THE SOUTH-WEST IRRIGATION AREA STRATEGY STUDY

PHASE 2 TECHNICAL REPORT

An evaluation of options for the future South-West Irrigation Service in Western Australia

November 1992

THE SOUTH-WEST IRRIGATION STRATEGY STUDY

.

PHASE 2 TECHNICAL REPORT

An evaluation of options for the future South West Irrigation Service in Western Australia

Prepared by the Technical Working Group for the Consultative Committee to the South-West Irrigation Area Strategy Study

> Report No. WP171 Water Authority of Western Australia November 1992

Produced and available from

Water Authority of Western Australia Water Resources Directorate John Tonkin Water Centre 629 Newcastle Street Leederville, WA 6007

Report No. WP171 IBSN 0 7309 05247 9 84

: {

CONTENTS

Page

Chap	oter		
1.	INTF	RODUCTION	1
	1.1	Background and aim of the Study	1
	1.2	Study Approach and Progress	1
	1.3	The South-West Irrigation Area Today	3
		1.3.1 Agriculture	3
		1.3.2 The Financial Performance of the South West	3
		Irrigation Service	6
2.	THE OF 1	OPTIONS EVALUATED FOR THE FUTURE OPERATION	8
	01 1	The south-west indication series	. 0
	2.1	The process used to develop the options	8
	2.2	Factors Incorporated in the Development of the Options	8
	2.3	Description of the Options	9
		2.3.1 Areas	10
		2.3.2 On-farm Irrigation Practices and Engineering Strategies	17
		2.3.5 Demand Scenarios 2.3.4 Water Charging Policies	22
		2.3.5 Time scales for Implementation of Options	23
	2.4	Extending the Irrigation Services	26
	2.5	Other Factors Considered in Option Formulation	27
		2.5.1 Alternative Uses of Land Which is Currently Irrigated	27
		2.5.2 Alternative Uses for Water	27
		2.5.3 Transferable Water Entitlements (TWEs)	27
		2.5.4 Commercial Tree Planting	28
		2.5.5 An integrated Fipe Network System	29
3.	ECO	NOMIC EVALUATION OF OPTIONS	31
	3.1	Methodology	31
		3.1.1 Introduction	31
	2.2	3.1.2 Overview of Methodology	32
	3.2	Value of Agricultural Output	32
		3.2.1 Sources of Data for Current Agricultural Activities	32
	3.3	The Cost of Providing Water	38
	010	3.3.1 Distribution System Maintenance and Renewal	38
		3.3.2 Headworks	42
		3.3.3 Summary of Results	46
	3.4	The Opportunity Cost of Water	46
	3.5	Areas Irrigated and Water Volumes Used	54
	3.0	Overall Benefit/Cost Results	57
		5.0.1 Explanation of Terms Used in Results Summary	57

4. FINANCIAL EVALUATION OF OPTIONS

4.2.1 Annual Net Deficit 6. 4.2.1 Annual Net Deficit 6. 4.2.2 Water Prices Required to Recover Full Costs 66 4.2.3 The Additional Benefit to the Farmer from Irrigation 67 4.2.4 Water Authority Profit and Loss Statements 67 4.3.1 Effect of Area on Water Price 67 4.3.2 Effect of Water Charging Policy on Water Price 66 4.3.3 Effect of Water Price on Average Farm Profitability 61 4.3.5 Water Authority Profit and Loss 76 4.3.5 Water Authority Profit and Loss 76 4.3.5 Water Authority Profit and Loss 76 4.4 The Impact on Individual Farmers 77 4.5 Extending the Irrigation Services 82 4.5.1 Calculating the Agricultural Benefits 86 4.5.2 Engineering Costs 82 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 84 4.5.4 Summary of Results 82 5. THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 87 5.4 The Impact on Individual Farmers	 65 66 67 67 67 68 68 70 78 82 82 83 84 85 86
4.2.2 Water Prices Required to Recover Full Costs 66 4.2.3 The Additional Benefit to the Farmer from Irrigation 66 4.2.4 Water Authority Profit and Loss Statements 67 4.3 The Results 67 4.3.1 Effect of Area on Water Price 66 4.3.2 Effect of Water Charging Policy on Water Price 66 4.3.3 Effect of Water Price on Average Farm Profitability 67 4.3.3 Effect of Water Price on Average Farm Profitability 67 4.3.3 Effect of Water Price on Average Farm Profitability 67 4.3.3 Effect of Water Price on Average Farm Profitability 67 4.4 The Impact on Individual Farmers 77 4.4 The Impact on Individual Farmers 77 4.5 Extending the Agricultural Benefits 86 4.5.1 Calculating the Agricultural Benefits 87 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 86 5.1 Overview 86 87 5.2 Estimating the Changes in the Number of Farm Enterprises 87 5.4 The Impact on Individual Farmers <td>66 66 67 67 67 67 68 68 70 78 82 82 83 84 85 86</td>	66 66 67 67 67 67 68 68 70 78 82 82 83 84 85 86
4.2.3 The Additional Benefit to the Farmer from Irrigation 6. 4.2.3 The Additional Benefit to the Farmer from Irrigation 6. 4.3 The Results 6 4.3 The Results 6 4.3 Effect of Area on Water Price 6 4.3.1 Effect of Water Charging Policy on Water Price 6 4.3.2 Effect of Water Price on Average Farm Profitability 6 4.3.5 Water Authority Profit and Loss 70 4.4 The Impact on Individual Farmers 70 4.4 The Impact on Individual Farmers 70 4.5 Extending the Irrigation Services 8 4.5.1 Calculating the Agricultural Benefits 8 4.5.2 Engineering Costs 8 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 8 4.5.4 Summary of Results 8 5. THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 86 <td>66 67 67 68 68 70 78 82 82 83 83 84 85 86</td>	66 67 67 68 68 70 78 82 82 83 83 84 85 86
4.2.4 Water Authority Profit and Loss Statements 66 4.3 The Results 67 4.3.1 Effect of Area on Water Price 66 4.3.2 Effect of Water Charging Policy on Water Price 66 4.3.3 Effect of Water Price on Average Farm Profitability 66 4.3.3 Effect of Water Price on Average Farm Profitability 66 4.3.5 Water Authority Profit and Loss 76 4.4 The Impact on Individual Farmers 76 4.5 Extending the Irrigation Services 86 4.5.1 Calculating the Agricultural Benefits 87 4.5.2 Engineering Costs 88 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 88 4.5.4 Summary of Results 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 86 5.4 The Impact on Individual Farmers 96 6. ENVIRONMENTAL EVALUATION 1 - NUTRIENT DISCHARGE 97 6.1 Introduction	67 67 67 68 68 68 70 78 82 82 83 83 84 85 86
4.3 The Results 6 4.3 The Results 6 4.3.1 Effect of Area on Water Price 6 4.3.2 Effect of Water Charging Policy on Water Price 6 4.3.3 Effect of Water Price on Average Farm Profitability 6 4.3.3 Effect of Water Price on Average Farm Profitability 6 4.3.5 Water Authority Profit and Loss 7 4.4 The Impact on Individual Farmers 7 4.5 Extending the Irrigation Services 8 4.5.1 Calculating the Agricultural Benefits 8 4.5.2 Engineering Costs 8 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 8 4.5.4 Summary of Results 8 5. THE SOCIAL IMPACT OF THE OPTIONS 8 5.1 Overview 8 5.2 Estimating the Changes in the Number of Farm Enterprises 8 5.3 Population Movements in the South-West Irrigation Area 8 5.4 The Impact on Individual Farmers 9 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 9	67 67 68 68 70 78 82 82 83 84 85 86
4.3.1 Effect of Area on Water Price 6 4.3.2 Effect of Water Charging Policy on Water Price 66 4.3.3 Effect of Water Price on Average Farm Profitability 66 4.3.5 Water Authority Profit and Loss 77 4.4 The Impact on Individual Farmers 78 4.5 Extending the Irrigation Services 85 4.5 Extending the Irrigation Services 86 4.5.1 Calculating the Agricultural Benefits 87 4.5.2 Engineering Costs 81 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 86 5. THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 87 5.3 Population Movements in the South-West Irrigation Area 89 5.4 The Impact on Individual Farmers 90 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 92 6.1 Introduction 92 6.2 Phosphorous Export 92	67 68 68 70 78 82 82 83 83 84 85 86
4.3.2 Effect of Water Charging Policy on Water Price 66 4.3.3 Effect of Water Charging Policy on Water Price 67 4.3.3 Effect of Water Price on Average Farm Profitability 66 4.3.5 Water Authority Profit and Loss 77 4.4 The Impact on Individual Farmers 77 4.5 Extending the Irrigation Services 87 4.5 Extending the Agricultural Benefits 87 4.5.1 Calculating the Agricultural Benefits 87 4.5.2 Engineering Costs 87 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 86 4.5.4 Summary of Results 88 5. THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 87 5.3 Population Movements in the South-West Irrigation Area 89 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 99 6.1 Introduction 92 6.2 Phosphorous Export 92	68 68 70 78 82 82 83 84 85 86
4.3.3 Effect of Water Price on Average Farm Profitability 63 4.3.3 Effect of Water Price on Average Farm Profitability 63 4.3.5 Water Authority Profit and Loss 76 4.4 The Impact on Individual Farmers 76 4.5 Extending the Irrigation Services 82 4.5.1 Calculating the Agricultural Benefits 82 4.5.2 Engineering Costs 82 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 84 4.5.4 Summary of Results 83 5. THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 89 5.4 The Impact on Individual Farmers 90 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 92 6.1 Introduction 92 6.2 Phosphorous Export 92	68 70 78 82 82 83 84 85 86
4.3.5 Water Authority Profit and Loss 76 4.3.5 Water Authority Profit and Loss 76 4.4 The Impact on Individual Farmers 76 4.5 Extending the Irrigation Services 82 4.5 Extending the Agricultural Benefits 82 4.5.1 Calculating the Agricultural Benefits 82 4.5.2 Engineering Costs 82 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 84 4.5.4 Summary of Results 82 5. THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 89 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 91 6.1 Introduction 92 91 6.1 Introduction 92 91 6.1 Introduction 92 91 6.1 Introduction 92 6.2 Phosphorous Export 92 <td> 36 70 78 82 82 83 84 85 86 </td>	 36 70 78 82 82 83 84 85 86
4.4 The Impact on Individual Farmers 74 4.5 Extending the Irrigation Services 82 4.5 Extending the Irrigation Services 82 4.5 Extending the Agricultural Benefits 82 4.5.1 Calculating the Agricultural Benefits 82 4.5.2 Engineering Costs 82 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 84 4.5.4 Summary of Results 83 5. THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 89 5.4 The Impact on Individual Farmers 90 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 92 6.1 Introduction 92	78 82 82 83 83 84 85 86
4.5 Extending the Irrigation Services 82 4.5.1 Calculating the Agricultural Benefits 82 4.5.2 Engineering Costs 82 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 84 5.3 THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 89 5.4 The Impact on Individual Farmers 90 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 92 6.1 Introduction 92 6.2 Phosphorous Export 92	82 82 83 84 85 86
4.5.1 Calculating the Agricultural Benefits 82 4.5.2 Engineering Costs 82 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 84 5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 84 5.4 Summary of Results 85 5.5 THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 89 5.4 The Impact on Individual Farmers 90 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 92 6.1 Introduction 92 6.2 Phosphorous Export 92	82 83 84 85 86
4.5.2 Engineering Costs 8: 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 84 5.3 THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 86 5.4 The Impact on Individual Farmers 90 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 92 6.1 Introduction 92 6.2 Phosphorous Export 92	83 84 85 86
4.5.2 Engineering costs 6. 4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup 84 4.5.4 Summary of Results 85 5. THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 89 5.4 The Impact on Individual Farmers 90 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 91 6.1 Introduction 92 6.2 Phosphorous Export 92	84 85 86
Farms at Myalup 84 4.5.4 Summary of Results 85 5. THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 89 5.4 The Impact on Individual Farmers 90 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 91 6.1 Introduction 92 6.2 Phosphorous Export 92	84 85 86
4.5.4 Summary of Results 8 5. THE SOCIAL IMPACT OF THE OPTIONS 86 5.1 Overview 86 5.2 Estimating the Changes in the Number of Farm Enterprises 86 5.3 Population Movements in the South-West Irrigation Area 89 5.4 The Impact on Individual Farmers 90 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 91 6.1 Introduction 92 6.2 Phosphorous Export 92	85 86
 5. THE SOCIAL IMPACT OF THE OPTIONS 5.1 Overview 5.2 Estimating the Changes in the Number of Farm Enterprises 5.3 Population Movements in the South-West Irrigation Area 5.4 The Impact on Individual Farmers 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 91 6.1 Introduction 6.2 Phosphorous Export 92 	86
 5. THE SOCIAL IMPACT OF THE OPTIONS 5.1 Overview 5.2 Estimating the Changes in the Number of Farm Enterprises 5.3 Population Movements in the South-West Irrigation Area 5.4 The Impact on Individual Farmers 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 92 6.1 Introduction 6.2 Phosphorous Export 92 	86
5.1Overview865.2Estimating the Changes in the Number of Farm Enterprises865.3Population Movements in the South-West Irrigation Area895.4The Impact on Individual Farmers906.ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE916.1Introduction926.2Phosphorous Export92	
5.2Estimating the Changes in the Number of Farm Enterprises805.3Population Movements in the South-West Irrigation Area815.4The Impact on Individual Farmers906.ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE916.1Introduction926.2Phosphorous Export92	86
 5.3 Population Movements in the South-West Irrigation Area 5.4 The Impact on Individual Farmers 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 6.1 Introduction 6.2 Phosphorous Export 92 	86
 5.4 The Impact on Individual Farmers 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 6.1 Introduction 6.2 Phosphorous Export 92 	89
 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 6.1 Introduction 6.2 Phosphorous Export 92 	90
 6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE 6.1 Introduction 6.2 Phosphorous Export 92 	
6.1Introduction926.2Phosphorous Export92	91
6.2 Phosphorous Export 92	92
	92
6.2.1 General Approach 92	92
6.2.2 Total Phosphorous Annual Discharge Rates 93	93
6.2.3 Phosphorous Export Estimates for the Strategy 1 Option6.2.4 Phosphorous Export Estimates for Series 2 Options and	94
Additional Nutrient Management Strategies 98	98
6.3 Conclusions 102	102
7. ENVIRONMENTAL EVALUATION II - WATER LOGGING.	
SALINITY AND PASTURE PRODUCTIVITY 104	104
7.1 Introduction 104	104
7.2 Hydrogeological Investigations 104	104
7.3 Possible Salinity Mitigation Strategies 108	108
7.3.1 Groundwater Control Options 108	108
7.3.2 Improved On-Farm Water and Pasture Management 10	109
7.3.3 Other Approaches 110	110

64

7.4	Formulation of Strategy 2 and Strategy 3 Options	110
	7.4.1 Strategy 2	110
	7.4.2 Strategy 3	111
7.5	Estimation of Productivity Gains from Strategies 1, 2 and 3	112
	7.5.1 Approach	112
	7.5.2 Strategy 2	113
	7.5.3 Strategy 3	114
	7.5.4 Adoption Rates	115
7.6	Agricultural Gross Margins and Financial Effectiveness of	
	Strategies to Farmers	115
7.7	Discussion and Implications for Future Study	118
MAI	NAGEMENT FOR THE FUTURE SERVICE	120
8.1	Introduction	120
8.2	Kinhill Engineers "Management Alternatives Study"	120
8.3	Alternative Management Options	121
0.0	8.3.1 Private Irrigation Boards	122
	8.3.2 Increased User Input by a Management Board with	
	Farmer Majority	122
	833 Maintaining Current Water Authority Management	123
84	Comparison of the Alternatives	123
0.1		1. m.C

ATTACHMENTS

8.

84.0 m

ł

1.	List of supplementary papers prepared during Phase 2.	126
2.	Membership of the Consultative Committee	127
3.	Membership of the Technical Working Group (TWG)	128
4.	The calculation of the Agricultural Net Benefits for	
	Phase 2 Options	130
5.	Distribution system maintenance and renewal cost estimates	133
6.	Computations of spacing and costs of shallow drainage	146

LIST OF TABLES

1	Details of Agricultural Activity in the South-West Irrigation Area	4
2	Comparison of Costs and Revenues from South-West	
	Irrigation Service	7
3	Comparison of Areas of Irrigated Land Required in 30 Years	
	time under High and Low Demand Scenarios	22
4	Example of Changes in Area Irrigated and Water Charges under	
	Fixed and TWE Water Charging Policies	26
	1 2 3 4	 Details of Agricultural Activity in the South-West Irrigation Area Comparison of Costs and Revenues from South-West Irrigation Service Comparison of Areas of Irrigated Land Required in 30 Years time under High and Low Demand Scenarios Example of Changes in Area Irrigated and Water Charges under Fixed and TWE Water Charging Policies

Table	5	Estimated Productivity of Different Land Types	34
Table	6	Agricultural Gross Margins and Fixed Costs Used in Phase 2	
		Analysis	36
Table	7	Costs and Productivity Improvements from On-farm Irrigation	
		and Salinity Mitigation Measures	37
Table	8	Preliminary Cost Estimates for Dam Modification to Meet	
		New Australian Standards for Floods and Earthquakes	45
Table	9	Net Present Value of Providing Irrigation Water - Harvey	
		District Strategy 1 and Strategy 3 for Area Options A and D	47
Table	10	Example of Spreadsheet for Costing Future Source Developments	
		in Area Option A, Strategy 1, Current Water Charging Policy	49
Table	11	Water Volumes Available for use other than Irrigation from	
		Existing and Potential Sources in 15 years time	51
Table	12	Opportunity Cost Values for Strategy 1 Options with Fixed	
		Rated Areas	52
Table	13	Opportunity Cost Values for Strategy 3, Low Water Demand	
		and TWE market operating	53
Table	14	Additional Metropolitan Source Costs	54
Table	15	Areas Irrigated and Volumes of Water Supplied at Year 20	56
Table	16	Economic Cost Benefit of Total Irrigation Area	60
Table	17	Economic Cost Benefit of Collie District	61
Table	18	Economic Cost Benefit of Harvey District	62
Table	19	Economic Cost Benefit of Waroona District	63
Table	20	Average Water Prices per megalitre in Low Demand Cases for	
		Different Water Charging Approaches	68
Table	21	Water Price Increases Required in Low Demand Cases for Differen	nt
		Water Charging Approaches	68
Table	22	Financial Cost Benefit of Total Irrigation Area	71
Table	23	Financial Cost Benefit of Collie District	72
Table	24	Financial Cost Benefit of Harvey District	73
Table	25	Financial Cost Benefit of Waroona District	74
Table	26	Incremental Benefits of Irrigated Dairy Farms	75
Table	27	Incremental Benefits of Irrigated Beef Farms	76
Table	28	Water Authority Profit and Less Statements for 4% and 0%	
		Return on Assets	77
Table	29	Survey of Irrigation Dairy Farms by WAFF	79
Table	30	Additional Agricultural returns for Irrigation Compared to dryland	
		Beef Grazing - Myalup and Foothills	83
Table	31	Total Cost of Water Supplied to Myalup	85
Table	32	Average Farm Sizes	86
Table	33	Impact of Options on Number of Enterprise (By Year 30)	88
Table	34	Recent Changes in Population in the Irrigation Area	89
Table	35	Total Phosphorus Annual export Rates per Unit Area	94
Table	36	Areas of Agricultural Land by Catchment Area in the Harvey	
		Irrigation District	95
Table	37	Strategy 1 Phosphorus Export Totals for the High Water Demand	
		Case at Year 30	96
Table	38	Strategy 1 Phosphorus Export Totals for the Low Water Demand	
		Case at Year 30	97
Table	39	Total Phosphorus Annual Export Rates Per Unit Area Given	
		improved Nutrient Management	99

Table 40	Total Phosphorus Annual Export Totals for Given Improved	
	Nutrient Management	100
Table 41	Percentage of Dairy Effluent Control Necessary to Achieve 50%	
	Reduction in Nutrient Discharge to Peel-Harvey Catchment	102
Table 42	Current Pasture Productivity Levels	108
Table 43	Incremental Benefits of an Irrigated Dairy Farm over Dryland	
	Farm of the same size	117
Table 44	Incremental Benefits of an Irrigated Beef Farm over Dryland	
	Farm of the same size	118
Table 45	Possible Bulk Water Charges to a Private Water Board	124

LIST OF FIGURES

e----

Figure 1 Summary o	f Water Authority's Financial Assets in the South-West	
Irrigation A	Area	5
Figure 2 Description	of the Rehabilitation Options for the Future	
Irrigation S	ervice in the South-West Irrigation Area	13
Figure 3 Map of Arc	ea Options A,B and C	14
Figure 4 Map of Are	ea Option D	15
Figure 5 Map of Are	ea Options E, H and P	16
Figure 6 The Compo	osition of Demand for Irrigated Land in 30 Years Time	
Under Diff	erent Engineering Strategies and Demand Scenarios	23
Figure 7 The Compa	arison of the Demand for Irrigated Land Under	
Different E	ingineering Strategies and Demand Scenarios	25
Figure 8 Distribution	n System Capital Upgrade Program - Harvey Area	
Options A1	and D1	40
Figure 9 Operationa	l Costs of the Distribution System - Harvey Area Option	ns
A1 and D1		41
Figure 10 Pipe Netwo	ork Capital Upgrade (Strategy 3) Costs -Harvey Area	
Options A	and D	43
Figure 11 Operationa	l Costs of the Distribution System (Strategy 3)	
- Harvey A	rea Options A and D	44
Figure 12 WAFF Dai	ry Survey: Area of Home Farm	80
Figure 13 WAFF Dai	ry Survey: Area Irrigated	81
Figure 14 Hydrogeold	gical Cross-section at Cookernup (Harvey)	105
Figure 15 Steady Stat	e Salinity Simulation of Cookernup Cross-section	106

1. INTRODUCTION

1.1 Background and aim of the Study

In 1989 the Water Authority of Western Australia (Water Authority) initiated a study to assist in the development of a Government policy on the long-term direction of public irrigation in the South-West of Western Australia. The Water Authority recognised that many structures associated with irrigation were reaching or had exceeded their design life, and that significant capital investment would be necessary to maintain the South-West Irrigation Scheme.

The Water Authority also recognised that any major decision to invest significant capital in irrigation went well beyond the scope of the Water Authority alone. The study would need to address agricultural, economic, environmental, social and engineering issues. From the beginning, the study was planned to be multidisciplinary and to actively involve the communities in the study region.

The primary objective of the Study is to develop a long-term strategy for the rehabilitation and/or modernisation of current irrigation systems and practices, subject to the constraints of economic sustainability; financial feasibility; and social and environmental acceptability.

The study should provide a basis for ongoing planning of:

- the redevelopment, operation and maintenance of the Water Authority's irrigation supply systems over the next thirty years; and,
- farm redevelopment and operations.

1.2 <u>Study Approach and Progress</u>

١

The Study is divided into six distinct phases.

- Phase 1: Background Development and Issue Identification
- Phase 2: Option Development and Analysis
- Phase 3: Public Review of Future Strategy Options
- Phase 4: Review of Submissions and Preparation of Draft Strategy
- Phase 5: Environmental Protection Authority Review and Stakeholder review of the Draft Strategy
- Phase 6: Adoption by Government of a Long Term Irrigation Strategy.

<u>Phase 1</u> Background Development and Issue Identification

Phase 1 was completed in 1990^1 and provided preliminary evidence that the rehabilitation and continued operation of the South-West Irrigation Scheme was an economic proposition. However, revenue from water sold was just meeting operating and maintenance expenditure and the continuation of the scheme would require major capital expenditure in the future. A number of issues were identified for investigation in Phase 2 of the Study. These included

- what would the demand for irrigation water and land be under different future industry scenarios for dairy, grazing and horticulture;
- what other demands would be place on the water other than for irrigated farming;
- would it pay to replace the open channel distribution channel with a piped scheme;
- would irrigators be better off if the supply of irrigation water was privatised and controlled by irrigators;
- should some existing irrigation areas be closed down and should other areas be opened up.
- was salination and land degradation increasing in the irrigation area; and,
- what would be the social impact of any reduction in the area irrigated.

Phase 2 Option Development and Analysis

The issues raised in Phase 1 were translated into a series of options which irrigators and other stakeholders wished to see evaluated. The options were developed during a series of consultative workshops conducted at the start of Phase 2. The evaluation of the identified options was then undertaken, following the preparation of required data and information by members of the Technical Working Group and other contributors. Economic, financial, social impact and environmental aspects of options were prepared.

<u>Phase 3</u> Public Review of Future Strategy Option Report

Phase 3 of the study is a public review of the future options for the irrigation scheme and it commences with the publication of the Phase 2 Reports.

The major tasks of Phase 3 will be the promotion of the report and the encouragement of stakeholders to prepare a submission on the future of the irrigation service. Stakeholders will be encouraged to use the Phase 2 reports as background to

- establish a vision or long term goal for the irrigation service;
- discuss the reasons for the establishment of this goal; and,

¹ "The Irrigation Strategy Study, South-West Western Australia, Phase 1 Report, Summary of background papers and identification of issues," July 1990, Report No. WP95, Water Authority of Western Australia.

• propose a strategy for achieving that goal and address the economic, financial, social and environmental effects of the proposed strategy.

Submissions are expected from the major government agencies, including the Water Authority, the Environmental Protection Authority and the Department of Agriculture as well as farmer, industry and environmental groups.

<u>Phase 4</u> Review of Submissions and Preparation of Draft Strategy

During Phase 4 an independent Task Force, to be appointed by Government, will review submissions from various stakeholders and prepare a draft strategy for the future of the irrigation service.

<u>Phase 5</u> EPA and Stakeholder Review of Draft Strategy

The draft strategy will be reviewed by the Environmental Protection Authority and stakeholders and modified if necessary.

<u>Phase 6</u> Final Adoption of Long-Term Irrigation Strategy by Government

The final strategy will be prepared and considered by Government for adoption.

1.3 <u>The South-West Irrigation Area Today</u>

1.3.1 Agriculture

The area of productive agricultural land within the boundary of the South-West Irrigation Area is 34,370 hectares. The South-West Irrigation Area is divided into 3 districts - Waroona, Harvey and Collie. The boundary of these three areas (running from North to South) can be seen in Figure 5.

A summary of information about agricultural activity in the Area is shown in Table 1 below. The table is based on data provided from a number of sources including the Water Authority's client database, the Australian Bureau of Statistics, data from the annual agricultural survey and surveys of irrigation farmers by the Technical Working Group and the Western Australian Farmers Federation (dairy enterprises). The data is for the 1989/90 financial year.

	· ·-	1		
V	Varoona	Harvey	Collie	Total
<u>Agricultural land (ha)</u>				
Permanent Irrigation	1,350	4,582	4,200	10,132
Early germinated annual pasture	477	1,379	1,499	3,355
Annual Pasture	2,647	8,689	9,546	20,882
Total	4,474	14,650	15,245	34,369
Productivity ¹ (ha)				
High	3,277	9,559	10.081	22,917
Medium	630	1,461	3.055	5,146
Low	568	3,631	2,109	6,308
Total	4,475	14,651	15,245	34,371
Current Enterprise Use (ha)				
Permanent Irrigation				
Dairy	366	3,589	3,255	7,210
Grazing	908	748	892	2,548
Horticulture - Vegetables	76	173	17	266
- Fruit	-	72	36	108
Total	1,350	4,582	4,200	10,132
Early Germination				
Dairy	137	1,141	1,177	2,455
Grazing	340	238	322	900
Total	477	1,379	1,499	3,355
Annual Pasture				
Dairy	600	4,235	4,059	8,894
Grazing	2,047	4,454	5,487	11,988
Total	2,647	14,650	9,546	20,882
Number of Farm Enterprises (M	ain activity	<i>'</i>)		
Horticulture	4	12	3	19
Dairy	9	80	80	169
Grazing (Commercial) ²	16	45	57	118
Grazing (Part/time or hobby)	26	72	41	139
Total	55	209	181	445

Details of Agricultural Activity in the South-West Irrigation Area (1989/90) Table 1

Based on degree of salinity TWG estimates Notes: 1

2

Key features from this table are:

- the area of permanent irrigation comprises 30 per cent of the land area;
- two thirds of the land area is classed as productive;
- dairying is the main enterprise using irrigation except in Waroona; and,
- there are 445 enterprises using irrigation in the South-West Irrigation Area.

1.3.2 The Irrigation Scheme

The irrigation infrastructure servicing the South-West Irrigation Area is shown in Figure 1 below:

Figure 1 Summary of Water Authority's Financial Assets in the South-West Irrigation Area

Note: These figures have been corrected for this study and therefore differ from the official asset register.

Like all engineering assets the dams and distribution system need to be maintained and ultimately rebuilt when the cost of ongoing maintenance exceeds their replacement cost.

With the exception of the earlier development of the central Harvey area, most of dams and irrigation distribution system were originally constructed in the 1930's and expanded and/or replaced to meet demands during the period 1950 to 1970.

The average age of the channel linings in the Waroona, Harvey and Collie Districts are 50, 45 and 25 years respectively. Much of this lining is no longer effective in preventing seepage, and leakage from the system is increasing. Periodic failures of the channel lining currently occur and require immediate repair to keep the service operational. As the lining continues to age these patching tasks become more frequent until it becomes cost effective to implement a systematic program of replacement before failure occurs. In addition many of the structures are nearing the end of their effective lives. Most significantly many of the dams require modifications to meet new Australian design standards for spillway capacity and earthquake resistance.

1.3.3 <u>The Financial Performance of the South-West Irrigation Service</u>

The maintenance cost of the Irrigation Service will increase substantially in real terms over the next 30 years. The current financial performance of the Irrigation Service is summarised in Table 2. It shows the relationship between revenue received and expenditure by both the Water Authority and Government over the past three years.

Revenue raised in 1990/91 exceeded operating costs but did not cover total costs. Note the large cost for depreciation and the interest on the previous capital that was used to construct the Scheme.

From the State perspective, and under currently accepted accounting practices, the Irrigation Service is losing over \$5 million per year. Neglecting the Government interest on past borrowing the Water Authority is losing over \$2.7 million per year.

The Water Authority is no longer a recipient of any Government Funds. Indeed it is required to pay a 4% levy (up from 3% in 1990/91) on it previous year's revenue to the Government.

The Water Authority's shortfall is therefore met by cross subsidies from other Water Authority customers. As the cost of maintaining the scheme increases in the years to come this cross-subsidy will increase.

Deciding the scale of the maintenance/rehabilitation programme, and how it is to be funded are major issues for the irrigation strategy.

Table 2Comparison of Costs and(\$	Comparison of Costs and Revenues from South-West Irrigation Service (\$ million)				
	1988/89	1989/90	1990/91		
TOTAL REVENUE	1.929	2.220	2.702		
COSTS					
Operational Costs Operating & Maintenance Salaries & Admin	1.723 .510	1.632 .557	1.688 .630		
Total Operating	2.233	2.189	2.318		
Depreciation Historic Replacement Provision Total Depreciation	.592 1.572 2.164	.601 1.753 2.354	.619 1.903 2.522		
Interest on Past Borrowings Water Authority Borrowings Government Borrowings	.330 2.317	.510 2.341	.488 2.419		
Total Interest	2.647	2.850	2.907		
Statutory Levy (3% on previous year's revenue) ¹	.055	.059	.067		
TOTAL COSTS	7.099	7.452	7.814		
NET RESULT	-5.170	-5.232	-5.112		
TOTAL WATER SOLD (megalitres)	88,700	84,900	91,700		

Water Authority of Western Australia Costs as calculated by current Water Authority financial accounting SOURCE: Notes: method. ¹ This has been increased to 4% from 1991/92

2. THE OPTIONS EVALUATED FOR THE FUTURE OPERATION OF THE SOUTH-WEST IRRIGATION SCHEME

2.1 <u>The process used to develop the options</u>

Workshops were held for irrigators and Water Authority personnel during July/August 1990 to discuss the Phase 1 report and define possible future options for the Irrigation Service. Discussions were also held with other stakeholders (e.g. horticultural groups, the EPA) to establish a comprehensive range of future options that considered the major concerns from all stakeholder groups.

Results of the workshop outcomes (Supplementary Paper 7) and related discussions were combined with an approach to the Phase 2 analysis and presented to an invited group of stakeholders in November 1990 (Supplementary Paper 8). The output from that workshop formed the basis of options to be evaluated in Phase 2.

2.2 Factors Incorporated in the Development of the Options

The key factors that irrigators and other stakeholders identified as necessary to incorporate into the options to be evaluated were:

(a) <u>Future Demand for Irrigated Land</u>

The scale of any rehabilitation programme should be governed by the expected demand for irrigated land. This, in turn, is a complex function of market demands for the dairy, horticulture and grazing industries, government policy for the Dairy Industry, on-farm productivity improvements and water prices.

Different scenarios defining the demand for irrigation land were presented to stakeholder groups during the July/August 1990 Workshops.

The need to address a range of areas to be served by the future irrigation scheme was accepted by all stakeholders.

(b) <u>Rehabilitation and Engineering Strategies</u>

Farmers expressed the view that a comprehensive piped scheme should be investigated. Whilst capital intensive, piped systems reduce operating and maintenance costs, have low losses relative to channel systems and therefore save water and reduce groundwater recharge.

The desirability of minimising costs was also recognised and a minimum maintenance program similar to that use in the Phase 1 approach, was also proposed for evaluation.

(c) <u>Salinity Mitigation Strategies</u>

The importance of salinity mitigation to the future of the Irrigation Service was established in Phase 1 and discussed at the workshops. Following detailed investigations of the salinity issues, two approaches to improving pasture productivity were proposed. The first involved redesign of on-farm irrigation infrastructure to maximise water efficiency and pasture productivity and the second involved additional sub-surface drainage on salt affected and marginal land in the Irrigation Area, in addition to the improved on-farm practices.

(d) <u>Water Demand Scenarios</u>

The workshop discussions highlighted the need to specifically address the impact of high and low market demand for enterprises conducted on irrigated land and the impact of the price of water on the demand for irrigation water.

In this way the extremes of high and low future demands for irrigated land and water could be evaluated.

(e) <u>Water Charging Policy</u>

Currently water volumes are committed to irrigation by the area of rated land within the district. Two water charging policies were considered. The first maintained the current mix of a fixed rate charge and a volumetric charge. An alternative, to be run in conjunction with a Transferable Water Entitlement Market, and based on a 100% volumetric charge was also investigated.

Under the second approach water not used for irrigation could realise its value for other purposes in the following year. In other words, water no longer required could be allocated to other irrigators and to other uses including industrial and domestic uses.

2.3 Description of the Options

A total of 45 different options were identified for evaluation derived from various combinations of four different factors:

- Different land areas based on land productivity, environmental and enterprise criteria;
- On-farm irrigation practices and scheme engineering strategies for water delivery, drainage and salinity mitigation;
- High and low water demand scenarios; and,
- Current or TWE water charging policies.

Figure 2 provides a summary of the factors used to define the options. A description of these factors follows. Each of the 45 options was evaluated for the three irrigation districts of Waroona, Harvey and Collie as well as for the irrigation area as a whole.

2.3.1 <u>Areas</u>

The scale of any rehabilitation programme should be governed by the expected demand for irrigated land. This in turn is a complex function of market demands, government policy for the Dairy Industry, potential productivity from different regions of the irrigation area, on-farm improvements and water prices.

Farmers at the July/August 1990 workshops presented a range of possible areas which could be supplied with an irrigation service given different future scenarios and market outlooks.

Given an optimistic outlook farmers expected that the existing area would remain. Possible expansion of additional horticulture, upslope from the main supply channels and on the Myalup Sands towards the coast, was also highlighted. This was treated as a sub-option for which a preliminary estimation of the financial viability was carried out.

Given more pessimistic outlooks, in which increased costs would force partial or significant restructuring of the services, farmers expected that the service would contract.

A wide range of views were presented on the scale of the expected contraction. However, there was a general recognition that the more productive regions of the districts would be more likely to remain. For defining the options to be evaluated, three broad productivity regions were defined and associated area options developed.

These are summarised below and shown in Figure 3.

Area Option A:	Existing area of service- includes high, medium and low productivity regions.
Area Option B:	The existing area less the low productive Western portion of the existing districts - includes the high and medium productivity regions.
Area Option C:	The high productivity area of the existing districts - excludes the low and medium productivity (salt affected and marginally salt affected) soils in the Western and Central portion of the existing districts.
High Productivity	
Region:	The region where only localised areas of salt affected pasture exist and where high productivity should be able to be maintained. The region tends to be on the Eastern portion of the existing districts and includes the most fertile soils.

Medium Productivity

Region: The region where significant areas of marginally salt affected pastures occur.

Low Productivity

Region:

The region where extensive areas of salt affected pastures currently exist. The region tends to be on the Western edge of the current districts.

The productivity regions are only broadly defined. There are major variations in the productivity between paddocks, within farms, and between farms within the same productivity region. Local variation is affected by soil type, topography and local drainage, and particularly by farmer (water and pasture) management. Nevertheless, regional zones of averaged productivity were considered appropriate to use for the purpose of assessing the economic impact of different options for the future irrigation service. A survey by the Department of Agriculture in 1986 was used to delineate the three broad land productivity classifications. Minor modification of these boundaries were made to link in with cadastral boundaries and to update productivity areas in the Collie district.

Environmentalists and EPA staff considered that any long term strategy for irrigation should specifically investigate ways of redressing nutrient discharge in the Peel-Harvey Estuary.

An Option D was proposed at the November 1990 Workshop which would restrict irrigation to Dardanup Loam soils in a modified Peel-Harvey Catchment.

In Option D (Figure 4) it was proposed to redirect the headwaters of the Harvey Main Drain from the Peel-Harvey catchment via an extension to the Mangosteen Drain. This involved extending the drain approximately 10 kilometres to the north and east and was proposed in the early 1980's as one of the original options for controlling the algae growth problems of the Peel-Harvey estuary.

The drain extension enables 2,100 ha of current irrigable land in the heavy soils of the Plains Paddock Channel region to be retained while reducing the catchment area of and nutrient input to the Peel-Harvey Catchment.

At the November workshop it was decided that the component costs of the drainage and the benefits of maintaining the 2,100 hectares of irrigable land should be compared. Consequently an Option E was formulated that did not involve the Mangosteen Drain extension and restricted all irrigation north of the Harvey Main Drain except on the Dardanup loams in the core of the Waroona Irrigation District. By comparing the economics of Option D and E the value of the drainage works could be determined. Option E is shown in Figure 5. Many stakeholders indicated the high quality of the loamy soils and the water resources of the Harvey and Waroona Districts and considered that the districts' long term future would be based on horticulture. A Horticultural Option - Option H - was therefore developed and is shown in Figure 5.

It was designed to investigate the economics of using the best loam soils of the district and the available water to service a modern export driven horticultural industry. This Option assumes the restriction of the irrigation area to the Dardanup loams in Harvey and Waroona and the sole land use being horticulture. No large scale horticulture development was proposed for the Collie District because of the salinity constraint of the water supply.

In evaluating the close down option (Option CD) it was clear that the piped network in the central Harvey Area could continue to operate cost effectively for many more decades without major additional capital injection. Consequently an option based on maintaining the central piped scheme (Option P) was defined. Option P is also shown in Figure 5.

Figure 2

2.3.2 **On-farm Irrigation Practices and Engineering Strategies**

The importance of salinity mitigation to the future of the irrigation service was established in Phase 1 and discussed at the workshops. Following detailed investigations of the salinity issues, two approaches to improving pasture productivity were proposed. The first involved redesign of on-farm irrigation infrastructure to maximise water efficiency and pasture productivity and the second involved additional sub-surface drainage to the salt affected and marginal lands in the district.

There were three on-farm irrigation practice and engineering strategies for water delivery and salinity mitigation evaluated:

Strategy 1 Minimum Maintenance of Scheme and Current On-farm Practices.

The desirability of minimising costs was recognised and a minimum maintenance program, similar to that used in the Phase 1 approach, was proposed for evaluation.

Irrigation Scheme	 minimum maintenance of current d system in 10 years time (Year 2000) comprogram of channel patch replacement of all channels 50 t of age with the aim of covering cent of the Area over 20 years: 	 minimum maintenance of current distribution system in 10 years time (Year 2000) commence a program of channel patchup and replacement of all channels 50 to 55 years of age with the aim of covering 50 per cent of the Area over 20 years;
On-farm	-	 conduct essential replacements of Dethridge wheels and control structures; dam safety upgrades; current irrigation practices, including laser levelling but no additional salinity mitigation work.

Strategy 2 Minimum Maintenance of Scheme, Improved On-farm Practices

Irrigation Scheme	-	minimum maintenance of current distribution system			
On-farm	-	dam safety upgrades re-design irrigation layout for improved water and pasture management incorporating			

- whole farm planning;
- bay, head ditch and tail drain reforming;
- 6 to 8 day watering capability; and,
- surface ripping and mole draining.
- shade, shelter and limited recharge control by 10% tree planting adjacent to drains and channels
- the net result would be a 10% improvement in water efficiency (i.e. 10 per cent less water applied).

Farmers expressed the view that a comprehensive piped system should be investigated. Whilst capital intensive, piped systems reduce operating and maintenance costs, have low losses relative to channel systems and therefore save water and reduce groundwater recharge.

The aim would be to achieve water savings from both on-farm practices and a reduction of seepage loss from the distribution scheme

Irrigation Scheme	-	fully piped scheme
	-	dam safety upgrades
On-farm	-	 as for Strategy 2 plus groundwater reduction in the marginal and salt affected regions by installing subsurface drainage and de-watering bores. Assume the adoption of most profitable option depending on the situation: sub surface drainage at 15 metre spacing beneath permanent pasture; or aquifer de-watering by "Yoganup Bores" every 15 hectares

2.3.3 Demand Scenarios

Market outlooks for irrigated agricultural produce and water prices will influence the future demand for irrigation land and water. These factors were considered in the development of two scenarios that covered the minimum and maximum likely demand for irrigated land and irrigation water over the next 30 years.

To enable the comparison of the options under high and low water demand conditions two water demand scenarios were examined for each of the three agricultural enterprises (dairying, grazing and horticulture) in the South-West Irrigation Area.

The high and low water demand scenarios for grazing and horticulture were developed by the Department of Agriculture and the Technical Working Group.

The high and low demand scenarios for the dairy enterprise were developed with the assistance of the Manager of the Dairy Industry Authority (see reference to Supplementary Paper 2).

(a) <u>Water Pricing</u>

At the July/August 1990 workshops many farmers argued that the price of irrigation water should be kept at the same real price (i.e. rise at no more than the inflation rate) as current prices were already affecting their water usage. If prices were further increased the current irrigation assets would not be fully used and the full benefits of irrigated agriculture would not be realised.

This approach was incorporated into the High Water Demand Scenario.

FOREST SCIENCE LIBRARY DEPARTMENT OF CONSERVATION AND LAND MANAGEMENT WESTERN AUSTRALIA

WESTERN AUSTRALIA However, maintaining the increases in the price of irrigation water at CPI will result in an increasing subsidy to irrigated farm enterprises as the cost of maintaining the service increases.

A second water pricing approach based on a "User Pays" or "Beneficiaries Pays" approach was included in the Low Water Demand Scenario at the request of other stakeholders.

Many farmers argued that, if a "beneficiaries pays" approach were to be introduced then all the beneficiaries of the service should be asked to contribute. In particular the recreational benefit of the reservoirs and the Town Water Supply benefits to the State should be assessed.

A review of the recreational value of Logue Brook and Waroona Reservoir was therefore commissioned as part of this study (Supplementary Paper No. 1). By adopting standard assumptions used in recreation benefit analysis in the USA, the Waroona and Logue Brook Reservoirs were assessed as likely to provide recreational benefits of \$2.6 million over 30 years.

Future recreational benefits are likely to increase over the 30 year study period. Increased usage of Logue and Waroona Reservoirs could be expected over the next 30 years. Additional recreational benefits are likely to develop from Wellington Reservoir as limited and controlled passive recreation increases. A generous upper limit on the likely increases in overall recreational benefit would be between 3 and 4 times the current estimates.

Additional benefits to Harvey Town Water Supply also accrue from the existence of the Harvey Weir. Other towns in the district are supplied from sources independent of the irrigation reservoirs. The construction and maintenance of a small storage just to supply Harvey Town is estimated to be about \$2.0 million over 30 years.

The resulting estimates of the benefits (over 30 years) of the irrigation reservoirs are:

- \$9.0 million for recreation (3.5 times current estimates)
- \$2.0 million for town water supply
- \$63.6 million for net irrigated agricultural production (Phase 1 estimate)

\$74.6 million for total reservoirs benefits

Based on these estimates, over 85% of the benefits of the reservoirs are for irrigated agricultural production.

Consequently, under a "Beneficiaries Pays" philosophy costs incurred by the irrigators would be the:

- operational costs;
- capital costs of distribution system; and,
- 85% of capital costs for dams and headworks.

This approach was used to determine the water price for the low water demand Scenario.

(b) <u>Market Demands</u>

Reviews of the future market outlooks were considered by the TWG for grazing and horticulture.

• High Demand

The high demand scenario was based on:

- Favourable market outlooks for dairy, beef and horticulture industries and a modest rate of productivity improvement for the dairy and grazing industries.
 - <u>dairying</u> A demand of 128 million litres of milk from the Irrigation Area by Year 30 compared to 91 million litres of milk in 1989/90 based on the:
 - current quota system remaining;
 - share of State' milk production remaining at 34% from the Irrigation Area;
 - WA population to grow at 2.29% for 10 years to Year 2000, then 1.53% after that; and,
 - interstate imports of fresh milk products stabilising at 5% of market

Assuming per cow productivity continues at 2% per year to the Year 2000 and then slows to 1% per year after that the total hectares required for dairying in 30 years time would be as shown in Table 3 below. The slowing of the productivity improvement rate actually results in a higher water demand and area irrigated (more grass needs to be consumed) for the same milk output than would be the case if productivity continued to improve at 2% per annum.

- <u>other grazing</u> The high demand scenario assumes the current area of irrigated land is still required for other non-dairying grazing. There may be some structural change in this scenario. For example, more studs and part-time or hobby farm grazing activities compared to commercial beef and sheep grazing enterprises could develop.
- <u>horticulture</u> Demand for horticultural land increases linearly from 374 hectares in 1989/90 to 1,250 hectares in 30 years time.
- No increase in the real price of water.

Water prices increasing at no more than the inflation rate, that is no increase in the real price of water.

• Low Demand

The low demand scenario was based on:

- Conservative market outlooks for dairy beef and horticulture industries and a continuation of the current rate productivity improvements of the dairy and grazing industries.
 - <u>dairying</u> A demand of 65 million litres of milk to be supplied from the Irrigation Area by Year 30 compared to 91 million litres in 1989/90 based on the:
 - quota system being replaced by a contract supply system between producers and dairy companies;
 - share of State's milk production falling to 20% from the Irrigation Area;
 - WA population growing more slowly 1.64% to the Year 2000 and thereafter at 0.94%
 - interstate imports of fresh milk products increasing to become 20% of sales in 30 years time.

Assuming per cow productivity continued to increase at 2% per annum the demand for irrigation land under this scenario is shown in Table 3.

- <u>grazing</u> Assumes 50 per cent of current area is required for grazing activities in 30 years time.
- <u>horticulture</u> Demand for horticulture land increases more slowly from the current area of 374 hectares to 750 hectares in 30 years time.
- Full cost recovery water pricing policy

Water prices to increase over a ten year period to full cost recovery levels so that by the Year 2000 water prices are meeting:

- operational costs;
- the capital costs of the distribution system; (on a renewals accounting basis) and,
- 85% of capital costs for dams and headworks.

Water Demand	Current	High	Low Market Effect Plus Impact of price doubling	Low Market Effect Plus Impact of price trebling
Dairy	_			
Permanent Pasture	7,210	6,866	3,281	2,668
Early Germination	2,455	2,338	1,117	908
Grazing				
Permanent Pasture	2,548	2,548	1,274	713
Early Germination	900	807	449	251
Horticulture	374	1,250	750	750
Total				
Permanent Irrigation	10,132	10,664	5,305	4,131
Early Germination	3,355	3,145	1,566	1,159

Table 3Comparison of Areas of Irrigated Land Required in 30 Years Time
under High and Low Demand Scenarios (hectares)

The low water demand scenario incorporates a requirement for water prices to meet the full recovery of the cost of rehabilitating and operating the irrigation service. For options with a minimum maintenance strategy for the Irrigation Service (Strategies 1 and 2) the price of water would need to at least double to meet full costs. For the construction and operation of a fully piped scheme (Strategy 3) the price of water would need to at least treble. As a result of higher water prices the adoption of Rehabilitation Strategy 3 would result in further reductions in the area of land irrigated and a reduced demand for irrigation water when compared to the adoption of Strategy 2.

The composition of high and low demand for irrigated land is shown under the three engineering strategies in Figure 6.

FIGURE 6 The Composition of Demand for Irrigated Land in 30 Years Time Under Different Engineering Strategies and Demand Scenarios

Strategy 1,2 or 3: High Demand - Price of water increases with inflation

2.3.4 <u>Water Charging Policies</u>

Two water charging policies were considered. The first was based on the current fixed allocation approach. The second was designed to represent one possible approach to water charging following the establishment of a Transferable Water Entitlement market.

• Current (Fixed Allocation) Approach

Under this approach the current proportions of a fixed charge per rated hectare and a charge per megalitre of water used were maintained. The financial analysis of each option involved determining the required increases in the rates and volumetric charge components to meet the costs of each option. Also determined was the average cost per megalitre of water sold necessary to cover the costs of each option.

The water allocated to irrigation in each option was based on the total rated area of the districts. In the economic analysis the opportunity cost of water was based on this fixed water volume, even if the actual volume used declined as real prices increased. Under the current system water could not be re-allocated to alternative uses. It remained "reserved" for irrigation purposes only.

• Transferable Water Entitlement (TWE) Market Approach (or Variable Water Allocation Approach)

A different approach to charging is possible if a TWE market is established. The rated area has traditionally defined the volume of water allocated. However, with a Transferable Water Entitlement marketing operating, the volume of water allocated to irrigation can change over time, although only if irrigators are prepared to sell their entitlement. As the water entitlement would be separated from a particular area of land a water charging policy related to a rated area would no longer be necessary.

For the purposes of the financial analysis under this approach, all charges were incorporated in the cost per megalitre of water used. No fixed charge component, based on rated area was included. Other possible combinations of variable charges and fixed charges (based on other than the rated area) are possible. These are discussed in the results section (Section 4.3).

In the economic analysis the water not being used for irrigation was considered available for other uses. Consequently the opportunity cost of water under this charging approach is less than under the current (fixed allocation) approach.

2.3.5 <u>Time scales for Implementation of Options</u>

(a) <u>Area Option and Engineering Strategies</u>

Expenditure on dam safety upgrades and on many Dethridge Wheel replacements will need to be completed within the next 10 years. Some increased expenditure on channel maintenance will be required but major expenditure on planned replacement programs of old structures and channel lining will not have to commence until the year 2000. There is therefore a ten year period (from 1990) for restructuring to reshape the districts before major expenditure on the distribution system is required.

Consequently in the cost benefit analysis the options which involve a reduction in the area served were shown as being implemented over a 15 year period. Small reductions were shown to occur over the first five years with the majority of the changes being implemented between years 6 and 15. The timing of the adjustment in land areas is illustrated in Figure 7 for Strategies 1 and 2.

(b) <u>Water Charging Policies</u>

High Water Demand Scenario

The low water demand scenario involves at least a doubling of water charges to cover the full cost of the minimum maintenance strategy for the existing channel scheme, and at least a trebling of the price to cover the full cost of a piped distribution scheme.

In the analysis water price increases were introduced in ten equal increments over a ten year period to the Year 2000.

Low Water Demand Scenario

NOTES: Assumes minimum maintenance strategy is followed by the Water Authority for maintaining the Scheme.

Figure 7Area of Permanent Irrigation Land Required

The irrigation responses to these changes would lay behind the price increases. The adopted time frame of significant reductions in the area irrigated and the area served between years 5 and 15 is appropriately consistent. A typical example of the changes in areas irrigated and water charges is shown in Table 4 for Harvey District, Area D Strategy 1 and the Low Water Demand Scenario options.

Table 4Example of Changes in Area Irrigated and Water Charges under the
Current and TWE Water Charging Policies

W	ater Charging Policy	Current				Wit	With TWE Market			
Y	ear	Current (1989/90	t)) +5	+10	+30	Current (1989/90) +5	+10	+30	
•	Permanent Irrigation (ha)	4,582	4,205	3,529	2,542	4,582	4,205	3,529	2,542	
0	Early Germination (ha)	1,379	1,243	3 948	652	1,379	1,24	3 948	652	
•	Price of Water to me full cost recovery (\$/ml)	24.30	43.30) 62.30	62.30	24.30	42.20	0 60.1	60.1	

(Harvey Area D: Engineering Strategy 1: Low Water Demand Scenario)

2.4 Extending the Irrigation Services

During the Phase 2 workshops the question was asked whether it would be profitable to extend the current irrigation service to the Myalup Sands to the West of the main Irrigation Area and the foothills of the Darling Scarp (East of the South West Highway).

Two sub options were developed to evaluate these ideas.

• Myalup Sands

The Myalup sub-option involved pumping water from the Main Harvey Drain to an area of approximately 600 hectares on the Myalup Sands, west of Harvey.

• The Foothills

The pumping of water from existing irrigation channels into farm storage dams on foothills properties with suitable soils adjacent to the channels was also examined.

2.5 Other Factors Considered in Option Formulation

A number of additional points, were raised by stakeholders in the option development phase. These are discussed below.

2.5.1 Alternative Uses for Land Which is Currently Irrigated

A number of farmer groups raised points as to what land uses could be employed for land that was retired from irrigation. Issues such as subdivision of land and possible industrial development were raised. However, it was decided that the Phase 2 analysis should be based on a comparison of irrigated and dryland agriculture only. The current land zoning is "rural" throughout the area and for the purpose of Phase 2 analysis it is assumed to remain so.

Subdivision and industrial zoning possibilities were seen as important land planning issues that are better directly addressed in regional land planning studies following the finalisation of the Government's Irrigation Strategy or taken into account following stakeholder submissions in Phases 3 and 4.

2.5.2. Alternative Uses for Water

A number of stakeholder groups, (environmental and water industry) argued that the benefits of using some or all of the water currently allocated to irrigation should be specifically included in the analysis. At the November 1990 workshop it was proposed to prepare a specific discussion paper on the alternatives for the land and water resources retired from irrigated use.

The costs and benefits of alternative water uses are included in this report (Section 3.4).

2.5.3 Transferable Water Entitlements (TWEs)

At the November 1990 workshop, conducted to refine the Phase 2 options to be evaluated, it was recognised that one of the issues that would need to be addressed would be how the necessary restructuring for different options could take place in an equitable way. It was recognised that transferable water entitlements (TWEs) could pay a vital role in the achievement of restructuring. A survey of 55 irrigators (10% of irrigators) conducted in Phase 1 of the Irrigation Strategy Study revealed that 67% believed it would be fair to introduce TWEs, 10% were undecided and 23% believed the introduction of TWEs would be unfair.

TWEs involve the granting of water rights to current holders to ensure that water is efficiently and equitably allocated between users. It is based on the assumption that users with higher productive values for water will be willing to buy water from those with lower productivity values for water.

Many irrigators see TWEs as a means of guaranteeing their right of access to water. Under a TWE system individuals would be free to judge for themselves whether they were better off buying or selling water at the market price, and there would be no compulsion to sell. The introduction of a system of TWEs could be expected to have the following results:

- increased allocation to higher value agricultural enterprises;
- increased adoption of water saving technologies (because water saved could be potentially sold);
- decreased use of water on land which was poorly suited to irrigation. TWEs gives property owners a means of selling water without selling their land, or getting more for their property by separately selling the water and the land; and,
- the provision of a mechanism for the Water Authority, to buy water for other uses (e.g. urban or industrial) if there is a higher value use for the water than irrigated agriculture.

Of course the introduction of a TWE system would need some rules to constrain the movement of water to ensure any adverse effects on remaining irrigators were minimised and environmental considerations were taken into account.

Further information on the role of TWEs in Australian irrigation water allocation policy can be found in the report of an international seminar and workshop on transferability of water entitlements held in July 1990 at the Centre for Water Policy Research, University of New England (Ref. 8).

Attempts to implement a trial of TWEs in the Collie Irrigation District in 1990 were shelved in favour of a policy whereby farmers may temporarily lease water to others under drought or low supply conditions. The main reason for shelving the trial was that irrigation water supply in the Collie Irrigation District currently exceeds the farmers' demand for it and accordingly there is no significant benefit to be gained by introducing TWEs in this area. Moreover TWEs would more appropriately be discussed in the overall context of this strategy study.

2.5.4 Commercial Tree Planting

The general low productivity from dryland grazing on the heavier poorly drained soils, mainly in the western portion of the Irrigation Area, suggested that commercial tree growing may be a viable alternative "agricultural" land use if these areas were retired from irrigation. Gavin Ellis from CALM, Manjimup was asked to carry out an initial assessment of the commercial potential of Eucalyptus Globulus (Tasmanian Blue Gum) on Pinjarra Plain soils (Reference 5). Estimates were preliminary and conservative as few trial plots are old enough to provide reliable tree growth. The results indicated that it is doubtful that Eucalyptus globulus plantations could compete financially with dryland grazing on the heavier soils, even if relatively high final tree crop prices were assumed. This conclusion may change if current trial plantings perform better than expected. However, the value of integration of trees into an overall farm plan and their additional value for shade and shelter, particularly for dairy cattle, was reviewed by Richard George, Department of Agriculture, Bunbury (Reference 6). He argued that their combined benefit to an irrigation farm had been previously underestimated. He quoted cases where farm profitability and net production were maintained when up to 20% of the farm was planted to trees.
Trees have the potential to improve profitability through shelter effects resulting in increased milk and livestock production, to limit water logging and accession to the water table and promote pasture production. Additional benefits from reduced nutrient runoff, diversification of farm income and the development of an aesthetically attractive and more environmentally acceptable landscape also exist. However, these benefits will have to be demonstrated locally before they will be adopted on any large scale.

Consequently strips of trees integrated into the farm and covering about 10% of an irrigated farm were included in the improved on-farm management practices of Strategy 2. However, no further analysis of the broader benefits of tree plantations on areas retired from irrigation was conducted.

2.5.5 An integrated Pipe Network System

Farmer groups in the July/August 1990 workshops proposed that a large supply main running the full north-south distance could be planned to tie in with a longer term system to deliver water to Perth and Mandurah. In this way some of the large capital cost could be shared with Metropolitan Users.

This concept was considered carefully but not analysed in Phase 2 for the following reasons.

Firstly, capital costs for pipelines are high. It is most efficient to only invest when the need can no longer be avoided. It is unlikely that the need for the irrigation network and bulk transport main to Mandurah/Perth would coincide. This is particularly the case in the area south of Harvey.

Secondly, if an integrated system was used all water would have to meet drinking water standards. Expensive unnecessary treatment of irrigation water could be required in an integrated system.

It would be more cost effective to separate the supply storages, use the highest quality water for domestic supply and try to avoid all treatment except disinfection.

Thirdly, it would be difficult to design and efficiently operate a dual system with very different seasonal draw patterns.

- 30 -

3. ECONOMIC EVALUATIONS OF THE OPTIONS

This section describes the methodology used to conduct the economic cost benefit analysis of the 45 proposed options derived from the factors discussed in the previous section.

3.1 <u>Methodology</u>

3.1.1 Introduction

The objective of the economic evaluation is to assess whether it is economically viable to rehabilitate and continue operation of the irrigation service in each of the three Irrigation Districts. Expressed differently, the objective is to assess whether it is a prudent decision to invest in an upgrading of the irrigation infrastructure.

In order to undertake such an assessment the following have to be evaluated:

- the benefits and costs attributable to the Base Case. The base case involves a close down of the irrigation system, thereby enforcing a change from irrigated to dryland agriculture. For the purpose of the study, it is assumed that the irrigation system will be closed down over a 15 year period (to the Year 2005). The Base Case involves the following works:
 - bringing the supply dams up to acceptable Australian standards for floods and earthquakes;
 - making the channel system safe and re-establishing winter flows; and
 - provision of on-farm water supply systems.
- the benefits and costs attributable to the other options for rehabilitating the irrigation systems.

Each option evaluated would be classed as being economic, provided the net benefits generated from rehabilitating the irrigation systems outweighed the net benefits which would be generated if the systems were closed down (i.e the Base Case).

The benefits attributable to both the options being considered and the Base Case largely relate to the value of agricultural/horticultural production within the study area. Further, the net benefit attributable to the options will largely be a reflection of the higher productivity achieved from irrigated land compared with that from dryland.

The costs associated with each option comprise:

- the capital costs associated with rehabilitating the systems both for the headworks (dams) and the distribution system (channels and drains);
- the annual costs associated with operating and maintaining the Service;

- the costs of salinity mitigation works necessary to maintain or improve productivity on irrigated land; and
- the value foregone by using the water for irrigation rather than for some alternative purpose (the opportunity cost).

3.1.2 Overview of Methodology

The major assumptions underlying the evaluation are defined in together with comments relating to their limitations.

Standard project evaluation (benefit cost) techniques incorporating discounted cash flow procedures were used to evaluate the incremental difference between the Base Case and each option. Such techniques allow ranking of the options on the basis of net present value. An 80 year period was used to calculate NPVs to ensure a long enough time for the evaluation of different capital options with long asset lives (e.g. pipe networks).

In broad terms, the approach used to evaluate the incremental benefits and costs between the Base Case and each option involved the following steps:

- estimation of the enterprise mix on a per hectare basis for irrigated (permanent and early germination) land and dryland;
- estimation of the difference in carrying capacity between irrigated and dryland pastures;
- estimation of the incremental value of agricultural production, with the incremental value being the difference between the net value of agricultural production achieved under the Option being investigated and the value achieved under the Close Down Case (the Base Case); and
- estimation of the incremental benefits and costs over time attributable to moving away from a situation of dryland agriculture, as would exist under the Base Case, to one of irrigated agriculture existing under the option. The incremental benefits and costs take into account: agricultural benefits; the capital and operating costs associated with the option and Base Case; the cost of providing salinity mitigation works; and, the opportunity cost associated with using the water for irrigation rather than some alternative use.

3.2 Value of Agricultural Output

3.2.1 Sources of Data for Current Agricultural Activities

Various sources of data were used to compile the value of current and projected agricultural output.

(a) <u>Number of current enterprises</u>

The Water Authority's Billing System was used to identify the number of enterprises specialising in different enterprises. Enterprises were classed as mainly dairy, grazing, horticultural or part-time/hobby farms. The distribution of these enterprises is shown in Table 1.

(b) Area of Land used for different enterprises

The Australian Bureau of Statistics were commissioned to prepare data for properties within the three Irrigation Districts. This was used to compile allocations of land area within the Irrigation Area to various enterprises. A problem arose due to the inability of this data to distinguish run off blocks operated outside the Irrigation Area by dairy farmers. Data from the 1989/90 Dairy Industry Authority Farm Survey, and then improved data from a special survey conducted by the Western Australian Farmers' Federation, was used to obtain a profile of the average dairy farm.

Areas of land used for horticultural and grazing enterprises were derived from the ABS, Water Authority's Billing System and from a specially commissioned survey of 55 irrigators conducted during Phase 1 of the Irrigation Strategy Study.

(c) Land Productivity

Land was divided into 3 categories - high, medium (marginally salt affected) and low salt affected) productivity land. The definition of the three land types was based on a 1986 survey conducted by the Department of Agriculture. The area of land in each of these land productivity classes is shown in Table 1.

The TWG then set about preparing estimates of average enterprise outputs for each of these land types for dairy and grazing enterprises. It was assumed all horticultural activities would take place on high productive soils.

Table 5 shows the estimates prepared in terms of useable tonnes of dry matter produced and estimated carrying capacities of the different land types.

Table 5 Estimated Productivity of Different Land Types

Pasture Type	H	igh	Medium	Low
	Prod	luctive	(Marginally	(Salt
	La	and	Affected)	Affected)
Irrigated Perennial	(7.6	5.7	3.8
Early Germination		5.0	4.8	3.0
Annual		4.4	3.8	2.2
Carrying Capacity (DSE/ha) ² Pasture Type	e High Productive Land	Medium (Marginally Affected)	Low (Salt Affected)	Average
Irrigated Perennial	25	19	13	22
Early Germination	20	16	10	17.5
Annual	15	13	7	13
Average	17	14.5	8	15

Tonnes of Useable Dry Matter per hectare¹

Notes: ¹ Assumes salt affects yields from all pasture types in the same proportion.
 ² Carrying capacity is measured in Dry Sheep Equivalents (DSE's) per hectare. It is assumed here that 1 DSE is equivalent to 300 kgms of useable dry matter.

(d) <u>Value of Agricultural Output</u>

Peter Eckersley of the Department of Agriculture prepared gross margins for average irrigated and dryland dairy beef and horticultural enterprises for 1989/90. These were based on gross margins prepared for the Phase 1 analysis but updated using data from the 1989/90 DIA dairy survey and research into the other enterprises. Estimates of fixed costs were also supplied. Further details can be found in Supplementary Paper 6.

Beef cattle gross margins were calculated and used as an indicator for the returns from all grazing enterprises.

Horticultural gross margins were calculated using indicator crops of citrus and a composite vegetable enterprise comprising tomatoes, sweetcorn, rockmelons and pumpkins.

With the assistance of Dr David Morrison of the Department of Agriculture economic and financial market milk prices were calculated to enable a true economic return for the dairying enterprise to be calculated. This produced a shadow price of 26 cents per litre for market milk compared to 37 cents per litre used for the financial analysis. This implies that in 1989/90, if there had been no quota system in operation, the average price paid for milk would have been 26 cents.

The economic and the financial prices used for beef and horticulture output are the same as there are no market distortions or major differences between the economic and the financial returns for these enterprises.

Table 6 shows the summary of the estimated agricultural gross margins and fixed costs per hectare for land used for the different enterprises.

The agricultural gross margin represents the returns after all variable operating costs are deducted with the exception of irrigation costs.

The fixed costs are the cost of the owner/operator and administration fixed costs such as shire rates, accountants charges and so on.

(e) <u>On-farm Irrigation Development and Salinity Mitigation Costs</u>

The on-farm costs of adopting irrigation and salinity mitigation strategies as set out in Strategies 2 and 3 is shown in Table 7.

Table 7 also shows the expected percentages by which pasture productivity would improve with the adoption of Strategy 2 or 3.

		(Gross Margins \$/ha		F	ixed Costs \$/ha		Typical Enterprise
DADY	Land Productivity	High	Medium	Low	High	Medium	Low	Size (Ha's)
DAIRY (Financial)	Perennial Irrigated Annual Irrigated (EG) Dryland	836 660 484	627 528 418	418 330 242	216 193 169	188 175 160	160 149 137	230
DAIRY (Economic)	Perennial Irrigated Annual Irrigated (EG) Dryland	530 418 307	397 335 265	265 209 153	216 193 169	188 175 160	160 149 137	230
GRAZING (Beef)	Perennial Irrigated Annual Irrigated (EG) Dryland	430 340 249	266 224 177	176 139 102	181 161 140	157 145 133	133 108 88	284
CITRUS DARDANU MYALUP S FOOTHILI (Sub option	JP LOAM MARKET GARDEN SANDS MARKET GARDEN LS MARKET GARDEN a - pumped)	3,404 4,648 4,909 4,780 4,823			1,550 1,550 1,550 1,550 1,550			20 20 20 20 20 20

Table 6Agricultural Gross Margins and Fixed Costs used in Phase 2 Analysis

SOURCE: ACIL Peter Eckersley et al, Department of Agriculture : 2/6/92

TABLE 7

COSTS AND PRODUCTIVITY IMPROVEMENTS FROM ON FARM IRRIGATION DEVELOPMENT AND SALINITY MITIGATION MEASURES

						% Pastu	ire Producti	re Productivity Improvement			
	Capital Cost	Lifetime	Annual Cost	Equivalent Annual Cost (\$/ha)	Wes (La	stern ow)	Cer (Mar	ntral ginal)	East (Hi	ern gh)	
	(\$/ha)	(Yrs)	(\$/ha)		Perm Irrig	Annual Dry&EG	Perm Irrig	Annual Dry&EG	Perm Irrig	Annual Dry&E G	
On Farm Irrigation Development											
 Planning and redesign better system design (head ditch, tail drain, culverts) \$350/ha pasture management Re-seed every 5 instead of 10 years, i.e. 15 ha instead of 7.5 ha each year \$125/ha topsoiling (12.5% area) \$200/ha Surface ripping work mole draining \$57/ha every 2 years 	-	-	25 30	52.50 30.00							
• Tree planting ⁽²⁾											
	-	-	-	82.50	35	20	30	10	25	0	
 The above plus sub surface drainage of permanent pasture area at 15m spacing at 2.3 metre depth or Regional pumping(50:50)⁽³⁾ 	4,500	25		180.00							
				262.50	115	25	120	15	NA	NA	

Notes: (1) Option 2 may include automation of irrigated areas if the benefits exceed the costs for the individua producer. Automation would cost approximately \$500 per hectare, based on one auto unit per 1 ha bay, sensor, air tube, installation, freight, insurance.

(2) Assume Costs equal extra benefits from improve shade and shelter and economic returns from trees.

(3) Regional pumping \$1,300 capital per ha (20 years) plus \$160 per hectare annual costs. One bore for every 15 ha. One in three success rate.

(4) NA Not applicable

These percentages were used to multiply the current agricultural gross margins to obtain an output estimate for adoption of the relevant strategy.

In addition it was estimated that if any substantial tracts of previously irrigated land reverted to dryland the improvements in dryland productivity would be as follows: zero on high productive land; +25 per cent on marginal land and +50% on salt affected land.

(f) <u>Other Costs</u>

As the mix of enterprises changes over time there are changes in capital costs associated with the establishment of horticultural enterprises, the selling or buying of livestock and the cost of developing new pastures when land is changed from irrigation to dryland or vice versa. Further details on the conversion costs used in the Phase 2 analysis can be found in Attachment 8.

3.2.2 <u>Calculating the Net Agricultural Benefit</u>

The net agricultural benefit for each option was then calculated as the Net Present Value over 80 years at a 6 per cent discount rate. This was done by deducting the NPV of all additional costs of the option from the NPV of the agricultural gross margin. The net agricultural benefit relative to close down was also calculated. Further details on the calculation of the on-farm costs and agricultural returns for all options can be found in Attachment 4.

3.3 <u>The Cost of Providing Water</u>

Future cash flows of expected expenditure on operations, maintenance and capital upgrades for both the headworks and distribution systems were estimated over the 80 year study period for each option evaluated. The concept used was to look forward and estimate required expenditure rather than consider a depreciation allowance to cover past capital that has been expended and is being "consumed" as the existing assets age. This approach has loosely been termed "renewals accounting" and is a future cash flow analysis.

Essentially there were two engineering strategies - a minimum scheme maintenance strategy (Strategy 1) and the construction of a fully piped system (Strategy 3).

The third strategy (Strategy 2) has the same minimum scheme maintenance program as Strategy 1 but adopts an improved on-farm irrigation design and salinity mitigation program.

3.3.1 Distribution System Maintenance and Renewal

Programs of replacement and patching up of the distribution system were developed for each district based on the average age of the asset and the likely time a systematic replacement programmed would be required. Details of the assumptions involved in the minimum maintenance and piped engineering options for each option are given in Attachment 5 and the results are presented in Section 3.5. A brief summary is provided below.

Under Strategy 1 major increases in expenditure on the distribution system should not be required for about 10 years.

Some additional capital will be required to trial automation, commence replacement of some water structures and Dethridge Wheels and some increase in costs associated with responding to sudden failures of channels particularly in the Waroona District. However the major expenditure on replacing channel lining is not likely to reach its peak until well after 10 years.

Waroona has the oldest channel linings and increased expenditure is likely to occur there first. Increased expenditure is likely to occur next in Harvey (in about 10 years) and then the Collie District (in about 20 years). Details are provided in Attachment 5.

A period of restructuring for irrigation farm enterprises and consequent modifications to the demand for irrigation water could take place during the 10 year transition phase to the Year 2000 and before major expenditure on the distribution system would be required.

Details of the design and the scale of the rehabilitation program could therefore be made as a clear picture of the future size, location and demand for irrigation water emerged.

It was for these reasons that the cost benefit analysis used a 10 to 15 year period for the phasing in of the various options.

Similarly the piped scheme (Strategy 3) would also be designed and constructed between years 10 and 15 after rationalisation of the service.

As the Irrigation Area served reduces, operations and maintenance costs reduce and capital upgrade and remedial work is avoided. These aspects had to be specifically taken into account in the engineering cost modelling so that realistic costs and benefits could be established for the different area options. In addition the relative proportion of water allocated to irrigation from the reservoirs also had to be determined so that the appropriate proportion of headworks costs could also be assigned to the irrigation service.

The approach taken was to define the operational, maintenance and capital upgrade costs into components that were functions of either the number of supply points, the length of channels, or the length of drains. The proportion of supply points, channels and drains in each of the area options was defined. The appropriate proportion of the existing operating costs could then be assigned to each area option. The proportion of time taken to visit supply points (from the Water Authority's MODAPS Study) was used to assess the relative water delivery costs of each option. The headworks costs were proportioned on the volume of water used for irrigation relative to the current (Area Option A) volume used over the 80 years.

(a) Capital Costs - Strategy 1

Examples of the components and cash flow costs of upgrading the channel distribution system over the next 30 years for the Harvey District Area A and Area D cases are shown in Figure 8. Area Option D shows a similar pattern to Area Option A although at a slightly reduced scale as the area to be served is reduced. The Area Option D also shows the capital spent on the extensions of the Mangosteen Drain in years 11 to 13.

FIGURE 9 Operational Costs of the Distribution System - Harvey Area Options A1 and D1

(b) **Operational Costs**

Figure 9 shows the operational costs of providing irrigation water to Area A and Area D. The reductions in cost as the area served is reduced (shown here in Area D) is contrasted with the ongoing cost of maintaining Area A.

Similar cash flows have been calculated for all combinations of Area Options and High and Low Water Demands.

(c) Capital Costs - Strategy 3

Figure 10 shows the capital upgrade costs for the fully piped distribution system for Option A and D. The large capital injections between years 9 and 15 are apparent. These figures dominate small expenditures in maintaining the outlined channels and Dethridge Wheels prior to the construction of the pipe network.

(d) **Operation Costs**

Figure 11 shows the respective operational costs. Significant operation cost saving occur following construction of the pipe network.

3.3.2 <u>Headworks</u>

As discussed in the Phase 1 Report major expenditure on the dams is essential over the next 10 years to ensure they meet acceptable standards of safety to resist floods and earthquakes. Minor changes to the timetable for this expenditure and the need for re-tensioning for the Harvey Weir every 15 years are the only changes from the Phase 1 Analysis.

Table 8 provides preliminary cost estimates for dam modification to meet the currently accepted dam safety standards in Australia.

FIGURE 10 Pipe Network Capital Upgrade (Strategy 3) Costs - Harvey Area Options A and D

FIGURE 11 Operational Costs of the Distribution System (Strategy 3) - Harvey Area Options A and D

Harvey Area D - Strategy 3 - Low Demand

Year	Dam	W	District H	С	Total
Year 2	Collie River Diversion			0.3	0.03
Year 3					
Year 4	Logue Brook Spillway		2.6		2.6
Year 5	Harvey Weir Re-Tensioning Waroona Dam (Part Spillway)	2.3	1.0		3.3
Year 6	Waroona (Part Spillway & Toe stability)	2.3			2.3
Year 7	Harvey Weir Spillway (epoxy coating)		2.0		2.0
Year 8	Stirling Spillway		0.6		0.6
Year 10	Drakes Brook Spillway	0.3			0.3
Year 20	Re-tensioning of Harvey Weir		1.0		1.0
	Salaries and Administration	0.6	0.6	0.02	1.2
TOTAL		8.2	7.8	0.3	16.3
Net Presen	t Value of Total at 6%	5.5	4.9	0.3	10.7

Table 8Preliminary Cost Estimates for Dam Modification to meet new Australian
Standards for Floods and Earthquakes
(Values in \$millions)

W - Waroona District

H - Harvey District

C - Collie District

Waroona District requires an expenditure of over \$8 million over the next ten years primarily on the Waroona and Samson Dam spillways. This is a substantial cost burden for the Waroona District. The Harvey District requires an expenditure of almost \$7 million over 10 years with the Logue Brook Dam Spillway being the most expensive. An additional \$1 million is required to retension the Harvey Weir in Year 20, and every subsequent 15 years if it is not replaced. Expenditure on the Collie District is just \$0.3 million. No dam safety work is required on the main Wellington Reservoir. These differences between districts are significant and indicate that, if a full partitioned user pays approach to pricing was introduced, different water prices between districts could result.

3.3.3 Summary of Results

Table 10 summarises the Net Present Values for the Capital and Operating Costs of Option A and D for the high and low Demand Scenario for the Harvey District. The other results are summarised in Section 3.5 and examples of the spreadsheets used are included in Attachment 5. The table contrasts the high capital intensive piped system (Strategy 3) and the minimum maintenance of the existing channels (Strategy 1). It also shows the differences in costs between the high and low water demand. The closedown case (CD) is also included.

Further comparisons of options are made in the Phase 2 Options report.

3.4 <u>The Opportunity Cost of Water</u>

Water currently used for irrigation may be able to be used for other economic purposes. In the cost benefit analysis the benefits forgone to the State by not being able to use the water for a higher economic return is a cost against maintaining the irrigation supply.

To determine the opportunity cost of water alternative uses of irrigation water need to be identified. New industrial developments close to the irrigation area are potential competitors for the irrigation water. However, there is over 20 megalitres (10^6 m^3) of water per annum from Wellington Reservoir which could be used to satisfy this demand without competing with the existing irrigation allocation.

In the medium term the only clearly definable competing demand is likely to come from the need for water to service the integrated supply system serving Perth, Mandurah and Goldfields and Agricultural Water Supply (G & AWS) schemes.

	Area Or	otions. Demand	d Scenario &	Water Char	ging Policy
Strategy 1	A1	A1	D1	D1	CD
	High	Low	High	Low	High
	Demand	Demand	Demand	Demand	Demand
	(Current)	(TWE)	(Current)	(TWE)	(Current)
Capital	12.3	9.3	10.9	9.1	0.4
Operating	19.0	17.0	15.0	14.1	9.0
Total	31.3	26.3	25.9	24.0	9.3
Strategy 3	A3 High Demand (Current)	A3 Low Demand (TWE)	D (C	D3 High emand urrent)	D3 Low Demand (TWE)
Capital	40.0	25.2		19.4	15.1
Operating	14.2	12.5		12.2	11.1
Total	54.2	37.7		31.6	26.2

Table 9Net Present Value of Providing Irrigation Water - Harvey District
Strategy 1 and Strategy 3 for Area Options A and D
(\$millions in 1989/90 dollar terms at a 6% discount rate over 80 years)

The cost of supplying this system with reallocated water from irrigation was investigated relative to alternative future source developments. When the cost of using the irrigation water becomes cheaper than any other known source, there is an opportunity cost of irrigation water.

Therefore, estimation of the opportunity cost of irrigation water requires knowledge of the future source options for the integrated Perth, Mandurah and G & AWS system.

Review of previous source planning figures indicated that the sources close to Perth would remain cheaper than redirecting irrigation water to Perth for about 15 years.

A simplified Source Development Spreadsheet (SDS) was developed to estimate the future source development costs for supplying the Perth, Mandurah and G & AWS system to the year 2072.

It was designed to readily vary the available yields from different sources to determine their impact on the overall cost of future water supplies. In this way the effect of different irrigation options could be evaluated. The available sources in any particular run are ranked from lowest to highest in terms of their cost per kilolitre. The spreadsheet selects the cheapest source available to meet the expected demand growth past the year 2005. When the demand grows beyond the maximum yield of the first source it selects the next cheapest source to contribute to the total system demand. A sequence of sources are thereby selected to meet the demand to the year 2072. The cost in (1990) Net Present Value terms is then calculated. Different future source development costs are calculated for different combinations of available sources.

The engineering cost estimates for each source are based on the capital and operating costs for constructing the new headworks and conveying the water yield to the integrated Perth, Mandurah and G & AWS system. In the case of the irrigation sources the costs of linking up the existing storages to the integrated delivery system was included. In addition an estimate of the cost of purchasing "Water Rights" was included. It was based on the difference in land prices between irrigated and non-irrigated land in the region and assigning that difference to the volume of irrigation water allocated to the irrigated land.

Table 10 gives an example of the spreadsheet for the case when no irrigation water is available to meet future water demands (i.e. Area Option A, Strategy 1 and the current mix of rated and volumetric charges). No water is available from Waroona, Samson, Drakes Brooke or Stirling Dams. The yields from the New Harvey and Wellington and Lower Collie Reservoirs are additional to current irrigation allocations.

The spreadsheets summarises the Net Present Value of flows and costs for the particular run shown and compares this cost with the case where all irrigation water is available. The cost difference, in this case \$45.2 million (Table 10), is the opportunity cost for the A1 current rates area approach.

Table 10Example of Spreadsheet for Costing Future Source Developments - Area Option
A, Strategy 1, Current Water Charging Policy

Maintain Irrigation All	AreasA1	- all Dist Maximun	ricts	Avail.	Year	NPV of	Costs	NPV of	Flows
Sources Past 2005	Source Number	Yield (GL/a)	Cost (c/kl)	Yield This Run (GL/a)	Source is used First	(\$ millions	% of Total	NPV of Flows GL	% of Total
Waroona Dam Samson	1	7.9	32.3	0.0	0	0.0	0	0.0	0
& Drakes Brook									
Dams	2	9.8	35.2	0.0	0	0.0	0	0.0	0
Logue Brook Dam	3	12.0	36.0	0.0	0	0.0	0	0.0	0
Stirling dam	4	39.0	40.3	0.0	0	0.0	0	0.0	0
NW Coastal GW									
(Excl. Quinns)	5	44.4	44.0	44.4	2005	110.7	35	251.7	39
Karnup GW	6	7.4	43.9	7.4	2012	14.2	4	32.2	5
Dandalup GW	7	10.6	44.3	10.6	2013	18.9	6	42.6	7
Jane Brook P/H	8	9.4	48.0	9.4	2015	16.5	5	34.4	5
Beernullah GW	9	7.6	49.2	7.6	2016	12.7	4	25.9	4
New Harvey Dam	10	57.0	51.0	40.0	2017	56.0	18	109.9	17
Wellesley PB	11	12.0	57.0	12.0	2024	14.2	5	25.0	4
Brunswick R - Olive H	12	40.0	57.0	40.0	2026	35.4	11	62.0	10
Red Gully GW	13	7.0	56.5	7.0	2033	4.7	1	8.3	1
Victoria Plains Wellington Dam &	14	19.0	59.4	19.0	2035	11.0	3	18.6	3
Lower Collie	15	115.0	60.0	47.0	2039	15.4	5	25.7	4
Sussanah Brook P/H	16	3.4	61.0	3.4	2053	0.6	0	10.0	0
Breton Bay stage 1	17	13.2	63.5	13.2	2054	2.0	1	3.1	0
Breton Bay Stage II	18	16.6	63.1	16.6	2057	1.7	1	2.8	0
Wedge Is. Stage I	19	15.7	71.4	15.7	2061	1.2	Ō	1.6	0
Wedge Is. Stage II	20	21.0	72.2	21.0	2065	0.7	0	1.0	0
Preston PH	21	27.0	75.0	27.0	2070	0.1	0	0.1	0
Agaton	22	30.3	80.9	30.3	2073	0.0	0	0.0	0
Ferguson	23	16.0	82.0	16.0	2073	0.0	0	0.0	0
Eneaba	24	27.9	95.7	27.9	2073	0.0	0	0.0	0
Dandaragon	25	28.1	98.7	28.1	2073	0.0	0	0.0	0
Busselton GW	26	36.0	105.0	36.0	2073	0.0	0	0.0	0
Totals		633.3				316.1		646	
				NPV of Flow Demand	NPV Flov (GI	of ws L) (NPV of Costs (\$ million)	Ċ,	/kl
Costs with all Irrigation ** Costs for this Run	Water A	Available		646 646	646 646		270.9 316.1	41 48	l.9 3.9
MAINTAIN IRRIGAT Cost for this run relativ complete closure of irri	TON AL. re to gation	L AREA	S	0	0)	45.2		7.0

The spreadsheet also shows the year in which each source is first used. Under the run shown the currently uncommitted water of the Wellington and New Lower Collie Reservoirs are not used until 2039 and not fully committed until 2053. Consequently water currently used for irrigation in the Collie District would not become a cheaper source until 2053. It's opportunity cost is therefore very small or zero in most cases. Therefore future source developments were only calculated for various combination of Waroona and Harvey District Options, given that no water was available from the Collie District.

Table 11 shows the volumes of water available from existing and potential sources in the Irrigation District regions for selected options. These figures formed the inputs to the future Source Development Spreadsheet to estimate the opportunity costs for the different options.

The results for Strategy 1 and the Current (Fixed Allocation) Water Charging Policy Options and Strategy 3 with a TWE market operating are shown in Tables 12 and 13.

Source	Strate - Cur	Irrigati gy 1 - H rent Wat	on Option igh Water er Chargi	ns · Demand ng Policy		
Area Option	Α	В	С	D	Ε	Close Down
Waroona Reservoir Sampson & Drakes	0.00	3.2	5.5	7.9	7.9	7.9
Brook Reservoirs	0.0	0.0	0.0	5.6	5.6	9.8
Logue Brook Reservoir	0.0	12.0	12.0	12.0	12.0	12.0
Stirling Reservoir Existing/New Harvey	0.0	0.0	6.4	11.8	33.4	39.0
Reservoir	40.0	40.0	40.0	40.0	40.1	57.0
Wellington & New Lower						
Collie Reservoirs	47.0	53.2	67.1	67.1	67.1	115.0
Strat	tegy 2 - L	ow Water	r Demand	with a T	VE Mark	ret
	A	В	C	D	E	Close
		~	U	2	~	Down
Waroona Reservoir	7.90	7.90	7.90	7.9	7.9	7.9
Sampson & Drakes Brook						
Reservoirs	0.9	0.9	0.9	6.3	6.3	9.8
Logue Brook Reservoir	12.0	12.0	12.0	12.0	12.0	12.0
Stirling Reservoir	27.0	27.0	27.0	27.0	27.0	27.0
Existing/New Harvey						
Reservoir	40.0	40.0	40.0	40.0	40.0	40.0
Wellington & New Lower						
Collie Reservoirs	82.3	82.3	82.3	82.3	82.3	82.3
Strateg	v 3 - Low	Water D	emand wi	th a TWE	Market	
	A	B	C	D	Н	Р
			Ũ	2	••	•
Waroona Reservoir Sampson Brook & Drakes	7.9	7.9	7.9	7.9	6.93	7.9
Brook Reservoir	5.5	5.5	5.5	6.8	0.0	9.80
Logue Brooke Reservoir	12.0	12.0	12.0	12.0	12.0	12.0
Stirling Reservoir	39.0	39.0	39.0	39.0	30.8	39.0
Existing/New Harvey Dam	40.0	40.0	40.0	40.0	40.0	45.5
Wellington & New Lower						.0.0
Collie Reservoirs	94.4	94.4	94.4	94.4	115.0	115.0

Table 11Water Volumes Available for use other than Irrigation from Existing and
Potential Sources in 15 years time (millions of cubic metres per annum)

Table 12Opportunity Cost Values for Strategy 1 High Demand Cases with Fixed
Rated Areas and with the Current Water Charging Policy
(\$millions in 1989/90 dollar terms at a 6% discount rate over 80 years)

Opportunity Costs for the combinations shown given Collie District Option A

Waroona District Option	IS	Α	В	С	D	E	Close Down
Harvey District Option	Α	45.2	41.2	38.8	30.3	30.3	26.5
Harvey District Option	В		30.3	26.6	20.5	20.5	17.1
Harvey District Option	С			24.1	17.2	17.5	14.0
Harvey District Option	D				14.6	14.6	11.4
Harvey District Option	E					5.4	2.7
Harvey District Option	Р						0.7
Harvey District Option	Close	;					0

Final Opportunity Cost Values for Irrigation Districts & Options

Options	Waroona	Harvey	Collie	Total
A	18.7	26.5	0.0	45.2
В	13.2	17.1	0.0	30.3
С	10.1	14.0	0.0	24.1
D	3.2	11.4	0.0	14.6
E	2.7	2.7	0.0	5.4
Р	0.0	0.7	0.0	0.7
Close	0.0	0.0	0.0	0.0

Table 13Opportunity Cost Values for Strategy 3 Options, Low Water Demand and
with a TWE Market Operating
(\$millions in 1989/90 dollar terms at a 6% discount rate over 80 years)

Opportunity Costs for the Combinations shown given Collie District Option A

Waroona District Options		A	В	С	D	Ε	Close Down
Harvey District Option	Α	3.7	3.7	3.7	2.9	8.2	1.0
Harvey District Option A	В		3.7	3.7	2.9	8.2	1.0
Harvey District Option A	С			3.7	2.9	8.2	1.0
Harvey District Option A	D				2.9	5.8	1.0
Harvey District Option A	Η					11.2	3.8
Harvey District Option A	Р						0.7
Harvey District Option A	Clo	se					0

Final Opportunity Cost Values for Irrigation Districts & Options

Options	Waroona	Harvey	Collie	Total
А	2.7	1.0	0.0	3.7
В	2.7	1.0	0.0	3.7
С	2.7	1.0	0.0	3.7
D	1.9	1.0	0.0	2.9
Н	7.4	3.8	0.0	11.2
Р	0.0	0.7	0.0	0.7
Close	0.0	0.0	0.0	0.0

Table 12 shows the high opportunity cost of Waroona District Water (\$18.7 million) in the Area Option A High Demand - Fixed Rated Area case. Per Cubic metre of water, the Waroona Opportunity Cost is about 2.7 higher than Harvey District. This is because of the relative closeness to Perth of the Waroona District Storages. The opportunity cost reduces as less water is committed to irrigation in the smaller Area Option cases.

Table 13 shows much lower opportunity costs than Table 12 as much smaller volumes of water are used for irrigation in the Strategy 3, Low Demand and with a TWE Market Operating.

All other options have opportunity costs values that fall between these extremes.

As the volume of water committed to irrigation decreases, the proportion of the headworks capital to be charged to irrigation also decreases. The cost for the dam safety upgrades must be funded, however. Therefore, the costs not incurred by irrigators should be included as an additional cost on future metropolitan source developments. This was included as a second component to the calculation of the opportunity cost.

Table 14 summarises these additional costs for the Strategy 1, High Water Demand case with both the Current Fixed Rated Policy and with a TWE Market Operating. Also shown is the Strategy 3, Low Water Demand case with a TWE Market Operating.

The table shows that the headworks costs to future metro consumers increase as the area served and volumes committed to irrigation decrease.

(a)	St Higl Fixe	rategy 1 Dem 2d Rat	1 and ing	Str Low Wit	ategy Dema h TW	1 and Es	Str Low Wit	ategy Dem h TW	3 and Æs
Options	W	Η	С	W	H	С	W	н	С
Α	0.0	0.0	0.0	1.77	2.43	0.1	3.2	3.0	0.3
В	0.6	0.8	0.0	1.77	2.43	0.1	3.3	3.0	0.3
С	1.4	1.2	0.0	1.77	2.43	0.1	3.3	3.0	0.3
D	3.8	1.6	0.0	3.88	2.43	0.1	3.8	3.0	0.3
Е	3.8	3.1	0.0	3.88	3.1	0.0	-	-	-
Н	1.3	2.4	0.3	-	-	-	-	-	-
Р	5.9	3.5	0.3	-	-	-	-	-	-
Closedown	5.9	5.3	0.3	-	-	-	-	-	-

Table 14 Additional Metropolitan Source Costs (\$ millions)

N.B. W - Waroona

H - Harvey

C - Collie

3.5 Areas Irrigated and Water Volumes Used

Table 15 summarises the areas irrigated and the water volumes allocated and supplied from the reservoir in Year 20, for all the options studied.

This year was taken as being a typical year following restructuring of the districts to achieve the particular option under evaluation.

Important points to note from the table are:

• the demand for irrigation land is only constrained by the size of the district in low demand Area Option D and E cases. That is, in the low demand scenarios all irrigation land can be provided in the relatively high productive (eastern portion) of the district.

• water volumes required to satisfy the area irrigated are well below the volumes allocated in the low demand cases. If fixed rating systems apply past the period of restructuring (15 years) then water would not be available for alternative uses. These effects are incorporated in the economic analysis through the opportunity cost estimates described in Section 3.4.

Under a low water demand scenario a service based on the high productive soils in the eastern region of the Irrigation Area would cover about 57% of the current area irrigated and use about 480% of the current water allocation (Area Option C Low Demand Strategy 1).

e**** v v

If the area was further reduced in size to minimise nutrient discharge to the Peel-Harvey Estuary, then the area irrigated would reduce to about 43% and use about 35% of the current water allocation (Area Option E Low Demand Strategy 1)

1751	ARI	EA	(PERM	ACTUAL IRRIGA MANENT	AREA TED PASTURI	ES)		WATER	OLUME	S ALLOC	CATED AND USED								
OPTION	SER	VED					Fixed			Volume	s Suppli	ed From F	leservoirs	3					
& WATER DEMAND SCENABIO			Strateg	y 1 & 2	Strateg	iy 3	Volume Aliocated Strategy	1 1	Strate 1	gy	Strate 2	gy	Strate 3	9y					
	ha	% of Option A	ha	% of 89/90 Year	ha	% of 89/90 Year	(GLs)	% of Current Alloc.	(GLs)	% of Current Alloc,	(GLs)	% of Current Alloc.	(GLs)	% of Current Alloc.					
Waroona District																			
A High A Low	1526 1526	100% 100%	1446 950	107% 70%	1446 547	107% 41%	16.6 16.6	100% 100%	16.6 9.8	100% 59%	14.9 8.9	90% 54%	14.2 4.4	85% 26%					
B High B Low	1331 1331	87% 87%	1331 950	99% 70%	1331 529	99% 39%	14.5 14.5	87% 87%	14.5 9.8	87% 59%	13.1 8.9	79% 54%	12.4 4.2	75% 25%					
C High C Low	1119 1119	73% 73%	1119 950	83% 70%	1119 529	83% 39%	12.2 12.2	73% 73%	12.2 11.0	73% 66%	11.0 10.0	66% 60%	10.4 4.2	63% 25%					
D High D Low	385 385	25% 26%	385 385	29% 29%	385 385	29% 29%	4.2 4.2	25% 25%	4.2 3.9	25% 23%	3.8 3.6	23% 22%	3.6 3.1	22% 19%					
E High E Low	385 385	25% 25%	385 385	29% 29%	-	-	4.2 4.2	25% 25%	4.2 3.9	25% 23%	3.8 3.6	23% 22%	-	-					
H P	1135	74%	-	-	1135	84%	10.7	64%	-	0%	-	0%	10.7	64%					
Harvey District																			
A High A Low	5820 5820	100% 100%	4716 2750	103% 60%	4653 1921	102% 42%	67.6 67.6	100% 100%	67.5 32.6	100% 48%	60.8 29.8	90% 44%	51.5 15.8	76% 23%					
B High B Low	4744 4744	82% 82%	4744 2749	104% 60%	4622 1921	101% 42%	55.5 55.5	82% 82%	55.5 32.6	82% 48%	50.0 29.8	74% 44%	42.3 15.8	63% 23%					
C High C Low	4223 4223	73% 73%	4223 2750	92% 60%	4223 1921	92% 42%	49.6 49.6	73% 73%	49.6 32.6	73% 48%	44.6 29.8	66% 44%	33.7 15.8	50% 23%					
D High D Low	3751 3751	84% 64%	3751 2750	82% 60%	3751 1921	82% 42%	44.2 44.2	65% 65%	49.6 32.6	73% 48%	44.6 29.8	66% 44%	33.7 15.8	50% 23%					
E High E Low	1889 1889	32% 32%	1889 1889	41% 41%	-	-	22.2 22.2	33% 33%	22.2 21.9	33% 82%	20.0 20.0	30% 30%	-	-					
н Р	2661 1259	45% 22%	-	0% 0%	2661 1259	58% 27%	•	-	-	÷	-	0% 0%	24.8 10.8	37% 16%					
Callia District								<u></u>											
A High	5132	100%	4169	99% 50%	4169	99% 25%	61.1	100%	61.1	100%	55.0	90%	47.2	77%					
B High	4663	91% 91%	4169	99% 50%	4169	99% 36%	55.5	91%	55.5 26.0	\$1% 47%	50.0 23.7	82%	42,9	70%					
C High	3613 3613	70% 70%	3613	86% 50%	3614 1548	86% 37%	43.1	71% 71%	43.1	71%	38.8	64% 39%	33.2 13.6	54%					
D High D Low	3613 3613	70% 70%	3613 2090	86% 50%	3614 1548	86% 37%	43.1 43.1	71% 71%	43.1	71% 43%	38.8 23.7	64% 39%	33.2 13.6	54% 22%					
E High E Low	3613 3613	70% 70%	3613 2090	86% 50%	-	-	43.1 43.1	71% 71%	43.1 26.0	71% 43%	38.8 23.7	64% 39%	-	-					
н			-																
P							-												
Total of Districts																			
A High A Low	12478 12478	100% 100%	10331 5790	102% 57%	10268 3928	101% 39%	145.3 145.3	100% 100%	145.2 68.4	100% 47%	130.7 62.4	90% 43%	112.9 33.7	78% 23%					
BHigh BLow	10738 10738	86% 85%	10244 5789	101% 57%	10122 3962	100% 39%	125.5 125.5	86% 86%	125.5 68.4	86% 47%	113.1 62.4	78% 43%	97.6 33.6	67% 23%					
C High C Low	8954 8954	72% 72%	8955 5790	88% 57%	8956 3998	88% 39%	104.8 104.8	72% 72%	104.9 69.6	72% 48%	94.4 63.5	65% 44%	77.3 33.6	53% 23%					
D High D Low	7749 7749	62% 62%	7749 5225	76% 52%	7750 3854	76% 38%	91.5 91.5	63% 63%	96.9 62.5	67% 43%	87.2 57.1	60% 39%	70.5 32.5	49% 22%					
E High E Low	5887 5887	47% 47%	5887 4364	58% 43%	0 0	0% 0%	69.4 69.4	48% 48%	69.5 51.8	48% 36%	62.6 47.3	43% 33%	0.0 0.0	0% 0%					
H	3796 1259	30% 10%	0	0% 0%	3796 1259	37% 12%	10.7 0.0	7% 0%	0.0	0% 0%	0.0	0% 0%	35.5	24%					

Table 15Areas Irrigated and Volumes of Water Supplied at Year 20

3.6 **Overall Benefit/Cost Results**

The tables in Section 3.6 summarise the results of the overall economic analyses conducted for the 45 options evaluated in Phase 2.

The tables show the results for the total South-West Irrigation Area and for each of the Waroona, Harvey and Collie Districts.

Each option in the Tables 16 to 19 is described by 4 factors.

e.g. A2L TWE

- A designates the Area to be irrigated
 - designates the On-farm Irrigation Practice and Engineering Scheme Strategy for salinity mitigation (Strategies 1, 2 or 3)
 - L designates the water demand scenario, in this case the low demand scenario (H for high, or L for low)
- TWE designates the applicable water charging policy adopted. In this case the introduction of TWEs and a volumetric charge per megalitre (Current or TWE).

Values in these tables are expressed in net present values (NPV's) and in;

- millions of dollars;
- 1989/90 dollar values terms;
- with a discount rate of 6 per cent; and,
- measured over 80 years.

3.6.1 Explanation of Terms Used in Results Summary

Agricultural Benefits

Net Agricultural Returns (NAR)

- this is the sum of the value of agricultural output from permanent irrigated land, early germinated annual pasture and dryland for the designated option less the variable costs (excluding water costs), and the additional overhead costs needed to obtain that output.

- the NAR represents the amount available to pay water costs, service farm capital costs and provide a return on capital invested.

Extra on farm stock water costs due to reduction in the irrigation service

covers the cost of providing stock water to paddocks and to dairy sheds previously serviced from irrigation channels.

- Net Agricultural Benefit net agricultural return less extra on-farm costs of providing stock water. Net Agricultural Benefit
- Relative to Close Down the net agricultural benefit of the option less the net agricultural benefit of the Close Down option.

Water Costs

- Headworks
 - **Operating Costs** the operating costs of maintaining and rehabilitating the dams and dam offtakes.
 - **Capital** Costs the capital costs of dam upgrades and maintenance. This mainly involves works to ensure the ongoing safety of the dams.
- **Distribution** Costs all costs associated with the maintenance and rehabilitation of the channels and water control structures up to and including metering devices (Dethridge Wheels) onto farms. There are also divided into capital and operating costs.
- Close Down Costs costs to the Water Authority if parts of the distribution system are closed down. These mainly include staff redundancy costs and costs associated with the removal of water control structures, bridges and the filling in of dangerous channels.

Opportunity Costs

0

- Costs to Metro Consumers this represents the additional costs to metropolitan consumers of not being able to use water from irrigation storages when it becomes the cheapest water to use for Perth, Mandurah and the Goldfields Water Supply Scheme.
 - the opportunity cost falls as the area irrigated shrinks reflecting that the irrigation water that is no longer needed is freed up and available for metropolitan consumption.

Contribution of met consumers to handworks	tro	this is an effect amount against the appendix east of
licadworks	-	water and represents the share of the headworks cost the metropolitan consumers would have to pay if water used for irrigation was to be made available for metropolitan consumption.
Net Benefit to the State	-	The net agricultural benefits less water costs and less opportunity costs.

Net Benefit Relative to Close Down

i

- The net benefit to the State of the option less the net benefit to the State of the Close Down Option.

TOTAL COST BENEFIT

ECONOMIC ANALYSIS

- 60 -

(All units Smillion unless specified) SCENARIO Water Charging Poscy	A1 H Current	A2H Current	A3H Current	A 1 L Current	A1L TWE's	A2L Current	A2L TWE's	A3L Current	A3L TWE's	81H Current	B2H Current	B3H Current	B1L Current	81L TWE's	B21. Current	B2L TWE's	B3L Current	B3L TWE's	C1 H Current	C2H Current	C3H Current	CIL Current	C1L TWE's	C2L Current	C2L TWE's	C3L Current	C3L TWE's
NET AGRICULTURAL RETURNS Extra on farm stock water costs due	103.4	106.3	107.3	97.5	97.5	100.4	100.4	99.0	99.0	103.2	106.6	108.6	97.5	97.5	100.4	100.4	99.1	99.1	101.3	104.7	106.4	97.5	97.5	100.4	100.4	99.1	99.1
to reduction in irrigation service NET AGRICULTURAL BENEFIT	103.4	106.3	107.3	97.5	97,5	100.4	100.4	99.0	99.0	0.36	0.36 106.2	0.36	0.36 97.2	0.36 97.2	0.36	0.36	0.36 98.7	0.36 98.7	0.75	0.75	0.75	0.75 96.8	0.75 96.8	0.75 99.7	0.75 99.7	0.75 98.3	0.75 98.3
NET AG. BENEFIT RELATIVE TO CLOSE DOWN	35.9	38.9	39.8	30.0	30.0	32.9	32.9	31.5	31.5	35.4	38.7	40.7	29.7	29.7	32.6	32.6	31.2	31.2	33.0	36.5	38.2	29.3	29.3	32.2	32.2	30.8	30.8
WATER COSTS Headworks Operating costs Capital costs	1.0 10.5 11.5	1.0 10.5 11.5	1.0 10.7 11.7	0.7 10.5 11.1	0.4 6.5 6.9	1.0 10.5 11.5	0.4 6.5 6.9	1.0 10.7 11.7	0.6 4.8 5.3	0.9 9.1 10.1	0.9 9.1 10.1	0.9 9.3 10.2	0.9 <u>9.1</u> 10.1	0.4 6.5 6.9	0.9 9.1 10.1	0.4 <u>6.5</u> 6.9	0.9 9.3 10.2	0.5 <u>4.7</u> 5.2	0.6 8.1 8.9	0.8 8.1 8.9	0.6 8.2 9.0	0.8 6.1 6.9	0.3 6.5 6.9	0.8 8.1 8.9	0.3 8.5 6.9	0.8 <u>8.2</u> 9.0	0.5 <u>4.7</u> 5.2
Distribution Operating costs Capital costs Total distribution costs	36.1 15.4 51.5	36.1 15.4 51.5	30.7 77.3 108.0	31.9 14.5 46.4	32.5 13.8 46.3	31.9 14.5 46.4	32.5 13.8 46.3	25.4 77.2 102.6	25.8 51.2 77.1	33.8 14.6 48.4	33.8 14.6 48.4	29.4 55.7 85.1	30.3 13.9 44.2	30.9 13.5 44.3	30.3 13.9 44.2	30.9 13.5 44.3	25.2 55.6 80.8	25.6 38.9 64.5	31.0 13.5 44.5	31.0 13.5 44.5	25.8 44.2 70.0	28.2 13.1 41.3	28.7 12.9 41.5	28.2 13.1 41.3	28.7 12.9 41.5	22.8 44.1 66.9	23.1 32.8 55.9
Close down costs										0.38	0.38	0.36	0.38	0.38	0.38	0.38	0.38	0.38	0.56	0.56	0.56	0.56	0.56	0.56	0.56	0.57	0.57
TOTAL WATER COSTS	63.0	63.0	119.7	57.6	53.2	57.9	53.2	114.3	82.4	58.8	58.B	95.7	54.6	51.6	54.6	51.6	91.4	70.1	54.0	54.0	79.6	50.8	49.0	50.8	49.0	76.5	61.7
AG. BENEFITE LEGS WATER COSTS	40.4	43.3	-12.4	39.9	44,3	42.5	47.2	-15.3	16.6	44.1	47.4	12.5	42.6	45.6	45.5	48.5	7.3	28.6	46.6	50.0	26.1	46.0	47.8	48.9	50.7	21.9	36.7
GPPORTUNITY COST (includes \$11.55m spällway cost) Contribution of metro consumers to headworks Cost to metro consumers TOTAL OPPORTUNITY COST	-11.6 45.2 33.7	-11.6 35.1 23.6	-11.6 27.2 15.7	-11.6 45.2 33.7	-7.2 13.2 6.0	-11.6 35.1 23.6	-7.2 11.3 4.1	-11.6 27.2 15.7	-5.0 3.7 -1.3	-10.1 30.3 20.2	-10.1 25.3 15.2	-10.0 20.5 10.5	-10.2 30.3 20.2	-7.2 13.2 6.0	-10.2 25.6 15.5	-7.2 11.3 4.1	-10.1 20.5 10.5	-5.0 3.7 -1.3	-8.9 24.1 15.2	-8.9 20.3 11.4	-8.8 16.4 7.6	-9.0 24.1 15.2	-7.2 13.2 6.0	-9.0 	-7.2 11.3 4.1	-8.8 16.4 7.6	-5.0 3.7 -1.3
NET BENEFIT TO THE STATE	6.8	19.8	-28.1	6.3	38.4	19.0	43.1	-31.0	17.9	23.9	32.2	2.1	22.4	39.6	30.0	44.4	-3.1	29.9	31.4	38.6	18.6	30.9	41.8	37.5	46.6	14.3	37.9
	-40.0	-26.9	-74.8	-40.4	-8.4	-27.8	-3.6	-11.7	-28.8	-22.8	-14.5	-44.7	-24.3	-7.1	-16.7	-2.3	-49.8	-16.8	-15.4	-8.1	-28.2	-15.9	-4.9	-9.2	-0.1	-32.5	-8.8
NET BENEFIT RELATIVE TO CLOSE DOWN																											
NET BENEFIT RELATIVE TO CLOSE DOWN Scenario Water Charging Policy	D1 H Current	D2H Current	D3H Current	D1L Current	D1L TWE's	D2L Qurrent	D2L TWE's	D3L Qurrent	D3L TWE's	E1 H Current	E2H Curreni	E1L Current	E1L TWE's	E2L Current	E2L TWE's	H TWE's	p Current	Diose down Current]								
NET BENEFIT RELATIVE TO CLOSE DOWN SCENARIO Water Changing Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due	D1 H Current 99.3	D2H Curreni 102.7	D3H Current 104.5	D1L Current 97.4	D1L TWE's 97.4	02L Qurrent 100.3	D2L TWE's 100.3	D3L Current 99.1	D3L TWE's 99.1	E1 H Current 96.1	E2H Current 99.1	E1L Current 95.7	E1L TWE's 95.7	E21. Current 98.5	E2L TWE's 98.5	H TWE's 102.6	P Current 85.5	Close down Current 70.2]								
NET BENEFIT RELATIVE TO CLOSE DOWN SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in friging ion service NET AGRICULTURAL BENEFIT	D1 H Qurrent 99.3 0.95 98.4	D2H Current 102.7 0.95 101.7	D3H Current 104.5 0.95 103.6	D1L Current 97.4 0.95 96.4	D1L TWE's 97.4 0.95 96.4	02L Qurrent 100.3 0.95 99.3	D2L TWE's 100.3 0.95 99.3	D3L Current 99.1 0.95 98.2	D3L TWE's 99.1 0.95 98.2	E1 H Current 96.1 1.33 94.7	E2H Current 99.1 1.33 97.6	E1L Current 95.7 1.33 94.3	E1L TWE's 95.7 1.33 94.3	E2L Current 98.5 1.33 97.2	E2L TWE's 98.5 1.33 97.2	H TWE's 102.6 2.06 100.5	P Current 85.5 2.41 83.1	Dose down Curren1 70.2 2.69 67.5]								
NET BENEFIT RELATIVE TO CLOSE DOWN SCENARIO Water Changing Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in irrigeton service NET AGRICULTURAL BENEFIT NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN	D1 H Current 993 0.95 98.4 30.9	D2H Current 102.7 0.95 101.7 34.2	D3H Current 104.5 0.95 103.6 36.1	D1L Current 97.4 0.95 96.4 28.9	D1L TWE's 97.4 0.95 96.4 28.9	D2L Qurrent 100.3 0.95 99.3 31.6	D2L TWE's 100.3 0.96 99.3 31.8	D3L Current 99.1 0.95 98.2 30.7	D3L TWF's 99.1 0.95 96.2 30.7	E1 H Current 96.1 1.33 94.7 27.2	E2H Current 99.1 1.33 97.6 30.3	E1L Quirrent 95.7 1.33 94.3 26.8	E1L TWE's 95.7 1.33 94.3 26.8	E2L Current 98.5 1.33 97.2 29.7	E2L TWE's 98.5 1.33 97.2 29.7	H TWE's 102.6 2.06 100.5 33.0	P Qurrent 85.5 2.41 83.1 15.6	2058 down Current 70.2 2.69 67.5]								
NET BENEFIT RELATIVE TO CLOSE DOWN SCENARIO Water Changing Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in irrigation service NET AGRICULTURAL BENEFIT NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Total headworks	D1 H Current 993 0.95 98.4 30.9 0.8 5.5 6.3	D2H Current 102.7 0.95 101.7 34.2 0.8 5.5 6.3	D3H Current 104.5 0.95 103.6 36.1 0.8 5.6 6.4	D1L Current 97.4 0.95 96.4 28.9 0.8 5.5 6.3	D1L TWE's 97.4 0.95 96.4 28.9 0.3 4.7 5.1	02L Qurrent 100.3 0.95 99.3 31.8 0.8 5.5 6.3	D2L TWE's 100.3 0.95 99.3 31.8 0.3 4.7 5.1	D3L Current 990.1 0.95 980.2 300.7 0.8 5.6 6.4	D3L TWFs 99.1 0.85 96.2 30.7 0.5 42 4.7	E1 H Current 96.1 1.33 94.7 27.2 0.7 4.2 4.8	E2H Current 1.33 97.8 30.3 0.7 4.2 4.8	E1L Current 95.7 1.33 94.3 26.8 0.7 4.2 4.8	E1L TWE's 95.7 1.33 94.3 26.8 0.3 4.1 4.5	E2L Current 980.5 1.33 97.2 29.7 0.7 4.2 4.8	E2L TWE's 9855 1.33 972 29.7 0.3 4.1 4.5	H TWE's 102.6 2.06 100.5 33.0 0.3 6.7 7.0	P Qurrent 85.5 2.41 83.1 15.6 0.5 1.6 2.1	Dose down Curren1 2.69 67.5 0.5 0.5]								
NET BENEFIT RELATIVE TO CLOSE DOWN SCENARIO Water Charging Policy AGRICULTURAL BENEFIT3 NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in trigeton service NET AGRICULTURAL BENEFIT NET AG, BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Total headworks Distribution Operating costs Total distribution costs	D1 H Current 993 0.95 984 30.9 0.8 5.5 6.3 29.0 13.9 42.8	D2H Curren1 102.7 0.95 101.7 34.2 0.8 5.5 6.3 29.0 13.9 42.8	D3H Current 104.5 0.95 103.6 36.1 0.8 5.6 6.4 24.2 35.9 60.1	D1L Current 97.4 0.95 96.4 28.9 0.8 5.5 6.3 27.0 13.7 40.6	D1L TWE's 97.4 0.95 96.4 28.9 0.3 4.7 5.1 27.4 13.5 40.8	D2L Qurrent 100.3 0.95 99.3 31.8 0.8 5.5 6.3 27.0 13.7 40.6	D2L TWE's 100.3 0.95 993.3 31.6 0.3 4.7 5.1 27.3 13.5 40.6	D3L Qurrent 990.1 0.95 986.2 30.7 0.8 5.6 6.4 21.8 36.1 57.9	D3L TWFs 99.1 0.65 96.2 30.7 0.5 4.2 4.7 22.1 28.6 50.7	E1 H Current 96.1 1.33 94.7 27.2 0.7 4.2 4.8 27.2 11.8 38.0	E2H Current 99.1 1.33 97.6 30.3 0.7 4.2 4.8 27.2 11.8 39.0	E1L Current 95.7 1.33 94.3 26.8 0.7 4.2 4.8 25.5 11.8 37.1	E1L TWE's 95.7 1.33 94.3 26.8 0.3 4.1 4.5 25.9 11.6 37.4	E2L Current 96.5 972 29.7 0.7 4.2 4.8 25.5 11.6 37.1	E2L TWE's 98.5 1.33 97.2 29.7 29.7 0.3 4.1 4.5 25.8 11.6 37.4	H TWE's 102.6 2.06 100.5 33.0 0.3 6.7 7.0 19.0 8.9 27.9	P Current 85.5 2.41 83.1 15.6 0.5 1.6 2.1 17.8 2.1 19.9	0.5 0.5 17.1 1.9 19.0]								
NET BENEFIT RELATIVE TO CLOSE DOWN SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in irrigation service NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Total headworks Distribution Operating costs Capital costs Total distribution costs Close down costs	D1 H Current 993 0.95 984 30.9 0.8 5.5 5.3 29.0 13.9 42.8 0.67	D2H Current 102.7 0.95 101.7 34.2 0.8 5.5 6.3 29.0 13.9 42.8 0.67	D3H Current 104.5 0.95 103.6 36.1 0.8 5.6 6.4 24.2 35.9 60.1 0.57	DiL Current 97.4 0.95 96.4 28.9 0.8 5.5 6.3 27.0 13.7 40.6 0.67	D1L TWE's 97.4 0.95 96.4 28.9 0.3 4.7 5.1 27.4 13.5 40.8 0.67	D2L Qurrent 100.3 0.95 99.3 31.8 0.8 5.5 6.3 27.0 13.7 40.6 0.67	D2L TWE's 100.3 0.95 99.3 31.8 0.3 4.7 5.1 27.3 13.5 40.8 0.57	D3L Qurrent 99.1 0.95 982 30.7 0.8 5.6 6.4 21.8 36.1 57.9 0.67	D3L TWFs 99.1 0.85 96.2 30.7 0.5 42 4.7 22.1 28.6 50.7 0.67	E1 H Current 96.1 1.33 94.7 27.2 0.7 4.2 4.8 27.2 11.8 39.0 0.79	E2H Current 99.1 1.33 97.6 30.3 0.7 4.2 4.8 27.2 11.8 39.0 0.79	E1L Current 95.7 1.33 94.3 26.8 0.7 4.2 4.8 25.5 11.6 37.1 0.79	E1L TWE's 95.7 1.33 94.3 26.8 0.3 4.1 4.5 25.9 11.6 37.4 0.79	E2L Current 983.5 1.33 972 29.7 29.7 0.7 4.2 4.8 25.5 11.6 37.1 0.79	E2L TWE's 985 1.33 972 29.7 29.7 0.3 4.1 4.5 25.6 11.6 37.4 0.79	H TWE's 2.06 100.5 33.0 0.3 6.7 7.0 19.0 8.9 27.9 1.14	P Current 855 2.41 83.1 15.6 3.1 0.5 1.6 2.1 17.8 2.1 19.9 1.29	0058 down Current 2.69 67.5 0.5 0.5 17.1 1.9 19.0 1.37]								
NET BENEFIT RELATIVE TO CLOSE DOWN SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in irrigation service NET AGRICULTURAL BENEFIT NET AGRICULTURAL BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Capital costs Costs down costs TOTAL WATER COSTS	D1 H Current 993 0.95 98.4 30.9 0.8 5.5 6.3 29.0 13.9 42.8 0.67 49.8	D2H Curren1 102.7 0.95 101.7 34.2 0.8 5.5 6.3 29.0 13.0 42.8 0.67 49.8	D3H Curren1 104.5 0.95 103.6 36.1 36.1 0.8 5.6 6.4 24.2 35.9 60.1 0.67 67.1	DIL Current 97.4 0.95 96.4 28.9 0.8 5.5 6.3 27.0 13.7 40.6 0.67 47.6	D1L TWE's 97.4 0.95 96.4 28.9 0.3 4.7 5.1 27.4 13.5 40.8 0.67 46.6	D2L Current 100.3 0.95 99.3 31.8 5.5 6.3 27.0 13.7 40.6 0.67 47.6	D2L TWE's 100.3 0.95 993 31.8 0.3 4.7 5.1 27.3 13.5 40.8 0.67 46.5	D3L Qurrent 99:1 0.95 96:2 30.7 30.7 0.8 5.6 6.4 21.8 36:1 57.9 0.67 64.9	D3L TWE's 99,1 0,95 96,2 30,7 30,7 4,2 4,7 22,1 28,6 50,7 0,67 56,0	E1 H Current 96.1 1.33 94.7 27.2 27.2 0.7 4.2 4.8 27.2 11.8 39.0 0.79 44.6	E2H Current 99.1 1.33 97.8 30.3 30.3 30.3 30.3 30.3 30.3 30.3 27.2 1.8 39.0 0.79 44.5	E1L Current 96.7 1.33 94.3 26.8 26.8 26.8 26.8 26.8 25.5 11.6 37.1 0.79 42.7	E1L TWE's 95.7 1.33 94.3 26.8 0.3 4.1 4.5 25.9 11.6 37.4 0.79 42.7	E2L Current 98.5 1.33 97.2 29.7 29.7 29.7 4.2 4.8 25.5 11.6 37.1 0.79 42.7	E2L TWE's 98.5 1.33 97.2 29.7 29.7 29.7 29.7 29.7 29.7 29.7	H TWE's 2.06 100.5 33.0 0.3 6.7 7.0 19.0 8.9 27.9 1.14 36.0	P Current 855 2.41 83.1 15.6 1.5 2.1 17.8 2.1 17.8 2.1 17.8 2.1 19.9 1.29 23.3	Does down Current 70.2 2.69 67.5 0.5 0.5 17.1 1.9 19.0 1.37]								
SCENARIO SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in Irrigation service NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in Irrigation service NET AGRICULTURAL BENEFIT NET AG, BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Total headworks Distribution Operating costs Capital costs Total headworks Distribution costs Close down costs TOTAL WATER COST6 AG, BENEFITS LESS WATER COSTS	D1 H Current 993 0.95 98.4 30.9 0.8 5.5 6.3 29.0 13.9 42.8 0.67 49.8 48.6	D2H Curren1 102.7 0.95 101.7 34.2 0.8 5.5 6.3 280.0 13.9 42.8 0.67 49.8 5.0	D3H Current 104.5 0.95 103.6 36.1 36.1 0.8 5.6 6.4 24.2 35.9 60.1 0.67 67.1 36.5	DIL Current 97.4 0.95 96.4 28.9 0.8 5.5 6.3 27.0 13.7 40.6 0.67 47.6 48.9	D1L TWE's 97.4 0.95 96.4 28.9 0.3 4.7 5.1 27.4 13.5 40.8 0.67 46.8 49.9	D2L Qurrent 16003 0.95 903 31.8 0.8 5.5 6.3 27.0 13.7 40.6 0.67 47.6 51.8	D2L TWE's 100.3 0.95 99.3 31.8 0.3 4.7 5.1 27.3 13.5 40.8 0.67 46.5 52.9	D3L Current 990.1 0.95 986.2 30.7 0.8 5.6 6.4 21.8 36.1 57.9 0.67 64.9 33.3	D3L TWE's 99.1 0.95 98.2 30.7 0.5 4.2 4.7 22.1 28.6 50.7 0.67 56.0 42.2	E1 H Current 96.1 1.33 94.7 27.2 27.2 27.2 4.8 27.2 11.8 39.0 0.79 44.5 50.1	E2H Current 99.1 1.33 97.8 30.3 0.7 4.2 4.8 27.2 11.8 39.0 0.79 44.6 53.2	E1L Current 95.7 1.33 94.3 26.8 0.7 4.2 4.8 25.5 11.6 37.1 0.79 42.7 51.6	E1L TWE's 95.7 1.33 94.3 26.8 0.3 4.1 4.5 25.9 11.6 37.4 0.79 42.7 51.6	E2L Current 90.5 1.33 97.2 29.7 29.7 0.7 4.2 4.8 25.5 11.6 37.1 0.79 42.7 54.5	E2L TWE's 98.5 1.33 97.2 29.7 29.7 29.7 0.3 4.1 4.5 11.6 37.4 0.79 42.6 54.6	H TWE's 102.6 2.06 100.5 33.0 0.3 6.7 7.0 19.0 8.9 27.9 1.14 36.0 64.5	P Current 855 2.41 83.1 156 2.1 17.8 2.1 17.8 2.1 19.9 1.29 23.3 59.8	Dose down Curren1 70.2 2.69 67.5 0.5 0.5 17.1 1.9 19.0 1.37 20.8 46.7]								
NET BENEFIT RELATIVE TO CLOSE DOWN SCENARIO Water Charging Policy AGRICULTURAL BENEFITS Extra on farm stock water costs due to reduction in irrigation service NET AGRICULTURAL RENEFIT NET AG, BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Total headworks Distribution Operating costs Costs Close down costs TOTAL WATER COSTS AG. BENEFITS LESS WATER COSTS OPPORTUNITY COST Cost to metro consumers to headworks Cost to metro consumer	D1 H Current 993 0.95 984 30.9 0.8 5.5 6.3 29.0 13.9 42.8 0.67 49.8 48.6 48.6 5.2 14.6 8.4	D2H Current 102.7 0.95 101.7 34.2 0.8 5.5 6.3 29.0 13.9 42.8 0.67 49.8 5.0 -6.2 12.3 6.1	D3H Current 104.5 0.95 103.6 36.1 0.8 5.6 6.4 24.2 35.9 60.1 0.67 67.1 36.5 -6.0 9.1 3.1	DiL Current 97.4 0.95 96.4 28.9 0.8 5.5 6.3 27.0 13.7 40.6 0.67 47.6 48.9 -6.2 14.6 8.5	D1L TWE's 97.4 0.95 96.4 28.9 0.3 4.7 5.1 27.4 13.5 40.8 0.67 46.8 49.9 -5.2 9.0 3.9	D2L Qurrent 100.3 0.95 993.3 31.8 0.8 5.5 6.3 27.0 13.7 40.6 0.67 47.6 51.8 -6.2 12.3 6.2	D2L TWE's 100.3 0.95 99.3 31.8 0.3 4.7 5.1 27.3 13.5 40.8 0.67 46.5 52.9 -5.2 7.5 2.4	D3L Qurrent 990.1 0.95 986.2 30.7 0.8 5.6 6.4 21.8 36.1 57.9 0.67 64.9 33.3 -6.0 9.1 3.1	D3L TWFs 99.1 0.95 98.2 30.7 0.5 4.2 4.7 22.1 28.6 50.7 0.67 56.0 42.2 4.4 2.9 -1.5	E1 H Current 96.1 1.33 94.7 27.2 0.7 4.2 4.8 27.2 11.8 39.0 0.79 44.6 50.1 4.7 5.4 0.8	E2H Current 99.1 1.33 97.6 30.3 0.7 4.2 4.8 27.2 11.8 39.0 0.79 44.5 53.2 -4.7 4.3 -0.4	E1L Current 95.7 1.33 94.3 26.8 26.8 0.7 4.2 4.8 25.5 11.6 37.1 0.79 42.7 51.6 -4.7 5.4 0.8	E1L TWE's 95.7 1.33 94.3 26.8 0.3 4.1 4.5 25.9 11.6 37.4 0.79 42.7 51.6 -4.5 5.1 0.6	E2L Current 983.5 1.33 972 29.7 29.7 0.7 4.2 4.8 25.5 11.6 37.1 0.79 42.7 54.5 54.5 -4.7 4.3 -0.4	E2L TWE's 98.5 1.33 97.2 29.7 29.7 29.7 29.7 29.7 29.7 29.7	H TWE's 102.6 2.06 100.5 33.0 0.3 6.7 7.0 19.0 8.9 27.9 1.14 36.0 64.5 -7.5 11.1 3.6	P Ourrent 855 2.41 83.1 15.6 2.1 17.8 2.1 17.8 2.1 19.9 1.29 23.3 59.8 -1.8 0.7 -1.1	Dose down Current 70.2 2.69 67.5 0.5 0.5 17.1 19.0 1.37 20.8 46.7]								
NET BENEFIT RELATIVE TO CLOSE DOWN SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in irrigation service NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Total headworks Distribution Operating costs Capital costs Total water ROSTS Close down costs TOTAL WATER COSTS AG. BENEFITS LESS WATER COSTS OPPORTUNITY COST (includes \$11.55m spit/way cost) Contibution of metro consumers Total Opportunity COST NET AGENEFITS LESS WATER COSTS Contibution of metro consumers TOTAL OPPORTUNITY COST NET SERFIT TO THE STATE	D1 H Current 993 0.95 984 30.9 0.8 5.5 5.3 28.0 13.9 42.6 0.67 49.8 49.8 49.8 49.6 5.2 14.6 8.4 40.2	D2H Current 102.7 0.95 101.7 34.2 0.8 5.5 6.3 29.0 13.9 42.8 0.67 49.8 5.0 -6.2 12.3 6.1 45.8	D3H Current 104.5 0.95 103.6 36.1 0.8 5.6 6.4 24.2 35.9 60.1 0.67 1 36.5 -6.0 9.1 3.1 33.4	DiL Current 97.4 0.95 96.4 28.9 0.8 5.5 6.3 27.0 13.7 40.6 0.67 40.6 0.67 47.6 48.9 -6.2 14.6 8.5 -6.3	D1L TWE's 97.4 0.95 96.4 28.9 0.3 4.7 5.1 27.4 13.5 40.8 0.67 46.8 49.9 -52 9.0 3.9 46.0	D2L Qurrent 100.3 0.95 99.3 31.8 0.8 5.5 6.3 27.0 13.7 40.6 0.67 47.6 51.8 -6.2 12.3 6.2 45.6	D2L TWE's 100.3 0.95 99.3 31.8 0.3 4.7 5.1 27.3 13.5 40.8 0.57 46.5 52.9 -52 7.5 2.4 50.5	D3L Qurrent 99.1 0.95 962 30.7 0.8 5.6 6.4 21.8 36.1 57.9 0.67 64.9 33.3 -6.0 9.1 3.1 302	D3L TWFs 99.1 0.05 98.2 30.7 0.5 4.2 4.7 22.1 28.6 50.7 0.67 56.0 42.2 -4.4 2.9 -1.5 43.7	E1 H Current 96.1 1.33 94.7 27.2 0.7 4.2 4.8 27.2 11.8 39.0 0.79 44.5 50.1 -4.7 5.4 0.8 -49.4	E2H Current 99.1 1.33 97.6 30.3 0.7 4.2 4.8 39.0 0.7 4.2 4.8 39.0 0.7 9.7 53.2 -4.7 4.3 -0.4 53.5	E1L Current 96.7 1.33 94.3 26.8 26.8 26.8 26.8 26.8 26.8 26.8 26.8	E1L TWE's 95.7 1.33 94.3 26.8 0.3 4.1 4.5 25.9 11.6 37.4 0.79 42.7 51.6 -4.5 51.0	E2L Current 983.5 1.33 972 29.7 29.7 29.7 4.2 4.8 25.5 11.6 37.1 0.79 42.7 54.5 54.5	E2L TWE's 985 1.33 972 29.7 29.7 29.7 29.7 29.7 29.7 29.7	H TWE's 102.6 2.06 100.5 33.0 0.3 6.7 7.0 19.0 8.9 27.9 1.14 36.0 64.5 -7.5 11.1 3.6 60.9	P Current 855 2.41 83.1 15.6 3.1 15.6 2.1 17.8 2.1 17.8 2.1 19.9 1.29 23.3 59.8 -1.8 0.7 -1.1 59.8	Dose down Current 2.69 67.5 0.5 0.5 17.1 1.9 19.0 1.37 20.8 46.7]								

Table 16

COLLIE COST BENEFIT

ECONOMIC ANALYSES																											
(All units \$million unless specified) SCENARI Water Charging Polic	A1 H Current	A2H Current	A3H Current	A1L Gurrent	A1L TWE's	A2L Current	A2L TWE's	A3L Current	A3L TWE's	B1N Current	B2H Current	B3H Current	B1L Current	B1L TWE's	821. Current	B2L TWE's	B3L Current	B3L TWE's	C1 H Current	C2H Current	C3H Qurrent	C1L Current	C1L TWE's	C2L Current	C2L TWE's	C3L Current	C3L TWE's
NET AGRICULTURAL RETURNS Extra on farm stock water costs due	40.1	41.5	42.1	37.2	372	38.5	38.5	38.3	38,3	40,2	41.7	42.8	37.2	37.2	38.5	38.5	38.4	38.4	39.2	40.7	41.5	37.2	37.2	38.5	38.5	38.4	38.4
IN FOULTION IN ITTIGATION SERVICE NET AGRICULTURAL BENEFIT	40.1	41.5	42.1	372	37.2	38.5	38.5	38.3	38.3	40.1	0.12 41.6	0.12 42.6	0.12 37.1	37.1	0.12 38.4	0.12 38.4	0.12 38.3	0.12 38.3	0.38	0.38 40.3	0.38	0.38 36.9	0.38 36.9	0.38 38.1	0.38 38.1	0.38 38.0	0.38
NET AG. BENEFIT RELATIVE TO CLOSE DOWN	11.5	12.9	13.5	8.7	8.7	9.9	9.9	9.8	9.8	11.5	13	14.1	8.5	8.5	9.8	9.8	9.7	9.7	10.2	11.8	12.6	8.3	8.3	9.6	9.6	9.5	9.5
WATER COSTS Headworks Operating costs	0.3 	0.3 0.4	0.3 0.6	0.3 0.4	0.1 02	0.3 0.4	0.1 0.2	0.3 0.6	0.2 0.2	0.3 0.4	0.3 0.4	0.3 0.5	0.3 0.4	0.1 0.2	0.3 0.4	0.1 0.2	0.3 0.5	0.2 0.2	0.3 0.3	0.3 0.3	0.3 0.4	0.3 0.3	0.1 0.2	0.3 0.3	0.1 0.2	0.3 0.4	0.2
Capital costs	0.7	0.7	0.9	0.7	0.4	0.7	0.4	0.9	0.4	0.7	0.7	0.9	0.7	0.4	0.7	0.4	0.9	0.4	0.6	0.6	0.7	0.6	0.4	0.6	0.4	0.7	0.4
Deming costs Capital costs Totel distribution costs	13.7 <u>4.8</u> 18.5	13.7 4.8	11.0 30.0	12.1 4.4 16.5	12.3 <u>4.4</u> 16.6	12.1 4.4	12.3 4.4	9.5 29.9 39.4	9.6 20.0 29.5	12.9 4.6	12.9 4.6	10.3 22.9 33.1	11.4 4.2	11.6 4.3	11.4 4.2 15.6	11.6 4.3	8.9 22.8 31.6	9.0 15.9 24.9	11.5 4.2	11.5 4.2	9.6 16.6 26.2	10.4	10.6	10.4	10.6 <u>4.0</u>	8.5 16.5	8.6 12.5
Close down costs	10.0	10.0	11/2	102	10.0	10.0	10.0	00.4	10.0	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18	0.18
TOTAL WATER COSTS	19.2	19.2	41.9	172	17.0	17.2	17.0	40.3	30.0	18.3	18.3	34.1	16.4	16.3	16.4	16.3	32.6	25.4	16.5	16.5	27.1	15.2	15.1	15.2	15.1	25.9	21.7
AG. BENEFITS LESS WATER COSTS	20.9	22.3	0.2	20.0	20.2	21.3	21.5	-2.0	8.3	21.9	23.3	8.6	20.8	20.9	22.1	22.2	5.8	13.0	22.3	23.9	14.1	21.7	21.8	23	23.1	12.2	16.4
OPPORTUNITY COST (Includes \$0.29m spillway cost) Contribution of metro consumers to headworks Cost to metro consumers	-0.29	-0.29	-0.29	-0.29	-0.18	-0.29	-0.18	-029	0.02	-0.29	-0.29	-0.25	-0.29	-0.18	-0.29	-0.18	-0.25	0.02	-0.29	-0.29	-0.16	-0.29	-0.18	-0.29	-0.18	-0.16	0.02
TOTAL OPPORTUNITY COST	0.3	-0.3	-0.3	-0.3	-0.2	-0.3	-0.2	-0.3	0.0	-0.3	-0.3	-0.3	-0.3	-0.2	-0.3	-0.2	-0.3	0.0	-0.3	-0.3	-0.2	-0.3	-0.2	-0.3	-0.2	-0.2	0.0
NET BENEFIT TO THE STATE	212	22.5	-19.9	20.3	20.4	21.6	21.7	-1.7	-12.1	18	23.5	8.8	21.1	21.0	22.3	1.0	-14.4	12.9	22.6	24.1	14.3	22.0	22.0	23.3	23.2	12.3	16.3
NET BENEFIT RELATIVE TO CLOSE DOWN			- (8.8		0.0			-22.1	-16.1	1.0	<u>J</u> 2	-11.0	<u>v.</u>	<u></u>		1.8	-14.4		<u> </u>	3.0	-0.1	1.0	1.0	2.9	2.0	-0.1	
SCENARIC Water Charging Policy	D1 H Current	D2H Current	D3H Current	D1L Current	D1L TWE's	D2L Current	D2L TWE's	D3L Current	D3L TWE's	E1 H Current	E2H Current	E1L Qurrent	E1L TWE's	E2L Current	E2L TWE's	H TWE's	P Curnent	Clase down Current]								
SCENARIC Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS	D1 H Current	D2H Current 40.7	D3H Current 41.6	D1L Current 38.1	DIL TWE's 38.1	D2L Current 39.4	D2L TWE's 39.4	D3L Current 38.7	D3L TWE's 38.7	E1 H Current 39.2	E2H Current 40.7	E1L Qurrent 36.1	E1L TWE's	E2L Current 39.4	E2L TWE's 39.4	H TWE's 29.9	P Current 29.9	Clase down Current 29.9]								
SCENARIC Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in integrion service NET AGRICULTURAL BENEFIT	D1 H Current 392 0.38 38.8	02H Cuntent 40.7 0.38 40.4	D3H Current 41.6 0.38 41.2	D1L Current 38.1 0.38 37.7	01L TWE's 38.1 0.38 37.7	D2L Current 39.4 0.38 39.0	D2L TWE's 39.4 0.38 39.0	03L Current 38.7 0.38 38.4	D3L TWE's 38.7 0.38 38.4	E1 H Current 39.2 0.38 38.6	E2H Current 40.7 0.38 40.4	E1L Qurrent 38.1 0.38 37.7	E1L TWE's 38.1 0.38 37.7	E2L Current 39.4 0.38 39.0	E2L TWE's 39.4 0.38 39.0	H TWE's 29.9 1.3 28.6	P Current 29.9 1.3 28.6	Close down Current 29.9 1.3 28.6]								
SCENARIC Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Edua on farm stock water costs due to reduction in infigation service NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN	D1 H Current 392 0.38 38.8 102	02H Current 40.7 0.38 40.4 11.8	D3H Current 41.6 0.38 41.2 12.6	D1L Current 38.1 0.38 37.7 9.1	01L TWE's 38.1 0.38 37.7 9.1	D2L Current 39.4 0.38 39.0 10.4	021. TWE's 39.4 0.38 39.0 10.4	03L Current 38.7 0.38 38.4 9.8	D3L TWE's 38.7 0.38 38.4 9.8	E1 H Qurrent 39.2 0.38 38.8 10.2	E2H Current 40.7 0.38 40.4 11.8	E1L Qurrent 38.1 0.38 37.7 9.1	E1L TWE's 38.1 0.38 37.7 9.1	E2L Current 39.4 0.38 39.0 10.4	E2L TWE's 39.4 0.38 39.0 10.4	H TWE's 29.9 1.3 28.6	P Current 29.9 1.3 28.6	Close down Current 29.9 1.3 28.6]								
SCENARIC Water Charging Policy ASRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in infigition service NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Openting costs Capital costs Total headworks	01 H Current 392 0.38 38.8 102 0.3 0.3 0.3	D2H Current 40.7 0.38 40.4 11.8 0.3 0.3 0.3 0.5	D3H Current 41.6 0.38 412 12.6 0.3 0.4 0.7	D1L Current 38.1 0.38 37.7 9.1 0.3 0.3 0.5	01L TWF's 38.1 0.38 37.7 9.1 0.1 0.3 0.4	D2L Current 39.4 0.38 39.0 10.4 0.3 0.3 0.3 0.6	D2L TWE's 39.4 0.38 39.0 10.4 0.1 0.3 0.4	D3L Current 38.7 0.38 38.4 9.8 0.3 0.4 0.7	D3L TWE's 38.7 0.38 38.4 9.8 0.2 0.2 0.2 0.4	E1 H Current 392 0.38 38.8 102 0.3 0.3 0.3 0.3 0.5	E2H Current 40.7 0.38 40.4 11.8 0.3 0.3 0.3 0.5	E1L Quinent 38.1 0.38 37.7 9.1 0.3 0.3 0.3 0.5	E1L TWE's 38.1 0.38 37.7 9.1 0.1 0.3 0.4	E2L Current 39.4 0.38 39.0 10.4 0.3 0.3 0.3 0.6	E2L TWE's 394 0.38 390 104	H TWE's 29.9 1.3 28.6 0.2	p Current 299 1.3 28.6 0.2 0.2	Close down Current 29.9 1.3 28.6 0.2 0.2]								
SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in infiguion service NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Total headworks Distribution Operating costs Capital costs Total distribution costs	D1 H Current 392 0.38 38.8 102 0.3 0.3 0.3 0.5 11.5 4.2 15.7	02H Current 40.7 0.38 40.4 11.8 0.3 0.3 0.6 11.5 42 15.7	D3H Current 41.6 0.38 41.2 12.6 0.3 0.4 0.7 9.6 16.6 26.2	D1L Current 38.1 0.38 37.7 9.1 0.3 0.3 0.5 10.7 4.1 14.8	01L TWE's 38.1 0.38 37.7 0.1 0.3 0.4 0.4 10.9 4.0 14.9	D2L Current 39.4 0.38 39.0 10.4 0.3 0.3 0.3 0.6 10.7 4.1 14.8	02L TWE's 394 0.38 390 104 0.1 0.3 0.4 0.1 0.3 0.4 10.9 4.0 14.9	D3L Current 38.7 0.38 38.4 9.8 0.3 0.4 0.7 8.5 16.5 25	D3L TWFs 38.7 0.38 38.4 9.8 0.2 0.2 0.2 0.4 8.5 12.5 21.1	E1 H Current 392 0.38 38.6 102 0.3 0.3 0.5 11.5 4.2 15.7	E2H Current 40.7 0.38 40.4 11.8 0.3 0.3 0.3 0.6 11.5 4.2 15.7	E1L Quirrent 38.1 0.38 37.7 9.1 0.3 0.3 0.5 10.7 4.1 14.8	E1L TWE's 38.1 0.38 37.7 0.1 0.3 0.1 0.3 0.4 10.9 4.0 14.9	E2L Current 39.4 0.38 39.0 10.4 0.3 0.3 0.6 10.7 4.1 14.8	E2L TWE's 39.4 0.38 39.0 10.4 0.1 0.3 0.4 0.4 10.9 4.0 14.9	H TWE's 29.9 1.3 28.6 0.2 0.2 0.2 6.5 1.0 7.5	P Current 29.9 1.3 28.6 0.2 0.2 0.2 0.2 6.5 1.0 7.5	Oase down Current 29.9 1.3 28.6 0.2 0.2 0.2 0.2 0.2 0.5 1.0 7.5]								
SCENARIC Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock writer costs due to reduction in infigition service NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Copilal costs Total headworks Distribution Operating costs Capital costs Total distribution costs	D1 H Current 392 0.38 38.8 102 0.3 0.3 0.6 11.5 42 15.7 0.18	D2H Current 40.7 0.38 40.4 11.8 0.3 0.3 0.3 0.5 11.5 4.2 15.7 0.18	D3H Current 41.6 0.38 412 12.6 0.3 0.4 0.7 9.6 16.6 26.2 0.18	D1L Current 38.1 0.38 37.7 9.1 0.3 0.5 0.5 10.7 4.1 14.8 0.18	01L TWE's 38.1 0.38 37.7 0.1 0.3 0.1 0.3 0.4 10.9 4.0 14.9 0.18	D2L Current 39.4 0.38 38.0 10.4 0.3 0.3 0.6 10.7 4.1 14.8 0.18	D2L TWE's 39.4 0.38 39.0 10.4 0.1 0.3 0.4 10.9 4.0 14.9 0.18	D3L Current 38.7 0.38 38.4 0.8 0.3 0.4 0.7 0.7 8.5 16.5 25 0.18	D3L TWE's 38.7 0.38 38.4 9.8 0.2 0.2 0.4 0.4 8.6 12.5 21.1 0.18	E1 H Current 38.2 0.38 38.8 10.2 0.3 0.3 0.3 0.3 0.3 0.5 11.5 4.2 15.7 0.18	E2H Current 40.7 0.38 40.4 11.8 0.3 0.3 0.3 0.3 0.5 11.5 4.2 15.7 0.18	E1L Quirrent 38.1 0.38 37.7 9.1 0.3 0.3 0.5 10.7 4.1 14.8 0.18	E1L TWE's 38.1 0.38 37.7 9.1 0.1 0.3 0.4 10.9 4.0 14.9 0.18	E2L Current 39.4 0.38 39.0 10.4 0.3 0.3 0.6 10.7 4.1 14.8 0.18	E2L TWE's 39.4 0.38 39.0 10.4 0.1 0.3 0.4 0.4 10.9 4.0 14.9 0.18	H TWE's 29.9 1.3 28.6 0.2 0.2 6.5 1.0 7.5 0.59	P Current 29.9 1.3 28.6 0.2 0.2 0.2 6.5 1.0 7.5 0.59	0 Gase down Current 29 9 1.3 28.6 0.2 0.2 0.2 6.5 1.0 7.5 0.59]								
SCENARIC Water Charging Policy ASRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction hi ringuismoscie NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Openting costs Capital costs Total headworks Distribution Openting costs Capital costs Total headworks Capital costs Capital costs	D1 H Current 392 0.38 388 102 0.3 0.3 0.6 11.5 42 15.7 0.18 16.5	D2H Carrent 40.7 0.38 40.4 11.8 0.3 0.3 0.6 11.5 4.2 15.7 0.18 18.5	D3H Current 41.6 0.38 412 12.6 0.3 0.4 0.7 9.6 16.6 26.2 0.18 27.1	D1L Current 38.1 0.38 37.7 9.1 0.3 0.3 0.5 10.7 4.1 14.8 0.18 15.6	DIL TWFs 38.1 0.38 37.7 9.1 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5	D2L Current 39.4 0.38 38.0 10.4 0.3 0.3 0.3 0.6 10.7 4.1 14.8 0.18 15.6	D2L TWF's 39.4 0.38 39.0 10.4 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5	D3L Current 38.7 0.38 38.4 9.8 0.3 0.4 0.7 8.5 16.5 25 0.18 25.9	D3L TWE's 38.7 0.38 38.4 9.8 0.2 0.2 0.4 8.5 12.5 21.1 0.18 21.7	E1 H Qurrent 392 0.38 38.8 10.2 0.3 0.3 0.3 0.5 11.5 4.2 15.7 0.18 16.5	E2H Current 40.7 0.38 40.4 11.8 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.5 11.5 15.7 0.18 16.5	E1L Quirrent 38.1 0.36 37.7 9.1 9.1 0.3 0.3 0.6 10.7 4.1 14.8 0.18 15.6	E1L TWE's 38.1 0.38 37.7 9.1 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5	E2L Current 39.4 0.38 39.0 10.4 0.3 0.3 0.3 0.6 10.7 4.1 14.8 0.18 15.6	E21 TWE's 394 0.38 39.0 10.4 10.4 10.9 4.0 14.9 0.18 15.5	H 7WE's 299 1.3 28.6 0.2 0.2 0.2 6.5 1.0 7.5 0.59 8.2	P Current 2999 1.3 28.6 0.2 0.2 0.2 0.2 6.5 1.0 7.5 0.59 6.2	Occess down Current 29.9 1.3 28.6 0.2 0.2 0.2 0.2 0.2 0.5 1.0 7.5 0.59 0.2]								
SCENARIO Water Charging Policy AGRICULTURAL REFEITS NET AGRICULTURAL RETURNS Extre on farm stock water costs due to reduction in infiguion service NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN NET AG. BENEFIT RELATIVE TO CLOSE DOWN MATER COSTS Capital costs Copital costs Copital costs Copital costs Capital costs	D1 H Current 392 0.38 38.8 102 0.3 0.3 0.5 11.5 42 15.7 0.18 16.5 22.3	D2H Carrent 40.7 0.38 40.4 11.8 0.3 0.3 0.3 0.5 11.5 4.2 15.7 0.18 18.5 23.9	D3H Current 41.6 0.38 412 12.6 0.3 0.4 0.7 9.6 16.6 26.2 0.18 27.1 14.1	D1L Current 38.1 0.38 37.7 9.1 0.3 0.5 0.6 10.7 4.1 14.8 0.18 15.6 22.1	01L TWF's 38.1 0.38 37.7 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5 22.2	D2L Current 39.4 0.38 38.0 10.4 0.3 0.3 0.6 10.7 4.1 14.8 0.18 15.6 23.4	D2L TWE's 384 0.38 39.0 104 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5 23.5	D3L Current 38.7 0.38 38.4 0.8 0.3 0.4 0.7 8.5 16.5 25 0.18 25.9 12.5	D3L TWE's 38.7 0.38 38.4 9.8 02 02 02 0.4 8.6 12.5 21.1 0.18 21.7 16.7	E1 H Current 392 0.38 38.8 102 0.3 0.3 0.5 11.5 4.2 15.7 0.18 16.5 22.3	E2H Current 40.7 0.38 40/4 11.8 0.3 0.3 0.3 0.6 11.5 4.2 15.7 0.18 16.5 23.9	E1L Current 38.1 0.38 37.7 9.1 0.3 0.3 0.5 10.7 4.1 14.8 0.18 15.6 22.1	E1L TWE's 38.1 0.38 37.7 9.1 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5 22.2	E2L Current 39.4 0.38 39.0 10.4 0.3 0.6 10.7 4.1 14.8 0.18 15.6 23.4	E2L TWE's 30.4 0.38 39.0 10.4 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5 23.5	H TWE's 29.9 1.3 28.6 0.2 0.2 0.2 6.5 1.0 7.5 0.59 8.2 20.4	P Current 29.9 1.3 28.6 0.2 0.2 0.2 6.5 1.0 7.5 0.59 8.2 20.4	Occess down Current 29.9 1.3 28.6 0.2 0.59 8.2 20.4]								
SCENARIC Water Charging Policy ASRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock writer costs due to reduction in irrigation service NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Openting costs Cipital costs Total development Cognial costs Copital costs Total distribution Openting costs Cipital costs Total distribution costs Coste down costs Total distribution costs Coste down costs Total WATER COSTS AG. EXEFITS LEBS WATER COSTS OPPORTUNITY COST (includes \$0.28m spillway cost) Contribution of metro consumers to headworks Cast to metro consumers TotAL OPPORTUNITY COST	D1 H Current 392 0.38 388 102 0.3 0.3 0.3 0.6 11.5 4.2 15.7 0.18 16.5 22.3 -0.29 -0.3	D2H CAVTENTI 40.7 0.38 40.4 11.8 0.3 0.3 0.3 0.5 11.5 4.2 15.7 0.18 16.5 23.9 -0.29 -0.3	D3H Current 41.6 0.38 412 12.6 0.3 0.4 0.7 9.6 16.6 26.2 0.18 27.1 14.1 -0.16 -0.2	D1L Current 38.1 0.38 37.7 9.1 0.3 0.3 0.5 0.5 10.7 4.1 14.8 0.18 15.6 22.1 -0.29 -0.3	01L TWFs 38.1 0.38 37.7 9.1 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5 222 -02 -02	D2L Current 39.4 0.38 38.0 10.4 0.3 0.3 0.6 10.7 4.1 14.8 0.18 15.6 23.4 -029 -0.3	D2L TWF's 39.4 0.38 39.0 10.4 0.1 0.3 0.4 0.1 10.9 4.0 14.9 0.18 15.5 23.5 -0.2 -0.2	D3L Current 38.7 0.38 38.4 0.3 0.3 0.4 0.7 0.7 8.5 16.5 25 0.18 25.9 12.5 -0.16 -0.2	D3L TWE's 38.7 0.38 38.4 9.8 0.2 0.2 0.4 8.5 12.5 21.1 0.18 21.7 16.7 0.02 0.0	E1 H Qurrent 392 0.38 38.8 10.2 0.3 0.3 0.3 0.3 0.6 11.5 4.2 15.7 0.18 16.5 22.3 -0.29 -0.3	E2H Current 40.7 0.38 40.4 11.8 0.3 0.3 0.3 0.8 11.5 4.2 15.7 0.18 16.5 23.9 -0.29 -0.3	E1L Quirrent 38.1 0.38 37.7 9.1 9.1 0.3 0.3 0.5 10.7 4.1 14.8 0.18 15.6 22.1 -0.29 -0.3	E1L TWE's 38.1 0.38 37.7 9.1 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5 22.2 -0.2	E2L Current 39.4 0.38 39.0 10.4 0.3 0.3 0.6 10.7 4.1 14.8 0.18 15.6 23.4 -0.29 -0.3	E21 TWE's 394 0.38 39.0 10.4 10.4 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5 23.5 -0.2 -0.2	H TWE's 29.9 1.3 28.6 0.2 0.2 0.2 6.5 1.0 7.5 0.59 8.2 20.4	P Current 2999 1.3 28.6 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.59 6.2 20.4	Occess down Current 29.9 1.3 28.6 0.2 0.2 0.2 0.2 0.2 0.5 1.0 7.5 0.59 8.2 20.4									
SCENARIO Water Charging Policy ASRICULTURAL REFEITS NET AGRICULTURAL RETURNS Extre on farm stock water costs due to reduction in infiguion service NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Total headworks Destibution Operating costs Capital costs Total distribution costs Capital costs Total distribution costs Capital costs Total distribution costs Capital costs Capital costs Capital costs Total distribution costs Capital costs Costs own costs Costs own costs Capital cos	D1 H Current 392 0.38 38.8 102 0.3 0.3 0.6 11.5 42 15.7 0.18 16.5 22.3 -0.29 0.3 22.6	D2H Carrent 40.7 0.38 40.4 11.8 0.3 0.3 0.3 0.5 11.5 4.2 15.7 0.18 18.5 23.9 -0.29 -0.3 24.2	D3H Current 41.6 0.38 412 12.6 0.3 0.4 0.7 9.6 16.6 26.2 0.18 27.1 14.1 -0.16 -0.2 14.3	D1L Current 38.1 0.38 37.7 9.1 0.3 0.5 10.7 4.1 14.8 0.18 15.6 22.1 -029 -0.3 22.4	01L TWF's 38.1 0.38 37.7 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5 22.2 -0.2 -0.2 -0.2 22.4	D2L Current 39.4 0.38 38.0 10.4 0.3 0.6 10.7 4.1 14.8 0.18 15.6 23.4 -029 -0.3 23.7	D2L TWE's 384 0.38 39.0 104 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5 23.5 -0.2 -0.2 -0.2 23.7	D3L Current 38.7 0.38 38.4 0.8 0.3 0.4 0.7 8.5 16.5 25 0.18 25.9 12.5 -0.16 -0.2 12.6	D3L TWF's 38.7 0.38 38.4 9.8 02 02 02 0.4 8.6 12.5 21.1 0.18 21.7 16.7 0.02 0.0 16.7	E1 H Current 392 0.38 38.8 102 0.3 0.3 0.5 11.5 4.2 15.7 0.18 16.5 22.3 -0.29 -0.3 22.6	E2H Current 40.7 0.38 40/4 11.8 0.3 0.3 0.6 11.5 4.2 15.7 0.18 16.5 23.9 -0.29 -0.3 24.2	E1L Quirrent 38.1 0.38 37.7 9.1 0.3 0.3 0.5 10.7 4.1 14.8 0.18 15.6 22.1 -0.29 -0.3 22.4	E1L TWE's 38.1 0.38 37.7 9.1 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5 22.2 -0.2 -0.2 -0.2 -0.2	E2L Current 39.4 0.38 39.0 10.4 0.3 0.6 10.7 4.1 14.8 0.18 15.6 23.4 -0.29 -0.3 23.7	E2L TWE's 30.4 0.38 39.0 10.4 0.1 0.3 0.4 10.9 4.0 14.9 0.18 15.5 23.5 -0.2 -0.2 -0.2 23.7	H TWE's 299 1.3 28.6 0.2 0.2 0.2 6.5 1.0 7.5 0.59 8.2 20.4	P Current 2009 1.3 28.6 0.2 0.2 0.2 0.2 6.5 1.0 7.5 0.59 8.2 20.4	Occess down Current 299 1.3 28.6 0.2 0.59 8.2 20.4									

6

Table 17

WAROONA COST BENEFIT

ECONOMIC ANALYSIS

- 62 -

(All units \$million unless specified) 60ENARIO Water Charging Policy	A1 H Current	A2H Current	A3H Current	A1L Current	A1L TWE's	A2L Current	A2L TWE's	A3L Current	A3L TWE's	B1H Current	B2H Current	83H Current	B1L Current	B1L TWE's	B2L Current	82L TWE's	B3L Qurrent	B3L TWE's	C1 H Current	C2H Current	C3H Current	C1L Current	C1L TWE's	C2L Current	C2L TWE's	C3L Current	C3L TWE's
NET AGRICULTURAL RETURNS Extra on farm stock water costs due	18.0	18.2	18.2	17.6	17.6	17.9	17.9	17.4	17.4	17.9	18.2	18.4	17.6	17.6	17,9	17.9	17.4	17.4	17.7	17.9	18.2	17.6	17.6	17.9	17.9	17.4	17.4
NET AGRICULTURAL BENEFIT	18.0	18.2	18.2	17.6	17.6	17.9	17.9	17.4	17.4	17.9	18.1	18.3	17.6	17.6	17.8	17.8	17.4	17.4	17.6	17.9	18.1	17.5	17.5	17.8	17.8	17.3	17.3
NET AG. BENEFIT RELATIVE TO CLOSE DOWN	9.0	92	9.2	8.6	8.6	8.8	8.8	8.4	8.4	8.8	9.1	9.3	8.6	8.6	6.8	8.6	8.3	8.3	8.6	8.9	9.1	8.5	8.5	6.6	8.8	8.3	8.3
WATER COSTS Headworks Openaling costs Capital costs	0.3 <u>5.2</u> 5.6	0.3 5.2 5.6	0.3 5.2 5.6	0.3 5.2 5.6	0.1 3.7 3.8	0.3 5.2 5.6	0.1 3.7 3.8	0.3 5.2 5.6	0.2 2.4 2.6	0.3 4.7 5.0	0.3 <u>4.7</u> 5.0	0.3 4.7 5.0	0.3 4.7 5.0	0.1 <u>3.7</u> 3.7	0.3 <u>4.7</u> 5.0	0.1 <u>3.7</u> 3.7	0.3 4.7 5.0	0.2 2.4 2.5	0.3 <u>4.0</u> 4.3	0.3 4.0 4.3	0.3 4.0 4.3	0.3 <u>4.0</u> 4.3	0.1 <u>3.7</u> 3.7	0.3 <u>4.0</u> 4.3	0.1 3.7 3.7	0.3 <u>4.0</u> 4.3	0.2 2.4 2.5
Distribution Operating costs Gapital costs Total distribution costs	3.8 <u>3.2</u> 6.9	3.8 3.2 6.9	5.9 12.2 18	3.2 3.1 6.2	3.4 2.8 6.2	3.2 3.1 6.2	3.4 2.8 6.2	3.8 12.2 15.9	3.0 6.2 12.1	3.6 3.0 6.5	3.6 3.0 6.5	4.4 9.6 13.9	3.1 3.0 6.0	3.3 2.8 6.1	3.1 3.0 6.0	3.3 2.8 6.1	3.2 9.6 12.7	3.3 6.7 10.0	3.4 2.8 6.2	3.4 2.8 6.2	3.5 8.2 11.7	3.0 2.8 5.8	3.2 2.8 6.0	3.0 2.8 5.8	3.2 2.8 6.0	2.9 6.2 11.1	3.0 6.1 9.1
Close down costs										0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
TOTAL WATER COSTS	12,5	12.5	23.6	11.8	9.9	11.8	9.9	21.5	14,7	11.5	11.5	18.9	11.0	9.B	11.0	9.8	17.7	12.5	10.5	10.5	16,0	10.1	9.7	10.1	9.7	15.4	11.6
AG. BENEFITS LESS WATER COSTS	5.5	5.7	-5.4	5.8	7.7	6.1	8.0	-4.1	2.7	6.3	6.6	-0.6	6.5	7.7	6.8	8.0	-0,4	4.8	7.1	7.3	2.1	7.4	7.8	7.7	8.1	1.9	5.7
DPPORTUNITY COST (includes \$5.93m spillway cost) Contribution of metro consumers to headworks Cost to metro consumers TOTAL OPPORTUNITY COST	-5.9 18.7 12.8	-5.9 15.0 9.1	-5.9 12.4 6.5	-5.9 18.7 12.8	-42 6.8 2.6	-5.9 15.0 9.1	-4.2 6.1 1.9	-5.9 12.4 6.5	-2.7 2.7	-5.3 13.2 7.9	-5.3 10.9 5.6	-5.3 9.9 4.6	-5.3 13.2 7.9	-4.2 6.8 2.6	-5.3 11.2 5.9	-4.2 6.1 1.9	-5.3 9.9 4.6	-2.7 2.7 0.1	-4.5 10.1 5.6	-4.5 8.6 4.1	-4.6 7.7 3.1	-4.5 10.1 5.6	-4.2 6.8 2.6	-4.5 8.6 4.1	-4.2 6.1 1.9	-4.6 7.7 3.1	-2.7 2.7 0.1
NET BENEFIT TO THE STATE	-7.3	-3.4	-11.9	-7.0	5.1	-3.0	6,0	-10.6	2.7	-1.5	1.0	-5.2	-1.3	5.1	0.9	6.1	-5.0	4.8	1.5	3.3	-1.1	1.8	5.2	3.6	6.1	-1.3	5.6
	-13.7	-9,8	-18.3	-13.4	-1.4	-9,5	-0.4	-17	-3.7	-8.0	-5.4	-11.6	-7.8	-1.3	-5.5	-0.4	-11.4	•1.7	-5.0	-32	-7.5	-4.6	-1.3	-2.9	-0.3	-7.7	-0.8
HET BENEFIT REDATIVE TO GLOBE DOWN																											
SCENARIO Water Charging Policy	D1 H Current	D2H Current	D3H Current	D1L Current	D1L TWE's	D2L Current	02L TWE's	D3L Current	D3L TWE's	E1 H Current	E2H Current	E1L Current	E1L TWE's	E21. Current	E2L TWE's	H TWE's	P Current	Close down Custent]								
SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due	D1 H Current	D2H Current 16.6	D3H Current 16.9	D1L Current 16.6	DIL TWE's 16.6	D2L Current 16.9	02L TWE's 16.9	D3L Current	D3L TWE's	E1 H Current 16.4	E2H Current 16.6	E1L Current 16.6	E1L TWE's 16.6	E21. Current 16.9	E2L TWE's 16.9	H TWE's 24.3	P Current 92	Close down Current 9.2]								
SCENARIO Water Changing Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on harm stock water costs due to reduction in imigation sarvice NET AGRICULTURAL BENEFIT	D1 H Current 16.4 0.16 16.2	D2H Current 16.6 0.16 16.5	D3H Сигтепt 16.9 0.16 16.8	D1L Current 16.6 0.16 16.5	D1L TWE's 16.6 0.16 18.5	D2L Current 16.9 0.16 16.7	02L TWE's 16.9 0.16 16.7	D3L Current 17.1 0.16 17.0	D3L TWE's 17.1 0.16 17.0	E1 H Current 16.4 0.16 16.2	E2H Current 16.6 0.16 16.5	E1L Current 16.6 0.16 16.5	E1L TWE's 16.6 0.16 16.5	E21. Dument 16.9 0.16 16.8	E2L TWE's 16.9 0.16 16.8	H TWE's 24.3 0.16 24.1	P Current 92 0.21 9.0	Olose down Cusrrent 9.2 0.21 9.0]								
SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in irrigation savice NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN	D1 H Current 16.4 0.16 16.2 7.2	D2H Current 16.6 0.16 16.5 7.5	D3H Current 16.9 0.16 16.8 7.8	D1L Current 16.6 0.16 16.5 7.4	D1L TWE's 16.6 0.16 16.5 7.4	D2L Current 16.9 0.16 16.7 7.7	02L TWE's 16.9 0.16 16.7 7.7	D3L Current 17.1 0.16 17.0 8.0	D3L TWE's 17.1 0.16 17.0 8.0	E1 H Current 16.4 0.16 16.2 7.2	E2H Current 16.6 0.16 16.5 7.5	E1L Current 16.6 0.16 16.5 7.5	E1L TWE's 16.6 0.16 16.5 7.5	E21. Current 16.9 0.16 16.8 7.7	E2L TWE's 16.9 0.16 16.8 7.7	H TWE's 24.3 0.16 24.1 15.1	P Current 92 0.21 9.0	000se down Carrent 9.2 0.21 9.0]								
SCENARIO Water Charging Policy ASRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on harm slock water costs due to reduction in irrigation savice NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Capital costs	D1 H Current 16.4 0.16 162 7.2 02 1.8 2.0	02H Current 16.6 16.5 7.5 0.2 1.8 2.0	03H Current 16.9 0.16 16.8 7.8 0.2 1.8 2.0	D1L Qurrent 16.8 0.16 16.5 7.4 0.2 1.8 2.0	D1L TWE's 16.6 0.16 16.5 7.4 0.1 1.8 1.9	D2L Current 16.9 0.16 16.7 7.7 0.2 1.8 2.0	02L TWE's 16.9 0.16 16.7 7.7 0.1 1.8 1.9	D3L Current 17.1 0.16 17.0 8.0 0.2 1.8 2.0	D3L TWE's 17.1 0.16 17.0 8.0 0.1 1.9 2.0	E1 H Current 16.4 0.16 16.2 7.2 0.2 1.8 2.0	E2H Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0	E1L Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0	E1L TWE's 16.6 0.18 16.5 7.5 0.1 1.8 1.9	E2L Current 16.9 0.18 16.8 7.7 0.2 1.8 2.0	E2L TWE's 0.16 16.8 7.7 0.1 1.8 1.9	H TWE's 24.3 0.16 24.1 15.1 0.1 4.1 4.2	P Current 92 0.21 90 0.2 0.2	0ces down Current 9.2 0.21 9.0 0.2 0.2 0.2]								
SCENARIO Water Charging Policy AGRICULTURAL, BENEFITS NET AGRICULTURAL RETURNS Extra on farm slock writer costs due to reduction in imigation service NET AGRICULTURAL BENEFIT NET AG, BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Total headworks Distribution Operating costs Capital costs Total distribution costs	D1 H Current 16.4 0.15 152 72 02 1.6 2.0 2.7 2.2 4.9	02H Current 16.6 0.16 15.5 7.5 0.2 1.8 2.0 2.7 2.7 2.2 4.9	D3H Current 16.9 0.16 16.8 7.8 0.2 1.8 2.0 2.6 3.3 5.9	D1L Current 16.8 0.16 18.5 7.4 0.2 1.8 2.0 2.4 2.2 4.6	D1L TWE's 16.6 0.16 16.5 7.4 0.1 1.8 1.9 2.5 22 4.7	D2L Current 16.9 0.16 16.7 7.7 7.7 0.2 1.8 2.0 2.4 2.2 4.6	02L TWE's 16.9 0.16 16.7 7.7 0.1 1.8 1.9 2.4 2.2 4.6	D3L Current 17.1 0.16 17.0 8.0 0.2 1.8 2.0 2.4 3.2 5.6	D3L TWE's 17.1 0.16 17.0 8.0 0.1 1.9 2.0 2.5 3.2 5.6	E1 H Current 16.4 0.16 162 7.2 0.2 1.8 2.0 2.7 2.2 4.9	E2H Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.7 2.7 2.2 4.9	E1L Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.4 2.2 4.8	E1L TWE's 16.6 0.16 16.5 7.5 7.5 0.1 1.8 1.9 2.5 2.2 4.7	E2L Current 16.9 0.18 16.8 7.7 0.2 1.8 2.0 2.4 2.2 4.6	E2L TWE's 16.9 0.16 16.8 7.7 0.1 1.8 1.9 2.4 2.2 4.6	H TWE's 24.3 0.16 24.1 15.1 0.1 4.1 4.2 2.5 3.7 6.2	P Current 92 0.21 9.0 0.2 0.2 0.2 0.2 1.8 0.5 2.3	020es down Current 9.2 0.21 9.0 0.2 0.2 0.2 0.2 1.8 0.5 2.3]								
SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on himigation savice Io reduction in imigation savice NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Total headworks Distribution Operating costs Capital costs Total distribution costs Ciose down costs	01 H Current 16.4 0.16 162 7.2 0.2 1.8 2.0 2.7 2.2 4.9 0.12	02H Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.7 2.2 4.9 0.12	D3H Current 18.9 0.16 18.8 7.8 0.2 1.8 2.0 2.6 3.3 5.9 0.12	D1L Qurrent 16.6 0.16 16.5 7.4 0.2 1.8 2.0 2.4 2.2 4.6 0.12	D1L TWE's 16.6 0.16 18.5 7.4 0.1 1.8 1.9 2.5 2.2 4.7 0.12	D2L Current 16.9 0.16 16.7 7.7 0.2 1.8 2.0 2.4 2.2 4.6 0.12	D2L TWE's 16.9 0.16 16.7 7.7 0.1 1.8 1.9 2.4 2.2 4.6 0.12	D3L Current 17.1 0.16 17.0 8.0 0.2 1.8 2.0 2.4 3.2 5.6 0.12	D3L TWE's 17.1 0.16 17.0 8.0 0.1 1.9 2.0 2.5 3.2 5.6 0.12	E1 H Current 16.4 0.16 162 7.2 0.2 1.8 2.0 2.7 2.2 4.9 0.12	E2H Current 16.6 0.16 16.5 7.5 7.5 0.2 1.8 2.0 2.7 2.2 4.9 0.12	E1L Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.4 2.2 4.6 0.12	E1L TWE's 16.6 0.16 16.5 7.5 0.1 1.8 1.9 2.5 2.2 4.7 0.12	E2L Current 16.9 0.18 18.8 7.7 7.7 0.2 1.8 2.0 2.4 2.2 4.6 0.12	E2L TWE's 0.16 16.9 0.16 16.8 7.7 7.7 0.1 1.8 1.9 2.4 2.2 4.6 0.12	H TWE's 24.3 0.16 24.1 15.1 15.1 0.1 4.1 4.2 2.5 3.7 6.2 0.12	P Current 92 0.21 90 0.2 0.2 0.2 1.8 0.5 2.3 0.17	020es down Current 9.2 0.21 9.0 0.2 0.2 0.2 1.8 0.5 2.3 0.17									
SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on him stock water costs due to reduction in limitgation savice NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Capital costs Total headworks Distribution Operating costs Capital costs Costs down costs Total water COSTS	01 H Current 16.4 0.16 162 72 02 1.8 2.0 2.7 2.2 4.9 0.12 7.0	02H Current 16.6 0.16 16.5 7.5 7.5 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0	D3H Current 16.9 0.16 16.8 7.8 7.8 0.2 1.8 2.0 2.6 3.3 5.9 0.12 8.0	D1L Quirrent 16.8 0.16 16.5 7.4 0.2 1.8 2.0 2.4 2.2 4.6 0.12 6.7	D1L TWE's 16.6 0.16 18.5 7.4 0.1 1.8 1.9 2.5 2.2 4.7 0.12 6.7	02L Current 16.9 0.16 16.7 7.7 7.7 0.2 1.8 2.0 2.4 2.2 4.6 0.12 6.7	D2L TWE's 16.9 0.16 16.7 7.7 7.7 0.1 1.8 1.9 2.4 2.2 4.6 0.12 6.6	D3L Current 17.1 0.16 17.0 8.0 0.2 1.8 2.0 2.4 3.2 5.6 0.12 7.7	D3L TWE's 17.1 0.16 17.0 8.0 0.1 1.9 2.0 2.5 3.2 5.6 0.12 7.7	E1 H Current 16.4 0.16 16.2 7.2 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0	E2H Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0	E1L Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.4 2.2 4.8 0.12 6.7	E1L TWE's 16.6 0.16 16.5 7.5 0.1 1.8 1.9 2.5 2.2 4.7 0.12 6.7	E2L Current 16.9 0.18 18.8 7.7 7.7 0.2 1.8 2.0 2.4 2.2 4.8 0.12 6.7	E21 TWE's 16.9 0.16 16.8 7.7 0.1 1.8 1.9 2.4 2.2 4.6 0.12 6.6	H TWE's 24.3 0.16 24.1 15.1 15.1 15.1 15.1 4.2 2.5 3.7 6.2 0.12 10.5	P Current 92 0.21 90 0.2 0.2 0.2 0.2 1.8 0.5 2.3 0.17 2.6	Occes down Current 9.2 0.21 0.2 0.3 0.17 2.6									
SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on him stock water costs due to reduction in limitation savice NET AGRICULTURAL BENEFIT NET AG, BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Operating costs Capital costs Total headworks Distribution Operating costs Costs Total distribution costs Close down costs Total WATER COSTS AG. BENEFITS LEBS WATER COSTS	01 H Current 164 0.15 162 72 02 1.8 2.0 2.7 2.2 4.9 0.12 7.0 92	D2H Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0 9.5	D3H Current 16.9 0.16 16.8 7.8 0.2 1.8 2.0 2.6 3.3 5.9 0.12 8.0 8.8	DiL Quirrent 16.6 0.16 16.5 7.4 0.2 1.8 2.0 2.4 2.2 4.8 0.12 6.7 9.7	D1L TWE's 16.6 0.16 18.5 7.4 0.1 1.8 1.9 2.5 2.2 4.7 0.12 6.7 9.7	02L Qurrent 16.9 0.16 16.7 7.7 0.2 1.8 2.0 2.4 2.2 4.5 0.12 6.7 10	02L TWE's 16.9 0.16 16.7 7.7 0.1 1.8 1.9 2.4 2.2 4.5 0.12 6.6 10.1	D3L Current 17.1 0.16 17.0 8.0 0.2 1.8 2.0 2.4 3.2 5.6 0.12 7.7 9.3	D3L TWE's 17.1 0.16 17.0 8.0 0.1 1.9 2.0 2.5 3.2 5.6 0.12 7.7 9.3	E1 H Current 16.4 0.16 16.2 7.2 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0 9.2	E2H Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0 9.5	E1L Quirrent 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.4 2.2 4.8 0.12 6.7 9.8	E1L TWE's 16.6 0.16 16.5 7.5 0.1 1.8 1.9 2.5 2.2 4.7 0.12 6.7 9.8	E21 Quirrent 16.9 0.16 16.8 7.7 0.2 1.8 2.0 2.4 2.2 4.5 0.12 6.7 10	E2L TWE's 16.9 0.16 168 7.7 0.1 1.8 1.9 2.4 2.2 4.6 0.12 6.6 10.1	H TWE's 24.3 0.16 24.1 15.1 15.1 15.1 2.5 3.7 6.2 0.12 0.12 10.5 13.6	P Current 92 0.21 90 02 02 02 0.2 1.8 05 2.3 0.17 2.6 6.4	Occes down Current 9.2 0.21 9.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4									
SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on harm stock water costs due to reduction in infigitant savice NET AGRICULTURAL BENEFIT NET AG. BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Headworks Openhing costs Capital costs Total headworks Distribution Opensing costs Total headworks Distribution costs Total distribution costs Costs down costs TOTAL WATER COSTS AG. BENEFITS LEBS WATER COSTS OPPORTUNITY COST (Includes \$5.83m spillwrey cost) Costs metro consumers to headworks Cost to metro consumers to headworks Cost to metro consumers to headworks	01 H Current 164 0.15 162 72 02 1.8 2.0 0.2 7.0 92 -2.1 32 1.1	D2H Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0 9.5 -2.1 2.7 0.6	D3H Current 16.9 0.16 16.8 7.8 0.2 1.8 2.0 2.6 3.3 5.9 0.12 8.0 8.8 -2.1 2.1 0.0	01L Quirrent 16.6 0.16 16.5 7.4 0.2 1.8 2.0 2.4 2.2 4.8 0.12 6.7 9.7 -2.1 3.2 1.1	D1L TWE's 16.6 0.16 18.5 7.4 0.1 1.8 1.9 2.5 2.2 4.7 0.12 6.7 9.7 -2.1 2.6 0.6	02L Qurrent 16.9 0.16 16.7 7.7 0.2 1.8 2.0 2.4 2.2 4.5 0.12 6.7 10 -2.1 2.7 0.6	02L TWE's 16.9 0.16 16.7 7.7 0.1 1.8 1.9 2.4 2.2 4.6 0.12 6.6 10.1 -2.1 2.3 0.3	D3L Current 17.1 0.16 17.0 8.0 0.2 1.8 2.0 2.4 3.2 5.6 0.12 7.7 9.3 -2.1 2.1 0.0	D3L TWE's 17.1 0.16 17.0 8.0 0.1 1.9 2.0 2.5 3.2 5.6 0.12 7.7 9.3 -2.1 1.9 -02	E1 H Current 16.4 0.16 16.2 7.2 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0 9.2 -2.1 2.7 0.6	E2H Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0 9.5 -2.1 2.3 0.2	E1L Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.4 2.2 4.6 0.12 6.7 9.8 -2.1 2.7 0.6	E1L TWE's 16.6 0.16 16.5 7.5 0.1 1.8 1.9 2.5 2.2 4.7 0.12 6.7 9.8 -2.1 2.5 0.5	E21 Ourrent 16.9 0.18 16.8 7.7 0.2 1.8 2.0 2.4 2.2 4.8 0.12 6.7 10 -2.1 2.3 0.2	E21 TWE's 16.9 0.16 168 7.7 0.1 1.8 1.9 2.4 2.2 4.6 0.12 6.6 10.1 -2.1 2.2 0.2	H TWE's 243 0.16 24.1 15.1 15.1 0.1 4.1 4.2 2.5 3.7 62 0.12 10.5 13.6 -4.6 7.4 2.8	P Current 92 0.21 9.0 0.2 0.2 0.2 0.2 0.2 1.8 0.5 2.3 0.17 2.6 6.4	Occes down Current 9.2 0.21 9.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4									
SCENARIO Water Charging Policy AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on him stock water costs due to reduction in lingting no savice NET AGRICULTURAL BENEFIT NET AG, BENEFIT RELATIVE TO CLOSE DOWN WATER COSTS Capital costs Capital costs Total headworks Distribution Operating costs Capital costs Total headworks Distribution Costs down costs Total water COSTS AG. EENEFITS LEBS WATER COSTS OPPORTUNITY COST Continuism of metro consumers to headworks Cost to metro consumers TOTAL OPPORTUNITY COST Inclusion of metro consumers TOTAL OPPORTUNITY COST NET BENEFIT TO THE STATE	01 H Current 16.4 0.16 152 7.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0 9.2 -2.1 3.2 1.1 8.1	02H Current 16.6 0.16 16.5 7.5 7.5 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0 9.5 -2.1 2.7 0.6 6.9	D3H Current 18.9 0.16 16.8 7.8 0.2 1.8 2.0 2.6 3.3 5.9 0.12 8.0 8.8 -2.1 2.1 2.1 0.0 8.7	D1L Qurrent 16.8 0.16 16.5 7.4 0.2 1.8 2.0 2.4 2.2 4.8 0.12 6.7 9.7 -2.1 3.2 9.7 -2.1 3.2 1.1	D1L TWE's 16.6 0.16 185 7.4 0.1 1.8 1.9 2.5 2.2 4.7 0.12 6.7 9.7 -2.1 2.6 0.8 9.2	D2L Current 16.9 0.16 16.7 7.7 7.7 0.2 1.8 2.0 2.4 2.2 4.6 0.12 6.7 10 -2.1 2.7 0.6 9.4	02L TWE's 16.9 0.16 16.7 7.7 7.7 0.1 1.8 1.9 2.4 2.2 4.5 0.12 6.6 10.1 -2.1 2.3 0.3 9.8	D3L Current 17.1 0.16 17.0 8.0 0.2 1.8 2.0 2.4 3.2 5.6 0.12 7.7 9.3 -2.1 2.1 0.0 9.2	D3L TWE's 17.1 0.16 17.0 8.0 0.1 1.9 2.0 2.5 3.2 5.6 0.12 7.7 9.3 -2.1 1.9 -0.2 9.4	E1 H Current 16.4 0.16 16.2 7.2 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0 9.2 -2.1 2.7 0.6 8.6	E2H Current 16.6 0.16 16.5 7.5 7.5 0.2 1.8 2.0 2.7 2.2 4.9 0.12 7.0 9.5 -2.1 2.3 0.2 9.3	E1L Current 16.6 0.16 16.5 7.5 0.2 1.8 2.0 2.4 2.2 4.6 0.12 6.7 9.8 -2.1 2.7 0.6 9.2	E1L TWE's 16.6 0.18 16.5 7.5 7.5 0.1 1.8 1.9 2.5 2.2 4.7 0.12 6.7 9.8 -2.1 2.5 0.5 9.3	E2L Qurrent 16.9 0.18 18.8 7.7 0.2 1.8 2.0 2.4 2.2 4.8 0.12 6.7 10 -2.1 2.3 0.2 -9.9	E21 TWE's 16.9 0.16 16.8 7.7 0.1 1.8 1.9 2.4 2.2 4.6 0.12 6.6 0.12 6.6 10.1 10.1	H TWE's 243 0.16 24.1 15.1 15.1 15.1 4.2 2.5 3.7 62 0.12 10.5 13.6 7.4 2.8 10.6	P Current 92 0.21 90 0.2 0.2 0.2 0.2 0.2 1.8 0.5 2.3 0.17 2.6 6.4	Dices down Current 9.2 0.21 9.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 2.3 0.17 2.6 6.4									

Table 18

HARVEY COST BENEFIT

ECONOMIC ANALYSIS																											
(All units Smillion unless specified) SCENARIO Water Charging Policy	A1 H Current	A2H Current	A3H Cument	A 1L Current	A1L TWE's	A2L Ourrent	A2L TWE's	A3L Current	A3L TWE's	B1H Current	82H Current	B3H Current	B1L Current	B1L TWE's	B2L Current	B2L TWE's	B3L Current	B3L TWE's	C1 H Current	C2H Current	C3H Current	C1L Current	CiL TWE's	C2L Current	C2L TWE's	C3L Qurrent	C3L TWE's
	45.1	45.7	46.0	42.7	427	44.0	44.0	43.2	43.2	45.1	46.7	A7 A	427	42 7	44.0	64.0	43.3	43.3	- 44 4	45.1	45.7	427	42 7	44	44	433	42.2
Extra on farm stock water costs due to reduction in irrigation service NET AGRICULTURAL BENEFIT	45.3	46.7	46.9	42.7	42.7	44.0	44.0	43.2	43.2	0.21	0.21 46.5	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31
NET AG RENEFIT RELATIVE TO CLOSE DOWN	154	16.8	17.0	12.8	12.8	14.1	14.1	13.3	13.3	15.0	16.6	17.3	12.6	12.6	13.9	13.9	13.2	13.2	14.2	15.8	16.5	12.5	12.5	13.8	13.8	13.1	13.1
	L																										
WATER COSTS Headworks Operašing costs Capital costs	0.3 <u>4.9</u> 5.2	0.3 4.9 5.2	0.3 4.9 5.2	<u>4.9</u> 4.9	02 2.6 2.8	0.3 <u>4.9</u> 5.2	0.2 2.6 2.8	0.3 <u>4.9</u> 5.2	0.2 2.1 2.3	0.3 4.1 4.4	0.3 4.1 4.4	0.3 <u>4.1</u> 4.4	0.3 <u>4.1</u> 4.4	0.1 2.6 2.8	0.3 <u>4.1</u> 4.4	0.1 2.6 2.8	0.3 4.1 4.4	0.2 2.1 2.3	0.3 <u>3.7</u> 4	0.3 3.7 4	0.3 <u>3.7</u> 4	0.3 3.7 4	0.1 2.6 2.8	0.3 3.7 4	0.1 2.6 2.8	0.3 <u>3.7</u> 4	0.2 2.1 2.3
Distribution Operating costs Capital costs Total distribution costs	18.7 7.5 26.1	18.7 7.5 26.1	13.9 35.2 49.0	16.7 7.1 23.7	16.9 6.7 23.5	16.7 7.1 23.7	16.9 6.7 23.5	12.2 35.2 47.3	12.3 23.1 35.4	17.3 7.0 24.3	17.3 7.0 24.3	14.7 23.3 38.0	15.8 6.7 22.5	16 6.5 22.4	15.8 6.7 22.5	16 6.5 22.4	13.1 23.3 36.4	13,2 16,4 29,6	16 <u>6.6</u> 22.6	16 6.6 22.6	12.6 19.5 32.1	14.7 6.4 21.1	14.9 6.2 21	14.7 <u>6.4</u> 21.1	14.9 <u>5.2</u> 21	11.3 19.5 30.8	11.4 14.3 25.7
Close down costs										0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.35	0.35
TOTAL WATER COSTS	31.3	31.3	54.2	28.6	26.3	28.9	26.3	52.5	37.7	29.0	29.0	42.7	27.2	25.5	27.2	25.5	41.1	32.2	26.9	26.9	36.4	25.4	24.1	25.4	24.1	35.2	28.4
AG. BENEFITS LESS WATER COSTS	14.0	15.4	-7.3	14.1	16.4	15.1	17.7	-9.3	5.5	15.9	17.5	4.5	15.3	17.0	16.6	18.3	1.9	10.8	17.2	18.8	10	16.9	18.2	18.3	19.6	7.8	14.6
OPPORTUNITY COST (Includes \$5.33m spillway cost) Contribution of metro consumers to headworks Cost to metro consumers TOTAL OPPORTUNITY COST	-5.3 26.5 21.2	-5.3 20.1 14.8	-5.3 14.8 9.5	-5.3 26.5 21.2	-2.9 6.4 3.5	-5.3 20.1 14.8	-2.9 5.2 2.3	-5.3 14.8 9.5	-2.3 1.0 -1.3	-4.5 17.1 12.6	-4.5 14.4 9.9	-4.5 10.6 6.1	-4.5 17.1 12.6	-2.9 6.4 3.5	-4.5 14.4 9.9	-2.9 5.2 2.3	-4.5 10.6 6.1	-2.3 1.0 -1.3	-4.1 14 9.9	-4.1 11.7 7.6	-4.1 8.7 4.6	-4.1 14 9.9	-2.9 6.4 3.5	-4.1 <u>11.7</u> 7.6	-2.9 5.2 2.3	-4,1 8,7 4.6	-2.3 1 -1.3
NET BENEFIT TO THE STATE	-7.1	0.6	-15.7	•7.1	12.9	0.4	15.4	-18.7	6.9	3.3	7.6	-1.5	2.7	13.5	6.7	16.0	-4.1	12.2	7.3	11.2	5.4	7.1	14.7	10.7	17.3	3.2	15.9
NET BENEFIT RELATIVE TO CLOSE DOWN	-27	-19.2	-36.6	-26.9	-7.0	-19.5	-4.5	-38.6	-13	-16.5	-12.3	-21.5	-17.2	-6.4	-13,1	-3.9	-24.0	-7.7	-12.6	-8.7	-14.5	-12.8	-52	-92	-2.6	-16.7	-4
SCENARIO Water Changing Policy	D1 H Current	D2H Current	D3H Current	D1L Current	D1L TWE's	D2L Current	D2L TWE's	03L Current	D3L TWE's	E1 H Current	E2H Current	E1L Current	E1L TWE's	E2L Current	E2L TWE's	H TWE's	P (Current	lose down Current									
AGRICULTURAL BENEFITS NET AGRICULTURAL RETURNS Extra on farm stock water costs due to reduction in irrigation service NET AGRICULTURAL BENEFIT	43.7 0.41 43.3	45.3 0.41 44.9	46.0 0.41 45.6	42.7 0.41 42.3	42.7 0.41 42.3	44.0 0.41 43.6	44.0 0.41 43.6	43.3 0.41 42.9	43.3 0.41 42.9	40.5 0.79 39.7	41.7 0.79 40.9	40.9 0.79 40.1	40.9 0.79 40.1	42.2 0.79 41.4	42.2 0.79 41.4	48.4 0.6 47.8	46.4 0.9 45.5	31.1 1.18 29.9									
NET AG. BENEFIT RELATIVE TO CLOSE DOWN	13.4	15.0	15.7	12.4	12.4	13.7	13.7	13.0	13.0	9.8	11.0	10,2	10.2	11.5	11.5	17.9	15.6	863 865									
WATER COSTS Headworks Operating costs Capital costs Total headworks	0.3 <u>3.4</u> 3.7	0.3 3.4 3.7	0.3 <u>3.4</u> 3.7	0.3 <u>3.4</u> 3.7	0.1 2.6 2.8	0.3 <u>3.4</u> 3.7	0.1 2.6 2.8	0.3 <u>3.4</u> 3.7	0.2 2.1 2.3	0.2 2.0 2.2	0.2 2.0 2.2	0.2 2.0 2.2	0.1 2.0 2.2	0.2 2.0 2.2	0.1 2.0 2.2	0.1 2.6 2.7	0.2 1.6 1.8	0.2									
Distribution Operating costs Capital costs Total distribution costs	14.7 7.5 22.2	14.7 7.5 22.2	11.9 16.0 27.9	13.8 7.4 21.2	14.0 7.3 21.2	13.8 7.4 21.2	14.0 7.3 21.2	10.8 16.4 27.2	11.0 13.0 23.9	13.0 5.4 18.4	13.0 5.4 18.4	12.4 5.3 17.7	12.5 5.4 17.8	12.4 5.3 17.7	12.5 5.4 17.8	10.0 4.2 14.2	9.6 0.6 10.2	8.9 0.4 9.3									
Close down costs	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.49	0.49	0.49	0.49	0.49	0.49	0.43	0.53	0.61									
TOTAL WATER COSTS	26.3	26.3	32	25.3	24.4	25.3	24.4	31.3	26.6	21.1	21.1	20.4	20.5	20.4	20.5	17.3	12.5	10.0									
AG. BENEFITS LESS WATER COSTS	17.0	18.6	13.6	17.0	17.9	18.4	19.3	11.6	16.3	18.6	19.8	19.8	19.7	21	20. 9	30.5	33	19.9									
OPPORTUNITY COST (Includes \$5.33m spillway cost) Contribution of metro consumers to headworks Cost to metro consumers TOTAL OPPORTUNITY COST	-3.7 11.4 7.7	-3.7 9.6 5.9	-3.7 7.0 3.3	-3.7 11.4 7.7	-2.9 6.4 3.5	-3.7 9.6 5.9	-2.9 5.2 2.3	-3.7 7.0 3.3	-2.3 1.0 -1.3	-2.2 2.7 0.5	-2.2 2.0 -0.2	-2.2 2.7 0.5	-2.2 2.6 0.4	-2.2 2.0 -0.2	-2.2 1.9 -0.3	-2.9 3.7 0.8	-1.8 0.7 -1.1										
NET BENEFIT TO THE STATE	9.4	12.8	10.4	9.3	14.4	12.5	17.0	8.3	17.6	18.1	20.1	19.3	19.3	21.3	21.3	29.7	34.1	19.9									
NET BENEFIT RELATIVE TO CLOSE DOWN	-10.5	-7.1	-9.5	-10.6	-5.5	-7.4	-2.9	-11.6	-2.3	-1.8	0.2	-0.6	-0.6	1.4	1.4	9.8	14.2	1999-1999 1999-1999			NPV @ 5%	over 80 yea	rs: Units \$	million (198	9/90): 15 Ju	ne 1992	

63 -

1

4. THE FINANCIAL EVALUATION OF THE OPTIONS

4.1 <u>Introduction</u>

The financial analysis is a related, but separate, evaluation to the economic assessment. It's purpose is to provide an indication of the cost of each option to the Water Authority and Irrigation users.

The capital components of each option were calculated using a variation of a "renewals" accounting approach. The main difference between conventional accounting and renewals accounting is that instead of accounting for the cost of an asset over it's expected life through an annual depreciation charge, renewals accounting brings the full cost of asset replacement to account in the year in which it occurs. Renewals accounting then accounts for the past investment in assets through a rate of return on the full initial cost of the assets.

The objective of this approach is to avoid the uncertainty involved in estimating asset lives and replacement values for annual depreciation and works well for an industry in a "steady state" where maintenance and replacement are fairly consistent from year to year. Renewals accounting is used in a number of privatised water companies, particularly in the United Kingdom.

The objective of using a renewal based approach for the Strategy, however, was to calculate the cost of continuing to operate the irrigation districts under each of the options examined rather than to calculate the full cost of providing the irrigation service, including the past capital expenditure. For the Strategy, the return on existing assets has been set to zero, effectively writing-off past investment. With a zero rate of return, only future expenditure is taken into account and therefore provides the cost of continuing to operate the service.

Projected replacement expenditure for the South-West Irrigation Districts will vary considerably from year to year. To avoid the need for large fluctuations in prices, the renewal accounting approach was modified by projecting the expenditure required for the next 80 years and discounting it back to a NPV. The prices were then calculated to ensure future revenue recovered costs with constant real prices.

The results from this approach do not give the full cost of providing the service as the cost of interest and depreciation on past investment are ignored. The conventional financial accounts that include operating expenses, depreciation and interest provide the total cost which must be funded, and the Water Authority must recover this amount either from the irrigators, through cross-subsidy from other customers or through government grants. The renewals approach provides the minimum cost to be recovered to make it financially worth while continuing to operate the irrigation districts but charges at this level will not avoid the need to continue to subsidise the districts.

Water costs for each option can be divided into operating costs, capital costs for the irrigation distribution system and capital costs for the headworks. 85% of the cost for the headworks (dams) has been considered in calculating the required irrigation water price. The remaining 15% has been allocated to other beneficiaries - recreational use of the reservoirs and the Harvey town water supply drawn from the Harvey Reservoir.
The financial impact of the adoption of the different options on the Water Authority and irrigation farmers is designed to identify the cost to the Water Authority of the various options compared to current revenue and the likely cost to irrigators from the adoption of the options.

4.2 <u>Methodology</u>

The financial impact on the State and/or Water Authority and farmers is reported in four ways:

- an annual net deficit between revenue required and expected revenue (at 1989/90 water prices);
- a multiple by which water charges would need to increase by Year 11 to meet full cost recovery for the irrigation service on a "beneficiaries pay" principle;
- the additional financial benefit to a farmer over dryland farming after taking into account the full cost of water; and,
- profit and loss statements of the Water Authority's Irrigation Service for a 4% return on assets.

The methodology for calculating the financial results is described in more detail below.

4.2.1 Annual Net Deficit

This represents the annual equivalent deficit to the State or Water Authority (in 1989/90 dollar terms) from operating the Irrigation Service.

The annual equivalent net deficit is calculated by converting to an annuity the difference in the NPV's of expected and required revenue for the particular option.

Expected revenue is obtained by multiplying the expected demand for water under each option by the current real price of water.

The required revenue is obtained by calculating the cash flow of future costs for each option over the next 80 years. The costs included are:

- 100% of the operational cost;
- 100% of the capital costs of the distribution system; and,
- 85% of the capital costs of the headworks.

This represents a full "beneficiaries" or "user" pays approach to recovering costs from the irrigators. The remaining 15% of headworks cost is legitimately charged to other users of the reservoirs (i.e. recreators - see Supplementary Paper No. 1).

4.2.2 Water Prices Required to Recover Full Costs

If a full cost recovery policy was to be applied to irrigation water the current water price would need to rise. This is shown here as a multiple by which water charges would need to increase by the Year 2000 to achieve full cost recovery for each of the options evaluated. It is assumed the price of irrigation water services would rise in 10 annual increments to the year 2000 to reach the required multiple.

4.2.3 The Additional Benefit to the Farmer from Irrigation

The objective of this measure is to show the additional financial benefit to an average irrigation farm over dryland production under the different Phase 2 options evaluated. This measure assumes irrigators are required to pay full cost recovery rates.

A positive result indicates irrigation of the average farm pays. A negative result implies that it would not pay the average farm to irrigate if it was required to pay full cost recovery rates.

Four sets of results were provided for each low demand option. High demand options were not analysed because these automatically assume the current (real) price paid for water would continue and so, by definition, all existing irrigation would continue.

The four situations for which results were provided for each low demand option were:

- Irrigation farm returns compared to dryland farm returns with all farms in the area being dry. This <u>regional</u> dryland situation incorporates expected improvements in pasture productivity of 25 per cent for medium productivity (marginally salt affected) land and 50 per cent for low productivity (salt affected) land.
- Irrigation farm returns compared to dryland farm returns for the <u>(individual)</u> farm (this assumes only the farm in question reverts to dryland production and there are no regional productivity improvements).

and each of the above for two time periods

- 80 years assumes the continued operation of the farm as an irrigation farm
- 15 years enables the relative return from continuing with irrigation for 15 years prior to phase out of irrigation activities on the farm to be estimated.

4.2.4 Water Authority Profit and Loss Statements

The objective of this measure was to present the implications of different pricing policies on the Water Authority's financial statements on its Irrigation Service. Values are quoted for a 4% and 0% rate of return on assets for selected options in the Collie District. Values are quoted for years 5, 10, 20 and 30. The Profit and Loss Statements include the following:

- Revenue (given the necessary price increase)
- Operating Costs
- Depreciation
- Asset Write Off
- % return on Assets

Profit (Loss)

These profit and loss statements do not included interest payments on past capital borrowings or take into account an allowance for the statutory levy the Water Authority pays the State Government. This levy was 3% on the previous years revenue in 1989/90 and has increased to 4% in 1990/91.

4.3 <u>The Results</u>

Table 22 to 28 provide summaries of the financial analysis of all options.

The following points can be made based on the financial analysis results.

The tables show the price increases necessary to meet the requirements of the particular option and water charging approach. Figures are quoted in dollars per megalitre and have been partitioned into a headworks and distribution charge. Also shown are the necessary increases relative the charges in the 1989/90 season.

4.3.1 Effect of Area on Water Price

In all the high water demand cases a factor of 1.0 times the 1989/90 price is shown. This is of course a consequence of one of the major assumptions of the high demand case, that being that the charge for water would not increase relative to inflation. In these cases the Net Deficit (Annual Equivalent) represents the ongoing loss of the service in a "Renewals Accounting" sense.

In the low demand cases the increases in water prices indicated are set to cover the net annual deficit. That is, if these price increases were introduced over a ten year period the service would be self funding in a Renewals Accounting sense. This implies that the past debt is considered as "sunk", a zero return on assets could be achieved and sufficient money would be generated to ensure that the irrigation service is adequately maintained.

As the area reduces the overall cost of maintaining the system, relative to the water sold, reduces. This occurs no matter which water charging approach is used. This is shown in the following table.

Table 20	Average Water Prices Per Megalitre in Low Demand Cases for Different
	Water Charging Approaches (Total Area Cases)

Option	Current Approach (Fixed Allocation)	Possible TWE Approach (Variable Water Allocation)
A1L	\$64.3	\$59.7
B1L	\$59.7	\$56.9
C1L	\$55.2	\$53.6
D1L	\$51.4	\$50.4

4.3.2 Effect of Water Charging Policy on Water Price

The table also shows that the total cost per megalitre is less in the TWE (or variable water allocation) approach than in the current charging approach. This is because the headworks component of the costs are lower in the TWE charging approach than under the Current (Fixed Allocation) approach. Less water would be allocated to irrigation if farmers decide to reduce their water usage and sell some of their Water Entitlement. As this occurs the costs associated with running and maintaining the headworks for the Irrigation Service reduces.

The increases in charging components and increases per megalitre relative to those in 1989/90 are shown in Table 21.

Option	Current Ap	proach	Possible TWE Approach
	(Fixed Allo	cation)	(Variable Water Allocation)
	Current Rates	Équivalent	· · · ·
	& Volumetric	Volumetric	Volumetric Charge
	Charge Components	Charge	Only
	Increase in Rates	Increase in Average	Increase in Average
	& Volumetric Charge	Charge megalitre	Charge per megalitre
	Components over 89/90	over 89/90	over 89/90
A1L	2.1	2.6	2.5
B1L	2.0	2.5	2.4
C1L	1.9	2.3	2.2
D1L	1.8	2.1	2.1

Table 21 Water Price Increases Required in Low Demand Cases for Different Water Charging Approaches (Total Area Cases)

Table 21 shows that if the current water charging system were maintained the rates and volumetric components would increase between 1.8 to 2.1 times for the Low Demand Options shown. The equivalent increases when expressed as an average charge per megalitre range from 2.1 to 2.6. This simply reflects that, currently, the smaller users effectively pay a higher per megalitre price and that this effect will be increased as water use declines.

The table also shows that with a TWE market operating in which a volumetric charge only was applied, the price increases per megalitre would range from 2.1 to 2.5. These increases are less than the equivalent volumetric charge increases for the current two component charging approach.

Under a fully volumetric charging approach both small and large water users would pay the same amount per megalitre. With the establishment of a TWE market a farmer who reduced his Water Entitlement and used less water would be contributing a smaller component of the overall costs than currently. If he sold all his entitlement (i.e. had no effective allocation of irrigation water) he would pay no costs even though an irrigation service would be available to him.

A dual charging structure (fixed and volumetric) could be devised that would have a similar pricing outcome to the current charging structure when a TWE market was operating. Such alternative structures could and should be considered during Phase 3 and 4. Alternatives that reflect the fixed costs of maintaining the distribution system within the area served have merit. There are real fixed costs that need to be recovered each year if small quantities of water are sold. The dilemma with this approach is that a farmer who has sold his entitlement would still be asked to pay a fixed cost each year for remaining in the irrigation district even when he had decided to stop irrigating.

4.3.3 Effect of Water Price on Average Farm Profitability

Analysis of the additional benefits from irrigation for the average farm shows that irrigated dairying was more profitable than dryland dairy farming for most options with Strategy 2 options yielding the highest returns.

However, on average irrigated grazing properties would not be more profitable than dryland farms if they were required to pay full costs for water.

If a full cost recovery water pricing policy was instituted (for the average sized property):

Horticulture	-	Horticulture would continue to be profitable.				
Dairy	-	Irrigated dairy farms should be more profita	able	than	drylar	ıd
		farms on high productivity land.				
				. 4		

- Irrigated dairy farms should be more profitable than dryland farms on medium productivity land, but only if Strategy 2 on-farm irrigation productivity improvements were adopted.
- Irrigated fairy farms should be less profitable than dryland dairy farms on low (salt affected) productivity land.
- The adoption of Strategy 3 would not be profitable for dairy farms, compared to dryland dairy farming at a regional level.

However, if the majority of the area continued to be irrigated it would pay the individual to irrigate medium productivity land.

Grazing - Irrigation for grazing enterprises would be less profitable than dryland farming. Income would have to be above average or the individual farm enterprise able to capture considerable out of season market premiums for livestock before irrigation was more profitable than dryland grazing.

4.3.5 <u>Water Authority Profit and Loss</u>

Table 28 summarises the Water Authority profit and loss statements for selected options of the future Collie District Irrigation Service.

The financial profit and loss statements indicate that, for the most economically viable district, Collie, even with the "renewals" accounting price increases (Low Water demand cases) the Water Authority would not be able to achieve a 4% return on its irrigation assets. However, following the ten years of price increases in the low demand cases a zero return on assets is achieved.

Note that if interest on past borrowings were also included in the profit and loss statements then rates of return would remain negative.

Water prices would have to increase substantially (more than shown in the financial analysis tables) if irrigators were asked to pay the full interest bill on past debt as well as covering the full future costs.

Currently, under Option A1, Low Demand for the total area and considering the fixed water charging policy, water prices would have to increase by 2.1 times by the year 2000 to meet future user pays costs. If users also had to pay the full interest on past debt then price increases would need to exceed 3.5 times current levels.

This price increase would be necessary to avoid cross-subsidies between irrigation users and other Water Authority customers if the State Government required the Water Authority to pay the full interest on past debt.

								то	ТА	LC	OS7	Г В	ENI	EFI	Г												
FINANCIAL ANALYSIS																											
(All units \$million unless specified) SCENARIO Water Charging Policy	A1 H Current	A2H Curreni	A3H Current	A1L Current	A1L TWE's	A2L Current	A2L TWE's	A3L Current	A3L TWE's	B 1H Current	82H Current	B3H Curreni	B1L Current	B1L TWE's	B2L Current	B2L TWE's	B3L Current	93L TWE's	C1 H Current	C2H Current	C3H Current	C1L Current	C1L TWE's	C2L Current	C2L TWE's	C3L Current	C3L TWE's
EXPECTED REVENUE (at 1989/90 prices)	36.6	36.6	36.3	30.0	24.1	30.0	24.1	28.1	21.3	35.3	35.3	35.3	29.2	24.1	292	24.1	27.0	21.2	32.7	32.7	32.6	28.2	24.1	28.2	24.1	26.2	21.2
REQUIRED REVENUE TO MEET WATER COSTS	61.1	61.1	117.8	56.1	52.1	56.1	5 2.1	112.4	81.6	56.8	56.8	93 .7	52.7	50.1	52.7	50.1	89.5	68.9	52.0	52.0	77.5	48.9	47.3	48.9	47.3	74.4	60.2
(Operating costs + Distribution capital costs + 85% of head wo "(Allowance for capital costs based on "renewals" accounting p	rks capital co rinciple with	existing cap	ital values i	written off)"																							
NET DEFICIT (NPV)	24.6	24.6	81.5	26.1	28.1	26.1	28.1	84.3	50.3	21.5	21.5	58.5	23.5	26.0	23.5	26.0	62.5	47.7	19.3	19.3	44.9	20.7	23.3	20.7	23.3	48.2	39.0
NET DEFICIT (ANNUAL EQUIVALENT) \$'000	1488	1488	4938	1579	1700	1579	1700	5107	3651	1304	1304	3540	1421	1577	1421	1577	3763	2891	1171	1171	2718	1251	1409	1251	1409	2918	2365
WATER COSTS																											
 REQUIRED WATER CHARGE TO MEET ACTUAL COSTS BY YEA (Assuming 100% volumetric charge) 	R 11																										
Headworks (\$ per megalitre) Distribution (\$ per megalitre) TOTAL (\$ per megalitre)	[11.8 52.5 64.3	7.1 52,6 59.7	11.8 55.5 67.3	7.1 55.6 62.7	15.6 163.7 179.3	7.1 123.1 130.1				10.3 49.4 59.7	7.1 49.8 56.9	10.3 52.4 62.6	7.1 52.7 59.7	13.3 123.4 136.7	5 8 98.9 105 7				9.1 46.0 55.2	7.1 46.5 53.6	9.1 <u>48.8</u> 57.9	7.1 49.2 56.3	11.7 100.2 111.9	6.7 83.7 90.4
 INCREASE OVER 1999/90 PRICE (Current mix of rates & volume charges) 	1.0	1.0	1.0	2.1		2.1		4.8		1.0	1.0	1.0	2.0		2.0		3.9		1.0	1.0	1.0	1.9		1.9		3.3	
INCREASE OVER 1989/90 PRICE (Volume charge only)				2.6	2.5	2.8	2.6	7.4	5.4				2.5	2.4	2.6	2.4	5.6	4.4				2.3	2.2	2.4	2.3	4,6	3.7
NPV of FLOWS - Volume sold - megalitres																											
SCENARIO Water Changing Policy	D1 H Current	D2H Current	D3H Current	D1L Current	D1L TWE's	D2L Current	D2L TWE's	D3L Qurrent	D3L TWE's	E1 H Ourrent	E2H Current	E1L Ourrent	E1L TWE's	E2L Current	E2L TWE's	H TWE's	P (Current	Xose down Current	J								
EXPECTED REVENUE (at 1989/90 prices)	30.5	30.5	30.5	27.7	24.1	27.7	24.1	25.4	21.1	27.3	27.3	25.8	22.9	25.8	22.9	21.9	19.0	16.9									
REQUIRED REVENUE TO MEET WATER COSTS	30.5	30.5	30.5	27.7	24.1	27.7	24.1	25.4	21.1	27,3	27.3	25.8	22.9	25.8	22.9	21,9	19.0	16.9									
(Operating costs + Distribution capital costs +85% of head work "(Allowance for capital costs based on "renewais" accounting pr	us capital cos inciple with e	tts) existing capi	ital values v	vritten off)"																							
NET DEFICIT (NPV)	1649	1849	1850	1680	1459	1680	1459	1539	1278	1654	1654	1565	1387	1585	1387	1326	1153	1022									
NET DEFICIT (ANNUAL EQUIVALENT) \$'000																											
WATER COSTS																											
REQUIRED WATER CHARGE TO MEET ACTUAL COSTS BY YEAR (Assuming 100% volumebic charge)	11																										
Headworks (\$ per megalitre) Distribution (\$ per megalitre) TOTAL (\$ per megalitre)				6.4 45.0 51.4	5.2 45.2 50.4	6.4 47.7 54.1	5.2 47.8 52.9	8.1 85.1 93.2	6.0 74.4 60.3			5.2 43.8 48.9	4.8 46.2 51.0	5.2 46.1 51.3	4.8 46.2 51.0	8.4 32.0 40.4	3.1 27.9 31.0										
 INCREASE OVER 1989/90 PRICE (Current mix of rates & volume charges) 	1.0	1.0	1.0	1.8		1.8		2.9		1.0	1.0	1.8		1.8			1.2	1.0									
INCREASE OVER 1989/80 PRICE (Volume charge only)				2.1	2.1	2.2	2.2	3.8	3.3			2.0	2.0	2.1	2.1	1.7	1.3]									
NPV of FLOWS - Volume sold - megalitres																				NPV	Ø 6% over 8	30 years: Un	its \$ million	i (1989/90):	15 June 19	92	

COLLIE COST BENEFIT

FINANCIAL ANALYSIS																											
(All units Smillion unless specified) SCENARI Water Charging Polic	A1 H Ourrent	A2H Current	A3H Current	A1L Current	A1L TWE's	A2L Curreni	A2L TWE's	A3L Curreni	A3L TWE's	B 1 H Current	B2H Current	B3H Current	B1L Current	B1L TWE's	B2L Current	82L TWE's	B3L Current	83L TWE's	C1 H Current	C2H Current	C3H Current	C1L Current	C1L TWE's	C2L Curreni	C2L TWE's	C3L Current	C3L TWE's
EXPECTED REVENUE (al 1989/90 prices)	15.2	15.2	15.2	12.1	9.4	12.1	9.4	11.5	8.6	. 14.9	14.9	14.9	11.9	9.4	11.9	9.4	11.2	8,6	13.5	13.5	13.5	11. 3	9.4	11.3	9,4	10.7	8.6
REQUIRED REVENUE TO MEET WATER COSTS	19.2	19.2	41 B	17.1	16.9	17.1	16.9	40.1	30. 0	18.1	18.1	34	16.3	16.2	16.3	16.2	32.4	25.2	16.3	16.3	26.8	15.0	14.9	15.0	14,9	25.6	21.5
(Operating costs - Distribution capital costs + 85% of head 1 "(Allowance for capital costs based on "renewals" accounting	vorks capital c principle with	osts) existing cap	oital values	writlen off)"																							
NET DEFICIT (NPV)	4.0	4.0	26.6	5.0	7.5	5.0	7.5	28.6	21.4	3.2	3.2	19.0	4.4	6.7	4.4	6.7	21.2	16.6	2.8	2.6	13.3	3.7	5.5	3.7	5,5	14.9	12.9
NET DEFICIT (ANNUAL EQUIVALENT) \$'00	241	241	1614	302	454	302	454	1732	1293	192	192	1151	267	408	267	408	1286	1008	168	168	607	224	331	224	331	904	778
WATER COSTS																											
 REQUIRED WATER CHARGE TO MEET ACTUAL COSTS BY YI (Assuming 100% volumetric charge) 	AR 11																										
Headworks (\$ per megalitre Distribution (\$ per megalitre				1.9 42.0	1.0 44.7	1.9 44.1	1.0 44.7	3.0 145.6	1,4 109.6				1.8 39.6	0.9 40.1	1.8 41.6	0.9 42.0	2.6 111.8	1.3 88.4				1.5 36.4	0.9 36.8	1.5 38.2	0.9 38.6	2.2 86.0	1.3 72.5
TOTAL (S per megalitre				43.9	45.7	46.0	45.7	148.5	111.0				41.4	41.0	43.4	42.9	114.5	69.6				37,9	37,8	39.6	39.6	88.2	73.7
 INCREASE OVER 1989/90 PRICE (Current mix of mites & volume charges) 	1.0	1.0	1.0	1,5_		1.5		4.1		1.0	1.0	1,0	1.4		1.4		3.3		1.0	1,0	1.0	1,4		1.4		2,7	
INCREASE OVER 1989/90 PRICE (Volume charge only)				1.8	1.8	1.9	1.9	6.1	4.6				1.7	1.7	1,8	1,8	4.7	3,7				1.6	16	16	16	3.6	3.0
NPV of FLOWS - Volume sold - megalitres	637.0	637.0	600.6	434.0	414.0	434.0	414.0	374.9	375.0	637.9	637.9	601.4	434.0	414.0	434.0	414.0	375.5	376.0	580.3	580.3	548.8	434.0	414.0	434.0	414.0	375.5	376.0
SCENARI Water Charging Polic	D1 H Current	D2H Current	D3H Current	Di L Current	D1L TWE's	D2L Current	D2L TWE's	D3L Current	D3L TWE's	E1 H Current	E2H Current	E1L Current	E1L TWE's	E2L Current	E2L TWE's	H TWE's	P Qurrent	Close down Current]								
EXPECTED REVENUE (at 1989/90 prices)	13.5	13.5	13.5	12.1	10.4	12.1	10.4	10.7	8.6	13.5	13.5	12.1	10,4	12.1	10.4	6.9	6.9	6.9									
REQUIRED REVENUE TO MEET WATER COSTS	16.3	16.3	26.8	15.3	15.3	15.3	15.3	25.6	21.5	16.3	16.3	15.3	15.3	15.3	15,3	7.6	7.6	7.6									
(Operating costs + Distribution capital costs +85% of head w "(Allowance for capital costs based on "renewals" accounting	orks capital co principle with	osts) existing cap	pital values	written off)"																							
NET DEFICIT (NPV)	2.8	2.6	13,3	3.2	4.9	3.2	4,9	14.9	12.9	2.8	2.8	3.2	4.9	3.2	4.9	0.7	0.7	0.7									
NET DEFICIT (ANNUAL EQUIVALENT) \$'000	169	169	807	193	294	193	294	904	778	169	169	193	294	193	294	44	44	44									
WATER COSTS																											
 REQUIRED WATER CHARGE TO MEET ACTUAL COSTS BY YE (Assuming 100% volumetric charge) 	AR 11																										
Headworks (\$ per megailitre Distribution (\$ per megailitre TOTAL (\$ per megailitre				1.4 33.6 34.9	0.8 33,8 34.6	1,4 35,4 36,7	0.8 35.5 36.4	2.2 86.0 88.2	1.3 72.5 73.7			1.4 33.6 34.9	0.8 33.8 34.6	1.4 35.4 36.7	0.8 35.5 36.4]									
INCREASE OVER 1989/90 PRICE (Current mix of rates & volume charges)	1.0	1.0	1.0	1.3		1.3		2.7		1.0	1.0	1.3		1.3		1.0	1.0	1.0									
INCREASE OVER 1989/90 PRICE (Volume charge only)				1.4	1.4	1.5	1.5	3,6	3.0			1.4	1.4	1.5	1.5	······]									
NPV of FLOWS - Volume sold - megalitres	580.2	580.2	548.6	483.5	460.0	483.5	460.0	375.5	376.0	580.2	580.2	483.5	460 0	483.5	460.0	270.1	270.1	270.1		NPV	@ 6% over	30 years: Ur	nits S millio	n (1989/90)	: 15 June 19	992	

- 72 -

								H	IAF	VE	ey (COS	ST B	EN	EF	IT												
FINANCIAL ANALYSIS																			_									
(All units Smillion unless specified)	SCENARIO Water Charging Policy	A1 H Current	A2H Current	A3H Current	A 1 L Current	A1L TWE's	A2L Current	A2L TWE's	A3L Current	A3L TWE's	81H Current	82H Current	B3H Current	81L Current	B1L TWE's	B2L Current	82L TWE's	B3L Current	B3L TWE's	C1 H Current	C2H Current	C3H Ourrent	C1L Current	C1L TWE's	C2L Current	C2L TWE's	C3L Qurrent	C3L TWE's
EXPECTED REVENUE (at 1989/90 price	s)	16.8	16.8	16.5	14.0	11.3	14.0	11.3	13.1	10.0	16.0	16.0	16.0	13.5	11.3	13.5	11.3	12.5	10.0	15.2	15.2	15.2	13.2	11.3	13.2	11.3	123	10.0
REQUIRED REVENUE TO MEET WATER	OOSTS	30.4	30.4	53.3	28.1	25.9	28.1	25.9	51.7	37.3	27.9	27.9	41.7	26.2	24.7	26.2	24.7	40.1	31.5	25.9	25.9	35.4	24.5	23.4	24.5	23.4	34 1	27.7
(Operating costs + Distribution capital "(Allowance for capital costs based on "	costs + 85% of head wor "renewals" accounting pr	ks capital co inciple with	osts) existing cap	oital values v	witten off)"																							
NET DEFICIT (NPV)		13.7	13.7	36.8	14.1	14.6	14.1	14.6	38.6	27.3	12.0	12.0	25.7	12.7	13.4	12.7	13.4	27.6	21,5	10.7	10.7	20.2	11.3	12.1	11.3	12.1	21.8	17.7
NET DEFICIT (ANNUAL EQUIVALENT)	\$'000	828	828	2228	854	883	854	883	2336	1656	724	724	1558	768	813	768	813	1669	1304	649	649	1226	683	732	683	732	1322	1069
WATER COSTS																												
 REQUIRED WATER CHARGE TO MEET ((Assuming 100% volumetric charge) 	ACTUAL COSTS BY YEAI	R 11																										
Headworks Distribution TOTA:	(S per megalitre) (S per megalitre) (S per megalitre)	·			12.3 60.0	6.7 59.9	12.6 63.4 75.0	6.7 <u>63.4</u> 70.1	15.3 166.6	6.8 124.3 131.2				10.6 56.2	6.7 56.2	10.6 59.5 70.1	5.7 59.5	12.6 122.9	6.6 100.0				9.6 52.3	6.7 52.5	9.6 55.5	6.7 55.6	11.5	65 <u>64.8</u>
	(open meganic)					00.1				151.2	1.0	10									10		01.0	33.1				
 INCREASE OVER 1989/90 PRICE (Current mix of rates & volume charges))	<u> </u>	1.0	1.0	2.3		2.3		4 .(1.0	1.0						3.1			1.0	1.0	2,1		2.1		32	
 INCREASE OVER 1989/90 PRICE (Volume charge only) 					3.0	2.8	3,1	2.9	7,5	5.4				2.7	2.6	2.9	2.7	5.6	4.4				2.5	2.4	2.7	2.6	4.6	3.8
NPV of FLOWS · Volume sold - megalitres		670.6	670.6	616.4	488.3	465.0	488.3	465.0	405.9	406.0	654.2	654.2	616.4	488.2	465.0	488.2	465.0	405.9	406.0	617.9	617.9	582.7	488.3	465.0	488.3	465.0	405 9	406.0
	SCENARIO Water Charging Policy	D1 H Current	D2H Current	D3H Current	D1L Current	01L TWE's	D2L Current	D21. Twe's	DGL Current	D3L TWE's	E1 H Current	E2H Current	E1L Current	E 1L TWE's	E2L Current	E2L TWE's	H TWE's	P C Current	lose down Current									
STREETED DEVENUE (# 1000/00 minute		1 112		110	12.0	11.2	12.0		12.0	10.0		11.1	+1.1	10.1	11.1	10.1	11.2	10.0	7.9	-								
RECHIRED REVENUE TO MEET WATER	005TS	25.3	75.2	21.0	74.2	99.5	24.3	225	20.2	25.8	20.3	20.3	19.6	10.1	19.6	10.1	18.4	11.7	01									
(Operating costs + Distribution capital	costs +85% of head work	s capital cos			<u></u>					23.0	20.5		10.0	10.0			10.5	<u> </u>	3.5									
"(Allowance for capital costs based on "	renewals" accounting pri	nciple with a	existing cap	itel values w	rritten off)"																							
NET DEFICIT (NPV)		11.0	11.0	16.7	11.3	12.2	11.3	12.2	18.3	15.6	9.2	9.2	8.5	9.5	8.5	9.5	5.1	1.7	1.5									
NET DEFICIT (ANNUAL EQUIVALENT)	\$000	666	666	1012	684	741	684	741	1111	956	556	556	515	578	515	578	310	102	92									
WATER COSTS																												
 REQUIRED WATER CHARGE TO MEET A (Assuming 100% volumetric charge) 	ICTUAL COSTS BY YEAR	11																										
Headworks Distribution	(\$ per megalitre) (\$ per megalitre)				8.9 53.4	6.6 53.5	8.9 56.5	6.6 56.7	10.3 87.9	6.4 77.2			6.1 51.4	5.9 51.5	6.1 54.0	5.9 54.0	6.3 34.5	5.1 29.2										
TOTAL	(\$ per megalitre)	<u> </u>			62.3	60.1	66.4	63.3	96.2	83.6			57.5	57.4	60.1	60	40.8	34.3]									
 INCREASE OVER 1969/90 PRICE (Current mix of rates & volume charges) 		1.0	1.0	1.0	2.1		2.1		2.9		1.0	1.0	2.0		2.0			1.2	1.0									
 INCREASE OVER 1989/90 PRICE (Volume change only) 					2.6	2.5	2.7	2.6	4.0	3.4			2.4	2.4	2.5	2.5	1.7	1.4										
NPV of FLOWS - Volume sold - megalitres		578.5	578.5	547.4	488.3	465	488.3	465.0	405.9	406.0	429.6	429.6	429.6	411.0	429.6	411.0	463.0	375.9	277.3		NPV	0 6% over 6	10 years: Un	its \$ million	(1989/90):	15 June 19	92	

- 73

WAROONA COST BENEFIT

FINANCIAL ANALYSIS																											
(All units \$million unless specified) SCENA Waler Changing Po	RIO A1 H #icy Currer	A2H nt Current	A3H Current	A 1L Current	A1L TWE's	A2L Qurrent	A2L TWE's	A3L Current	A3L TWE's	B1H Current	B2H Current	83H Current	B1L Current	B1L TWE's	82L Current	B2L TWE's	B3L Current	B3L TWE's	C1 H Current	C2H Current	C3H Current	C1L Current	C1L TWE's	C2L Current	C2L TWE's	C3L Current	C3L TWE's
EXPECTED REVENUE (al 1989/90 prices)	4.6	4.6	4.6	3.9	3.3	3.9	3.3	3.5	27	4.4	4.4	4.4	3.8	3.3	3.8	3.3	3.3	2.6	4.0	4.0	4.0	3.7	3,3	3.7	3.3	3.2	2.6
REQUIRED REVENUE TO MEET WATER COSTS	11.6	11.6	22.7	10.9	9.3	10.9	9.3	20.7	14.3	10.8	10.8	18.1	10.2	9.2	10.2	9.2	17.0	12.2	9.8	9.8	15.3	9,4	9,0	9.4	9.0	14.6	11.1
(Operating costs + Distribution capital costs + 85% of hea "(Allowance for capital costs based on "renewals" account	d works capital ing principle wi	costs) In existing ca	apital values	written off)"																							
NET DEFICIT (NPV)	6.9	6.9	18.1	7.0	6.0	7.0	6.0	17.2	11.6	6,4	6,4	13.7	6.4	5.9	6,4	5.9	13.7	9.6	5.8	5.8	11.3	5.7	5.7	5.7	5.7	11.4	8.5
NET DEFICIT (ANNUAL EQUIVALENT)	000 419	419	1096	422	363	422	363	1039	701	366	368	631	386	357	386	357	627	578	353	353	684	344	346	344	346	693	517
WATER COSTS																											
 REQUIRED WATER CHARGE TO MEET ACTUAL COSTS B' (Assuming 100% volumetric charge) 	YEAR 11																										
Headworks (Sper megal Distribution (Sper megal	lre) lre)			44.6 51.9 96.5	30.2 52.6	44.6 57.3	30.2 57.1 87.3	59.7 212.7 272.4	27.7 160.8				39.6 50.3	30.0 51.5 81.5	39.6 55.2	30.0 56.0	52.2 164.8	26.4 128.3				34.5 48.7	30.0 50.0	34.5 53.2	30.0 <u>54.3</u>	45.3	26 1 114.2
INCREASE OVER 1989/90 PRICE		1.0	1.0	3.2		3.2	01.0	7.3		1.0	1.0	1.0	3.1		3.1		6.2		1.0	1,0	1.0	2,9		2.9		5.5	
INCREASE OVER 1989/90 PRICE (Volume charges)				4.0	3.4	4.2	3.6	11.2	7.8				3.7	3.4	3.9	3.5	6.9	6.4				3.4	3.3	3.6	3.5	7,7	58
NPV of FLOWS - Volume sold - megalitres	199.1	199.1	187.4	153.1	145.0	153.1	145.0	115.7	116.0	187.7	187.7	177.1	153.1	145.0	153.1	145.0	114.4	114.0	170.8	170.8	161.7	153.1	145.0	153.1	145.0	114.4	114.0
SCENA Waler Charging Po	RIO D1 H licy Currer	D2H nt Current	D3H Current	D1L Current	D1L TWE's	D2L Ourrent	D2L TWE's	D3L Current	D3L TWE's	E1 H Current	E2H Current	E1L Current	E1L TWE's	E2L Current	E2L TWE's	H TWE's	P Current	Dose down Current									
EXPECTED REVENUE (at 1989/90 prices)	2.7	2.7	2.7	2.6	2.4	2.6	2.4	2,7	2.5	2.7	2.7	2.6	2.4	2.6	2.4	3.7	2.2	2.2									
REQUIRED REVENUE TO MEET WATER COSTS	6.6	6.6	7,6	6.3	6.2	6.3	6.2	7.3	7.3	6.6	6.6	6.3	6.2	6.3	6.2	9.7	2.4	2.4									
(Operating costs + Distribution capital costs +85% of hea "(Allowance for capital costs based on "renewals" account	l works capital ing principle wi	costs) In existing ca	ipital values	written off)"																							
NET DEFICIT (NPV)	3.8	3.6	4.8	3.6	3.9	3.6	3.9	4.6	4.8	3.8	3.8	3.6	3.9	3.6	3.9	6.0	0.3	0.3									
NET DEFICIT (ANNUAL EQUIVALENT) S	000 233	233	294	220	233	220	233	279	288	233	233	220	233	220	233	360	17	16									
WATER COSTS																											
 REQUIRED WATER CHARGE TO MEET ACTUAL COSTS BY (Assuming 100% volumetric charge) 	YEAR 11																										
Headworks (\$ per megali Distribution (\$ per megali TOTAL (\$ per megali	re) re) re)			22.8 55.8 78.6	21.9 56.7 78.6	22.8 59.1 82.0	21.9 59.8 81.6	21.5 71.9 93.4	21.4 71.2 92.6			22.8 55.6 78.6	21.9 56.7 78.6	22.8 59.1 82.0	21.9 59.8 81.5	30.7 52.3 63.0		······									
INCREASE OVER 1969/90 PRICE (Current mix of miss & universe chames)	1.0	1.0	1.0	3.3		2.8		3.2		1.0	1.0	3.3		2.8			1.0	1.0									
INCREASE OVER 1989/30 PRICE //dume charge ch/d				3.2	2.0	3.4	3,4	3.6	3.8			3.2	2.8	3.4	3.4	3,4		1									
NPV of FLOWS - Volume sold - megalitres	112.7	112.7	108.6	107.3	103.0	107.3	103.0	108.6	109.0	112.7	112.7	107.3	103.0	107.3	103.0	159.0	89.8	89.8		NPV	8 6% over	80 years: Ur	tits \$ mi#o	n (1989/90)	: 15 June 16	92	

and a second second

- 74 -

INCREMENTAL BENEFITS OF AN IRRIGATED DAIRY FARM OVER DRYLAND FARM OF SAME SIZE

Option Description			(<i>P</i>	atter paying	full cost of	water)				
Area	Α	A	В	В	C	C	D	D	E	E
Water Charging Policy	Current	TWEs	Current	TWEs	Current	TWEs	Current	TWEs	Current	TWEs

1. IRRIGATED DAIRY FARM VERSUS DRYLAND FARM - TOTAL REGIONAL SHUTDOWN OF IRRIGATION

Over 80 Years (Improved productivity of dryland: +25% for marginal and +50% for salinity affected dryland)

Strategy 1										
High	7,727	4,258	8,595	5,125	9,462	6,860	10,330	7,727	10,330	8,595
Medium	-10,645	-14,114	-9,777	-13,247						
Low	-22,405	-25,874	·							
Strategy 2	-	-								
High	14,450	10,547	15,231	12,108	16,011	12,889	16,792	13,669	16,792	14,450
Medium	3,589	-314	4,370	1.247				ŗ		
Low	-8,303	-12,206	,	•						
Strategy 3										
High	-10,968	-15,652	-3,942	-7,846						
Medium	-14,164	-18,848	-7,138	-11,042						
Low	-24,092	-28,776	,	•						

2. IRRIGATED DAIRY FARM VERSUS DRYLAND FARM - TOTAL REGIONAL SHUTDOWN OF IRRIGATION

Over 15 Years	(Improved productivity	y of dryland: +25% for marc	pinal and +50% for salinity	affected dryland)

Strategy 1										
High	7,727	4,258	8,595	5,125	9,462	6,860	10,330	7,727	10,330	8,595
Medium	-10,645	-14,114	-9,777	-13,247		•				
Low	-22,405	-25,874								
Strategy 2										
High	14,326	10,423	15,107	11,984	15,887	12,765	16,668	13,545	16,668	14,326
Medium	3,465	-438	4,246	1,123						
Low	-8,427	-12,330								
Strategy 3										
High	-14,449	-19,133	-7,423	-11,327						
Medium	-17,644	-22,328	-10,618	-14,522						
Low	-27,572	-32,256								

3. IRRIGATED DAIRY FARM VERSUS DRYLAND FARM - THE MARGINAL FARM (i.e. Other farms in the area remain irrigated) Over 80 Years (No improved productivity of dryland)

Strategy 1										
High	7,727	4,258	8,595	5,125	9,462	6,860	10,330	7,727	10,330	8,595
Medium	2,799	-670	3,667	197	,		-	·	ŗ	,
Low	2,232	-1,237	·							
Strategy 2										
High	14,450	10,547	15,231	12,108	16,011	12,889	16,792	13,669	16,792	14,450
Medium	17,033	13,130	17,814	14,691						
Low	16,334	12,431	-							
Strategy 3										
High	-10,968	-15,652	-3,942	-7,846						
Medium	-720	-5,404	6,306	2,402						
Low	545	-4,139								

4. IRRIGATED DAIRY FARM VERSUS DRYLAND FARM - THE MARGINAL FARM (i.e. Other farms in the area remain irrigated) Over 15 Years (No improved productivity of dryland)

				the second s	A COLUMN THE OWNER OF THE OWNER OWNE	And the second se		And the second s		And the second sec
Strategy 1										
High	7,727	4,258	8,595	5,125	9,462	6,860	10,330	7,727	10,330	8,595
Medium	2,799	-670	3,667	197		,				
Low	2,232	-1,237	,							
Strategy 2	-	·								
High	14,326	10,423	15,107	11,984	15,887	12,765	16,668	13,545	16.668	14.326
Medium	16,909	13,006	17,690	14,567	,					· · · · · · · · · · · · · · · · · · ·
Low	16,210	12,307		,	r					
Strategy 3	-	-			KEY	: Strategy	- refers to	the on-farr	n and Sche	me salinity
High	-14,449	-19,133	-7,423	-11,327		mitigatio	n and engi	neering str	ategy ador	oted
Medium	-4,200	-8,884	2,826	-1.078		· Uigh M	adium and	I ou rofar	a to the lon	đ
Low	-2,935	-7,619	·-•	.,		productiv	vity type	LOW ICICIS		a

INCREMENTAL BENEFITS OF AN IRRIGATED BEEF FARM OVER DRYLAND FARM OF SAME SIZE

____ .

Option Description			(Af	ter paying th	e full cost o	of water)	74 XIVIL.			
Area Water Charging Policy	a A y Current	A TWEs	B Current	B TWEs	C Current	C TWEs	D Current	D TWEs	E Current	E TWEs
1.	IRRIGATED	BEEF FARM	VERSUS DE	RYLAND FAF	M - TOTAL	REGIONAL	SHUTDOWN	OF IRRIGA	TION alinity affect	ed druland)
 Sirateny 1			(111)/010			. 12070101				
High	-7,110	-9,131	-6,605	-8,626	-6,100	-7,615	-5,594	-7,110	-5,594	-6,605
Medium	-21,532	-23,553	-21,027	-23,048						
Low	-24,349	-26,370								
Siraleyy 2 High	-5 322	-7 596	-4 867	-6 686	-4 413	-6 232	-3 958	-5 777	-3 958	-5 322
Medium	-15.633	-17.907	-15,178	-16.997	-4,410	-0,202	-0,000	-5,777	-0,900	-0,022
Low	-18,100	-20,374								
Strategy 3										
High	-19,631	-22,359	-15,538	-17,812						
Medium	-28,840	-31,568	-24,747	-27,021						
LUW	-31,400	-34,130								
2.	IRRIGATED) BEEF FARM	I VERSUS DI	RYLAND FAF	RM - TOTAL	REGIONAL	SHUTDOWN	OF IRRIGA	TION	
	Over 15	Years	(Improve	d productivi	y of dryland	: +25% for	marginal and	1 +50% for s	alinity affect	ed dryland)
Strategy 1										
High	-7,110	-9,131	-6,605	-8,626	-6,100	-7,615	-5,594	-7,110	-5,594	-6,605
Medium	-21,532	-23,553	-21,027	-23,048						
LOW Stratogy 2	-24,349	-26,370								
High	-5 394	-7 668	-4 939	-6 758	-4 485	-6 304	-4 030	-5 849	-4 030	-5.394
Medium	-15,705	-17,979	-15,250	-17.069	-4,400	-0,004	-4,000	-0,040	-4,000	-0,034
Low	-18,173	-20,447		,						
Strategy 3										
High	-21,661	-24,389	-17,568	-19,842						
Medium	-30,870		-26,777	-29,051						
LOW	-33,438	-36,166								
3.	IRRIGATED) BEEF FARN	I VERSUS DI	RYLAND FAI	RM - THE MI	ARGINAL F	ARM (i.e. Oth	ner farms in	the area rem	ain irrigated)
	Over 80	Years	(No impr	oved produc	tivity of dryl	and)	,			• /
Strategy 1										
High	-7,110	9,131	-6,605	-8,626	-6,100	-7,615	-5,594	-7,110	-5,594	-6,605
Medium	-8,965	-10,986	-8,460	-10,481						
Low	-9,865	5 -11,886								
Strategy 2	E 000	7 506	4 967	C C 0 C	4 410	6 000	2 050	C 777	2 050	E 000
Medium	-3,322	: -7,090 : -5.340	-4,007	-0,000 -4,430	-4,413	-0,232	-3,900	-9,777	-3,900	-0,322
Low	-3.616	5 -5.890	-2,011	~4,400						
Strategy 3	-,									
High	-19,631	-22,359	-15,538	-17,812						
Medium	-16,273	3 -19,001	-12,180	-14,454						
Low	-16,924	-19,652								
4.	Over 15	D BEEF FARN Years	I VERSUS D (No impr	RYLAND FAI	RM - THE M	ARGINAL F	ARM (i.e. Otł	ner farms in	the area rem	ain irrigated)
Stratony 1			, F	1					·····	
Hinh	-7 110	-9 131	-6 605	-8 626	-6 100	-7 615	-5 594	-7 110	-5 594	-6 605
Medium	-8.965	5 -10.986	-8,460	-10.481	0,100	1,010	0,004	7,110	0,004	0,000
Low	-9,865	5 -11,886	-,	,						
Strategy 2										
High	-5,394	-7,668	-4,939	-6,758	-4,485	-6,304	-4,030	-5,849	-4,030	-5,394
Medium	-3,138	3 -5,412	-2,683	-4,502						
LOW Strategy 2	-3,689	9 -5,963			· · · · · · · · · · · · · · · · · · ·					
o <i>iraiegy o</i> High	-21 66-	-01 200	-17 569	_10 9/0	KEY	: Strateg	y - refers to	the on-far	m and Sche	eme salinity
Medium	-18.303	3 -21 031	-14 210	-16 484		mitigat	ion and eng	ineering st	rategy ado	pted
Low	-18,954	4 -21,682	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10,101		: High. N	Medium and	Low refer	rs to the lan	d
		•				produc	tivity type			-

Year of Profit & Loss Statement	A1H Fixed	AIL De-rate	A3H Fixed	A3L De-rate	D1H Fixed	D1L De-Rate	D3H Fixed	D3L De-Rate
Year 5	-1.9	-1.7	-1.9	-1.0	-1.9	-1.8	-1.9	-1.4
Year 10	-1.8	-1.6	-1.8	-0.7	-1.9	-1.7	-1.8	-1.7
Year 20	-1.3	-1.0	-3.3	-2.2	-0.9	-0.7	-1.9	-1.4
Year 30	-1.3	-1.0	-3.0	-1.9	-0.9	-0.7	-1.7	-1.2
Price increase by								
Year 11	1.0	1.9	1.0	4.1	1.0	1.7	1.0	2.8

Table 28 (a) Water Authority Profit and Loss Statements for 4% Return on Assets on the Collie Irrigation District (Values in \$millions)

Table 28 (b) Water Authority Profit and Loss Statements for a zero% Return on Assets for Collie District (Values are in \$millions)

Year of Profit & Loss Statement	A1H Fixed	AIL De-rate	B3H Fixed	B3L De-rate	C1H Fixed	C1L De-Rate	D1H Fixed	D1L De-Rate
Year 5	-0.5	-0.2	-0.6	-0.2	-0.6	-0.2	-0.6	-0.2
Year 10	-0.5	-0.3	-0.6	-0.3	-0.7	-0.2	-0.7	-0.2
Year 20	-0.3	0.1	-0.2	0.1	-0.2	0.1	-0.2	0.1
Year 30	-0.3	0.0	-0.2	0.0	-0.2	0.1	-0.2	0.1
Price increase by Year 11	1.0	1.9	1.0	1.8	1.0	1.7	1.0	1.4

4.4 <u>The Impact on Individual Farmers</u>

All the options, other than Area Option A with a high demand scenario, will have a financial impact on the farm businesses of the Area. In the Low Demand Scenario cases all farm businesses will be affected. In the High Demand Scenario Cases only those outside the boundary of the future service area will be affected.

The financial burden of water price increases, if they are adopted, can be minimised by the way in which the price increases are introduced and other aspects that may be included in the overall strategy (e.g. the introduction of TWEs).

Once an agreed South-West Irrigation Area Strategy is decided each irrigator will need to evaluate their farm operations and plan how much, if any, irrigation water they will continue to purchase and the extent of their irrigated agricultural enterprises.

For some existing farmers this planning may mean the cessation of farming operations in the South-West Irrigation Area, moving to another area, and or out of agriculture altogether. However, it is expected that the majority will simply adjust farm operations to take account of changed water prices and distribution arrangements. Depending on the final strategy adopted many farmers may elect to cease irrigating and continue dryland production from the same land.

Also, the financial impact of the options has been calculated on the average sized enterprise in the Irrigation Area. The impact may vary greatly depending on the size of the enterprise. The impact of a doubling of water prices would be expected to have a larger financial impact on smaller irrigators.

Little is known about the distribution of enterprise size for the horticulture and grazing properties in the Irrigation Area. However, a survey conducted by the Western Australian Farmers Federation in 1990 showed the distribution of dairy farmers by size of home farm area and area permanently irrigated. The distribution is shown in Figures 12 and 13 on the following pages. A summary of the results is also given on the next page in Table 30.

The irrigation committee of WAFF conducted a survey with the assistance of members, to gain information on the details of farms within the irrigation district. This information was collected in August 1990 to assist the Consultative Committee in its Irrigation Strategy Study.

A summary of the results are as follows:

.

Table 29Survey	of Irrigati	on Dairy F	Farms by WA	FF	
IRRIGATION	J ON-FAF	M SURV	EY - AUGU	ST 1990	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
Area class (ha)	Average	<100	100-150	150-300	>300
Number of farms	107	9	28	45	25
% of farms		8.4	26.2	42.1	23.4
Total farm area (ha)	228	67	134	221	405
Irrigation farm area (ha)	121	52	88	119	188
Runoff farm area (ha)	105	17	45	99	220
Perm past irrig area (ha)	38	19	34	33	51
Early germ irrig area (ha)	12	4	11	12	16
Total irrigated (ha)	50	23	45	45	67
Dairy irrig area (ha)	33	19	30	30	46
Dairy early germ area (ha)	12	4	10	11	16
Dairy annual past area (ha)	88	36	60	82	148
Total dairy area (ha)	133	59	100	123	210
Cows calved	134	78	109	135	181
TOTAL STOCK NUMBERS					
Cows	134	86	128	122	180
Replacements	98	39	82	92	147
Steers	64	15	26	58	131
Total milk prodn ('000 L/yr)	611	364	473	603	881
Avge milk prodn (L/cow/year) 4,560	4,667	4,339	4,467	4,867
HAY					
Area from farm (ha)	29	16	20	28	47
Area runoff (ha)	18	5	9	20	28
Total hay area (ha)	47	21	29	48	75
Dairy Hay regul (t)	172	97	135	163	258
Hay storage (t)	148	60	127	142	206
Grain used (t)	75	72	68	75	91
No. silos	1.1	1.2	1.1	1.23	1.69
Runoff block with Yes:		3	11	14	4
irrigation area No:		6	17	31	21

WAFF SURVEY: Area of home farm (Ha)

Source: G Olney, Department of Agriculture, Analysis of WAFF Survey 1990 :7/31/92

- 80 -

Figure 12

WAFF SURVEY: Area irrigated (Ha)

Figure 13

- 81 -

Source: G Olney, Department of Agriculture, Analysis of WAFF Survey 1990: 7/31/92

4.5 Extending the Irrigation Services

During the Phase 2 workshops the question was asked whether it would be profitable to extend the current irrigation service to the Myalup Sands to the West of the main Irrigation Area and the foothills of the Darling Scarp (East of the South West Highway).

Two sub options were developed to evaluate these ideas. These sub-options were subjected to the same financial cost/benefit analysis as the main options.

• Myalup Sands

The Myalup sub-option involved pumping water from the Main Harvey Drain to an area of approximately 600 hectares on the Myalup Sands, west of Harvey. This required the release of extra quantities of water down the drain to ensure a sufficient supply for pumping through a piped scheme servicing fifteen 40 hectare blocks. In total 506 hectares of useable land would be available for permanent irrigation. The value of the net agricultural benefits for horticulture dairying and grazing activities were calculated.

The costs of supplying water to 15 supply points was then calculated.

As it was a new irrigation scheme an additional capital cost (5 per cent return on capital) was included in calculating the cost of water to service this area. This is in accordance with the suggested guidelines for new irrigation projects in the Industries Commission's 1992 report entitled "Water Resources and Waste Water Disposal", Report No. 26, July 1992.

• The Foothills

The pumping of water from existing irrigation channels into farm storage dams on foothills properties with suitable soils adjacent to the channels was also examined. This sub-option required pumping of water every 7 days into the storage dam and then gravity irrigation of the additional permanent irrigated area.

4.5.1 <u>Calculating the Agricultural Benefits</u>

Gross margins were supplied by Peter Eckersley of the Department of Agriculture for horticulure enterprises on the Myalup Sands and the Foothills. These were compared with net agricultural returns for other enterprises using the agricultural net benefits model used to evaluate the main options. Table 30 shows the net difference in agricultural return per hectare for various enterprise activities compared to dryland beef production.

Table 30	Additional Agricultural Return Beef Grazing	n for Irrigation Compared to	dryland		
Use of Land		\$/ha			
Horticulture	Foothills Myalup	1,348 1,560			
Irrigation D	airy	397			
Early Germination Dairy Dryland Dairy		279 206			
Irrigated Beef Early Germination Beef		84 36			

Source: P. Eckersley, Department of Agriculture for Horticulture Gross Margins for Foothills and Myalup

4.5.2 Engineering Costs

Supply to Myalup Sands involves:

- Construction of 90 megalitre/day pumping station for peak requirements.
- 6 kilometres pipeline (in 6 sections) with offtakes approximately every 200 metres.
- Volume pumped on average 5.26 GL/per annum

(Based on 13 mL/ha for actual area planted - 80% of area irrigable at any one time - assumes an average of 10.4 GL/a for whole area serviced - 506 ha)

(a)	<u>Capital Costs</u>	<u>\$ million</u>
	Pipe Costs Pump Station (with replacement of	2.56
	Mechanical/Electric Components)	1.79
	Contingencies (15%)	0.65
	Overheads (5%)	0.22
		5.22

(b) <u>Operating Costs</u>

The operating costs are governed by the head loss through the pipes which in turn is affected by the peak or average nature of the water demand.

If pumping was a uniform rate over the irrigation season basic pump costs would be \$54,000 per annum. If peak rates of pumping over 8 hours per day are assumed pumping costs could be \$100,000 per annum.

\$
85,000
5,000
31,500
121,500

4.5.3 Costs and Charges for Water Provided to Horticultural Farms at Myalup

The following factors need to be considered in setting a water price for water delivered to the Myalup region.:

- capital and operational costs of new distribution (including return on assets).
- component for headworks costs.

In addition the consideration of an allowance for the opportunity costs of the water is also required when considering if it is economic for the State to provide the supply.

The following table summarises the costs which would ensure at least a 5% return on new assets employed, cover the operational costs of the new distribution system and cover the future capital and operating costs of the headworks.

Table 31	Total	Cost	of	Water	Supplied	to	Myalup
	1 0141	0000	<u> </u>		ouppinou	•••	in janap

		OPTIONS		
	Annual Costs \$000's	A1 High Current \$ per n	C2 Low TWE negalitre	E1 Low TWE
New Capital Costs (at 6% over 80 years)	316.2	60.1	60.1	60.1
Operating Cost	121.5	23.1	23.1	23.1
Headwork Cost (Harvey District)	_	7.7	6.0	5.3
Total		90.9	89.2	88.5

Opportunity costs should be calculated to determine the value of the additional irrigation area to the State's economy. These have been estimated in terms of dollars per megalitre for the selected options in the above table. The opportunity costs of Myalup Irrigation Water range between \$120 and \$136 per megalitre.

These costs are high and if incorporated in the charge for water would significantly impact on the development of irrigation in the area. However, if the water entitlement was purchased in a market in which all potential alternative users could compete, then this cost would not need to be included in the price of water purchased. The respective economic values would be resolved through the market place.

4.5.4 Summary of Results

- The cost/benefit analysis undertaken in Phase 2 showed that the development of these options would be profitable for horticulture but not for dairying or grazing enterprises.
- Both these sub options would require the movement of water resources from existing users. The most efficient way for this to happen would be through a transferable water entitlement system.
- The development of these areas for horticulture had a positive net economic benefit, even after taking into account full cost recovery and an additional charge of 5% return on capital for new irrigation schemes (as recommended by the Industries Commission). The further investigation of these sub options on a case by case basis is therefore warranted.

5. THE SOCIAL IMPACT OF THE OPTIONS

5.1 <u>Overview</u>

The main social impact from the adoption of options with reduced demand for irrigation water is expected to be a decline in the number of farm businesses and density of irrigated farms as the area of irrigation falls and irrigation farms are replaced by dryland farms.

As the demand for the irrigation water shrinks the number of irrigation farm households and hence farm population will fall. However, most irrigation farm enterprises will be replaced by dryland farm enterprises albeit with larger average areas and hence fewer people.

The decline in the number of people on farms as irrigation farms convert to dryland enterprises is likely to be offset to some extent by an increase in the number of horticultural enterprises which tend to be more labour intensive and a general trend to increased populations in the three irrigation shires due to the growth in other industry.

5.2 Estimating the Changes in the Number of Farm Enterprises

Using the future area estimates generated for each option a set of results were generated to show the number of farm enterprises expected in Year 30 (Table 33).

These calculations were based on the current average size of irrigated farm operations and assuming the current ratio of permanent irrigation to dryland area. Average farm sizes used in these calculations are shown below.

Table 32	Average Fai	rm Sizes (hectares)						
Horticulture* 20 hectares								
Doin	36	Irrigated Permonent Irrigation	Dryland					
Dany	14	Early Germination						
	180	Dryland	302					
	230		302					
Beef	21	Permanent Irrigation						
	8	Early Germinated						
	255	Dryland	284					

	284		284					

Average Form Sizes (hestores)

*For the intensive horticulture options (Options H and P) an average property size of 40 hectares was assumed.

The number of people engaged in horticulture is expected to grow under all the Phase 2 options.

As irrigation land is relinquished by grazing and dairy enterprises the number of people engaged in these enterprises in the Irrigation Area may fall.

It is more difficult to predict what will happen to the number of part time and hobby farm operators. It is likely that the number of these (139 in 1989/90) will continue to increase as the population of the region increases whether or not the Irrigation Area shrinks in size. Much of the Irrigation Area is in close proximity to Bunbury and there is every indication that industry in the region will continue to grow. This will continue to fuel the demand for blocks for part-time and hobby farm activities.

Table 33 shows the expected impact of the various options on the number of farm enterprises in the Irrigation Area in 30 years time.

TABLE 33

IMPACT OF OPTIONS ON NUMBER OF ENTERPRISES (BY YEAR 30)

	89/90	A 1,2,3H	A 1,2 L	A 3 L	В 1,2,3Н	B 1,2 L	В 3 L	C 1,2,3H	C 1,2 L	C 3 L	D 1,2,3H	D 1,2 L	D 3 L	E 1,2,3H	E 1,2 L	E 3 L	Н	Р	CD
DAIRY																			
Waroona	9	9	6	5	9	6	5	9	6	5	5	6	5	5	6	5	3	3	3
Harvey	80	76	48	43	77	48	43	77	48	43	70	48	43	40	45	43	22	22	22
Collie	80	78	48	43	78	48	43	79	48	43	79	48	43	80	51	43	21	21	21
Total	169	163	102	91	164	102	91	165	102	91	154	102	91	125	102	91	46	46	46
GRAZIN	GRAZING																		
Waroona	16	15	16	16	15	16	16	15	16	16	16	16	16	16	16	16	12	18	18
Harvey	45	41	54	55	43	54	55	43	54	55	46	54	55	54	56	56	45	56	67
Collie	57	57	67	68	57	67	68	58	67	68	58	67	68	57	66	76	76	76	76
Total	118	113	137	139	115	137	139	116	137	139	120	137	139	127	138	140	133	150	161
HORTIC	ULTURI																		
Waroona	4	13	8	8	13	8	8	13	8	8	13	8	8	13	8	8	29	0	0
Нагvey	12	41	25	25	41	25	25	41	25	25	41	25	25	41	25	25	67	32	0
Collie	3	9	5	5	9	5	5	9	5	5	9	5	5	9	5	5	0	0	0
Total	19	63	38	38	63	38	38	63	38	38	63	38	38	63	38	38	96	32	0
TOTAL C	OMME	RCIAL F	FARMS																
Waroona	29	37	30	29	37	30	29	37	30	29	34	30	29	34	30	29	44	21	21
Harvey	137	158	127	123	161	127	123	161	127	123	157	127	123	135	126	124	134	110	89
Collie	140	144	120	116	144	120	116	146	120	116	146	120	116	146	122	116	97	97	97
Total	306	339	277	268	342	277	268	344	277	268	337	277	268	315	278	269	275	228	207
PARTI/T	<u>ME HO</u> 26	<u>BBY</u>																	

Waroon 26 Harvey 72 Collie 41

139

Total

1 88 1

5.3 Population Movements in the South-West Irrigation Area

An analysis of recent population trends shown in Table 34 for the three shires incorporating the Irrigation Area shows that over the last decade to 1991 the population grew by 42 per cent whilst the area irrigated fell by 18 per cent.

Table 34	Recent Changes	in	Population	in	the	Irrigation Area	ı
	Trees on the stanges		r opulation	***		*************	

	Area Irrigated (ha)	Population (3 Irrigatior Shires)	Irrigation Area Total Population	Irrigation Area Population	Irriga Emplo Total	tion Area oyment in (excluding towns)
1981	14,690	14,375	8,934	3,608	934	755
1986	12,851	17,359	9,247	3,763	853	717
1991	12,100	20,471	NA	ŇA	NA	NA

Notes: (1) NA - Not Available

- (2) Detailed data for Collector Areas from the 1991 Census is not expected to be available until late in 1992 to enable this table to be completely updated.
- (3) The Irrigation Area comprises Collector Areas 0615, 0616, 0617 and 0503.

The impact of the reduction of commercial irrigated farming businesses on reductions in the number of people in the South-West Irrigation Area is likely to be masked by the general increase in the population of the South-West Irrigation Area. Any drop in resident farm population due to the decline in the number of commercial irrigated farm enterprise is expected to be more than offset by increases in population flowing on from increased retirement settlement and increased resource processing, industrial activity in the Perth to Bunbury strip resulting in more employment options in the region. Whilst the nature of the population mix may well change (in terms of occupation and age) the region is expected to undergo further increases in population regardless of which irrigation option is adopted.

During the Phase 1 survey of irrigators a number of people expressed a concern about the negative effects of population increase in the area due to urban encroachment and industrial development. However, it was ranked as the seventh issue of concern along with other concerns such as the increasing price of land, pressure from the environment movement and the problem of having to maintain productivity increases.

Farmers in the South-West Irrigation Area are fearful that farming will be 'over run' by other industry. Whilst farmers are divided in their opinion on whether increasing population due to urban development or industry is a problem the commonly expressed concerns are:

- downgrading of the agricultural importance of the area;
- possible loss of jobs;
- wasting of highly productive agricultural land; and,
- the loss of tourist and aesthetic value of green fields in summer.

It was concluded that the major social impact changes on the Irrigation Area will continue to be due to factors other than the Irrigation Strategy adopted. Planners should be mindful of the concerns expressed by farmers and in particular about the impact of urban and industrial encroachment onto high productivity land.

5.4 <u>The Impact on Individual Farmers</u>

All options other than Area Option A with a high demand, will produce a financial impact on some or all individual farm businesses. This has been described in Section 4.4 of this report. This in turn will produce a social impact on individual farm households.

There may be significant disruptions to households from decisions to cease irrigation activities and revert to dryland production (in some cases the social consequences could well be positive as less out of hours work activities would be required). In some cases the financial assessment of the outcome of the strategy may lead to the decision to relocate to another district or leave farming altogether.

It is recognised there will be considerable social impact on individual farm families from the adoption of different options. The final strategy can, however, significantly affect the social impact. For example, long lead times could be given to enable individuals to plan their futures and continue to provide advisory and social support services to assist farmers to make these adjustments with minimal impact on their families and themselves. These aspects need to be further developed in Phase 3 and 4 of the Study.

6. ENVIRONMENTAL EVALUATION I - NUTRIENT DISCHARGE

6.1 <u>Introduction</u>

The shallow, poorly flushed estuaries and wetlands of the South-West of Western Australia are very susceptible to major algae blooms when their streamflow input is enriched by nutrients.

The process of nutrient enrichment (eutrophication) has become a major problem in most of the western and southern coastal estuaries where sandy coastal soils have been cleared for agricultural development.

The worst example is the Peel/Harvey Estuary. However, real concerns also exist about the eutrophic state of the Leschenault Inlet.

All of the Waroona District and 50% of the Harvey District drain to the Peel/Harvey Estuary. All of the Collie District and 35% of the Harvey District drains into the Leschenault Inlet. Consequently nutrient discharge from the irrigation districts is a major environmental factor to be considered in the future of the irrigation service.

Investigations into the cause of eutrophication of the Peel/Harvey estuary commenced over 15 years ago. The final outcome has been the adoption of a major Government restoration program to significantly reduce the frequency of algal blooms in the estuary.

It has two components. The first is the construction of the Dawesville cut; a new channel between the ocean and the estuary to promote increased flushing of nutrients from the estuary each tidal cycle. The second is a catchment management program aimed at reducing nutrients discharge from the coastal plain catchment to the estuary by 50%. Both components are necessary if algal blooms in the estuary are to be controlled.

Investigations into the sources of nutrients commenced in the late 1970s and showed that Phosphorous was the limiting nutrient for algal growth.

Subsequent sampling and analysis has concentrated on this nutrient. The annual load of total phosphorus to an estuary, relative to the estuary's surface area, is the most critical parameter affecting its eutrophic status. The annual nutrient load is essentially a product of the annual average total phosphorus nutrient concentration with the average annual streamflow. The highest concentrates of dissolved phosphorus in the coastal plain areas are recorded on the Bassenden Sands to the west of the current irrigation districts (Ref 1).

Initial catchment management actions were centred on reducing nutrient loads from these areas. However as studies progressed through the 1980's there has been a growing realisation that high nutrient loads also occur from irrigated areas. High water yields, combined with moderate concentrations of total phosphorus in streamflow, produce a total phosphorous discharge loads that are similar to those from the Bassenden soils. In addition irrigated dairying is now seen as a significant contributor to phosphorus input into coast estuaries (Ref 2).

A reduction of 50% in the overall nutrient load to the Peel/Harvey Estuary will be difficult to achieve. In establishing this target Government has argued that, for equity reasons, all parts of the catchment should seek to reduce their contribution by 50%.

While this approach can be considered to apply at a sub catchment or individual farm scale, it has been taken here to apply to that portion of the current irrigation area which drains into the Peel/Harvey Estuary.

Major improvements in nutrient discharge management of irrigated lands will be required to achieve the 50% target. In this analysis estimates are made of the effect of future options for the irrigation service.

These have been prepared to highlight the relative impact of different scales of irrigation and roughly compare them with other nutrient management methods which are likely to be introduced over the next 15 plus years.

6.2 Phosphorous Export

6.2.1 General Approach

While considerable nutrient monitoring has been carried out at large catchment scales and for detailed small catchments with sandy soils, it has only been in the last one or two years that monitoring of irrigated dairying areas has commenced.

However, data from two catchments, one with reliable flow data and the other with reliable nutrient concentration, data are available to estimating average nutrient export rates from irrigated land. This is supplemented by additional sampling data from north of the irrigation district by the Department of Agriculture (Ref. 3). This information, together with related estimates from the literature enabled estimates of average rates of total phosphorous export per cleared per hectare to be made for a range of soil types, farm enterprise types and types of irrigation.

Nutrient loads contributing to the three catchments of the Peel/Harvey, Leschenault Inlet and the Harvey Diversions Drain were calculated in the following way. Areas of enterprise type, irrigation type were estimated from the Agriculture Economics Model. Existing mapping defined the known soil and catchment boundaries. Simplifications of soil types into the two categories were adopted - Dardanup loams and Pinjarra plains clays. Small areas of Serpentine River and Southern River soils were assumed to have the same phosphorous export rate per ha as the Guildford Formation or Pinjarra plain clays.

While known to be a simplification, the areas of these soils within the irrigated districts were relatively small. Drainage boundaries were defined from mapping of the drainage network through the area. Digital computation of the intersection of drainage boundaries with soil boundaries were performed to estimate the areas of agricultural land in each soil type within each catchment for each Irrigation Strategy Option.

The resultant areas were simply multiplied by their respective annual average total phosphorus export rate and summed over each catchment to estimate the annual total phosphorus discharge for each catchment.

6.2.2 <u>Total Phosphorous Annual discharge rates</u>

(a) <u>Irrigated and Dryland Beef Grazing</u>

Irrigated beef grazing is the main land use within the Sampson Brook North Catchment in the Waroona Irrigation District.

Reliable phosphorous concentrations have been estimated since 1983. However water yields are unreliable as the definition of the catchment is unclear. An adopted figure of 350mm, taken from Vindictive Drain Catchment (Phase 2 Supplementary Paper 4) has been adopted. The annual total phosphorous concentration between 1983 and 1988 was 0.376 mg/L.

The resultant total phosphorous discharge for the catchment is $3500m^3/ha \ge 0.376 \ge 10^{-3} \text{ kg/m}^3 = 1.31 \text{ kg/ha}$ of total phosphorous export per annum.

Sampling in the Mundijong/Serpentine area in 1991 by the Department of Agriculture suggests that dryland beef grazing nutrient discharge could range from 0.4 kg/ha to about 1.0 kg/ha.

A figure of 0.6 kg/ha has been adopted here as representative of discharge from the heavier clay soils of the Pinjarra Plain. On the basis that 30% of the North Sampson Brook Catchment was irrigated then the nutrient land for the irrigated paddocks would be approximately 3.0 kg/ha.

Discharge from the Dardanup loam soils has been taken as 40% of discharge from the heavier Pinjarra Plain clays. This is based on the current estimates being used by the Department of Agriculture in their Decision Support System Model of nutrient discharge from coastal plain.

(b) <u>Dairying</u>

The stocking rates assumed for beef grazing and dairying are similar. Therefore the general paddock grazing contribution to nutrient discharge are likely to be similar for a beef or a dairy herd. However the dairy and associated holding paddocks and feeding areas on a dairy farm significantly add to the nutrient export of a dairy farm overall. It is common practice for dairies to discharge washdown waters into nearby surface drains. These discharges contain faeces and waste milk accumulated from the milking sheds. In addition the twice daily washdown, commonly involves the use of phosphate based detergent cleaners and phosphoric acid as a sterilising solution. The Department of Agriculture has estimated a Phosphorous export rate of about 3.3kg/cow per annum from one large dairy and associated feeding area in the district. This translates to about 350kg/yr per average 107 cow herd. For the average irrigated dairy farm of 230 ha, this represents a unit area load of 1.53 kg/ha per annum.

For a larger scale dryland farm it represents 1.17 kg/ha but was rounded down to 1.0 kg/ha because of lower likelihood of waterlogging and direct discharge to drainage on a dryland farm.

To be useful in the context of the predicted areas of farm enterprises produced from the Agricultural Economic Model of the options, the additional nutrient load from the dairy and associated yards must be distributed between the irrigated perennial pastures, the irrigated annual pastures and the dryland pastures. This was done using the average proportions of each as determined from the WAFF dairy farm survey.

The resultant nutrient loads were added to the previous beef grazing values to obtain the final estimates for the dairy enterprises. Note that the irrigated annual pastures were assumed to discharge at the same rate as dryland pastures plus 20% of the difference between irrigated perennial and dryland pastures. This is proportional to the water application rates for irrigated annual pasture relative to irrigated perennial pastures.

The additional nutrient discharge from dairies and the associated yards was not varied between soil types. The resultant figures are summarised in Table 35.

		SOIL TYPE				
IRRIGATION TYPE	FARM ENTERPRISE	DARDANUP LOAMS	PINJARRA PLAIN SOILS			
		(kg/ha)	(kg/ha)			
Horticulture	Fruit	1.00	-			
	Vegetables	1.00	-			
Irr. Perennial	Dairying	5.20	7.00			
	Grazing	1.20	3.00			
Irr. Annual	Dairying	2.03	2.68			
	Grazing	0.41	1.10			
Dryland	Dairying	1.24	1.60			
	Grazing	0.24	0.60			

Table 35Total Phosphorous Annual Export Rates per Unit Area

Table 36 summarises the areas of agricultural land of high, medium and low productivity within the 2 soil types and three catchment areas in the Harvey Irrigation District. Also shown are the different catchment areas for Option D where the drainage has been altered.

CATCHMENTS	Peel/F Catch	Iarvey Iment	Lesche Catch	enault ment	Harvey I Drain Ca	Diversion atchment
SOIL TYPE	Dardanup Loams	Pinjarra Plain Clays	Dardanup Loams	Pinjarra Plain Clays	Dardanup Loams	Pinjarra Plain Clays
With current Drainage High Moderate Low	815 72 63	4584 673 1028	1502 4 0	669 480 2446	1347 37 0	643 194 94
With modification to drainage for Option D High Moderate Low	on 0 0 0	1705 291 759	2152 76 63	3712 862 2715	1347 37 0	643 194 94

Table 36Areas of Agricultural Land by Catchment Area in the Harvey IrrigationDistrict (hectares)

Depending on the Agricultural Economic Model, each option results in a different mix of farm Enterprises within each productivity zone. The product of those areas with the Table 37 unit area discharge rates are summed across each catchment to provide the final total phosphorous export for each option.

6.2.3 <u>Phosphorous Export Estimates for the Strategy 1 Options</u>

Tables 37 and 38 summarise the total annual tonnes of phosphors exported to the three catchment outlets from the study area for the Strategy 1 options at year 30 for the high and low water demand cases.

with the exception of Option DIH in the Leschenault Catchment and BIH in the Peel Harvey Catchment all options result in reduced nutrient export loads relative to maintenance of the current situation (Option A1H).

Optio and E	on District	Peel/Harvey Catchment	Leschenault Catchment	Harvey Diversion Drain Catchment
A1H	WaroonaHarveyCollie	6.79 19.41	12.16 36.40	5.06
	Total	26.20	48.56	5.06
B1H	WaroonaHarveyCollie	6.54 20.07	9.65 36.30	5.49
	Total	26.61	45.95	5.49
C1H	WaroonaHarveyCollie	5.86 19.49	9.06 34.27	5.32
	Total	25.35	43.33	5.32
D1H	WaroonaHarveyCollie	3.81 6.55	19.87 34.27	4.89
	Total	10.36	54.14	4.89
E1H	WaroonaHarveyCollie	3.81 11.38	6.27 35.29	3.15
	Total	15.19	41.56	3.15
Р	WaroonaHarveyCollie	2.82 7.72	5.02 15.74	2.22
	Total	10.54	20.76	2.22

Table 37Strategy 1 Phosphorus Export Totals for the High Water Demand
Case at Year 30 (Tonnes of Total Phosphorus per Year)

Optic and I	on District	Peel/Harvey Catchment	Leschenault Inlet Catchment	Harvey Diversion Drain Catchment
A1L	WaroonaHarveyCollie	4.99 13.80	7.05 24.45	3.85
	Total	18.79	31.50	3.85
B1L	WaroonaHarveyCollie	4.99 13.80 -	7.05 24.45	3.85
	Total	18.79	31.50	3.85
C1L	WaroonaHarveyCollie	4.99 13.80	7.05 24.45	3.85
	Total	18.79	31.50	3.85
D1L	WaroonaHarveyCollie	4.06 4.89	17.15 25.72	3.85
	Total	8.95	42.87	3.83
E1L	WaroonaHarveyCollie	4.25 12.26	6.57 26.34	3.45
	Total	16.51	32.91	3.45
CD	WaroonaHarveyCollie	2.82 7.25	4.83 15.74	1.93
	Total	10.07	20.57	1.93
H	WaroonaHarveyCollie	3.68 8.37	5.09 15.74	2.51
	Total	12.05	20.83	2.51

Table 38Strategy 1 Phosphorous Export Totals for the Low Water Demand
Case at Year 30 (Tonnes of Phosphorus Per Year)

In the most critical catchment of the Peel/Harvey, however, a target of a 50% reduction has already been set by Government.

Under a high demand scenario cases, Options D1H, P and H and Closedown would achieve the 50% reduction target if no other management actions were taken. The small increases in nutrient discharge in the B1H case is caused by an increase in dairying in the Harvey Districts.

The higher nutrient export to the Leschenault Inlet catchment in Option D1H (11.5%) is a result of the proposed extensions to the Mangosteen Drain which redirects approximately 5,100 ha from the Peel/Harvey Catchment to the Leschenault catchment. There is scope to modify the current siphon at the Mangosteen Drain - Harvey Division Drain intersection so that some of the flow can be diverted down the Harvey Division Channel. This will not be able to occur at times of high flow in the Harvey Diversion Channel as backwater effect could potentially exacerbate flooding along the Mangosteen Drain. Consequently the relative amount of the nutrient discharge which could be diverted into the Harvey Diversion Channel is uncertain at this stage. It is likely, however, that a system could be developed so that the overall nutrient input to the Leschenault Catchment (given the extension of Mangosteen Drain as proposed in Option D, was not increased. Further detailed investigations would be required and additional costs over those estimated in Option D would be required.

Under the low water demand scenario nutrient export is likely to reduce to at least 72% of current levels without additional nutrient management improvement in all cases. However, again only options D1L, P and H and Close Down achieve a 50% reduction in nutrient exports if no other management actions were taken. Note also that in the Low Demand Case nutrient export to the Leschenault Inlet is not increased in Option D relative to current discharge.

6.2.4 <u>Phosphorous Export Estimates for Series 2 Options and Additional Nutrient</u> <u>Management Strategies</u>

The Strategy 2 Options improve water application and efficiency rates by about 20 to 25% each watering. However, twice the waterings are proposed and an overall 10% reduction of on-farm water needs has been assumed in the other components of the study.

In the nutrient calculations context a 15% reduction in nutrient export has been adopted. A reduction in proportion to the water efficiency improvement would be the first simple estimate. However, the redesign of bays, table drains and headditches proposed under Strategy 2 provides scope to improve the nutrient retention potential if specifically considered in the redesign. A higher reduction than 15% is clearly possible but further development and demonstration of the effectiveness of other techniques is required before a higher figure could be adopted.

The high nutrient discharge from the dairies and associated yards has already been targeted as a major area for improved management.

The Department of Agriculture has been working with selected farmers to build holding ponds to minimise nutrient discharge from such areas. Reductions of order 50% and higher are considered possible.

Annual export rates per unit area for a range of improved management measures are summarised in Table 39. They include the 15% reduction estimated from the introduction of Strategy 2 and a range of reductions from different degrees of control of dairy effluent.

Table 40 summarises the resultant nutrient export rates to the Peel-Harvey Estuary from the Irrigation Area for selected options.

IDDICATION		50	DEGREE	OF 'DAIR'	Y EFFLUE	NT' CON	TROL
TYPE	ENTERPRISE	Dard. Loams	% Pinjarra P.Clays	Dard. Loams	% Pinjarra P.Clays	Dard. Loams	% Pinjarra P.Clays
Horticulture	Fruit	1.0	-	1.0	-	1.0	-
	Vegetables	1.0	-	1.0	-	1.0	-
Irr. Perennial	Dairying	3.02	4.55	2.02	3.55	1.42	2.95
	Grazing	1.02	2.55	1.02	2.55	1.02	2.55
Irr. Annual	Dairying	1.17	1.72	0.77	1.32	0.53	1.08
	Grazing	0.35	0.94	0.35	0.94	0.35	0.94
Dryland	Dairving	0.70	1.01	0.45	0.85	0.30	0.61
,	Grazing	0.20	0.51	0.20	0.51	0.20	0.51

Table 39Total Phosphorous Annual Export Rates per Unit Area given improved
Nutrient Management

Note: Assumes that a 15% reduction occurs in nutrient export from irrigated and dryland paddocks due to the adoption of Strategy 2 improved on-farm practices.

			-		
Optio and E	n District	Zero Dairy Effluent Reduction	50% Dairy Effluent Reduction	75% Dairy Effluent Reduction	90% Dairy Effluent Reduction
A2H	- Waroona - Harvey		5.02 13.20	4.47 10.49	4.13 8.98
	Total		18.22	14.96	13.11
E2H	- Waroona - Harvey	3.49 10.57	2.84 7.97		
	Total	14.06	10.81		
E1H	- Waroona - Harvey	3.81 11.38	3.11 8.53		
	Total	15.19	11.64		
C2H	- Waroona - Harvey			3.67 10.22	3.34 8.63
	Total			13.89	12.97
A2L	- Waroona - Harvey		3.76 9.57	3.32 7.63	
	Total		13.33	10.95	
C2L	- Waroona - Harvey		3.76 9.57	3.32 7.63	
	Total		13.33	10.95	

Table 40Total Phosphors Annual Export Totals Given Improved Nutrient
Management for the Peel/Harvey Catchment
Table 40 (Continued)

Total	Phosphors	Annual	Export	Totals	Given	Improved	Nutrient
Manag	gement for t	he Peel/F	Iarvey C	atchmen	t (Conti	nued)	

Option and District	Zero Dairy Effluent Reduction	50% Dairy Effluent Reduction	75% Dairy Effluent Reduction	90% Dairy Effluent Reduction
D2L - Waroo - Harvey	na	2.96 3.40		
Total		6.36		
E2L - Waroo - Harvey	na	2.96 8.49		
Total		11.45		

Table 40 shows that very high levels of control of effluent from dairies throughout the region will be required if the 50% reduction target from the irrigated area is to be achieved. This is particularly the case if demand for irrigated land remains high.

The degree or percentage of dairy effluent reduction necessary to achieve a 50% reduction in nutrient discharge from Irrigation Area draining to the Peel/Harvey catchment has been estimated from Tables 37 and 41 and summarised in Table 41. Table 41 shows the effect of Area Options, the High and Low Demand scenarios and the effect of the two on-farm nutrient management strategies.

The table demonstrates that it will be virtually impossible to achieve a 50% reduction in total nutrient export form the irrigated area if no other action, other than controlling dairy effluent takes place.

If demand for a irrigated agricultural land remains high, then the application of improved watering and improved fertiliser practices on paddocks together with dairy effluent control, will be a high priority for nutrient management.

	Strate	egy 1	Strate	gy 2
Area	High	Low	High	Low
Option	Water	Water	Water	Water
•	Demand	Demand	Demand	Demand
А	100 +	65	90	52
В	100 +	65	90 +	52
С	90 +	65	84	52
D	0	0	0	0
E	30	40	15	20
Н	0	-	0	-
Р	0	0	0	-

 Table 41
 Percentage of Dairy Effluent Control Necessary to Achieve 50% Reduction in Nutrient Discharge to Peel/Harvey Estuary

Note: Based on Table 36 and Table 40 together with some additional runs not included in either table.

6.3 <u>Conclusions</u>

- A trend the towards conversion of irrigated agriculture to dryland grazing will reduce nutrient inputs to the Peel/Harvey and Leschenault Estuaries from the South-West Irrigation Area.
- Given a high demand for irrigation land and no other nutrient management control measures, the irrigation areas would have to reduce to only 25% of their current size in Waroona District (Option D) and less than 32% (Option E) in the Harvey Districts to achieve a 50% reduction in the nutrient load to the Peel/Harvey Estuary.
- The extension of Mangosteen Drain (Option D in Harvey) reduces nutrient loads from the Irrigation Districts by over 50% and maintains about 65% of the original irrigation district.
- Given a low demand for irrigation land, and no other nutrient control measures, then nutrient loads from the current irrigation are likely to reduce to at least 72% of current levels (options A1 Low to C1 Low).
- If a high water demand occurs then over a 90% reduction in nutrient discharge from farm dairies and associated holding areas, and a 15% reduction of nutrient discharge from farm grazing paddocks, would be required to achieve the overall 50% reduction in nutrient export.
- If a low water demand occurs, then about a 65% reduction in nutrient discharge from farm dairies and associated holding areas, would be required to

achieve the overall 50% reduction area nutrient export. If improved water practices and associated other measures are introduced which reduce nutrient discharge from paddocks by 15% (Strategy 2), then dairy discharge would only have to be reduced by about 50%.

- Option E, which restricts irrigation to the Dardanup Loams in the Peel Harvey Catchment, would required about a 30 to 40% reduction in nutrient discharge from dairies and associated holding areas to achieve the overall 50% reduction in nutrient export. If improved watering practices and other nutrient controls were introduced (Strategy 2), then dairy discharge would only need to be reduced by 15 to 20%.
- Options D, H and P could achieve a 50% reduction in overall nutrient export without additional on-farm nutrient management measures being taken.

7. ENVIRONMENTAL EVALUATION II - WATER LOGGING, SALINITY AND PASTURE PRODUCTIVITY

7.1 Introduction

The Phase 1 report highlighted the significance of a salinity mitigation strategy to the long term future of the irrigation districts. In that preliminary analysis a comprehensive salinity mitigation strategy was costed at over \$51 million (NPV over 30 years).

The economic analyses indicated that, if such a program was required to maintain current pasture productivity levels, then the overall irrigation scheme would be uneconomic. The need for a much more detailed investigation of the salinity issue in Phase 2 was clearly highlighted.

The following section summarises the investigations carried out to better define the regional and local hydrogeological settings of the salinity problem, and to determine the most appropriate salinity mitigation strategies to evaluate in detail.

7.2 <u>Hydrogeological Investigations</u>

Two new studies were commissioned to build on and update the Department of Agriculture's work on salinity on the coastal plain. They were designed to assist in the development of the most appropriate range of salinity mitigation strategies to be costed in the Phase 2 studies.

Mackie Martin & Associates were engaged to integrate the collective hydrological knowledge of the area and the effect of irrigation on regional groundwater flow systems. A groundwater model of 2 cross-sections of the coastal plain was calibrated against known groundwater monitoring data and available knowledge on hydraulic properties of the aquifer systems. Figure 14 shows the Harvey (Cookernup) cross-section and Figure 15 shows the simulated steady state distribution of salinities at the Cookernup cross-section. Estimates were made of groundwater recharge from both upslope and within the irrigation district and model runs carried out to evaluate the regional impact of different salinity strategies. The drain spacings necessary to achieve a 1.5 metre reduction in regional water tables was also studied using drainage theory and outputs from the model. The results are included as in Attachment 6.

To ensure the best possible input data to the modelling, estimates of channel leakage and groundwater recharge were reviewed and upgraded. Water and salt balances of a small (200 ha) irrigated catchment on the coastal plain near Dardanup (Vindictive Drain) were completed for a ten year period to 1987/88, updating earlier work by the Department of Agriculture. These are summarised in Supplementary Paper Number 4. Channel leakage estimated were also made at a number of points through the districts and channel losses distributed through the districts.

The main conclusions from the hydrogeological investigations are discussed below.

- 106 -

Figure 15

The control of recharge upslope from the irrigation district has only a small effect on the groundwater levels in the critical western and central regions of the irrigation district. The effect is to mainly reduce recharge to and pressure heads in the underlying Leederville aquifer. This has only an indirect benefit by enabling a greater downward flow from the superficial formations. Some benefits of improved salt flushing from the shallow soils will occur. However, spending large sums of money to reduce recharge form either channel leakage or upslope cleared areas would not be very cost effective from a salinity perspective.

There is scope for lowering water tables by improving irrigation watering practices. A 50% reduction in groundwater recharge throughout the region could lower regional water tables at the end of summer by about 0.3 of a metre.

The phasing out of irrigation in the saline western portion of the current districts could reduce regional water tables in that area by 0.6 to 0.7 metres. The impact of recharge control is effectively limited to the region over which the control occurs.

While seen as relatively minor by effects on the regional water table by Mackie Martin and Associates these changes have potential to positively impact pasture productivity.

The salt balance calculation of Vindictive Drain Catchment (Supplementary Paper Number 4) indicated that salts accumulate over the summer months in the shallow soils of the catchment and are leached from the catchment each winter. However, net winter leaching is insufficient to remove the summer accumulation and a net annual salt accumulation of 500 kg/ha/annum results.

Lower estimates of accumulation would be occurring in the shallow soils of the Harvey district. Mackie Martin (Supplementary Paper 3) used these shallow soil accumulations rates, together with other input from channel leakage and computed fluxes from their modelling, to calculate regional hydrogeological salt balances for the Cookernup and Waterloo cross-sections.

From this regional perspective the results suggest that the Harvey Irrigation Area is close to equilibrium with respect to salt inputs and outputs. Much of the shallow soil, salt accumulation and salt from channel leakage appears to recharge the Leederville Groundwater System in the eastern productive portions of the Harvey district.

In the Collie area, a net accumulation of salt was calculated, with the highest accumulation rate in the western (salt affected region). Higher supply water salinities and lower rates of Leederville leakage are the main reasons for the difference between net salt balance in the two cases.

However, only gradual increases with salinities in the Collie District over the next thirty years are expected.

Review of the groundwater hydrograph data in the irrigation districts indicates that water table levels are controlled by existing surface drains and evaporation from the water table. Significant increases in the level of shallow water tables are not expected in the Harvey district. Some increases are still occurring (Phase 1 Background Paper 6) in the Collie Districts. However, overall future productivities from agriculture will be governed by the slow increases in groundwater salinities in the Collie District more than anything else.

The overall picture then is that pasture productivity is already affected by high saline groundwaters in the western portions of the irrigation district, but that the situation will not deteriorate greatly, particularly in the Harvey District.

Table 42 summarises the estimated utilisable tonnes of dry matter/ha with current levels of salinity and current practices. Although a minor decline is likely in the Collie District these figures have been used as the basis of scaling the gross margins across the districts for the Strategy 1 Options. Details of the approach used are given in Section 3.2.1.

Table 42	Current Matter/h	Pasture a)	Productivity	Levels	(Utilisable	Tonnes	of	Dry
Pasture Type		Hig Produ Lar	gh ctive nd	Me (Mar salt at	dium ginally ffected)	Low (Sal affecte	, t ed)	
Irrigated perennial Early germination Annual		7. 6. 4.	6 0 4		5.7 4.8 3.8	3.8 3.0 2.2		

7.3 Possible Salinity Mitigation Strategies

Means of improving pasture productivity cost effectively is crucial if the industry is to survive and prosper. This section describes the range of measures considered in formulating the Strategy 2 and Strategy 3 options.

7.3.1 Groundwater Control Options

(a) <u>Drainage</u>

The model developed by Mackie Martin was used to simulate the regional impact of different drainage strategies. Different uniform extraction rates were applied at the top node of the model and the impact of predicted water levels noted. Drainage theory was applied to then determine the necessary spacing of drains to achieve that volume abstraction, given the calibrated hydraulic conductive used in the model.

They conclude that water tables could be lowered to a minimum depth of 1.2 metres with 2 metre deep drains spaced at between 50 and 100 metres.

However, following review by the Technical Working Group it was decided that the hydraulic conductivity appropriate for regional scale modelling were not appropriate for the local shallow drain scale spacing design.

Construction difficulties in the heavy clays of much of the western salt affected area suggest that horizontal hydraulic conductivities would be at least 1 order of magnitude lower that those used in the regional model. The drainage theory developed in Supplementary Paper No 3 was re-applied using a local hydraulic conductivity. A value 10 times less permeable than the model calibration figure was used to develop appropriate drainage spacings. Sample calculations and cost estimates are given in Attachment 6.

(b) <u>Aquifer Dewatering</u>

Mackie Martin also argued that deeper drains that lowered the water table on a regional basis would be more effective in exporting salt than shallow drains which intercept largely transient shallow flow. While this is true, practical difficulties and increased costs are associated with construction of drains at depths greater than 2.5 metres. Moreover, shallow drains can be effective at reducing transient local high and saline water tables caused by irrigation applications.

The deeper drainage approach was considered in the context of regional dewatering of the Yoganup Formation. This is the most conductive hydrogeological formation of the coastal plains superficial aquifiers. It overlies the Leederville Formation and underlies the Guildford Formation (see Figure 14) and if dewatered would lower water table levels at the surface. Simulations based on drawings $0.5m^3/m$ from a line of bores in the Western Region of the Cookernup Section resulted in reductions in watertable elevations of 1.1 metres. The costs of this approach are also summarised in Attachment 6.

7.3.2 Improved On-Farm Water and Pasture Management

The Phase 1 study highlighted the scope to improve pasture productivity by better surface water management and pasture management practices (Phase 1 Background Paper 5).

Many farmers are implementing more frequent watering, laser levelling and surface ripping/mole draining to improve their pasture productivity.

These approaches have three main benefits. Firstly they minimise water logging and promote pasture growth. Secondly they promote uniform watering and enable better control of drainage over flow. Thirdly they minimise recharge to the underlying groundwater.

The Technical Working Group developed a set of measures including:

- whole farm planning;
- bay length and slope reforming, head ditch and tail drain reforming; and,
- surface ripping/mole drainage to existing surface drainage; and,
- 6 to 8 day waterings.

to cost and evaluate their effectiveness.

7.3.3 Other Approaches

Methods of controlling channel leakage and improving agricultural production by tree planting was also evaluated. Papers by CALM and Department of Agriculture offices (Refs 5 and 6) were prepared which showed that although commercial returns from trees planted on the heavy soils would be doubtful (Ref 5), their value for stock shade and shelter was significant. Trees will have some small value in reducing groundwater recharge from channels and drains at little cost. Their agricultural benefits would cover their costs of establishment.

7.4 Formulation of Strategy 2 and Strategy 3 Options

This section discusses the development and adoption of the two salinity mitigation strategies used in the Phase 2 economic and financial analysis. They are a mix of the possible control measures described in the previous section. The following section (Section 7.5) summarises their likely productivity improvements.

7.4.1 <u>Strategy 2</u>

At the November 1990 workshop it was proposed to develop an enhanced mitigation strategy which aimed to reduced recharge from channels by 50% and which would reduce by 50% the area over which groundwater was closer than 1 metre to the surface.

As investigations of the hydrogeological setting, regional salt balances and drainage layout designs developed, the Strategy 2 salinity control approach evolved. The task became one of developing a suite of practices that would be practical and affordable to the farmer and would improve overall productivity.

Three approaches were considered and are briefly discussed in turn:

(a) On-farm redesign to improve water and pasture management.

plus

10% tree plantings adjacent to channels and drains.

As discussed in Section 7.3.2 above, and in more detail in background paper 5 of Phase 1, higher pasture productivities are possible from improved surface water and pasture management. The suite of measures proposed in Section 7.3.2 were included in all proposed mitigation strategies as they were assessed as highly cost effective to the irrigators.

The concept of 10% tree cover arose primarily from the significant agricultural benefits that shade and shelter provide livestock production. Trees are known to both reduced groundwater recharge and lower water tables, although usually only within the immediate area of the tree plantings. The tree plantings were proposed to be adjacent to channels and drains to maximise their hydrologic effect. However, they need to be carefully placed so as not to increase the maintenance costs and access difficulties to the channels and drains.

(b) On-farm redesign to improve water and pasture management

plus

Sub-surface drainage of irrigated land in the western and central regions with the following conditions.

- 50 metre spacing
- 2.3 metre depth
- cost \$2,100/ha

Drainage at 50 metre spacings, while being affordable at \$2,100/ha, is only being fully effective for 15 metres either side of the drain. Productivity improvements of only 30% of a comprehensive drainage program were assessed.

(c) On-farm redesign for improved water and pasture management.

plus

Piping of feeder and lateral channels (rather than main supply channels) to control on-farm recharge and improve watering operations.

The productivity gains from piping feeder channels were small (20% of the low pasture productivity figure of the western areas) relative to the high capital cost. Only small reductions in the recharge to groundwater from tree planting were assessed but their other benefits to agricultural production makes it a low cost strategy.

Follow up review of the likely costs and potential benefits by the Technical Working group indicated that the most likely cost effective strategy of the three was Case (a). This was adopted as the most appropriate Strategy 2 approach. Many uncertainties remain about the most appropriate mix of pasture improvement strategies. Further investigations of the appropriate mix of sub-surface drainage and mole drainage is warranted.

7.4.2 <u>Strategy 3</u>

The Strategy 3 case represents the "Rolls Royce" approach to salinity mitigation. It includes full piping of the distribution system, a comprehensive program of water table control in the western and central portions of the districts and the best practices of surface water and pasture management throughout the area.

As noted earlier piping of the irrigation distribution systems, particularly the main supply channels will have limited benefit for salinity control. However, the water saved could be used for other purposes. Piping also reduces operating costs substantially and was specifically asked to be evaluated by the farming community. The comprehensive control program involves either regional pumping from Yoganup Bores or a drainage program on irrigated paddocks based on 15 metre spacings and a depth of 2.3 metres. Both approaches are costly and have practical difficulties in implementation. The cheapest and most effective approach will be implemented over time if either are shown to be economic. An average cost of \$4,500/ha was adopted for the analysis on the basis of a 50% mix of approaches.

In addition there are benefits that occur to dryland farming if irrigated agriculture is phased out of a whole region (Supplementary Paper 3). These were considered when reviewing the financial effects of the various strategies from the farmers perspective.

7.5 Estimation of Productivity Gains from Strategies 1, 2 and 3

7.5.1 Approach

The overall assessment of the impact of the three strategies on the pasture productivity of the three separate productivity regions was made in the following way.

The improved surface water and pasture management (Strategy 2) were based on reaching 80% of the pasture productivities achieve on Kyabram Research Station in Victoria in the high productive region. Lower levels of production were adopted for central and western regions. As these figures are averaged for whole regions it was not considered realistic to achieve values equal to research station results.

The productivity gains from water table changes caused by Strategies 2 and 3 were developed by

- adopting a 50% reduction in the on-farm summer accessions to the water table by introducing Strategy 2 (N.B. a larger improvement than assumed in the Shepparton Study)
- adopting a 100% reduction in the current summer accession to the water table from channels if they were replaced by pipes (Strategy 3)
- determining the combined accession reduction for each productivity region and accessing the net summer recharge after allowance was made for a decreased net evaporation from the water table
- converting this change in net summer recharge into a regional decline in water tables based on Supplementary Paper 3 Phase 2
- assessing the change in pasture productivity from this decline based on experience/knowledge of regional salinities and pasture yield declines as a function of depth to saline water.

The impact of Strategy 1 (maintaining current practice) was based on knowledge summarised in Background Paper 6 - Phase 1 and the salt balances of Supplementary Papers 1 and 3.

The productivity improvements from surface water management and from regional water table decline were simply added to obtain an overall productivity improvement for each region.

As noted above the Harvey and Waroona district do not appear to be accumulating salts and water table levels appear relatively stable. No change in the productivity in the eastern areas of these districts are likely. It is also unlikely that significant change will occur in the average productivity of the central or western regional although decline in some individual paddocks is probable.

Increases in salinity and level of groundwater are expected in the Western and Central regions of the Collie District. A decline of 10% in overall productivity in the western region was considered possible by Year 30. A higher average productivity decline of 15% was considered possible in the central region as the areal extent of shallow saline water tables were likely to increase more so in this region than in the western region.

Relative to the uncertainty in estimations the expected gradual decline in pasture productivity in the Collie District was considered small. For simplicity it was not specifically modelled in the economic and financial analysis of the Collie District.

The economic benefits from the Collie District are therefore slight over estimates.

7.5.2 Strategy 2

The pasture productivity improvements for the improved surface water and pasture management were estimated to be as follows:

i.	Improvement in Productivity of Permanent Irrigation Pastures					
Strategy 2	Western Region	Central Region	Eastern Region			
Improved surface water and pasture management	15%	20%	25%			
Improvement due to less Groundwater Recharge	20%	10%	0%			
Total Improvement	35%	30%	25%			

These improvements are greater than the possible decline in productivity levels that are considered likely in the Collie District over the next 30 years.

It is therefore concluded that no significant decline in pasture productivity levels is expected in the Collie District provided improved on-farm irrigation practices are introduced.

7.5.3 <u>Strategy 3</u>

The extensive drainage and/or regional pumpage of Strategy 3 was designed to have a major impact on the productivity of the western and central regions. Lowering water tables by 1.5 metres should ensure that productivity gains approached those of the eastern productive areas affected by salinity.

The adopted improvement levels for permanent irrigation pasture are shown below.

	Improvement in Productivity of Permanent Irrigation Pastures					
Strategy 3	Western Region	Central Region	Eastern Region			
Improved surface water and pasture management	15%	20%	25%			
Improvement due to Groundwater Table Control	100%	100%	0%			
Total Improvement	115%	120%	25%			

The drainage and pumpage works of Strategy 3 also have a benefit on the adjacent early germination and dryland pasture. The estimated improvements are listed below.

	Early Germination and Annual Pasture Productivity Improvements					
Strategy 3	Western Region	Central Region	Eastern Region			
Improved surface water and pasture management	0%	0%	0%			
Improvement due to Groundwater Tabe Control	25%	15%	5%			
Total 5%	25%	15%	5%			

In practice the improved watering and pasture management would increase the productivity of early germination pastures. This effect was considered small and not specifically modelled in the economic and financial analysis.

7.5.4 Adoption Rates

The adoption of new farm management strategies often take many years to achieve. This is particularly the case where costs are high and benefits are uncertain. Optimistic adoption rates of the proposed practices were used in this analysis to ensure that the effects of the different approaches were apparent in the economic analysis.

The figures used were:

Year Number	Adoption Rate
1	3%
5	10%
15	55%
30	90%

Linear interpolation was used between years up to year 30 after which the adoption rat e was set at 90%.

7.6 <u>Agricultural Gross Margins and Financial Effectiveness of Strategies to</u> <u>Farmers</u>

The overall productivity improvement and cost of implementing the management strategies on-farm are summarised in Table 8, Section 2.2.

The final agricultural gross margin for each option was determined by multiplying each enterprise gross margin by its application area, the productivity increases and by the adoption rate to determine a year by year agricultural return. Net present values for each option were then determined for the 80 year sequence. Results are presented in Attachment 4 and incorporated into the overall cost/benefit in Section 3.5.

The implication for the individual farmer are discussed here. Table 43 summarises the net annual benefit (or loss) of irrigation to the Dairy Farmer for the three strategies in the high, marginal and low productive areas for selected Low Water Demand Options. No high demand cases are presented as all were financially attractive to the farmer. They would not have been adopted as appropriate strategies if they were not.

Effectively the table shows whether it is cost effective for the farmer to continue irrigating as prices rise to cover the full "beneficiaries pays" costs for the particular option.

Results are presented for the cases where there is a regional shutdown of irrigation and where other farms in the area remain. The differences arise from effects on the regional water table if all farms in an area go dry. Higher productivity from dryland pastures should develop as regional water tables decline following cessation of irrigation in the western portion of the districts (Supplementary Paper 3).

Table 43

INCREMENTAL BENEFITS OF AN IRRIGATED DAIRY FARM OVER DRYLAND FARM OF SAME SIZE

Option Description		(After paying full cost of water)									
Area Water Charging Policy	A Current	A TWEs	B Current	B TWEs	C Current	C TWEs	D Current	D TWEs	E Current	E TWEs	
1		NAIRY FARM	I VERSIIS DI	RYLAND FA	RM - TOTAL	REGIONAL	SHUTDOW		ATION		
	Over 80 Y	/ears	(Improved	productivity	y of dryland:	+25% for r	narginal and	+50% for s	alinity affecte	ed dryland)	
Strateny 1											
High	7 727	4 258	8 595	5 125	9.462	6.860	10.330	7,727	10.330	8.595	
Medium	-10,645	-14,114	-9,777	-13,247	-,				,	-,	
Low	-22,405	-25,874									
Strategy 2											
High	14,450	10,547	15,231	12,108	16,011	12,889	16,792	13,669	16,792	14,450	
Medium	3,589	-314	4,370	1,247							
LOW Stratogy 2	-0,303	-12,206									
High	-10 968	-15 652	-3 942	-7 846							
Medium	-14,164	-18.848	-7.138	-11.042							
Low	-24,092	-28,776	•	•							
2.		DAIRY FARM	I VERSUS D	RYLAND FA	RM - TOTAL	REGIONAL	. SHUTDOWI	OF IRRIG	ATION		
	Over 15 Y	lears	(Improved	l productivit	y of dryland:	+25% for I	marginal and	+50% for s	alinity affected	ed dryland)	
Strategy 1											
High	7,727	4,258	8,595	5,125	9,462	6,860	10,330	7,727	10,330	8,595	
Medium	-10,645	-14,114	-9,777	-13,247							
Low Stantany G	-22,405	-25,874									
Strategy 2	14 000	10 400	15 107	11 004	10 007	10 765	16 669	10 545	16 669	14 000	
riign Modium	14,320	10,423	10,107	1 1 9 0 4	10,007	12,700	10,000	13,040	10,000	14,320	
Low	-8,400	-12.330	4,240	1,120							
Strategy 3	-,										
High	-14,449	-19,133	-7,423	-11,327							
Medium	-17,644	-22,328	-10,618	-14,522							
Low	-27,572	-32,256									
3.	IRRIGATED	DAIRY FARM	I VERSUS D	RYLAND FA	RM - THE M	ARGINAL F	ARM (i.e. Ot	her farms ir	n the area ren	nain irrigated)	
		Over 80 Y	ears	(No impro	oved product	ivity of dryl	and)				
Strategy 1											
High	7,727	4,258	8,595	5,125	9,462	6,860	10,330	7,727	10,330	8,595	
Medium	2,799	-670	3,667	197							
Low	2,232	-1,237									
Siralegy 2 Uich	14 450	10 547	15 001	10 100	16 011	10 000	16 700	12 660	16 700	14 450	
riigii Medium	14,450	10,047	17,231	12,100	10,011	12,009	10,792	13,009	10,792	14,450	
	16,334	12 431	17,014	14,031							
Strategy 3	10,001										
High	-10,968	-15,652	-3,942	-7,846							
Medium	-720	-5,404	6,306	2,402							
Low	545	-4,139									
4.	IRRIGATED	DAIRY FARM	A VERSUS D	RYLAND FA	RM - THE M	IARGINAL I	FARM (i.e. Ot	her farms ir	n the area ren	nain irrigated)	
		Over 15 Y	'ears	(No impro	oved product	tivity of dry	and)				
Strategy 1							•				
High	7,727	4,258	8,595	5,125	9,462	6,860	10,330	7,727	10,330	8,595	
Medium	2,799	-670	3,667	197							
Low	2,232	-1,237									
Siralegy 2	14 226	10 400	15 107	11 004	15 007	10 765	16 660	10 545	10.000	14.000	
Modium	14,320	10,423	17,107	11,904	10,007	12,700	10,000	13,545	10,000	14,320	
Low	16,210	12,307	17,000	100,007	r						
Strategy 3		,			KEY	: Strategy	y - refers to	the on-far	m and Sche	me salinity	
High	-14,449	-19,133	-7,423	-11,327		mitigati	on and engi	neering st	rategy ador	oted	
Medium	-4,200	-8,884	2,826	-1,078		: High, M	fedium and	Low refer	rs to the lan	d	
Low	-2,935	-7,619				product	ivity type				

The table shows that it remains profitable to the dairy farmers to continue to irrigate with current methods but only in the high productive areas. However, it is more profitable to introduce the improved management practices of Strategy 2.

On the medium productivity land it is only profitable to continue irrigating if Strategy 2 is implemented. Alternatively the productivity gains from Strategy 2 are critical to the dairy enterprise in offsetting the water price increases from the Low Demand Cases.

If dairy farmers have to pay the full cost of water then Strategy 3 is financially unattractive.

Table 44 shows a similar analysis for a beef grazing enterprise. The conclusion is, that if beef graziers had to pay full costs for the water, then it would not be financially attractive for them to continue irrigating under any of the three on-farm strategies.

7.7 Discussion and Implications for Future Study

All irrigation development and groundwater control strategies are expensive to the farmer. They are nonetheless economically attractive in all cases if water prices do not increase further. The less costly approaches are very important in improving productivity. However, the practicalities and appropriateness of constructing expensive drainage (at 15 metres spacings to depths of 2 to 2.5 metres) in the western saline area must be questioned until there is very clear evidence that the productivity gains estimated can, in fact, be obtained.

Similarly, with the irrigation development proposals (Strategic 2 and 3) significant productivity gains were assumed. These need to be thoroughly researched and further refined before the most appropriate details of redevelopment can be formulated.

For example mole drainage, designed in conjunction with affordable subsurface drainage may be a much more efficient combined strategy that achieves higher productivity gains at comparable costs. The best combination technique awaits a comprehensive research and investigation program. The Wellesley Land Conservation District, in conjunction with the Department of Agriculture, is developing such a program. The need for such investigation and research are supported by this analysis.

INCREMENTAL BENEFITS OF AN IRRIGATED BEEF FARM OVER DRYLAND FARM OF SAME SIZE

Option Description	1 Description (After paying the full cost of water)									
Ar	ea A	A	В	В	С	С	D	D	E	E
Water Charging Poli	cy Current	TWEs	Current	TWEs	Current	TWEs	Current	TWEs	Current	TWEs
1	. IRRIGATED	BEEF FARM	VERSUS DR	YLAND FAR	M - TOTAL	REGIONAL	SHUTDOWN	OF IRRIGA	TION	
	Over 80 Y	'ears	(Improved	l productivit	y of dryland	: +25% for r	narginal and	+50% for s	alinity affecte	ed dryland)
Strategy 1										
High	-7,110	-9,131	-6,605	-8,626	-6,100	-7,615	-5,594	-7,110	-5,594	-6,605
Medium	-21,532	-23,553	-21,027	-23,048						
Strateny 2	-24,349	-20,370								
High	-5,322	-7,596	-4.867	-6,686	-4,413	-6,232	-3,958	-5,777	-3,958	-5,322
Medium	-15,633	-17,907	-15,178	-16,997		,	,	·	·	•
Low	-18,100	-20,374								
Strategy 3	10 621	22.250	15 500	17 010						
Medium	-19,031 -28,840	-22,359	-15,550 -94 747	-17,012						
Low	-31,408	-34,136	L 1,1 11							
2	IRRIGATED	RFFF FARM	VERSUS DE	YI AND FAF	M - TOTAL	REGIONAL	SHUTDOWN	OF IBBIGA	TION	
	Over 15 Y	'ears	(Improved	l productivit	y of dryland	: +25% for I	marginal and	+50% for s	alinity affect	ed dryland)
Strategy 1		_					_			
High	-7,110	-9,131	-6,605	-8,626	-6,100	-7,615	-5,594	-7,110	-5,594	-6,605
	-21,532	-23,553	-21,027	-23,048						
Strategy 2	-24,040	-20,070								
High	-5,394	-7,668	-4,939	-6,758	-4,485	-6,304	-4,030	-5,849	-4,030	-5,394
Medium	-15,705	-17,979	-15,250	-17,069						
Low	-18,173	-20,447								
Strategy 3 High	-21 661	-24 389	-17 568	-19 842						
Medium	-30,870	-33,598	-26,777	-29,051						
Low	-33,438	-36,166								
2			VEDENS DE				DM (i.e. Oth	or forma in	the eree rem	nin irrinated)
J	Over 80 \	lears	(No impre	oved produc	tivity of dryk	and)	inim (i.e. Olii		the area renn	ann in nyateu)
Stratogy 1	·····									
Hiah	-7,110	-9,131	-6.605	-8.626	-6.100	-7.615	-5.594	-7,110	-5.594	-6.605
Medium	-8,965	-10,986	-8,460	-10,481	0,.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,001	.,	0,001	0,000
Low	-9,865	-11,886								
Strategy 2	E 000	7 500	4.007	0.000	4.440	0.000	0.050	F 777	0.050	C 000
Hign Medium	-3,322	-7,590	-4,807	-0,000	-4,413	-6,232	-3,958	-5,777	-3,958	-5,322
Low	-3.616	-5,890	-2,071	-4,400						
Strategy 3	-,	-,								
High	-19,631	-22,359	-15,538	-17,812						
Medium	-16,273	-19,001	-12,180	-14,454						
LOW	-16,924	-19,652								
4	. IRRIGATED	BEEF FARM	VERSUS DE	RYLAND FAF	RM - THE M	ARGINAL FA	RM (i.e. Oth	er farms in	the area rem	ain irrigated)
	Over 15	(ears	(No impri	oved produc	tivity of dryl	and)				
Strategy 1										
High Medium	-7,110	-9,131	-6,605	-8,626	-6,100	-7,615	-5,594	-7,110	-5,594	-6,605
low	-0,900	-10,900	-8,460	-10,481						
Strategy 2	0,000	11,000								
High	-5,394	-7,668	-4,939	-6,758	-4,485	-6,304	-4,030	-5,849	-4,030	-5,394
Medium	-3,138	-5,412	-2,683	-4,502						
LOW Stratogy 2	-3,689	-5,963								
ou <i>ateyy o</i> Hinh	-21 661	-24 290	-17 569	-10 840	KEY	: Strategy	- refers to	the on-far	m and Sche	me salinity
Medium	-18.303	-21.031	-14.210	-16.484		mitigati	on and engi	ineering st	rategy adop	ted
Low	-18,954	-21,682		-,		: High, M	ledium and	Low refer	s to the land	d
						producti	vity type			

8. MANAGEMENT OF THE FUTURE IRRIGATION SERVICE

8.1 <u>Introduction</u>

At the July/August 1990 workshops the farming community clearly stated their wish to have a greater input to management of the scheme, particularly if they are asked to pay a higher contribution to the total costs of irrigation water.

Some farmers expressed concern about Water Authority efficiency and believed that farmer labour could be used to reduce some of the maintenance costs.

In contrast, at the workshop for Water Authority operational staff they saw the Water Authority as continuing to operate the scheme, albeit with improved efficiency.

Water Authority regional and senior management is open to the idea of a more co-operative approach which involved additional farmer input in the planning and running of the maintenance of the Irrigation scheme.

A wide range of administrative structures to manage the future irrigation scheme have been proposed (Ref 8.1) and are discussed below.

8.2 <u>Kinhill Engineers "Management Alternatives Study"</u>

To provide background for further discussion of management options Kinhill Engineers were commissioned to:

- review recent trends in irrigation management in Australia;
- review Water Authority irrigation management and cost efficiencies since 1985;
- compare Water Authority costs with other private and public irrigation schemes in Australia; and,
- propose alternative management arrangements for further discussion and evaluation in Phase 3 and Phase 4.

The main findings from the Kinhill review (Supplementary Paper Number 5) are summarised below.

- With the exception of Queensland, there is an Australia wide move to greater farmer involvement in irrigation management and/or greater financial responsibility for the operation and maintenance of the distribution systems.
- Comparisons of costs of self management of individual districts with costs of continued Government management indicated that costs would not necessarily be lower (based on South Australian experience).
- Pressures are on government water agencies providing irrigation services to improve their financial performance. Major changes are being introduced in Victoria by the Rural Water Commission of Victoria. By July 1993 six regional should be managed by separate boards operating as discrete businesses setting prices, determining levels of services, operating their own system including relevant headworks, and taking initiatives to control costs.

Kinhill also reviewed the Water Authority's management and financial performance and compared it with other public and private irrigation agencies. The following conclusions were drawn:

- The Water Authority's direct operational and maintenance costs have dropped \$400,000 in real terms between 1985/86 and 1989/90. This represents a decrease of 20% or a 5% improvement in efficiency per annum. The combined salary and administrative costs have declined \$18,000 or 0.8% over the same period.
- Further improvements in efficiency have been implemented through centralising the management of the irrigation service at the Harvey office. Additional efficiencies of between 10 to 15% have been proposed. However, these savings would be accompanied by some reductions in the levels of service provided.
- Comparison of performance indicators between irrigation agencies in Australia proved inconclusive. The Water Authority compared well on some measures and poorly on others. Large differences in the characteristics of irrigation system make such comparisons fraught with difficulty.
- Regardless of the management structure proposed the large number of dams, the high gradients on channels and the long length of drainage channels are cost burdens that are unavoidable in the South-West Irrigation Districts.
- The integration of drainage of non-irrigated land, town water supply and sewerage means that the share of regional overheads assigned to the Irrigation Service is lower than it would otherwise be.
- Water Authority salary staff and administration overheads do not appear to be in excess of those that would be incurred if the operation were being managed by a private board.
- However, scope exists to improve the allocation of salaries between the different irrigation regions in the State with the development of regional profit and loss statements.

8.3 <u>Alternative Management Options</u>

While the Kinhill review was relatively favourable to the current management by the Water Authority, farmers have a different perception. At the July/August 1990 workshops many expressed strong views in favour of private Water Boards running the irrigation service. The advantages and disadvantages of the possible options are discussed fully in Supplementary Paper 5.

A brief summary of the management options is provided here.

8.3.1. Private Irrigation Boards

A private Irrigation Board would be fully responsible for

- the operation, maintenance and long term refurbishment of all channels and drains in the irrigation districts
- the financial viability of the enterprise (including paying for bulk water and drainage costs)
- satisfying environmental responsibility associated with the irrigation service.

The Water Authority would continue to operate and maintain dams and raise charges to the irrigation board for water delivered to the irrigation district boundary.

The Water Authority would also remain responsible for operating and maintaining the non-irrigated land drainage outside the irrigation districts.

Likely costs for the bulk water charges are summarised in Table 44 for the Engineering Strategy 2 (the minimum maintenance strategy).

If averaged over the three districts bulk water charges would be between 18% (E2 De-Rated) and 31% (A2 Fixed) of current charges depending on what portion of the reservoir yields were taken. Note the high bulk water charge for the Waroona District. Also Option H has a high bulk water charge (72% of the current charge) as the Waroona Headworks costs are a significant component of the total costs in this option.

The Engineering Strategy 3 options have bulk water charges that range between 22% and 32% of current levels.

The adoption of a user pays principle would imply that the Water Authority should also charge the irrigation board for conveying the winter drainage flows from the irrigation districts to the estuaries, and for the increased cost of maintaining the drains that convey irrigation water in summer.

Additional analysis would be required to determine appropriate drainage charges. As current drainage rates are not meeting operation, maintenance, salaries and administration costs in the Harvey District it is apparent that a private board would have to raise a higher drainage charge than the existing Water Authority rate.

8.3.2 Increased User Input by a Management Board with Farmer Majority

This option involves the creation of a management board consisting mainly of irrigation farmers with power to make recommendation or decisions on standards of service, maintenance and capital expenditure, and water charges. The recommendations/decisions would have to conform with cost recovery guidelines established by Government. The Water Authority would continue to provide the staff and run the irrigation districts as at present.

This approach is a significant extension of the current Advisory Committee role. It would allow farmers a say in the formulation of capital expenditure programmes of their district, the level of maintenance carried out and the service provided. This is not on a day to day basis but rather through considerable input into developing the districts annual operation and financial plan each year.

This approach would allow farmers to gain an appreciation of the physical and financial factors involved in running an irrigation district and would put then in a better position to judge the future merits of privatising all or part of the operation at some later date. At the same time this option maintains the expertise of the Water Authority and its technical backup.

8.3.3 Maintaining Current Water Authority Management

Under this options the management by Water Authority would be much the same as at present with the advisory committee having a role in water distribution policy but not other management issues. In recent years there has been a move to involve the advisory committee in scheme maintenance and other policy issues. However, decision making power remains with the Water Authority.

8.4 <u>Comparison of the Alternatives</u>

Supplementary Paper No. 5 outlines the advantage and disadvantages of the management alternatives and implies that no one approach is clearly preferable.

The interested reader is referred to Section 4 of that report for a detailed discussion of the arguments.

Option			Dist	rict		Aver Thre	aged ov e Distri	ged over Districts	
	War	oona	Ha	rvey	Co	llie	Total	Area	
High Water	\$/ML	% of 89/90	\$/ML	% of 89/90	\$/ML	% of 89/90	\$/ML	% of 89/90	
Demand and Fixed Rating		Charge		Charge		Charge		Charge	
A2	27.9	115	7.7	32	1.1	5	7.6	31	
B2	26.4	109	6.7	28	1.1	4	6.8	28	
C2	25.2	104	6.5	27	1.0	4	6.5	27	
D2	18.0	74	6.3	26	1.0	4	4.9	20	
E2	18.0	74	5.2	21	1.0	4	4.3	18	
H	26.3	108	5.9	24	0.6	2	17.5	72	
P	-	-	4.7	19	-	-	-	-	
Low Water									
Demand Dera	ted								
A2	25.9	106	6.0	25	0.9	4	6.4	26	
B2	25.8	106	6.0	25	0.9	4	6.4	26	
C2	25.8	106	6.0	24	0.9	4	6.4	26	
D2	18.8	77	5.9	24	0.8	3	4.7	19	
E2	18.8	77	5.3	22	0.8	3	4.4	18	
Р	-	-	4.4	18	-	-	-	-	

Table 45Possible Bulk Water Charges to a Private Water Board

REFERENCES

provinces a la construction de l

- 1. Birch, P.B. (1982). Phosphorous export from coastal plain drainage into the Peel-Harvey estuarine system of Western Australia. Aust J. Mar Freshwater Res Vol 33.23-32.
- 2. Bott, G.M. (1992). Environmental and Land use factors affecting phosphorus losses from estuary catchments of South-West Western Australia Draft of Chapter 6 Fertilisers and Entrophication in South Western Australia.
- 3. Heady, G.J.; Summers, R.N.; Philpott, R.J. and Trajkoski, J.A. (1992) -Community Catchment Centre's "Investigation Wager Sampling Programme -1991. Produced by the Peel-Harvey Catchment Support Group (PHC.S.G) -Department of Agriculture, W.A.
- 4. Water Authority of WA: 1990 Future Options for the Irrigation Service -Outcomes from Workshop Discussions - The Irrigation Strategy Study Technical Working Group, Water Authority of Western Australia, Water Resources Planning Branch, September, 1990.
- 5. Ellis, G. (1991) Alternative Land Uses for Previously Irrigated Land: Eucalyptus Globulus Growth on the Pinjarra Plain Soils. Draft Report of Conservation and Land Management, Manjimup.
- 6. George, R.J. (1991) Conservation and Production from Trees on the Coastal Plain. Department of Agriculture, Bunbury, WA 6230.
- 7. Transferable Water Entitlements in Western Australia, Western Australian Water Resources Council, March 1989.
- 8. Transferability of Water Entitlements, Centre for Water Policy Research, University of New England, Armidale, July 1990.

PHASE 2 SUPPLEMENTARY PAPERS

The following papers were prepared as part of the technical research during the Phase 2 analysis. Copies of these background reports are available on enquiry to I. Loh, Study Manager, Water Authority of Western Australia.

- 1. An Estimation of the Economic Benefits of Recreation Activities occurring at Waroona and Logue Brook Reservoirs, S. Lucas, Water Authority of Western Australia, May 1991.
- 2. The Dairy Industry in the South West Irrigation Area, J. Connell, Dairy Industry Authority, July 1991.
- 3. Groundwater Investigations for the Irrigation Strategy Study, Mackie Martin and Associates, June 1991.
- 4. Water and Salt Balances for an Irrigated Coastal Plain Catchment near Bunbury, Western Australia, C.G. Jeevaraj, Report No. WS81, Water Authority of Western Australia, April 1991.
- 5. Management Alternatives Study, Kinhill Engineers, June 1991.
- 6. Agricultural Gross Margins Used in Phase 2 Analysis, P. Eckersley, June 1992.
- 7. Future Options for the Irrigation Service: Outcomes from Workshop Discussions, Irrigation strategy Study, September 1990.
- 8. Options for Analysis in Phase 2, Background for November 28th Workshop, Technical Working Group, Irrigation Strategy Study, Water Authority of Western Australia, November 1990.

THE CONSULTATIVE COMMITTEE FOR PHASES 1 AND 2

The Water Authority of Western Australia was responsible for project management for Phase 1 and 2 of the Strategy Study. A Consultative Committee was formed to guide the direction of the study through these early stages. Members of the Committee were as follows:

Mr B. Sadler	- Chairman and Director, Water Resources, Water Authority of Western Australia
Sir D. Eckersley	- South-West Development Authority
Mr D. Norton	- Irrigation Farmer, Benger and Western Australian Water Resources Council Member
Mr C. Rigg	- Irrigation Farmer (Dairying) - Wokalup
Mr G. Edwards	- Irrigation Farmer (Dairying) - Waterloo
Mr C. Capogreco	- Irrigation Farmer (Horticulture) - Harvey
Mr L. Snell	- Irrigation Farmer (Beef) - Waroona
Mr G. Luke	- Resource Management Division - Department of Agriculture of Western Australia
Mr G. de Chaneet	- Bunbury Region, Department of Agriculture of Western Australia
Mr R. Harvey/H. Ven	riss - Manager, Water Resource Planning, Water Authority of Western Australia (replaced Mr R. Harvey Acting Manager Water Resource Planning in November 1991)
Mr C. Elliott	- Regional Manager, South-West, Water Authority of Western Australia
Mr G. Holtfreter	- Senior Irrigation Officer, Water Authority of Western Australia
Mr I. Loh	- Project Manager for the Irrigation Study, Water Authority of Western Australia
Mr I. Longson	- ACIL, Australia - Agricultural Economic Consultants
сс	- Office of Cabinet

THE TECHNICAL WORKING GROUP

A Technical Working Group (TWG) was formed to analyse the options and assist the Consultative Committee. A large number of people served on the TWG for part or all of its activities. The Consultative Committee would like to thank and acknowledge the assistance of the following people:

Department of Agriculture

Water Authority of Western Australia

Mr P. Arkell Mr R. Doyle Mr P. Eckersley Mr Richard George Mr Ross George Mr G. Luke Mr D. Maughan Dr D. Morrison Mr G. Olney Mr W. Russell Mr D. Bostock Mr S. Eccleston Mr R. Dubekin Mr G. Holtfreter Mr C. Jeevaraj Mr I. Loh Mr S. Lucas Mr D. Nabbs Mr K. Wearne Mr L. Werner

Dairy Industry Authority of Western Australia

Mr J. Connell

CALM

Mr G. Ellis

ACIL Australia

Mr I. Longson Mr P. Jacob

Kinhill Engineers

Mr J. Abbott

Mackie Martin & Associates

Mr S. Nield

The contribution from other staff in the Department of Agriculture and the Water Authority of Western Australia and support staff from ACIL Australia, Kinhill Engineers and Mackie Martin & Associates are also greatfully acknowledged.

THE CALCULATION OF THE AGRICULTURAL NET BENEFITS FOR PHASE 2 OPTIONS

- 1. Summary of Results
- 2. Conversion Costs
 - Land Development
 - Livestock Capital
 - Land Development and Livestock Capita Costs

The Calculation of the Agricultural Net Benefits for Phase 2 Options

The following notes are designed to help interpret summary sheets for the calculation of the Agricultural Benefits.

Agriculture Gross Margins - the 80 year NPV of the product of the areas involved under the different options times the gross margins per hectare.

Fixed Costs - the 80 year NPV of the product of the areas involved under the different options times the fixed costs per hectare as shown in Table 7 on P33.

Livestock and Development Costs - the 80 year NPV of the product of the change in areas times the sum of the conversion costs associated with land development and livestock capital changes

> e.g. Converting high productivity land from dryland beef to irrigated perennial dairy pasture required \$500/ha in land development costs (laser levelling, pasture seeding, head and tail ditch farming) - as per Page A4 plus \$562/ha (1125 - 563) for additional livestock capital - as per Page A4.8.

> This gives a total of \$1,062/ha for livestock and development costs to convert a hectare of high productivity land from dryland beef into irrigated perennial dairy pasture.

Vegetable Development Costs - the 80 year NPV of the capital costs associated with developing vegetable cropping land based on the capital costs as set out in the Gross Margins for Vegetable enterprises contained in Supplementary Paper 6.

Citrus Development Costs - the 80 year NPV of the capital costs associated with developing citrus cropping land based on the capital costs as set out in the Gross Margins for Citrus enterprises contained in Supplementary Paper 6.

- On-farm irrigation development the 80 year NPV of the capital and operating costs of the applicable on-farm strategies for irrigation and drainage each option management for as per Table 8 on P35.
- On-farm salinity control costs the 80 year NPV of the capital and operating costs of the on-farm salinity mitigation Strategy 3 to the applicable options as per Table 8 on P35.

ALL IRRIGATION AREA

SCENARIO	A1 H	A2 H	A3 H	A1 L	A2 L	A3 L	B1 H	82 H	B3 H	81 L	82 L	83 L	C1 H	C2 H	C3 H	C1 L	C2 L	C3 L
ECONOMIC ANALYSIS																		
AGRICULTURE GROSS MARGIN	223,182,938	232,879,252	240,683,767	204,204,192	210,954,581	208,349,047	224,014,658	234,152,136	239,914,209	204,204,192	210,954,581	208,427,132	222,114,398	231,672,059	234,287,022	204,204,192	210,954,581	208,427,132
COSTS																		
Fixed costs	108,484,865	108,484,865	108,484,865	100,898,137	100,898,137	99,859,866	108,313,857	108,313,857	108,313,857	100,898,137	100,898,137	99,861,850	107,895,385	107,895,385	107,895,385	100,898,137	100,898,137	99,861,850
Livestock & Development	49,106	49,106	49,106	722,339	722,339	845,110	1,240,909	1,240,909	1,240,909	722,402	721,736	844,710	1,722,000	1,722,000	1,722,000	722,298	722,298	844,751
Veg. development costs	7,599,188	7,599,188	7.599.188	3.241.407	3.241.407	3.241.407	7,599,188	7.599.188	7.599.188	3.241.407	3 241 407	3,241,407	7.599.188	7,599,188	7,599,188	3,241,407	3 241 407	3 241 407
Citrus development costs	3 637 677	3 637 677	3 637 677	1 826 795	1 826 795	1 826 795	3 637 677	3 637 677	3 637 677	1 826 795	1 826 795	1 826 795	3 637 677	3 637 677	3 637 677	1 826 705	1 826 705	1 826 705
	3,037,077	6 761 070	6 761 070	1,020,733	2 050 025	0 700 704	0,007,017	5,001,017	6 900 264	1,020,133	2 050 005	0 700 705	5,667,677	5,007,077	6 106 004	1,020,195	1,020,795	1,020,795
Un tarm ingation dev. costs		0,101,210	0,701,270		3,636,635	2,730,724		0,009,204	0,009,204		3,000,030	2,730,725		0,100,094	0,100,094		3,858,835	2,730,725
On farm salinity control costs			6,893,881			849,796			3,749,101			849,796			876,794			849,796
TOTAL AGRICULTURAL COSTS	119,770,836	126,532,106	133,425,987	106,688,678	110,547,513	109,353,698	120,791,631	127,600,895	131,349,996	106,688,741	110,546,910	109,355,283	120,854,250	126,961,144	127,837,938	106,688,637	110,547,472	109,355,324
NET AGRICULTURAL BENEFIT	103,412,102	106,347,146	107,257,780	97,515,514	100,407,068	98,995,349	103,223,027	106,551,241	108,564,213	97,515,451	100,407,671	99,071,849	101,260,148	104,710,915	106,449,084	97,515,555	100,407,109	99,071,808
COMPARED TO CLOSE DOWN	33,230,593	36,165,637	37,076,271	27,334,005	30,225,559	28,813,840	33,041,518	36,369,732	38,382,704	27,333,942	30,226,162	28,890,340	31,078,639	34,529,406	36,267,575	27,334,046	30,225,600	28,890,299
FINANCIAL ANALYSIS																		
AGRICULTURE GROSS MARGIN	285 683 631	299 563 219	310 666 477	260 155 965	269 647 470	264 663 134	287,408,003	301 916 474	310 085 775	260 155 965	269 647 470	264 774 708	285 613 705	299 633 297	303 107 663	260 155 965	269 647 470	264 774 708
AC COSTS	110 770 936	126 532 106	133 425 087	106 688 678	110 547 513	100 353 608	120 701 631	127 600 895	131 340 006	106 688 741	110 546 910	100 355 283	120 854 250	126 061 144	127 827 028	106 699 627	110 547 470	100 255 224
	105,010,000	170,001 110	133,423,907	100,000,070	160,000,057	105,533,050	100,791,031	127,000,033	170 705 770	100,000,741	150,100,510	103,333,203	120,034,230	120,501,144	127,007,930	100,000,0037	110,347,472	109,355,324
NET AGRICULTURE BENEFIT	105,912,795	173,031,113	177,240,490	153,467,207	128'088'821	100,309,430	100,010,372	1/4,315,5/9	1/0,/35,//9	153,407,224	159,100,500	100,419,420	164,/59,455	1/2,0/2,153	1/5,269,725	153,467,328	128'088'888	155,419,384
COMPARED TO CLOSE DOWN	48,806,199	55,924,517	60,133,894	36,360,691	41,993,361	38,202,840	49,509,776	57,208,983	61,629,183	36,360,628	41,993,964	38,312,829	47,652,859	55,565,557	58,163,129	36,360,732	41,993,402	38,312,788
1																-		
	D1 H	D2 H	D3 H	D1 L	D2 L	D3 [E1H	E2H	E3H	E1L	E2L	E3L	Н	Р	CD	J		
ECONOMIC ANALYSIS																		
AGRICULTURE GROSS MARGIN	219,411,444	227,993,605	230,705,199	204,277,330	211,027,719	208,513,614	214,604,985	221,491,515	224,369,444	202,083,111	208,211,212	208,067,048	275,772,175	202,618,962	163,386,872]		
COSTS																		
Fixed costs	107,363,303	107.363.303	107,363,303	100.893.963	100,893,963	99,862,584	106,054,955	106.054.955	106.054.955	100.362.030	100.362.030	99,761,751	112,777,064	97 252 276	89,735,650	1		
Livestock & Development	1 488 347	1 488 347	1 488 347	925 339	925 339	859 300	1 252 864	1 252 864	1 252 864	988 989	ARA ARA	855 906	762 308	1 058 192	1 311 277			
Ver development costs	7 500 199	7 500 1 20	7 500 199	3 241 407	3 241 407	3 241 407	7 500 1 80	7 500 199	7 500 1 00	2 2/11 /07	2 241 407	3 241 407	102,000	12 000 000	1 260 075			
Veg. development costs	0,000,000	7,339,100	0,007,000	1,000,700	1 000 705	1 800 705	7,353,100	0.003.000	0,035,100	3,241,407	3,241,407	1,000,705	42,0/4,900	13,909,900	1,200,075			
Citrus development costs	3,037,077	3,037,077	3,037,077	1,020,790	1,020,/90	1,020,795	3,037,077	3,637,677	3,637,077	1,826,795	1,820,795	1,820,795	16,764,973	4,891,921	897,561			
On farm irigation dev. costs		5,223,586	5,223,586		3,858,835	2,730,724		3,850,814	3,850,814		3,289,940	2,677,129						
On farm salinity control costs			876,794			849,796			876,794			849,796				I		
TOTAL AGRICULTURAL COSTS	120,088,515	125,312,101	126,188,895	106,887,504	110,746,339	109,370,606	118,544,684	122,395,498	123,272,292	106,419,220	109,709,160	109,212,784	173,179,303	117,112,375	93,205,363			
NET AGRICULTURAL BENEFIT	99,322,929	102,681,504	104,516,304	97,389,826	100,281,380	99,143,008	96,060,301	99,096,017	101,097,152	95,663,891	98,502,052	98,854,264	102,592,872	85,506,587	70,181,509]		
COMPARED TO CLOSE DOWN	29,141,420	32,499,995	34,334,795	27,208,317	30,099,871	28,961,499	25,878,792	28,914,508	30,915,643	25,482,382	28,320,543	28,672,755	32,411,363	15,325,078]			
FINANCIAL ANALYSIS													·					
AGRICULTURE GROSS MARGIN	281,788,651	294,576,531	298,154,489	260,232,238	269,723,743	264,861,190	272,758,819	282,872,080	286,660,341	256.877.040	265.594.731	264,153,820	322,697,263	249,544,050	210.311.959			
AG COSTS	120.088.515	125.312.101	126.188.895	106.887.504	110.746.339	109.370.606	118.544.684	122,395,498	123.272.292	106.419.220	109,709,160	109.212.784	173 179 303	117 112 375	93 205 363			

AG COSTS 120,088,515 125,312,101 126,188,895 106,887,504 110,746,339 109,370,606 118,544,684 122,395,498 123,272,292 106,419,220 109,709,160 109,212,784 173,179,303 117,112,375 93,205,363 169,264,430 171,965,594 153,344,734 158,977,404 155,490,584 154,214,135 160,476,582 163,388,049 150,457,819 155,885,571 154,941,036 149,517,960 132,431,675 117,106,596

COMPARED TO CLOSE DOWN 44,593,540 52,157,834 54,858,998 36,238,138 41,870,808 38,383,988 37,107,539 43,369,986 46,281,453 33,351,223 38,778,975 37,834,440 32,411,364 15,325,079

AREA

AREA							\mathbf{C}	OLL	IE									
SCENARIO	A1 H	A2 H	A3 H	A1 L	A2 L	A3 L	B1 H	B2 H	83 H	B1 L	82 L	83 L	C1 H	C2 H	СЗ Н	C1 L	C2 L	C3 L
ECONOMIC ANALYSIS																		
AGRICULTURE GROSS MARGIN	84,674,128	88,925,990	92,623,448	79,421,983	82,195,258	81,721,478	85,315,133	89,761,593	92,892,316	79,421,983	82,195,258	81,820,133	84,303,939	88,521,387	89,756,982	79,421,983	82,195,258	81,820,133
COSTS																		
Fixed costs	43,101,633	43,101,633	43,101,633	41,187,877	41,187,877	40,834,653	43,154,001	43,154,001	43,154,001	41,187,877	41,187,877	40,839,729	42,922,977	42,922,977	42,922,977	41,187,877	41,187,877	40,839,729
Veg. development costs	557,929	557.929	557,929	252,476	252.476	252,476	557,929	557,929	557,929	252,476	252,476	252,476	557,929	557,929	557,929	252,476	252,476	252,476
Citrus development costs	892,877	892,877	892,877	412,904	412,904	412,904	892,877	892,877	892,877	412,904	412,904	412,904	892,877	892,877	892,877	412,904	412,904	412,904
On farm irigation dev. costs	0	2,896,893	2,896,893	0	1,488,292	1,173,019	0	2,971,712	2,971,712	0	1,488,292	1,178,917	0	2,677,036	2,677,036	0	1,488,292	1,178,917
On farm salinity control costs	0	0	3,041,353	0	40 674 807	363,831	45 060 042	40.041.055	2,092,051	10 196 509	42 674 800	363,831	0	47 808 205	387,401	0	42 674 706	363,831
TOTAL AGRICULTURAL COSTS	44,571,994	47,468,887	50,510,240	42,186,535	43,5/4,827	43,388,482	45,069,943	48,041,655	50,133,706	42,100,090	43,074,890	43,398,045	45,131,250	47,808,288	48,195,08/	42,186,494	43,074,780	43,398,034
NET AGRICULTURAL BENEFIT	40,102,134	41,457,103	42,113,208	37,235,448	38,520,431	38,332,996	40,245,190	41,719,938	42,758,610	37,235,385	38,520,368	38,421,488	39,172,689	40,713,101	41,561,295	37,235,489	38,520,472	38,421,499
COMPARED TO CLOSE DOWN	10,219,680	11,574,649	12,230,754	7,352,994	8,637,977	8,450,542	10,362,736	11,837,484	12,876,156	7,352,931	8,637,914	8,539,034	9,290,235	10,830,647	11,678,841	7,353,035	8,638,018	8,539,045
FINANCIAL ANALYSIS												*****						
AGRICULTURE GROSS MARGIN	113,870,284	120,046,070	125,365,048	105,453,072	109,465,237	107,897,831	114,962,669	121,395,369	125,889,309	105,453,072	109,465,237	108,029,975	113,970,504	120,223,416	121,873,968	105,453,072	109,465,237	108,029,975
AG COSTS	44,571,994	47,468,887	50,510,240	42,186,535	43,674,827	43,388,482	45,069,943	48,041,655	50,133,706	42,186,598	43,674,890	43,398,645	45,131,250	47,808,286	48,195,687	42,186,494	43,674,786	43,398,634
NET AGRICULTURE BENEFIT	69,298,290	72,577,183	/4,854,808	03,200,53/	65,790,410	04,309,349	09,092,120	73,303,714	15,155,603	03,200,474	00,790,347	04,031,330	08,639,234	72,415,130	/ 3,0/ 0,201	03,200,378	05,190,451	64,031,341
COMPARED TO CLOSE DOWN	17,502,701	20,781,594	23,059,219	11,470,948	13,994,821	12,713,760	18,097,137	21,558,125	23,960,014	11,470,885	13,994,758	12,835,741	17,043,665	20,619,541	21,882,692	11,470,989	13,994,862	12,835,752
																7		
	D1 H	D2 H	D3 H	D1 L	D2 L	D3 L	E1H	E2H	E3H	E1L	E2L	E3L	H	Р	CD			
ECONOMIC ANALYSIS																		
AGRICULTURE GROSS MARGIN	84,301,121	88,517,433	89,753,160	80,661,392	83,849,857	82,319,054	84,301,121	88,517,433	89,753,160	80,661,392	83,849,857	82,319,054	69,371,938	69,371,938	69,371,938]		
COSTS																		
Fixed costs	42,922,355	42,922,355	42,922,355	41,450,100	41,450,100	40,910,324	42,922,355	42,922,355	42,922,355	41,450,100	41,450,100	40,910,324	38,770,829	38,770,829	38,770,829]		
Livestock & Development	730,788	730,788	730,788	458,003	458,003	345,647	730,788	730,788	730,788	458,003	458,003	345,647	463,272	463,272	463,272			
Veg. development costs	557,929	557,929	557,929	252,475	252,476	252,475	557,929 802 877	557,929 802,877	557,929 802,877	252,475	252,470	252,475	95,990 158 202	95,990	96,990 159.202			
On farm irination dev. costs	092,011	2 676 016	2 676 016	412,504	1 902 512	1,293,665	032,011	2.676.016	2.676.016	-12,304	1.902.512	1.293.665	130,333	130,535	130,353			
On farm salinity control costs	0	0	387,401	0	0	363,831	0	0	387,401	0	0	363,831	0	0	0			
TOTAL AGRICULTURAL COSTS	45,103,949	47,779,965	48,167,366	42,573,483	44,475,995	43,578,847	45,103,949	47,779,965	48,167,366	42,573,483	44,475,995	43,578,847	39,489,484	39,489,484	39,489,484			
NET AGRICULTURAL BENEFIT	39,197,172	40,737,468	41,585,794	38,087,909	39,373,862	38,740,207	39,197,172	40,737,468	41,585,794	38,087,909	39,373,862	38,740,207	29,882,454	29,882,454	29,882,454]		
COMPARED TO CLOSE DOWN	9,314,718	10,855,014	11,703,340	8,205,455	9,491,408	8,857,753	9,314,718	10,855,014	11,703.340	8,205,455	9,491,408	8,857,753	0	0	0]		
FINANCIAL ANALYSIS																		
AGRICULTURE GROSS MARGIN	113,967.089	120,218,549	121,869,269	106,692,482	111,119,837	108,528,896	113,967,089	120,218,549	121,869,269	106,692,482	111,119,837	108,528,896	91,285,073	91,285,073	91,285.073]		
AG COSTS	45,103,949	47,779,965	48,167,366	42,573,483	44,475,995	43,578,847	45,103,949	47,779,965	48,167,366	42,573,483	44,475,995	43,578,847	39,489,484	39,489,484	39,489,484			
NET AGRICULTURE BENEFIT	68,863,140	72,438,584	73,701,903	64,118,999	65,643,842	64,950,049	68,863,140	72,438,584	73,701,903	64,118,999	66,643,842	64,950,049	51,795,589	51,795,589	51,795,589			
COMPARED TO CLOSE DOWN	17,067,551	20,642,995	21,906,314	12,323,410	14,848,253	13,154,460	17,067,551	20,642,995	21,906,314	12,323,410	14,848,253	13,154,460	0	0]	-		

a a second s A second second

HARVEY

														_				
SCENARIO	A1 H	A2 H	A3 H	A1 L	A2 L	A3 L	B1 H	B2 H	83 H	B1 L	82 L	83 L	C1 H	C2 H	СЗ Н	C1 L	C2 L	C3 L
ECONOMIC ANALYSIS																		
AGRICULTURE GROSS MARGIN	103,068,005	107,383,454	110,668,694	92,440,107	95,534,386	94,190,521	103,360,386	107,948,912	109,991,002	92,440,107	95,534,386	94,220,426	102,752,970	107,108,463	108,158,958	92,440,107	95,534,386	94,220,426
COSTS													_					_
Fixed costs	50,273,047	50,273,047	50,273,047	46,000,412	46,000,412	45,515,416	50,158,937	50,158,937	50,158,937	46,000,412	46,000,412	45,521,476	50,037,891	50,037,891	50,037,891	46,000,412	46,000,412	45,521,476
Livestock & Development	29,953	29,953	29,953	305,436	305,436	362,447	695,112	695,112	695,112	305,436	304,770	360,335	868,168	868,168	868,168	305,436	305,436	360,387
Veg. development costs	5.624.240	5,624,240	5.624.240	2.614.575	2.614.575	2,614,575	5,624,240	5.624,240	5,624,240	2,614,575	2,614,575	2,614,575	5,624,240	5,624,240	5.624.240	2.614.575	2.614.575	2.614.575
Citrus development costs	1 792 494	1,792,494	1 792 494	832,717	832,717	832,717	1,792,494	1,792,494	1,792,494	832,717	832,717	832,717	1,792,494	1,792,494	1,792,494	832 717	832 717	832 717*
On face inigation day, costs	0	2 953 278	2 953 278	000,0	1 747 587	1 220 950	0	3 007 218	3 007 218	0	1 747 587	1 228 323	0	2 729 602	2 729 602	0	1 747 587	1 228 222
On farm patients expired costs	0	2,333,210	2,353,270	0	1,747,507	305 457	0	3,007,210	1 285 402	0	0,1+1,1	205 /57	0	2,723,002	2,725,002	0	1,747,507	1,220,323
Unitarm samily control costs	57 710 704	CO C70 010	3,007,032	40 75 2 1 40	C1 C00 707	593,437	50 070 702	C1 079 001	1,203,403	40 752 440	51 500 0C1	595,457	ER 100 700	C1 052 205	509,029	40.750.1.10	U	395,457
TOTAL AGRICULTURAL CUSTS	57,719,734	60,673,012	53,740,544	49,753,140	51,500,727	50,941,562	58,270,783	61,278,001	62,563,404	49,753,140	51,000,061	50,952,883	58,322,793	01,052,395	61,441,424	49,753,140	51,500,727	50,952,935
NET AGRICULTURAL BENEFIT	45,348,271	46,710,442	46,928,150	42,686,967	44,033,659	43,248,959	45,089,603	46,670,911	47,427,598	42,686,967	44,034,325	43,267,543	44,430,177	46,056,068	46,717,534	42,686,967	44,033,659	43,267,491
COMPARED TO CLOSE DOWN	14,268,566	15,630,737	15,848,445	11,607,262	12,953,954	12,169,254	14,009,898	15,591,206	16,347,893	11,607,262	12,954,620	12,187,838	13,350,472	14,976,363	15,637,829	11,607,262	12,953,954	12,187,786
FINANCIAL ANALYSIS																		
ACRICULTURE CROSS MARGIN	132 625 320	138 981 934	143 784 018	118 943 350	123 300 995	120 892 865	133 310 719	140 059 242	143 015 755	118 943 350	123 390 995	120 922 770	132 751 350	139 304 741	140 744 033	118 042 260	102 200 005	100 000 770
AGRICOLITONE GROSS MARGIN	57 710 724	60 673 012	62 740 544	40 753 140	51 500 727	50 041 562	58 270 783	61 278 001	62 563 404	10,545,550	51 500 061	50 052 883	58 222 702	61 052 205	61 441 404	10,543,330	123,390,993	120,922,770
	74.005 500	20,073,012	03,740,344	49,753,140	51,500,727	50,541,502	75 000 000	70 701 041	02,303,404	49,755,140	71,000,001	50,952,003	74 400 557	70 052,393	01,443,424	49,753,140	51,500,727	50,952,935
NET AGHICULTURE BENEFIT	74,905,586	78,308,922	80,043,474	69,190,210	11,890,200	09,921,303	10,039,930	/0,/01,241	60,452,351	09,190,210	11,090,934	09,909,001	/4,428,33/	/0,252,346	79,302,609	69,190,210	/1,890,268	69,969,835
COMPARED TO CLOSE DOWN	21,715,045	25,118,381	26,852,933	15,999,669	18,699,727	16,760,762	21,849,395	25,590,700	27,261,810	15,999,669	18,700,393	16,779,346	21,238,016	25,061,805	26,112,068	15,999,669	18,699,727	16,779,294
	D1 H	D2 H	D3 H	D1 L	D2 L	D3 L	E1H	E2H	E3H	E1L	E2L	E3L	Н	P	CD]		
ECONOMIC ANALYSIS	D1 H	D2 H	D3 H	D1 L	D2 L	D3 L	E1H	E2H	ЕЗН	E1L	E2L	E3L	Н	Р	CD]		
ECONOMIC ANALYSIS Agriculture gross margin	D1 H 101,610,062	D2 H 105,564,311	D3 H 106,652,986	D1 L 92,440,107	D2 L 95,534,386	D3 L 94,220,426	E1H 96,803,603	E2H 99,062,221	E3H 100,317,231	E1L 90,203,324	E2L 92,667,387	E3L 93,773,860	H 145,030,143	P 111,401,471	CD 72,169,381)]		
ECONOMIC ANALYSIS Agricul Ture gross Margin	D1 H	D2 H 105,564,311	D3 H 106,652,986	D1 L 92,440,107	D2 L 95,534,386	D3 L 94,220,426	E1H 96,803,603	E2H 99,062,221	E3H 100,317,231	E1L 90,203,324	E2L 92,667,387	E3L 93,773,860	H 145,030,143	P 111,401,471	CD 72,169,381)]		
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS	D1 H 101,610,062	D2 H 105,564,311	D3 H 106,652,986	D1 L 92,440,107	D2 L 95,534,386	D3 L 94,220,426	E1H 96,803,603	E2H 99,062,221 48,560,450	E3H 100,317,231 48 550 450	E1L 90,203,324	E2L 92,667,387	E3L 93,773,860	H 145,030,143	P 111,401,471 46 738 276	CD 72,169,381)]		
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs	D1 H 101,610,062 49,868,798	D2 H 105,564,311 49,868,798	D3 H 106,652,986 49,868,798	D1 L 92,440,107 46,000,412 205,426	D2 L 95,534,386 46,000,412 205,436	D3 L 94,220,426 45,521,476 261,019	E1H 96,803,603 48,560,450 262,270	E2H 99,062,221 48,560,450	E3H 100,317,231 48,560,450 262,370	E1L 90,203,324 45.455,099 268.458	E2L 92,667,387 45,455,099	E3L 93,773,860 45,420,643	H 145,030,143 55,373,705 227,254	P 111,401,471 46,738,276 260,591	CD 72,169,381 39,221,650)]		
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development	D1 H 101,610,062 49,868,798 597,853 5 597,853	D2 H 105,564,311 49,868,798 597,853 5 574,240	D3 H 106,652,986 49,868,798 597,853 5 574,240	D1 L 92,440,107 46,000,412 305,436	D2 L 95,534,386 46,000,412 305,436 2 C14 575	D3 L 94,220,426 45,521,476 361,018 2 614 675	E1H 96,803,603 48,560,450 362,370 5,624,240	E2H 99,062,221 48,560,450 362,370 5,524,240	E3H 100,317,231 48,560,450 362,370 5,524,240	E1L 90,203,324 45.455,099 368,458 2.614.675	E2L 92,667,387 45,455,099 368,458 2614 635	E3L 93,773,860 45,420,643 357,624	H 145,030,143 55,373,705 227,354	P 111,401,471 46,738,276 360,581	CD 72,169,381 39,221,650 613,666)]		
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs	D1 H 101,610,062 49,868,798 597,853 5,624,240	D2 H 105,564,311 49,868,798 597,853 5,624,240	D3 H 106,652,986 49,868,798 597,853 5,624,240	D1 L 92,440,107 46,000,412 305,436 2,614,575	D2 L 95,534,386 46,000,412 305,436 2,614,575	D3 L 94,220,426 45,521,476 361,018 2,614,575	E1H 96,803,603 48,560,450 362,370 5,624,240	E2H 99,062,221 48,560,450 362,370 5,624,240	E3H 100,317,231 48,560,450 362,370 5,624,240	E1L 90,203,324 45,455,099 368,458 2,614,575	E2L 92,667,387 45,455,099 368,458 2,614,575	E3L 93,773,860 45,420,643 357,624 2,614,575	H 145,030,143 55,373,705 227,354 28,766,931	P 111,401,471 46,738,276 360,581 13,586,685	CD 72,169,381 39,221,650 613,666 937,574)] 		
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,994	D3 H 106,652,986 49,868,798 597,853 5,624,240 1,792,494	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 432,717	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 832,717	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,792,494	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494	E1L 90,203,324 45,455,099 368,458 2,614,575 832,717	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 432,717	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168	P 111,401,471 46,738,276 360,581 13,586,685 4,311,146	CD 72,169,381 39,221,650 613,666 937,574 316,786]] 		
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs On farm irigation dev. costs	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494 0	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,381,617	D3 H 106,652,986 49,868,798 597,853 5,624,240 1,792,494 2,381,617	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717 0	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 1,747,587	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 1,228,323	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494 0	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,008,845	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494 1,008,845	E1L 90,203,324 45.455,099 368,458 2,614,575 832,717 0	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 1,178,408	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717 1,174,728	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168 0	P 111,401,471 46,738,276 360,581 13,586,685 4,311,146 0	CD 72,169,381 39,221,650 613,666 937,574 316,786 0]] 		
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs On farm irigation dev. costs On farm salinity control costs	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494 0 0	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,381,617 0	D3 H 106,652,986 49,868,798 597,853 5,624,240 1,792,494 2,381,617 389,029	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717 0 0	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 1,747,587 0	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 1,228,323 395,457	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494 0 0	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,008,845	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494 1,008,845 389,029	E1L 90,203,324 45.455,099 368,458 2,614,575 832,717 0 0	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 1,178,408 0	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717 1,174,728 395,457	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168 0 0	P 111,401,471 46,738,276 360,581 13,586,685 4,311,146 0 0	CD 72,169,381 39,221,650 613,666 937,574 316,786 0 0]		
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs On farm irigation dev. costs On farm salinity control costs TOTAL AGRICULTURAL COSTS	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494 0 57,883,385	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,381,617 0 60,265,002	D3 H 106,652,986 49,868,798 597,853 5,624,240 1,792,494 2,381,617 389,029 60,654,031	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717 0 49,753,140	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 1,747,587 0 51,500,727	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 1,228,323 395,457 50,953,566	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494 0 0 56,339,554	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,008,845 57,348,399	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494 1,008,845 389,029 57,737,428	E1L 90,203,324 45.455,099 368,458 2,614,575 832,717 0 49,270,849	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 1,178,408 0 50,449,257	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717 1,174,728 395,457 50,795,744	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168 0 0 96,608,158	P 111,401,471 46,738,276 360,581 13,586,685 4,311,146 0 0 64,996,688	CD 72,169,381 39,221,650 613,666 937,574 316,786 0 0 41,089,676]] 		
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs On farm irigation dev. costs On farm salinity control costs TOTAL AGRICULTURAL BENEFIT	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494 0 57,883,385 43,726,677	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,381,617 0 60,265,002 45,299,309	D3 H 106,652,986 597,853 5,624,240 1,792,494 2,381,617 389,029 60,654,031 45,998,955	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717 0 49,753,140 42,686,967	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 1,747,587 0 51,500,727 44,033,659	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 1,228,323 395,457 50,953,566 43,266,860	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494 0 0 56,339,554 40,464,049	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,008,845 57,348,399 41,713,822	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494 1,008,845 389,029 57,737,428 42,579,803	E1L 90,203,324 45.455,099 368,458 2,614,575 832,717 0 49,270,849 40,932,475	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 1,178,408 0 50,449,257 42,218,130	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717 1,174,728 395,457 50,795,744 42,978,116	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168 0 96,608,158 48,421,985	P 111,401,471 46,738,276 360,581 13,586,685 4,311,146 0 0 64,996,688 46,404,783	CD 72,169,381 39,221,650 613,666 937,574 316,786 0 0 41,089,676 31,079,705			
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs Citrus development costs On farm salinity control costs TOTAL AGRICULTURAL COSTS NET AGRICULTURAL BENEFIT COMPARED TO CLOSE DOWN	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494 0 0 57,883,385 43,726,677 12,646,972	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,381,617 0 60,265,002 45,299,309 14,219,604	D3 H 106,652,986 597,853 5,624,240 1,792,494 2,381,617 389,029 60,654,031 45,998,955 14,919,250	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717 0 49,753,140 42,686,967 11,607,262	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 1,747,587 0 51,500,727 44,033,659 12,953,954	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 1,228,323 395,457 50,953,566 43,266,860 12,187,155	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494 0 0 56,339,554 40,464,049 9,384,344	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,008,845 57,348,399 41,713,822 10,634,117	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494 1,008,845 389,029 57,737,428 42,579,803 11,500,098	E1L 90,203,324 45.455,099 368,458 2,614,575 832,717 0 49,270,849 40,932,475 9,852,770	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 1,178,408 50,449,257 42,218,130 11,138,425	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717 1,174,728 395,457 50,795,744 42,978,116 11,898,411	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168 0 96,608,158 48,421,985 17,342,280	P 111,401,471 46,738,276 360,581 13,586,685 4,311,146 0 64,996,688 46,404,783 15,325,078	CD 72,169,381 39,221,650 613,666 937,574 316,786 0 41,089,676 31,079,705]]]		
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs Citrus development costs On farm irigation dev. costs On farm satinity control costs TOTAL AGRICULTURAL COSTS NET AGRICULTURAL BENEFIT COMPARED TO CLOSE DOWN	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494 0 57,883,385 43,726,677 12,646,972	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,381,617 0 60,265,002 45,299,309 14,219,604	D3 H 106,652,986 597,853 5,624,240 1,792,494 2,381,617 389,029 60,654,031 45,998,955 14,919,250	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717 0 49,753,140 42,686,967 11,607,262	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 1,747,587 0 51,500,727 44,033,659 12,953,954	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 1,228,323 395,457 50,953,566 43,266,860 12,187,155	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494 0 0 56,339,554 40,464,049 9,384,344	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,008,845 57,348,399 41,713,822 10,634,117	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494 1,008,845 389,029 57,737,428 42,579,803 11,500,098	E1L 90,203,324 45.455,099 368,458 2,614,575 832,717 0 49,270,849 40,932,475 9,852,770	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 1,178,408 0 50,449,257 42,218,130 11,138,425	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717 1,174,728 395,457 50,795,744 42,978,116 11,898,411	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168 0 96,608,158 48,421,985 17,342,280	P 1111,401,471 46,738,276 360,581 13,586,685 4,311,146 0 64,996,688 46,404,783 15,325,078	CD 72,169,381 39,221,650 613,666 937,574 316,786 0 0 41,089,676 31,079,705			
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs On farm virgation dev. costs On farm salinity control costs TOTAL AGRICULTURAL BENEFIT COMPARED TO CLOSE DOWN FINANCIAL ANALYSIS	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494 0 57,883,385 43,726,677 12,646,972	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,381,617 0 60,265,002 45,299,309 14,219,604	D3 H 106,652,986 49,868,798 597,853 5,624,240 1,792,494 2,381,617 389,029 60,654,031 45,998,955 14,919,250	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717 0 49,753,140 42,686,967 11,607,262	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 1,747,587 0 51,500,727 44,033,659 12,953,954	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 1,228,323 395,457 50,953,566 43,266,860 12,187,155	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494 0 0 56,339,554 40,464,049 9,384,344	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,008,845 57,348,399 41,713,822 10,634,117	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494 1,008,845 389,029 57,737,428 42,579,803 11,500,098	E1L 90,203,324 45,455,099 368,458 2,614,575 832,717 0 49,270,849 40,932,475 9,852,770	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 1,178,408 0 50,449,257 42,218,130 11,138,425	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717 1,174,728 395,457 50,795,744 42,978,116 11,898,411	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168 0 96,608,158 48,421,985 17,342,280	P 111,401,471 46,738,276 360,581 13,586,685 4,311,146 0 64,996,688 46,404,783 15,325,078	CD 72,169,381 39,221,650 613,666 937,574 316,786 0 0 41,089,676 31,079,705]] 		
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs On farm irigation dev. costs On farm salinity control costs TOTAL AGRICULTURAL BENEFIT COMPARED TO CLOSE DOWN FINANCIAL ANALYSIS	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494 0 57,883,385 43,726,677 12,646,972	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,381,617 0 60,265,002 45,299,309 14,219,604	D3 H 106,652,986 49,868,798 597,853 5,624,240 1,792,494 2,381,617 389,029 60,654,031 45,998,955 14,919,250	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717 0 49,753,140 42,686,967 11,607,262	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 1,747,587 0 51,500,727 44,033,659 12,953,954	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 1,228,323 395,457 50,953,566 43,266,860 12,187,155	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494 0 0 56,339,554 40,464,049 9,384,344	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,008,845 57,348,399 41,713,822 10,634,117	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494 1,008,845 389,029 57,737,428 42,579,803 11,500,098	E1L 90,203,324 45,455,099 368,458 2,614,575 832,717 0 49,270,849 40,932,475 9,852,770	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 1,178,408 0 50,449,257 42,218,130 11,138,425	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717 1,174,728 395,457 50,795,744 42,978,116 11,898,411	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168 0 96,608,158 48,421,985 17,342,280	P 111,401,471 46,738,276 360,581 13,586,685 4,311,146 0 64,996,688 46,404,783 15,325,078	CD 72,169,381 39,221,650 613,666 937,574 316,786 0 0 41,089,676 31,079,705			
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs On farm irigation dev. costs On farm satinity control costs TOTAL AGRICULTURAL COSTS NET AGRICULTURAL BENEFIT COMPARED TO CLOSE DOWN FINANCIAL ANALYSIS AGRICULTURE GROSS MARGIN AC COSTS	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494 0 57,883,385 43,726,677 12,646,972 130,896,760 57,882,285	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,381,617 0 60,265,002 45,299,309 14,219,604 136,888,211 60,965,002	D3 H 106,652,986 597,853 5,624,240 1,792,494 2,381,617 389,029 60,654,031 45,998,955 14,919,250	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717 0 49,753,140 42,686,967 11,607,262 118,943,350	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 1,747,587 0 51,500,727 44,033,659 12,953,954 123,390,995 51,500,727	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 1,228,323 395,457 50,953,566 43,266,860 12,187,155	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494 0 0 56,339,554 40,464,049 9,384,344	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,008,845 57,348,399 41,713,822 10,634,117	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494 1,008,845 389,029 57,737,428 42,579,803 11,500,098	E1L 90,203,324 45.455,099 368,458 2,614,575 832,717 0 49,270,849 40,932,475 9,852,770	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 1,178,408 0 50,449,257 42,218,130 11,138,425	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717 1,174,728 395,457 50,795,744 42,978,116 11,898,411	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168 0 96,608,158 48,421,985 17,342,280	P 1111,401,471 46,738,276 360,581 13,586,685 4,311,146 0 64,996,688 46,404,783 15,325,078	CD 72,169,381 39,221,650 613,666 937,574 316,786 0 0 41,089,676 31,079,705			
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs On farm irigation dev. costs On farm salinity control costs TOTAL AGRICULTURAL COSTS NET AGRICULTURAL BENEFIT COMPARED TO CLOSE DOWN FINANCIAL ANALYSIS AGRICULTURE GROSS MARGIN AG COSTS	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494 0 0 57,883,385 43,726,677 12,646,972 130,896,760 57,883,385	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,381,617 0 60,265,002 45,299,309 14,219,604 136,888,211 60,265,002 136,888,211 60,265,002	D3 H 106,652,986 49,868,798 597,853 5,624,240 1,792,494 2,381,617 389,029 60,654,031 45,998,955 14,919,250 138,369,263 60,654,031	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717 0 0 49,753,140 42,686,967 11,607,262 118,943,350 49,753,140	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 1,747,587 0 51,500,727 44,033,659 12,953,954 123,390,995 51,500,727	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 1,228,323 395,457 50,953,566 43,266,860 12,187,155 120,922,770 50,953,566	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494 0 0 56,339,554 40,464,049 9,384,344	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,008,845 57,348,399 41,713,822 10,634,117 125,183,760 57,348,399	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494 1,008,845 389,029 57,737,428 42,579,803 11,500,098 126,875,115 57,737,428	E1L 90,203,324 45.455,099 368,458 2,614,575 832,717 0 0 49,270,849 40,932,475 9,852,770 115,437,805 49,270,849	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 1,178,408 0 50,449,257 42,218,130 11,138,425 119,080,343 50,449,257	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717 1,174,728 395,457 50,795,744 42,978,116 11,898,411 120,215,400 50,795,744	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168 0 96,608,158 48,421,985 17,342,280 167,140,979 96,608,158	P 111,401,471 46,738,276 360,581 13,586,685 4,311,146 0 64,996,688 46,404,783 15,325,078 133,512,308 64,996,688	CD 72,169,381 39,221,650 613,666 937,574 316,786 0 0 41,089,676 31,079,705 94,280,217 41,089,676			
ECONOMIC ANALYSIS AGRICULTURE GROSS MARGIN COSTS Fixed costs Livestock & Development Veg. development costs Citrus development costs On farm irigation dev. costs On farm salinity control costs TOTAL AGRICULTURAL COSTS NET AGRICULTURAL BENEFIT COMPARED TO CLOSE DOWN FINANCIAL ANALYSIS AGRICULTURE GROSS MARGIN AG COSTS NET AGRICULTURE BENEFIT	D1 H 101,610,062 49,868,798 597,853 5,624,240 1,792,494 0 0 57,883,385 43,726,677 12,646,972 130,896,760 57,883,385 73,013,375	D2 H 105,564,311 49,868,798 597,853 5,624,240 1,792,494 2,381,617 0 60,265,002 45,299,309 14,219,604 136,888,211 60,265,002 76,623,209	D3 H 106,652,986 49,868,798 597,853 5,624,240 1,792,494 2,381,617 389,029 60,654,031 45,998,955 14,919,250 138,369,263 60,654,031 77,715,232	D1 L 92,440,107 46,000,412 305,436 2,614,575 832,717 0 49,753,140 42,686,967 11,607,262 118,943,350 49,753,140 69,190,210	D2 L 95,534,386 46,000,412 305,436 2,614,575 832,717 1,747,587 0 51,500,727 44,033,659 12,953,954 12,953,954	D3 L 94,220,426 45,521,476 361,018 2,614,575 832,717 1,228,323 395,457 50,953,566 43,266,860 12,187,155 120,922,770 50,953,566 69,969,204	E1H 96,803,603 48,560,450 362,370 5,624,240 1,792,494 0 56,339,554 40,464,049 9,384,344 121,866,928 56,339,554 65,527,374	E2H 99,062,221 48,560,450 362,370 5,624,240 1,792,494 1,008,845 57,348,399 41,713,822 10,634,117 125,183,760 57,348,399 67,835,361	E3H 100,317,231 48,560,450 362,370 5,624,240 1,792,494 1,008,845 389,029 57,737,428 42,579,803 11,500,098 126,875,115 57,737,428 69,137,687	E1L 90,203,324 45.455,099 368,458 2,614,575 832,717 0 49,270,849 40,932,475 9,852,770 115,437,805 49,270,849 66,166,956	E2L 92,667,387 45,455,099 368,458 2,614,575 832,717 1,178,408 0 50,449,257 42,218,130 11,138,425 119,080,343 50,449,257 68,631,086	E3L 93,773,860 45,420,643 357,624 2,614,575 832,717 1,174,728 395,457 50,795,744 42,978,116 11,698,411 120,215,400 50,795,744 69,419,656	H 145,030,143 55,373,705 227,354 28,766,931 12,240,168 0 96,608,158 48,421,985 17,342,280 167,140,979 96,608,158 70,532,821	P 111,401,471 46,738,276 360,581 13,586,685 4,311,146 0 64,996,688 46,404,783 15,325,078 133,512,308 64,996,688 68,515,620	CD 72,169,381 39,221,650 613,666 937,574 316,786 0 41,089,676 31,079,705] 94,280,217 41,089,676 53,190,541			

AREA

AREA		·					WA	ROC	DNA									
SCENARIO	A1 H	A2 H	A3 H	A1 L	A2 L	A3L	81 H	82 H	B3 H	81 L	B2 L	831	C1 H	C2 H	C3 H	C1 I	C2	631
FCONOMIC ANALYSIS																		
AGRICULTURE GROSS MARGIN	35,440,805	36,569,808	37,391,625	32,342,102	33,224,937	32,437,048	35,339,139	36,441,631	37,030,891	32,342,102	33,224,937	32,386,573	35,057,489	36,042,209	36,371,082	32,342,102	33,224,937	32,386,573
COSTS																		
Fixed costs	15,110,185	15,110,185	15,110,185	13,709,848	13,709,848	13,509,797	15,000,919	15,000,919	15,000,919	13,709,848	13,709,848	13,500,645	14,934,517	14,934,517	14,934,517	13,709,848	13,709,848	13,500,645
Livestock & Development	-402	-402	-402	83,625	83,625	131,064	80,661	80,661	80,661	83,625	83,625	133,587	96,365	96,365	96,365	83,625	83,625	133,587
Veg. development costs	1,417,019	1,417,019	1,417,019	374,356	374,355	3/4,356 501 174	1,417,019	1,417,019	1,417,019	3/4,355	3/4,356	3/4,356	1,417,019	1,417,019	1,417,019	3/4,355	3/4,356	3/4,356
On farm irination dev. costs	902,300	932,300	952,300		501,174 622,956	336 755	952,300 ß	830 334	830 334	501,174 N	622 956	323 485	952,300 N	552,500 700 256	932,300 700 256	561,174 D	622 956	323 485
On farm salinity control costs	0	0	784,996	Ő	022,000	90,508	õ	0	371,647	Ő	022,000	90,508	0	0	100,364	Ő	022,000	90,508
TOTAL AGRICULTURAL COSTS	17,479,108	18,390,207	19,175,203	14,749,003	15,371,959	15,023,654	17,450,905	18,281,239	18,652,886	14,749,003	15,371,959	15,003,755	17,400,207	18,100,463	18,200,827	14,749,003	15,371,959	15,003,755
NET AGRICULTURAL BENEFIT	17,961,697	18,179,601	18,216,422	17,593,099	17,852,978	17,413,394	17,888,234	18,160,392	18,378,005	17,593,099	17,852,978	17,382,818	17,657,282	17,941,746	18,170,255	17,593,099	17,852,978	17,382,818
COMPARED TO CLOSE DOWN	8,742,347	8,960,251	8,997,072	8,373,749	8,633,628	8,194,044	8,668,884	8,941,042	9,158,655	8,373,749	8,633,628	8,163,468	8,437,932	8,722,396	8,950,905	8,373,749	8,633,628	8,163,468
FINANCIAL ANALYSIS																		
AGRICULTURE GROSS MARGIN	139,188,027	40,535,215	41,517,411	35,759,543	36,791,238	35,872,438	39,134,615	40,461,863	41,180,711	35,759,543	36,791,238	35,821,963	38,891,851	40,105,140	40,489,662	35,759,543	36,791,238	35,821,963
AG COSTS	17,479,108	18,390,207	19,175,203	14,749,003	15,371,959	15,023,654	17,450,905	18,281,239	18,652,886	14,749,003	15,371,959	15,003,755	17,400,207	18,100,463	18,200,827	14,749,003	15,371,959	15,003,755
NET AGRICULTURE BENEFIT	21,708,919	22,145,008	22,342,208	21,010,540	21,419,279	20,848,784	21,683,710	22,180,624	22,527,825	21,010,540	21,419,279	20,818,208	21,491,644	22,004,677	22,288,835	21,010,540	21,419,279	20,818,208
COMPARED TO CLOSE DOWN	9,588,453	10,024,542	10,221,742	8,890,074	9,298,813	8,728,318	9,563,244	10,060,158	10,407,359	8,890,074	9,298,813	8,697,742	9,371,178	9,884,211	10,168,369	8,890,074	9,298,813	8,697,742
1								661-	EAL	F 44	50			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	45	1		
	D1 H	D2 H	D3 H	DIL	D2 L	D3 L	EIH	E2H	E3H	EIL	E2L	E3L	H	P	CD]		
ECONOMIC ANALYSIS																-		
AGRICULTURE GROSS MARGIN	33,500,261	33,911,861	34,299,053	31,175,831	31,643,476	31,974,134	33,500,261	33,911,861	34,299,053	31,218,395	31,693,968	31,974,134	61,370,094	21,845,553	21,845,553			
COSTS																_		
Fixed costs	14,572,150	14,572,150	14,572,150	13,443,451	13,443,451	13,430,784	14,572,150	14,572,150	14,572,150	13,456,831	13,456,831	13,430,784	18,632,530	11,743,171	11,743,171			
Livestock & Development	159,706	159,706	159,706	161,900	161,900	152,635	159,706	159,706	159,706	162,527	162,527	152,635	71,682	234,339	234,339			
Veg. development costs	1,417,019	1,417,019	1,417,019	374,356	374,356	374,356	1,417,019	1,417,019	1,417,019	3/4,356	3/4,355	3/4,355	14,011,037	226,311	226,311			
On farm irigation dev. costs	952,306	952,300	952,306	561,1/4	208 726	208 736	952,306	952,300	902,300	501,174 0	200 020	208 736	4,300,412 0	422,302	422,382 N			
On farm salinity control costs	0 0	103,333	100,364	õ	200,100	90,508	Ő	100,000	100,355	ů	203,020	90,508	ů	0	0			
TOTAL AGRICULTURAL COSTS	17,101,181	17,267,134	17,367,498	14,560,881	14,769,617	14,838,193	17,101,181	17,267,134	17,367,498	14,574,888	14,783,908	14,838,193	37,081,661	12,626,203	12,626,203			
NET AGRICULTURAL BENEFIT	16,399,080	16,644,727	16,931,555	16,614,950	16,873,859	17,135,941	16,399,080	16,644,727	16,931,555	16,643,507	16,910,060	17,135,941	24,288,433	9,219,350	9,219,350]		
COMPARED TO CLOSE DOWN	7,179,730	7,425,377	7,712,205	7,395,600	7,654,509	7,916,591	7,179,730	7,425,377	7,712,205	7,424,157	7,690,710	7,916,591	15,069,083	0				
EINANCIAL ANALVEIS																		
I IMANUML ANALI DID			AR 445 4		<u> </u>	06.400.50	00.00.000	07.400	07.046.005	A / 3 / 4 ===	05 00 555	A E 100 75		<u></u>		l		
AGRICULTURE GROSS MARGIN	36,924,802	37,469,771	37,915,957	34,596,406	35,212,911	35,409,524	35,924,802	37,469,771	37,915,957	34,746,753	35,394,551	35,409,524	54,271,211	24.746.669	24,746,669			
NET AGRICULTURE BENEFIT	19,823,621	17,267,134 20,202,637	17,367,498 20,548,459	20,035,525	14,769,617 20,443,294	14,030,193	19,823,621	20,202,637	17,307,498 20,548,459	14,574,888 20,171,864	20,610,643	14,838,193 20,571,331	27,189,550	12 626,203	12,026,203			
COMPARED TO CLOSE DOWN	7,703,155	8,082,171	8,427,993	7,915,059	8,322,828	8,450,865	7,703,155	8,082,171	8,427,993	8,051,398	8,490,177	8,450,865	15,069,084	0		I		

اروی اوس و به وست این مرافق وست و مرافق وست مرافق این میشند. میرونیست ایس اور میلان

CONVERSION COSTS

LAND DEVELOPMENT COSTS (\$/HA)

	Horticulture	Irrigated Perennial Dairy	Irrigated Perrenial Beef	Irrigated Annual Dairy	Irrigated Annual Beef	Dryland Dairy	Dryland Beef
Horticulture	0	800	800	500	500	300	300
Irrigated Perennial Dairy	1,000	0	0	600	600	600	600
Irrigated Perrenial Beef	1,000	0	0	600	600	600	600
Irrigated Annual Dairy	500	400	400	0	0	200	200
Irrigated Annual Beef	500	400	400	0	0	200	200
Dryland Dairy	500	500	500	400	400	0	0
Dryland Beef	500	500	500	400	400	0	0
CONVERSION COSTS CONTINUED

LIVESTOCK CAPITAL (\$/HA)

Based on dairy 1 DSE = \$45 beef 1 DSE = \$37.50

Land Productivity	Dryland	Early Germination	Permanent Irrigation
High			
Dairy	675	900	1125
Beef	563	750	938
Medium			
Dairy	585	720	855
Beef	488	600	713
Low			
Dairy	315	450	585
Beef	263	375	488

HIGH PRODUCTIVITY CONVERSION COSTS per HECTARE

Т	n	-
	S	•

FROM:	Elort	de-	Perre	del	Perre	ad al	Ann		Ann	nel	Dryl	nad	Dryl	and
	wilter	2 0	Dais	y	Bœ	r	Del	sy	Bog	ď	Dal	ry	Be	aľ
Hordcalture	\$Q. (hą.	\$1,925	/ha	\$1,738	/ba	\$1,400	/ha	\$1,250	/ba	\$975	/ha	\$863	/ha
Perrenial Dedry	-\$125	/ba	\$0.7	£я	-\$187	/ha	\$375	/ha	\$225	/ha	\$150	/ba	\$38	/ha
Pearenial Beef	\$62	/ha	\$187	/ba	\$0	1 12	\$562	/ha	\$412	/ha	\$337	/ha	\$225	/ha
Annual Deiry	-\$400	/ha	\$625	/ha	\$438	/ba	\$Q	(ha	-\$150	/h a	-\$25	/ha	-\$137	/ba
Annual Beel	-\$250	/ha	\$775	/ha	\$588	/ba	\$150	/ba	80 /	ba	\$125	/ba	\$13	/ha
Dryland Deley	-\$175	/ha	\$950	/ha	\$763	/ba	\$625	/ha	\$475	/ha		ba 🛛	-\$112	/ha
Dryland Beef	-\$63	/ha	\$1,062	/ha	\$875	/ha	\$737	/ha	\$587	/ha	\$112	/ha	\$0	Maa 💠

MEDIUM PRODUCTIVITY CONVERSION COSTS per HECTARE

TO:

TO:

FROM:	Hor	die-	Parres	dal	Perre	niai	Ann	ral	Ann		Dryl	nađ	Dryf	and
	mite	v:s	Deli	y	Bee	đ	Dai	I 7	Bœ	aí	De	le y	Bo	đ
Hordculture	\$0	/hz	\$1,655	/ha	\$1,513	/ha	\$1,220	/ha	\$1,100) /ha	\$885	/ha	\$788	/ha
Perrentel Dedry	\$145	/ha	80 /	ba	-\$142	/ha	\$465	/ha	\$345	/ha	\$330	/ha	\$2.33	/ha
Perrental Beef	\$287	/ha	\$142	/ha	80 /	ba	\$607	/ha	\$487	/ha	\$472	/ha	\$375	/hz
Annual Delry	-\$220	/ha	\$535	/ha	\$393	/ha	\$0	lh x	-\$120	/ha	\$65	/ha	-\$32	/ha
Annal Beef	-\$100	/ha	\$655	/ha	\$513	/ha	\$120	/ha	\$0	/ba	\$185	/ha	\$88	/ha
Dryland Dairy	-\$85	/ha	\$770	/ha	\$628	/ha	\$535	/ha	\$415	/ha	\$0	ñta 🛛	-\$97	/ha
Dryland Beef	\$12	/ha	\$867	/ha	\$725	/ha	\$632	/ha	\$512	/ha	\$97	/bz	80	/ba

LOW PRODUCTIVITY CONVERSION COSTS per HECTARE

FROM:	Blom	de-	Perre	nial	Perre	nlei	Ana	mel	Ann	mei	Dryl	and	Dryl	land
	Tullion	878	Dď	£7	Bœ	x2	Da	lry	Ba	ഷ്	Del	ry	Bc	al l
Hondesitura	90	/ha	\$1,385	/ha	\$1,288	/ha	\$950	/ha	\$875	/ha	\$615	/hz	\$563	/ha
Pangaial Dairy	\$415	/ha	\$0	/a	-\$97	/ha	\$465	/ha	\$390	/ha	\$330	/ba	\$2.78	/ha
Pearenial Beef	\$512	/ha	\$97	/ha	\$0	5 2	\$562	/ha	\$487	/hz	\$4 27	/ha	\$375	/ha
Annual Dairy	\$50	/ha	\$535	/ha	\$438	/ha	2 Q	∕he-	-\$75	/ha	\$65	/ha	\$13	/ha
Annual Bood	\$125	/ha	\$610	/ha	\$513	/ha	\$75	/ha	.80	/ba	\$140	/ha	\$88	/ha
Dryland Dairy	\$185	/ha	\$770	/ha	\$673	/ba	\$535	/ha	\$460	/ha		Aba 🔅	-\$52	/ba
Dryland Beef	\$237	/ha	\$822	/ha	\$725	/ha	\$587	/ha	\$512	/ha	\$52	/ha	\$0	752

DISTRIBUTION SYSTEM MAINTENANCE AND RENEWAL COST ESTIMATES

1. INTRODUCTION

This attachment provides details of the assumption made and examples of the cost calculated for the Strategy 1 and Strategy 3 approaches to maintaining and renewing the Irrigation Distribution Scheme.

Initially the costs were estimated over a 30 year period. However, they were extended to an 80 year period to improve the consistency of comparison between the high capital intensive Strategy 3 with the high operation costs of Strategy 1.

Please note that the operating costs evaluated in this option were based on data from the financial year 1989/90. They pre-date the changes introduced in centralising operations at Harvey and recently proposed short term options for the improved operation and management of the South-West Irrigation Service as a result of the September 1992 Value Management Study.

2. STRATEGY 1 - MINIMUM MAINTENANCE OF THE EXISTING CHANNEL SYSTEM

These pages provide an introduction into the costings and assumptions associated with maintaining the current channel system for Option A. They do not cover the details of all options. Costs peculiar to particular options (particularly the drainage costs of Option D) are detailed in spreadsheets for that particular option.

The components of the costings for Option A are similar for all options and provide an introduction to all the spreadsheets. The costs components have been grouped into capital and operating as detailed below.

Capital - Channel Patchup Costs

As small sections of lined channel "fail" they are currently patched up on a job by job basis. While each job is relatively costly because of its small scale this "patchup" approach avoids a major capital refurbishment program. However, as the channels age the frequency of "failures" increase and greater expenditure on replacement patchup is required.

It is difficult to reliably estimate such expenditure. However estimates are possible by considering the age of channel lining and the replacement costs based on past operational experience. This approach is considered preferable to adopting a general depreciation allowance based on standard accounting procedures.

An increased "patchup" programme run by the existing maintenance gangs (or contracted out by the Region as appropriate) was costed in the following way.

An effective life for lined channels of 60 to 80 years adopted. This is based on their ability to maintain channel stability and hydraulic capacity (not leakage control) (see background paper number 2 Phase 1). A maximum patchup/replacement yearly expenditure was set sufficient to ensure that at least 50% of the lined lengths of a district would be replaced in a 20 year period once the average age reached 60 years. An average replacement cost (without overheads) as listed below was adopted.

Channel	Adopted Unit
Capacity	Costs (Dec 1990)
M ³ /sec	\$/metre
0 - 0.5	\$100
0.5 - 1.0	\$120
1.0 - 2.0	\$170
2.0 - 3.0	\$220
> 3.0	\$275

For the Collie and Harvey District average replacement costs were about \$170 to \$175 per metre. As the Waroona District has smaller channel capacities average costs were \$110 per metre.

The start year at which the maximum yearly expenditure on patchup was taken when the average age reached about 55 years. A 5 to 10 year gradual increase to this level was adopted.

The following table summarises the channel patchup estimates.

	Timing a	nd Expenditure on	Channel Patchup	
District	Average Current Age of Lining (Years)	Start Time for Maximum Replacement Expenditure (Year No.)	Nominal Average Length Replaced Each Year (km)	Adopted ⁽¹⁾ Maximum (Direct Costs only) \$1000's
Waroona	49	5	0.7	75
Harvey	44	11	2.0	340
Collie	25	21	1.1	194
Total	-	-	3.8	609

Notes: ⁽¹⁾ Overall expenditure would replace all lining in about 40 years. It would take about 20 years in Waroona, about 35 years in Harvey and 50 years in Collie.

An allowance was made of \$70,000 for capital upgrade of earth channels over the three districts. While ongoing maintenance should ensure that the channels are

maintained, episodic problems requiring specific upgrading costs will increase as the earth channels age.

Capital - Waterway Structures and Distribution Outlet Works

Over the next 10 years preliminary expenditure on automation of distribution outlet works and automatic controls at major bifuration points in the distribution system are planned to evaluate the cost effectiveness of further automation. The expenditure is expected to save the equivalent wages of 2 watermen over the ten year period.

\$000's

The distribution outlets marks proposed are as follows:

Year 1	Wellington	70
Year 2	Samson & Waroona	150
Year 3	Drakesbrook	50
	Burekup & North Supply Offtake (Collie District)	100
Year 4	Logue Brook	80
	Waroona Major Bifurcation	50
	North Supply - High Level (Collie District)	50
Year 5	Stirling	70
	Uduc Channel Offtake	30

Within the channel system one automatic gate installation was planned in each district in Year 1. Three additional auto-gate installations each year at bifurcations are planned between years 2 and 5 in the Collie District to complete a particular channel sub-system. Three are planned in Waroona in year 6 and three in years 7 to 10 in Harvey. Each auto-gate installation is estimated at \$16,000.

After year 10 replacement and upgrading of bifurcation and flow control structures will continue throughout the distribution system but without automation and at cost of \$10,000 each. Automation would be extended only if the experience in the first 10 years showed that automation was cost effective.

The average effective life for a Dethridge wheel is about 20 years. Allowance has been made for replacement of most wheels over the next 10 years. Wheel replacement costs return to zero by year 11, but commence again in year 21 when the first wheels replaced in year 1 need to be replaced again.

Capital - Minor Works Overheads

The patching up of channels, replacement of flow control structures and installation of new Dethridge Wheels are works to be carried out within the South-West region. They would incur the average salary and administration overheads of 35%.

Operating - Water Delivery Costs

The cost of water delivery is based on the operating figures for 1989/90. These have been modified for future years in the following ways.

As the new automatic control gear is introduced increases in electrical maintenance costs are incurred. These grow by about \$2,000 per year per district as the equipment is installed. In year 5 (Collie District) and year 10 (Harvey District) the labour of one waterman is saved. Past year 10 the water delivery costs remain constant.

Operating - Channel Maintenance and Additional Drainage Operation and Maintenance

Channel maintenance is that cost involved in the routine weed control, cleaning and minor maintenance tasks to ensure the routine operation of the channel system. Cost estimates do not change with time under this minimum maintenance strategy.

Similarly, the additional drainage costs are those additional costs incurred in operating the drainage in the irrigation areas relative to the cost of operating the drainage in nearby dryland drainage areas. It is a fixed cost (for Option A) based on operating costs in 1989/90.

Operating - Salary and Administration Overhead Costs

As detailed in the Kinhill Alternatives Management Paper (Phase 2 Paper Supplementary Paper Number 5) an appropriate long term overhead charge for the salary and administrative costs of the South-West Irrigation service is 35%. This additional (real) operating cost is included as a separate item.

Strategy 1 Spreadsheet Examples

The following 3 pages list the actual costs for the Waroona, Harvey and Collie Districts for Option A and the current water charging policy.

The distribution costs described above are listed together with the areas irrigated for the High Demand Case, the Headworks costs involved and estimates of water sold and revenue received.

······ OPTION A1 ······ WAROONA			м	ax Peri	rn kr Ar	•ea - Y	'ear 15			1526	hail	Rated A	vea lo	r Water	Allioc.	at Yr 1	5	1499 h	a		h	lax Ear	iy Geri	ninatio	n Area	n at Yr	15			370 h	ua		
Year '89/90 +	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	30-80		
AREA LIMITS ON IRRIGATION																																	
Max area of Permanent Irr, Land Max area Irr, (+ Early Germin) Rated Area for Water Aliocation	1526 1896 1499	1526 1 1896 1 1499 1	1526 1896 1499	1526 1 1896 1 1499 1	1526 1 1896 1 1499 1	526 896 499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	526 896 499	1526 1896 1499	24049 29878 23629	Tolai									
High Water Demand - Permanent Irr Land High Water Demand - Early Germin, Land	1350 477	1359 1 476	369 475	1378 1 474	1387 1 474	389 474	1392 474	1394 474	1397 474	1399 474	1401 473	1404 473	1406 473	1409 473	1411 473	1418 467	1425 461	1432 454	1439 448	1446 442	453 436	1460 430	1467 423	1474 417	1481 411	1488 405	1495 399	1502 392	1509 386	1516 380	23895 5990	Smill	1
CAPITAL COSTS (\$ 000's)																													·····				-
Headworks Structures Major Contract O/Heads Total with O/H	0 0 0	0 0 0	0 0	0 2	2300 2 184 2484 2	300 : 184 484 :	2700 216 2916	0 0 0	0 0	300 24 324	0 0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0 0	0	0 0 0	0 0	0 0 0	0 0 0	1243 99 1342	7.E 0.E 8.1	52
Headworks- Outlets Distribition System	0	150	50	50	0	0	0	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ixtra M O	letro Sc 0	ource Cost * 0	. 0.3	3
Lined Channel Patch Up or replace Unlined Channel Patch Up Pipe Network Const.	0 10	0	010	25 10	50 10	75 10	75 10	75 10	75 10	75 10	75 10	75 10	75 10	75 10	75 10	75 10	75 10	75 10	75	75 10	75 10	75	75 10	914 158	2.0) 3 0							
(a) Irrig. System Drain Construction Flow control -	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	נ 3
Structures Wheel replace,	16 10	0 10	10	10	0 10	48 10	10	10	0 10	10	28 0	28	28 0	28	16	16 0	16 0	16	16 0	0	16 10	16	16	16	16	10	16 10	16	16 10	16	248 159	0.4	12
Sub Total (Irrig.)	36	170	70	85	70	143	95	95	95	9 5	113	113	113	113	101	101	101	101	101	101	111	111	111	111	111	111	111	111	111	111	1479	3.1	Î
Minor Works O/H Sub Total with O/H	13 49	60 230	25 95	33 128	25 95	50 193	33 128	33 128	33 128	33 128	40 153	40 153	40 153	40 153	35 136	35 136	35 136	35 136	35 136	35 136	39 150	39 150	39 150	39 150	39 150	39 150	39 150	39 150	<u>39</u> 150	<u>39</u> 150	518 1096	<u> </u>	12
CAPITAL TOTAL (Inc. O/H)	49	230	95	128 2	579 2	677 :	3044	128	128	452	153	153	153	153	136	136	136	136	136	136	150	150	150	150	150	150	150	150	150	150	3339	12.4	ľ
OPERATION COSTS		ACCESSION OF THE OWNER		TORIOTTOR -			in an											****									17			Reaction process		1	-
Water Delivery Costs (Waterman & M & E Costs) Maintenance of Irrig	55 77	56 77	57 77	57 77	58 77	59 77	59 77	60 77	61 77	61 77	61 77	61 77	61 77	61 77	61 77	61 77	61 77	61 77	61 77	967 1221	1.8 2.1	3											
Supply System Add. Drainage O & M	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	529	1.0	ð
TOTAL (without O/H) Admin- O/H Costs TOTAL DIST (with O/H)	166 58 225	167 58 226	168 59 227	168 59 227	169 59 228	170 59 229	170 60 230	171 60 231	172 60 232	172 60 233	172 60 233	172 60 233	172 60 233	172 60 233	172 60 233	172 60 233	172 60 233	172 60 233	172 60 233	172 60 233	2718 951 3669	5.1	18										
Headworks OP (with O/H) OPS TOTAL (with O/H)	20 245	20 246	20 247	20 248	20 249	20 249	20 250	20 251	20 252	20 253	20 253	20 253	20 253	20 253	20 253	20 253	20 253 Granc	20 253 1 Tot.	20 253 NPV	20 253 - 80 yr	319 3968	06 76	, in Kinge										
GRAND TOTALS - \$ 000's	294	475	341	376 2	827 2	927	3295	380	390	706	406	406	406	406	389	399	389	389	309	90 <u>0</u>	403 IPV C	403	403 E	403 5% H	403 /worl	403 (s + d	403	403 depre	403 •C. OF	403	7327 38018	20.0	5
Revenue(Rates and charges)	275	276	277	278_	279	279	280	200	280	201	281	281	281	282	282	283	283	284	285	285	286	287	288	288 C	289 ost(k	290 16. Dep	290 Hec. o	291 told A	292 884t8)	292 /Currer	4609 nt income		5
																							L		<u></u>	C41. U	M.YC.			<u>r con</u>	na an oine	NPV	1
																																Dam	

······ OPTION A1 ······· HARVEY			1	Current M Max Perm	ax Per	rm In Are ea - Yea	a 15		5820 5820	ha ha	Max In Rated	Area (Area lo	IPP+IA r Wale	P+V+F r Alloc.) at Yr 1	5	5960 h 5431 h	a a		м	ax Earl	y Germ	vinatio	n Area	at Yr	15			954			
Year '89/90 +	1 1	2	3	4 6	5	<u>6</u> 7		9	10	-11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	30-80		
AREA LIMITS ON IRRIGATION																																
Max area of Permanent Irr. Land Max area Irr. (+ Early Germin) Rated Area for Water Alfocation	5820 6773 5431	5820 6773 5431	5820 6773 5431	5820 58 6773 67 5431 54	20 5 73 6 31 5	820 582 773 677 431 543	0 5820 3 6773 1 5431	5820 6773 5431	5820 (6773 (5431 (5820 5773 5431	5820 5 6773 6 5431 5	820 5 773 6 431 5	5820 5 5773 6 5431 5	820 5 773 6 431 5	820 5 773 6 431 5	820 9 773 0 431 9	820 773 431	5820 6773 5431	5820 6773 5431	5820 6773 5431	5820 6773 5431	5820 6773 5431	91726 106755 8560 1	Total Smilliona	NPV at 5%							
High Water Demand - Permanent Irr Land High Water Demand - Early Germin, Land	4582 1379	4561 1366	4541 1352	4520 44 1339 13	199 4 125 1	510 452 324 132	1 4531 3 1321	4542 1320	2 4553) 1319	4564 1318	4575 1317	4585 1315	4596 1314	4607 1313	4629 1313	4651 1312	4672 · 1312	4694 4 1311 1	716 311	4738 4 1311 1	760 4 310 1	781 4 310 1	803 309	1825 1309	4847 1309	4869 1308	4890 1308	4912 1307	4934 1307	77769 2060 1		PLIQUE T
CAPITAL COSTS (\$ 000' .)	Î													Charles Lak			e internet to the															<u> </u>
Headworks Structures Major Contract O/Heads Total with O/H	0 0 0	0 0 0	0 0 0	2600 10 208 2808 10	80 80	0 0	0 2000 0 160 0 2160	600 48 648		0	0 0 0	0	0 0	0 0 0	0 0 0	0 0	0	0 1 0	000 80 080	0	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	0 0 0	1243 99 1342	7.2 0.6 7.8	0.3 0.0 0.3
Headworks- Outlets Distribution System	0	0	0	50 1	00	0	o o	• •	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Extra I 0	vetro S 0	iource Cost ** 0	0.2	-0.0 0.2
Uned Channel Patch Up or replace Unlined Channel Patch Up Pipe Network Const.	10 10	10 10	10 10	10 10	10 10	40 10 20 2	160 160 20	220) 280) 20	340 20	340 20	340 20	340 20	340 20	340 30	340 30	340 30	340 30	340 30	340 30	340 30	340 30	340 30	340 30	340 30	340 30	340 30	340 30	340 30	4143 473	7.7 0.7	1.7 0.6
(a) Intig. System Drain Construction Flow control -	0 0	0 0	0 0	0 0	0 0	0 0	0 0) 0) 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0	0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0,0 0.0	0.0 0.0
Structures Wheel replace.	16 33	0 33	0 33	0 33	0 33	0 4 33 3	8 48 3 33	48 33	48 33	51 0	51 0	51 0	51 0	63 0	63 0	63 0	63 0	63 0	63 0	63 33	63 33	51 33	51 33	51 33	51 33	51 33	51 33	51 33	51 33	804 514	1.3 0.7	0.7 0.4
Sub Total (Irrig.)	59	53	53	103 1	53	93 20	1 261	321	381	411	411	411	411	423	433	433	433	433	433	466	466	454	454	454	454	454	454	454	454	5934	10.5	3.5
Minor Works O/H Sub Total with O/H	24 93	18 71	18 71	36 139 2	53 106	32 7 125 27	0 91 1 352	112 433	133 514	144 555	<u>144</u> 555	<u>144</u> 555	144 555	148 571	152 585	152 585	152 585	152 585	152 585	163 629	163 629	159 612	159 612	159 612	159 612	159 612	159 612	159 612	159 612	2077 8011	3.7	1.2
CAPITAL TOTAL (Inc. O/H)	93	71	71	2947 12	86	125 27	1 2512	1081	514	555	555	555	555	571	585	585	585	585 1	665	629	629	612	612	612	612	612	612	612	612	9354	21.9	5.0
OPERATION COSTS (\$ 000's)				anangan iyi akyasaniyi s			1	inter we can					Sing Windows														and designed					
Water Delivery Costs (Waterman & M & E Costs)	194	196	199	201 2	03 3	206 20	8 210	213	215	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189	189	2980	5.8	2.7
Maintenance of Irrig Supply System	426	426	426	426 4	26 4	426 42	6 426 2 202	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	426	425	6719	12.8	6.1
	844	845	849	851 8	53 1	855 85	3 223 8 860	863	865	839	839	223 839	839	839	839	839	839	839	839	839	839	839	839	839	223 A19	839	839	839	839	13222	25.1	10.2
Admin-O/H Costs TOTAL DIST (with O/H) Headworks OP (with O/H)	295 1139 20	296 1142 20	297 1146 20	298 2 1149 11 20	99 2 52 1 20	299 30 155 115 20 2	0 301 8 1161 0 20	302 1164 20	303 1168 20	294 1132 20	294 132 20	294 1132 1 20	294 132 1 20	294 1132 1 20	294 132 1 20	294 132 1 20	294 132 20	294 132 20	294 1132 20	294 1132 20	294 1132 20	294 1132 20	294 1132 20	4628 17849 319	8.9 34.2 0.6	3.6 13.7 0.3						
OPS TOTAL (with O/H)	1160	1163	1166	1169 11	72 1	175 117	8 1182	1185	1168	1153	1153	1153	1153	1153	1153	1153	153	1153 1	153	153 1	153	153 1	153	153	1153	1153 Granc	1153 Tot.	1153 NPV	1153 - 80 yi	18168 rs @ 6%=	34.6	14.0 19.0
GRAND TOTALS - \$ 000's	1252	1234	1237	4116 24	58 1:	300 144	9 3693	2266	1702	1708	1708	1708	1768	1724	1737	1737	737	1737 2	817 1 N	791 1 PV Co	781 1 ata -	765 1 85	765 5% H	765 work	1765 8 + d	1765 lat +	1765 depr	1765 BC. OF	1765 old a	27522	56.7	19.0
REVENUE (Rates & Vol. Charges)	1016	1013	1010	1007 10	64 10	006 100	7 1008	1009	1011	1012	1013	1015	1016	1017	1020	1023 1	026	1028 1	031 1	034 1	036 1	039 1	042	644	1047	1050	1053	1055	1058	16677	30.8	15.2
																						L	c	ost(Ex	ci. De	pred, 0	ofold	Assel	s)/Curr	ent income		1,3
																															NPV Flow S'm S'm	s 637 L 23.8 L 29.8 A 183.818

139 -

1

······ OPTION A1 ······· COLLIE				Curren Max P	erm Irr	Perm li Area -	rr Area Year	15		5132 5132	ha l ha l	vlax Im Rated v	Area (I Area for	PP+IA r Watei	P+V+F rAlkoc.) at Yr 1	5	6320 h 4977 h	va va		,	vlax Ea	arly Ge	minati	on Are	a at Yr	15			1188	ha		
]		
Year '89/90 +	1	2	3	4	5	6	7	9	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	30-80		
AREA LIMITS ON IRRIGATION ax area of Permanent Irr, Land	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	5132	80890	Total	NP
ax area Irr. (+ Early Germin) ated Area Ior Water Allocation	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	5320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	6320 4977	99621 78447	Smillions	et 6% Smlill
igh Water Demand - Permanent Irr Land Igh Water Demand - Early Germin, Land	4200 1499	4184 1491	4168 1484	4151 1476	4135 1468	4136 1467	4137 1467	4139 1466	4 140 1465	4141 1465	4142 1464	4143 1463	4 145 1462	4146 1462	4147 1461	4151 1461	4156 1461	4160 1460	4165 1460	4169 1460	4173 1460	4178 1460	4182 1459	4187 1459	4191 1459	4195 1459	4200 1459	4204 1458	4209 1458	4213 1458	66405 2298 1		
CAPITAL COSTS (\$ 000'a)											<u></u>								1999 <u>- 1</u> 999 - 1999 -														
eadworks	0	300	0	n	0	0	0	0	٥	0	n	. 0	n	٥	n	٥	0	0	0	0	0	0	٥	٥	0	0	0	n	0	0	0	0.3	
ajor Contract O/Heads	0	24	0			0	0	0	0	0	0	0	0	<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	<u>0</u>	0.0	
aarbuortes. Cettlate	70	324	100	50	0	. U	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Extra	vietro S n	ource Cost *	. 0.3	• •
Istribition System	60	60	60	50	0	60	60	60	60	60	80	80	AO	80	80	116	116	116	116	116	104	194	104	104	104	194	104	194	194	10.4	2360	1 35	
nlined Channel Patch Up Bine Natwork Const	20	20	20	20	20	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	630	1.1	
) Irrig. System	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	
Flow control -	16	49	49		46	0	0	۰ ۱	ů	0	66	65	65	65	ۍ ۲۵	65	65	65	66	e5	65	53	53	63 63	53	53	52	53	53	53	013		
Wheel replace.	34	34	34	34	34	34	34	34	34	34	0	0	0	0	0	0	0	0	0	0	34	34	34	34	34	34	34	34	34	34	415	07	
σ Total (Inig.)	200	162	262	212	162	134	134	134	134	134	185	185	185	185	185	221	221	221	221	221	333	321	321	321	321	321	321	321	321	321	4055	69	
inor Works O/H Jo Total with O/H	70 270	57 219	92 354	74 286	57 219	47	47	47	47 181	47 181	65 250	65 250	65 250	65 250	65 250	78 299	78 299	78 299	78 299	78 299	117 450	112 433	112 433	112 433	112 433	112 433	112 433	112 433	112 433	112 433	1419 5474	<u>2.4</u> 9.3	
APITAL TOTAL (Inc. O/H)	270	543	354	286	219	181	181	181	181	181	250	250	250	250	250	299	299	299	299	299	450	433	433	433	433	433	433	433	433	433	5474	9.7	
OPERATION COSTS				50 <u>,</u>				27 <u></u>									 		<u></u>	- <u></u>		ange pas					- <u></u>			<u></u>			
ater Delivery Costs Vaterman & M & F. Costs)	168	170	172	174	176	152	154	156	158	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	2524	4.8	:
aintenance of Irrig	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	374	5888	11.2	
Id. Drainage O & M	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	85	1336	2.5	
DTAL (without O/H) Jmin- O/H Costs	627 219	629 220	631 221	633 221	635	610 214	612 214	614	616 216	618 216	618 216	618	618 216	618 216	618 216	618 216	618 216	618 216	618 216	618 216	618 216	618 216	618 216	618 216	618 216	618	618 216	618	618 216	618 216	9748 3412	186	1
DTAL DIST (with O/H)	846	849	851	854	857	824	827	830	832	835	835	835	835	835	835	835	835	835	835	835	835	835	835	835	835	835	835	835	835	835	13160	25.1	1
PS TOTAL (with O/H)	866	869	872	874	877	844	847	850	852	855	855	855	855	855	855	855	855	855	855	855	855	855	855	855	855	855	855	855	855	855	13480	25.7	1
				77.87	1646				1400								1777		7777-		1407	1686	1444		1884	-1450	Gran	a 101.	NPV	- 60 y	rs @ 6%=		1:
HAND TOTALS - \$ 000 B	1136	1412	1225	1161	1049	1025	1028	1031	1033	1036	1105	1105	1105	1105	1105	1154	1154	1154	1154	1154	NPVC	Costs	1289	B5%	1289 Worl	1269 K8 + C	1289 list, +	depr	9C. OF	olda	18954 85015	35.4	1
EVENUE (Rates & Vol. Charges)	933	931	928	926	924	924	924	924	924	924	925	925	925	925	925	926	926	927	927	928	929	929	930	930	931	931	932	933	933	934	14716	27.8	1
																									Cost(# Cost(E	na. Dej xci. D	prea. a sprea.	of old / of old	Asset	/Currs s)/Curr	nt income ent income		
																							-									NPV Flov	ve 1 va 6
																																Sin	nL 2
																																	aí ?

Dam Replace. Smill 0.18271

3. STRATEGY 3 - FULLY PIPE DISTRIBUTION SYSTEM

A major planning preliminary design exercise was undertaken to evaluate the cost of piping the distribution system to serve the various different areas and demand rates. A number of old channel systems have been upgraded with pipe networks over the last 15 years in Australia. The cost of such upgrades are high on capital but reduce operating costs significantly and reduce water loss substantially. The costings carried out here were designed to explicitly evaluate the full capital and operational costs of the different options and to evaluate the savings in water from construction of a piped network.

Capital Costs - High Demand Cases

The following general approach to the pipe network design for Area Option A to D was adopted.

The general layout of the current channel system was used as the basis for the pipe network. For each area option (in the Harvey and Waroona districts) a peak design flow rate case was determined. This involved the identification of the number of supply points that currently operate at any one time. The rated area being served down stream of each point in the network was the determined and a peak flow rate based on this rated area assessed.

These peak flow rates and the associated heads (and minimum head requirement of 3 metres at each supply point) formed the basis for input into an optimising pipe network design package called "Optnet". This program performs the necessary hydraulic calculations to optimise the size of the pipework required to meet the head and flow demands throughout the network. Pipe purchase costs were updated to January 1991 dollars and laying costs estimated from experience in the Harvey area.

A full pipe network analysis was not carried out for Option E. The capital cost estimates for the Collie District were scaled on the basis of the relative channel length and sizes from the Harvey District preliminary design study.

In the case of the Horticultural Options a minimum flow rate of 35 litres per second (per 20 ha area) was adopted throughout the distribution system. No scheduling would be required and farmers would be able to water their average crop requirements in about 8 to 10 hours per day. In one day in 20 during January - February they may need to water the full 24 hours. Flow restrictors would be installed to limit usage to the maximum of 35 litres per second per 20 hectares. Those wishing additional security could construct onsite storage. Water would be provided at a low three metre head. Individual irrigators would then establish their own means of pressurising their farm distribution system to their own requirements.

Output from the design program gives a listing of the pipe sizes in the network, their cost in the ground (without overheads), and a graphical presentation of the overall network layout. Ten percent contingency costs and supply point costs were added to the capital cost of the pipe network as provided by water supply design branch.

A major pipe network construction program would be placed out to tender. The Water Authority would carry out the detailed design and supervise the construction. Salary and administration costs for such large projects range between 5% and 10% of the capital costs. A figure of 8% was adopted in this case.

Capital expenditures (with 8% salary and administration overheads) exceed \$60 million for the large networks for Option A in the Collie and Harvey districts. Construction time in these cases were spread over a 5 year period (years 11 to 15) for both practical construction and financial reasons. Maximum yearly capital expenditures of about \$12 to \$13 million were adopted in any one year. Construction time was spread over 3 years in the smaller distribution system options (e.g. Years 13 to 15 for the Horticulture Option).

It should be stressed that the costings provided, while realistic for planning purposes do not constitute detailed designs or accurately reflect construction costs. More detailed design and construction cost estimation would be required in 5 to 8 years time, prior to any decision to proceed with a fully piped system.

Operating Costs for the Pipe Networks

While pipe networks are very capital intensive they are low on operation costs. The experience of operating the Harvey Pipe network served as the basis for estimating the future operating costs.

Water delivery costs only involve labour costs associated with scheduling users and in reading metres for charging purposes.

Two operations were assessed as being able to run the 3 districts or Area Option A. Other options were costed in proportion to the number of sampling points remaining in operation.

Other maintenance costs were assessed as proportional to the length of the pipe network and consisted of :

Mechanical & Electrical Maintenance	\$50/km/a
Routine Maintenance	\$50/km/a
One off bursts	\$50/km/a

Replacement/renewal of constant flow rate supply points were assessed at \$1,400 per supply point and required every 15 years. A replacement program of 10% per year over a 10 year period was included.

Capital Costs - Low Water Demand Cases

The capital costs of the designed networks were based on providing the current watered area with sufficient water to meet peak operating demand in February each year. However as demand reduces as price rises the same sized pipe network is not required. The capital costs of the networks for the low demand cases were appropriately scaled to take this effect into account.

The following 3 pages detail the capital and operating costs for the high and low demand Strategy 3 case for Area Option A.

]		
	Year '89/90 +		ź	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	30-80	7	
AREA LIMITS ON IRRIGATION	L																																	
Max area of Permanent Irr. Land Max area Irr. (+ Early Germin) Rated Area for Water Allocation		1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1895 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	1526 1896 1499	24049 29878 23629	Totel Smillions	NPV st 5%
High Water Demand - Permanent Irr L High Water Demand - Early Germin, Li	and and	1350 477	1359 476	1369 476	1378 475	1387 474	1389 474	1392 474	1394 474	1397 474	1399 474	1401 473	1404 473	1406 473	1409 473	1411 473	1418 457	1425 461	1432 454	1439 448	1446 442	1453 436	1460 430	1467 423	1474 417	1481 411	1488 405	1495 399	1502 392	1509 385	1516 380	23895 5990		Smillion
CAPITAL COSTS (\$ 000's)	aller andres of a second s															2012-001			Constants	W.C.	1					100000000000000000000000000000000000000	dic_{er} kip a							- <u> </u>
Headworks																																		
Structures Major Contract O/Heads Total with O/H		0 0 0	0 0 0	0 0	0 0 0	2300 184 2484	2300 184 2484	2700 216 2916	0 0 0	0 0 0	300 24 324	0	0	0 0 0	0	0	0 0	0 0 0	0	0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	1243 99 1342	7.6 0.6 8.2	5 507 0 44 5 54						
Headworks- Outlets		0	150	50	50	0	0	0	0	0	0	0	o	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	Exta N O	ietro So O	ource Cost *** 0	0.3	0.00k 0.21
Lined Channel Patch Up or replace Unlined Channel Patch Up Rips Natwork Const		0 10	0 10	25 10	25 10	50 10	0 5	0 5	0 5	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0.1 0.1	0.077 0.05						
(a) Irrig. System Drain Construction		0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0.00 0	0.00 0	0.00 0	5.90 0	5.90 0	7.47 0	4.18 0	0.00 0	0.00	0.00 0	0 00 0	0.00 0	0.00 0	0.00 0	23.5 0.0	10.74 0.00									
Flow control - Structures Wheel replace.		16 10	0 10	0 10	0 10	0 10	0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0	0 0	0	0	0 0	0 0	0	0	0	0	0 0	0 0	0	0	0.0	0.01 0.04
Sub Total (Irrig.)		36	170	95	95	70	5	5	5	0	0	0	5900	5900	7470	4180	0	0	Ö	0	0	0	0	0	0	0	c	0	0	0	0	0	23.9	11.14
Minor Works O/H Sub Total with O/H		13 49	60 230	33 128	33 128	25 95	27	2 7	2 7	0	0	0	0 5900	0 5900	0 7470	0 4180	0	0	0	0	0 0	0	0	0	0	0 C	0	0	<u>0</u>	0	0	0	0.2	0.14
CAPITAL TOTAL (Inc. O/H)		49	230	128	128	2579	2491	2923	7_	0	324	Ó	5900	5900	7470	4180	0	0	0	0	Ő	0	0	0	0	Ů	0	ð	0	0	0	1342	32.3	17.23
OPERATION COSTS								745756444								d be se met d'an				NC 502 (1992)	Par 202020	<u></u>		<u> </u>					<u></u>					79428799225782
Water Delivery Costs (Waterman & M & E Costs)		55	56	57	57	58	59	59	60	61	61	61	61	61	61	327	327	327	327	327	327	327	327	327	327	327	327	327	327	327	327	5154	61	2 85
Maintenance of Irrig Supply System Add. Drainage O & M		77	77	77	77	77	77 24	77 14	77	77	77	77	77 24	77 34	77 34	23 24	23 24	23 34	23 24	23 24	23	23 34	23	23	38 14	38 24	38 74	38 14	38 14	38 24	38 14	60 1 52 9	1.6	0 94
TOTAL (without O/H)		166	167	168	168	169	170	170	171	172	172	172	172	172	172	384	384	384	384	384	384	364	384	384	300	399	199	199	100	100	100	5284	8.6	4 33
Admin-O/H Costs TOTAL DIST (with O/H)		58 225	58 226	59 227	59 227	59 228	59 229	60 230	60 231	60 232	60 233	60 233	60 233	60 233	60 233	134 518	134 518	134 518	134	134 518	134 518	134 518	134 518	134 518	140 538	140 538	140 538	140 538	140 538	140 538	140 538	2199 8483	3.0 11.6	1.52
Headworks OP (with O/H) OPS TOTAL (with O/H)		20 245	20 246	20 247	20 248	20 249	20 249	20 250	20 251	20 252	20 253	20 253	20 253	20 253	20 253	20 538	20 538	20 538	20 538	20 538	20 538	20 538	20 538	20 538	20 558	20 558	20 558	20 558	20 558	20 558	20 558	319 8802	0.6	0.33
				24250-00-00-00-00-00-00-00-00-00-00-00-00-0		-																				•	******	Grano	Tot.	NPV -	80 yr:	s @ 6%≈		23.439
GRAND TOTALS - \$ 000's	1	294	475	375	376	2827	2740	3173	258	252	577	253	6153	6153	7723	4716	538	538	538	538	538	538 NPV C	538 Costs	538 - (558 35% }	558 I/work	558 (s + d	558 ist. +	558 depre	558 эс. оп	558 old ar	10145 sets	44.6	22.55
Revenue(Rates and charges)		275	276	277	278	279	279	280	280	280	281	281	281	281	282	282	283	283	284	285	285	286	297	288	288	289	290	290	291	292	292	4609	0.5	4.62
a na an ann an tha ann an ann an ann an ann an ann an ann an a															anan Naimi Tan									Ī	, , ,	Cost(In Cost(E	c. Dep	NAC. O	fold A	Assets)	Curren i)/Curri	it income		4.89
																																	NPV Flow	199.1
																																	S'm S'm S'H	L 23.2 L 113.2 a 727.3

1526 ha Max In Area (IPP+IAP+V+F)

1526 ha Rated Area for Water Alloc. at Yr 15 1499 ha

1896 ha

Max Early Germination Area at Yr 15

Current Max Perm In Area

Max Perm Irr Area - Year 15

······ OPTION A3 ······ WAROONA

370 ha

	OPTION A3 HARVEY				Currer Max P	it Max I erm Irr	Perm Ir Area -	r Area Year 1	5		5820 5820	ha ha	Max Irr Rated A	Area (IPI rea for V	P+IAP Nater A	+V+F) Nioc. at	Yr 15		6960 l 5431 l	ha ha		,	vlax Ea	arty Ge	rminat	ion Are	ea at Y	/r 15			;	712 ha			
L		·····												¥ **** *****	<u></u>							<u></u>]		
	[Year '89/90 +]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	2	3 3	0	30-80	7	
	REA LIMITS ON IRRIGATION																																		
Max ar Max ar Rated	ea of Permanent Irr. Land ea Irr. (+ Early Germin) Area for Water Allocation	5820 6773 5431	5820 6773 5431	5820 6773 5431	5820 6773 5431	5820 6773 5431	5820 6761 5431	5820 6749 5431	5820 6737 5431	5820 6725 5431	5820 6713 5431	5820 6676 5431	5820 6640 5431	5820 6604 5431	5820 6568 5431	5820 6531 5431	5820 853 1 543 1	5820 6531 5431	5820 6531 5431	5820 6531 5431	5820 653 1 543 1) 582 653 540	10 582 11 653 31 543	0 58 11 65 11 54	20 58 31 65 31 54	120 531 431		Total Smillions	NPV at 6% Smillions						
High W High W	/ater Demand - Permanent Iπ Land (ha) /ater Demand - Early Germin, Land (ha)	4582 1379	4561 1366	4541 1352	4520 1339	4499 1325	4510 1264	4521 1202	4532 1141	4543 1079	4554 1018	4564 956.6	4575 895.2	4586 833.8	4597 772	4608 711	4617 711	4626 711	4635 711	4644 711	4653 711	4662 711	4671 711	4681 711	4690 711	4699 711	4708 711) 471 71	17 472 11 71	16 47 1 7	35 47 11 7	744 711			
9	CAPITAL COSTS (\$ 000's)																																	Î	
Heady Structu Major	rorks Fes Contract O/Heads	0	0	0	2600	1000	0	0	2000	600	0	0	0	0	0	0	0	0	0	0	1000	0	0	0	0	0	0	J N	0	0	0	0	1243	7.2	4.933
Total v	ith O/H	0	0	0	2808	1080	0	0	2160	648	0	0	0	0	0	0	ō	Ö	Ö	0	1080	Ő	0	0	0	0	Ċ	<u>;</u>	0 Extr	0 a Met	0 501		1342	7.8	5.327
Headw	orks- Outlets Ition System	0	0	0	50	100	0	0	0	0	0	0	0	0	ð	0	0	0	0	0	٥	0	0	0	0	0	c)	0	c	0	0	0	0.2	0.114
Unine Unine Pine	Channel Patch Up or replace J Channel Patch Up Network Const	10 10	10 10	10 10	10 10	10 10	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0))	0 0	0 0	0 0	0 0	0 0	0.1 0.1	0.042 0.042							
(a) Irriç	. System - \$ Millions	0	0 0	0 0	0 0	0 0	0	0	0 0	6.4 0	12.3 0	11.8 0	12.1 0	12.8 0	6.72 0	5.3 0	0 0	0	0 0	0 0	0 0	0	0 0	0 0	0	0) 0	0	0 0	0 0	0 0		67.2 0.0	34.0 0.000
Flow Str Wt	control - uctures seel replace,	15 4	0 4	0 4	0 4	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0	0	c	5 D	0 0	0 0	0	0 0	0 0	0.0 0.0	0.015 0.014
Sub To	stal (krig.)	40	24	24	74	120	0	0	0	6400	12300	11800	12100	12600	6720	5300	0	0	0	0	0	0	0	0	Ó	0	6	<u>. </u>	0	0	0	0	0	67.5	34.2
Minor V Sub To	Norks O/H tal with O/H	14 54	8 32	8	28 100	42 162	0	0	0	0 6400	0	0	0 12100	0	0 6720	0 5300	0	0	0	0	0	0	0	0	0	0	c	<u>)</u>	0	<u>0</u>	0	0	0	0.1 67.6	0.080
CAPIT	AL TOTAL (Inc. O/H) - \$Milfions **	0.05	0.03	0.03	2.91	1.24	0.00	0.00	2.16	7.05	12.3	11.8	12,1	12.6	6.7	5.30	0.00	0.00	0.00	0.00	1.08	0.00	0.00	0.00	0.00	0.00	0,00) 0.0	0.0	00	<u>00 0</u>	.00	1.34	75.4	39.6
	DPERATION COSTS (\$ 000'a)				100.000.00	<u></u>						34.47à																						+	
Water (Water	Delivery Costs man & M & E Costs)	194	196	199	201	203	206	208	210	213	215	189	189	189	189	30.6	30.6	30.6	30.6	30.6	30.6	30.6	30.6	30.6	30.8	30.6	30.e	3 30	.6 30	.6 30).6 3	0.6	482.31	3.3	2.080
Mainte Supply	nance of Infg System	426 0	426 0	426 23	426 0	426 0	39.3 0	39.3 0	39.3 0	39.3 0	39,3 0	39.3 0	39.3 0	39.3 0	39.3 0	39.3 48	39.3 48	39.3 48	339 8 /	.3 39 48 4	.3 39 18	1.3 3 ^r 48	9.3 f	820.07 296	6.6	4.240									
Add. D	rainage O & M	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	223	3 22	23 22	3 2	23 2	223	3522.1	6.7	3.854
TOTAL Admin	. (without Q/H) · O/H Costs	844 295	846 296	872 305	874 308	\$76 307	879 307	881 308	883 309	886 310	888 311	862 302	862 302	839 294	839 294	293 103	293 103	341 119	341 119	341 119) 34 9 11	11 34 19 11	1 3	41 3	J41 119	4920 1722	17.2 6.0	10.2 3.585							
TOTAL	. DIST (with O/H) Headworks OP (with O/H)	1139 20	1142 20	1177 20	1180 20	1183 20	1186 20	1189 20	1192 20	1195 20	1199 20	1163 20	1163 20	1132 20	1132	396 20	396 20	396 20	396 20	396 20	398 20	396 20	396 20	396 20	460 20	460 20	460) 46) 1	JO 46 20 7	.0 4 20	60 4 20	160 20	6642 319	23.2	13.8
OPS T	OTAL (with O/H)	1160	1163	1197	1200	1203	1206	1209	1213	1216	1219	1184	1184	1153	1153	416	416	416	418	416	416	416	416	416	481	481	481	48	1 48		<u>81 4</u> W - 8		6961	23.8	14.2
GRAN	D TOTALS . \$ Millions	1 21	1 20	1 21	4 11	245	1 21	1 21	1 17	8.26	13.62	12 98	13.3	13.8	79	6 72	0.42	0.42	0.42	0 42	1.50	0 42	0.42	0.42	0.48	0.48	0.44	107	10 TO		48 0	44		_	53.6 62.07
									<u></u>				14:4						-3615.		1.00	NPVC	osts	•	85%	H/wor	ks +	dist	+ der	нос.	on ol	id as:	sets	Î	53.26
REVE	UE (Rates & Vol. Charges)	1016	1013	1010	1007	1004	1004	1004	1004	1004	1003	1003	1003	1003	1003	1002	1004	1005	1005	1007	1008	1009	1010	1012	1013	1014 Cost/	1015	5 101 101	6 101	7 10	18 10 etaVC	19	16068	30.3	16.5
																									L	Cost(Excl. C	Jepre	c. of e	id As	sets)/C	Jurrer	t income		3.209
																																		NPV Flows S/ML S/ML \$/He	660,5 24,99 80,20 487,489

Dam Replace. \$mili 0.38275

	Current Max Perm In Area	5132 ha Maxim Area (IPP+IAF	+V+F) 6320 ha		(
COLLIE	Max Perm Irr Area - Year 15	5132 ha Rated Area for Water	Alloc. at Yr 15 4977 ha	Max Early Germination Area at Yr 15	1188 ha

and a second and a second a s

Dam Replace. Şmill 0.18269

Year '89/90 +		2	3	4	5	6	7		9	10	11	12	13	14	15	16	17	10	19	20	21	22	23	24	25	26	27	28	29	30	30-90		
AREA LIMITS ON IRRIGATION				-																													
Max area of Permanent Irr. Land Max area Irr. (+ Early Germin) Rated Area for Water Allocation	5132 6631 4977	5132 6631 4977	5132 6631 4977	5132 6631 4977	5132 6631 4977	5132 5 6615 6 4977 4	132 5 600 6 977 4	132 584 977	5132 5 6569 6 4977 4	5132 5553 1977	5132 6507 4977	5132 6460 4977	5132 6414 4977	5132 6367 4977	5132 6320 4977	5132 6320 4977	5132 6320 4977	5132 6320 4977	5132 6320 4977	5132 6320 4977	5132 6320 4977	5132 6320 4977	5132 6320 4977	80890 9962 1 78447	Total Smilliona	NPV st 6%							
High Water Demand - Permanent Irr Land High Water Demand - Early Germin, Land	4200 1499	4184 1491	4168 1484	4151 1476	4135 1468	4136 4 1467 1	137 4 467 14	139 466	4140 4 1465 1	4141 1465	4142 1464	4143 1463	4145 1462	4146 1462	4147 1461	4151 1461	4156 1461	4160 1460	4165 1460	4169 1460	4173 1460	4178 1460	4182 1459	4187 1459	4191 1459	4195 1459	4200 1459	4204 1458	4209 1458	4213 1458	66405 2298 t		Smillions
CAPITAL COSTS (\$ 000'B)																													196 2×18 11 1 44				
Headworka Structures Major Contract O/Heads Total with O/H	0	300 24 324	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0	1243 99 1342	0.3 0.0 0.3	0.5 0.0 0.5
Headworks- Outlets Distribution System	70	0	100	50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0.2	0.2
Uneo Channel Patch Up Unlined Channel Patch Up Pipe Network Const.	60 20	40 20	20 20	20	20	0	0	0	0	0	0 C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2360 630	0.1	0.5
(a) Irrig. System - Millons Drain Construction Flow control -	0	0	0	0	0	0 0	0 0	0	0.00 0	0.00 0	11.8 0	12.3 0	12.6 0	12.6 0	10.9 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 Q	0.00 0	0.00 0	60.2 0.0	28.3 0.0						
Structures Wheel replace,	16 34	0 34	0 0	0 0	0	0	0 0	0 0	0	0 D	0 0	0 0	0	0 0	0 0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	0	0	0	0	0	0 0	0 0	839 537	0.0 0.1	0.2 0.2
Sub Total (Irrig.)	200	94	140	70	20	0	0	0	0	0					******	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4367	60.7	29.5
Minor Works O/H Sub Total with O/H	70 270	33 127	49 189	25 95	7 27	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1529 5896	0.2 60.9	0.4 29.9
CAPITAL TOTAL (Inc. O/H)	270	451	189	95	27	0	0	0	0	0 ''	mon		mara			0	0	Õ	0	0	ð	0	Ō	0	0	0	0	0	0	0	7238	61.2	30.4
OPERATION COSTS (\$ 000'a)				*****					ningin stal og døde															internitation in		<u></u>					and and an interview of the	1.	
Water Delivery Costs (Waterman & M & E Costs)	168	170	172	174	176	152	154 1	56	158	160	160	160	160	160	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	2524	2.8	2.1
Maintenance of irrig Supply System Add. Drainana O & M	374 85	374	374 85	374	374 85	374 85	374 3 85	874	374 85	374 85	374 85	374 85	374 85	374 85	33.8 85	33.6 85	33.8 85	83.5 85	83.5 85	83.5	83.5 85	83.5 85	83.5 85	83.5 A5	5888	5.1 2.5	4.7						
	607		601	600	625	E 10	= 12 =		616	610	610	<u> </u>	£10	610	160	150	150	150	150	150	150	150	150	- 200	200	- 200	200	200	200	200	0749	11.6	
Admin- O/H Costs	219	220	221	221	222	214	214 2	15	216	216	216	216	216	215	53	53	53	53	53	53	53	53	53	70	70	70	70	70	70	70	3412	4.0	2.8
Headworks OP (with O/H)	846 20	849 20	851 20	854 20	857 20	824 20	827 8 20	20	832 20	835 20	835 20	835 20	835 20	835 20	203 20	203	203	270 20	270	270	270	270	270	270	13160	0.6	0.3						
OPS TOTAL (with O/H)	866	869	872	874	877	844	847 8	50	852	855	855	855	855	855	223	223	223	223	223	223	223	223	223	290	290	290	290 Gran	290 4 Tot	290 NOV	290	13480	16.1	<u> </u>
		*****														-									-							_	
GRAND TOTALS - \$ 000's	1136	1320	1061	969	904	844	47 1	50	852	855 **						223	223	223	223	223	223 NPV C	223 Costs	- <u>223</u> - (290 5% H	290 /work	290 (\$ + 0	290 list. +	depr	290 3C. OF	290 old a	20718 95019	1	41.7
REVENUE (Rates & Vol. Charges)	933	931	929	926	924	924	24 4	24	924	925	925	925	925	925	925	926	926	927	929	928	929	929	930	930	931	932	932	933	933	934	14720	27.8	15.2
Na manimus de la casa d			an Tri Ann	າະຕັ້ງມີເຕັ້ນຕ					- Triene						antiilidaa	- ilius						and the second second	Ĩ	(Cost(in Cost(E	xol. De	orec. o eprec.	l old A of old	ssets Asset	/Curre s)/Curr	nt income ent income	1	2.8
																																NPV Flowi S'mi S'mi S'Hi	637 23.8 65.4 394.078

.

COMPUTATIONS OF SPACING AND COSTS OF SHALLOW DRAINAGE

1. INTRODUCTION

This appendix summarises the calculations to determine the most appropriate drainage strategy to lower water tables 1.5 metres in the salt prone western portions of the irrigation areas. It should return productivity levels to values similar to those in the productive eastern portion of the irrigation districts.

2. SUMMER RE-CHARGE ESTIMATE FOR DRAINAGE DESIGN - (Collie District)

(a) Net Re-charge calibrated from regional model

= 0.1mm per day (Phase 2 Supplementary Paper 3)

(b) Gross Re-charge from shallow soils (averaged over whole farm)

= 0.2mm per day (Phase 2 Supplementary Paper 4)

Gross Re-charge from channels (Western portion of Collie district)

= 0. 1mm per day (estimated from channel density through district and average channel losses)

- (c) Required average evaporation from water table to match net re-charge = 0.22mm/day.
- (d) For the Vindictive Drain Catchment where 28% of catchment is irrigated the re-charge rates would be distributed as follows:

	Area Averaged (mm/d)	Irrigated Portion (mm/d)	Dryland Portion (mm/d)
Gross Re-charge to Water Table	0.3	0.9	0.1
Evaporation from Water Table	0.2	0.4	0.1
Net Re-charge to Water Table	0.1	0.4	0

Therefore adopt 0.4 mm/day as the design re-charge rate for drainage over irrigation paddocks. That is R = 0.4mm/day.

2. SPACING COMPUTATIONS

(a) Adopted Conductivities

 $K_v = .001 \text{ m/d}$ (Supplementary Paper 3)

 $K_{\rm H} = 0.1 \text{ m/d}$ (10 times less permeable than Supplementary Paper 3)

(b) Geometric Layout

The maximum practical depth for construction was taken as 2.5 metres (mid depth of 2.3 metres).

To ensure that virtually no salt would rise to the surface a depth of 1.5 metres below the surface was adopted as the desired minimum depth.

This implies that a maximum mid drain height about the drains would be 0.6 metres from Supplementary Paper No ?

$$C_{1} = H (K_{v} K_{H})^{0.5}$$

$$= 0.6 (.001 \times 0.1)^{0.5}$$

$$= 0.6 (.001 \times 0.1)^{0.5}$$

$$= 75$$

From Figure 29 S/r = 38

Therefore required spacing is 15 metres.

3. DRAIN LAYOUT AND COSTINGS

Estimates of the length of drains per irrigated hectare were made on a typical 4 hectare paddock with a 200 metre bay length. Allowance was made for an additional 500 metres of drain to an outlet surface drain.

Length required	- 13.3 rows - say 14 x 200 metres
	- link to outlet - 500 metres
	- 3,500 metres total per 4 ha
	- 875 metres/ha

Costs are a function of the scale of the operation and the depth of the construction.

Automated trenching machines can reduce unit of drainage. However large scale projects need to be arranged for these lower contract prices to be obtained. Quotes from Victorian drainage contractors indicate costs of about \$4.50 to \$4.80 for drains to depths up to 2.5 metres if large areas are carried out.

Allowing for 20% contingencies a figure of \$5.50 per metre was adopted.

Final cost per hectare = $$5.5 \times 875/ha$ = \$4,700/ha

COSTS OF REGIONAL PUMPING

INTRODUCTION

The regional groundwater modelling indicated that water tables could be lowered by over 1 metre by a "line sink" abstraction rate of $0.5m^3/day/m$ across the 3 km of the western portion of the Collie district. This appendix estimates the cost of such a pumping strategy.

APPROACH

The original transect modelling needs to be converted into a number of bores per hectare.

The original "line sink" suggests a row of bores 100 metres apart and space in two lines 1,500 metres apart (one bore per 15 hectares). The actual location of the bores could be modified to suit irrigation paddocks, facilitate disposal of effluent and close to power. An alternative spacing may be 200 x 750 metres.

COSTINGS

Assume maximum pumping rate 100 m³/day for 250 days per year.

- Drilling Costs	 \$5,000 per hole if only ¼ successful cost of hole \$15,000 \$3,000 SEC power connection \$2,000 bore equipment
 Bore Capital Life Replacement Cost Operating Cost 	 \$20,000 20 years \$6,250 \$25 x 10² x (20/0.6) x .0272/yr \$2,266.0/yr \$151/ha/yr

Capitalised Operating over 80 years - \$37,400

Summary of Costs

Cost

1 Bore at Replacement at 20, 40 and 60 years Capitalised Energy Cost	\$20,000 \$ 7,800 \$34,400
	\$65,200
per hectare	\$ 4,350