement with BHP - Goldsworthy is for the Water Corporation to supply 2100 kL/d to Finucane Island. This agreement was made on the 5/8/86.

Percentage of Entitlement Used

The quantity of water consumed for industrial purposes, can, and is metered by the Water Corporation. However, the quantity of water used for domestic purposes by each of the companies is very difficult to measure, further complicated by the fact that some of the companies are selling their houses to their employees. The quantity of water used for domestic purposes has been estimated from the number of accommodation units. The quantity of water estimated to have been used by the companies is shown in Table A7. 1 and Table A7. 2. It would appear that current usage is just under 50% of their combined entitlement.

In Port Hedland BHP - Goldsworthy are relocating employees who were living in 50 houses on Finucane Island to the mainland. This could have implications on BHP - Goldsworthy's entitlement at Finucane Island. This issue is currently being considered by Financial Planning Branch.

What percentage of each companies entitlement is used, needs to be closely monitored, to ensure that as demand increases the Water Corporation does not find itself in any difficult legal battles.

Company	Entitlement		93/94 Usage (kL pa)			
	(kL/d)	(kL pa)	Industrial	Domestic	Total	
Hamersley Iron	13 640	4 978 600	2 327 040	700 000	3 027 040	
Robe River Assoc	11 820	4 314 300	295 404	600 000	895 404	
Woodside	4 225	1 542 125	760 331	400 000	1 160 331	
	29 685	10 835 025	3 382 775	1 700 000	5 082 775	

Table A7. 1: West Pilbara Scheme - Water Entitlements

Table A7. 2: East Pilbara Scheme - Water Entitlements

Company	Entitlement		Current Usage		
	(kL/d)	(kL pa)	(kL/d)	(kL pa)	
BHP - Mt Newman	24 909	5 680 000	10 737	1 850 000	
BHP - Goldsworthy	2 100	766 500	4 714	1 150 000	
	27 009	6 446 500	15 451	3 000 000	

DEPARTMENT OF RESOURCES DEVELOPMENT

170 St George's Terrace Perth, Western Australia

Postal Address: PO Box 7606, Cloisters Square, Perth, Western Australia 6850

Telephone (09) 327 5555 Fax (09) 327 5500

To Title Organisation Fax	:	RICHARD FORREST SENIOR ENGINEER WATER AUTHORITY 420 3174
Fax	:	420 3174

FACSIMILE MESSAGE

Richard,

DRAFT WEST PILBARA WATER RESOURCES REVIEW

Thank you for providing DRD with a copy of the above report. The report contains valuable information regarding water resources in the West Pilbara, their relative costs and development strategies.

1. I have some further comments regarding the report which includes feedback from John Prior. As outlined in my memo of the 30 January 1995 to P. Goodall, the water demand scenarios are very sensitive to Mineralogy's Fortescue Magnetite Project. Graph 2 in the draft report, showing historical and future water demand illustrates the large differences between the low and medium growth scenarios due to Mineralogy's project. The latest advice from Mineralogy is that it will supply its own water from desalination.

In light of the above information, DRD considers that the high and medium water demands should be reduced by an amount which approximates Mineralogy's project water demand i.e. 15 Mm³ pa. The water demand scenario would therefore be;

Low	8 Mm³ pa
Medium	15 Mm ³ pa
High	$30 \mathrm{Mm^3}\mathrm{pa}$

As discussed with you this morning the lower water demand scenarios favour groundwater sources. Therefore further economic costing would be appropriate when more accurate information on water treatment/hydrological for the Harding Dam/Millstream water resource is available.

- 2. Comments on WAWA's ability to fulfil its current water supply commitments as covered in specific State Agreements and the consequential impact on extra demand would be useful information.
- 3. Include some preliminary estimates on lead times to develop the water resources described in the draft report i.e. design, approval, construction.
- 4. A schematic plan for the Pilbara water supply reticulation scheme showing capacities in each section, and upgrades required to achieve design yields, would be useful.
- 5. Could the report include a table showing upfront capital cost and operating costs (assuming maximum utilisation of the water resource) for each water resource.
- 6. The water demand split between the proposed Maitland Estate, the Burrup Peninsula and Cape Lambert appears biased to the Maitland Estate. Could the report either re-assess the water demand split (40%, 40%, 20% respectively) or include a statement qualifying the relative costs of supply to each area.
- 7. Does WAWA have any restrictions on the distribution of the report.

I hope the above comments on the draft report are useful and broaden its potential use.

Yours sincerely

and the second se

ġ

Paul Platt SENIOR PROJECT OFFICER

DEPARTMENT OF RESOURCES DEVELOPMENT

170 St George's Terrace Perth, Western Australia

Postal Address: PO Box 7606, Cloisters Square, Perth, Western Australia 6850

Telephone (09) 327 5555 Fax (09) 327 5500

Your Ref: RF17442 Our Ref: R015/95

Peter Goodall Supervising Engineer **Country Source Planning** Water Authority of Western Australia PO Box 100 LEEDERVILLE WA 6902

Dear Mr Goodall

RE: WEST PILBARA WATER SUPPLY REVIEW

In regard to the above, I have reviewed the water consumption figures in your letter of 13 January 1995 for various growth scenarios.

The revised industry growth scenarios proposed for the Pilbara area with corresponding water consumption figures are shown in Table 1 below. The estimated water consumption figures are $\pm 20\%$ depending on which projects proceed. The medium growth scenario is sensitive to the Fortesque magnetite mining and primary processing project and will need to be reviewed as more information is available.

TABLE 1: GROWTH SCENARIOS

GROWTH SCENARIO	WATER CONSUMPTION (Mm ³ pa by 2025)
Low	8
Medium	30
High	43

The growth scenarios are based on the number and type of industry processing projects outlined in Appendix 1 and Appendix 2. The water demand assumptions for each industry type and process is shown in Appendix 3.

If you have any queries please contact me on 327 5936.

Pard Plat

Paul Platt SENIOR PROJECT OFFICER

30 January 1995 (PAPL0016:AN)

Enc

Appendix 1 : Growth Scenarios

Low Growth Scenario

Índustry	Comments	Water Consumption (Mm ³ p.a.)
Iron Ore Processing	Only a few industries go ahead.	· 4
Petroleum Processing	Only a few industries go ahead.	3
Power Intensive Industry	Only one of the industries goes ahead.	1
Total		8

Medium Growth Scenario

Industry	Comments	Water Consumption (Mm ³ p.a.)
Iron Ore Processing	Many of the industries go ahead.	20
Petroleum Processing	Most of the industries go ahead.	7
Power Intensive Industry	A few of the industries go ahead.	3
Total		30

High Growth Scenario

Industry	Comments	Water Consumption (Mm ³ p.a.)
Iron Ore Processing	Vertical Integration and horizontal expansion of the industry.	28
Petroleum Processing	Most of the industries go ahead.	9
Power Intensive Industry	Most of the industries go ahead.	6
Total	· · · · · · · · · · · · · · · · · · ·	43

Notes to accompany Appendix 1, Appendix 2 and Appendix 3:

- 1. Water consumption figures include domestic as well as industrial.
- 2. Assume seawater is used as a cooling water and for some primary ore processing.
- 3. Water consumption figures very sensitive to Fortescue magnatite primary processing project.
- 4. The key feedstocks of iron ore, natural gas and salt are available at (or in close poroximity to Karratha, Cape Lambert and Port Hedland. Karratha/Cape Lambert may be more attractive for Petrochemicals, being closer to the current source of natural gas.
- 5. Workforce numbers indicative only. Actual numbers will vary dependant upon process technology, product line, shift arrangements etc.
- 6. No committments have been made to construct projects.

JABA0011.DOC

IRON ORE PROCESSING ~ GROWTH ASSUMPTIONS FOR PILBARA WATER DEMAND FORECASTS

IRON ORE PROCESSING PROJECTS GROWTH SCENARIOS (1995 TO 2025)

PROJECT TYPE	LOW GROWTH	MEDIUM GROWTH	HIGH GROWTH
PRIMARY PROCESSING		4	4
PELITISED IRON	1	2	4
SINTERED IRON		1	1
DRI/HBI	1	2	3
MINI STEEL IRON CARB			2
			I

ASSUMPTIONS:

LOW GROWTHONLY A FEW INDUSTRIES GO AHEADMEDIUM GROWTHMANY OF THE INDUSTRIES GO AHEAD (CURRENTLY AT
PRE OR FEASIBILITY STAGE)HIGH GROWTHVERTICAL AND HORIZONTAL INTEGRATION AND EXPANSION OF THE
INDUSTRIES(STEEL STUDY REPORT JUNE 1992)

P.PLATT WATERPRO JAN95

PAPL0001.XLS

,

POTENTIAL INDUSTRIAL AND COASTAL WATER DEMAND ASSUMPTIONS IN THE PILBARA

ł

Process	Capacity (Mt/a)	Location	Industrial Water Usage (Mm ³ p.a.)	Estimated Workforce (people)	Consequential Population (people)	Domestic Water Usage (Mm ³ p.a.)	Possible Timeframe
Iron Ore Processing							
Primary Ore Processing	5	Good prospects at Karratha,	7.0	150	500	0.13	good prospects in
Pelitised Iron	5	Cape Lambert and Port	1.6	140	450	0.12	short term
Sintered Iron	5	Hedland	2.6	140	450	0.12	(4 - 10) years)
Direct Reduced Iron	2		2.6	150-220	500-700	0.13-0.18	
Mini Steel Mill	1		0.5	600	2000	0.52	
Iron Carbide	1		1.4	····			
Petroleum Processing							l
Methanol	0.80	Karratha appears to offer	3.5	170	500	0.13	good prospects
Ammonia/Urea	0.25	better prospects for a major	0.5	200	600	0.16	in medium term
Ethane Extraction	0.20	complex	0.25	10 - 20	30 - 60	0.008 - 0.016	(5 - 15 years)
Chlor-Alkali Plant	0.22		4.0 to 8.0	350	1000	0.27	
Ethane Cracker	0.145		< 0.1	35	100	0.027	
EDC/VCM Plant	0.10		0.01	15	50	0.015	
Sodium Cyanide	0.015		< 0.1	10	30	0.008	
LNG Expansion	4		0.3	10	30	0.008	2002
Power Intensive Industry							
Fe-Mn	0.01		1.3	200	600	0.16	prospects uncertain
Si-Mn	0.024		1				and may depend
Fe-Si	0.023						upon synergies
Si metal	0.015			150	500	0.13	with other
Titanium	0.05		4.0	300	900	0.24	developments
Al	0.10		6.0	600	2000	0.52	-

PORT HEDLAND WATER SUPPLY SCHEME

PROJECTED ADDITIONAL WATER DEMAND BY 2025

Growth Scenario	2025 Water Demand				
	(GL pa)				
Low	3				
Medium	10				
High	27				

PROJECTED WATER DEMANDS

Growth Rate	2025 Water Demand	Average Day Peak Week		
	(GL pa)	(ML/d)		
-	Currently 6.6	Currently 28		
Low	10	45		
Medium	17	80		
High	· 34	160		

B.1 POTENTIAL INDUSTRIAL DEVELOPMENT

Three broad categories of industry that could be developed in the East Pilbara (Port Hedland) area have been identified, namely:

- downstream iron ore processing;
- downstream petroleum (gas) processing; and
- power intensive industries.

Growth scenarios for these industries for the thirty year period 1995 to 2025 have been estimated based upon discussions with Peter Goodall of the Water and Rivers Commission.

B.2 DOWNSTREAM IRON ORE PROCESSING

Estimated low, medium and high growth scenarios for projects incorporating the iron ore processing industry are given in Table B-1.

TABLE B-1

DOWNSTREAM IRON ORE PROCESSING PROJECTS GROWTH SCENARIOS 1995 to 2025

Project Type	Growth Scenario					
	Low	Medium	High			
Primary Processing	0	0	1			
Pelletised Iron	0	1	2			
Sintered Iron	0	1	1			
Direct Reduced Iron/HBI	1	1	1			
Mini Steel Mill	0	0	1			

Using total estimated potable water demands for downstream iron ore processing projects (Public Works Department, 1981) the range of water demands can be defined as presented in Table B-2.

TABLE B-2

Project Type	Low G	rowth	Medium	Growth	High Growth	
	Industrial	Domestic	Industrial	Domestic	Industrial	Domestic
Primary Processing		-	-	-	7.0	0.13
Pelletised Iron				1.6 0.12		0.24
Sintered Iron	+			0.12	2.6	0.12
Direct Reduced Iron/HBI	2.6	0.16	2.6	0.16	2.6	0.16
Mini Steel Mill	-	-	-	-	0.5	0.52
	2.6	0.16	6.8	0.40	15.9	1.17
	2.	2.8		7.2		.1

DOWNSTREAM IRON ORE PROCESSING PROJECTS ESTIMATED WATER DEMANDS (GL pa)

B.3 DOWNSTREAM PETROLEUM PROCESSING

Raw materials for the downstream petroleum processing industry typically include natural gas and water. As natural gas would be supplied by pipeline from the Dampier/Karratha area, downstream petroleum processing industries are more likely to be established in this area than in the Port Hedland area. As such, it is concluded that growth of the downstream petroleum processing industry in the Port Hedland area is not likely.

The adopted potable water demands for the downstream petroleum processing industry for the thirty year period 1995 to 2025, are given in Table B-3.

TABLE B-3

DOWNSTREAM PETROLEUM PROCESSING PROJECTS ESTIMATED WATER DEMANDS

Growth Scenario	2025 Water Demand				
	(GL pa)				
Low	0				
Medium	1				
High	4				

B.4 POWER INTENSIVE INDUSTRIES

As with the downstream petroleum processing industry, natural gas (power) which is an essential raw material for the power intensive industries would be supplied by pipeline from the Dampier/Karratha area. Although depending upon the availability of other raw materials, the power intensive industries are also more likely to be established in the Dampier/Karratha area than in the Port Hedland area.

The adopted potable water demands for the power intensive industries, for the thirty year period 1995 to 2025, are given in Table B-4.

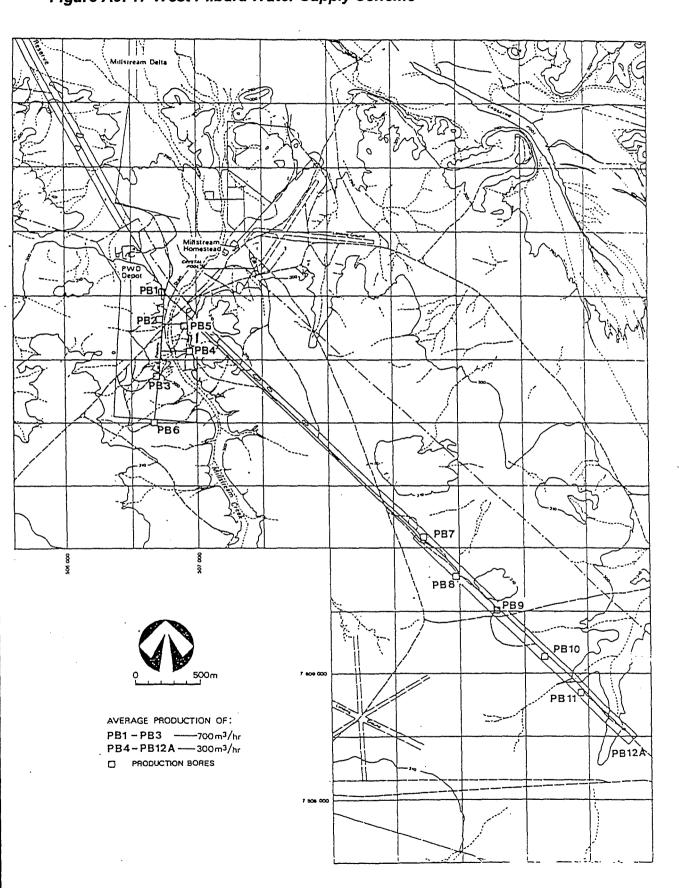
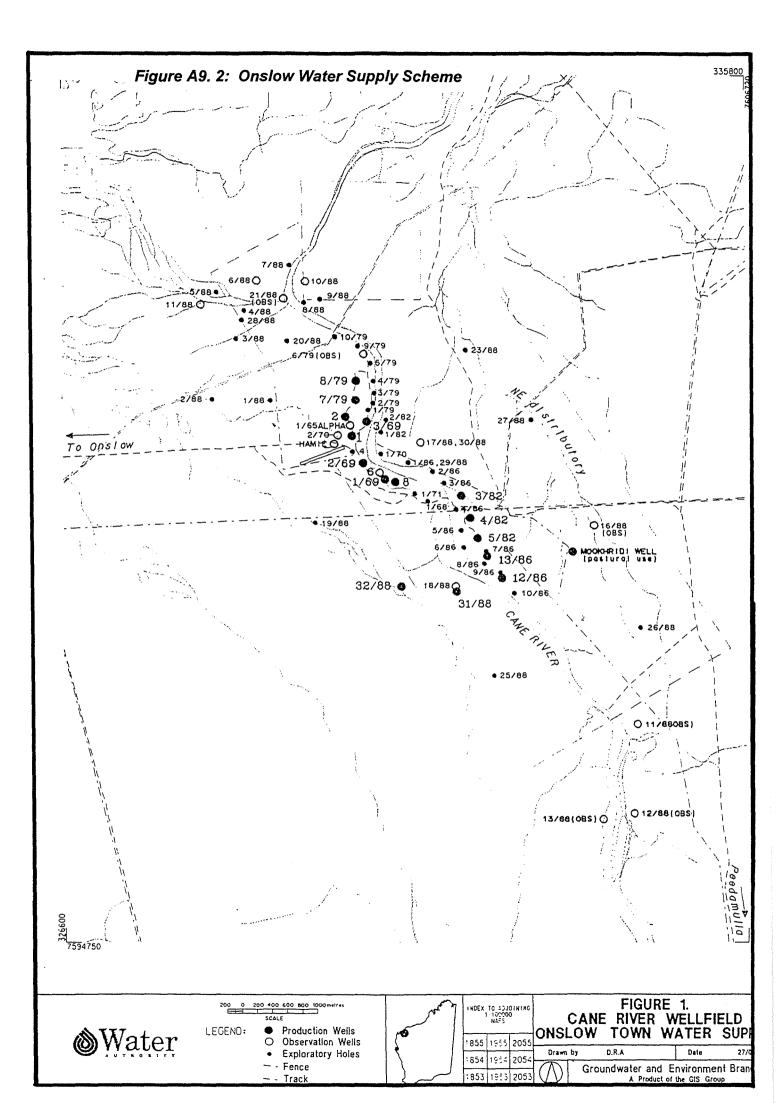
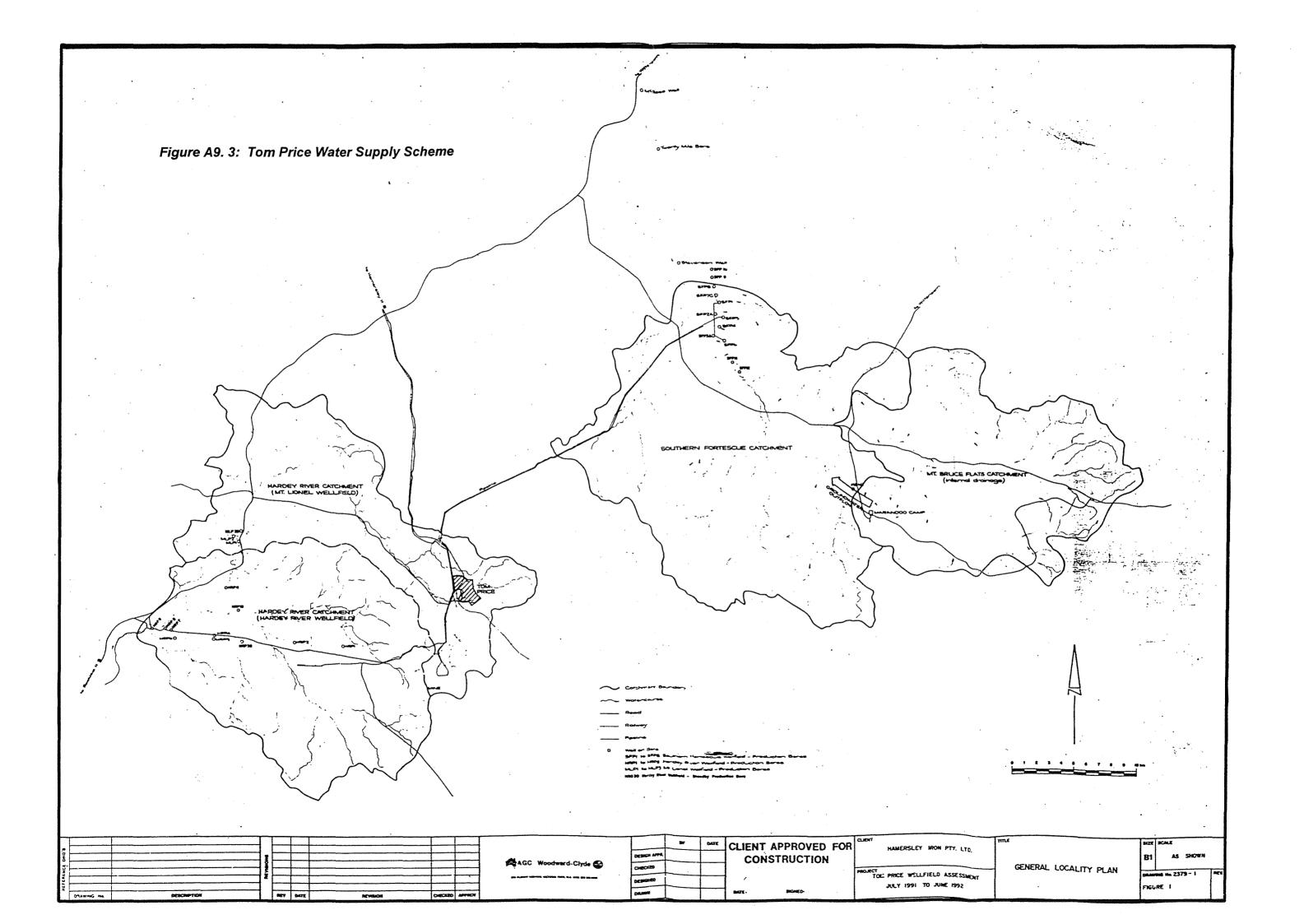
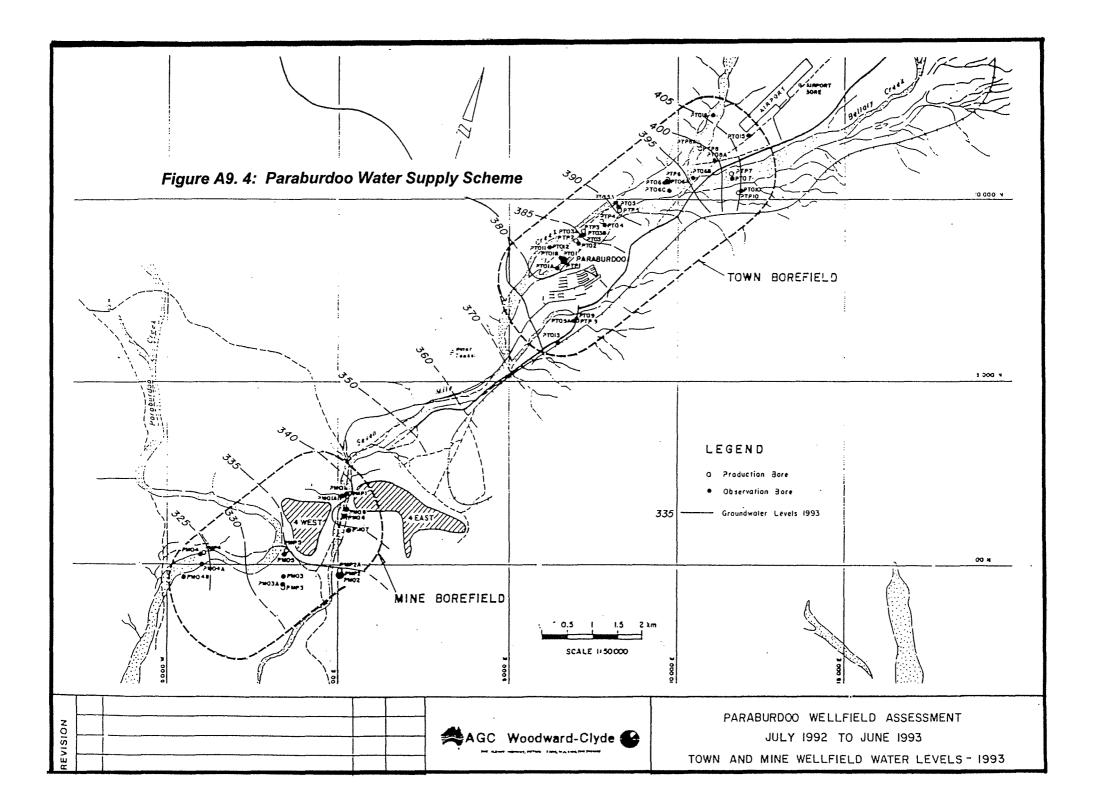
TABLE B-4

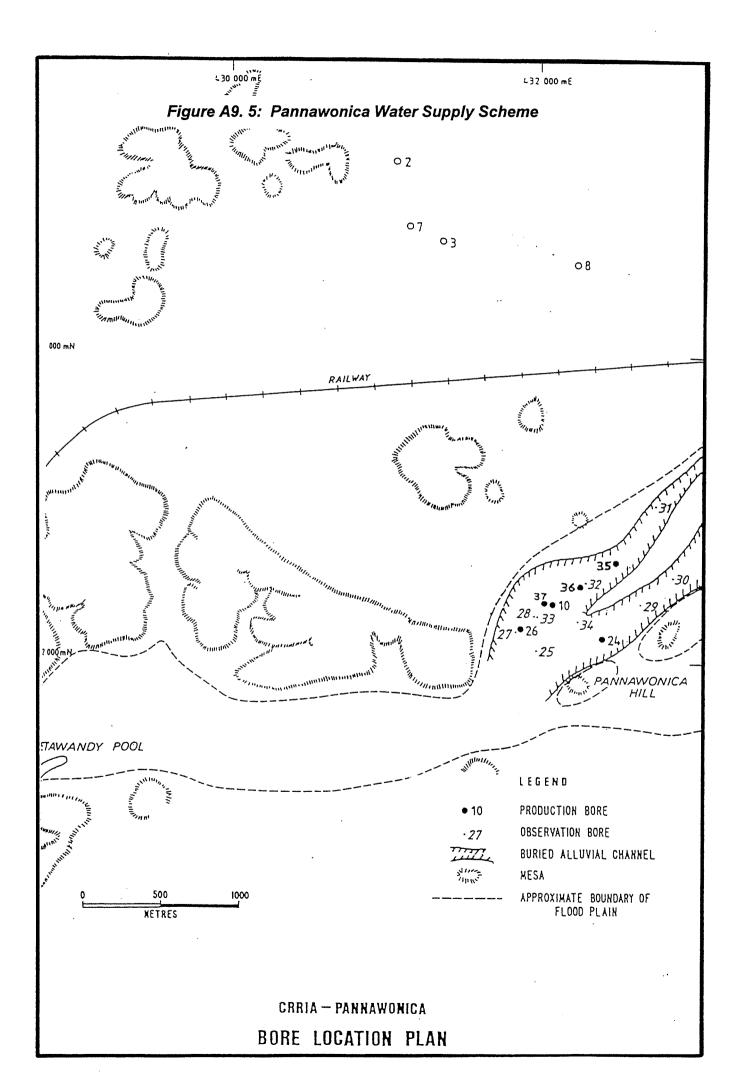
POWER INTENSIVE INDUSTRIES ESTIMATED WATER DEMANDS

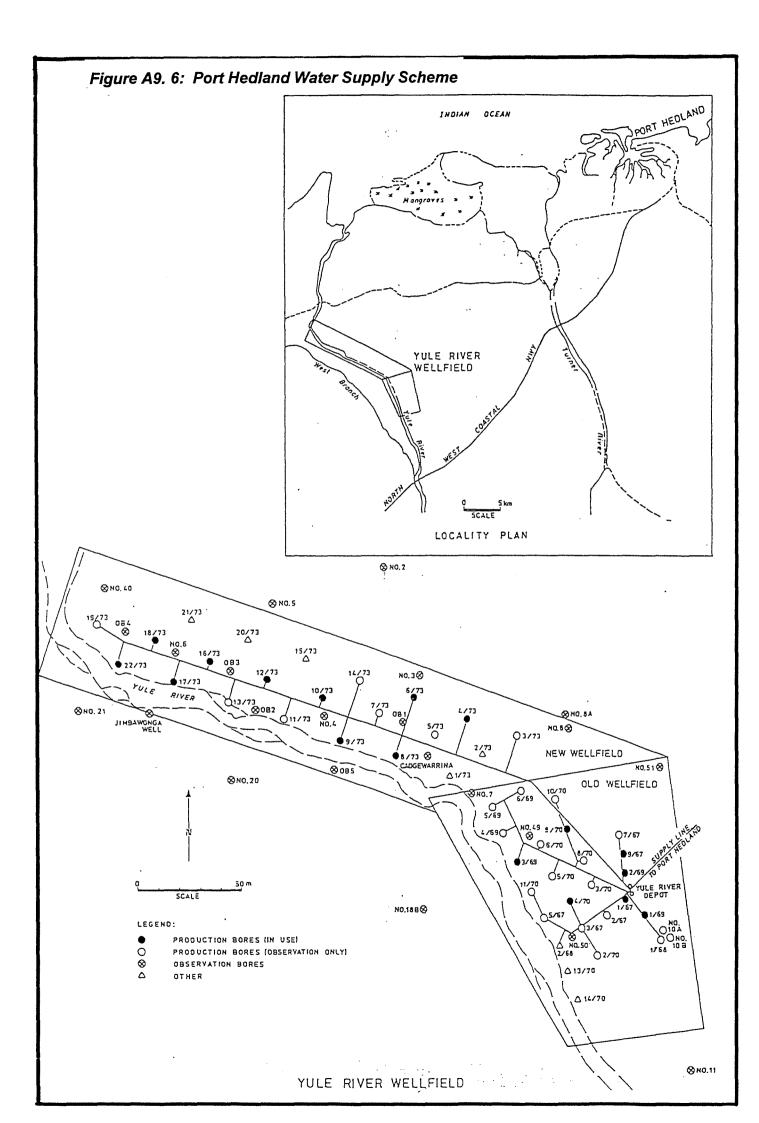
Growth Scenario	2025 Water Demand				
	(GL pa)				
Low	0				
Medium	1				
High	3				

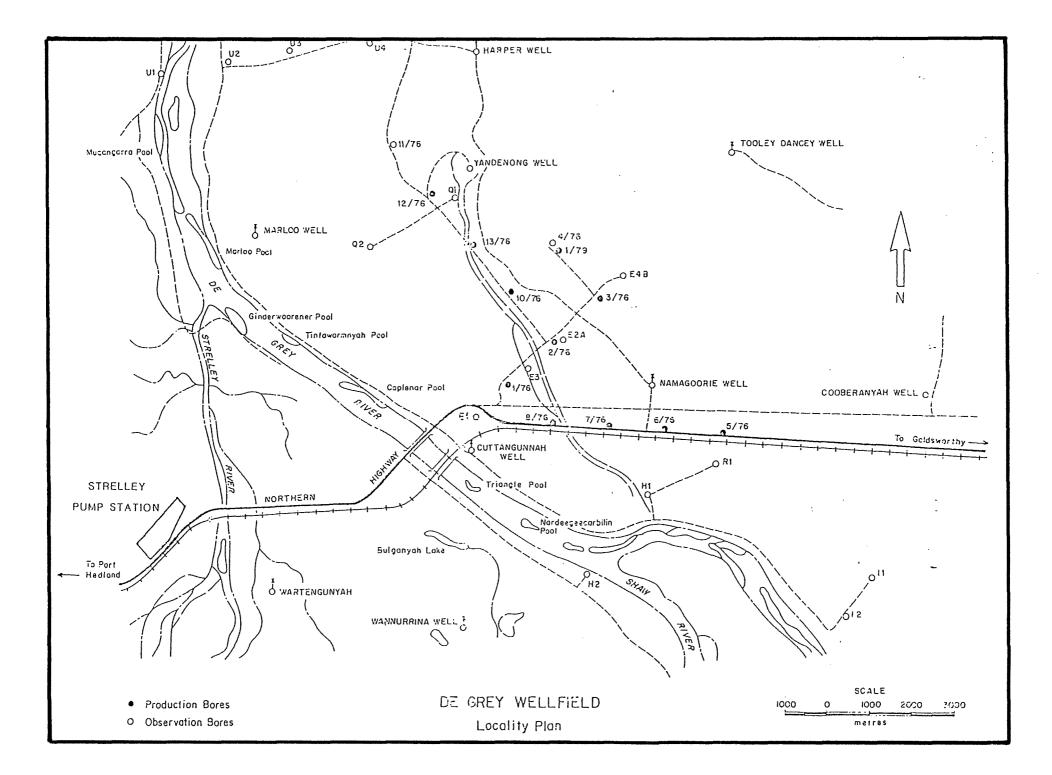
Appendix 9: Existing Town Water Supply Schematics

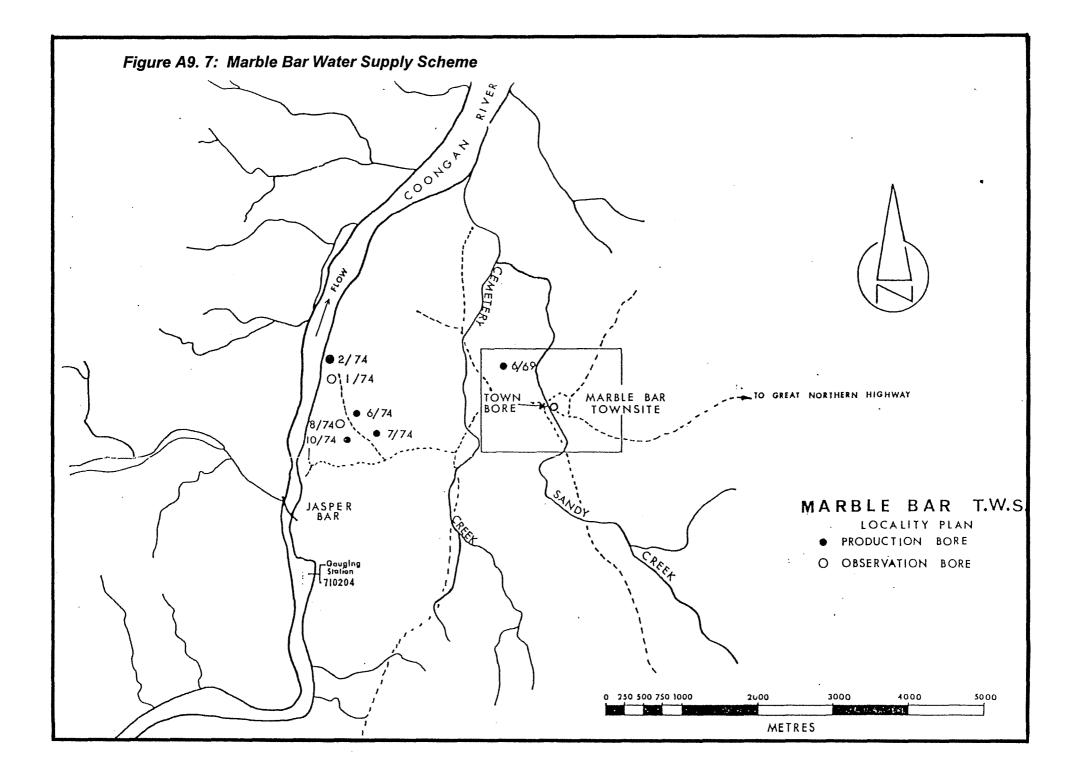
- Figure A9. 1: West Pilbara Water Supply Scheme
- Figure A9. 2: Onslow Water Supply Scheme
- Figure A9. 3: Tom Price Water Supply Scheme
- Figure A9. 4: Paraburdoo Water Supply Scheme
- Figure A9. 5: Pannawonica Water Supply Scheme
- Figure A9. 6: Port Hedland Water Supply Scheme
- Figure A9. 7: Marble Bar Water Supply Scheme
- Figure A9. 8: Nullagine Water Supply Scheme
- Figure A9. 9: Wittenoom Water Supply Scheme
- Figure A9. 10: Newman Water Supply Scheme
- Figure A9. 11: Goldsworthy Water Supply Scheme
- Figure A9. 12: Telfer Water Supply Scheme

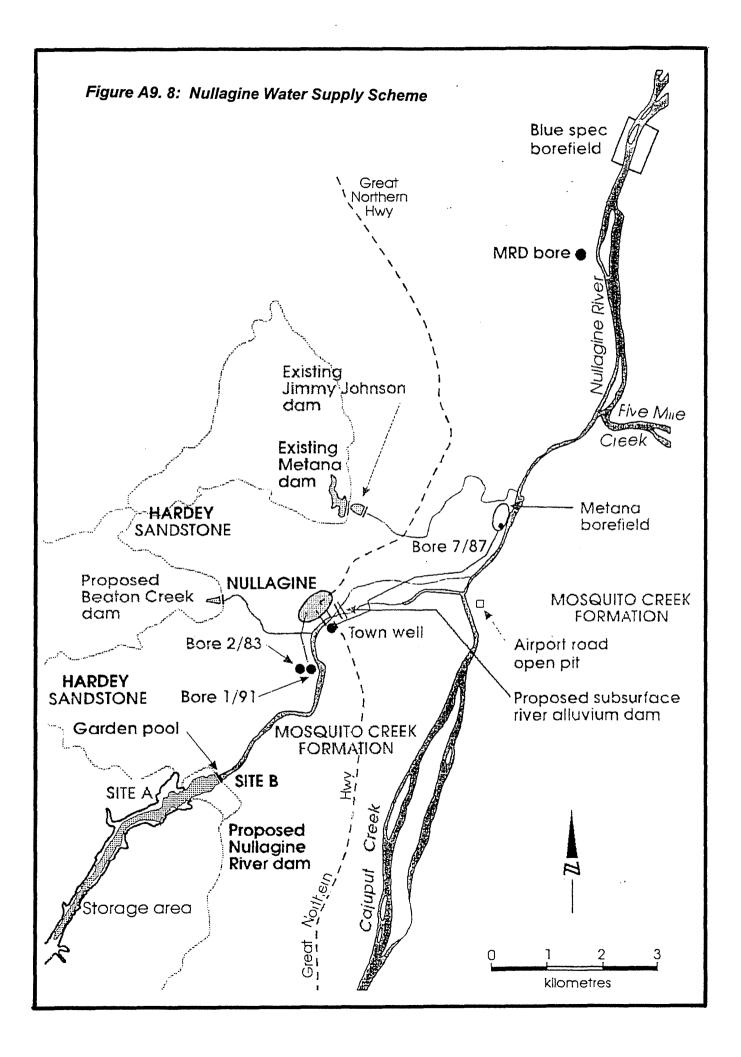





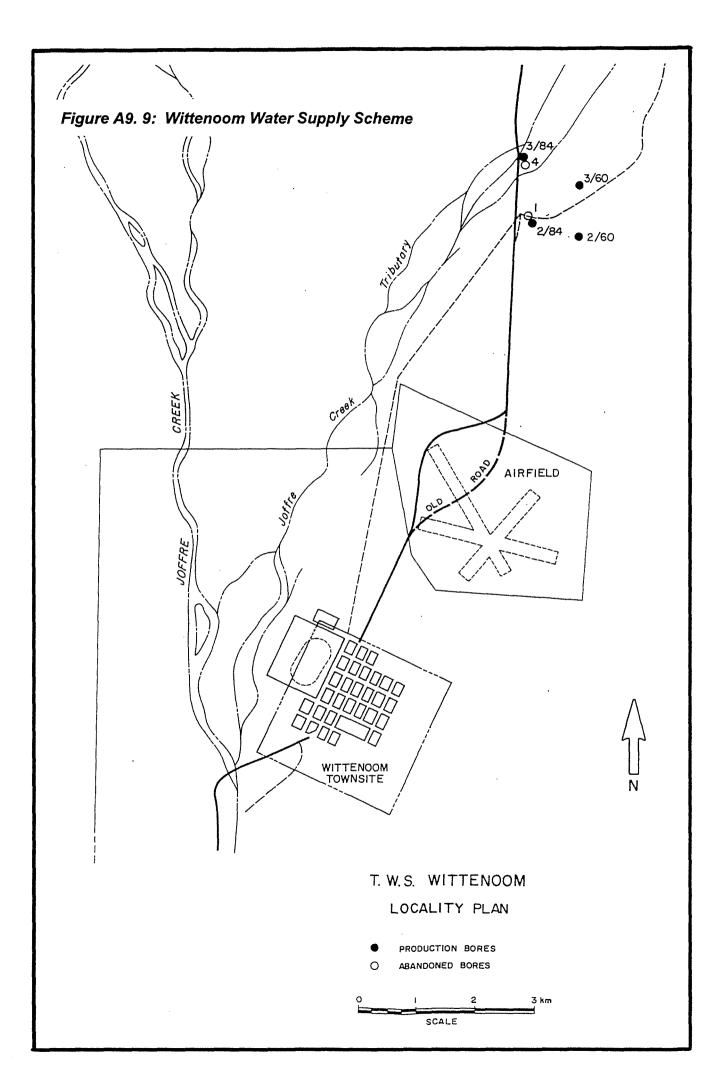

Figure A9. 1: West Pilbara Water Supply Scheme

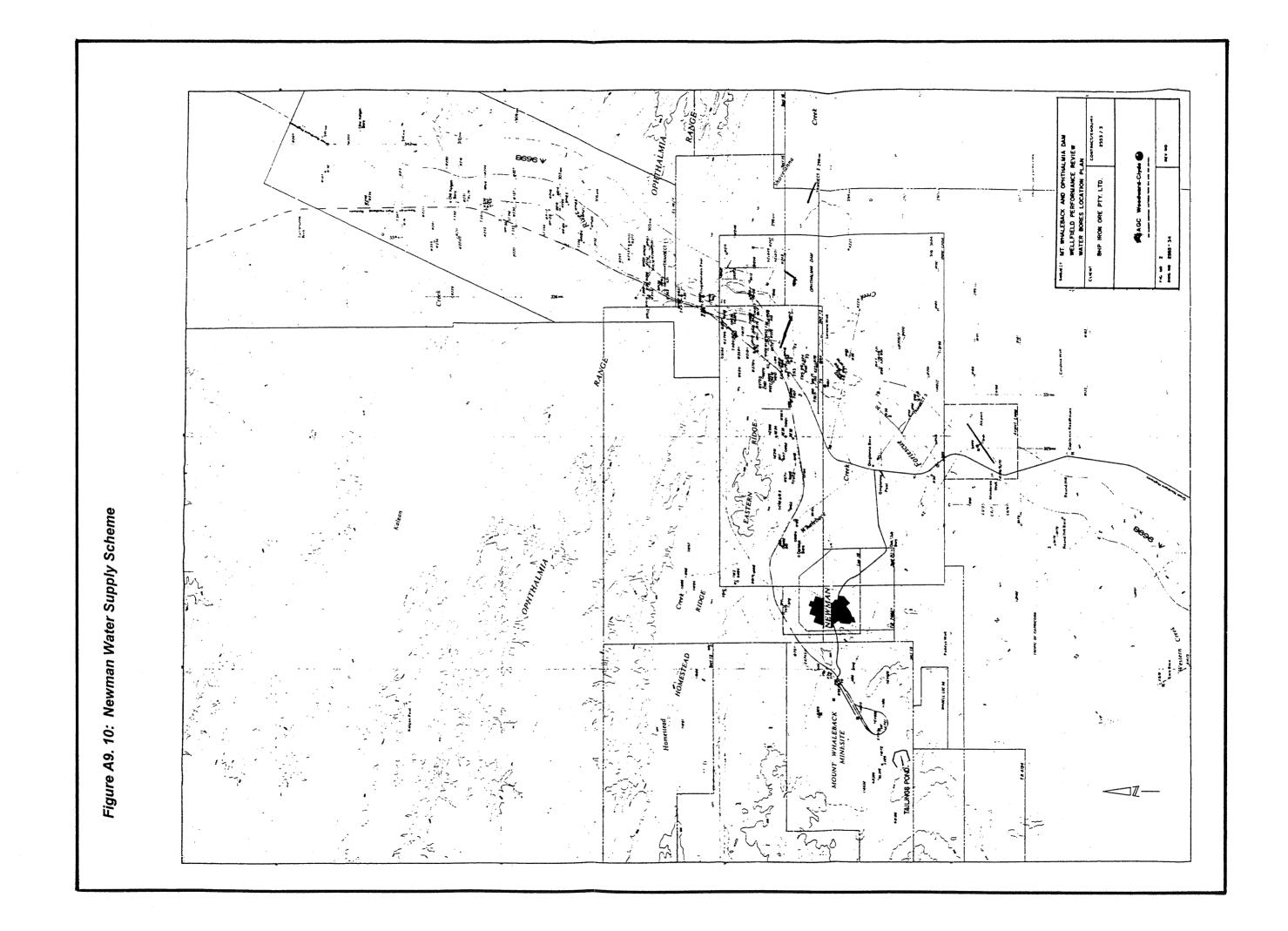


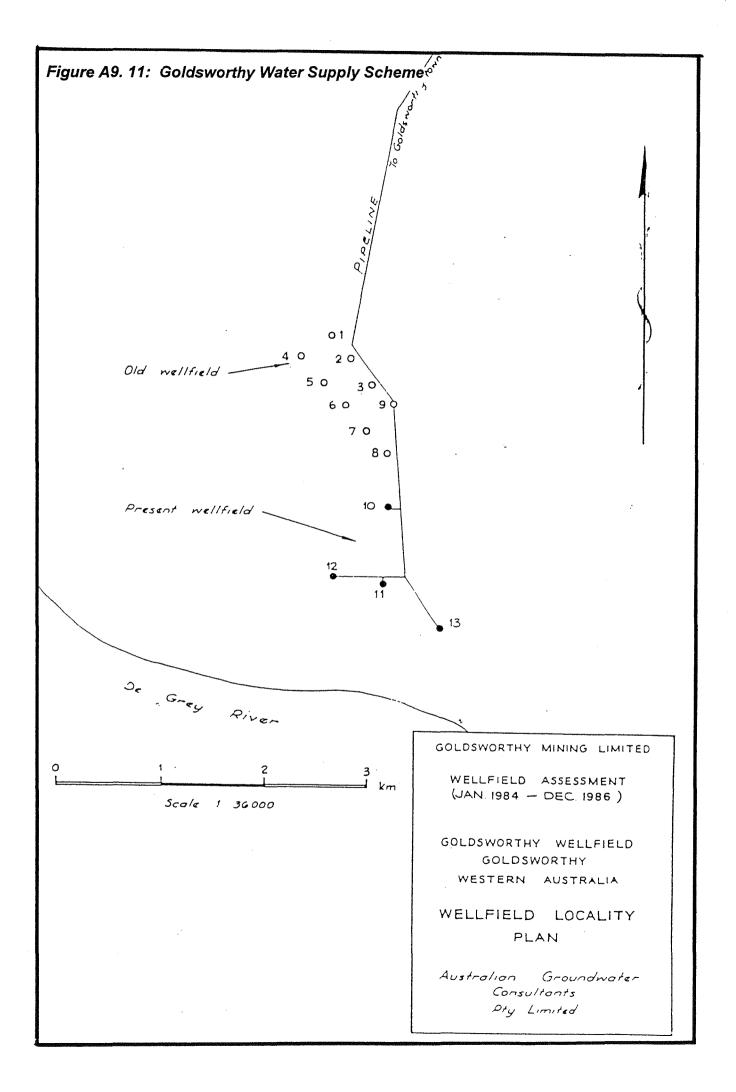


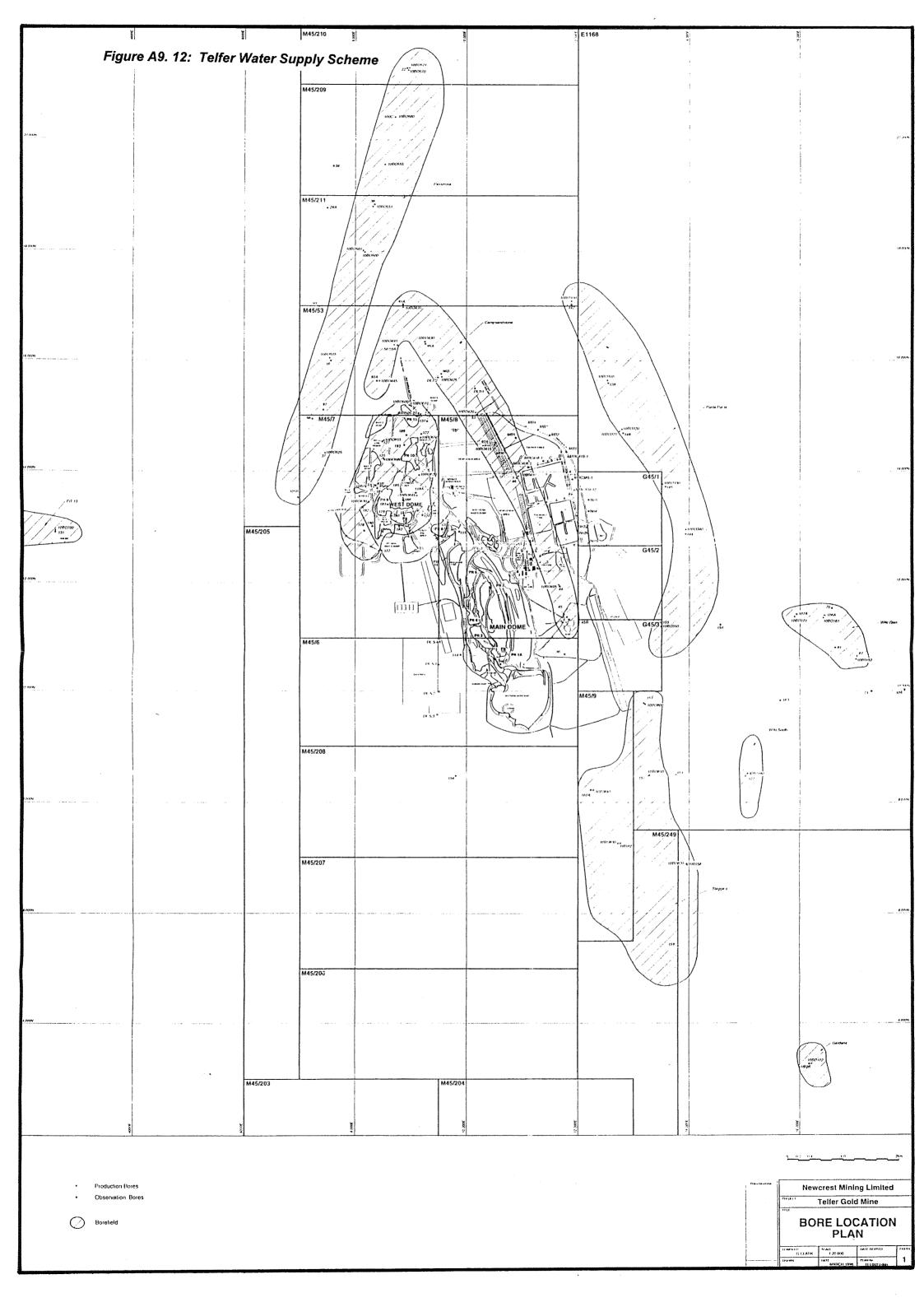












Appendix 10: Summary of the Region's Allocations and Demands

Table A10. 1: Licensed Groundwater and Surface Water Allocations forthe Pilbara Region

Table A10.1: Licensed Groundwater and Surface Water Allocations for the Pilbara Region

All volumes in thousands of cubic metres per annum (1000 m3 = 1 million litres = 1 ML)

LICENSED WATER USAGE										
Available	Water Supply	Parks & Gardens	Domestic	Agriculture	Industry	Mining	Mining Activities	Other	Total Allocation	Unallocated
1 161 500	40 697	92	37.5	231	6 569	23 980	41 868	883.5	114 358	1 047 142